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1 Introduction

Clustering is a fundamental unsupervised learning task, grouping data points based on their
similarity. Clustering quality indices help measure how well clusters capture the data structure.
These indices vary across clustering methods, including traditional clustering, graph-based, kernel-
based, agglomerative, Gaussian Mixture Models (GMM), and Bayesian approaches. This report
summarizes common indices for each of these clustering techniques.

2 External Indices

External indices use ground truth labels to measure clustering accuracy. These indices are typically
used when known labels are available for evaluation.

2.1 Rand Index (RI)

The Rand Index (RI) |1] measures clustering quality by evaluating the agreement between the
predicted clustering and the ground truth labels. For a dataset X with N data points, let P rep-
resent the predicted partition of the data into clusters and G represent the ground truth partition.

The Rand Index is computed as:
a+b

(%)
where a is the number of pairs of data points that are correctly assigned to the same cluster in both
P and G, and b is the number of pairs correctly assigned to different clusters in both partitions.
The denominator (%) is the number of possible pairs of data points.

The Rand Index ranges from 0 to 1, with higher values indicating greater agreement between
the predicted clustering and the ground truth. A value of 1 corresponds to perfect clustering
alignment.

RI = (1)

2.2 Adjusted Rand Index (ARI)

The Adjusted Rand Index (ARI) [2] improves upon the Rand Index by accounting for the chance
grouping of points into clusters. For a dataset X with N data points, the ARI is computed as:
RI - E[R]]

ARL= max(RI) — E[RI]’ @)

where RI is the Rand Index, E[RI] is the expected Rand Index under random clustering, and
max(RI) = 1. The adjustment ensures that the ARI equals 0 when clustering results are no
better than random assignments and 1 for perfect clustering alignment. Typically, probabilities
are computed as normalized frequencies.

The ARI ranges from —1 to 1, where higher values indicate better clustering quality. Unlike
the Rand Index, ARI is particularly useful when comparing clustering solutions with different
numbers of clusters, as it corrects for chance alignments.



2.3 Mutual Information (MI)

Mutual Information (MI) measures the shared information between the predicted clustering and
the ground truth labels. For a dataset X, let P be the predicted partition and G the ground truth
partition. MI quantifies the dependency between P and G:

P
ZZPCGlogP(é) ()) (3)

CeP Geg

where P(C,G) is the joint probability of a data point belonging to both cluster C' and group
G, while P(C) and P(G) are the marginal probabilities. MI values range from 0 (no mutual
information) to log(K) for perfect alignment, where K is the number of clusters.

2.4 Normalized Mutual Information (NMI)

Normalized Mutual Information (NMI) extends Mutual Information (MI) by scaling it to account
for differences in the sizes of the predicted and ground truth partitions. The general definition of

NMI is:
MI(P,G)

H(P)H(9)

where H(P) and H(G) denote the entropies of the predicted clustering P and the ground truth
partition G, respectively:

NMI(P,G) = , (4)

- > P(C)log P(C), — Y P(G)log P(G). (5)
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Several other normalized MI scores, each with different normalization scheme, are also used in
practice:

NMI(P,G) = mm(l\fflg)ﬁ;(g))’ "
NMI(P,G) = max(lv[f;((zjvg];(g)), v
and
~ MI(P,G)
NMI(P,G) = LHP)+H(©Q)) )

NMI values range from 0 to 1, where 0 indicates no correlation between the predicted and ground
truth clusters, and 1 indicates perfect alignment. Each normalization scheme is symmetric with
respect to P and G, making NMI robust to differences in cluster sizes and suitable for comparing
clustering solutions.

2.5 Adjusted Mutual Information (AMI)

Adjusted Mutual Information (AMI) [3| further refines MI by correcting for the overlap expected
under random clustering. It is computed as:

MI(P, G) — E[MI(P,G)]
max(H(P), H(G)) — EMI(P,G)|’

where E[MI(P, G)] is the expected MI(P, G) under a random model. AMI adjusts for both random-
ness and cluster size imbalance, making it particularly useful for comparing clustering solutions
with varying numbers of clusters. AMI values range from —1 to 1, where 0 indicates results no
better than random and 1 signifies perfect clustering alignment.

AMI(P,G) = 9)



2.6 Fowlkes-Mallows Index (FMI)

The Fowlkes-Mallows Index (FMI) [4] evaluates clustering quality by measuring the geometric
mean of precision and recall based on pairwise cluster comparisons. It is defined as:

TP TP
FMI = \/TP—i—FP TP + FN’ (10)

where:

e TP (true positives): The number of data point pairs that are correctly assigned to the same
cluster in both the predicted clustering and the ground truth.

e FP (false positives): The number of pairs assigned to the same cluster in the predicted
clustering but to different clusters in the ground truth.

e FN (false negatives): The number of pairs assigned to different clusters in the predicted
clustering but to the same cluster in the ground truth.

The FMI ranges from 0 to 1, where higher values indicate better clustering quality. An FMI of 1
signifies perfect agreement between the clustering solution and the ground truth.

3 Internal Indices

Internal indices assess clustering quality using intra-cluster similarity (how close points within the
same cluster are) and inter-cluster separation (how distinct different clusters are).

3.1 Silhouette Coefficient

The silhouette score [5] evaluates clustering quality by measuring compactness and separation
in the clustering solution. Let d(x;,x;) denote the distance between data points z; and z;.
For a data point z;, its silhouette score s(x;) combines two components: the average intra-cluster
distance a(x;), reflecting cohesion, and the minimum average inter-cluster distance b(z;), capturing
separation. These are defined as:

1

a(z;) = 57— d(x, x5), (11)
|CI|—1IJ,€§Z.# !
. 1
b(z;) = I}l;r]l m w; d(zi, xj), (12)

where |Cy| and |C| are cluster sizes. The silhouette score for x; is given by:

b(z;) —a(z;

s(mi) = (zi) — a(z:) ,
max{a(z;),b(x;)}

Higher s(z;) values indicate better cluster assignments, while lower or negative values indicate

bad clustering solution. The overall silhouette score S(X) for dataset X is given using micro-
averaging strategy:

—1<s(x;) <1. (13)

1
S(X) = NZS(%‘% (14)

or macro-averaging strategy:

1 &1
S(X) = EZ o > s(a). (15)

In the overall silhouette score computation, micro-averaging assumes equal weight between data-
points, while macro-averaging assumes equal weight between clusters [6].



3.2 Soft Silhouette

The soft silhouette score [7] extends the traditional silhouette score to probabilistic cluster as-

signments. For a dataset X = {x1,...,2y} partitioned into K clusters C' = {C1,...,Ck}, with

Pc, (z;) denoting the probability of x; belonging to cluster Cy (Zle Pq,(z;) = 1), the intra-

cluster distance ac, (x;) is defined as the weighted average distance of x; to all other points in

C[:

we () = Dz Fer @) 7;),
E;‘V:I,j;éi P, (x5)

The inter-cluster distance be, (x;) is the minimum weighted average distance of z; to other
clusters, computed as:

(16)

N
. Po,(x;)d(x;, x;
be, (x;) = min Z'F:EV e, (@y)d(@:, 2;) = minac, (z;). (17)
J#l Zj:Lj;éi Pe, () J#

Using these, the silhouette value s¢, (z;) for x; within cluster C; is given by:

be, (w:) — ac, ()
max{ac, (x;),be, (z:)}

soy (i) = (18)
The soft silhouette score sf(x;) of a data point z; is then the expected value of s¢, (x;) over
its cluster probabilities:

Sf(xl) = ZPCI (xi)scl (mi)a (19)
I=1

and the overall soft silhouette score for the dataset is:
N
SFX) =+ Zl sf (). (20)

When cluster probabilities are one-hot vectors, corresponding to hard clustering, the soft silhouette
score reduces to the typical silhouette score.

3.3 Davies-Bouldin Index (DBI)

The Davies-Bouldin Index (DBI) [§] assesses clustering quality by measuring the average similarity
between each cluster and its most similar cluster. For K clusters C' = {C4,...,Ck}, DBI is
computed as:

K

1 . ,
DBI = max 2%

21
> max 7 (21)

where o; is the average distance between points in cluster C; and its centroid, and d;; is the
distance between the centroids of clusters C; and Cj.

Lower DBI values indicate better clustering quality, with smaller intra-cluster distances (o;)
and larger inter-cluster separations (d;;). The range of DBI is [0, 00), and a well-separated clus-
tering solution achieves a lower DBI.

3.4 Dunn Index

The Dunn Index [9] evaluates clustering quality by comparing the minimum inter-cluster distance
to the maximum intra-cluster distance, emphasizing well-separated and compact clusters. For K
clusters C' = {C,...,Ck}, the Dunn Index is defined as:
min d(C;,C;
1<i#j<K (G5, C)

1?}2{;(5(0’“)

D= , (22)



where d(C;, C;) is the distance between clusters C; and Cj, and §(C}) is the maximum distance
between points within cluster C.

Higher Dunn Index values indicate better clustering, reflecting larger cluster separations and
tighter intra-cluster cohesion. The index ranges from [0, 00), with higher values signaling well-
defined clusters.

3.5 Calinski-Harabasz Index (Variance Ratio Criterion)

The Calinski-Harabasz Index [10] (also known as the Variance Ratio Criterion) evaluates clustering
quality by comparing the between-cluster dispersion to the within-cluster dispersion. For a dataset
X with N points partitioned into K clusters C' = {C4,...,Ck}, the index is computed as:

_ trace(Sp) N — K

= . 23
trace(Sw) K —1 (23)
Here, Sp is the between-cluster scatter matrix and is defined as:
K
S =Y |Ckl(ur — 1) (e — 1) T, (24)
k=1

where |Cy| is the size of cluster Cy, ux is the centroid of Cy, and p is the overall mean of the
dataset.
The within-cluster scatter matrix Sy, is defined as:

K
Sw=> > (zi—m)w—m)". (25)

k=1x,€C}

Higher values of the Calinski-Harabasz Index indicate better clustering, as they reflect greater
between-cluster variability relative to within-cluster compactness. There is no upper limit, and
higher values signify superior clustering solutions.

3.6 Gap statistic

The Gap Statistic [11] is an internal clustering validation method that determines the optimal
number of clusters by comparing the clustering result to a random reference distribution. It as-
sesses how much better a clustering structure is compared to a dataset with no apparent structure.
Specifically, for a given number of clusters K, the Gap Statistic is defined as:

Gap(K) = Ellog Wk] — log Wk, (26)

where Wx is the within-cluster dispersion, computed as:

K
Wk = Z Z l|lz: — Mk||2- (27)

k=1xz,€Cy

Here, uy is the center of cluster C, and the expectation E[log W] represents the average value of
log Wi over multiple datasets generated from a reference distribution under the null hypothesis
(e.g., a uniform distribution). This reference distribution assumes no inherent clustering structure,
allowing for a comparison between the observed clustering result and what would be expected by
chance.
Given clustering solutions for several values of K, the best number of clusters is chosen as the
smallest K for which:
Gap(K) > Gap(K + 1) — sg41, (28)

where sy is the standard deviation of log Wi from the reference distribution. It should be noted
that higher Gap values indicate stronger clustering structures, as they suggest that the observed
clustering deviates significantly from a random distribution.



3.7 Stability

Stability is an important criterion for assessing the reliability of a clustering solution |12]. When
applied to slightly perturbed dataset versions, a stable clustering algorithm produces consistent
results. This indicates robustness to noise and sampling variations. Stability analysis helps deter-
mine whether the identified clusters represent true underlying structures or are sensitive to minor
changes in the data.

Formally, let C' be the clustering obtained by applying a method on a dataset X, and let C’ be
the clustering obtained using that method on a perturbed version of X (e.g., through resampling,
noise addition, or small data shifts). A stability measure S(C, C’) quantifies the similarity between
these two clusterings. Common approaches for measuring stability include:

S(C,C") = Adjusted Rand Index (ARI), S(C,C’) = Normalized Mutual Information (NMTI),
(29)
where higher values indicate greater consistency between the clusterings.

A well-clustered dataset should exhibit high stability across different perturbations, implying
that the clusters are meaningful and not artifacts of the specific sample. Conversely, unstable clus-
tering solutions suggest that the algorithm may be overly sensitive to small variations, potentially
leading to unreliable results.

Stability analysis is particularly useful for model selection, helping to choose the optimal
number of clusters and evaluate different clustering methods. A clustering method that produces
solutions with high stability while maintaining good performance on internal or external clustering
indices is generally preferred.

3.8 Unimodality

Unimodality [13] is a statistical property that characterizes a probability density function, in-
dicating whether the distribution has a single peak. A univariate density function is considered
unimodal if there exists a mode m such that the density is non-decreasing for values smaller than m
and non-increasing for values greater than m. This property ensures that the data exhibit a single
region of high density without statistically significant gaps. In contrast, multimodal distributions
contain multiple local density maxima, suggesting the presence of multiple clusters.

In clustering, unimodality plays a crucial role in determining whether a dataset naturally con-
tains a single-cluster structure or more. Traditional unimodality tests, such as Hartigan’s Dip
Test [14] and Silverman’s Bandwidth Test [15], are commonly used to assess whether a dataset
follows a unimodal or multimodal distribution. These tests provide statistical evidence on whether
data should be separated into multiple clusters, making them valuable tools for guiding cluster-
ing algorithms. Several clustering approaches leverage unimodality as a criterion for defining
clusters [1618]. By integrating unimodality into clustering, methods have been developed that
improve cluster definition and automatically estimate the number of clusters.

4 Simalarity-Based and Graph Clustering Internal Quality
Indices

Graph clustering focuses on grouping nodes in a graph based on connectivity patterns.

4.1 Modularity

Modularity [19] is a widely used quality measure for evaluating clustering results, particularly in
graph-based clustering and community detection. It quantifies how well a given partition separates
a network into densely connected communities while minimizing inter-community connections. A
higher modularity value indicates that the clustering structure captures meaningful relationships
between nodes. For a network represented as a graph G = (V, E) with N nodes and M edges,

modularity is defined as:
Q= 1 Z s kik;
- 2M - YoM

) 5(C1. Cy). (30)



where A;; is the adjacency matrix, k; and k; are the degrees of nodes ¢ and j, 2M is the total
number of edges in the graph and §(C;, C;) is an indicator function.

Modularity measures how much better the observed clustering is compared to random graph
partitioning. It ranges from -1 to 1, where values close to 1 indicate a strong community structure,
while values near zero or negative suggest a weak or no clustering structure.

Modularity is widely used in community detection algorithms such as Louvain [20] and spectral
clustering [21], helping to identify natural divisions in networks. However, it has limitations, such
as a resolution limit, where it may fail to detect small communities in large networks. Despite
these limitations, modularity remains a fundamental measure in graph-based clustering, balancing
intra-cluster density and inter-cluster separation.

4.2 Inclusion

The Inclusion Criterion [22] is a similarity-based clustering quality measure that evaluates the
balance between intra-cluster density and inter-cluster separation. Initially introduced for com-
munity detection in unweighted graphs, it has been extended to general clustering problems using
arbitrary similarity matrices. For a given dataset represented as a similarity graph, inclusion
quantifies how well a data point fits within its assigned cluster while being distinct from other
clusters. The measure is computed per node v and is defined as:

1 Ein Eout+1
[=- (=2 420 T2 1
v 2<dv+Ndv>’ (31)

where E!" represents the number of edges connecting node v to other nodes within its cluster,
while d, is the degree of node v, representing the total number of edges. The term ES“! refers to
the number of missing edges between v and nodes outside its cluster, and IV is the total number
of nodes in the dataset.

The total inclusion score of a clustering partition is obtained by averaging the individual
inclusion values across all nodes. This measure is designed to maximize both internal connectivity,
ensuring that points within the same cluster are well-connected, and external separation, ensuring
that points are distinct from other clusters.

Unlike modularity, inclusion explicitly accounts for missing edges to measure inter-cluster
separation, making it particularly useful in similarity-based and graph-based clustering problems.

5 GMM Clustering Internal Quality Indices

In GMM clustering, a Gaussian Mixture Model is first trained on the dataset. Then we associate
each mixture component with a cluster. For each data point, the posterior probability that it has
been generated by each mixture component is computed. Finally, each data point is assigned to
the cluster with maximum posterior probability [23].

The Akaike Information Criterion (AIC) [24] and the Bayesian Information Criterion (BIC) [25]
are widely used model selection criteria that assess the goodness of fit of a clustering model while
penalizing the complexity of the model. These criteria help to determine the optimal number of
clusters by balancing model accuracy and simplicity.

The Akaike Information Criterion (AIC) is defined as:

AIC = —2log L + 2k, (32)

where L is the likelihood of the model given the data, and k is the number of parameters. A lower
AIC value indicates a better trade-off between model fit and complexity. AIC aims to minimize the
information loss by favoring models that explain the data well while avoiding excessive parameters.
The Bayesian Information Criterion (BIC) is similar but introduces a stronger penalty for

model complexity:
BIC = —2log L + klog N, (33)

where NN is the number of data points. BIC penalizes models with more parameters more heavily
than AIC, making it more conservative in selecting models with additional complexity.



In clustering, AIC and BIC are often used to compare models with different numbers of clusters,
particularly in probabilistic clustering methods such as Gaussian Mixture Models (GMMs). The
model with the lowest AIC or BIC is preferred, though BIC tends to favor simpler models due
to its stronger penalty term. Although both criteria are useful for selecting the optimal number
of clusters, BIC is generally preferred when the true number of clusters is assumed to be finite,
whereas AIC is more flexible and less biased toward smaller models.

These criteria provide an objective and statistical approach to model selection, reducing the
reliance on arbitrary clustering validation metrics. However, their effectiveness depends on the
underlying model assumptions, and they may not perform well in non-probabilistic clustering
settings.

6 MML

Minimum Message Length [26] (MML) is a Bayesian information-theoretic criterion used for model
selection, including clustering evaluation. It is based on the principle that the best model is the
one that enables the most compact encoding of both the data and the model itself. MML provides
a formal balance between model complexity and goodness of fit by minimizing the total message
length required to describe the data and the clustering model.

For a given clustering model M with parameters 8, MML estimates the total encoding cost as:

MML = L(M) + L(X|M), (34)

where L(M) is the length of encoding the model parameters, and L(X|M) is the length of encoding
the dataset given the model. The first term acts as a complexity penalty, discouraging overly
complex models, while the second term represents the data fit, favoring models that describe the
dataset efficiently.

In clustering, MML is commonly applied to Gaussian Mixture Models (GMMs) and other
probabilistic clustering approaches, where it helps determine the optimal number of clusters by
penalizing models that overfit the data. MML provides a rigorous, information-theoretic approach
to selecting the best clustering model, unlike heuristic methods like the elbow method.

MML is closely related to other model selection criteria, such as the Akaike Information Crite-
rion (AIC) and the Bayesian Information Criterion (BIC). However, it differs because it is derived
from information theory rather than asymptotic approximations. As a Bayesian method, MML
integrates prior knowledge and naturally accounts for uncertainty in parameter estimation.

By minimizing message length, MML ensures that the clustering model is both parsimonious
and statistically robust, making it a powerful tool for unsupervised learning and clustering vali-
dation.

7 Predictive likelihood

Predictive likelihood [27] is a model evaluation criterion used to assess the generalizability of a
clustering model by measuring how well it predicts new, unseen data. It is particularly useful
in probabilistic clustering methods, such as Gaussian Mixture Models (GMMs) and Bayesian
clustering approaches, where clusters are modeled using probability distributions.

Given a dataset X = {x1,23,...,2y5} and a clustering model M trained on X, the predictive
likelihood evaluates the likelihood of new test data X’ under the learned model parameters 0:

log P(X'[0) = > log P(;]6). (35)
x, €X'’

A higher predictive likelihood indicates that the clustering model generalizes well to new data,
suggesting that the discovered clusters effectively capture the underlying data structure.

In clustering, predictive likelihood is often used for model selection, particularly in Bayesian
frameworks, where it is computed using techniques like cross-validation or marginal likelihood es-
timation. Unlike criteria such as AIC and BIC, which balance model fit and complexity, predictive



likelihood directly measures a model’s performance on unseen data, making it a valuable tool for
evaluating clustering stability and robustness.

However, computing predictive likelihood can be computationally expensive, especially for
complex models. Approximate methods, such as leave-one-out likelihood estimation or Bayesian
posterior predictive checks, are often used to make the computation more feasible. Despite these
challenges, predictive likelihood remains a decisive criterion for assessing clustering quality, par-
ticularly in probabilistic and generative clustering models.

8 Marginal Likelihood (Bayesian GMM)

The marginal likelihood, also known as the model evidence, is a key quantity in Bayesian clustering
that evaluates how well a probabilistic model explains the observed data while integrating over
all possible parameter values. It is beneficial for model selection, as it balances model fit and
complexity without requiring additional penalty terms like those in AIC or BIC.

Given a dataset X and a clustering model M with parameters 6, the marginal likelihood is
defined as:

P(X|M) = /P(X|9, M)P(6|M)do. (36)

This integral marginalizes the parameters 6 using their prior distribution P(f|M), ensuring that
models with excessive complexity are automatically penalized by Bayesian Occam’s razor. Models
with too many parameters tend to spread their probability mass too thinly, leading to lower
marginal likelihood values. In contrast, models that appropriately balance complexity and data
fit achieve higher marginal likelihoods.

In clustering, marginal likelihood is commonly used to determine the optimal number of clus-
ters in Bayesian methods, such as Gaussian Mixture Models (GMMs). Since direct computation
of the marginal likelihood is often intractable, techniques like Laplace approximation, Bayesian
Information Criterion (BIC) approximation, and Markov Chain Monte Carlo (MCMC) sampling
are frequently used to estimate it.

Compared to predictive likelihood, which assesses a model’s ability to generalize to new data,
marginal likelihood evaluates how well a model fits the observed data while accounting for uncer-
tainty in parameter estimation. This makes it a powerful tool for Bayesian model comparison in
clustering applications.

9 Conclusions

This report provides a comprehensive review of clustering quality indices, covering both external
and internal evaluation metrics. External indices, such as the Rand Index, Adjusted Mutual
Information, and Fowlkes-Mallows Index, measure clustering performance based on ground truth
labels. These indices are essential for benchmarking clustering algorithms when labeled data is
available.

Internal indices, including the Silhouette Score, Davies-Bouldin Index, and Calinski-Harabasz
Index, assess clustering quality without requiring ground truth labels. These measures evaluate
intra-cluster cohesion and inter-cluster separation, helping to compare different clustering solu-
tions. Additionally, stability and unimodality tests ensure that clustering structures are both
consistent and statistically meaningful.

For similarity-based and graph clustering approaches, modularity and inclusion criteria provide
specialized measures tailored to network data. In probabilistic clustering models, such as Gaus-
sian Mixture Models (GMMs), statistical model selection criteria, including AIC, BIC, Minimum
Message Length (MML), and Predictive Likelihood, offer robust approaches for determining the
optimal number of clusters while balancing model complexity and data fit.

Overall, the selection of clustering quality indices depends on the specific characteristics of
the dataset and the clustering method used. No single metric is universally superior; instead, a
combination of indices often provides a more reliable assessment and this constitutes a commonly
used approach in practice. For example in the case where supervised measures are used both NMI
and ARI are typically provided to assess the quality of clustering results.
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