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1 Introduction

Machine learning has become an integral part of modern decision-making sys-
tems, shaping various aspects of our daily lives, from healthcare [16] and nance
[24] to hiring processes [28], [31] and college admissions [34], [18], [6]. As these
models inuence critical decisions, concerns about their fairness and potential
biases have gained signicant attention. Bias in machine learning can emerge
from multiple sources, including biased training data, algorithmic design, and
societal inequalities, leading to unfair or discriminatory outcomes.

In clustering, fairness is particularly challenging since unsupervised learn-
ing does not rely on predened labels, making it dicult to assess and mit-
igate biases directly. Unfair clustering results can reinforce social disparities,
marginalizing certain groups or misrepresenting structural patterns in the data.
To address these challenges, researchers have explored various notions of fairness
in clustering, including balance constraints, socially fair clustering, individually
fair clustering, and fairness in deep clustering.

This survey provides a comprehensive overview of fair clustering approaches,
categorizing existing work into key fairness notions and highlighting recent ad-
vancements and open challenges.

2 Fairness in Clustering

Ensuring fairness in machine learning models can be approached at three distinct
points in the learning pipeline [27], [10]: before training, during the training
process, or after training has been completed.

The pre-training phase involves preprocessing the dataset before it is used
for learning, aiming to correct biases at the data level. This ensures that when
the model is trained on the adjusted dataset without further modications, its
predictions align with fairness requirements [14, 9, 8, 33]. The in-training phase
[21, 36, 11], which is the most widely used approach, involves embedding fair-
ness considerations directly into the model during its learning process. This is
achieved by modifying optimization objectives or constraints to produce fairer
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outputs without altering the original dataset. Lastly, fairness can also be in-
troduced post-training [9, 4, 20], where the model’s predictions are adjusted
through post-processing techniques to better align with fairness requirements.

Based on the work of Chhabra et al. [12], the denitions of fairness have
been categorized into two dierent classications: group-level, individual-level
fairness. Group-level fairness ensures that no group of individuals is dispropor-
tionately favored or disadvantaged by a clustering algorithm. It originates from
the Disparate Impact (DI) doctrine, which states that protected groups (e.g.,
based on race, gender, or other attributes) should be fairly represented in each
cluster relative to their proportion in the overall dataset.

Individual-level fairness ensures that similar individuals are treated similarly
by the clustering algorithm. Unlike group-level fairness, it does not rely on
predened protected groups but rather on a similarity metric that quanties
the closeness between individuals. A clustering algorithm satises individual
fairness if each instance is closer, on average, to members of its assigned cluster
than to members of any other cluster. This guarantees that individuals who
are similar according to the dened metric are assigned to the same or similar
clusters

Preliminaries

Let X be a set of n points in a metric space (X, d), where d : X × X →
R is a distance function, Xi the subset of X belonging to protected group
i, N stands for the set of attributes that are non-sensitive, S for the set of
sensitive attributes and let C represent the clustering procedure. Specically, C
partitions the dataset into k groups (clusters), denoted as C=C1, C2, . . . , Ck.
The center of each cluster Ci is denoted as ci. Each cluster is formed such
that the data objects within the same cluster are similar to one another and
(potentially) dissimilar from objects in other clusters. In addition, some works
that examine fairness with binary sensitive attributes use color coding as red or
blue. Therefore, we dene Sr and Sb as the sets of points that are either red or
blue, respectively.

Types of Fairness in Clustering

Fairness in clustering takes dierent forms depending on the context and appli-
cation needs. Various denitions aim to ensure equitable treatment, either at
the group level, or at the individual level.

• Balance-based fairness refers to the requirement that the proportion
of individuals belonging to a protected group within each cluster should
reect their proportion in the entire dataset. This ensures that no group
is disproportionately over- or under-represented in any given cluster.

• Social fairness focuses on equalizing clustering costs across dierent
groups to avoid systemic disadvantages.
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• Individual fairness ensures that similar individuals are treated alike,
regardless of group membership.

• Deep Fair Clustering addresses biases in deep clustering methods by
enforcing fairness constraints at both representation and clustering stages.

In the following sections, we analyze key studies in each category highlighting
their contributions to fair clustering.

3 Balance-based Fairness

A very important work in fair clustering is that of Chierichetti et al. [14], where
the authors introduce the concept of balance, which ensures that clusters main-
tain a similar fraction of protected groups. In their framework, each data point
is assigned one of two colors, red or blue, representing the protected group to
which it belongs. The balance of a set S is formally dened as:

balance(S) = min

 Sr
Sb

,
Sb
Sr


∈ [0, 1] (1)

where Sr and Sb represent the number of red and blue points, respectively.
A clustering C is (r, b)-fair if every cluster Ci ∈ C satises balance(Ci) ≥ b

r , and
the overall balance of clustering C is given by:

balance(C) = min
C∈C

balance(C). (2)

A perfectly balanced cluster has an equal number of red and blue points (balance =
1), whereas a completely monochromatic cluster has a balance of 0. To simplify
the inherently dicult problem of fair clustering, the authors propose a two-
step approach that rst partitions the dataset into fairlets —small groups that
preserve the balance ratio of the protected groups—and then applies traditional
clustering methods to these fairlets. The process of nding fairlets involves for-
mulating the problem as a minimum cost ow (MCF) optimization task over
a directed bipartite graph, where nodes represent data points and edges con-
nect individuals from dierent protected groups, weighted by their distances in
the feature space. The goal is to nd a perfect matching or an approximate
partition that minimizes the total clustering cost while satisfying fairness con-
straints. This ensures that fairlets are constructed eciently while maintaining
a specied level of balance. Once the fairlets are formed, each is assigned a
representative center, and a standard clustering algorithm such as k-median or
k-center is applied to the set of fairlet centers instead of the original data points.
This entire process is referred to as a (b, r)-fairlet decomposition, and its quality
is evaluated based on the minimized k-median or k-center cost, where:

k-median cost =


x∈X

d(x,β(x)) (3)
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k-center cost = max
x∈X

d(x,β(x)) (4)

with β(x) denoting the index of the fairlet to which a point x is assigned.
A (b, r)-fairlet decomposition is considered optimal if it minimizes these costs
among all possible decompositions. Since achieving perfect balance is often in-
feasible due to real-world dataset constraints, the authors introduce the concept
of approximate balance, allowing a controlled level of imbalance. This is gov-
erned by a parameter t, where t ≤ 1, meaning that smaller values of t permit
greater imbalance in protected group representation. For example, if t = 0.8, a
cluster may contain up to 80% of one group and 20% of the other, thus enabling
fair clustering in datasets with unequal group sizes.

In Schmidt et al. [29], the authors extend the denition of fairness of pre-
vious work to accommodate sensitive attributes with multiple potential values.
More specically, they introduce fair coresets, which are small, weighted sub-
sets of the dataset that preserve fairness constraints and provide an ecient
approximation for the k-means objective. Additionally, they represent the sen-
sitive attribute as a color and, to handle multiple sensitive attributes, assign
a unique color to each combination of their possible values. To scale their ap-
proach to large datasets, the authors propose streaming algorithms that process
data sequentially, updating the coreset dynamically while preserving fairness
constraints. When a new data point is added, the algorithm ensures that the
proportional representation of sensitive groups is maintained by carefully adjust-
ing the weights of points in the coreset. These updates are designed to prevent
overrepresentation or underrepresentation of any sensitive group as the dataset
grows. The authors provide theoretical guarantees that their methods achieve
near-optimal k-means costs while maintaining a fair clustering structure. To
enforce fairness in clustering, they dene a constraint that ensures each cluster
contains a balanced representation of sensitive attributes relative to the entire
dataset. Given a dataset with a sensitive attribute having multiple values, fair-
ness is ensured by requiring that for each cluster Ci and each sensitive group j,
the fraction of group j within the cluster remains within a factor of its overall
proportion in the dataset:

α · ξ(j) ≤ p ∈ Ci : c(p) = j
Ci

≤ β · ξ(j), ∀Ci, j (5)

where ξ(j) is the fraction of data points in the entire dataset belonging to
group j, and α,β are fairness parameters controlling the deviation allowed from
this proportion. This formulation ensures that no sensitive group is dispropor-
tionately over- or underrepresented in any cluster, thereby maintaining fairness
while preserving clustering quality. To explicitly enforce these fairness con-
straints, the authors introduce a coloring constraint matrix K, which encodes
the exact number of points of each sensitive group assigned to each cluster.
The matrix K has dimensions k × ℓ, where k is the number of clusters and ℓ is
the number of sensitive groups (colors). Each entry Ki,j species the number
of points from group j that must be assigned to cluster Ci. This structured
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approach transforms the fairness requirement into a constrained optimization
problem. More formally, the fairness constraint can be rewritten in terms of K:

α · ξ(j) ≤ p ∈ Ci : c(p) = j
Ci

(6)

=
Ki,jℓ

h=1 Ki,h

≤ β · ξ(j), ∀i ∈ 1, . . . , k, j ∈ 1, . . . , ℓ. (7)

Despite these eorts, existing fairness notions were insucient for cluster-
ing problems due to the limitations of standard coreset denitions. If fairness
constraints are enforced only through proportionality, then combining multiple
core-sets may lead to suboptimal or unfair solutions. More precisely, given two
point sets P1 and P2 with their corresponding coresets S1 and S2, replacing
individual points by representative points in a naive coreset construction intro-
duces an error of O(ϵ∆). While this error is small for each coreset individually,
when the point sets are combined, the optimal cost drops signicantly, whereas
the cost of the coreset remains large (Ω(ϵ∆)). This discrepancy violates the
core property required for composable coresets. To address this, the authors
introduce a stricter fairness denition based on the coloring constraint matrix
K and dene the color-k-means cost, which ensures that fairness constraints are
preserved even when coresets are combined. The color-k-means cost, denoted
as colcost(P,K,C), represents the minimum clustering cost while satisfying the
fairness constraints encoded in K:

colcost(P,K,C) = min
C1,,Ck

s.t. p∈Ci:c(p)=j=Ki,j ∀i,j

k

i=1



p∈Ci

∥p− ci∥2. (8)

By incorporating the coloring constraint matrix into the optimization pro-
cess, the proposed method guarantees a composable and scalable solution for fair
k-means clustering while maintaining both fairness and clustering eciency.

In Backurs et al. [8], the authors drew inspiration from Chierichetti et al.
[14], who developed polynomial-time algorithms to incorporate fairness into
traditional clustering methods, such as k-center and k-median. In this work,
the authors introduce a more ecient algorithm with nearly linear runtime,
enabling the use of fairlet decomposition on larger data. Their focus is on
the k-median formulation, which is less sensitive to outliers compared to k-
center, while ensuring balanced and fair clustering under predened fairness
constraints. The proposed algorithm consists of two steps. In the rst step,
the algorithm maps the input points into a γ-HST (Hierarchically Separated
Tree), a hierarchical structure that facilitates ecient clustering. Each node v
in the tree is annotated with Sr and Sb, representing the number of red and
blue points in the subtree rooted at v. The goal is to partition the dataset into
(r, b)-fairlets that maintain a balanced representation of protected groups. To
compute the total cost of fairlet decomposition, the authors use the k-median
cost function, dened as costmedian(S) = minp∈S


q∈S d(p, q), where d(p, q)
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represents the distance between points p and q in the tree. The objective is to
minimize this clustering cost while ensuring fairness constraints are met. Once
fairlets are constructed, they apply a standard k-median algorithm to cluster
them.The next phase of the their approach is the same with the original work, it
follows the same procedure of merging (r, b)-fairlets into k-clusters by selecting
a center for each fairlet, applying a β-approximate k-median algorithm, and
ensuring that all points in a fairlet are assigned to the cluster of their respective
center.

Building on the clustering fairness framework introduced by Chierichetti
et al. [14], Bera et al. [9], extends the approach by incorporating overlapping
protected groups, thereby addressing real-world fairness challenges more eec-
tively. Also, unlike previous works that imposed rigid fairness constraints, this
paper allows user-dened fairness parameters. These parameters dene the
minimum and maximum representation of protected groups in clusters. More
specically, the authors propose a fairness model dened by two key properties:
Restricted Dominance (RD), which limits the maximum proportion of any

group i in a cluster Sj by enforcing the constraint
Xi∩Sj 

Sj  ≤ βi, and Minority

Protection (MP), which ensures a minimum representation for underrepre-

sented groups by requiring that
Xi∩Sj 

Sj  ≥ αi, where Xi is the subset of data

points in X that belong to the protected group i. Using parameters βi and αi,
these constraints can vary across dierent groups, oering exibility. They also
introduce a parameter ∆ to control the extent of group overlap, allowing indi-
viduals to belong to multiple groups. To enforce fairness, the authors present
a black-box transformation that modies any standard clustering algorithm to
satisfy the RD and MP constraints while maintaining near-optimal clustering
quality. Specically, given a metric space (X, d), a set of potential cluster cen-
ters C ⊆ X, and an integer k, the objective is to select a subset S ⊆ F of at
most k cluster centers and assign each point v ∈ X to one of these centers using
a function ϕ : X → S. The goal is to nd an assignment ϕ : X → S in order to
satisfy the fairness constraints RD and MP and minimize the clustering cost
Lp(S;ϕ), the distance between points and their assigned centers, while ensur-
ing compliance with the RD and MP fairness constraints. The authors prove
that their algorithm achieves a (ρ+2)-approximation to the best fair clustering
solution while allowing a small additive violation in fairness constraints.

Abraham et al. [2] tackles the challenge of fair clustering in the context
of datasets containing multiple sensitive attributes. The authors propose a
new clustering framework and algorithm designed to incorporate group fairness
across multiple sensitive attributes. These attributes can be numerical, binary,
or categorical, broadening the applicability of fair clustering techniques to more
complex datasets. More specically, they present the FairKM technique, which
constructs an objective function to satisfy fairness constraints on the sensitive
attributes. The FairKM objective function integrates two key components to
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balance clustering quality and fairness. The objective function O is dened as:

O =


C∈C



x∈Ci

distN (x, ci)

  
K-Means Term over attributes in N

+λ deviationS(C,X )  
Fairness Term over attributes in S

(9)

The rst term, K-Means Loss Term, measures the distance between each
data point x in a cluster Ci and the cluster center ci, considering only a sub-
set of attributes N . The second term, Fairness Loss Term, ensures that the
clustering remains fair with respect to the sensitive attributes S. The function
deviationS(C,X) penalizes deviations from a fair representation of sensitive at-
tributes within each cluster. The parameter λ controls the trade-o between
clustering quality and fairness. The goal is to minimize O to achieve fair clus-
tering while maintaining meaningful clusters. If λ = 0, the function reduces to
standard K-Means clustering (without fairness considerations), whereas higher
λ values prioritize fairness over pure clustering compactness. To optimize this
objective function, FairKM follows an iterative round-robin assignment up-
date approach, balancing clustering quality and fairness constraints. The
process begins with an initial clustering, where centroids and the distribution
of sensitive attributes in each cluster are computed. Each data point x is then
evaluated for reassignment by minimizing the total objective function, which
consists of two competing components: the K-Means term, which ensures intra-
cluster similarity, and the Fairness term, which enforces balanced representation
of sensitive attributes. The algorithm evaluates the impact of moving x to each
possible cluster and selects the assignment that results in the lowest objective
function value. When updating the cluster assignments, FairKM computes the
change in the objective function:

δO = δ(K-Means term) + λ · δ(Fairness term) (10)

where the rst term captures the eect on clustering compactness, and the sec-
ond term adjusts for fairness deviations. The round-robin approach ensures
that each point is updated sequentially, allowing fairness constraints to be grad-
ually incorporated. After reassigning a point, the cluster centroids are updated
to reect the new memberships, and fairness metrics are recomputed based on
the new cluster compositions. The process is repeated until either the clustering
assignments stabilize or a predened number of iterations is reached.

More specically, the FairKM algorithm extends the classical K-Means clus-
tering approach to include fairness constraints, following an iterative process:
it begins by randomly initializing k clusters and computing initial centroids.
For each data point X, the cluster assignment is updated by minimizing the
combined loss, which includes both clustering quality and fairness terms. After
updating the assignments, the cluster centroids are recalculated, and fairness
constraints are adjusted accordingly. This cycle continues until convergence,
ensuring that the nal clusters are both compact and fair in terms of sensitive
attribute representation. By integrating fairness directly into the optimization
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process, FairKM oers a principled approach to mitigating bias in clustering
while maintaining meaningful structure in the data.

In the paper of Kleindessner et al. [21] the integration of fairness into spectral
clustering is explored. Unlike Chierichetti et al. [14], which guarantees fairness
at the cost of clustering quality, this paper introduces a spectral clustering ap-
proach that aims to balance fairness and clustering quality, only achieving fair-
ness if it doesn’t signicantly degrade the objective value. Spectral clustering
is a popular graph-based method for partitioning data into clusters by leverag-
ing the structure of the graph’s similarity matrix. The unnormalized spectral
clustering algorithm minimizes the RatioCut objective, which balances the sep-
aration of clusters with the similarity within them. It works by computing
the graph’s Laplacian matrix, nding its smallest eigenvalues and eigenvectors,
and applying k-means clustering to project the graph into a lower-dimensional
space. While this method focuses on optimizing clustering quality, its original
design does not account for fairness constraints. The unnormalized spectral
clustering algorithm can be extended to incorporate fairness constraints by en-
suring proportional representation of protected groups within each cluster. This
is achieved by introducing a group-membership matrix F . Each column of F
indicates whether a vertex belongs to a specic protected group. The next step
is modifying the Laplacian matrix to respect fairness constraints via projection
into the null space of the membership matrix. The algorithm computes a new
embedding that incorporates these constraints and applies k-means clustering
to partition the data. This extension allows spectral clustering to balance fair-
ness and clustering quality, providing a framework to handle equity concerns in
graph-based data partitioning.

This work of Ahmadian et al. [5] extends the concept of fairness in clustering
to hierarchical clustering, where the goal is to construct a tree structure that op-
timizes a specic objective (e.g., revenue, value, or cost) while ensuring fairness.
The proposed algorithm for fair hierarchical clustering builds on the concept of
fairlet decomposition. The algorithm employs a local search method, inspired
by Chierichetti et al. [14], to optimize the cost of forming these fairlets while
maintaining fairness constraints. The work also draws inspiration from Ahma-
dian et al. [4], which introduced the concept of preventing over-representation
in clustering through fairness constraints, particularly in the a-capped k-center
problem. This idea is extended to hierarchical clustering by ensuring that at
every level of the hierarchy, no group dominates, much like the bounded rep-
resentation parameter in at clustering. Once the fairlets are constructed, the
hierarchical clustering tree is built by clustering these fairlets using average-
linkage clustering, ensuring that fairness is maintained at all levels of the hi-
erarchy. The method is designed to optimize one of three objectives—revenue,
value, or cost—where revenue focuses on maximizing similarity within clusters,
value minimizes dissimilarity, and cost reduces the total clustering expense. The
authors demonstrate that fairness can be integrated into hierarchical clustering
with negligible impact on the quality of the results.

The paper Ahmadi et al. [3] tackles the challenge of ensuring fairness in
correlation clustering, a method that clusters objects based on similarity and
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dissimilarity relationships without xing the number of clusters in advance. The
authors propose a fairlet-based reduction technique that converts a fair corre-
lation clustering problem into a standard one using a graph transformation,
enabling solutions that achieve fairness and reduce cluster imbalance eectively.
First, the graph is decomposed into fairlets, small subsets that locally satisfy
fairness constraints, minimizing the cost of clustering within and between fair-
lets. The fairlet decomposition cost combines two components: Internal cost
(FCOSTin) which is the cost of edges within each fairlet, penalizing negative
edges and External cost (FCOSTout) which is the cost of edges between fair-
lets, penalizing positive edges. The goal is to minimize the total fairlet decom-
position cost. The authors use approximation techniques to construct small
fairlets eciently. Once fairlets are created, a reduced graph is constructed and
each fairlet becomes a single vertex in the graph. Then, they apply an existing
correlation clustering algorithm to minimize the cost of clustering on the re-
duced graph. The nal step is the assignment of each fairlet to the same cluster
as its corresponding vertex in the reduced graph.

4 Social Fairness

While traditional fairness notions in clustering, such as balance, focus on en-
suring proportional representation of dierent demographic groups, they do not
account for disparities in the clustering cost experienced by these groups. In
many real-world applications, simply ensuring that each group has an equal
presence in clusters does not prevent certain groups from consistently being
placed in higher-cost clusters, leading to unfair treatment. Social fairness ad-
dresses this issue by ensuring that the clustering process distributes costs equi-
tably among all demographic groups, preventing any single group from bearing
a disproportionate burden.

The research of Ghadiri et al. [15] addresses fairness issues in traditional
k-means clustering, particularly when applied to datasets containing diverse
demographic groups. Standard k-means aims to minimize the sum of squared
distances for all data points, but this approach can lead to disproportionately
high clustering costs for certain subgroups. To mitigate this, Fair-k-means
introduces a fairness-aware objective that minimizes the maximum average
clustering cost across all demographic groups. For m demographic groups,
where X = A1  · · ·  Am, the objective function is dened as:

Φ(U, C) = max


∆(U, C A1)

A1
,
∆(U, C A2)

A2
, . . . ,

∆(U, C Am)

Am


(11)

where U represents the set of cluster centers, C is the partitioning of the dataset
into clusters, and Ai for i ∈ 1, 2, . . . ,m represents dierent demographic
groups. The term C  Ai denotes the subset of clustered points belonging to
group Ai, while ∆(U, C Ai) is the total clustering cost for group Ai, calcu-
lated as the sum of squared distances of its members to their assigned cluster
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centers. Finally, Ai is the number of data points in group Ai. To eciently de-
termine fair cluster centers, the method performs a line search along the optimal
center path, ensuring that cluster placement balances fairness while maintaining
eective clustering. Adjusting the cluster centers accordingly, Fair-k-means
ensures that dierences in clustering cost between demographic groups are min-
imized, leading to a more equitable clustering outcome. This work is the rst
to study clustering fairness from the perspective of demographic subgroups,
proposing a novel fairness criterion that goes beyond previous methods, which
primarily focused on proportional representation.

In the paper of Abbasi et al. [1], the authors highlight equitable group rep-
resentation as the central notion of fairness in clustering. Unlike traditional
fairness constraints that focus solely on demographic balance, equitable repre-
sentation ensures that the clustering outcome reects the actual distribution and
characteristics of the groups within the data. This approach goes beyond merely
balancing cluster sizes, aiming instead for cluster centers that are representative
of each group’s distribution. To formalize fairness, the authors introduce two
key error metrics: Absolute Representation Error (AbsError) and Relative Rep-
resentation Error (RelError). AbsError measures the total clustering cost for
each group, ensuring that distances between a group’s points and their assigned
cluster centers are minimized and balanced across groups. It is dened as:

AbsErrorC(X) =


x∈X

d(x,C) (12)

where C is the set of cluster centers, X is the set of all data points, and d(x,C)
represents the distance from data point x to its nearest cluster center in C.
Meanwhile, RelError normalizes clustering cost relative to the best possible
clustering cost for each group, ensuring that groups with naturally higher in-
trinsic clustering costs are not disproportionately penalized. It is given by:

RelErrorC(Ai) =


x∈Ai

d(x,C)
x∈Ai

d(x,Opt(Ai))
(13)

where Opt(Ai) represents the optimal placement of cluster centers if only group
Ai were clustered.This distinction between absolute and relative errors is crucial,
as the two objectives may be incompatible—minimizing one does not necessarily
minimize the other. To enforce fairness, the authors formulate an optimization
problem that ensures equitable representation by minimizing the maximum av-
erage clustering cost across groups. The fair clustering problem is expressed
as:

min
C

max
i∈1,,m


x∈Ai

d(x,C)

Ai


(14)

where A1, A2, . . . , Am represent the dierent demographic groups, d(x, C) is the
distance between data point x and the closest cluster center, and Ai is the num-
ber of data points in group Ai. The outer max function ensures that no group is
disproportionately aected by clustering. To eciently solve this problem, the
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authors develop approximation algorithms for fair k-median and k-means clus-
tering using linear programming (LP) relaxation and rounding techniques. The
LP relaxation allows fractional point assignments, which simplies the optimiza-
tion process while still maintaining fairness constraints. This approach ensures
that fairness is enforced during clustering rather than as a post-processing step.

The main goal of the work of Makarychev and Vakilian [26] is to develop
clustering algorithms that ensure fairness across dierent demographic groups
by balancing the clustering cost among them. They try to improve previous
methods, such as those of Abbasi et al. [1] and Ghadiri et al. [15] by developing
more ecient approximation algorithms that ensure fairness by controlling the
clustering cost across multiple groups. Given a dataset partitioned into l groups
X1, X2, . . . Xl the clustering cost for each group Xj with respect to a set of
cluster centers C is given by:

cost(C,wj) =


p∈Pj

wj(p) · d(p, C)p (15)

where the parameter p determines the clustering objective, where p = 1 corre-
sponds to the k-median problem, and p = 2 corresponds to the k-means problem
and the wj is the demand function represents the weight or importance of a point
in the clustering process for dierent groups, ensuring that fairness constraints
are respected. The fair clustering algorithm begins by transforming the origi-
nal problem instance into a modied version with adjusted demand functions.
To simplify the clustering problem while preserving fairness, location consol-
idation is performed, where nearby points are merged based on a fractional
distance measure R(u) that determines the eective separation and is dened
as follows:

R(u) :=



v∈X

d(u, v)p · xuv

1p

(16)

where xuv represents the assignment variable that determines the relationship
between u and v.This process creates a reduced set of representative points that
are well-separated, making the problem more manageable. Once the new de-
mand structure is established, the clustering model is adjusted so that only the
selected representative points serve as cluster centers. The cost of the modied
clustering setup is carefully analyzed to ensure that it does not signicantly ex-
ceed the cost of the original problem. Finally, to obtain a solution that assigns
each point to a specic cluster, a rounding procedure is applied, convert-
ing the fractional clustering representation into a nal integer solution. This
rounding step guarantees that the number of selected cluster centers does not
exceed a predened limit while maintaining fairness constraints. A deterministic
rounding approach is also introduced as an alternative, ensuring that fairness
is preserved while keeping the cost within an acceptable range. By integrat-
ing demand adjustments, location consolidation, and rounding techniques, the
procedure constructs a socially fair clustering solution that balances fairness,
eciency, and cost-eectiveness.
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5 Individual Fairness

Individual fairness is centered on guaranteeing that data points deemed similar
are treated alike, without relying on predened protected categories. In the
context of clustering, this means that a fair model should assign individuals
with comparable characteristics to the same or similar clusters, based on a
predened measure of similarity.

In the work of Anderson et al. [7], the concept of individual fairness in clus-
tering is examined for the rst time. This need arises to address the possibility
that standard clustering algorithms or clustering algorithms that enhance group
fairness may still be unfair to similar individuals. The contribution of this work
is to introduce a method that ensures similar individuals are assigned to clusters
in a statistically fair way using divergence functions. In particular, a framework
is presented for assigning individuals, embedded in a metric space, to probability
distributions over a bounded number of cluster centers. The fairness criterion is
that individuals that are close to each other in a given fairness space are mapped
to statistically similar probability distributions. The framework adapts any lp-
norm clustering algorithm to maintain individual fairness while guaranteeing an
approximate solution. Additionally, the study explores the relationship between
individual and group fairness in clustering, ensuring fairness among individu-
als within protected groups while maintaining computational feasibility. The
authors present the ALG− IF (I) algorithm where I is an instance. Tha algo-
rithm consists of two main steps. In the rst step, a ρ-approximation algorithm
is applied to solve the (k, p)-clustering problem in order to nd a set of cluster
centers C without considering fairness constraints. In the second step, they solve
an optimization problem (FAIR − ASSGN) to assign individuals to clusters
while enforcing fairness constraints. These constraints ensure that individuals
with similar characteristics are assigned to statistically similar distributions.
The problem is dened as:

FAIR-ASSGN(J ) : min


j∈X



c∈C

xcjd(c, j)
p (17)

s.t.


c∈C

xcj = 1, ∀j ∈ X (18)

Df (x̄j1 x̄j2) ≤ F(j1, j2), ∀j1, j2 ∈ V (19)

0 ≤ xcj ≤ 1, ∀j ∈ X, ∀c ∈ C (20)

where X is the set of individuals (data points) that need to be clustered, and C
is the set of cluster centers. The variable xcj represents the probability that indi-
vidual j is assigned to cluster center c. The function d(c, j) denotes the distance
between an individual j and a cluster center c. The parameter p determines the
clustering objective, where p = 1 corresponds to the k-median problem, and
p = 2 corresponds to the k-means problem. The term Df (x̄j1 x̄j2) represents
the f -divergence, which quanties the statistical dierence between the assign-
ment distributions of two individuals j1 and j2. The fairness function F(j1, j2)
denes an upper bound on the divergence, ensuring that individuals who are
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similar receive statistically similar assignments. The second constraint ensures
that each individual j is assigned to exactly one cluster, meaning that the sum of
probabilities over all cluster centers must be equal to 1. The third constraint en-
forces fairness by limiting the divergence between the probability distributions
of any two individuals. Finally, the fourth constraint ensures that all proba-
bility values remain valid, meaning they must be within the range [0, 1]. This
function F thus guarantees that similar individuals receive assignments that are
statistically close, maintaining individual fairness in the clustering process.

Another individual-level notion of fairness is proposed in Kleindessner et al.
[22] which argues that a data point is considered individually fair if its average
distance to points within its assigned cluster does not exceed its average distance
to points in any other cluster. They assume X to be nite. Their denition of
individual fairness for clustering is presented as follows. Let C = (C1, . . . , Ck)
be a k-clustering of X, that is X = C1  · · ·  Ck and Ci ̸= ∅ for i ∈ [k]. For
x ∈ X, they write C(x) for the cluster Ci that x belongs to. They say that
x ∈ X is treated individually fair if either C(x) = x or

1

C(x) − 1



y∈C(x)

d(x, y) ≤ 1

Ci


y∈Ci

d(x, y) (21)

for all i ∈ [k] with Ci ̸= C(x). The clustering C is individually fair if every
x ∈ X is treated individually fair.

6 Deep Fair Clustering

Fairness in deep clustering has gained increasing attention as traditional cluster-
ing methods often inherit biases from the data, leading to unfair representations
of dierent demographic groups. Unlike classical fair clustering approaches,
which primarily focus on balancing group proportions, recent works integrate
deep learning techniques to learn fair representations while optimizing cluster-
ing objectives. Existing methods employ strategies such as adversarial learning
to remove sensitive information from feature representations, fair distance con-
straints to ensure unbiased cluster centroids, and optimization-based fairness
enforcement to maintain equity across groups. These advancements provide
scalable and adaptive solutions, bridging the gap between deep representation
learning and fairness-aware clustering, ensuring that the learned clusters remain
both meaningful and unbiased.

The work of Wang and Davidson [33] was the rst to integrate deep clus-
tering with fairness constraints. The authors propose a Deep Fair Clustering
method that leverages deep learning to generate embeddings that simultane-
ously (i) structure data into meaningful clusters and (ii) ensure a balanced
representation of protected attributes within each cluster. The key innovation
of this approach lies in the introduction of fairoids, which serve as fairness ref-
erence points that represent the average latent embeddings of protected groups.
The clustering process begins by learning a latent representation of the input
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data through a deep encoder. Specically, the input dataset X is transformed
into a lower-dimensional space using an encoder function FW (X), producing a
latent representation Z. This step ensures that clustering is performed on a
more structured and meaningful feature space. Once the latent space is estab-
lished, cluster centroids µk and fairoids πt are initialized. The centroids dene
the center of each cluster, while fairoids represent the central embeddings of pro-
tected groups. To ensure fairness, cluster centroids are positioned equidistantly
from all fairoids, preventing overrepresentation of any single group. The model
optimizes cluster assignments using a soft clustering approach, where an as-
signment function α(Z) probabilistically maps each instance in the latent space
to a cluster. This is achieved using a Student’s t-distribution kernel, ensuring
smooth and exible cluster formation. In parallel, the method enforces fairness
constraints by minimizing the disparity between cluster centroids and fairoids,
preventing clusters from being biased toward specic subgroups. To quantify
and mitigate bias, the method employs Maximum Mean Discrepancy (MMD),
which measures the distributional dierence between protected groups across
clusters. By minimizing MMD, the model ensures that the learned clusters re-
main both unbiased and well-structured. This approach establishes a scalable
and eective framework for deep fair clustering, oering a practical solution
for enforcing fairness in deep clustering tasks while maintaining high clustering
performance.

The paper of Zhang and Davidson [35] introduces a deep fair clustering
framework that ensures both fairness and compact clustering results. The au-
thors propose the following key ideas. They use a probabilistic discriminative
clustering method that learns feature representations to create compact and
clearly dened clusters. The fairness objective in this work is expressed as an
integer linear programming (ILP) problem. To ensure group-level fairness in
clustering, the ILP formulation adds constraints that control the representation
of sensitive groups within each cluster. The framework combines three main
components: a clustering loss, fairness constraints, and contrastive learning. At
the beggining, a neural network is trained to assign data points to clusters.
The network predicts a probability distribution over the clusters for each data
point. To ensure good clustering quality, the algorithm uses a clustering loss
that makes clusters compact (points within a cluster are similar) and prevents
all points from being assigned to a single cluster. The next step is to ensure
that each cluster has a balanced representation of dierent groups (e.g., no sin-
gle group dominates a cluster). To achieve this, the problem is formulated as
an ILP problem, which optimizes the cluster assignments while enforcing fair-
ness rules. Once the fair clustering assignments are obtained, they are used as
pseudo-labels to update the network. A fairness loss is introduced to ensure
the network’s predictions align with these fair assignments. To make the clus-
tering more robust and improve feature quality, the framework uses contrastive
learning. This method compares original data points with slightly modied
(perturbed) versions and ensures they are assigned to the same cluster. The
steps are repeated (training the network, adjusting for fairness, and rening the
features) until the clustering is both fair and of high quality.
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The work of Li et al. [23] introduced the Deep Fair Clustering (DFC) method
that simultaneously learns unbiased and well-structured representations, ensur-
ing that sensitive attributes do not inuence clustering while maintaining high
performance. Unlike previous methods that impose fairness constraints directly
in the input space, which may hinder clustering quality, DFC optimizes rep-
resentations to enhance both fairness and clustering eectiveness. The paper
introduces a more stringent denition of fairness, requiring that the clustering
assignments C(X)—where C(X) represents the clustering assignment produced
by a (randomized) clustering algorithm applied to dataset X—be statistically
independent of the sensitive attribute G. In other words, the cluster to which
a data point is assigned should not reveal any information about its sensitive
attribute. Formally, given a dataset X sampled from an underlying distribution
D, where G = G(X) is the sensitive attribute that takes categorical values,
and the clustering algorithm partitions X into K disjoint clusters, this fairness
condition can be expressed as:

EX∼D[G  C(X) = c] = EX∼D[G], ∀c ∈ 1, . . . , K (22)

which ensures that the expected value of G in each cluster is the same as its
expected value in the whole dataset. The objective function of DFC consists of
three main components: fairness-adversarial loss, structural preservation loss,
and clustering regularizer. In the fairness-adversarial loss, an encoder gen-
erates data representations, while a discriminator attempts to predict protected
subgroup membership. Fairness is achieved when the discriminator fails to dis-
tinguish between groups, ensuring that sensitive attributes are not encoded in
the learned representations. However, fairness alone is insucient for eective
clustering. To address this, structural preservation loss maintains the re-
lationships between data points within protected subgroups, ensuring that the
learned features remain meaningful for partitioning. Since clustering is unsu-
pervised, a self-supervised strategy is employed, using pseudo soft assignments
from individual clustering processes within each subgroup to guide learning.
Finally, the clustering regularizer renes cluster assignments by reinforcing
condence scores while preventing clusters from being dominated by specic
protected subgroups. This ensures that clusters are well-formed and balanced
in representation.

7 Fairness in Graph Clustering

Fairness in graph clustering is a crucial challenge, as traditional clustering meth-
ods often reinforce biases in graph structures, leading to the underrepresen-
tation of certain demographic groups. Standard techniques, such as spectral
clustering and modularity-based community detection, do not account for fair-
ness constraints, which can result in biased partitions. To address these issues,
researchers have introduced fairness notions specically for graph clustering.
Group fairness ensures that dierent demographic groups are proportionally
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represented in each cluster, with approaches such as fairness-aware spectral clus-
tering by Kleindessner et al. [21] and the Fairlets method by Chierichetti et al.
[14], which preprocesses the graph into fair subgroups before clustering. A more
recent approach by Gkartzios et al. [17] introduces Group Modularity, extend-
ing traditional modularity-based clustering to explicitly enforce fairness con-
straints, ensuring balanced demographic representation in community detection
by modifying the clustering objective. Individual fairness requires that nodes
with similar attributes or structural roles receive similar cluster assignments, a
concept explored by Mahabadi et al. [25], who adapted fairness notions from
supervised learning to clustering. To mitigate bias, multiple techniques have
been proposed, including optimization-based debiasing, where Backurs et al. [8]
developed fairness-aware k-median clustering to integrate fairness constraints
into the objective function; graph rewiring, which modies the graph topology
to balance demographic representation, as suggested by Mehrabi et al. [27]; and
regularization-based approaches, such as Jiang et al. [19], which adjust node em-
beddings to promote fairness. Given the widespread use of graph clustering in
applications such as social network analysis, recommender systems, and knowl-
edge graphs, ensuring fairness is essential for equitable outcomes and remains a
key research challenge.

8 Summary and Discussion

Table 1 provides an overview of various datasets used in fairness-aware clus-
tering research. It includes key details such as the dataset name, description,
possible protected attributes, a reference link, and the number of dimensions
(features) for each dataset. The protected attributes column indicates which
sensitive demographic or categorical attributes are considered in fairness eval-
uations, such as gender, race, age, nancial status, or education level. Some
datasets have multiple protected attributes, while others focus on a single one.
The table also highlights the variety of data sources, including census records,
nancial transactions, social networks, and image datasets, demonstrating the
wide applicability of fairness-aware clustering techniques.

Table 2 summarizes dierent fair clustering algorithms along with their key
properties. It categorizes the algorithms based on their fairness type (bal-
ance or individual fairness), approach (pre-processing, in-processing, or post-
processing), computational complexity, and whether they consider single or
multiple protected attributes. The complexity column provides insights into
the eciency of each method, with some algorithms having quadratic, polyno-
mial, or logarithmic time complexity, while others involve more computationally
intensive procedures. Additionally, the table dierentiates between binary and
multi-valued protected attributes, indicating whether fairness constraints apply
to groups with two categories (e.g., male/female) or multiple categories (e.g.,
dierent racial or income groups). This table provides useful comparison infor-
mation for understanding the trade-os between dierent fair clustering meth-
ods in terms of eciency, fairness type, and applicability to various datasets.
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Table 1: Datasets used to evaluate classical fair clustering algo-
rithms.

Dataset Description Protected
Group

Link Dim

Diabetes Info on medical features
related to diabetes pro-
gression [8, 14, 9, 29]

Gender, race,
age

Link 8

Adult Income
Dataset

Census database from
1994

Sex, race, age Link 14

Bank Info about bank clients
[8, 14, 9, 29]

Marital sta-
tus, educa-
tion, housing

Link 15

Census Info about individuals,
education, work hours [8,
14, 9]

Sex, age, mar-
ital status

Link 3.5

Census II Extended census data Sex, age, mar-
ital status

Link 68

Credit Card Credit transactions, pay-
ment history [9]

Financial sta-
tus

Link 22

4area computer science re-
searchers and their areas
of study[4]

main area of
research

Link 8

Victorian Text fragments from
19th-century authors [4]

Authors Link 1,000

Reuters RCV1 subset for author-
ship identication [4]

Authors Link 10,000

Iris Flower species dataset
for ML tasks [1]

Species Link 4

NC Voters Voter registration data
in North Carolina [1]

Race Link 30

Kinematics Motion analysis dataset
[2]

Problem type Link 8

FriendshipNet Social connections
dataset [21]

Gender - -

FacebookNet High school friendship
dataset [21]

Gender - -

DrugNet Drug user network adja-
cency matrix [21]

Sex, ethnicity Link 2

MNIST-USPS Combined MNIST and
USPS images [35]

Sample source Link1,
Link2

1,024
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Dataset Description Protected
Group

Link Dim

Color Reverse-
MNIST

Domain adaptation
dataset [35]

Image color
format

- 1,024

Oce-31 31-class image dataset
for domain adaptation
[13]

Domain
source

Link 50,176

Human Action
Recognition
(HAR)

Human motion capture
dataset

Participant
IDs

Link 561

Daily and
Sports Activ-
ity

Sensor records of human
activity

Participant
names

Link 5,625

Table 2: Summary of the Fair Clustering Algorithms

Algorithm Name Fairness Type Approaches Complexity Protected
Attributes

Type

Fair k-center[14] Balance Pre-proccesing Quadratic Single Binary

Fair k-median[14] Balance Pre-proccesing Quadratic Single Binary

Fair coresets
k-means clustering

[29]

Balance Pre-proccesing O(nlogn) Single Multi-
valued

FAIR(k,p)-
CLUSTERING [9]

Balance Pre-processing - Multiple Binary

HST-based fair
clustering
algorithm

(k-median) [8]

Balance Pre-proccesing Nearly-linear
O(dnlogn+
T (n, d, k))

Single Binary

Fair algorithms for
clustering [9]

Balance Post-processing O(T (n, d, k)+
nlogn)

Multiple Binary

Clustering without
over-representation

[4]

Balance Post-processing - Single Multi-
valued

LP-Fair k-Median
[1]

Balance In-processing polynomial
time

Multiple Multi-
valued

LS-Fair k-Median
(Local Search
Heuristic) [1]

Balance In-processing O(n2k) Multiple Multi-
valued
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Algorithm Name Fairness Type Approaches Complexity Protected
Attributes

Type

FairKM [2] Balance In-processing O(X2N kl+
XSmkl)

Multiple Multi-
valued

Fair Correlation
Clustering [3]

Balance Pre-proccesing - Multiple Multi-
valued

Spectral clustering
[21]

Balance In-proccesing - Single Multi-
valued

ALG-IF [7] Individual Fairness In-processing O(T (A1) +
T (A2)

Multiple -

A notion of
individual fairness
for clustering [22]

Individual Fairness In-processing - - -

DFC- Faroids [33] Deep Fair
Clustering

Pre-processing - Single Multi-
valued

DFC-ILP [35] Deep Fair
Clustering

In-processing O(LdN +
N25 +N2)

Multiple Multi-
valued

DFC [23] Deep Fair
Clustering

In-proccesing - Single Multi-
valued

Fair k-Means [15] Social Fairness In-proccesing O(nkd+
kdTopt)

Multiple Multi-
valued

FairLP-AbsError
[1]

Social Fairness In-proccesing - Multiple -

FairLP-RelError
[1]

Social Fairness In-proccesing - Multiple -

Socially Fair
lp-Clustering [26]

Social Fairness In-proccesing - Multiple -

9 Conclusions

Fair clustering is a rapidly evolving area that addresses biases in unsupervised
learning, ensuring equitable representation and treatment of individuals within
clustered groups. This survey inspired from the work [12] explored the main
fairness notions in clustering: balance, which ensures proportional representa-
tion of protected groups; social fairness, which equalizes clustering costs across
demographic groups; individual fairness, which guarantees that similar data
points receive similar treatment; and deep fair clustering, which integrates fair-
ness constraints into deep clustering methods. Through our literature review,
we highlighted key methodological advancements, from fairlet decomposition
and fairness-aware spectral clustering to deep learning approaches that enforce
fairness through adversarial learning or constrained optimization.

Despite these recent advancements, challenges remain. Many existing meth-
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ods assume binary protected attributes, limiting their applicability in real-world
scenarios with multiple intersecting demographic factors. Additionally, there is a
trade-o between fairness and clustering quality, with strict fairness constraints
often leading to higher clustering costs. Finally, although counterfactual expla-
nations have been explored for fairness in classication Sharma et al. [30], there
is no related work for clustering. A promising future direction would be leverag-
ing counterfactual explanations recently proposed for clustering Vardakas et al.
[32] to provide new denitions of individual and cluster fairness in clustering
that would take into account the cost for attaining fairness.
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overview of fairness in clustering. IEEE Access, 9:130698–130720, 2021.

[13] Anshuman Chhabra, Peizhao Li, Prasant Mohapatra, and Hongfu Liu. Ro-
bust fair clustering: A novel fairness attack and defense framework. In The
Eleventh International Conference on Learning Representations, 2022.

[14] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii.
Fair clustering through fairlets. Advances in neural information processing
systems, 30, 2017.

[15] Mehrdad Ghadiri, Samira Samadi, and Santosh Vempala. Socially fair k-
means clustering. In Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency, pages 438–448, 2021.

[16] Milena A Gianfrancesco, Suzanne Tamang, Jinoos Yazdany, and Gabriela
Schmajuk. Potential biases in machine learning algorithms using electronic
health record data. JAMA internal medicine, 178(11):1544–1547, 2018.

[17] Christos Gkartzios, Evaggelia Pitoura, and Panayiotis Tsaparas. Fair net-
work communities through group modularity. In The Web Conference 2025,
2025. URL https://openreview.net/forum?id=JWRQawkyz7.

[18] Narender Gupta, Aman Sawhney, and Dan Roth. Will i get in? modeling
the graduate admission process for american universities. In 2016 IEEE
16th international conference on data mining workshops (ICDMW), pages
631–638. IEEE, 2016.

[19] Yushun Jiang, Jing Ma, Song Wang, Chen Chen, and Jundong Li. Fairness-
aware feature propagation for graph-based learning. In IEEE Transactions
on Knowledge and Data Engineering, 2023.
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