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Abstract—It has been observed that opportunistic networks
exhibit a highly unbalanced traffic load distribution, mainly
because of the heterogeneity in mobility and the greedy routing
decisions, leading to packet drops due to storage constraints. The
existing strategies rely either on fairness techniques or on diverting
traffic to alternative routes in order to control congestion. The
result is a dilemma between performance and fairness. In this
work, we introduce a congestion control mechanism that provides
a tunable trade-off between efficiency and fairness. We rely on
the social preferences of the nodes for dynamically tuning the
aforementioned trade-off. Our simulations show that the proposed
algorithm achieves high delivery ratio, combined with low end-
to-end delay and routing cost, without sacrificing fairness under
high traffic load.

Index Terms—Congestion control, social preferences, fairness,
opportunistic networks, delay-tolerant networks.

I. INTRODUCTION

Connectivity in opportunistic networks appears in the form
of contacts between nodes, where an end-to-end path between
the source and the destination is rarely available [1]. As a result,
the prominent routing approach is to make greedy decisions on
a contact basis, according to a utility metric that captures the
fitness of the contacting nodes for delivering and/or forwarding
a packet to its destination [2]. Several researchers [2]–[7] have
provided evidence suggesting that the greedy routing approach
usually results in a highly unbalanced loading of the nodes,
i.e. a small fraction of nodes handles most of the traffic
load. This phenomenon has been observed for various routing
protocols in a variety of traces from experimental networks
[3]–[6]. The main reason for this behavior is the heterogeneity
of node utilities, i.e. the presence of few nodes with high
utility values. In many cases this is due to the heterogeneity
of node mobility [2], which is also present in opportunistic
networks that are driven by human mobility [1]. In the latter
case, the network exhibits the structural characteristics of social
networks [8], such as the presence of few nodes that act as
hubs. The result is again a highly unbalanced distribution of
utilities among the nodes. This is because most of the metrics
used in social network analysis depend on the importance of
a node in the network. Finally, note that the aforementioned
phenomena aggravate when a destination-independent utility is
used [7], i.e. a utility that captures the node’s ability to act as
a forwarder regardless of the destination. Keeping in mind the
limited storage resources of a node, it becomes evident that
implementing a congestion control mechanism is of paramount
importance in order to minimize the degradation of delivery
rate due to packet drops. This is especially true for single-copy

routing protocols since a packet drop completely erases that
packet from the network.

In this work, we focus on the challenging task of providing an
efficient congestion control mechanism for single-copy routing
schemes. The proposed strategies can be classified based on the
type of information that they use in order to make decisions
[9]. However, another useful approach is to classify them based
on the performance characteristics that each scheme targets,
besides the maximization of delivery rate. More specifically,
two types of strategies can be identified; (a) those that aim
at enhancing fairness, and (b) those that aim at avoiding
storage congestion with the minimum possible routing cost. The
rationale in the first category is that energy is a limited resource
as well, therefore fairness is required in using the nodes as
relays [10]. However, fairness is achieved at the expense of
delay. The algorithms of the second category [11] are more
performance-oriented. The idea is to exploit alternative paths in
order to bypass the area of congestion. However, this approach
is usually poor in fairness, while at the same time induces an
increased cost in terms of transmissions in order to reduce delay
and vice versa.

The motivation of this work has been the observation that a
profitable trade-off between the two aforementioned approaches
can be achieved. That is, to devise a congestion control mecha-
nism that, besides maximizing delivery rate, it can achieve low
end-to-end delay at the expense of a reasonably low cutback
in fairness. To this end, we propose the Congestion Control
with Adjustable Fairness (CCAF) algorithm. CCAF incarnates
the described functionality in a generic manner that can be
incorporated to virtually any utility-based routing protocol. Our
contributions are as follows:

• We propose a congestion control mechanism that provides,
through a tunable parameter, a trade-off between fairness
and end-to-end delay without impacting and in some cases
improving the delivery ratio (Section III).

• We provide a method for dynamically adjusting the tunable
parameter based on the social preferences of the nodes
(Section IV).

• We show the validity of our approach using different
traces from real networks. More specifically, the overall
performance is significantly improved while fairness is
practically unaffected when most needed, i.e. when the
offered traffic load increases (Section V).

In the rest of the paper, Section II provides an overview of
congestion control strategies, while Section VI summarizes our



findings and provides some directions for future work.

II. RELATED WORK

Several approaches have been proposed in the literature for
overcoming the problem of storage congestion in opportunistic
networks [9]–[13]. They can be broadly categorized to those
applicable to multi-copy routing protocols and those applicable
to single-copy schemes. In the multi-copy case, the proposed
approaches take advantage of the fact that packet drops can be
tolerated to some extent since another node may carry a replica
of the dropped packet. Therefore, the focus is on dynamic
replication techniques and/or efficient dropping policies.

The problem of congestion control in the single-copy case
is far more challenging since the delivery rate automatically
degrades whenever a node is forced to drop a packet. The
proposed strategies fall into two categories [9]: (a) those using
an economic model, and (b) those using network traffic levels to
make their decisions. The most representative algorithm of the
first category is Autonomous Congestion Control (ACC) [11].
In this algorithm, the remaining storage space of each node is
regarded as money and the packet transmissions as financial
activities. A node will accept to carry a packet only if it has
enough storage space and the potential risk of carrying it is
low. The risk of accepting a packet depends on its residual
time-to-live, the projected buffer growth rate of the node, and
the previous risks that it took. Therefore, in order to apply this
approach, each node has to keep a detailed record of its buffer
occupancy history. A typical algorithm of the second category
is FairRoute [10]. Besides the proposed routing mechanism,
FairRoute uses a queue control module to distribute the traffic
load fairly among the nodes of the network. The idea is to use
the queue length of each node as an equivalent of its social
status, so that each node will receive packets only from nodes
of equal or higher social status. Although this approach may not
imply a reduction in terms of delivery ratio due to the diversity
of paths among the nodes [14], it may increase the average
delay significantly.

Besides the aforementioned classification of algorithms, an
interesting and orthogonal approach is to distinguish them
using the performance characteristics that they focus on. For
example, FairRoute focuses on fairness, while ACC focuses
on diverting traffic to alternative paths. In this latter category,
Storage Routing [12] relies on the mitigation of packets from
the congested nodes to their neighbors, in order to avoid as
many packet drops as possible. This method may provide
significant throughput, but unfortunately it is extremely costly
in terms of packet transmissions. Another approach, called
CAFé [13], utilizes buffer and network statistics to predict
whether the transmission of a packet will later cause congestion
or not. However, a non-trivial fine-tuning of the parameters is
required for collecting statistics.

III. CONGESTION CONTROL WITH ADJUSTABLE FAIRNESS

A. The Need for Adjustable Fairness

As previously mentioned, several researchers have illustrated
that, under many and diverse conditions, opportunistic networks

suffer a highly unbalanced distribution of traffic load among the
nodes. As a result, it is possible for some nodes to exhaust their
limited storage and energy resources. Traditional approaches
that handle congestion by diverting traffic to alternative paths
are not oriented towards economizing on both storage and
energy. Therefore, the most effective approach for tackling
the problem is to increase the fairness in the network. By
distributing the traffic load among all the nodes in the network,
we can achieve a notable reduction in the total number of
packet drops. Unfortunately, if the packets are distributed only
based on fairness criteria, an increase in delay is the most
likely outcome [15]. The reason is that, under this strategy,
a node misses opportunities to forward a packet to a better
node just to keep the fair allocation of resources. Although
several alternative paths to reach the destination may exist
[14], the delivery time may increase significantly. We make
the observation that following fairness-related incentives is
useful, however it is desirable to combine them with utility-
based routing principles. In this way, it is possible to increase
the likelihood of delivering packets through shorter paths,
thus reducing the traffic load in the network and alleviating
congestion. Therefore, our approach is to be as fair as possible,
while taking advantage of the high-utility nodes wisely.

B. Combining Forwarding and Custody Acceptance Criteria

In order to produce the functionality that we just described,
our first goal is to determine the importance of each forwarding
step. Let us consider the case where node i carries a packet and
it encounters node j. Furthermore, let ui (d) and uj (d) denote
the utilities of i and j, while d denotes the destination of the
packet. Obviously, when j has a much higher utility value than
i, the likelihood of successful delivery is significantly increased
if the packet is moved from i to j. However, we also have
to take into account the cases where both ui (d) and uj (d)
are close to 0. The most unfavorable situation is when a node
carries packets for which it has a utility value equal to 0. In such
occasions, it is critical to forward these packets to nodes that
have a higher utility value, even if the difference is marginal.
This is to increase the chance of finding other nodes that will
be able to deliver the packets to their destinations. To capture
all the aforementioned cases, we use a normalized utility value
Ui,j (d) which is defined as:

Ui,j (d) =
uj (d)− ui (d)

uj (d) + ui (d)
(1)

Note that Ui,j (d) = 1 only when ui (d) = 0 and uj (d)> 0.
Additionally, Ui,j (d)→ 1 when uj (d)�ui (d), which means
that j is much closer to the destination than i. On the contrary,
Ui,j (d) → 0 indicates that both i and j have almost equal
utility values. Observe that Ui,j (d) can be used in any utility-
based routing protocol, without affecting its performance. This
is because the traditional requirement for forwarding a packet,
i.e. uj (d)>ui (d) can be replaced by Ui,j (d)>0.

The next step in our approach is to define a criterion for
accepting the custody of a message. Therefore, we examine at
which extent the buffer of a node is occupied. To this end, it
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Fig. 1. Two nodes in contact with known utility values and buffer contents.

is reasonable to use the remaining storage space so that when
i and j meet, they both know how many more packets each
one can carry, avoiding unnecessary packet drops. However,
since it is possible that nodes have different storage capabilities,
we use the normalized residual space. More specifically, the
normalized residual space of node i is defined as Ri/Bi, where
Ri denotes the remaining storage space and Bi the total storage
capacity. The intuition behind this approach is to protect nodes
with high storage capacity from receiving an excessive number
of packets, which would result in draining their batteries faster.

The final step of our approach is to combine the forwarding
and custody acceptance criteria in order to decide when to
transfer a message from node i to node j. More specifically,
upon contact of node i with node j, a packet destined for d is
forwarded from i to j provided that:

(Ui,j (d) > 0) ∧
(
Rj
Bj

>
(
1− (Ui,j (d))

δ
) Ri
Bi

)
(2)

and the remaining storage space Rj is enough to store the
packet. The rationale behind using 1−(Ui,j (d))δ in the storage-
related criterion is to be able to relax or enforce it based
on the importance of the forwarding opportunity. The tunable
parameter δ allows us to adjust our approach either towards
high efficiency or absolute fairness. To understand this, consider
the case that δ ∈ (0, 1). This is equivalent to further relaxing the
forwarding condition when the normalized utility value Ui,j (d)
is high. On the other hand, when δ > 1, we mostly concentrate
on maintaining the load balancing among the nodes. In general,
δ can be used to fine-tune the performance of the network in
order to meet the needs of a certain application.

To further illustrate the intuition behind (2), let us consider
the example depicted in Fig. 1 where two nodes, i and j, carry
some packets for the destination nodes d1, . . . , d6. Without any
congestion control mechanism, node i would forward all the
packets that it carries to node j, simply because node j has a
higher utility value for each one of the destinations. According
to the strategy proposed in the congestion control module of
FairRoute [10], node i would refrain from forwarding packets
to node j when the traffic load is distributed fairly. However, in
our approach, we are able to relax the requirement for fair traffic
load distribution in order to favor the forwarding of a packet
when j is a far better candidate than i for delivering the packet
to its destination, i.e. Ui,j (d)→ 1. For example, we would not
forward the packet destined for node d1, because both nodes
have almost equal utility values, but we may forward the packet
destined for node d2, since node j has a much higher utility

upon contact of node i with node j do
1: obtain information regarding Ui,j , Rj , and Bj
2: for each pkt ∈ Bufferi do
3: if Ui,j(pkt.dst) > 0 then
4: if Rj ≥ pkt.size then
5: NRSi ← Ri/Bi
6: NRSj ← Rj/Bj
7: MF ← 1− pow(Ui,j(pkt.dst), delta)
8: if NRSj > MF ×NRSi then
9: forward pkt to node j

10: Ri ← Ri + pkt.size
11: Rj ← Rj − pkt.size
12: end if
13: end if
14: end if
15: end for

Fig. 2. Pseudo-code of CCAF.

value than node i.
To summarize, in the case where Ui,j (d) → 0, the packet

will be forwarded to node j only if it also contributes at balanc-
ing the traffic load between the two nodes. When Ui,j (d)→ 1,
we may relax the load balancing to forward the packet to node
j, thus notably increasing the chance of successful delivery. All
the packets for which Ui,j (d) = 1 will be forwarded to node
j, as long as j has enough space to store them. It should be
noted that when δ → ∞, CCAF resembles the queue control
of FairRoute and when δ → 0 it operates as if there was
no congestion control mechanism, but without overfilling the
buffers of the nodes. A pseudo-code of our algorithm is given
in Fig. 2.

IV. TOWARDS AN EFFICIENT SELF-CONFIGURING METHOD

To illustrate the ability of CCAF to provide a trade-off
between fairness and efficiency, we performed simulations for
five different values of δ and various levels of traffic load.
The Reality Mining [16] trace was used, while SimBet [17]
was the underlying routing protocol. More details about the
simulation setup can be found in Section V-A. Fig. 3 presents
the obtained results. As expected, assigning a low value to
δ results in fast packet delivery, while using a high value
increases fairness among the nodes. Note that a profitable trade-
off is present when δ ∈ (0.25, 1]. More specifically, the best
performance for both delay and delivery ratio is witnessed in
the aforementioned range of values regardless of the offered
traffic load. Furthermore, the cutback in fairness is minimal
when the offered traffic load is high, which is an important
feature since fairness is more critical in such conditions.

It is clear that a real-life implementation requires a dynamic
self-configuring method for δ. To this end, we visualize δ as a
parameter that describes the social preferences [18] that each
node has towards allocating its resources for the sake of others.
When δ → 0, the nodes behave altruistically because they
are contributing all of their resources to help others achieve
communication. Selfish nodes would choose a high δ value, so
that they could avoid using their resources to help other nodes.
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Fig. 3. The impact of δ: (a) Average Delay, (b) Delivery Ratio, and (c) Fairness Index based on the number of times that a node is used as a relay.

Recall that, in the previous experiments, the best performance
results when δ ∈ (0.25, 1], which in general corresponds to a
cooperative behavior. However, we make the observation that
a more efficient solution may result from a mixture of selfish,
prosocial, and altruistic nodes. Therefore, each node should
choose its own δ value in accordance to its social preferences,
which could change over time. Our approach for providing a
self-configuring method for δ is based on the idea that the nodes
would prefer to allocate their resources according to their social
ties. In other words, each node would prefer to be selected
as a relay node for packets that are destined for its friends
rather than strangers. From the network’s point of view, such
a behavior is beneficial in terms of delivery ratio, delay, and
overhead. This is because each node carries packets for smaller
amounts of time, since delivering a message to a friend is easier
than delivering it to a stranger. To produce the aforementioned
behavior, we use similarity [17] to measure “friendship”. Then,
we define δi,j (d) as:

δi,j (d) = e−(Similarityj(d)−Similarityi(d)) (3)

Note that, δi,j (d)→ 0 when the “friendship” between nodes
j and d is much closer than that between i and d. In other
words, nodes will act altruistically for their friends and selfishly
for strangers. This user-oriented approach is also suitable for
cases of social selfishness in opportunistic networks [19], where
most of the nodes are willing to exchange packets only with
those whom they have social relationships. Assuming that the
willingness information of each node is available, we can use
it to tune the δ parameter, replacing the similarity metric.

V. EXPERIMENTAL EVALUATION

A. Simulation Setup

To evaluate the performance of CCAF we have developed a
custom event-driven simulator, which is capable of processing
contact-based mobility traces. In the following experiments,
SimBet [17] is used as the underlying routing protocol. More
specifically, we compare three implementations for congestion
control: (a) Autonomous Congestion Control (ACC) [11], (b)
FairRoute’s congestion control module [10], and (c) CCAF with
the self-configuring method proposed in Section IV. Moreover,
we simulate SimBet without any congestion control mechanism
and use it as a reference protocol.

We selected two of the most widely used real-world mo-
bility traces for our simulations, i.e. Reality Mining [16] and
Cambridge [20], which are available in the CRAWDAD archive
[21]. The Reality Mining data set consists of contacts from 97
students and faculty members at the MIT, over the course of
9 months. The Cambridge data set contains contacts from an
experiment that lasted 11 days, involving 36 students from the
University of Cambridge.

The network traffic load of each simulation consists of fixed-
sized packets that are generated with a random pair of source
and destination nodes. Because some users did not participate
throughout the whole experiment, each node can be the source
or the destination only for packets that were generated during
its presence in the network. We examined seven different
scenarios, where the network traffic load ranges from low to
high, based on the characteristics of each data set. Each node
could store up to 20 packets in its buffer, that are processed in
a FIFO and Drop Front order.

For each scenario, we simulated 25 trials and report average
values as well as the 95% confidence intervals for a variety
of evaluation metrics. To avoid statistical bias, the results were
collected after a warm-up and before a cool-down period, each
of which lasts as much as 20% of the total simulation time, so
that the network would be in its steady state.

B. Simulation Results

Fig. 4 illustrates the performance of all algorithms for both
traces under various levels of offered traffic load. More specif-
ically, we report: (a) the average delay normalized to the delay
of SimBet without congestion control, (b) the delivery ratio,
and (c) the overhead ratio, i.e. the number of transmissions
for each generated packet. The first metric is indicative of
the impact of congestion control mechanisms, which is the
increased average delay, since routes of longer delay are used in
principal in order to reduce packet drops. Nevertheless, as we
can observe (Figs. 4a and 4d), CCAF achieves a much lower
normalized average delay compared to ACC and FairRoute
regardless of the traffic load. As expected, FairRoute presents
the highest average delay because it focuses on achieving a
fair traffic load distribution among the nodes. Figs. 4b and
4e clearly demonstrate the impact of storage constraints on
the network’s performance as well as the need for congestion
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Fig. 4. Efficiency evaluation on the (a)–(c) Reality Mining and (d)–(f) Cambridge data sets.

control. Note that all the congestion control strategies deliver
about the same number of packets under any traffic load.
However, CCAF is able to deliver them a lot faster, by breaking
the fair traffic load distribution to take advantage of the most
critical forwarding opportunities. Finally, ACC clearly induces
the highest cost in the network (Figs. 4c and 4f) while CCAF
performs fewer transmissions. This is a clear indication of a
more successful strategy in identifying a good relay node. At
the same time FairRoute presents a performance similar to
CCAF, however this is the result of its conservative approach
regarding forwarding. A confirmation of this is its increased
delay.

In Figs. 5a and 5d, we use Jain’s Fairness Index [22] to
capture the fairness of each scheme in selecting nodes as relays.
Note that the Fairness Index is bounded between 0 and 1, where
0 corresponds to definite unfairness and 1 represents absolute
fairness. The figures clearly indicate FairRoute’s success in
providing high levels of fairness, however this happens at
the expense of delay. On the other hand, CCAF presents an
interesting performance; under low traffic load its fairness index
is similar to that of plain SimBet, while under high traffic
load its fairness level significantly increases and approaches
that of FairRoute. In other words, the fairness in choosing a
relay increases as the burden of being a relay increases (due
to the increased traffic load). A similar behavior is witnessed
for ACC. However, ACC clearly involves a higher burden of
packet transmissions (Figs. 4c and 4f). Interestingly enough,
as illustrated in Figs. 5b and 5e, in many occasions the top
10 nodes perform more forwards under ACC than under plain
SimBet. Finally, Figs. 5c and 5f are another indication of
the need for congestion control. Plain SimBet is forced to

an excessive number of packet drops while the other three
algorithms manage to significantly reduce them. FairRoute
presents a small advantage because of its smoother traffic load
distribution. However, again this advantage comes at the cost
of increased delay. Furthermore, note that besides the slightly
increased number of packets compared to FairRoute, CCAF
still remains the most efficient approach not only in terms of
delay and overhead but also in terms of delivery ratio.

VI. CONCLUSIONS AND FUTURE WORK

As it has been pointed out, traditional utility-based routing
protocols overuse a small subset of nodes and therefore result
in many unnecessary packet drops when the resources are
limited. To overcome this situation we made the observation
that, unlike other approaches, it is critical to combine utility-
based routing principals with custody acceptance criteria that
are oriented towards fairness. In this way, we were able to
propose a congestion control algorithm that provides a trade-
off between high efficiency and absolute fairness. This trade-off
can be fine-tuned to match the desired network performance
through the tunable parameter δ. Furthermore, we provided
a dynamic self-configuring method which relies on the social
preferences of the nodes, so that each node could set its own
δ value accordingly. We showed that our approach results in
significant performance gains with a limited cutback in fairness.

In future work, we intent to investigate other methods to
define δ, based on local and network-wide information. A
possible extension, which could be used for multi-copy routing
protocols, is to rely on an estimation of the number of replicas
in the network. This approach would favor the spread of packets
with few replicas in the network, which in turn would increase
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Fig. 5. Fairness evaluation on the (a)–(c) Reality Mining and (d)–(f) Cambridge data sets.

their chance to meet their destinations significantly. Another
possibility for determining δ could be the battery level of each
device, so that we can avoid node overloading in cases where
there are energy constraints.
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