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Abstract

We study the problem of locating a particularly dangerous node, the so-called

black hole in a synchronous anonymous ring network with mobile agents. A

black hole is a harmful stationary process residing in a node of the network

and destroying all mobile agents visiting that node without leaving any trace.

Unlike most previous research on the black hole search problem which employed

a colocated team of agents, we consider the more challenging scenario when

the agents are identical and initially scattered within the network. Moreover,

we solve the problem with agents that have constant-sized memory and carry

a constant number of identical tokens, which can be placed at nodes of the

network. In contrast, the only known solutions for the case of scattered agents

searching for a black hole, use stronger models where the agents have non-

constant memory, can write messages in whiteboards located at nodes or are

allowed to mark both the edges and nodes of the network with tokens. This

paper solves the problem for ring networks containing a single black hole. We are

interested in the minimum resources (number of agents and tokens) necessary for
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locating all links incident to the black hole. We present deterministic algorithms

for ring topologies and provide matching lower and upper bounds for the number

of agents and the number of tokens required for deterministic solutions to the

black hole search problem, in oriented or unoriented rings, using movable or

unmovable tokens.

Keywords: Distributed Algorithms, Fault Tolerance, Black Hole Search,

Mobile Agents, Anonymous Networks, Identical tokens, Finite State Automata

1. Introduction

1.1. Overview

We consider the problem of exploration in unsafe networks which contain

malicious hosts of a highly harmful nature, called black holes. A black hole is a

node which contains a stationary process destroying all mobile agents visiting

this node, without leaving any trace [16]. In the Black Hole Search (BHS)

problem the goal for a team of agents is to locate the black hole within finite

time, with the additional constraint that at least one of the agents must remain

alive. In particular, at least one agent must survive and the surviving agents

must have located (or marked) all edges leading to the black hole. It is usually

assumed that all the agents start from the same location and have distinct

identities. In this paper, we do not make such an assumption and study the

problem for identical agents starting from distinct locations within the network.

We focus on minimizing the resources required to find the black hole.

The only way of locating a black hole is to have at least one agent visiting it.

However, since any agent visiting a black hole is destroyed without leaving any

trace, the location of the black hole must be deduced by some communication

mechanism employed by the agents. Four such mechanisms have been proposed

in the literature: a) the whiteboard model in which there is a whiteboard at each

node of the network where the agents can leave messages (in [2, 3, 13, 15, 16, 17]),

b) the ‘pure’ token model where the agents carry tokens which they can leave

at nodes (in [14, 18, 29]), c) the ‘enhanced’ token model in which the agents can

2



leave tokens at nodes or edges (in [1]), and d) the time-out mechanism (only for

synchronous networks) in which one agent explores a new node while another

waits for it at a safe node (in [7, 8, 10, 11, 24, 25, 26]).

The most powerful inter-agent communication mechanism is having white-

boards at all nodes. Since access to a whiteboard is provided in mutual exclu-

sion, this model could also provide the agents a symmetry-breaking mechanism:

If the agents start at the same node, they can get distinct identities and then

the distinct agents can assign different labels to all nodes. Hence in this model,

if the agents are initially co-located, both the agents and the nodes can be as-

sumed to be non-anonymous without any loss of generality. The BHS problem

has been studied using whiteboards in asynchronous networks, with the ob-

jective of minimizing the number of agents required to locate the black hole.

Note that in asynchronous networks, it is not possible to answer the question of

whether or not a black hole exists in the network, since there is no bound on the

time taken by an agent to traverse an edge. Assuming the existence of (exactly

one) black hole, the minimum sized team of co-located agents that can locate

the black hole depends on the knowledge available to the agents. If the agents

have a complete map of the network including port numbers and their starting

position, then two agents suffice to locate the black hole[15]. If the agents have

sense of direction, i.e., they can determine if two paths starting from one node

lead to the same node, using only the labels of the ports along these paths, then

two agents suffice[15]. If the agents have neither a complete map nor sense of

direction, then ∆ + 1 agents are needed and suffice[15]. In any case, the prior

knowledge of the network size is essential to locate the black hole in finite time.

In the case of synchronous networks two co-located distinct agents can dis-

cover one black hole in any graph by using the time-out mechanism, without the

need of whiteboards or tokens. Furthermore it is possible to detect whether a

black hole actually exists or not in the network. Hence, with co-located distinct

agents, the issue is not the feasibility but the time efficiency of black hole search

(see [7, 8, 10, 11, 24, 25, 26] for example). However when the agents are scat-

tered in the network (as in our case), the time-out mechanism is not sufficient
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to solve the problem anymore since the agents need to meet in order to use the

mechanism.

Most of the previous results on black hole search used agents whose memory

is at least logarithmic in the size of the network (e.g. in [18]). This means

that these algorithms are not scalable to networks of arbitrary size. This paper

considers agents modeled as finite automata, i.e., having a constant number of

states. This means that these agents cannot remember or count the nodes of

the network that they have explored. In this model, the agents cannot have

prior knowledge of the size of the network. In our model, the agents can detect

whether there is an agent of a given state, but not how many of them.

For synchronous ring networks of arbitrary size, containing exactly one black

hole, we present deterministic algorithms for locating the black hole using scat-

tered agents each having constant-sized memory. We are interested in minimiz-

ing both the number of agents and the number of tokens required for solving

the BHS problem.

We use the ‘pure’ token model. While the whiteboard model is commonly

used in unsafe networks, the token model has been mostly used for exploration of

safe networks. Note that the ‘pure’ token model can be implemented with O(1)-

bit whiteboards (storing the number of tokens at the whiteboard of the node)

if we assume that only a constant number of tokens may be placed on a node

at the same time, while the ‘enhanced’ token model can be implemented with

O(log ∆)-bit whiteboards (storing the number of tokens at each incident edge

at the whiteboard of the node). In the previous results using the whiteboard

model, the capacity of each whiteboard is always assumed to be of at least

Ω(log n) bits, where n is the number of nodes of the network. Unlike previous

models, we do not require mutually exclusive access to the nodes memory, i.e.,

two agents at the same node are allowed to place tokens simultaneously at that

same node of the network. We distinguish movable tokens (which can be picked

up from a node and placed on another) from unmovable tokens (which cannot

be picked up once they are placed on a node). For both types of tokens, we

provide matching upper and lower bounds on both the number of agents and the
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number of tokens per agent, required for solving the black hole search problem

in synchronous rings. Although our algorithms require only a constant size

memory for each agent, the impossibility results presented in this paper hold

even for agents having unbounded memory.

1.2. Related Works

The exploration of an unknown graph by one or more mobile agents is a

classical problem initially formulated in 1951 by Shannon [28] and it has been

extensively studied since then (e.g., see [4, 12, 22]). In unsafe networks contain-

ing a single dangerous node (black hole), the problem of searching for it has

been studied in the asynchronous model using whiteboards and given that all

agents initially start at the same safe node (e.g., [2, 3, 13, 15, 16, 17]). It has

also been studied using ‘enhanced’ tokens in [14, 18, 29] and in the ‘pure’ token

model in [1]. It has been proved that the problem can be solved with a minimal

number of agents performing a polynomial number of moves. Notice that in an

asynchronous network the number of the nodes of the network must be known

to the agents otherwise the problem is unsolvable [16]. If the network topology

is unknown, at least ∆ + 1 agents are needed, where ∆ is the maximum node

degree in the graph [15]. It is usually assumed that the network is bi-connected

and the existence of exactly one black hole is common knowledge.

In asynchronous networks, with scattered agents (not initially located at the

same node), the problem has been investigated for arbitrary topologies [6, 21] in

the whiteboard model while in the ‘enhanced’ token model it has been studied

for rings [19, 20] and for some interconnected networks [29].

The issue of efficient black hole search has been studied in synchronous

networks without whiteboards or tokens (only using the time-out mechanism)

in [7, 8, 10, 11, 24, 25, 26] under the condition that all distinct agents start at

the same node.

The problem has also been studied for co-located agents in asynchronous and

synchronous directed graphs with whiteboards in [9, 26]. In [8] they study how

to locate and repair faults (weaker than black holes) using co-located agents in
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synchronous known networks with whiteboards and in [23] they study the prob-

lem in asynchronous networks with whiteboards and co-located agents without

the knowledge of incoming link. A different dangerous behavior is studied for

co-located agents in [27], where the authors consider a ring and assume black

holes with Byzantine behavior, which do not always destroy a visiting agent.

In all previous papers (apart from [1]) studying the Black Hole Search prob-

lem using tokens, the ‘enhanced’ token model is used. The weakest ‘pure’ token

model has only been used in [1] for co-located agents in asynchronous networks.

In all previous solutions to the problem using tokens, the agents are assumed

to have non-constant memory.

1.3. Our Contributions

Unlike previous studies on BHS, we consider the scenario of anonymous (i.e.,

identical) agents that are initially scattered in an anonymous ring. We focus our

attention on very simple mobile agents. The agents have constant-size memory,

they carry a constant number of identical tokens which can be placed at nodes

and, apart from using the tokens, they can communicate with other agents

only when they meet at the same node. We consider four different scenarios

depending on whether the tokens are movable or not, and whether the agents

agree on a common orientation. We present deterministic optimal algorithms

and provide matching upper and lower bounds for the number of agents and

the number of tokens required for solving BHS (See Table 1 for a summary of

results). Surprisingly, the agreement on the ring orientation does not influence

the number of agents needed in the case of movable tokens but is important in

the case of unmovable tokens.

The lower bounds presented in this paper are very strong in the sense that

they do not allow any trade-off between the number of agents and the number

of tokens for solving the BHS problem. In particular we show that:

• Any constant number of agents, even having unlimited memory, cannot

solve the BHS problem with less tokens than depicted in all cases of Ta-

ble 1.
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• Any number of agents less than that depicted in all cases of Table 1 cannot

solve the BHS problem even if the agents are equipped with any constant

number of tokens and they have unlimited memory.

Meanwhile our algorithms match the lower bounds, are asymptotically time-

optimal and since they do not require any knowledge of the size of the ring or

the number of agents, they work in any anonymous synchronous ring, for any

number of anonymous identical agents (respecting the minimal requirements of

Table 1).

Resources necessary

and sufficient

Tokens are Ring is # agents # tokens References in the paper

Movable
Oriented

3 1 Theorem 3.1, 3.2 and 4.1
Unoriented

Unmovable
Oriented 4 2 Theorem 3.1, 3.3 and 5.1

Unoriented 5 2 Theorem 3.1, 3.4 and 5.2

Table 1: Summary of results for BHS in synchronous rings

In Section 2, we formally describe the model and the different settings con-

sidered in the paper. In Section 3, we state impossibly results for all settings

considered in the paper. In Section 4, we give an algorithm for agents with

moveable tokens. In Section 5, we give two algorithms for agents with unmove-

able tokens, one for oriented rings and another for unoriented rings. Finally, in

Section 6, we conclude and give some perspectives.

2. Our Model

Our model consists of an anonymous, synchronous ring network with k ≥ 2

identical mobile agents that are initially located at distinct nodes called home-

bases. Each mobile agent owns a constant number t of identical tokens which

can be placed at any node visited by the agent. The tokens are indistinguish-

able. Any token or agent at a given node is visible to all agents on the same
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node, but not visible to agents on other nodes. The agents follow the same

deterministic algorithm and begin execution at the same time and being in the

same initial state. In all our protocols a node may contain at most two tokens

at the same time. At any node of the ring, the ports leading to the two incident

edges are distinguishable and locally labelled and an agent arriving at a node

knows the port-label of the edge through which it arrived. In the special case

of an oriented ring, the ports are consistently labelled as Left and Right (i.e.,

all ports going in the clockwise direction are labelled Left). In an unoriented

ring, the local port-labeling at a node is arbitrary and each agent in its first

step chooses one direction as Left and in every subsequent step, it translates

the local port-labeling at a node into Left and Right according to its chosen

orientation. In order to make this translation, the agent stores the port-label of

the edge through which it arrived and the direction of the last movement (Left

or Right). If the direction of the move is the opposite of that of the last move,

the agent moves using the port-label stored. Otherwise, the agent follows the

other port-label.

In a single time unit, each mobile agent completes one step which consists

of the Look, Compute and Move stages (in this order). During the Look stage,

an agent obtains information about the configuration of the current node (i.e.,

agents, tokens present at the node) and its own configuration (i.e., the port

through which it arrived and the number of tokens it carries). During the

Compute stage, an agent can perform any number of computations (i.e., com-

putations are instantaneous in our model). During the Move stage, the agent

may put or pick up a token at the current node and then either move to an

adjacent node or remain at the current node. If during the computation stage,

the agent detects that one of neighbors of the current node is the black hole,

then the agent may permanently mark the link as dangerous, during the Move

stage. Since the agents are synchronous they perform each stage of each step at

the same time. We call a token movable if it can be put on a node and picked

up later by any mobile agent visiting the node. Otherwise we call the token

unmovable in the sense that, once released, it can occupy only the node where
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it was released.

Formally we consider a mobile agent as a finite Moore automaton A =

(S, S0,Σ,Λ, δ, φ), where S is a set of σ ≥ 2 states among which there is a

specified state S0 called the initial state; Σ ⊆ D× Cv × CA is the set of possible

configurations an agent can see when it enters a node; Λ ⊆ D×P ×X is the set

of possible actions by the agent; δ : S × Σ → S is the transition function; and

φ : S → Λ is the output function. D = {left, right, none} is the set of possible

directions through which the agent arrives at or leaves a node (none represents

no move by the agent). P = {put, pick, no action} is the action performed by

the agent on the tokens, while X = {mark left, mark right, no action} is the

action performed by the agent on the links incident to the current node. Cv =

{0, 1}σ×{0, 1, 2} is the set of possible configurations at a node, consisting of (i)

a bit string that denotes for each possible state whether there is an agent in that

state at that node and (ii) an integer that denotes the number of tokens at that

node (in our protocols at most 2 tokens reside at a node at any time). Finally,

CA = {1, 2} × {0, 1, 2} is the set of possible configurations of an agent, i.e., its

orientation and whether it carries zero, one or two tokens (in our protocols, an

agent cannot carry more than two tokens). Observe that this definition is only

used for our algorithms since our impossibility results works even if agents have

unlimited memory, can carry and see at a node any number of tokens.

Notice that all computations by the agents are independent of the size n of

the network and the number k of agents. The agents have no knowledge of n

or k. The agents only know the number of tokens they have. Since the agents

are identical they face the same limitations on their knowledge of the network.

There is exactly one black hole in the network. An agent can start from any

node other than the black hole and no two agents are initially colocated3. Once

an agent detects a link to the black hole, it marks the link permanently as

dangerous. We require that at the end of a black hole search scheme, all links

3Since there is no symmetry breaking mechanism at a node, two agents starting at the

same node and in the same state, would behave as a single (merged) agent.
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incident to the black hole (and only those links) are marked dangerous and that

there is at least one surviving agent. Note that our definition of a successful

BHS scheme is slightly different from the original definition. Indeed, in the

original definition, it is required that there is at least one surviving agent, and

this agent knows the location of all edges incident to the black hole. However,

this is impossible in our model since we consider finite state agents. The time

complexity of a BHS scheme is the number of time units needed for completion

of the scheme, assuming the worst-case location of the black hole and the worst-

case initial placement of the scattered agents.

3. Impossibility Results

3.1. Oriented Rings

We first show that when the tokens are unmovable, a team of any constant

number of agents needs at least two tokens per agent to solve the BHS problem.

Theorem 3.1. For any constant k, there exists no algorithm that solves BHS

in all oriented rings containing one black hole and k or more scattered agents,

when each agent is provided with only one unmovable token. The result holds

even if the agents have unlimited memory.

Proof : Suppose there is a correct BHS algorithm that solves the problem with

k or more agents in rings of any size. If the algorithm does not require any agent

to put down its token, such an algorithm should work even if every agent puts its

token on its homebase in the first step. So without loss of generality, we assume

that an agent puts down its token after executing a finite number of steps of

the algorithm (unless it encounters some agents, some tokens or the black hole

within this time). Now consider the behavior of this agent when placed on an

infinite line (with no other agent). Suppose the agent puts down its token at a

distance of x (w.l.o.g. in the left direction) from its homebase. Further let p be

the maximum distance that the agent has travelled from its homebase (in either

direction) before it puts down its token (thus, x ≤ p). Now, consider a ring R1
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of size n = 2k(p+ 1) with one black hole and k agents such that the agents are

initially placed at a distance of 2(p+ 1) apart (see Figure 1(a)). The black hole

is located in the middle of a segment between two consecutive agents (i.e., it

is at a distance (p + 1) from the closest agents). Since the agents start in the

same state, they take the same actions and remain in identical states (until they

encounter another agent, or a token or the black hole). As long as the agents

do not travel any further than a distance p from their homebase, they will not

see anything different from the agent on the infinite line. Thus, each agent will

put its token x ≤ p places to the left of its homebase. Each agent will do so at

the same time and in the same state. During the rest of the algorithm, an agent

can only move, observe the tokens and possibly mark some link as dangerous.

Due to the correctness of the algorithm, at some time τ , some agent will mark

one link leading to the black hole as dangerous. Up to time τ , all surviving

agents behave the same since they see at each step the same configuration at

their nodes. If there are more than one surviving agent, all of them are in the

same state β and still at a distance of 2(p + 1) apart. Thus, if one such agent

marks a link as dangerous, the next agent would mark a link at a distance of

2(p + 1) away. So, one of the agents would have incorrectly marked a link—a

contradiction to the correctness of the algorithm.

The remaining case to consider is when the agent that marks a link, is the

last surviving agent. In this case, we can construct another ring R2 of size

n = 2(k + 1)(p+ 1) with one black hole and (k + 1) agents initially placed the

same distance apart as in the ring R1 (see Figure 1(b)). In an execution of

the same algorithm on ring R2, after exactly τ time steps, there will be two

surviving agents both in the same state β and at a distance of 2(p + 1) from

each other. Thus the two agents will mark as dangerous, two distinct links at a

distance of 2(p+ 1) apart. Hence the algorithm fails for the ring R2. �

We now derive some lower bounds on the number of agents necessary to solve

the BHS problem. The following result proves that at least one agent needs to

be sacrificed for detecting each link leading to the black hole.
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Figure 1: (a) An oriented ring R1 with k agents and a black hole, (b) a larger oriented ring

R2 with k + 1 agents and one black hole.

Lemma 3.1. During any execution of any BHS algorithm, if a link to the black

hole is correctly marked, then at least one agent must have entered the black hole

through this link.

Proof : Suppose for the sake of contradiction that there exists a correct BHS

algorithm such that during any execution of this algorithm one link incident to

the black hole is marked before any agent traverses this link. Assume without

loss of generality that the link is on the left of the black hole. Consider the ring

of size n which leads to this execution. Now, add a vertex on the left of the

black hole, obtaining a ring of size n+1, while keeping the same initial positions

for the agents. The agents will behave as in the ring of size n since they do not

know the size of the ring and will see exactly the same configuration. Hence

they will mark the left link of the new node as the link leading to the black hole.

This contradicts with the correctness of the BHS algorithm. �

To solve the BHS problem in a ring, both links leading to the black hole

need to be marked as dangerous. Thus, we immediately arrive at the following

result.

Theorem 3.2. Two mobile agents carrying any number of movable (or unmov-

able) tokens each, cannot solve the BHS problem in an oriented ring, even if the

agents have unlimited memory.
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When the tokens are unmovable, even three agents are not sufficient to solve

BHS as shown below.

Theorem 3.3. Three mobile agents carrying a constant number of unmovable

tokens each, cannot solve the BHS problem in an oriented ring, even if agents

have unlimited memory.

Proof : Suppose for the sake of contradiction that there exists an algorithm

which solves the BHS problem for three agents each carrying a constant number

t of unmovable tokens. Let x and y be two integers chosen by the adversary,

such that 1 ≤ x, y ≤ 2t. Suppose the three agents are initially placed on a

ring of size 8t+ x+ y such that the distance between the first and second and

between the second and third agent is 4t. The black hole is between the third

and the first agent at a distance x from one of them and at distance y from the

other (as in Figure 2). By Lemma 3.1, at least one agent would fall into the

black hole before any link to the black hole is identified. Consider the phase P

of the algorithm from the start until the first time an agent falls into the black

hole. Let us call this agent a. Assume without loss of generality that agent a

enters the black hole by going right (i.e., after traveling a distance of x from its

homebase). First, notice that the agents never meet each other during phase P

since they are always at a distance less than 2t from their homebases.

Suppose for the sake of contradiction that after agent a has vanished, the

two surviving agents can identify the link used by agent a to enter the black

hole without sacrificing another agent. This is only possible if, whenever agent

a explores a new node to the right, it leaves a message encoding this fact and

the only way to do this is by leaving another token. However, after t explored

nodes agent a runs out of tokens. The adversary may then set x to be any value

between t+1 and 2t. The remaining agents would not have enough information

to determine the position of the black hole from the left (without the sacrifice

of another agent). However, by Lemma 3.1, at least one agent must enter the

black hole from the other link (on the right). Thus either one of the links to the

black hole is never marked or there are no surviving agents. �
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4t

1≤y≤2t

4t1≤x≤2t

Figure 2: Three agents with t unmovable to-

kens each in an oriented ring.

2t

4t+14t+1

1≤x≤2t1≤x≤2t

2t

Figure 3: Four agents with t unmovable to-

kens each in an unoriented ring.

3.2. Unoriented Rings

In an unoriented ring, even four agents do not suffice to solve the BHS

problem with unmovable tokens. In fact we show a stronger result that it is

not even possible to identify just one of the links to the black hole, using four

agents.

Theorem 3.4. In an unoriented ring, four agents carrying any constant num-

ber of unmovable tokens each, cannot correctly mark any link incident to the

black hole, even when the agents have unlimited memory.

Proof : Suppose for the sake of contradiction that there exists an algorithm

which marks one of the links incident to the black hole, using four agents each

carrying t unmovable tokens. For some integer x, 1 ≤ x ≤ 2t, chosen by the

adversary, suppose that the four agents and the black hole are initially placed

as in Figure 3. The distance between two consecutive agents is 4t + 1 and the

distance between the black hole and the closest agent on each side is x. Thus,

the initial configuration is symmetric and the axis of symmetry crosses an edge

and the black hole. The adversary can choose the orientations of the agents

in such a way that the two agents closest to the black hole would fall into the
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black hole at the same time and before any agent meets another agent. Thus,

the two surviving agents would continue to be in symmetric situation and they

would take similar actions. Using the same argument as in the proof of Theorem

3.3, the information left by the vanished agent is not sufficient for one agent to

correctly identify any link incident to the black hole. Due to the symmetry of

the resulting configuration (and the fact that agents cannot meet on an edge),

the two remaining agents can never meet and will always be in the same state

until they both fall into the black hole (without marking any of the links incident

to the black hole). �

4. BHS Scheme with Movable Tokens

We first consider the case when the agents have movable tokens. If each agent

has a movable token it can perform a cautious walk [16]. The Cautious-Walk

procedure consists of the following actions: Put the token at the current node,

move one step in the specified direction, return to pick up the token, and again

move one step in the specified direction (carrying the token). After each invo-

cation of the Cautious Walk, the agent looks at the configuration of the current

node4 and decides whether to continue performing Cautious Walk.

We show that only three agents are sufficient to solve BHS, when they have

one movable token each. Algorithm 1 achieves this, both for oriented and un-

oriented rings. The procedure Mark-Link permanently marks as dangerous the

specified link.

Theorem 4.1. Algorithm 1 solves the BHS problem in an unoriented ring with

k ≥ 3 agents having constant memory and one movable token each.

Proof : Notice that all agents start at the same time executing Procedure Cau-

tiousWalk(dir) and at each time they are at the same phase of this procedure.

4Recall that only the tokens put on the node are counted, not the tokens carried by the

agent itself.
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Algorithm 1: BHS-Ring-1

/* BHS in unoriented ring using k ≥ 3 agents having 1 movable token each */

repeat CautiousWalk(Left);

until current node has a token and no agent ;

Mark-Link(Left);

repeat CautiousWalk(Right);

until current node has a token and no agent ;

Mark-Link(Right);

Procedure CautiousWalk(direction)

Put a token;

Move one step in specified direction;

Move one step back;

Pick a token;

Move one step in specified direction;

Since the only time an agent checks the number of tokens it sees is after com-

pleting an execution of the procedure, if the agent sees at least one token (not

including the one it carries) then, either (i) there is another agent at the current

node (i.e., the two agents arrived from opposite directions) or (ii) there is no

other agent (which means that the token was left by an agent that disappeared).

In case (i) the agent continues executing Procedure CautiousWalk(dir). In case

(ii) it is clear that the black hole resides at the next node in direction dir. In

this case, the agent marks the edge to the black hole, reverses direction and

repeats the process. Since the agents start from distinct locations at the same

time, no two agents can arrive at the black hole at the same time through the

same link. Thus, exactly one agent would fall into the black hole from each

direction (leaving at least one surviving agent) and both links to the black hole

would be eventually marked. �
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5. BHS Scheme with Unmovable Tokens

For agents having only unmovable tokens, we use the technique of Paired

Walk (called Probing in [7]) for exploring new nodes. The procedure is executed

by two co-located agents with different roles and the same orientation. One of

the agents called the leader explores an unknown edge while the other agent,

called follower waits for the leader. If the other endpoint of the edge is safe, the

leader immediately returns to the previous node to inform the follower and then

both move to this new node. On the other hand, if the leader does not return

in two time steps, the follower knows that the next node is the black hole. (See

Procedure Paired Walk).

In order to use the Paired Walk technique, we need to gather two agents

at the same node and then break the symmetry between them, so that distinct

roles can be assigned to each of them. The basic idea of our algorithms is the

following. We first identify the two homebases that are closest to the black hole

(one on each side). These homebases are called gates. The gates divide the ring

into two segments: one segment contains the black hole (thus, is dangerous);

the other segment contains all other homebases (and is safe). Initially all agents

are in the safe part and an agent can move to the dangerous part only when

it passes through the gate node. We ensure that any agent reaching a gate

node, waits for a partner agent in order to perform the Paired Walk procedure.

We now present two BHS algorithms, one for oriented rings and the other for

unoriented rings.

5.1. Oriented Rings

In this section, we describe an algorithm using at least four agents with

two unmovable tokens. In an oriented ring, all agents may move in the same

direction (i.e., Left). The algorithm executed by the agents essentially runs in

five phases:

1. Init phase: During this phase, each agent places a token on its homebase

(state START), moves left until the next homebase, i.e., next node with
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Procedure PairedWalk( isLeader)

if isLeader then

Move one step in specified direction;

Move one step back;

Move one step in specified direction;

else

WAIT(2);

if there is a leader then

Move one step in specified direction;

a token (state CHECK-LEFT), returns to its homebase to put down the

second token (state GO-BACK). The agents may not complete this phase

of the algorithm at the same time. If the agent meets another agent at its

homebase, it forms a pair with it (entering phase Left-exploration) if the

other agent is alone, or it becomes a LEFT-SEARCHER agent otherwise

(entering phase Left-pairing). During this phase, only one agent will fall

into the black hole and there will be a unique homebase with a single

token (we call this node the gate node) and all the other homebases will

eventually contain exactly two tokens each.

2. Left-pairing: During this phase, agents try to meet at the gate node by

moving to the left until they reach a node containing a single token (state

ALONE). The first agent reaching node with one token waits for a partner

agent (state WAITING). When another agent arrives at the node, they

form a pair and proceed to the next phase. A pair can be formed either

by :

• an ALONE agent and a WAITING agent,

• or an ALONE agent and a GO-BACK agent,

• or an WAITING agent and GO-BACK agent.

In all cases, the agents of the pair have different states which will be

important for the next phase.
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3. Left-exploration: During this phase, the pair formed during the previous

phase performs Paired Walk in the left direction. One of the agents of a

pair (state LEFT-LEADER) eventually falls into the black hole and the

other agent (state LEFT-FOLLOWER) marks the edge leading to the

black hole. The LEFT-LEADER is the WAITING agent of the pair if

there is one or to the ALONE agent otherwise. The algorithm also has

some additional rules to ensure that no two LEFT-LEADERs are created

at the same node at the same time: no agent becomes a LEFT-LEADER

if there is already another LEFT-LEADER at the same node (In this case,

the agent become a LEFT-SEARCHER).

4. Right-pairing: During this phase, the LEFT-FOLLOWER agent

of the previous step returns to the gate node by moving to the

right (state RIGHT-SEARCHER). Then the agent form a pair

with any RIGHT-FOLLOWER agent at the node if there is one

or waits for another agent (state RIGHT-SEARCHER) to arrive in

order to form a pair otherwise. Any agent that encountered a

LEFT-LEADER during the previous phases of the algorithm became a

LEFT-SEARCHER. LEFT-SEARCHER moves left until reaching the

gate node and waits for a RIGHT-LEADER in order to form a pair (state

RIGHT-FOLLOWER). The pair is always by an RIGHT-LEADER agent

and a RIGHT-FOLLOWER agent.

5. Right-exploration: During this phase, the pair formed during the previ-

ous phase performs Paired Walk in the right direction. One of the agents

of a pair (state RIGHT-LEADER) eventually falls into the black hole and

the other agent (state RIGHT-FOLLOWER) marks the edge leading to

the black hole.

The complete formal version of the algorithm is presented in Algorithm 2

and the state transitions during the algorithm are shown in Figure 4.
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Figure 4: State transitions during the algorithm BHS-Ring-2 with k ≥ 4 agents and 2 unmov-

able tokens per agent. Agents in state CHECK-LEFT, LEFT-LEADER, or RIGHT-LEADER

may fall into the black hole.

Lemma 5.1. During the algorithm 2, the following holds, assuming there are

at least 4 agents, each carrying two unmovable tokens

(i) Exactly one CHECK-LEFT agent falls into the black hole.

(ii) An agent in any state other than CHECK-LEFT, LEFT-LEADER, or

RIGHT-LEADER, never enters the black hole.

(iii) At least one Paired Walk is performed in the left direction starting from

the gate node, marking one edge incident to the black hole as dangerous.

(iv) At least one Paired Walk is performed in the right direction starting from

the gate node, marking one edge incident to the black hole as dangerous.

Proof : (i) After the first step (performed simultaneously by each agent), there

is at least one token at each homebase. A CHECK-LEFT agent moves from

its homebase until the next node on the left that contains a token. Thus, only

the agent whose homebase is the first one on the right starting from the black

hole, may enter the black hole. Any other agent would successfully reach a

node containing a token and at that point, change state and never enter state
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CHECK-LEFT again.

(ii)Any agent that is not in state CHECK-LEFT never goes beyond the

gate node in the left direction, unless it is performing a Paired Walk as a

(LEFT-LEADER, LEFT-FOLLOWER) pair. Thus, only a LEFT-LEADER

or a CHECK-LEFT agent may enter the black hole while going left. Now con-

sider an agent that is going in the right direction. If the agent is going back

to the gate node or back to its homebase, it stops before reaching the black

hole. Otherwise an agent going right must be part of a Paired Walk in the right

direction. Thus, only a RIGHT-LEADER may enter the black hole while going

in the right direction.

(iii) An agent that does not enter the black hole in state CHECK-LEFT, returns

to its homebase to put the second token. If the agent meets another agent at its

homebase then a Paired Walk (in the left direction) is started at this homebase,

eventually arriving at the gate node; thus the property holds. Otherwise, the

agent is in state ALONE on arriving at its homebase and it moves left until

the next homebase node. Suppose for the sake of contradiction that no Paired

Walk is started in the left direction. This means that all the surviving agents

are in state ALONE or WAITING. An agent can wait only at a homebase node

containing a single token. If an agent is waiting at a node that is not the gate

node, then eventually the owner of the homebase would return to that node to

put the second token. At this point a Paired Walk in the left direction would be

started from this node. Thus, due to the assumption that no Paired Walk has

been started, all agents that are in state ALONE or WAITING would eventually

reach the gate node. Since there are at least three such agents, two of them

would meet at the gate node and thus, start a Paired Walk together.

(iv) Note that an agent may become LEFT-LEADER only if there are no other

LEFT-LEADER agents at the same node. Thus, two LEFT-LEADER agents

cannot enter the black hole at the same time. This means that two agents can-

not become a RIGHT-SEARCHER at same time. From (iii), we know that at

least one agent will become a RIGHT-SEARCHER. The first agent in state

RIGHT-SEARCHER will be the first RIGHT-SEARCHER agent to reach the
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gate node and will become a RIGHT-LEADER. If there is other agents per-

forming Paired Walk in the left direction, then the LEFT-FOLLOWER agent of

the pair will become a RIGHT-SEARCHER and come back to the black hole. If

no Paired Walk has been started then all the surviving agents (there are at least

two surviving agents) would eventually be at the gate node. Any other agents

arriving in state RIGHT-SEARCHER, ALONE or WAITING at the gate node

will become a RIGHT-FOLLOWER. �

Theorem 5.1. Algorithm BHS-Ring-2 correctly solves the black hole search

problem in any oriented ring with 4 or more agents having constant memory

and carrying two unmovable tokens each.

Proof : Due to Lemma 5.1, we know that at least one Paired Walk is performed

in each direction during the algorithm. Thus, both links to the black hole are

discovered and marked. Further we know that the RIGHT-FOLLOWER agent

in the pair performing the Paired Walk to the left will never enter the black

hole. Thus there is at least one surviving agent. �

5.2. Unoriented Rings

For unoriented rings, we need at least 5 agents with two unmovable tokens

each. The algorithm for unoriented rings with unmovable tokens is similar to

the one for oriented rings, except that each agent chooses an orientation. When

two agents meet and one has to follow the other, we assume in our model that

the state of the agent contains information about the orientation of the agent

(i.e., the port at the current node considered by the agent to be Left). Thus,

when two agents meet at a node, one agent (e.g. the Follower) can orient itself

according to the direction of the other agent (e.g. the Leader). As in the

algorithm in oriented ring, the algorithm in unoriented ring executed by the

agents essentially runs in five phases:

1. Init phase: During this phase, each agent places a token on its homebase

(state START), moves left until the next homebase, i.e., next node with
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Algorithm 2: BHS-Ring-2

/* BHS in an Oriented Ring, using k ≥ 4 agents having 2 unmovable tokens

each */

/* Assumptions: All agents have the same initial state START. */

START:

Place token at homebase; State := CHECK-LEFT;

CHECK-LEFT:

Move Left until the next node that contains a token; State := GO-BACK ;

GO-BACK: /* Go home to put the second token */

Move Right until the next node that contains a token;

Remember to put the second token after changing State;

if there is a LEFT-LEADER agent then State := LEFT-SEARCHER;

else if there is a ALONE agent or a WAITING agent then

State := LEFT-FOLLOWER;

else State := ALONE;

ALONE: /* Move alone to the node with single token */

Move Left until a node that contains either only one token or two tokens and a

GO-BACK agent ;

if there is a RIGHT-LEADER agent then State := RIGHT-FOLLOWER;

else if there is a LEFT-LEADER agent then State := LEFT-SEARCHER;

else if there is a GO-BACK agent and no WAITING agent then

State := LEFT-LEADER;

else if there is a WAITING agent and no GO-BACK agent then

State := LEFT-FOLLOWER;

else State := WAITING;

WAITING: /* Wait for a partner agent */

Wait until other agents arrive at the current node;

if there is a LEFT-LEADER agent then State := LEFT-SEARCHER;

else if there is a GO-BACK agent or ALONE agent then

State := LEFT-LEADER;

else if there is a RIGHT-LEADER agent then State := RIGHT-FOLLOWER;

LEFT-LEADER: /* Perform Paired walk with Follower agent */

while true do PairedWalk (1) in Left direction;
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Algorithm 2: BHS-Ring-2 (continued)

/* BHS in an Oriented Ring, using k ≥ 4 agents having 2 unmovable tokens

each */

/* Assumptions: All agents have the same initial state START. */

LEFT-FOLLOWER: /* Perform Paired walk with Leader agent */

while there is a LEFT-LEADER agent do

PairedWalk (0) in Left direction;

if the LEFT-LEADER did not return during the last step then

Mark-Link (Left); State := RIGHT-SEARCHER; exit loop;

LEFT-SEARCHER: /* Move Left to become a RIGHT-FOLLOWER */

while not at a node with one token do Move Left;

Wait until there is a RIGHT-LEADER agent; State := RIGHT-FOLLOWER;

RIGHT-SEARCHER: /* Move Right to become a RIGHT-LEADER or a

RIGHT-FOLLOWER */

while not at a node with one token do Move Right;

if there is a RIGHT-LEADER agent then State := RIGHT-FOLLOWER;

else State := RIGHT-LEADER;

RIGHT-LEADER: /* Perform Paired walk in the other direction */

Wait until there is another agent;

while true do PairedWalk (1) in Right direction;

RIGHT-FOLLOWER: /* Perform Paired walk in the other direction */

while there is a RIGHT-LEADER agent do

PairedWalk (0) in Right direction;

if the RIGHT-LEADER did not return during the last step then

Mark-Link (Right); exit loop;

State := HALT;
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Algorithm 3: BHS-Ring-3

/* BHS in Unoriented Ring, using k ≥ 5 agents having 2 unmovable tokens

each. All agents have the same initial state START. */

START:

Place token at homebase; State := CHECK-LEFT;

CHECK-LEFT:

Move Left until the next node that contains a token; State := CHECK-RIGHT;

CHECK-RIGHT:

Move Right until the next node that contains a token;

Move Right again until the next node that contains some token;

State := GO-BACK;

GO-BACK: /* Go home to put the second token */

Move Left until the next node that contains one token;

Remember to put the second token after changing State;

if there is a LEFT-LEADER agent then State := SEARCHER;

else if there is a ALONE agent or a WAITING agent then

State := LEFT-FOLLOWER;

else State := ALONE;

WAITING: /* Wait for a partner agent */

Wait until other agents arrive at the current node;

if there is a RIGHT-LEADER agent then State := RIGHT-FOLLOWER;

else if there is a GO-BACK or ALONE agent a and no LEFT-LEADER agent

then

if there is another WAITING agent having same orientation as agent a then

State := SEARCHER;

else

State := LEFT-LEADER;

else State := SEARCHER;
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Algorithm 3: BHS-Ring-3 (continued)

ALONE: /* Move alone to the node with single token */

Move Left until a node that contains either only one token or two tokens and a

GO-BACK agent ;

if there are no other agents then State := WAITING;

if there is a RIGHT-LEADER agent then State := RIGHT-FOLLOWER;

else if there is a LEFT-LEADER agent then State := SEARCHER;

else if there is a WAITING agent and no GO-BACK agent then
if there is another ALONE agent having same orientation as the WAITING

agent then

State := SEARCHER;

else

State := LEFT-FOLLOWER;

else if there is a GO-BACK agent and no WAITING agent then
if there is another ALONE agent having same orientation as the GO-BACK

agent then

State := SEARCHER;

else

State := LEFT-LEADER;

else State := SEARCHER;

LEFT-LEADER:

while true do PairedWalk (1) in Left direction;

LEFT-FOLLOWER:

Align orientation with the LEFT-LEADER agent;

while true do

PairedWalk (0) in Left direction;

if the LEFT-LEADER did not return during the last step then

Mark-Link (Left); Exit Loop;

State := RIGHT-LEADER;
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Algorithm 3: BHS-Ring-3 (Continued)

SEARCHER: /* Go to the gate node to become RIGHT-FOLLOWER */

while not at a node with one token do Move Right;

State := RIGHT-FOLLOWER;

RIGHT-LEADER: /* Find a Follower and perform Paired Walk */

while not at a node with one token do Move Right;

if there is no other agent then

repeat

Move Right;

Wait (2);

until the current node contains one token;

if there is no other agent then

repeat Move Left;

until the current node contains one token

if there is another agent then

while true do PairedWalk (1) in Right direction;

else
State := RIGHT-FOLLOWER

RIGHT-FOLLOWER:

Wait until there is a RIGHT-LEADER agent;

Align orientation with the RIGHT-LEADER agent;

while true do

PairedWalk (0) in Right direction;

if the RIGHT-LEADER did not return during the last step then

Mark-Link (Right); Exit loop;

State := HALT;
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Figure 5: State transitions during the algorithm BHS-Ring-3 with k ≥ 5 agents and

2 unmovable tokens per agent. Only agents in state CHECK-LEFT, CHECK-RIGHT,

LEFT-LEADER, or RIGHT-LEADER may fall into the black hole.

a token (state CHECK-LEFT), returns to its homebase and moves right

until the next homebase (state CHECK-RIGHT). Then it returns again

to its homebase (state GO-BACK). The agents may not complete this

phase of the algorithm at the same time. If the agent meets another agent

at its homebase, it forms a pair with it (entering phase Left-exploration)

if the other agent is alone, or it becomes a SEARCHER agent otherwise

(entering phase Right-pairing). During this phase, exactly two agents will

fall into the black hole and there will be two homebases with a single

token (we call these node the gate nodes) and all the other homebases will

eventually contain exactly two tokens each.

2. Left-pairing: During this phase, agents try to meet at the gate nodes

by moving to the left until they reach a node containing a single token

(state ALONE). The first agent reaching node with one token waits for a

partner agent (state WAITING). When another agent arrives at the node,

they form a pair and proceed to the next phase. A pair can be formed
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either by :

• an ALONE agent and a WAITING agent,

• or an ALONE agent and a GO-BACK agent,

• or an WAITING agent and GO-BACK agent.

In all cases, the agents of the pair have different states which will be

important for the next phase.

Unlike in the oriented ring, it may happen that two ALONE agents arrive

at a node u with one token from opposite directions. In this case, both

agents wait (state WAITING) until another agent arrives. Note that in

this case, the ring is safe in both directions until the next homebase and

thus, an agent b (whose homebase is u) would arrive within a finite time.

When agent b arrives, only one of the WAITING agents (the one having

the same orientation as b) changes to state LEFT-LEADER and pairs-

up with agent b. The other agent changes to state SEARCHER (phase

Right-pairing). A similar case occurs when an agent a is waiting and two

agents (both in state ALONE) arrive from different directions. Among

these two agents, the one having the same orientation as agent a pairs up

with agent a and starts the Paired Walk procedure as LEFT-LEADER.

The other agent also changes to state SEARCHER (phase Right-pairing)

in this case.

As before there can be multiple leader-follower pairs performing Paired

Walk in different parts of the ring. However the rules of the algorithm

ensure that no two LEFT-LEADER agents may be created at the same

node at the same time. Thus, two LEFT-LEADER agents cannot enter

into the black hole at the same time from the same direction. After the

first LEFT-LEADER enters the black hole from one direction, the corre-

sponding LEFT-FOLLOWER agent marks the link as a dangerous link

and thus, no other agent enters the black hole from the same direction.

3. Left-exploration: During this phase, the pair formed during the previous
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phase performs Paired Walk in the left direction. One of the agents of a

pair (state LEFT-LEADER) eventually falls into the black hole and the

other agent (state LEFT-FOLLOWER) marks the edge leading to the

black hole. The LEFT-LEADER is the WAITING agent of the pair if

there is one or to the ALONE agent otherwise. The algorithm also has

some additional rules to ensure that no two LEFT-LEADERs are created

at the same node at the same time. No agent becomes a LEFT-LEADER

if there is already another LEFT-LEADER at the same node (In this case,

the agent become a SEARCHER).

4. Right-pairing: When the LEFT-LEADER agent falls into the

black hole, the corresponding LEFT-FOLLOWER agent becomes the

RIGHT-LEADER. The RIGHT-LEADER agent moves to the other di-

rection until the node with one token. If the RIGHT-LEADER does not

find a RIGHT-FOLLOWER at the first gate, it performs a slow walk to

the other gate and returns again to the former gate. During the slow walk,

it moves at one-third the speed of any other agent (i.e., waits two steps

after each move). This ensures that it will meet any unpaired agent, i.e.,

an agent that did not participate in a PairedWalk, if there is one. In these

case these two agents now start the Paired Walk procedure in the other

direction. If there is no unpaired agents, a Paired Walk procedure was

executed by another pair of agent. If the pair has a different orientation

then it has already detected and marked the other link leading to the black

hole. Otherwise, there will be two RIGHT-LEADER agents and the first

one will wait (state RIGHT-FOLLOWER) for the other to arrive.

Any agent that encountered a LEFT-LEADER during the previous phases

of the algorithm became a SEARCHER. A SEARCHER agent moves left

until reaching the gate node and waits for a RIGHT-LEADER in order to

form a pair (state RIGHT-FOLLOWER).

5. Right-exploration: During this phase, the pair formed during the previ-

ous phase performs Paired Walk in the right direction. One of the agents
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of a pair (state RIGHT-LEADER) eventually falls into the black hole and

the other agent (state RIGHT-FOLLOWER) marks the edge leading to

the black hole.

A formal description of the algorithm can be found in Algorithm 3 and the

state transitions during the algorithm are shown in Figure 5.

Lemma 5.2. During the algorithm BHS-Ring-3, the following holds, assuming

there are at least 5 agents, each carrying two unmovable tokens

(i) Exactly two agents fall into the black hole before placing their second token.

(ii) An agent that is not in state LEFT-LEADER or RIGHT-LEADER never

enters the black hole after placing its second token.

(iii) There is at least one LEFT-LEADER and each LEFT-LEADER has a

corresponding LEFT-FOLLOWER.

(iv) At least one Paired Walk is performed in each direction, marking the cor-

responding edge incident to the black hole as dangerous.

Proof : (i) This fact follows directly from the description of the algorithm.

Only the two agents whose homebases are closest to the black hole (from either

side) would fall into the black hole before placing the second token.

(ii) After placing its second token on the homebase, an agent is not allowed

to move beyond the gate nodes, unless it is performing a Paired Walk . If an

agent enters the black hole while performing Paired Walk then it must be in

state LEFT-LEADER or RIGHT-LEADER.

(iii) There are at least three agents which do not enter the black hole before

placing their second token. At least two of these must have the same orien-

tation. Among those surviving agents having same orientation, at least two

would eventually meet at a node containing a single token (note that the agents

are allowed to wait only at nodes with a single token and eventually only the

gate nodes will contain a single token). Whenever multiple agents meet at a
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node, no two of them have the same state and the same orientation. According

to the rules of the algorithm exactly one of them becomes LEFT-LEADER and

exactly one of them becomes LEFT-FOLLOWER.

(iv) Let v be the black hole and u and w be the gates. Assume nodes u, v

and w appear in this order (say, in clockwise direction) with only non-homebase

nodes between u and v and between v and w. Let us denote by d(u, v), d(v, w)

and d(w, u) the distances between these nodes in the clockwise direction. Due

to Property (iii) above we know that there is at least one LEFT-LEADER.

Suppose there are two LEFT-LEADERs moving in opposite directions. In this

case, the two LEFT-LEADER agents will fall into the black hole through distinct

links, while executing the Paired Walk procedure. Thus, both links to the black

hole will be marked by the corresponding LEFT-FOLLOWER agents and BHS

is solved.

The second scenario to consider is when there are multiple LEFT-LEADER

agents but they all have the same orientation. In this case, no two

LEFT-LEADERs are created at the same node at the same time. The

two LEFT-LEADERs will enter the black hole at different moments in time.

The corresponding LEFT-FOLLOWER agents will become RIGHT-LEADERs.

The first RIGHT-LEADER agent will go to the gate nodes to check for

RIGHT-FOLLOWER agents. If it does not encounter other agents, it

will become a RIGHT-FOLLOWER. The second RIGHT-LEADER will

then form a pair with it. Thus, the RIGHT-LEADER meets at least one

RIGHT-FOLLOWER and they perform the Paired Walk in the other direction

to discover the other link to the black hole.

The third and only other possible scenario is when there is only one

LEFT-LEADER agent (and thus only one LEFT-FOLLOWER). We know that

one of the links to the black hole would be discovered by this (LEFT-LEADER,

LEFT-FOLLOWER) pair. The LEFT-FOLLOWER agent would eventually

become RIGHT-LEADER. We need to show that the RIGHT-LEADER

would meet at least one RIGHT-FOLLOWER. Suppose (w.l.o.g.) that the
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RIGHT-LEADER was created on the same side of the black hole as node u.

Since there are at least 5 agents, there must be an unpaired agent waiting for

a partner. The WAITING agent could be waiting either at node u or at node

w. Note that the RIGHT-LEADER moves from u to w, waiting two steps af-

ter each edge traversal. This takes time 3d(u,w). Since no other agent makes

more than 3d(u,w) edge traversals before it starts waiting at the gate, the

RIGHT-LEADER is guaranteed to find at least one waiting agent either at

node w or at u when it returns. Thus this agent becomes RIGHT-FOLLOWER

and joins the Paired Walk procedure. Hence, the second link to the black hole

would be discovered by this pair of agents. �

Theorem 5.2. Algorithm BHS-Ring-3 correctly solves the black hole search

problem in an unoriented ring with 5 or more agents having constant memory

and carrying two unmovable tokens each.

Proof : Due to the above lemma, we know that only a leader agent can fall into

the black hole after putting its two tokens. For each leader falling into the black

hole, there is a follower agent that survives. Hence, at least one agent will never

fall into the black hole. Both links to the black hole are actually discovered and

marked as dangerous by property (iv) of the lemma. �

6. Conclusions

The results of this paper determine the minimum resources necessary for

locating a black hole in synchronous ring networks. We presented algorithms

that use the optimal number of agents and the optimal number of tokens per

agent, while requiring only constant-size memory. Thus, all resources used by

our algorithms are independent of the size of the network. Notice that all the

algorithms presented in the paper have a time complexity of O(n) steps, so,

they are asymptotically optimal for BHS in a ring.

The model introduced in this paper differs from that of the previous studies,

since we consider constant memory agents. Another difference is that the agents
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were equipped with the capability of marking as dangerous the links to the

black-hole once they have been detected. However, this additional ability is

only useful to output the solution (links incident to the black hole) since the

agent cannot see marked links. As mentioned before the model considered in

the paper is weaker than most other models considered in the literature, since

not only are the agents restricted to constant-size memory, they also lack any

prior knowledge of either size of the network or the total number of agents.

The main question answered by the paper is how the limitation on the mem-

ory of the agents influences the resources required for solving BHS. We show

that the constant memory limitation has no influence on the resource require-

ments since the (matching) lower bounds hold even if the agents have unlimited

memory. It would be interesting to investigate if similar tight results hold for

BHS in other network topologies. We would also like to investigate the dif-

ference between ‘pure’ and ‘enhanced’ token model in terms of the minimum

resources necessary for black hole search in higher degree networks.
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