
Emergency Connectivity in Ad-Hoc Networks

with Selfish Nodes?

George Karakostas1,?? and Euripides Markou2,? ? ?

1 Department of Computing & Software, School of Computational Engineering & Science.
McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.

2 Department of Computer Science and Biomedical Informatics,
University of Central Greece, 2-4 Papasiopoulou str., Lamia 35100, Greece.

E-mail: karakos@mcmaster.ca, emarkou@ucg.gr

Abstract. Inspired by the CONFIDANT protocol [1], we define and study a basic reputation-based
protocol in multihop wireless networks with selfish nodes. Its reputation mechanism is implemented
through the ability of any node to define a threshold of tolerance for any of its neighbors, and to cut
the connection to any of these neighbors that refuse to forward an amount of flow above that threshold.
The main question we would like to address is whether one can set the initial conditions so that the
system reaches an equilibrium state where a non-zero amount of every commodity is routed. This is
important in emergency situations, where all nodes need to be able to communicate even with a small
bandwidth. Following a standard approach, we model this protocol as a game, and we give necessary and
sufficient conditions for the existence of non-trivial Nash equilibria. Then we enhance these conditions
with extra conditions that give a set of necessary and sufficient conditions for the existence of connected
Nash equilibria. We note that it is not always necessary for all the flow originating at a node to reach
its destination at equilibrium. For example, a node may be using unsuccessful flow in order to effect
changes in a distant part of the network that will prove quite beneficial to it. We show that we can
decide in polynomial time whether there exists a (connected) equilibrium without unsuccessful flows.
In that case we calculate (in polynomial time) initial values that impose such an equilibrium on the
network. On the negative side, we prove that it is NP-hard to decide whether a connected equilibrium
exists in general (i.e., with some nodes using unsuccessful flows at equilibrium).

1 Introduction

In recent years there has been a great effort in designing robust and efficient wireless networks
of devices that take upon themselves certain network responsibilities that used to be the
responsibilities of a central network designer in traditional network design. For example,
in ad-hoc networks the topology of the network is the result of cooperation amongst the
nodes themselves: in a multihop wireless network, a successful transmission between a pair
of nodes requires the cooperation of intermediate nodes in order for the transmitted packets
to reach their destination. While this may be guaranteed in networks with a central authority
forcing the nodes to cooperate, in the absence of such an authority cooperation may not be
guaranteed. This is due to the selfishness of each node, i.e., the effort by the node to maximize
its own utility without caring about the results of its actions on the overall network-wide
outcome. For example, if battery life is a valuable resource for a node, forwarding packages
between two other nodes consumes energy that doesn’t result in any kind of pay-off for this

? A preliminary version of this paper appeared in the Proc. 8th Latin American Theoretical Informatics Symposium
(LATIN’ 08), April 2008, Rio de Janeiro, Brazil, LNCS 4957, pp. 350-361.

?? Research supported by an NSERC Discovery Grant and MITACS.
? ? ? Research supported by MITACS. This work was done during this author’s stay at the School of Computational

Engineering & Science of the McMaster University, as a postdoctoral fellow.

node, and as a result it may decide to stop cooperating in forwarding packages for others.
If this behavior prevails throughout the whole network, it may eventually result in zero
throughput for everybody, a phenomenon better known as the “Tragedy of the Commons”
[5]. To cope with this problem one can offer incentives to nodes such as rewards for their
cooperation or punishment for non-cooperation.

The two most commonly proposed forms of incentives are micro-payments, and reputation-
based mechanisms. One of the main motivation for developing them is the desire of the
network designer to not permanently punish a misbehaving node, but ‘re-socialize’ it if it
changes its uncooperative behavior.

Micro-payment schemes are based on the concept of distribution of credit to nodes, so that
nodes are compensated for their cooperation by (virtual) credit payments, that they can then
use to pay intermediate nodes for forwarding their own traffic. Hence if a node is consistently
uncooperative, it will run out of credit and will have to stop transmitting. Usually, the
distribution and/or the expenditure of credit is controlled by a central authority. Examples
of such protocols are [2, 10, 11, 3].

Reputation-based systems are based on lists that the nodes keep on the reputation of their
neighbors, i.e., the fraction of packets forwarded by them. They use this information in order
to decide how much traffic they should forward towards their neighbors. This may be decided
in a Tit-for-Tat fashion, i.e., when a node has to relay a packet on behalf of a neighbor, it
does so with the same probability with which this neighbor forwards its own packets (see [8,
9] for examples of such mechanisms). Or, the amount to forward can be decided according
to (centralized or local) ratings tables, that give the nodes an indication of the behavior
of other nodes; if a node’s rating of another node falls below a certain threshold, then the
latter cannot be trusted to forward traffic, and therefore nothing is forwarded to it by the
former, i.e., the edge connecting the two nodes is cut by the first node. An example of such a
mechanism that actually distributes the reputation information so that each node can form
its own ratings table is the CONFIDANT protocol [1]. More recent protocols [6, 7] limit the
distribution of reputation information only to one-hop neighbors.

Our results: In this work we address the connectivity issues arising in such reputation-based
systems. More specifically, we would like to study whether it is possible in such a selfish
environment to lead all nodes towards an equilibrium with good connectivity properties. In
fact, we are very ambitious: we are looking for driving them towards an equilibrium that
permits a non-zero quantity of every traffic demand to be satisfied. The reason for such
a strict requirement is the fact that in an emergency situation police, firemen, emergency
medical personnel, etc. should be able to communicate with each other even if the achieved
bandwidth is very small (but still enough for emergency signals to be able to travel through
the network). From the above, it is not at all obvious whether such a goal can be achieved,
given the fact that each network node is autonomously playing a protocol game, after it’s
been set in its initial condition. Given the game-theoretic nature of such protocols, it is only
natural to study them in terms of their (Nash) equilibrium states. Under this light, and
given the rules of the game, i.e., the protocol, the most appropriate (indeed, in some cases
the only) time a network designer can intervene in order to control the outcome is during
the setting of the initial conditions, or, equivalently, by ‘rebooting’ the protocol with new
initial values. This can be achieved by a separate broadcasting channel that all nodes are
listening (‘snooping’) in, and whose packets are of the highest priority. Obviously, this is a

2

very intruding method, and it would defy the purpose of selfishness if it were to be applied
very frequently. But one does not (hopefully) expect catastrophic emergency situations to
arise that frequently. Therefore broadcasting will not be used often.

Inspired by the CONFIDANT mechanism, we study a basic reputation-based system. The
strategy of every node consists of the amount of traffic flow it sends to its various receivers,
the routing of this flow, the amount of flow it forwards for every commodity in which it
doesn’t participate as a sender or a receiver, and a non-negative threshold value for each
outgoing edge. The latter set of values is an abstraction of the reputation mechanism: if the
amount of flow that is forwarded by node x to node y (including flow that originates at
x), but is cut by y is more than the threshold value x has for y, then x disconnects edge
(x, y). Later on, y may end up cutting flow that is less than the current threshold value of x
for (x, y), in which case (x, y) reappears. The utility for every node increases with the flow
originating at or destined for this node and reaches its destination, while decreases with the
flow sent out or forwarded by this node (because, for example, the node has to spend battery
energy to transmit).

The main drawback of this protocol is the assumption that every node has to make its
strategy known to every other node. But at the same time, this complete knowledge of the
game state gives great potential power to each node to affect parts of the network that are
very far away, even in counter-intuitive ways, e.g., by sending flow whose sole purpose is to
affect the current topology and discourage the flow of other nodes. Hence, this assumption
may make our demand for complete connectivity even harder to achieve, and it may mean
that things can be easier in a more restricted setting. For example, in a model where each
user has a limited knowledge of other users’ strategies, a user might not be able to calculate
how her utility changes when she changes her strategy. Such a user has fewer options than
in our model for a profitable strategy and the same or less power to affect distant parts of
the network.

As a first step towards achieving connectivity, we are able to characterize the complexity
of computing initial values that lead to a connected Nash equilibrium in our protocol. We
do that, by giving necessary and sufficient conditions for the existence of non-trivial Nash
equilibria. Then we enhance these conditions with extra conditions that give a set of necessary
and sufficient conditions for the existence of connected Nash equilibria. Note that it is not
always necessary for all the flow originating at a node to reach its destination at equilibrium.
As mentioned above, a node may be using such unsuccessful flow in order to effect changes in
a distant part of the network that will prove quite beneficial to it. We show that we can decide
in polynomial time the existence of a connected Nash equilibrium without unsuccessful flows,
and we can calculate (in polynomial time) initial values that impose such an equilibrium
(should it exists) on the network using linear programming. On the other hand, we prove
that it is NP-hard to decide whether a connected equilibrium exists in general (i.e., with
some nodes using unsuccessful flows at equilibrium).

Our results are derived using game-theoretic concepts, which is the standard approach for
analyzing such protocols, modeled as games. But we emphasize that, other than the assump-

3

tions mentioned above, we don’t impose any restrictions on the network topology, or any
statistical distribution on the nodes’ decisions.3

2 Model and Terminology

In this section we describe our model for the network and the protocol the nodes follow. The
set of connections that can be realized is given by a directed graph G(V,E). We emphasize
that, depending on the current state of the game, not all these edges may be present. For
every origin-destination pair (commodity) (u, v), u, v ∈ V there is a demand d(u,v) that u
wants to send to v. The flow is splittable, and u decides how to split and route this flow.
Again, the current state of the game may not allow u to send all of d(u,v), so the latter
serves more as an upper bound on the flow actually sent. We denote by Pi the set of paths
connecting the i-th origin-destination pair in G, and let P := ∪iPi.

The current state of the network, together with the nodes’ strategies are described by the
following set of variables:

• F y
(u,e,e′,v) with e, e′ ∈ E, e = (x, y), e′ = (y, z), u, v, x, y, z ∈ V and y 6= u, v: This is the

flow of commodity (u, v) that y receives through e, and forwards further through e′.
• f y(u,e,e′,v) with e, e′ ∈ E, e = (x, y), e′ = (y, z), u, v, x, y, z ∈ V and y 6= u, v: This is the

decision variable of y that sets an upper bound on the amount of flow
∑

g=(w,x)

F x
(u,g,e,v) routed

through e′ that y actually forwards through e′, i.e., F y
(u,e,e′,v) = min{f y(u,e,e′,v),

∑
g=(w,x)

F x
(u,g,e,v)

routed through e′} (notice that edge e′ can be disconnected; in that case, what is being for-
warded by y through e′ is simply lost). We emphasize that f y(u,e,e′,v) is just the y’s decision

variable that determines what y will do if there is flow from u to v which has been for-

warded from x to y and needs to be forwarded through e′ = (y, z), while
∑

g=(w,x)

F x
(u,g,e,v)

is the actual flow that comes to y from x through e. So y maintains such a variable
f y(u,e,e′,v), for every incoming edge e = (x, y) and every outgoing edge e′ = (y, z), and

every commodity (u, v).
• Oy

(u,e,v) with e ∈ E, e = (x, y), u, v, x, y ∈ V and y 6= u, v: This is an auxiliary variable,

defined as Oy
(u,e,v) =

∑
e′=(y,z)

F y
(u,e,e′,v). It is simply the total flow of commodity (u, v) coming

to y through edge e, and being forwarded by y through all its outgoing edges e′ = (y, z).
• Iy(u,e′,v) with e′ ∈ E, e′ = (y, z), u, v, y, z ∈ V and y 6= v: This is also an auxiliary variable,

defined as Iy(u,e′,v) =
∑

e=(x,y)

F y
(u,e,e′,v). It is simply the total flow of commodity (u, v) coming

to y through all its incoming edges e = (x, y), and being forwarded by y through edge e′.
Note that Iy(y,e′,v) is the flow originated at y and routed through e′ with destination v.

3 We don’t assume any kind of synchronization amongst the nodes, but we do assume that the decision variables
changes are instantaneous. Note that the game modeling the protocol is not a repeated game, and there isn’t any
notion of rounds.

4

• εyx: This auxiliary variable is defined as εyx =
∑

com.(u,v),v 6=y

(Ix(u,e,v)−O
y
(u,e,v)), i.e., as the part

of the total flow that comes to y through e and is being blocked by y.
• su(u,P,v): This is the decision variable of u that determines how much flow of commodity

(u, v) node u routes through path P (whether this flow amount eventually reaches v or
not).
• THRx(y): This is the decision variable of node x that defines an upper bound on the flow

forwarded by x and cut by y that x can tolerate before it cuts edge (x, y). We consider
edge (x, y) disconnected when εyx > 0 AND THRx(y) ≤ εyx. Hence edge (x, y) exists in
the network provided εyx = 0 OR THRx(y) > εyx.

The following definition will be used repeatedly throughout this paper:

Definition 1. An edge (x, y) is connected if εyx = 0 OR THRx(y) > εyx, and disconnected
otherwise.

Therefore, the strategy of a node x is determined by the vector (sx,THRx,f
x). At this

point we need to make the following observation4 that is important for the communication
bit complexity of the protocol: The number of the sx variables that x must decide can be as
large as the number of paths in the network, i.e., it grows exponentially on the size of the
network. But, in fact, for what follows, it is enough for every x to determine edge flows sx(x,e,y)
for all O-D pairs (x, y) and all edges e ∈ E. As is well known, edge flows may correspond
to more than one path flow patterns, and we may have many Nash equilibria with the same
edge flows but different path flows. In the following discussion, any of these patterns can
be used as the path flows interchangeably, i.e., our results are independent of the path flow
pattern and they depend only on the edge flows. This is easy to see in most cases (e.g., it is
easy to see that the same amount of flow is unsuccessful in all path patterns, so Definition 3
below can be applied to each one of them with the same results for our paper), and we
explain it a little more when we describe linear programs (LP-S) and (LP-C). Hence, every
node/player x needs to decide the values of O(nm) numbers for sx(x,e,y), O(n) numbers for

THRx(y), and O(n4) numbers for fx(u,e,e′,v), or O(n4) values overall, which is polynomial on

the size of the network n = |V |,m = |E|. For purposes of clarity, in what follows we revert to
the path variables sx as defined above, although this representation is extremely redundant.

Note that the routing of the flow node x sends out is incorporated in the values for sx.
Therefore x decides the following:

• Threshold THRx(y) ≥ 0, and hence decides whether edge (x, y) is connected or not.
• Variables εxw, by deciding fx(u,e,e′,v) which, in turn, change the flows F x

(u,e,e′,v). As a result,

x decides whether edge e = (w, x) is connected or not.
• The routing of the flow originating at x and its quantity, by deciding sx(x,P,y) for any path

P connecting x to y. But always
∑

P s
x
(x,P,y) ≤ d(x,y).

We repeat that every node sees all decision variables of all other nodes, we don’t assume any
kind of synchronization amongst the nodes, but we do assume that the decision variables
changes are instantaneous.

4 We thank an anonymous reviewer for helping to clarify this.

5

Definition of the utility function: Every node plays in a selfish way, i.e., so that its
utility (defined below) is maximized. At any time t, we denote by C−y , C

+
y , D

−
y , D

+
y the sets of

connected incoming, connected outgoing, disconnected incoming and disconnected outgoing
edges respectively, adjacent to node y. Then, for every node y its utility function is defined
as follows:

utilt(y) =
flow sent by y

and reached its
destination

+
flow received

by y
− flow forwarded

by y
−

flow sent by y
and didn’t reach
its destination

.

More specifically,

utilt(y) =
∑
e∈C+

y

Sye +
∑
e∈C−y

Ry
e −

∑
e′∈C+

y ∪D+
y

∑
u6=y,v∈G

Iy(u,e′,v)− ∑
e′∈C+

y ∪D+
y

∑
v∈G

Iy(y,e′,v) −
∑
e∈C+

y

Sye

 (1)

where

• Sye is the flow which has been sent by y (i.e. originated at y) through edge e and has
reached its destination,

• Ry
e is the flow which has been received by y through edge e,

• Iy(u,e′,v) is the flow of commodity (u, v) with y 6= v, and node y attempts to forward (or

sent, if u = y) through edge e′ (note that e′ may be disconnected).

The intuition behind this definition of utility (which is very similar to the definition used
in [1]), is that a node exchanges resource units (e.g., battery energy) for information units
(i.e., packets received or sent successfully). Our assumption is that the correspondence is one
for one. Different weighting of resources and information is a generalization left for future
work.

Throughout this work, we use the standard definition of Nash equilibria, i.e., at equilibrium,
no node gains an increase of its utility by changing its decision variables (strategy), while
the other nodes maintain their own strategies. We will focus on non-trivial equilibria.

Definition 2. A trivial equilibrium is any equilibrium with fx = 0,∀x, and with su(u,(u,v),v) =

d(u,v), ∀ commodities (u, v) s.t. (u, v) ∈ E and su(u,P,v) = 0 otherwise.

So from now on, whenever we write ‘equilibrium’ we mean ‘non-trivial equlibrium’, unless
otherwise stated. We also assume that there is always at least one demand between non-
adjacent nodes in G, since otherwise a trivial equilibrium is a connected one, and this case
is not very interesting.

Definition 3. An amount of flow with origin a node u and destination a node v routed
through a path P is successful if it reaches node v, otherwise it is unsuccessful.

6

y'

y2

y3

g'

y1

x

g1

e1
t1

t'
e'

e2

e3t2

t3

successful

successful
+

unsuccessful

unsuccessful

g2

g3

successful

successful
+

unsuccessful

unsuccessful

Fig. 1. A node x in the network. The groups of edges e′, g′ are disconnected.

3 Characterization of Nash equilibria

In this section we give necessary and sufficient conditions for the existence of an equilibrium.
Our hope will be that these conditions (probably together with additional ones) will simplify
the study of connected equilibria.

Definition 4. An unsuccessful flow Φ which has been routed through a (disconnected) edge
e is responsible for disconnecting edge e if e would be connected without Φ.

We group the (non-disconnected) incoming and outgoing edges for a node x as follows (see
Figure 1):

• group 1: these edges transfer only successful flows,
• group 2: these edges transfer successful and unsuccessful flows,
• group 3: these edges transfer only unsuccessful flows.

Lemma 1. Consider a network at a Nash equilibrium. Suppose that there is an edge e =
(x, y) which is disconnected. Then a) there is at least one unsuccessful flow Φ routed through e
(and reaches node x) which is responsible for disconnecting edge e and, b) every unsuccessful
flow routed through e (and reaches node x) is responsible for disconnecting edge e.

Proof. Since edge e = (x, y) is disconnected it holds εyx > 0. Therefore there is at least one
unsuccessful flow Φ which has been routed through e (and reaches node x). If Φ is the only
such unsuccessful flow, then obviously Φ is responsible for disconnecting e. Suppose there is
another unsuccessful flow Φ1 which has been routed through e (and reaches node x). If Φ1

is not responsible for disconnecting e, then the node u1 which sends Φ1 could stop sending
it and clearly increase its utility since nothing else changes on the network that could affect
u1’s utility. But this would mean that the network is not at a Nash equilibrium. 2

7

Theorem 1. The game is at an equilibrium if and only if for any node x the following
conditions hold:

1. εyx = 0, where g = (x, y) ∈ C+
x (i.e., node y does not cut any flow forwarded by x through

the connected edge g),
2. if there is a successful flow between nodes u,v 6= y routed through edge g = (x, y), then

THRx(y) = 0,

3. if there is no unsuccessful flow going through an edge e = (t, x), then Rx
e ≥

∑
u6=x,v

∑
g=(x,y)

F x
(u,e,g,v)

(i.e., the flow that node x receives through edge e = (t, x) is not less than the total flow
which is coming through e and x has to forward, if all this latter flow is successful),

4. for any disconnected edge g′ = (x, y′) ∈ D+
x it holds that THRx(y

′) = εy
′
x > 0, node x

does not send any flow through g′, and the (unsuccessful) flows which are responsible for
disconnecting g′ are being sent by at least two nodes, other than x,

5. let e = (t, x) be an incoming connected edge to x such that all unsuccessful flows which
pass through e, have been routed through outgoing disconnected edges g′ = (x, y′i) ∈ D+

x

of x; then:
• THRt(x) = 0,

• Rx
e ≥

∑
u6=x,v

∑
g′∈D+

x

F x
(u,e,g′,v) +

∑
u6=x,v

∑
g∈C+

x

F x
(u,e,g,v),

6. the flow that node x sends successfully through all of its (connected) outgoing edges Φ(x)
is maximized over all possible routings sx,

7. any combination of the following possible actions taken by x cannot increase its utility:
(a) disconnecting a number of edges of group 2,
(b) decreasing the unsuccessful flow that x lets go through edges of group 3,
(c) connecting edges e′ = (t′, x) ∈ D−x ,
(d) sending successful and unsuccessful flow through the outgoing edges of x,
(e) increasing thresholds

Proof. We first prove that if the game is at a Nash equilibrium then the above conditions
are true.

For the first condition, if
∑
u,v 6=y

Ix(u,g,v) = 0, i.e., if no flow is being forwarded from x to y

through edge g with destination different than y, then, of course, nothing can be cut by y

and thus εyx = 0. Now suppose that εyx > 0 when
∑
u,v 6=y

Ix(u,g,v) > 0. This means that there

is an unsuccessful flow sent by some node u to some node v through edge g, and this flow
is blocked by y. But then node u can increase its utility by not sending this flow, which
contradicts the definition of a Nash equilibrium. Therefore εyx = 0.

For the second condition, if THRx(y) > εyx = 0 when there is a successful flow Φ through g =
(x, y), then node y could increase its utility by cutting flow forwarded by x, thus increasing
εyx up to min{THRx(y)− δ, Φ}, for some δ > 0 without violating THRx(y) > εyx = 0 which
is a contradiction.

For condition (3), if Rx
e <

∑
u6=x,v

∑
g=(x,y)

F x
(u,e,g,v), then x could profit by cutting all flow coming

through e.

8

For condition (4), first we prove that x cannot send all the unsuccessful flow responsible
for disconnecting g′ by itself. Indeed, suppose that x sends all the unsuccessful flow Φ that
causes the disconnection of g′ (due to the fact that for node y′ we have THRx(y

′) ≤ εy
′
x and

εy
′
x > 0). Since the system is at a Nash equilibrium, no other node sends something through
g′ (if there was a node which was sending a flow through g′ then it would be a clear profit
to its utility to stop sending that flow). Thus x can safely connect edge g′ by not sending
the flow Φ and profit, which is a contradiction. For the same reason any node t cannot send
all by itself the unsuccessful flow Φ that disconnects g′. Thus there are at least two nodes
which send unsuccessful flows responsible for the disconnection of g′. Suppose that one of
them is x. Now if THRx(y

′) < εy
′
x then at least one of these two flows can be safely decreased

without connecting g′, a contradiction. Hence THRx(y
′) = εy

′
x > 0. But then x can decrease

it to THRx(y
′) = 0 and not send its flow, thus profiting, a contradiction. Therefore there are

at least two nodes which send unsuccessful flows responsible for disconnecting g′ and node
x is not one of them. THRx(y

′) = εy
′
x > 0 for the same reason as before.

For condition (5), if THRt(x) > 0 for some t, then node x could increase εxt , thus decreasing

ε
y′i
x for some i and at the same time decreasing THRx(y

′
i), so that THRx(y

′
i) ≤ ε

y′i
x still holds,

thus profiting, a contradiction. If Rx
e <

∑
u6=x,v

∑
g′∈D+

x

F x
(u,e,g′,v) +

∑
u6=x,v

∑
g∈C+

x

F x
(u,e,g,v) for some e

and given that THRt(x) = 0, node x could profit by increasing εxt and cutting edge e, a
contradiction.

Finally, the proof for conditions (6), (7) is straight-forward, since if they do not hold then
node x can have a course of action that increases its utility, a contradiction.

Now we prove that if the above conditions hold, then no node can increase its utility by
changing something and thus the game is at a Nash equilibrium.

For the sake of contradiction, suppose that there is a node x which can increase its utility.
This means that x succeeds to change one or a combination of the following and this yields
to an increase in its utility:

(i) increase the flow that sends successfully, or
(ii) increase the flow that receives, or
(iii) decrease the flow that forwards, or
(iv) decrease the unsuccessful flow that sends.

We will show that when a node manages to change any of the above, its utility function does
not increase, no matter what other actions it may take.

For case (i), since (6) holds, node x has to connect at least one previously disconnected
edge. Such an edge will be either adjacent to x or not. First suppose it is an adjacent edge
g′ = (x, y′). For connecting g′, node x should either increase THRx(y

′) or increase εxt of
an edge e = (t, x) through which an unsuccessful flow passes that cuts edge g′. In view of
conditions (5), (7)b, (7)d, (7)e both these cases lead to a loss for x. Another case for x is to
send an unsuccessful flow to cut an edge w which will end up (possibly after connecting
and disconnecting several edges) to cut an edge which is crossed by the unsuccessful flow
which cuts g′. This is also non-profitable because of condition (7)c, (7)d. Now consider a
disconnected edge g′ which is not adjacent to x. Either x has to send less unsuccessful flow

9

through g′, or increase an εxt of an edge e = (t, x) through which there is an unsuccessful
flow that cuts edge g′ or to send an unsuccessful flow to cut an edge w which will end up
(possibly after connecting and disconnecting several edges) to cut an edge which is crossed
by the unsuccessful flow which cuts g′. Again all these are not profitable because of condition
(7)c, (7)d, (7)b.

For case (ii), the only case in which node x could receive more flow than before is by connect-
ing a previously disconnected not-adjacent edge e′x through which there was an unsuccessful
flow with target x. For this purpose, node x has to send an unsuccessful flow to cut an edge
w which will end up (possibly after connecting and disconnecting several edges) to cut an
edge which is crossed by the unsuccessful flow which cuts e′x. This is not profitable because
of condition (7)b, (7)c, (7)d.

For case (iii), i.e., node x succeeds to forward less flow than before, we note that x could do
this either by decreasing some variables fx(u,e,g,v) > 0, where I t(u,e,v) > 0, v 6= x, or by sending
an unsuccessful flow to cut an edge w which, in turn, and possibly after connecting and
disconnecting several edges, will cut an edge crossed by the flow which x forwards.

• For the first case, and in view of conditions (1), (2), if any fx(u,e,g,v) > 0 of a successful
flow gets decreased, εxt will get increased, and edge e will be disconnected. But because
of condition (3), x’s utility will decrease. If node x tries to decrease the unsuccessful flow
that it forwards, then because of (4), (5), (7)a, (7)b this action is not profitable.
• The last remaining case for x is again not profitable because of conditions (7)a, (7)b, (7)c, (7)d.

For case (iv), condition (7)d implies that if x decreases the unsuccessful flow that was sending
then it will be a loss. 2

Theorem 1 is essentially a codification of all the conditions that happen simultaneously at
equilibrium. But showing that such a (non-trivial) equilibrium exists (or, even more, compute
it) is non-trivial. In fact, we will show that deciding the existence of an equilibrium is NP-
hard. But it turns out it is much easier to check whether there is a non-trivial equilibrium
with only successful flows; this can be reduced to the solution of a simple LP.

For every edge e = (u, v), we set d(e) equal to d(u,v) if commodity (u, v) exists, and 0
otherwise. Let D :=

∑
e∈E d(e). We will use the following notation:

• e ∈∗ P , when edge e ∈ P is not the last edge of P ,
• e ∈0 P , when edge e ∈ P is the last edge of P .

In the following LP, variables x(P) represent the amount of flow sent along path P :

max
∑
P∈P

x(P) s.t. (LP-S)∑
P :e∈∗P

x(P)−
∑

P :e∈0P

x(P) ≤ 0 ∀e ∈ E∑
P∈Pi

x(P) ≤ d(ui,vi) ∀i

x(P) ≥ 0 ∀P ∈ P

10

This linear program has an exponential number of variables, although the number of con-
straints is polynomial on the size of the input. We can replace it with an equivalent (in
terms of having exactly the same optimal solution, and feasibility) and standard edge flow

formulation that uses variables x
(ui,vi)
e for every edge e ∈ E and commodity i with O-D

pair (ui, vi) to indicate the flow of commodity i that crosses edge e. Then the first group of
constraints can be written as∑

i:v 6=vi

x
(ui,vi)
(u,v) −

∑
i:v=vi

x
(ui,vi)
(u,v) ≤ 0, ∀(u, v) ∈ E,

and the other constraints are replaced with the standard constraints of flow conservation
and demand satisfaction. Obviously, the new formulation can be solved in polynomial time;
if it is infeasible then the original formulation (LP-S) is also infeasible, otherwise its solution
can be transformed into a path flow solution x(P) of the same total demand, with only
polynomialy (on |V |, |E|) many non-zero x(P)’s. These non-zero flow paths are going to be
used below.

Theorem 2. A non-trivial equilibrium with only successful flows exists if and only if (LP-S)
has a solution x(P) with

∑
P∈P x(P) > D.

Proof. First we note that the trivial equilibrium is a solution of (LP-S) (therefore (LP-S) is
always feasible) that achieves an objective value of D. Also, note that if an origin-destination
pair (ui, vi) is connected by edge e = (ui, vi) in E, then at any equilibrium the whole demand
d(ui,vi) is routed through e, otherwise ui could have increased its utility by routing more of
this commodity. Hence, the total flow routed by a non-trivial equilibrium with only successful
flows is always greater than D.

For the ‘if’ direction, let x(P) be a solution to (LP-S). Consider an edge e = (x, y). Notice

that
∑

P :e∈∗P

x(P) =
∑
u,v,g

F y
(u,e,g,v) and

∑
P :e∈0P

x(P) = Ry
e . Then the first constraint guarantees

that
∑
u,v,g

F y
(u,e,g,v) ≤ Ry

e . We call this property (i). We will show that the user strategies

produced by the following procedure Equil 5 satisfy the theorem:

Procedure Equil
Initialize (sx, THRx, f

x) = 0, ∀x ∈ V ;
sui

(ui,P,vi)
:= x(P), ∀P ∈ Pi with x(P) > 0, ∀i;

For each commodity (ui, vi) do
TotF low(ui, vi) := 0;
For each edge e1 = (ui, x1) do

For each edge e2 = (x1, x2) do

fx1

(ui,e1,e2,vi)
:=

∑
P∈Pi:x(P)>0∧(e1,e2∈P)

sui

(ui,P,vi)
;

TotF low(ui, vi) := TotF low(ui, vi) + fx1

(ui,e1,e2,vi)
;

For each edge ej = (xj−1, xj) not incident to ui, vi do
For each edge ej+1 = (xj, xj+1) not incident to ui do
f
xj

(ui,ej ,ej+1,vi)
:= TotF low(ui, vi);

5 Note that the running time of Equil is polynomial in |V |, |E| and the number of commodities.

11

We prove that the above construction is already at equilibrium. Consider a commodity (u, v).

Notice that in any path 〈u e1→ x1
e2→ x2

e3→ · · · ek−1→ xk−1
ek→ v〉 from u to v in the network, we

have
∑

P∈P(u,v):x(P)>0∧(e1,e2∈P)

su(u,P,v) = fx1

(u,e1,e2,v)
≤ fx2

(u,e2,e3,v)
= fxi

(u,ei,ei+1,v)
= TotF low(u, v),

where 3 ≤ i ≤ k − 1. The total flow that can pass from ei, ei+1 going from u to v, is at
most fxi

(u,ei,ei+1,v)
. Even if all this flow passes also from ej, ej+1 for j > i, it will not exceed

f
xj

(u,ej ,ej+1,v)
. Therefore, if edge ej = (xj−1, xj) is already connected (THRxj−1

(xj) > ε
xj
xj−1

OR ε
xj
xj−1 = 0), it cannot get disconnected by an unsuccessful flow from u to v which has

been routed through ei, ei+1, ej, ej+1, since ε
xj
xj−1 cannot increase. This means that there is

no unsuccessful flow in the network and moreover, node u cannot send an unsuccessful flow
using any path to v, cutting an edge ei, where i > 1. We call this property (ii).

We verify that the conditions of Theorem 1 hold. Since there is no unsuccessful flow in the
network, condition (1) holds. Condition (2) has been explicitly forced in the first line of
the Procedure Equil. Conditions (4), (5) hold trivially since there is no unsuccessful flow in
the network. Condition (3) also holds because of property (i). For condition (6), since no
edge is disconnected, node u could send more flow to node v only by increasing either some

term(s) of
∑

P∈P(u,v):x(P)>0∧(e1,e2∈P)

su(u,P,v) or some su(u,P,v), where e1, e2 ∈ P and x(P) = 0. In

the first case, edge e1 would be disconnected since
∑

P∈P(u,v):x(P)>0∧(e1,e2∈P)

su(u,P,v) = fx1

(u,e1,e2,v)

and hence node u fails to send more flow to node v. In the second case, edge e1 would be
again disconnected since in that case fx1

(u,e1,e2,v)
= 0. In view of property (ii), condition (7)

becomes equivalent to ‘sending any unsuccessful flow does not increase its utility’. Because
of property (ii), the only unsuccessful flow that u can send, can cut only edge e1. But this
is clearly not profitable. Thus condition (7) also holds and the network is at equilibrium.

For the ‘only if’ direction, suppose that a (non-trivial) equilibrium with all flows being
successful exists. Set x(P) to be the amount of flow through path P ∈ Pi,∀i. Obviously, the

second constraint of (LP-S) is satisfied. Condition 3 of Theorem 1 implies that
∑
u,v,g

F y
(u,e,g,v) ≤

Ry
e , for every edge e. But

∑
u,v,g

F y
(u,e,g,v) =

∑
P :e∈∗P

x(P) and Ry
e =

∑
P :e∈0P

x(P). Therefore the

first constraint of (LP-S) holds as well. Hence, x(P) is feasible, and since the equilibrium is
non-trivial,

∑
P∈P x(P) > D holds, as explained at the beginning. 2

The solution of (LP-S) by standard techniques [4] implies the following:

Corollary 1. We can compute in polynomial time user strategies that are at equilibrium
with only successful flows, if such an equilibrium exists.

4 Connected equilibria

In this section we study the following question: given an underlying network topology along
with a set of demands between nodes, is it possible to assign values to the decision variables,
so that the game converges to a connected equilibrium, when such an equilibrium exists?

12

Recall that we call the network connected iff a non-zero amount of every commodity reaches
its destination. Therefore, if, in addition to being at equilibrium, we want the network to
be connected, we have to add to Theorem 1 the condition that for every commodity (u, v),
there is a successful non zero flow sent from u to v through a path P in the network. This
translates to the following condition for every edge e = (x, y) in path P : THRx(y) ≥ εyx =
0 AND Ix(u,e,v) > 0 (especially when y 6= v, it must hold THRx(y) = εyx = 0, as follows from

condition 2 of Theorem 1).

Theorem 3. A network is at a connected equilibrium if and only if in addition to the
Theorem 1 conditions, for every commodity (u, v), either edge (u, v) is connected or there is
a path connecting u, v, so that for every edge e = (x, y) in the path it holds that Ix(u,e,v) > 0
AND εyx = 0.

It is easy to see that there are cases in which it is impossible for a game to converge to a
connected equilibrium. For example, suppose that there is an edge e = (x, y) in the network
such that node x is neither a source nor a sink, and there is a commodity (u, v) such that
all paths between u and v pass through e. Then it is easy to see that, in any equilibrium,
there will be no flow from u to v. Indeed, suppose that there is a connected equilibrium.
Hence there should be an edge e = (t, x) in the network which carries some successful flow.
If e carries only successful flow then the condition 3 of Theorem 1 would be violated. On
the other hand if e carries successful and unsuccessful flow condition 7(a) would be violated
since x would have a profit to disconnect edge e and gain in its utility.

As mentioned in the Introduction, the proof of existence, and the computation of strategies
that lead to connected equilibria is, in general, very difficult, since we will prove in the next
section that it is an NP-hard problem. But, building on the results of the previous section,
we can prove the existence (or not) of a connected equilibrium with only successful flows in
polynomial time, and compute strategies that achieve it. Using the characterization of such
equilibria by Theorem 3, we can reduce this computation to the solution of the following
extension of (LP-S):

max w s.t. (LP-C)∑
P :e∈∗P

x(P)−
∑

P :e∈0P

x(P) ≤ 0 ∀e ∈ E∑
P∈Pi

x(P) ≤ d(ui,vi) ∀i∑
P∈Pi

x(P) ≥ w ∀i

x(P) ≥ 0 ∀P ∈ P
w ≥ 0

The polynomial time solvability of (LP-C) can be shown in the same way as for (LP-S).

Similarly to Theorem 2, we can prove the following

Theorem 4. A connected equilibrium with only successful flows exists if and only if (LP-C)
has a solution x(P), w with w > 0.

13

Again, the solution of (LP-C) by standard techniques [4] implies the following

Corollary 2. We can compute in polynomial time user strategies that induce a connected
equilibrium with only successful flows, if such an equilibrium exists.

5 NP-hardness of Existence of a Connected Nash Equilibrium

Suppose a network is given together with a set of demands. In this section we prove that it is
NP-hard to decide whether there exists a connected equilibrium, i.e., whether there exist val-
ues for the decision variables of the nodes so that the game converges to an equilibrium with
the network being connected. We prove this by showing a reduction from the satisfiability
problem (Sat).

Sketch of the reduction: Given an instance I of the Sat problem we construct (in polyno-
mial time on the number of the boolean variables) a network and a set of demands between
nodes. The basic element of the construction is the variable-subgraph (Figure 2) which corre-
sponds to a boolean variable of I and it is constructed in such a way, so that in any connected
Nash equilibrium, in exactly one of its edges there is no successful flow at all. We then show
that there is a truth assignment which satisfies an instance I of Sat if and only if there is a
Nash equilibrium in the constructed network with the network being connected (i.e., for any
demand there is a flow being delivered). We prove this by giving explicitly values to decision
variables of the nodes so that the network is connected at a Nash equilibrium. We show that
if a boolean variable A has value FALSE in the truth assignment and appears as ¬A in a
literal of I (negative literal) then the corresponding subgraph (Figure 10) is connected at a
Nash equilibrium with only successful flows. If variable A has value TRUE in the truth as-
signment and appears as A in a literal of I (positive literal) then the corresponding subgraph
(Figure 9) is connected at a Nash equilibrium with successful and unsuccessful flows.

5.1 Construction of the reduction

Let I be an instance of the Sat problem. We remind the reader that a literal L(A) in I of
the Sat problem is the appearance of the boolean variable A in its positive (A) or negative
(¬A) form. A clause C in I is a disjunction of literals and the instance I is a conjunction of
clauses.

For every variable A ∈ I we construct a variable-subgraph as shown in Figure 2. We select
numbers δ, α, λ where δ >> α >> λ > 0 and we assign demands between nodes in that
subgraph as illustrated in Figure 3.

For every clause C ∈ I we add two nodes uC , vC . We also assign a demand δ between uC
and vC . We connect these nodes with the variable-subgraphs described earlier as follows:

• If variable A appears as literal A (positive form) in clause C then we add the edges
(uC , v1) and (v2, vC) and we assign a demand δ between nodes uC , v1 (see Figure 4a).
• If variable A appears as literal ¬A (negative form) in clause C then we add the edges

(uC , v4) and (v5, vC) and we assign a demand δ between nodes uC , v4 (see Figure 4b).

14

v5

v1
v2 v3 v4

v6

v7

v8

v9

v13

v10
v11

v12

v14

Fig. 2. A variable-subgraph.

We call these subgraphs literal-subgraphs.

The above construction can be done in polynomial time on the number of the boolean
variables. An example of a clause with 3 literals and its respective construction, which we
call a clause-subgraph is shown in Figure 5. In Figure 6, an example of a boolean formula
with 3 clauses-3 variables and its respective construction is shown.

5.2 Transformation of a truth assignment

We will now see how to transform in polynomial time a solution of the Sat problem to a
solution of our problem. The general idea is the following:

• If a variable A of the Sat problem has value TRUE, then we set suitable values to
decision variables of the corresponding variable-subgraph so that to force node v2 to
forward some successful flow. To that end node v1 and node v3 send unsuccessful flows
which disconnect edge (v4, v5). In particular node v1 sends an unsuccessful flow through
nodes < v1, v2, v3, v14, v4, v5, v7, v8, v9 > to node v9 and node v3 sends an unsuccessful
flow through nodes < v3, v14, v4, v5, v7, v8, v9 > to node v9. These flows are such that if
one of them decreases, then edge (v4, v5) gets connected again. Moreover, in such a case
(i.e., should edge (v4, v5) be connected again), the flow that would pass through edge
(v4, v5) would disconnect edge (v5, v7). Because of this, node v2 would stop sending a
flow to node v9. In other words, by this technique, node v2 will be forced to forward the
unsuccessful flow from node v1 and keep edge (v1, v2) connected. We can then pass a
successful flow through edge (v1, v2), namely the flow which satisfies the demand between
nodes uc, vc which nodes correspond to the clause in which the variable A appears in its

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 δ δ

2 3δ + 4α 2δ + α

3 δ 4δ + 2α 2α 2α

4

5 δ + 2α δ 4δ + 4α

6 2δ + 3α

7 4δ + 4α

8 δ δ

9 δ + 2α

10 δ δ δ

11 δ

12 δ

13 δ

14 2α

Fig. 3. Demands for the nodes of the variable-subgraph in Figure 2. The rows contain the sources and the columns
contain the sinks. For example the box at row 3 and column 9 contains the value 2α which means that the demand
from node v3 to node v9 is 2α. Empty boxes represent zero demands between the corresponding nodes.

positive form (if there exists such a clause). In this case edge (v4, v5) is the only one in
the variable-subgraph with no successful flow at all.
• If a variable A of the Sat problem has value FALSE, then we set suitable values to

decision variables of the corresponding variable-subgraph so that there is a successful
flow routed through edge (v4, v5), namely the flow which satisfies the demand between
nodes uc, vc which nodes correspond to the clause in which the variable A appears in its
negative form (if there exists such a clause). In this case there are no unsuccessful flows in
the network and edge (v1, v2) is the only one in the variable-subgraph with no successful
flow at all.
• We then show that the network is connected (i.e., for any demand there is a flow being

delivered) and the system is at a Nash equilibrium.

We now set the values of the decision variables of the nodes of the constructed graph. We
are doing so by first setting the decision variables of the nodes of each variable-subgraph.
For simplicity, we use instead of notation vi, just the number i (i.e., i stands for node vi).
We first list the values for the nodes decision variables of a variable-subgraph GA which are
common in every variable-subgraph (no-matter whether the corresponding boolean variable
A has been assigned a value TRUE or FALSE) and then we complete the initialization for
those two cases. We only list the decision variables to which we assign non-zero values (i.e.,
for any decision variable not listed below, we assign a zero value). We assign the values as
follows:

Common values:

• Node 1: f 1
(10,(10,1),(1,2),5) = δ, s1

(<1,12>) = δ.

• Node 2: s2
(<2,3>) = 3δ + 4α, s2

(<2,3,6,5,7,8,9>) = 2δ + α.

• Node 3: f 3
(10,(2,3),(3,6),5) = δ, f 3

(1,(2,3),(3,14),9) = α, f 3
(2,(2,3),(3,6),9) = 2δ + α, s3

(<3,6>) = 4δ + 2α,

s3
(<3,6,5>) = δ, s3

(<3,14>) = 2α, s3
(<3,6,5,7,8,9>) = α.

• Node 5: f 5
(2,(6,5),(5,7),9) = 2δ+α, f 5

(3,(6,5),(5,7),9) = α, s5
(<5,7,8,9,10,1>) = δ+2α, s5

(<5,7,8,11,3>) = δ,

s5
(<5,7>) = 4δ + 4α.

16

v5

v13

v10
v11

v12

v1
v2 v3 v4

v6

uc vc

v7

v8

v9

(b)

v3

vc

v1
v2

uc

v4

v5

v7

v13

v10
v11

v12

v6

v8

v9

(a)

v14 v14

Fig. 4. In any literal-subgraph the demand between nodes uc, vc is δ. a) A positive literal-subgraph. The demand
between nodes uc, v1 is δ. b) A negative literal-subgraph. The demand between nodes uc, v4 is δ.

• Node 6: f 6
(2,(3,6),(6,5),9) = 2δ + α, f 6

(3,(3,6),(6,5),5) = δ, f 6
(3,(3,6),(6,5),9) = α, f 6

(10,(3,6),(6,5),5) = δ,

s6
(<6,5>) = 2δ + 3α.

• Node 7: f 7
(2,(5,7),(7,8),9) = 2δ+α, f 7

(3,(5,7),(7,8),9) = α, f 7
(5,(5,7),(7,8),3) = δ, f 7

(5,(5,7),(7,8),1) = δ+2α,

s7
(<7,8>) = 4δ + 4α.

• Node 8: f 8
(2,(7,8),(8,9),9) = 2δ+α, f 8

(3,(7,8),(8,9),9) = α, f 8
(5,(7,8),(8,9),1) = δ+ 2α, f 8

(5,(7,8),(8,11),3) =

δ, s8
(<8,9>) = δ, s8

(<8,11>) = δ.

• Node 9: f 9
(5,(8,9),(9,10),1) = δ + 2α, s9

(<9,10>) = δ + 2α.

• Node 10: f 10
(5,(9,10),(10,1),1) = δ + 2α, s10

(<10,1>) = δ, s10
(<10,13>) = δ.

• Node 11: f 11
(5,(8,11),(11,3),3) = δ, s11

(<11,3>) = δ.

• Node 12: f 12
(1,(1,12),(12,9),9) = δ, s12

(<12,9>) = δ.

• Node 13: f 13
(10,(10,13),(13,4),5) = δ, s13

(<13,4>) = δ.

• Node 14: f 14
(1,(3,14),(14,4),9) = α, s14

(<14,4>) = 2α.

According to whether the boolean variable A has value TRUE or FALSE we complete the
initialization as follows:

If variable A of the Sat problem has value TRUE then we complete the common values
with the values of the following decision variables.

Additional values for TRUE value transformation

• Node 1: s1
(<1,2,3,14,4,5,7,8,9>) = α, s1

(<1,12,9>) = δ − α.

• Node 2: f 2
(10,(1,2),(2,3),5) = δ, f 2

(1,(1,2),(2,3),9) = α.

• Node 3: s3
(<3,14,4,5,7,8,9>) = α.

• Node 4: THR4(5) = 2λ, f 4
(1,(14,4),(4,5),9) = α, f 4

(3,(14,4),(4,5),9) = α.

• Node 5: f 5
(3,(4,5),(5,7),9) = α− λ, f 5

(1,(4,5),(5,7),9) = α− λ.

17

uc vc

A1 ¬A2 A3

clause: (A1 ∨ ¬A2 ∨ A3)

Fig. 5. A clause C = A1 ∨ ¬A2 ∨A3 and its respective constructed clause-subgraph.

• Node 10: s10
(<10,1,2,3,6,5>) = δ.

• Node 14: f 14
(3,(3,14),(14,4),9) = α.

The above values together with the common values consist the TRUE value transforma-
tion. In this case, where the variable-subgraph corresponds to a boolean variable with value
TRUE, the flow-paths have been routed as shown in Figure 7.

Lemma 2. Consider a stage where the decision variables of the nodes of a variable-subgraph
have the values of the TRUE value transformation. Then: a) edge (v4, v5) is disconnected
and b) if one of the (unsuccessful) flows which have been routed through edge (v4, v5) decreases
then edge (v5, v7) will get disconnected.

Proof. Node v4 forwards α unsuccessful flow coming from v1 (s1
(<1,2,3,14,4,5,7,8,9>) = f 2

(1,(1,2),(2,3),9) =

f 3
(1,(2,3),(3,14),9) = f 14

(1,(3,14),(14,4),9) = f 4
(1,(14,4),(4,5),9) = α) and α unsuccessful flow coming from

v3 (s3
(<3,14,4,5,7,8,9>) = f 14

(3,(3,14),(14,4),9) = f 4
(3,(14,4),(4,5),9) = α). Node v5 allows α−λ flow from v1

(f 5
(1,(4,5),(5,7),9) = α−λ) and α−λ flow from v3 coming from edge (4, 5) (f 5

(3,(4,5),(5,7),9) = α−λ).

Therefore ε54 = 2λ (node v4 does not forward any other flow). Since THR4(5) = 2λ, we have
that THR4(5) = ε54 = 2λ. Therefore edge (v4, v5) is disconnected. If one of these two unsuc-
cessful flows gets decreased, then we will have ε54 < 2λ and ε54 < THR4(5) which means that
edge (v4, v5) will get connected. Then the other flow (α − λ) will go through edge (v5, v7).
Notice that there is already α successful flow coming from node v3 which node v7 forwards.
Since f 7

(1,(5,7),(7,8),9) = 0 and f 7
(3,(5,7),(7,8),9) = α, we will have that ε75 ≥ α − λ > 0 and since

THR5(7) = 0, we will have THR5(7) < ε75 which means that edge (v5, v7) gets disconnected.
2

If variable A of the Sat problem has value FALSE then we complete the common values
with the values of the following decision variables.

18

A boolean formula: (A1 ∨ ¬A2 ∨ A3) ∧ (¬A1 ∨ A2 ∨ A3) ∧ (A1 ∨ ¬A2 ∨ ¬A3)

uc1
vc1

A1 A2 A3

uc2

uc3vc2

vc3

Fig. 6. A boolean formula (A1 ∨ ¬A2 ∨ A3) ∧ (¬A1 ∨ A2 ∨ A3) ∧ (A1 ∨ ¬A2 ∨ ¬A3) and its respective constructed
subgraph.

Additional values for FALSE value transformation

• Node 1: s1
(<1,12,9>) = δ.

• Node 10: s10
(<10,13,4,5>) = δ.

The above values together with the common values consist the FALSE value transfor-
mation. In this case, where the variable-subgraph corresponds to a boolean variable with
value FALSE, the flow-paths have been routed as shown in Figure 8.

5.3 Analysis of the reduction

Lemma 3. In a variable-subgraph GA, in any connected equilibrium, there is exactly one
edge with no successful flow at all. This edge is either (v1, v2) or (v4, v5).

Proof. Suppose for the sake of contradiction, that there is a connected equilibrium in GA

and all edges have successful flows. This means that all edges are connected. We first show
that in this case the network has no unsuccessful flows at all: if there was a node which
was sending an unsuccessful flow then it would be clearly profitable for that node to stop
sending this unsuccessful flow since this action would not introduce other changes to the
network. Thus all edges carry only successful flows. Consider the edge (v1, v2). Node v2 does
not receive a flow since there is no demand with sink node v2. However there is a successful
flow that node v2 needs to forward. But then condition (3) of Theorem 1 does not hold for
the edge (v1, v2) which would mean that the system is not at a Nash equilibrium.

19

v2

v6

v3v1 v4

v13

v8

v9

v5

v7

v10
v11

v12

v14

Fig. 7. A variable-subgraph which corresponds to a variable with value TRUE, with routed flow-paths. Only paths
between non-adjacent nodes are shown. There are two unsuccessful flows routed through edge (v4, v5) and disconnect
it. These flows are such that if any one of them decreases then edge (v4, v5) gets connected and edge (v5, v7) gets
disconnected. Apart from those two, all other flow-paths are successful.

Thus there is at least one edge which does not carry any successful flow. It is easily checkable
that any edge apart from (v1, v2) and (v4, v5) should carry successful flow, otherwise there is
always a demand for which no flow is being delivered. Now suppose that none of the edges
(v1, v2) and (v4, v5) carry successful flow. But then no flow is being delivered for the demand
(v10, v5). 2

Lemma 4. A variable-subgraph GA where the values to its nodes’ decision variables have
been assigned according to the TRUE value transformation is at a connected Nash equilib-
rium.

Proof. We prove that if we fix the values of the decision variables as in the TRUE value
transformation then the GA is already at a connected Nash equilibrium. To that end we
verify one by one the conditions of Theorem 1.

For the first condition all we have to do is to examine the incoming connected edges of every
node:

• v1 forwards flow i) from node v10 to node v5 through edge (v10, v1) and s10
(<10,1,2,3,6,5>) =

f 1
(10,(10,1),(1,2),5) = δ,

• v2 forwards flow i) from node v10 to node v5 through edge (v1, v2) and s10
(<10,1,2,3,6,5>) =

f 2
(10,(1,2),(2,3),5) = δ, ii) from node v1 to node v9 through edge (v1, v2) and s1

(<1,2,3,14,4,5,7,8,9>) =

f 2
(1,(1,2),(2,3),9) = α,

20

v6

v3v1

v2
v4

v13

v8

v9

v5

v7

v10
v11

v12

v14

Fig. 8. A variable-subgraph which corresponds to a variable with value FALSE, with routed flow-paths. Only paths
between non-adjacent nodes are shown. All paths carry only successful flows. Although the edge (v1, v2) is not
disconnected, there is no flow going through it.

• v3 forwards flow i) from node v10 to node v5 through edge (v2, v3) and s10
(<10,1,2,3,6,5>) =

f 3
(10,(2,3),(3,6),5) = δ, ii) from node v1 to node v9 through edge (v2, v3) and s1

(<1,2,3,14,4,5,7,8,9>) =

f 3
(1,(2,3),(3,14),9) = α, iii) from node v2 to node v9 through edge (v2, v3) and s2

(<2,3,6,5,7,8,9>) =

f 3
(2,(2,3),(3,6),9) = 2δ + α,

• v14 forwards flow i) from node v1 to node v9 through edge (v3, v14) and s1
(<1,2,3,14,4,5,7,8,9>) =

f 14
(1,(3,14),(14,4),9) = α, ii) from node v3 to node v9 through edge (v3, v14) and s3

(<3,14,4,5,7,8,9>) =

f 14
(3,(3,14),(14,4),9) = α,

• v4 forwards flow i) from node v1 to node v9 through edge (v14, v4) and s1
(<1,2,3,14,4,5,7,8,9>) =

f 4
(1,(14,4),(4,5),9) = α, ii) from node v3 to node v9 through edge (v14, v4) and s3

(<3,14,4,5,7,8,9>) =

f 4
(3,(14,4),(4,5),9) = α,

• v5 forwards flow i) from node v2 to node v9 through edge (v6, v5) and s2
(<2,3,6,5,7,8,9>) =

f 5
(2,(6,5),(5,7),9) = 2δ+α, ii) from node v3 to node v9 through edge (v6, v5) and s3

(<3,6,5,7,8,9>) =

f 5
(3,(6,5),(5,7),9) = α, (notice that in view of Lemma 2 edge (v4, v5) is disconnected, so the

first condition of Theorem 1 does not apply for this edge),

• v6 forwards flow i) from node v10 to node v5 through edge (v3, v6) and s10
(<10,1,2,3,6,5>) =

f 6
(10,(3,6),(6,5),5) = δ, ii) from node v2 to node v9 through edge (v3, v6) and s2

(<2,3,6,5,7,8,9>) =

f 6
(2,(3,6),(6,5),9) = 2δ + α, iii) from node v3 to node v5 through edge (v3, v6) and s3

(<3,6,5>) =

f 6
(3,(3,6),(6,5),5) = δ, iv) from node v3 to node v9 through edge (v3, v6) and s3

(<3,6,5,7,8,9>) =

f 6
(3,(3,6),(6,5),9) = α,

21

• v7 forwards flow i) from node v2 to node v9 through edge (v5, v7) and s2
(<2,3,6,5,7,8,9>) =

f 7
(2,(5,7),(7,8),9) = 2δ+α, ii) from node v3 to node v9 through edge (v5, v7) and s3

(<3,6,5,7,8,9>) =

f 7
(3,(5,7),(7,8),9) = α (notice that in view of Lemma 2 edge (v4, v5) is disconnected, and

therefore node v7 does not receive flow from node v3 through that edge), iii) from node
v5 to node v3 through edge (v5, v7) and s5

(<5,7,8,11,3>) = f 7
(5,(5,7),(7,8),3) = δ, iv) from node

v5 to node v1 through edge (v5, v7) and s5
(<5,7,8,9,10,1>) = f 7

(5,(5,7),(7,8),1) = δ + 2α, (notice

that since edge (v4, v5) is disconnected, node v7 does not receive any flow from node v1),
• v8 forwards flow i) from node v2 to node v9 through edge (v7, v8) and s2

(<2,3,6,5,7,8,9>) =

f 8
(2,(7,8),(8,9),9) = 2δ+α, ii) from node v3 to node v9 through edge (v7, v8) and s3

(<3,6,5,7,8,9>) =

f 8
(3,(7,8),(8,9),9) = α (notice that since edge (v4, v5) is disconnected, node v8 does not receive

flow from node v3 through that edge), iii) from node v5 to node v3 through edge (v7, v8)
and s5

(<5,7,8,11,3>) = f 8
(5,(7,8),(8,11),3) = δ, iv) from node v5 to node v1 through edge (v7, v8)

and s5
(<5,7,8,9,10,1>) = f 8

(5,(7,8),(8,9),1) = δ+2α, (notice that since edge (v4, v5) is disconnected,

node v8 does not receive flow from node v1),
• v9 forwards flow from node v5 to node v1 through edge (v8, v9) and s5

(<5,7,8,9,10,1>) =

f 9
(5,(8,9),(9,10),1) = δ + 2α,

• v10 forwards flow from node v5 to node v1 through edge (v9, v10) and s5
(<5,7,8,9,10,1>) =

f 10
(5,(9,10),(10,1),1) = δ + 2α,

• v11 forwards flow from node v5 to node v3 through edge (v8, v11) and s5
(<5,7,8,11,3>) =

f 11
(5,(8,11),(11,3),3) = δ,

• v12 forwards flow from node v1 to node v9 through edge (v1, v12) and s1
(<1,12,9>) = δ−α <

f 12
(1,(1,12),(12,9),9) = δ,

• v13 does not forward any flow since node v10 does not send any flow through edge (v10, v13).

Therefore for any edge (x, y) different than (v4, v5) it holds εyx = 0. Since all thresholds apart
from THR4(5) are 0 we have that for any edge (x, y) apart from (v4, v5), THRx(y) = εyx = 0
and (x, y) is connected. Thus the first two conditions of Theorem 1 hold.

For the third condition we have:

• v1: receives δ flow from node v10 and δ + 2α flow from node v5 through edge (v10, v1),
• v2: this condition does not apply for edge (v1, v2) since there is unsuccessful flow in that

edge,
• v3: i) this condition does not apply for edge (v2, v3) since there is unsuccessful flow in that

edge, ii) receives δ flow from node v11 and δ flow from node v5 through edge (v11, v3),
• v14: i) this condition does not apply for edge (v3, v14) since there is unsuccessful flow in

that edge,
• v4: i) this condition does not apply for edge (v14, v4) since there is unsuccessful flow in

that edge, ii) receives δ flow from node v13 through edge (v13, v4),
• v5 receives i) δ flow from node v3, 2δ + 3α flow from node v6 and δ flow from node v10

through edge (v6, v5),
• v6 receives 4δ + 2α flow from node v3,
• v7 receives 4δ + 4α flow from node v5,
• v8 receives 4δ + 4α flow from node v7,
• v9 receives 2δ+α flow from node v2, α flow from node v3, and δ flow from node v8 through

edge (v8, v9), ii) δ flow from node v12 through edge (v12, v9),

22

• v10 receives δ + 2α flow from node v9 through edge (v9, v10),
• v11 receives δ flow from node v8 through edge (v8, v11),
• v12 receives δ flow from node v1 through edge (v1, v12),
• v13 receives δ flow from node v10 through edge (v10, v13),

Therefore for every edge (x, y) carrying only successful flow condition 3 of Theorem 1 holds.

For condition 4 of Theorem 1, the only disconnected edge is (v4, v5). It holds THR4(5) =
2λ > 0, node v4 does not send any flow through this edge and nodes v1, v3 send unsuccessful
flows through this edge.

For condition 5 of Theorem 1, the only edge for which the condition applies is edge (v14, v4).
Indeed, it holds that THR14(4) = 0 and node v4 receives 2α flow from node v14 which is
equal to the (unsuccessful) flow that forwards through edge (v4, v5).

For condition 6 of Theorem 1, the only demands that are not completely satisfied are between:

• v1 and v9, but in order for v1 to increase what it sends it needs to decrease the unsuccessful
flow that sends to v9.
• v3 and v9, but in order for v3 to increase what it sends it needs to decrease the unsuccessful

flow that sends to v9.

Both these cases will be taken care by condition 7d.

For condition 7 of Theorem 1 we have:

• Node v1: i) cannot send any unsuccessful flow to cut the flow received from v10 which v1

needs to forward, ii) cannot stop sending the unsuccessful flow to v9, since it will profit
2α more flow in its utility (by rerouting this flow to v9) but lose δ+ 2α flow that receives
from node v5 since edge (v5, v7) will be disconnected (see Lemma 2),
• Node v2: i) cannot send any unsuccessful flow to cut the flow received from v10 which v2

needs to forward, ii) cannot stop forward the (unsuccessful and successful) flows, since
edge (v1, v2) will get disconnected, it will profit δ + α flow but lose the 2δ + α flow that
sends to node v9 since edge (v5, v7) will be disconnected (see Lemma 2),
• Node v3: i) cannot send any unsuccessful flow to cut the flows received from v1, v2, v10

which v3 needs to forward, ii) cannot stop forward the (unsuccessful and successful) flows,
since edge (v2, v3) will get disconnected, it will profit 3δ + 4α− λ flow (by sending α− λ
flow to v9 through edge (v4, v5)) but lose 3δ + 4α flow that receives from node v2, iii)
cannot stop sending only the unsuccessful flow α to node v9 through edge (v4, v5), since
in that case edge (v5, v7) will be disconnected (see Lemma 2) and it will lose α flow that
was sending to node v9 through edge (v6, v5),
• Node v14: i) cannot send any unsuccessful flow to cut the flows received from v1, v3 which
v14 needs to forward, ii) cannot stop forward the unsuccessful flows, since edge (v3, v14)
will get disconnected, it will profit 2α flow but lose the same flow that receives from node
v3, iii) has not a profit to increase its threshold for node v4,
• Node v4: i) cannot send any flow, ii) cannot stop forward the unsuccessful flows, since

edge (v14, v4) will get disconnected, it will profit 2α flow but lose the same flow that
receives from node v14, iii) has not a profit to increase its threshold for node v5,
• Node v5: i) cannot send any unsuccessful flow to cut the flows received from v2, v3 which

needs to forward,

23

• all other nodes cannot send any unsuccessful flow to cut the flows which need to forward.

Notice also that for all demands of Figure 3 there is a flow delivered. Therefore the equilibrium
is connected. 2

Lemma 5. A variable-subgraph GA where the values to its nodes’ decision variables have
been assigned according to the FALSE value transformation is at a connected Nash equilib-
rium.

Proof. We prove that if we fix the values of the decision variables as in the FALSE value
transformation then GA is already at a connected Nash equilibrium. To that end we verify
one by one the conditions of Theorem 1.

For the first condition all we have to do is to examine the incoming edges of every node:

• v1 does not forward any flow,
• v2 does not forward any flow,
• v3 forwards flow from node v2 to node v9 through edge (v2, v3) and s2

(<2,3,6,5,7,8,9>) =

f 3
(2,(2,3),(3,6),9) = 2δ + α,

• v4 forwards flow from node v10 to node v5 through edge (v13, v4) and s10
(<10,13,4,5>) =

f 4
(10,(13,4),(4,5),5) = δ,

• v5 forwards flow i) from node v2 to node v9 through edge (v6, v5) and s2
(<2,3,6,5,7,8,9>) =

f 5
(2,(6,5),(5,7),9) = 2δ+α, ii) from node v3 to node v9 through edge (v6, v5) and s3

(<3,6,5,7,8,9>) =

f 5
(3,(6,5),(5,7),9) = α,

• v6 forwards flow i) from node v2 to node v9 through edge (v3, v6) and s2
(<2,3,6,5,7,8,9>) =

f 6
(2,(3,6),(6,5),9) = 2δ + α, ii) from node v3 to node v5 through edge (v3, v6) and s3

(<3,6,5>) =

f 6
(3,(3,6),(6,5),5) = δ, iii) from node v3 to node v9 through edge (v3, v6) and s3

(<3,6,5,7,8,9>) =

f 6
(3,(3,6),(6,5),9) = α,

• v7 forwards flow i) from node v2 to node v9 through edge (v5, v7) and s2
(<2,3,6,5,7,8,9>) =

f 7
(2,(5,7),(7,8),9) = 2δ+α, ii) from node v3 to node v9 through edge (v5, v7) and s3

(<3,6,5,7,8,9>) =

f 7
(3,(5,7),(7,8),9) = α, iii) from node v5 to node v3 through edge (v5, v7) and s5

(<5,7,8,11,3>) =

f 7
(5,(5,7),(7,8),3) = δ, iv) from node v5 to node v1 through edge (v5, v7) and s5

(<5,7,8,9,10,1>) =

f 7
(5,(5,7),(7,8),1) = δ + 2α,

• v8 forwards flow i) from node v2 to node v9 through edge (v7, v8) and s2
(<2,3,6,5,7,8,9>) =

f 8
(2,(7,8),(8,9),9) = 2δ+α, ii) from node v3 to node v9 through edge (v7, v8) and s3

(<3,6,5,7,8,9>) =

f 8
(3,(7,8),(8,9),9) = α, iii) from node v5 to node v3 through edge (v7, v8) and s5

(<5,7,8,11,3>) =

f 8
(5,(7,8),(8,11),3) = δ, iv) from node v5 to node v1 through edge (v7, v8) and s5

(<5,7,8,9,10,1>) =

f 8
(5,(7,8),(8,9),1) = δ + 2α,

• v9 forwards flow from node v5 to node v1 through edge (v8, v9) and s5
(<5,7,8,9,10,1>) =

f 9
(5,(8,9),(9,10),1) = δ + 2α,

• v10 forwards flow from node v5 to node v1 through edge (v9, v10) and s5
(<5,7,8,9,10,1>) =

f 10
(5,(9,10),(10,1),1) = δ + 2α,

• v11 forwards flow from node v5 to node v3 through edge (v8, v11) and s5
(<5,7,8,11,3>) =

f 11
(5,(8,11),(11,3),3) = δ,

24

• v12 forwards flow from node v1 to node v9 through edge (v1, v12) and s1
(<1,12,9>) = f 12

(1,(1,12),(12,9),9) =
δ,
• v13 forwards flow from node v10 to node v5 through edge (v10, v13) and s10

(<10,13,4,5>) =

f 13
(10,(10,13),(13,4),5) = δ,

Therefore for any edge (x, y) it holds εyx = 0.

For the second condition of the Theorem 1, all thresholds are 0.

For the third condition we have:

• v1: receives δ flow from node v10 and δ + 2α flow from node v5 through edge (v10, v1),
• v2: does not receive any flow,
• v3: receives i) 3δ + 3α flow from node v2 through edge (v2, v3), ii) δ flow from node v11

and δ flow from node v5 through edge (v11, v3),
• v14: receives 2α flow from node v3 through edge (v3, v14),
• v4: receives i) 2α flow from node v14 through edge (v14, v4), ii) δ flow from node v13

through edge (v13, v4),
• v5: receives i) δ flow from node v3, 2δ + 3α flow from node v6, through edge (v6, v5), ii) δ

flow from node v10 through edge (v4, v5),
• v6: receives 4δ + 2α flow from node v3 through edge (v3, v6),
• v7: receives 4δ + 4α flow from node v5 through edge (v5, v7),
• v8: receives 4δ + 4α flow from node v7 through edge (v7, v8),
• v9: receives i) 2δ+α flow from node v2, α flow from node v3, δ flow from node v8 through

edge (v8, v9), ii) δ flow from node v1 through edge (v12, v9),
• v10 receives δ + 2α flow from node v9 through edge (v9, v10),
• v11 receives δ flow from node v8 through edge (v8, v11),
• v12 receives δ flow from node v1 through edge (v1, v12),
• v13 receives δ flow from node v10 through edge (v10, v13),

Therefore condition 3 of Theorem 1 holds in every edge.

Conditions 4, 5 of Theorem 1 do not apply here since there are no disconnected edges and
unsuccessful flows.

For condition 6 of Theorem 1, the only demand which has not been completely satisfied is
between nodes v3 and v9. However node v3 cannot send more flow than α by any path.

For condition 7 of Theorem 1, since there are no disconnected edges only 7d applies here.
We have:

• Node v1 does not have a profit to send any unsuccessful flow,
• Node v2 does not have a profit to send any unsuccessful flow,
• Node v3 cannot send any unsuccessful flow to cut the flow received from v2 which v3

needs to forward,
• Node v14 does not have a profit to send any unsuccessful flow,
• Node v4 cannot send any flow,
• Node v5 cannot send any unsuccessful flow to cut the flows received from v2, v3 which v5

needs to forward,

25

• all other nodes cannot send any unsuccessful flow to cut the flows which they need to
forward.

Notice also that for all demands of Figure 3 there is a flow delivered. Therefore the equilibrium
is connected. 2

Lemma 6. If the instance I of the Sat problem is satisfiable then the constructed network
has a connected Nash equilibrium.

Proof. Let Φ be a truth assignment which satisfies I. Let m be the maximum number of
clauses satisfied by the same literal in Φ and let k be the maximum number of literals which
satisfy the same clause. Consider a variable-subgraph GA which corresponds to a boolean
variable A together with the nodes and edges which correspond to the clauses Bi that have
been satisfied by A in Φ.

If A has value TRUE in the satisfying truth assignment Φ then it must appear as a positive
literal in every Bi and therefore nodes ubi and nodes vbi which correspond to those clauses
Bi are connected with GA through edges (ubi , v1) and (v2, vbi) respectively. The remaining
clauses Cj (if any) in which A appears as a negative literal correspond to nodes ucj and nodes
vcj that are connected with GA through edges (ucj , v4) and (v5, vcj) respectively. We show
that the enhanced subgraph (i.e., the subgraph consisting of GA together with the nodes
ubi , vbi and the edges that connect those nodes with GA) has a connected Nash equilibrium.
We assign values to the decision variables according to the TRUE value transformation and
we additionally set sub

(<ub,1,2,vb>) = f 1
(ub,(ub,1),(1,2),vb)

= f 2
(ub,(1,2),(2,vb),vb)

= δ
mk

, ∀b among bi. We

show that in view of Lemma 4 the system is at a connected Nash equilibrium. We verify
that the conditions of Theorem 1 still hold.

• For the first condition of Theorem 1 the differences are:
• v1 additionally forwards flow from each node ub among ubi to one node vb among vbi

through edge (ub, v1) and sub

(<ub,1,2,vb>) = f 1
(ub,(ub,1),(1,2),vb)

= δ
mk

,
• v2 additionally forwards flow from each node ub among ubi to one node vb among vbi

through edge (v1, v2) and sub

(<ub,1,2,vb>) = f 2
(ub,(1,2),(2,vb),vb)

= δ
mk

,
Therefore the first condition still holds.
• For the second condition there is no difference.
• For the third condition the difference is that v1 additionally receives δ

mk
flow from each

node ub among ubi through edge (ub, v1). Hence the condition still holds.
• For conditions 4, 5 there is no difference.
• For condition 6 of Theorem 1, the demand between each node ub among ubi and one node
vb among vbi , probably could not be completely satisfied. However node ub cannot send
more flow by any path. Thus this condition also holds.
• For condition 7 of Theorem 1, i) nodes v1, v2 cannot send any unsuccessful flow to cut

the new flow from nodes ubi which should forward, ii) node ub among nodes ubi does not
have a profit to send any unsuccessful flow and iii) node v2 still does not have a profit
to disconnect edge (v1, v2), since in that case it could profit at most δ flow than before
the introduction of nodes ubi raising the total to a 2δ + α flow (see the second bullet in
the paragraph for the condition 1 in the proof of Lemma 4) but still losing the same flow
that was sending to node v9 (see the second bullet in the paragraph for the condition 7
in the proof of Lemma 4). Hence this condition also holds.

26

v2

v6

v3

vc

v1

uc

v4

v13

v8

v9

v5

v7

v10
v11

v12

v14

Fig. 9. A positive-literal-subgraph which corresponds to a variable with value TRUE, with routed flow-paths.

Therefore the system is at a Nash equilibrium. Notice that nodes ucj , vcj cannot distract
this equilibrium since f 4

(uc,(uc,4),(4,5),vc)
= 0, ∀c among cj and therefore the subgraph including

those nodes is still at a Nash equilibrium. Moreover all demands between nodes of GA and
all demands between a node ub among nodes ubi and the respected node vb among nodes vbi
are satisfied (i.e., there is a flow delivered). The situation is shown in Figure 9.

If A has value FALSE in the satisfying truth assignment Φ then it must appear as a negative
literal in every Bi and therefore nodes ubi and nodes vbi which correspond to those clauses
Bi are connected with GA through edges (ubi , v4) and (v5, vbi) respectively. The remaining
clauses Cj (if any) in which A appears as a positive literal correspond to nodes ucj and nodes
vcj that are connected with GA through edges (ucj , v1) and (v2, vcj) respectively. We show
that the enhanced subgraph (i.e., the subgraph consisting of GA together with the nodes ubi ,
vbi and the edges that connect those nodes with GA) has a connected Nash equilibrium. We
assign values to the nodes decision variables according to the FALSE value transformation
and we additionally set sub

(<ub,4,5,vb>) = f 4
(ub,(ub,4),(4,5),vb)

= f 5
(ub,(4,5),(5,vb),vb)

= δ
mk

, ∀b among bi.

We show that in view of Lemma 5 the system is at a connected Nash equilibrium. We verify
that the conditions of Theorem 1 still hold.

• For the first condition of Theorem 1 the differences are:
• v4 additionally forwards flow from each node ub among ubi to one node vb among vbi

through edge (ub, v4) and sub

(<ub,4,5,vb>) = f 4
(ub,(ub,4),(4,5),vb)

= δ
mk

,
• v5 additionally forwards flow from each node ub among ubi to one node vb among vbi

through edge (v4, v5) and sub

(<ub,4,5,vb>) = f 5
(ub,(4,5),(5,vb),vb)

= δ
mk

,
Therefore the first condition still holds.
• For the second condition there is no difference.
• For the third condition the differences are: i) Node v4 additionally receives δ

mk
flow from

each node ub among ubi through edge (ub, v4) which is equal to what additionally forwards
through that edge. ii) Node v5 additionally forwards δ

mk
flow from each node ub among

ubi through edge (v4, v5) which raises the total flow which needs to forward through edge

27

vc

uc

v6

v3v1

v2
v4

v13

v8

v9

v5

v7

v10
v11

v12

v14

Fig. 10. A negative-literal-subgraph which corresponds to a variable with value FALSE, with routed flow-paths.

(v4, v5) to at most δ. But it also receives a flow δ from node v10 through this edge (see
the fifth bullet in the paragraph for the condition 3 in the proof of Lemma 5). Hence the
condition still holds.
• For conditions 4, 5 there is no difference.
• For condition 6 of Theorem 1, the demand between each node ub among ubi and one node
vb among vbi , probably could not be completely satisfied. However node ub cannot send
more flow by any path. Thus this condition also holds.
• For condition 7 of Theorem 1, i) nodes v4, v5 cannot send any unsuccessful flow to cut

the new flow from nodes ubi which should forward, and ii) node ub among nodes ubi does
not have a profit to send any unsuccessful flow. Hence this condition also holds.

Therefore the system is at a Nash equilibrium. Notice that nodes ucj , vcj cannot distract
this equilibrium since f 1

(uc,(uc,1),(1,2),vc)
= 0, ∀c among cj and therefore the subgraph including

those nodes is still at a Nash equilibrium. Moreover for every demand between nodes of GA

and for every demand between a node ub among nodes ubi and the respected node vb among
nodes vbi there is a flow delivered. The situation is shown in Figure 10.

Notice that there is no demand that could be satisfied by a flow-path routed through edges
of two different literal-subgraphs. Hence since each literal-subgraph is at a Nash equilibrium,
the whole network is at a Nash equilibrium. Moreover all additional demands between nodes
that correspond to clauses are satisfied since each such pair of nodes has to appear as ub, vb
connected to some variable-subgraph GA, namely this GA for which the boolean variable A
satisfies clause b. Therefore the constructed network is at a connected Nash equilibrium. 2

Lemma 7. Let I be an instance of the Sat problem. If the constructed π(I) instance of
the network game has a connected Nash equilibrium then instance I of the Sat problem is
satisfiable.

Proof. Suppose that the constructed π(I) instance of the network game has a connected
equilibrium. This means that for every clause-subgraph represented by a demand between

28

nodes uc, vc there is at least one literal-subgraph in which there is a flow delivered for this
demand (i.e., there is a non-zero successful flow from uc to vc routed through an edge of that
literal-subgraph). If the flow delivered for this demand has been routed through an edge of
a positive-literal subgraph then we set the value of the corresponding boolean variable to be
TRUE. If the flow delivered has been routed through an edge of a negative-literal subgraph
then we set the value of the corresponding boolean variable to be FALSE. If at the end of this
procedure there are still boolean variables with no value assigned then we assign any value to
them. We show now that this is a consistent truth assignment. For the sake of contradiction,
suppose that during this truth assignment, there is a boolean variable in which both values
TRUE and FALSE have been assigned. This would mean that there is a literal-subgraph
in which a demand between nodes uc1 , vc1 (representing clause C1) has been satisfied (i.e.,
there is a flow delivered) while the subgraph serves as a positive-literal-subgraph (i.e., the flow
from uc1 to vc1 has been routed through edge (v1, v2) of the literal-subgraph) and at the same
time there is another demand between nodes uc2 , vc2 (representing clause C2) which has been
satisfied while the subgraph serves as a negative-literal-subgraph (i.e., the flow from uc2 to
vc2 has been routed through edge (v4, v5) of the literal-subgraph). But this would mean that
in the corresponding variable-subgraph, both edges (v1, v2) and (v4, v5) have successful flows.
But in view of Lemma 3, such a stage in a variable-subgraph cannot be a Nash equilibrium.
Hence the truth assignment is consistent and satisfies the boolean formula. 2

From Lemmas 6, 7 we get the following theorem:

Theorem 5. Given a network and a set of demands between nodes, it is NP-hard to decide
whether there exist values for the decision variables of the nodes so that the game converges
to a connected Nash equilibrium.

6 Conclusion

The question of inducing Nash equilibria with specific attributes is a very general one, and
applies to any protocol. In this work we study the property of connectivity, but other nat-
ural goals are the maximization of total utility, the maximization of the minimum demand
satisfied (similar to concurrent multicommodity flow problems), the maximization of total
bandwidth etc. We focused on a basic reputation-based model for ad-hoc networks, but the
achievement of most of these goals remains open for this model as well. On the other hand,
we were able to characterize the Nash equilibria for it in a way that allowed us to study
connectivity properties in a very general setting, i.e., for general topologies and multiple
commodities. We would like to combine these properties with additional ones, e.g., maxi-
mization of the minimum demand. This would involve network design decisions at the level of
setting-up the topology, since there are simple examples with throughput (i.e. the minimum
(over all commodities) fraction of satisfied demand) equal to dmin

(k−1)dmax
, where dmin, dmax are

the minimum, maximum demands respectively, and k is the number of commodities. Hence,
a natural extension of our results would be to study these extra network design decisions
when the installation of every new edge incurs a cost. Another natural extension would be
the study of a minimal subset of nodes whose setting of initial values induces an equilibrium
with the desired properties. Note that in our results we set the initial values for all nodes,
thus inducing an equilibrium ‘in one shot’.

29

Acknowledgements

We would like to thank the anonymous reviewer who pointed out that our results hold even
when the nodes decide on (and then communicate) their edge flows, instead of deciding their
path flows, as described in Section 2.

References

1. S. Buchegger and J.-Y. Le Boudec. Performance Analysis of the CONFIDANT Protocol: Cooperation Of Nodes
Fairness In Dynamic Ad-hoc NeTworks. In Proceedings of MOBIHOC02, pp. 226–236, 2002.

2. L. Buttyan and J.-P. Hubaux. Stimulating Cooperation in Self-Organizing Mobile Ad Hoc Networks. In Pro-
ceedings ACM/Kluwer Mobile Networks and Applications, vol. 8(5), pp. 579–592, 2003.

3. S. Eidenbenz, G. Resta, and P. Santi. COMMIT: a sender-centric truthful and energy-efficient routing protocol
for ad hoc networks with selfish nodes. In Proceedings of 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2005.

4. M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization. Springer
Verlag, Berlin 1993.

5. G. Hardin. The Tragedy of the Commons. Science, Vol. 162, No. 3859, pp. 1243–1248, December 1968.
6. Q. He, D. Wu, and P. Khosla. SORI: A Secure and Objective Reputation-based Incentive Scheme for Ad-hoc

Networks. In Proceedings of IEEE Wireless Communications and Networking Conference (WCNC2004), pp.
825–830, 2004.

7. R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Sustaining Cooperation in Multihop Wireless Networks.
In Proceedings of Second USENIX Symposium on Networked System Design and Implementation (NSDI’05), pp.
231–244, 2005.

8. F. Milan, J. J. Jaramillo, and R. Srikant. Achieving cooperation in multihop wireless networks of selfish nodes.
In Proceedings of the 2006 workshop on Game theory for communications and networks (GameNets), 2006.

9. V. Srinivasan, P. Nuggehalli, C.-F. Chiasserini, and R. Rao. Cooperation in wireless ad-hoc networks. In
Proceedings of IEEE INFOCOM 03, pp. 808–817, 2003.

10. S. Zhong, J. Chen, and Y. R. Yang. Sprite: A simple, Cheat-proof, Credit-based System for Mobile Ad-hoc
Networks. In Proceedings of IEEE INFOCOM03, pp. 1987–1997, 2003.

11. S. Zhong, L. E. Li, Y. G. Liu, and Y. R. Yang. On designing incentive-compatible routing and forwarding
protocols in wireless ad-hoc networks: an integrated approach using game theoretic and cryptographic techniques.
In Wireless Networks, Vol. 13(6), pp. 799–816, 2007.

30

