
Efficient exploration of faulty trees ∗

Euripides Markou †‡ Andrzej Pelc †§

Abstract

We consider the problem of exploration of trees, some of whose edges are faulty. A
robot, situated in a starting node and unaware of the location of faults, has to explore
the connected fault-free component of this node by visiting all its nodes. The cost of
the exploration is the number of edge traversals. For a given tree and given starting
node, the overhead of an exploration algorithm is the worst-case ratio (taken over all
fault configurations) of its cost to the cost of an optimal algorithm which knows where
faults are situated. An algorithm, for a given tree and given starting node, is called
perfectly competitive if its overhead is the smallest among all exploration algorithms not
knowing the location of faults. We design a perfectly competitive exploration algorithm
for any line, and an exploration algorithm for any tree, whose overhead is at most 9/8
larger than that of a perfectly competitive algorithm. Both our algorithms are fairly
natural and the total time of local computations used during exploration is linear in
the size of the explored tree. Our main contribution is the analysis of performance
of these algorithms, showing that natural exploration strategies perform well in faulty
trees.

Keywords: algorithm, exploration, robot, tree

∗A preliminary version of this paper appeared in the Proc. 15th Australasian Workshop on Combinatorial
Algorithms (AWOCA 2004), 52-63.

†Département d’informatique, Université du Québec en Outaouais, Gatineau, Québec J8X

3X7, Canada. E-mail: {evripidi, pelc}@uqo.ca
‡This work was done during this author’s stay at the Research Chair in Distributed Computing of the

Université du Québec en Outaouais, as a postdoctoral fellow.
§Research supported in part by NSERC grant OGP 0008136 and by the Research Chair in Distributed

Computing of the Université du Québec en Outaouais.

1



1 Introduction

We consider exploration of faulty trees by a mobile agent, called robot. The robot is initially
situated in a starting node v of a tree T = (V, E). It has a faithful map of the tree with
node and edge labels. Thus the robot knows which port at a node leads to which neighbor.
Moreover, it knows the starting node. However, some of the edges of the tree are faulty.
The robot does not know a priori the location of faults nor their number. When reaching a
node for the first time, the robot discovers faulty edges incident to this node. A faulty edge
prevents the robot from traversing it. Hence faults disconnect the tree and define a connected
fault-free component C containing the starting node. The task of the robot is to explore C
by visiting all its nodes (and hence traversing all its edges). Exploration is finished when
the last node of C is visited. The set of faulty edges F ⊂ E is called a fault configuration.
For a given tree T , starting node v, and fault configuration F , the cost C(A, T, v, F ) of an
exploration algorithm A is the number of edge traversals it performs when exploring the
fault-free component C containing v and corresponding to F . A robot that would know F ,
and hence would know the component C, has a simple exploration algorithm of minimum
cost: perform a depth-first search traversal of the subtree C, which ends in the node farthest
from v. The cost of this optimal exploration is 2n − h, where n is the number of edges of C
and h is the height of C. Call this optimal cost opt(T, v, F ).

Now consider an exploration algorithm A for a given tree T and starting node v, that does

not know F , as supposed in our setting. A natural measure of performance of such an
algorithm is the worst-case ratio between its cost and the optimal cost, where the worst case
is taken over all fault configurations F . This number maxF⊂E

C(A,T,v,F )
opt(T,v,F )

is called the overhead

of A, and is denoted OA,T,v. This measure has a similar flavor to the competitive ratio of
on-line algorithms. It measures the penalty incurred by the algorithm, due to some lack of
knowledge. In the case of on-line algorithms, the knowledge concerns future events, which
are known to an off-line algorithm (serving as a benchmark) but not to an on-line algorithm.
In our case, knowledge concerns the fault configuration, known to an optimal algorithm
(serving as a benchmark) but not to the exploration algorithms we want to design.

Given a tree T and a starting node v, an exploration algorithm (not knowing the fault config-
uration) is called perfectly competitive, if it has the smallest overhead among all exploration
algorithms working under this scenario. Our aim is to construct exploration algorithms with
small overhead: either perfectly competitive algorithms, or ones whose overhead closely
approximates the smallest possible overhead.

The following remark will be useful for proving bounds on overhead of exploration algorithms.
Suppose that the robot, at some point of the exploration, is at node w, then moves along
an already explored edge e incident to w, and immediately returns to w. For any fault
configuration, an algorithm causing such a pair of moves has cost strictly larger than the
algorithm that skips these two moves. Hence, we restrict attention to exploration algorithms
that never perform such returns. We call them regular.

2



1.1 Related work

Our work belongs to a large area of research on exploration and navigation problems for
robots in an unknown environment, the unknown ingredient being the fault configuration
in our case. Such problems have been extensively studied in the literature (cf. the survey
[23]). There are two principal ways of modeling the explored environment. In one of them
a geometric setting is assumed, e.g., unknown terrain with convex obstacles [7], or room
with polygonal [10] or rectangular [3] obstacles. Another way is to represent the unknown
environment as we do, i.e., as a graph, assuming that the robot may only move along its
edges. The graph model can be further specified in two different ways. In [1, 4, 5, 12] the
robot explores strongly connected directed graphs and it can move only in the direction from
head to tail of an edge, not vice-versa. In [2, 8, 19, 21, 22] the explored graph is undirected
and the robot can traverse edges in both directions. The efficiency measure adopted in most
papers dealing with exploration of graphs is the cost of completing this task, measured by the
number of edge traversals by the robot. In some papers, additional restrictions on the moves
of the robot are imposed. It is assumed that the robot has either a restricted tank [2, 8],
forcing it to periodically return to the base for refueling, or that it is tethered, i.e., attached
to the base by a rope or cable of restricted length [19]. Another direction of research concerns
exploration of anonymous graphs. In this case it is impossible to explore arbitrary graphs
and stop after exploration, if no marking of nodes is allowed. Hence the scenario adopted in
[4, 5] is to allow pebbles which the robot can drop on nodes to recognize already visited ones,
and then remove them and drop them in other places. The authors concentrate attention on
the minimum number of pebbles allowing efficient exploration of arbitrary directed graphs.
Exploring anonymous graphs without the possibility of marking nodes (and thus possibly
without stopping) is investigated, e.g., in [14, 20]. The authors concentrate attention not on
the cost of exploration but on the minimum amount of memory sufficient to carry out this
task. Exploration of anonymous graphs is also considered in [11, 17, 18].

Our problem belongs to the domain of fault-tolerant graph exploration whose other aspects
were studied, e.g., in [15, 16, 9], in the context of searching for a black hole in a network.
A black hole is a harmful process residing at a node and destroying all agents visiting it.
The goal is then to locate a black hole using many agents, while keeping at least one agent
surviving.

A measure of performance of exploration algorithms, similar to the competitive ratio, and
thus to our notion of overhead, has been used, e.g., in [13], where the authors study ex-
ploration of unknown graphs and graphs for which only an unoriented map is available. In
their case, the benchmark was the performance of an algorithm having full knowledge of the
graph. On the other hand, in [22], the authors studied the problem of fast broadcasting in
faulty trees. As in our setting, tree edges were affected by faults with unknown locations
but, instead of exploring, the goal was to broadcast information in the fault-free component
of the source, as fast as possible, assuming that each informed node can send information
only to one neighbor at a time. Again, overhead was used as measure of performance.

3



1.2 Our results

Our goal is to design exploration algorithms for trees, with small overhead. We have two
main results.

• For any line (simple path), and any starting node, we design a perfectly competitive
exploration algorithm. It turns out that such an algorithm makes at most two changes
of direction during exploration. Its behavior and its overhead depend only on the
distance between the starting node and the closer endpoint of the line.

• For an arbitrary tree and arbitrary starting node, we design an exploration algorithm
whose overhead is at most 9/8 times larger than the overhead of a perfectly competitive
algorithm. This can be considered as an approximation algorithm with ratio 9/8.

Both our algorithms are fairly natural and the total time of local computations used during
exploration is linear in the size of the explored tree. Our main contribution is in the analysis
of performance of these algorithms, showing that natural exploration strategies perform well
in faulty trees.

2 Exploration of lines

In this section we construct a perfectly competitive exploration algorithm for lines. A line
is a graph L = (V, E), where V = {v0, ..., vn} and E = {[vi, vi+1] : i = 0, 1, ..., n− 1}. v0 and
vn are called endpoints of the line. The starting node is denoted by v, a and b are distances
between v and the endpoints of the line, with a ≤ b. The endpoint at distance a from v is
called the right endpoint and that at distance b – the left endpoint (in case of equality the
choice is arbitrary but fixed). Hence the direction right of the starting node means that of
the closer endpoint. We assume b > 0, otherwise the line consists of one node. Without loss
of generality we may restrict attention to fault configurations in which there is at most one
fault at each side of the starting node. Throughout the section, the line L and the starting
node v are fixed, hence, for any exploration algorithm A and any fault configuration F ,
we write C(A, F ) instead of C(A, L, v, F ), opt(F ) instead of opt(L, v, F ), and O(A) instead
of OA,L,v. Since L and v are known to the exploration algorithm, integers a and b can be
considered as its input. Let r be the distance between the starting node and the fault in the
right direction (r = a if there is no fault to the right of v). Let l be the distance between the
starting node and the fault in the left direction (l = b if there is no fault to the left of v).

In the description of the following procedure GO-LEFT-AND-RETURN we will use the
elementary subroutine GO-FIRM in a direction (left or right) which means: go until a fault
or an endpoint is met.

The following exploration algorithm will be proved perfectly competitive. If there is no fault
incident to the starting node (otherwise exploration is trivial) the behavior of the algorithm
depends on the distance a between the starting node v and the closer endpoint. If a ≤ 3, the

4



Procedure GO-LEFT-AND-RETURN

go left one step
if a fault is met then

GO-FIRM right, STOP
else

GO-FIRM right, GO-FIRM left, STOP
end if

algorithm performs a depth-first search exploration starting right of v. If 4 ≤ a ≤ 16, the
algorithm goes one step to the left, returns and performs a depth-first search exploration.
Finally, if a > 16, the algorithm goes two steps to the left (if possible), returns and performs
a depth-first search exploration. The formal description is given below.

Algorithm Line

if there is a fault incident to the starting node then

GO-FIRM in the opposite direction and STOP
else

if a ≤ 3 then

GO-FIRM right, GO-FIRM left, STOP
end if

if 4 ≤ a ≤ 16 then

GO-LEFT-AND-RETURN
end if

if a > 16 then

go left one step
if a fault is met then

GO-FIRM right, STOP
else

GO-LEFT-AND-RETURN
end if

end if

end if

Remark. During the execution of Algorithm Line, local computation time used at each
node is constant, hence the running time of the algorithm is linear in the size of the line.

Proposition 2.1 The overhead of Algorithm Line is:

• 1, when a = 0 or a = 1

• 2a+1
a+2

, when 2 ≤ a ≤ 3

• 2a+4
a+4

, when 4 ≤ a ≤ 16

• 9
5
, when 17 ≤ a ≤ 19

5



a
l r

X X

X X

l r

l r

1

2

(i) (ii)

(iii)

b b a

b a

X X

Figure 1: Behavior of Algorithm Line for different values of a (faulty edges marked with X)

• 2a+7
a+6

, when a ≥ 20

Proof. Consider a fault configuration F . Denote Algorithm Line by A. If r = 0 or l = 0
then C(A, F ) = opt(F ). Otherwise, consider the following cases:

1 ≤ a ≤ 3. In this case Algorithm Line behaves as in Figure 1(i). Let F be the fault
configuration shown in this figure. C(A, F ) = 2r + l and opt(F ) = min{2r + l, 2l + r}. If

r ≤ l then opt(F ) = 2r + l = C(A, F ). If r > l then C(A,F )
opt(F )

= 2r+l
2l+r

which is maximized for

l = 1 and r = a. Thus O(A) = 2a+1
a+2

in this case. In particular, O(A) = 1 for a = 1.

4 ≤ a ≤ 16. In this case Algorithm Line behaves as in Figure 1(ii). Let F be the fault
configuration shown in this figure. If l = 1 then C(A, F ) = 2+r = opt(F ). If l > 1 and r ≤ l

then C(A,F )
opt(F )

= 2+2r+l
2r+l

, which is maximized for l = 2, r = 1. So C(A,F )
opt(F )

≤ 3
2
. If l > 1 and r > l

then C(A,F )
opt(F )

= 2+2r+l
2l+r

, which is maximized for l = 2, r = a. So C(A,F )
opt(F )

≤ 2a+4
a+4

. Since 2a+4
a+4

≥ 3
2
,

when a ≥ 4, it follows that O(A) = 2a+4
a+4

in this case.

17 ≤ a ≤ 19. In this case Algorithm Line behaves as in Figure 1(iii). Let F be the fault
configuration shown in this figure. If l = 1 then C(A, F ) = 2 + r = opt(F ). If l = 2 then
C(A,F )
opt(F )

= 4+r
min{4+r,2r+2}

which is maximized for r = 1. So C(A,F )
opt(F )

≤ 5
4
. If l > 2 and r ≤ l then

C(A,F )
opt(F )

= 4+2r+l
2r+l

, which is maximized for r = 1, l = 3. So C(A,F )
opt(F )

≤ 9
5
. If l > 2 and r > l then

C(A,F )
opt(F )

= 4+2r+l
2l+r

, which is maximized for l = 3, r = a. So C(A,F )
opt(F )

≤ 2a+7
a+6

. Since 9
5
≥ 2a+7

a+6
,

when a ≤ 19 and 9
5

> 5
4
, it follows that O(A) = 9

5
in this case.

a ≥ 20. In this case Algorithm Line behaves as before but now 2a+7
a+6

≥ 9
5
. Thus O(A) = 2a+7

a+6

in this case. 2

We now show that Algorithm Line has the smallest overhead among all exploration algo-
rithms for the line, not knowing the fault configuration. We denote by Ak the class of

6



X

321

211

X X

1

X ab

(i)

(iii)

21

X

(v)

XX

1 321

X

(iv)

X

1 21

(vi)

(ii)

ab

ab

ab

ab

b a

Figure 2: Behavior of algorithms of class A0 (i), A1 with step 1 (ii, iii) and A1 with step 2
(iv, v, vi) (faulty edges marked with X)

exploration algorithms for the line which do initially k returns, assuming that no fault or
endpoint is encountered before the first k returns, then GO-FIRM, return and GO-FIRM.
Any regular exploration algorithm for the line is in one of the classes Ak. An algorithm of
class A1 is called an i-step algorithm, if it goes i steps before the first return, unless a fault
or an endpoint is encountered earlier. Notice that algorithm Line is an A0 class algorithm
when a ≤ 3, an 1-step A1 class algorithm when 4 ≤ a ≤ 16 or a 2-step A1 class algorithm
when a ≥ 17.

Lemma 2.1 Any exploration algorithm A of class A0 has overhead at least 2a+1
a+2

, when

a ≥ 2.

Proof. If exploration is started by going right and a > 0 then – using the argument from
the proof of Proposition 2.1 – C(A,F )

opt(F )
= 2a+1

a+2
, for some fault configuration F . Otherwise,

for the fault configuration F shown in Figure 2(i), we have C(A,F )
opt(F )

= 2b+1
b+2

≥ 2a+1
a+2

. Thus

O(A) ≥ 2a+1
a+2

, when a ≥ 2. 2

Lemma 2.2 Assume a ≥ 2. Any x-step algorithm A, of class A1, which starts exploration

by going left has overhead:

7



• 2b+1
b+2

, when b ≤ x

• max{3x+3
x+3

, 3x+2a+1
2x+a+2

}, when b > x

Proof. Consider a fault configuration F . If r = 0 or l = 0 then C(A, F ) = opt(F ).
Otherwise, if l = 1 then C(A, F ) = 2 + r = opt(F ). Hence we may assume that r > 0 and
l ≥ 2. By definition, b ≥ l.

If b ≤ x then C(A,F )
opt(F )

= 2l+r
min{2l+r,2r+l}

which is maximized for r = 1, l = b. So C(A,F )
opt(F )

≤ 2b+1
b+2

.

For the fault configuration shown in Figure 2(i) we have: C(A,F )
opt(F )

= 2b+1
b+2

. Thus O(A) = 2b+1
b+2

,

when b ≤ x.

Assume b > x. Then we have the following cases.

If l ≤ x then C(A,F )
opt(F )

= 2l+r
min{2l+r,2r+l}

, which is maximized for r = 1, l = x. So C(A,F )
opt(F )

≤ 2x+1
x+2

in

this case.

If l > x and r ≤ l then C(A,F )
opt(F )

= 2x+2r+l
2r+l

, which is maximized for r = 1, l = x + 1. So
C(A,F )
opt(F )

≤ 3x+3
x+3

in this case.

If l > x and r > l then C(A,F )
opt(F )

= 2x+2r+l
2l+r

, which is maximized for l = x + 1, r = a. So
C(A,F )
opt(F )

≤ 3x+2a+1
2x+a+2

in this case. Since 3x+3
x+3

> 2x+1
x+2

, it follows that O(A) = max{3x+3
x+3

, 3x+2a+1
2x+a+2

},

when b > x, because algorithm A behaves as in Figure 1(ii) (taking step x instead of 1). 2

Lemma 2.3 Any 1-step algorithm A of class A1 has overhead at least:

• 3
2
, when 2 ≤ a ≤ 4

• 2a+4
a+4

, when a > 4

Proof. If algorithm A starts by going left then in view of lemma 2.2, for x = 1 and a ≥ 2
we have O(A) = max{3

2
, 2a+4

a+4
}. Hence, for such algorithms we have:

O(A) =











3
2

when 2 ≤ a ≤ 4

2a+4
a+4

when a > 4

Otherwise, for the fault configuration shown in Figure 2(ii) we have C(A,F )
opt(F )

= 6
4

= 3
2
, when

a ≥ 2, and for the fault configuration shown in Figure 2(iii) we have C(A,F )
opt(F )

= 2b+4
b+4

≥ 2a+4
a+4

,

when a ≥ 2. This proves the lemma. 2

Lemma 2.4 Any 2-step algorithm A of class A1 has overhead at least:

• 5
4
, when a = 2

8



• 9
5
, when 3 ≤ a ≤ 19

• 2a+7
a+6

, when a ≥ 20

Proof. If algorithm A starts by going left then in view of lemma 2.2, for x = 2 and a ≥ 2,
we have

O(A) =











5
4

when b = 2 and a = 2

max{9
5
, 2a+7

a+6
} when b > 2 and a ≥ 2

Hence

O(A) =































5
4

when b = 2 and a = 2

9
5

when 2 ≤ a ≤ 19 and b > 2

2a+7
a+6

when a ≥ 20

which proves the lemma for algorithms starting by going left.

Otherwise, for the fault configuration shown in Figure 2(iv) we have C(A,F )
opt(F )

= 5
4
, when a ≥ 2;

for the fault configuration shown in Figure 2(v) we have C(A,F )
opt(F )

= 9
5
, when a ≥ 3; for the

fault configuration shown in Figure 2(vi) we have C(A,F )
opt(F )

= 2b+7
b+6

≥ 2a+7
a+6

, when a ≥ 3. This

proves the lemma. 2

Lemma 2.5 Assume a ≥ 2. For every exploration algorithm A of class Ak with k ≥ 2, there

exists an algorithm of class A0 or an i-step algorithm of class A1, for i ≤ 2, with smaller or

equal overhead.

Proof. The behavior of any regular algorithm A of class Ak with k ≥ 2, can be described
as follows:
traverse x1 edges in one direction;
return and traverse x1 + x2 edges;
return and traverse x2 + x3 edges;
...
return and traverse xk−2 + xk−1 edges;
return and traverse xk−1 + xk edges;
return and GO-FIRM;
return and GO-FIRM;
for x1 < x3 < x5 < ... and x2 < x4 < x6 < ..., provided that faults and endpoints are at
distances larger than xk−1 and xk from the starting point. This implies that 0 < xk−1 < b
and 0 < xk < b.

Consider the fault configuration shown in Figure 3(i): If xk ≥ xk−1 and 2(x1+...+xk−2)+xk ≥

3 then C(A,F )
opt(F )

= 2(x1+...+xk)+2xk−1+2+xk+1
2xk−1+2+xk+1

≥ 2. If xk < xk−1 then we have 2(x1 + ... + xk−1) ≥

xk + 3 and C(A,F )
opt(F )

= 2(x1+...+xk)+2xk−1+2+xk+1
2xk+2+xk−1+1

≥ 2.

9



ab

(iii)

X

+1+1

+1+1 ab

(ii)

XXX X

(i)

ab

X

(iv)

k−1x
kxkxk−1x

kxk−1xkx k−1x

x

kxkx

k

Figure 3: Algorithms of class Ak, k ≥ 2 (i, iii, iv) are outperformed by an algorithm of class
A1 (ii) (faulty edges marked with X)

Any algorithm A′ of class A0 has overhead O(A′) < 2. So in any of the above cases, algorithm
A′ has smaller overhead than algorithm A.

If none of the above cases holds (i.e., if we have xk ≥ xk−1 and 2(x1 + ... + xk−2) + xk < 3)
then take an xk-step algorithm A′ of class A1 (notice that xk ≤ 2), starting left, as shown in
Figure 3(ii). The overhead of algorithm A′ is O(A′) = max{3xk+3

xk+3
, 3xk+2a+1

2xk+a+2
}, by lemma 2.2.

For the fault configuration shown in Figure 3(i), we have

C(A, F )

opt(F )
=

2(x1 + ... + xk) + 2xk−1 + 2 + xk + 1

2xk−1 + 2 + xk + 1
≥

3xk + 3

xk + 3

since 2(x1+...+xk)
2xk−1+2+xk+1

≥ 2xk

xk+3
and 2(x1 + ... + xk)(xk + 3) ≥ 2xk(2xk−1 + 2 + xk + 1).

If the last return of A, before a fault or an endpoint is met, is left of the starting point, then
for the fault configuration shown in Figure 3(iii) we have

C(A, F )

opt(F )
=

2(x1 + ... + xk) + 2a + xk + 1

min{2xk + 2 + a, 2a + xk + 1}
≥

3xk + 2a + 1

2xk + a + 2

10



If the last return of A, before a fault or an endpoint is met, is right of the starting point,
then for the fault configuration shown in Figure 3(iv) we have

C(A, F )

opt(F )
=

2(x1 + ... + xk) + 2b + xk + 1

2xk + 2 + b
≥

3xk + 2a + 1

2xk + a + 2

since a ≤ b.

Thus in any case, O(A′) ≤ O(A). 2

Proposition 2.2 The overhead of any exploration algorithm for the line is at least:

• 2a+1
a+2

, when 2 ≤ a ≤ 3

• 2a+4
a+4

, when 4 ≤ a ≤ 16

• 9
5
, when 17 ≤ a ≤ 19

• 2a+7
a+6

, when a ≥ 20

Proof. In view of Lemma 2.5, we may restrict our considerations to algorithms of class A0

and i-step algorithms of class A1, for i ≤ 2.

Assume 2 ≤ a ≤ 3. Any algorithm of class A0 has overhead at least 2a+1
a+2

(Lemma 2.1). Any

1-step algorithm of class A1 has overhead at least 3
2

(Lemma 2.3). Any 2-step algorithm of
class A1 has overhead at least 5

4
, when a = 2 and at least 9

5
, when a = 3 (Lemma 2.4). Since

2a+1
a+2

≤ 5
4

< 3
2

when a = 2, and 2a+1
a+2

≤ 3
2

< 9
5

when a = 3, the overhead of any exploration

algorithm for the line is at least 2a+1
a+2

.

Assume 4 ≤ a ≤ 16. Any algorithm of class A0 has overhead at least 2a+1
a+2

(Lemma 2.1). Any

1-step algorithm of class A1 has overhead at least 2a+4
a+4

(Lemma 2.3). Any 2-step algorithm

of class A1 has overhead at least 9
5

(Lemma 2.4). Since 2a+4
a+4

≤ 2a+1
a+2

and 2a+4
a+4

≤ 9
5
, the

overhead of any exploration algorithm for the line is at least 2a+4
a+4

.

Assume 17 ≤ a ≤ 19. Any algorithm of class A0 has overhead at least 2a+1
a+2

(Lemma 2.1).

Any 1-step algorithm of class A1 has overhead at least 2a+4
a+4

(Lemma 2.3). Any 2-step

algorithm of class A1 has overhead at least 9
5

(Lemma 2.4). Since 9
5
≤ 2a+1

a+2
and 9

5
≤ 2a+4

a+4
,

the overhead of any exploration algorithm for the line is at least 9
5
.

Assume a ≥ 20. Any algorithm of class A0 has overhead at least 2a+1
a+2

(Lemma 2.1). Any

1-step algorithm of class A1 has overhead at least 2a+4
a+4

(Lemma 2.3). Any 2-step algorithm

of class A1 has overhead at least 2a+7
a+6

(Lemma 2.4). Since 2a+7
a+6

≤ 2a+1
a+2

and 2a+7
a+6

≤ 2a+4
a+4

, the

overhead of any exploration algorithm for the line is at least 2a+7
a+6

. 2

Propositions 2.1 and 2.2 imply

Theorem 2.1 Algorithm Line is a perfectly competitive exploration algorithm for any line.

11



3 Exploration of trees

In this section we construct a natural exploration algorithm for an arbitrary tree and arbi-
trary starting node, and we prove that the ratio between the overhead of this algorithm and
the overhead of a perfectly competitive algorithm is at most 9

8
.

The idea of our Algorithm Tree is the following. The algorithm works in phases. The first
phase starts at the root v. At the beginning of each phase the robot, having reached a node
u for the first time, decides which of the accessible children of u is a root of the deepest
subtree. Then the robot explores all subtrees rooted at other accessible children of u, and
moves to this last accessible child, thus ending the current phase. The robot stops when
there are no accessible children of a node reached at the end of a phase.

In a fault-free tree, this algorithm is clearly optimal, as the robot finishes exploration in the
leaf farthest from the starting node. However, due to the existence of faults, the decisions
of the robot may be suboptimal: a subtree seeming to be the deepest at some point of the
exploration, and thus left to be explored at the end, may turn out later to be quite shallow,
due to faults unknown at the decision time. Nevertheless we will show that this exploration
strategy is worse than the perfectly competitive one by a factor of at most 9/8.

Let T = (V, E) be the input tree and v the starting node. We consider T as being rooted at
v. Let F be a fixed fault configuration. For any F ′ ⊂ F , we denote by T [F ′] the connected
fault-free component of T containing v and corresponding to the fault configuration F ′. Let
u be any node of T . Denote by Tu the subtree of T rooted at u, and by F (u) the set of edges
in F incident to u. Node u is called free, if u is not a leaf in T [F (u)] (i.e. at least one edge
going down from u is fault free). Assume that u is free and let w1, ..., wk be all children of
u in T [F (u)]. The principal child of u, denoted pc(u), is the child wi for which the tree Twi

has height greater than or equal to the height of any tree Twj
, 1 ≤ j ≤ k, with ties broken

arbitrarily. Let B(F ) denote the branch of T [F ], such that the child of any node u on this
branch is pc(u). We call B(F ) the principal branch.

Let T ′ be any subtree of the tree Tw, rooted at w. In the description of our algorithm we will
use the procedure EXPLORE(T ′), which consists in any fixed depth-first-search traversal of
T ′, starting and ending at w.

When the robot arrives at u for the first time, it learns F (u) and hence it can find out if
u is free, and if so, it can find pc(u). The following procedure CLEAR(u), called when the
robot reaches u for the first time, explores subtrees rooted at all children of u except pc(u)
and then proceeds to pc(u).

Procedure CLEAR(u)
for all children w of u in T [F ], such that w 6= pc(u) do

EXPLORE(Tw[F ])
go to pc(u)
current := pc(u)

Remark. Total local computation time used by Algorithm Tree is linear in the size of the

12



Algorithm Tree
current := v
while current is free do

CLEAR(current).

tree.

In order to prove our result, we first compute the overhead of Algorithm Tree, and then
establish a lower bound on the overhead of any other exploration algorithm, showing that
the ratio between them does not exceed 9/8. Fix a tree T and a starting node v. A subtree
T1 of T is called t-shaped (see Figure 5), if it consists of a (possibly empty) simple path
between v and a node o, with another (possibly empty) simple path attached to the node o
(an empty path is defined as one consisting of a single point). The segment between v and
o is called the stem of T1 and the attached simple path is called the bar of T1 .

For any node w ∈ V , let mw denote the distance between v and w, and let hw denote the
height of the second deepest among all subtrees Tu, where u is a child of w. Let aw = hw +1.

Proposition 3.1 The overhead of Algorithm Tree, for the tree T and starting node v, is 1

if T is a line with endpoint v, and it is

maxw∈V

mw + 2aw + 1

mw + aw + 2
,

otherwise.

Proof. Fix a tree T and a starting node v. Denote Algorithm Tree by A. If T is a line with
endpoint v, the proposition clearly holds. Assume that T is not a line with endpoint v. We
write C(A, F ) instead of C(A, T, v, F ), opt(F ) instead of opt(T, v, F ), and O(A) instead of
OA,T,v. Without loss of generality, we may consider only fault configurations that have at
most one fault on any branch (more than one fault on a branch does not alter the fault-free
component of v). We say that a fault configuration F is dominated by a fault configuration

F ′, if C(A,F )
opt(F )

≤ C(A,F ′)
opt(F ′)

. A fault configuration F is called special, if T [F ] is a t-shaped tree.

Fix a fault configuration F . Let L be one of the longest branches of T [F ]. An optimal
algorithm traverses all edges twice, except those on L, which it traverses once. On the other
hand, algorithm A traverses all edges twice, except those on B(F ), which it traverses once.
Hence, all edges in T [F ] outside of the t-shaped tree T1 which is the union of L and B(F ),
are traversed twice by both algorithms. If all such edges are deleted, the ratio between the
cost of A and the cost of the optimal algorithm increases. Consider the special configuration
F ′ ⊃ F , for which T [F ′] = T1. We have B(F ′) = B(F ) and L is still the longest branch in
T [F ′]. Hence, in T [F ′] (as in T [F ]), an optimal algorithm traverses all edges twice, except
those on L, which it traverses once, and algorithm A traverses all edges twice, except those
on B(F ), which it traverses once. This implies that F ′ dominates F .

It follows that O(A) = C(A,F ′)
opt(F ′)

, for some special configuration F ′ obtained as above. If T [F ′]

is a line with endpoint v then C(A,F ′)
opt(F ′)

= 1, so we can restrict attention to fault configurations

13



z

v

O

R

y
x

P

x

x

Figure 4: A special tree (faulty edges marked with X)

for which this is not the case. For such a fault configuration F ′, let O be the common node
of B(F ′) and L, farthest from v. Let P be the leaf ending B(F ′) and R the leaf ending L
(see Figure 4).

Denote by z the distance between v and O, by x the distance between O and P , and by y
the distance between O and R. We have C(A,F ′)

opt(F ′)
= z+2y+x

z+2x+y
. For a given node O (and hence

for a given z), this fraction is maximized when y is the largest possible and x is the smallest
possible. Since T [F ′] is not a line with endpoint v, the integer x must be positive, and hence
the smallest possible value of x is 1. This corresponds to P = pc(O). The largest possible
value of y corresponds to the leaf R not on B(F ′) and farthest from O. Hence R must be
the deapest leaf in Tu, where u is the child of O for which Tu is second deepest.

Hence O(A) = z+2y+1
z+y+2

, for some node O, where z and y have the above defined meaning.
Notice that z = mO and y = aO. This concludes the proof of the lemma. 2

If T is a line with endpoint v then Algorithm Tree is optimal. Hence from now on we assume
that T is not a line with endpoint v. Let o denote the node w ∈ V for which the maximum
from Proposition 3.1 is taken (if there are many such nodes, o denotes any of them). Let c
denote the leaf in To farthest from o, and d the farthest leaf of the second deepest subtree
rooted at a child of o (ties are broken arbitrarily). Denote by m the distance between v and
o, by a the distance between o and d, and by b the distance between o and c. Thus a ≤ b.
By definition and in view of Proposition 3.1, the overhead of Algorithm Tree, for the tree T
and starting node v, is m+2a+1

m+a+2
.

Consider the t-shaped subtree T1 of T whose leaves are v, c and d. We call c the left endpoint
of the bar of T1 and d its right endpoint. A robot starting at v and continuing exploration
after node o by going towards c (d) is said to go left (resp. right) on the bar. Since T1

is a subtree of T , the overhead of a perfectly competitive algorithm for the tree T and
starting node v is not smaller than the overhead of a perfectly competitive algorithm for the
tree T1 and starting node v. Hence, in order to establish a lower bound on the first, it is
enough to show that it holds for the second. This is the approach we will adopt. Similarly
as for the line, we may restrict attention to fault configurations in which there is at most
one fault at each side of the point o on the bar. Also, in our lower bound arguments, we
consider only fault configurations without faults on the stem of T1, as such a fault yields

14



v

ab

o

m

rl
dc

XX

Figure 5: A t-shaped tree (faulty edges marked with X)

ratio C(A, T1, v, F )/opt(T1, v, F ) = 1. Consider a fault configuration F . Let r be the distance
between the node o and the fault on the bar in the right direction (r = a if there is no fault
to the right of o). Let l be the distance between the node o and the fault on the bar in the
left direction (l = b if there is no fault to the left of o). See Figure 5.

Until the end of the section, the tree T1 and the starting node v are fixed, hence, for any explo-
ration algorithm A and any fault configuration F , we write C(A, F ) instead of C(A, T1, v, F ),
opt(F ) instead of opt(T1, v, F ), and O(A) instead of OA,T1,v.

Similarly as for the line, when the robot reaches node o, GO-FIRM in a direction (left or
right) on the bar means: go until a fault or an endpoint is met. We denote by Ak the class
of exploration algorithms for the tree T1 which, after reaching node o do initially k returns
on the bar, assuming that no fault or endpoint is encountered before the first k returns, then
GO-FIRM, return and GO-FIRM. Any regular exploration algorithm for the tree T1 and
the starting node v, is in one of the classes Ak. An algorithm of class A1 is called an i-step
algorithm, if it goes i steps on the bar before the first return, unless a fault or an endpoint
is encountered earlier.

Lemma 3.1 Any exploration algorithm A of class A0 has overhead at least m+2a+1
m+a+2

, when

a ≥ 2.

Proof. If algorithm A goes right on the bar after first reaching node o and a > 0 then,
for the fault configuration shown in Figure 6(i), we have: C(A,F )

opt(F )
= m+2a+1

m+a+2
. Otherwise, for

the fault configuration F shown in Figure 6(ii), we have C(A,F )
opt(F )

= m+2b+1
m+b+2

≥ m+2a+1
m+a+2

. Thus

O(A) ≥ m+2a+1
m+a+2

, when a ≥ 2. 2

Lemma 3.2 Assume a ≥ 2. Any x-step algorithm A, of class A1, which after first reaching

node o, goes left on the bar, has overhead at most:

• m+2b+1
m+b+2

, when b ≤ x

• max{m+3x+3
m+x+3

, m+3x+2a+1
m+2x+a+2

}, when x < b

15



1
o

(ii)(i)

o 1

XX

Figure 6: Behavior of algorithms of class A0 (faulty edges marked with X)

Proof. Consider a fault configuration F . If r = 0 or l = 0 then C(A, F ) = opt(F ).
Otherwise, if l = 1 then C(A, F ) = m + 2 + r = opt(F ). Hence we may assume r > 0 and
l ≥ 2. By definition, b ≥ l.

If b ≤ x then C(A,F )
opt(F )

= m+2l+r
min{m+2l+r,m+2r+l}

which is maximized for r = 1, l = b. So O(A) ≤
m+2b+1
m+b+2

, when b ≤ x.

Suppose x < b. Then we have the following cases.

If l ≤ x then C(A,F )
opt(F )

= m+2l+r
min{m+2l+r,m+2r+l}

, which is maximized for r = 1, l = x. So C(A,F )
opt(F )

≤
m+2x+1
m+x+2

in this case.

If l > x and r ≤ l then C(A,F )
opt(F )

= m+2x+2r+l
m+2r+l

, which is maximized for r = 1, l = x + 1. So
C(A,F )
opt(F )

≤ m+3x+3
m+x+3

in this case.

If l > x and r > l then C(A,F )
opt(F )

= m+2x+2r+l
m+2l+r

, which is maximized for l = x + 1, r = a. So
C(A,F )
opt(F )

≤ m+3x+2a+1
m+2x+a+2

in this case.

Since m+3x+3
m+x+3

> m+2x+1
m+x+2

, it follows that O(A) ≤ max{m+3x+3
m+x+3

, m+3x+2a+1
m+2x+a+2

}, when x < b. 2

Lemma 3.3 Assume a ≥ 2. For every exploration algorithm A of class Ak with k ≥ 2,
there exists an algorithm of class A0 or an i-step algorithm of class A1, for i ≤ m + 2, with

smaller or equal overhead.

Proof. The behavior of any regular algorithm A of class Ak with k ≥ 2, can be described
as follows:
traverse m edges;
traverse x1 edges in one direction;
return and traverse x1 + x2 edges;
return and traverse x2 + x3 edges;
...
return and traverse xk−2 + xk−1 edges;
return and traverse xk−1 + xk edges;
return and GO-FIRM;
return and GO-FIRM;

16



max { ,

XX

}

X X
o o

(i) (ii)

+1 +1x k−1 x k x k−1x k
x k−1 x k

Figure 7: An algorithm of class Ak, k ≥ 2 (i) is outperformed by an algorithm of class A1

(ii) (faulty edges marked with X)

for x1 < x3 < x5 < ... and x2 < x4 < x6 < ..., provided that faults and endpoints of the bar
are at distances larger than xk−1 and xk from point o. This implies that 0 < xk−1 < b and
0 < xk < b.

Consider the fault configuration shown in Figure 7(i):

If xk ≥ xk−1 and 2(x1 + ...+xk−2)+xk ≥ m+3 then C(A,F )
opt(F )

= m+2(x1+...+xk)+2xk−1+2+xk+1
m+2xk−1+2+xk+1

≥ 2.

if xk < xk−1 and 2(x1 + ...+xk−1) ≥ xk +m+3 then C(A,F )
opt(F )

= m+2(x1+...+xk)+2xk−1+2+xk+1
m+2xk+2+xk−1+1

≥ 2.

Any algorithm A′ of class A0 has overhead O(A′) < 2. So in any of the above cases, algorithm
A′ has smaller overhead than algorithm A.

If none of the above cases holds (i.e., if we have xk ≥ xk−1 and 2(x1 + ...+xk−2)+xk < m+3
or xk < xk−1 and 2(x1 + ... + xk−1) < xk + m + 3) then take a max{xk−1, xk}-step algorithm
A′ of class A1 (notice that max{xk−1, xk} ≤ m + 2), starting left after node o, as shown in
Figure 7(ii).

• if xk ≥ xk−1 then the overhead of algorithm A′ is

O(A′) ≤ max{
m + 3xk + 3

m + xk + 3
,
m + 3xk + 2a + 1

m + 2xk + a + 2
}

by lemma 3.2.

For the fault configuration shown in Figure 7(i), we have

C(A, F )

opt(F )
=

m + 2(x1 + ... + xk) + 2xk−1 + 2 + xk + 1

m + 2xk−1 + 2 + xk + 1
≥

m + 3xk + 3

m + xk + 3

since
2(x1 + ... + xk)

m + 2xk−1 + 2 + xk + 1
≥

2xk

m + xk + 3

and

17



+1+1

+1+1

(iv)

o
X

(iii)

o
X

(ii)(i)

oo
XX

xkx k−1x

kxk−1xkx k−1x

k kxkx

kxkx

k−1x

Figure 8: Algorithms of class Ak, k ≥ 2 (faulty edges marked with X)

2(x1 + ... + xk)(m + xk + 3) ≥ 2xk(m + 2xk−1 + 2 + xk + 1)

If the last return of A, before a fault or an endpoint is met, is left of the point o, then
for the fault configuration shown in Figure 8(i) we have

C(A, F )

opt(F )
=

m + 2(x1 + ... + xk) + 2a + xk + 1

m + 2xk + 2 + a
≥

m + 3xk + 2a + 1

m + 2xk + a + 2

If the last return of A, before a fault or an endpoint is met, is right of the point o, then
for the fault configuration shown in Figure 8(ii) we have

C(A, F )

opt(F )
=

m + 2(x1 + ... + xk) + 2b + xk + 1

m + 2xk + 2 + b
≥

m + 3xk + 2a + 1

m + 2xk + a + 2

since a ≤ b.

18



• if xk < xk−1 then the overhead of algorithm A′ is

O(A′) ≤ max{
m + 3xk−1 + 3

m + xk−1 + 3
,
m + 3xk−1 + 2a + 1

m + 2xk−1 + a + 2
}

by lemma 3.2.

For the fault configuration shown in Figure 7(i), we have

C(A, F )

opt(F )
=

m + 2(x1 + ... + xk) + 2xk−1 + 2 + xk + 1

m + 2xk + 2 + xk−1 + 1
≥

m + 3xk−1 + 3

m + xk−1 + 3

since
2(x1 + ... + xk−1) + xk−1 + xk

m + 2xk + 2 + xk−1 + 1
≥

2xk−1

m + xk−1 + 3

and

(2(x1 + ... + xk−1) + xk−1 + xk)(m + xk−1 + 3) ≥ 2xk−1(m + 2xk + 2 + xk−1 + 1)

If the last return of A, before a fault or an endpoint is met, is left of the point o, then
for the fault configuration shown in Figure 8(iii) we have

C(A, F )

opt(F )
=

m + 2(x1 + ... + xk) + 2a + xk + 1

m + 2xk + 2 + a
≥

m + 3xk−1 + 2a + 1

m + 2xk−1 + a + 2

since
2(x1 + ... + xk−1) + a + xk − 1

m + 2xk + 2 + a
≥

xk−1 + a − 1

m + 2xk−1 + 2 + a

If the last return of A, before a fault or an endpoint is met, is right of the point o, then
for the fault configuration shown in Figure 8(iv) we have

C(A, F )

opt(F )
=

m + 2(x1 + ... + xk) + 2b + xk + 1

m + 2xk + 2 + b
≥

m + 3xk−1 + 2a + 1

m + 2xk−1 + a + 2

since
2(x1 + ... + xk−1) + b + xk − 1

m + 2xk + 2 + b
≥

a + xk−1 − 1

m + 2xk−1 + 2 + a

and a ≤ b.

Thus in any case, O(A′) ≤ O(A). 2

Lemma 3.4 Assume 2 ≤ a ≤ m + 4, m > 0. Algorithm Tree has overhead less or equal to

the overhead of any exploration algorithm A of class A1.

19



(ii)(i)

ooxx+1

X X
x+1x

Figure 9: Performance of x-step algorithms of class A1 (faulty edges marked with X)

Proof. Consider an x-step algorithm A of class A1. If b ≤ x, then algorithm A behaves like
an A0 class algorithm and by Lemma 3.1 O(A) ≥ m+2a+1

m+a+2
.

Assume that b > x ≥ a. If algorithm A goes right on the bar after reaching node o for the
first time, it behaves like an A0 class algorithm, so by Lemma 3.1 we have O(A) ≥ m+2a+1

m+a+2
.

If algorithm A goes left on the bar after node o, then for the fault configuration shown in
figure 9(i), we have:

C(A, F )

opt(F )
=

m + 3x + 2a + 1

m + 2x + a + 2
≥

m + 2a + 1

m + a + 2

Assume that x < a. If algorithm A goes left on the bar after reaching node o for the first
time, the same argument as before holds. If algorithm A goes right on the bar after node o,
then for the fault configuration shown in figure 9(ii), we have: C(A,F )

opt(F )
= m+3x+2b+1

m+2x+b+2
≥ m+2a+1

m+a+2
.

In view of Proposition 3.1, this proves the lemma. 2

Lemma 3.5 Assume a ≥ m + 5, m > 0. Any x-step algorithm A, 0 < x ≤ m + 2, of class

A1, has overhead at least 4m+2a+7
3m+a+6

.

Proof. If algorithm A goes left on the bar after reaching node o for the first time, then for
the fault configuration shown in figure 9(i), we have: C(A,F )

opt(F )
= m+3x+2a+1

m+2x+a+2
≥ 4m+2a+7

3m+a+6
, when

a ≥ m + 5.

If algorithm A goes right on the bar after node o, then for the fault configuration shown in
figure 9(ii), we have: C(A,F )

opt(F )
= m+3x+2b+1

m+2x+b+2
≥ 4m+2a+7

3m+a+6
, when a ≥ m + 5. 2

Theorem 3.1 For any tree and any starting node, the ratio between the overhead of Algo-

rithm Tree and the overhead of a perfectly competitive algorithm is at most 9
8
.

Proof. Consider any tree T with starting node v and the corresponding t-shaped tree
T1, previously defined. As mentioned before, lower bounds on the overhead of a perfectly
competitive algorithm, proved in the previous lemmas for the tree T1, carry over to the tree
T . Hence we can argue as follows.

If a ≤ 1 then Algorithm Tree is perfectly competitive. Hence we may assume a ≥ 2.

20



• When m > 0 and a ≤ m + 4, Lemmas 3.1, 3.3, 3.4 imply that Algorithm Tree is
perfectly competitive.

• When m > 0 and a ≥ m + 5, Lemmas 3.1, 3.3, 3.5 imply that the ratio between the
overhead of Algorithm Tree and that of a perfectly competitive algorithm is at most:

m+2a+1

m+a+2
4m+2a+7

3m+a+6

≤ 9
8
.

• When m = 0, the tree T1 is a line and v = o. Hence Proposition 2.1 and Theorem 2.1
imply that the ratio between the overhead of Algorithm Tree and that of a perfectly
competitive algorithm is at most:

– 1, when a ≤ 3

–
2a+1

a+2
2a+4

a+4

≤ 9
8
, when 4 ≤ a ≤ 16

–
2a+1

a+2
9

5

≤ 9
8
, when 17 ≤ a ≤ 19

–
2a+1

a+2
2a+7

a+6

≤ 9
8
, when a ≥ 20

This concludes the proof. 2

4 Conclusion

We designed efficient exploration algorithms for faulty trees. For the line we constructed a
perfectly competitive algorithm, and for an arbitrary tree we proposed an algorithm whose
approximation ratio with respect to a perfectly competitive algorithm is 9/8. Both our algo-
rithms use linear computation time. It remains open if there exists a perfectly competitive
algorithm for arbitrary trees, with polynomial computation time. An even more challenging
problem is to construct a perfectly competitive exploration algorithm for arbitrary graphs, or
– if such polynomial-time algorithms do not exist in general – good approximations thereof.

References

[1] S. Albers and M. R. Henzinger, Exploring unknown environments, SIAM Journal on
Computing 29 (2000), 1164-1188.

[2] B. Awerbuch, M. Betke, R. Rivest and M. Singh, Piecemeal graph learning by a mobile
robot, Proc. 8th Conf. on Comput. Learning Theory (1995), 321-328.

[3] E. Bar-Eli, P. Berman, A. Fiat and R. Yan, On-line navigation in a room, Journal of
Algorithms 17 (1994), 319-341.

21



[4] M.A. Bender, A. Fernandez, D. Ron, A. Sahai and S. Vadhan, The power of a peb-
ble: Exploring and mapping directed graphs, Proc. 30th Ann. Symp. on Theory of
Computing (STOC 1998), 269-278.

[5] M.A. Bender and D. Slonim, The power of team exploration: Two robots can learn
unlabeled directed graphs, Proc. 35th Ann. Symp. on Foundations of Computer Science
(FOCS 1994), 75-85.

[6] P. Berman, A. Blum, A. Fiat, H. Karloff, A. Rosen and M. Saks, Randomized robot
navigation algorithms, Proc. 7th ACM-SIAM Symp. on Discrete Algorithms (SODA
1996), 74-84.

[7] A. Blum, P. Raghavan and B. Schieber, Navigating in unfamiliar geometric terrain,
SIAM Journal on Computing 26 (1997), 110-137.

[8] M. Betke, R. Rivest and M. Singh, Piecemeal learning of an unknown environment,
Machine Learning 18 (1995), 231-254.

[9] J. Czyzowicz, D. Kowalski, E. Markou, A. Pelc, Searching for a black hole in tree
networks, Proc. 8th International Conference on Principles of Distributed Systems
(OPODIS 2004), 35-45.

[10] X. Deng, T. Kameda and C. H. Papadimitriou, How to learn an unknown environment
I: the rectilinear case, Journal of the ACM 45 (1998), 215-245.

[11] X. Deng and A. Mirzaian, Competitive robot mapping with homogeneous markers,
IEEE Transactions on Robotics and Automation 12 (1996), 532-542.

[12] X. Deng and C. H. Papadimitriou, Exploring an unknown graph, Journal of Graph
Theory 32 (1999), 265-297.

[13] A. Dessmark and A. Pelc, Optimal graph exploration without good maps, Theoretical
Computer Science 326 (2004), 343-362.

[14] K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc, Tree exploration with little memory,
Journal of Algorithms 51 (2004), 38-63.

[15] S. Dobrev, P. Flocchini, G. Prencipe, N. Santoro, Mobile agents searching for a black
hole in an anonymous ring, Proc. of 15th International Symposium on Distributed
Computing, (DISC 2001), 166-179.

[16] S. Dobrev, P. Flocchini, G. Prencipe, N. Santoro, Searching for a black hole in arbitrary
networks: Optimal Mobile Agents Protocols, Proc. 21st ACM Symposium on Principles
of Distributed Computing (PODC 2002), 153-161.

[17] G. Dudek, M. Jenkin, E. Milios and D. Wilkes, Robotic exploration as graph construc-
tion, IEEE Transactions on Robotics and Automation 7 (1991), 859-865.

[18] V. Dujmović and Sue Whitesides, On Validating Planar Worlds, Proc. of the 12th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2001), 791-792.

22



[19] C.A. Duncan, S.G. Kobourov and V.S.A. Kumar, Optimal constrained graph explo-
ration, Proc. 12th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA 2001), 807-
814.

[20] P. Fraigniaud and D. Ilcinkas. Directed graphs exploration with little memory, Proc.
21st Symposium on Theoretical Aspects of Computer Science (STACS 2004), 246-257.

[21] P. Panaite and A. Pelc, Exploring unknown undirected graphs, Journal of Algorithms
33 (1999), 281-295.

[22] P. Panaite, A. Pelc, Optimal broadcasting in faulty trees, Journal of Parallel and Dis-
tributed Computing 60 (2000), 566-584.

[23] N. S. V. Rao, S. Kareti, W. Shi and S.S. Iyengar, Robot navigation in unknown terrains:
Introductory survey of non-heuristic algorithms, Tech. Report ORNL/TM-12410, Oak
Ridge National Laboratory, July 1993.

23


