
Emergency connectivity in ad-hoc networks

with selfish nodes

George Karakostas1,2,⋆ and Euripides Markou2,3,⋆⋆

1 Department of Computing & Software.
2 School of Computational Engineering & Science.

McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
3 Department of Computer Science, University of Ioannina, Greece.

E-mail: karakos@mcmaster.ca, emarkou@cs.uoi.gr

Abstract. Inspired by the CONFIDANT protocol [1], we define and
study a basic reputation-based protocol in multihop wireless networks
with selfish nodes. Its reputation mechanism is implemented through
the ability of any node to define a threshold of tolerance for any of its
neighbors, and to cut the connection to any of these neighbors that refuse
to forward an amount of flow above that threshold. The main question we
would like to address is whether one can set the initial conditions so that
the system reaches an equilibrium state where a non-zero amount of every
commodity is routed. This is important in emergency situations, where
all nodes need to be able to communicate even with a small bandwidth.
Following a standard approach, we model this protocol as a game, and
we give necessary and sufficient conditions for the existence of non-trivial
Nash equilibria. Then we enhance these conditions with extra conditions
that give a set of necessary and sufficient conditions for the existence of
connected Nash equilibria. We note that it is not always necessary for
all the flow originating at a node to reach its destination at equilibrium.
For example, a node may be using unsuccessful flow in order to effect
changes in a distant part of the network that will prove quite beneficial
to it. We show that we can decide in polynomial time whether there
exists a (connected) equilibrium without unsuccessful flows. In that case
we calculate (in polynomial time) initial values that impose such an
equilibrium on the network. On the negative side, we prove that it is
NP-hard to decide whether a connected equilibrium exists in general
(i.e., with some nodes using unsuccessful flows at equilibrium).

1 Introduction

In recent years there has been a great effort in designing robust and efficient
wireless networks of devices that take upon themselves certain network respon-
sibilities that used to be the responsibilities of a central network designer in
traditional network design. For example, in ad-hoc networks the topology of the

⋆ Research supported by an NSERC Discovery Grant and MITACS.
⋆⋆ Research supported by MITACS.

network is the result of cooperation amongst the nodes themselves: in a multi-
hop wireless network, a successful transmission between a pair of nodes requires
the cooperation of intermediate nodes in order for the transmitted packets to
reach their destination. While this may be guaranteed in networks with a cen-
tral authority forcing the nodes to cooperate, in the absence of such an authority
cooperation may not be guaranteed. This is due to the selfishness of each node,
i.e., the effort by the node to maximize its own utility without caring about
the results of its actions on the overall network-wide outcome. For example, if
battery life is a valuable resource for a node, forwarding packages between two
other nodes consumes energy that doesn’t result in any kind of pay-off for this
node, and as a result it may decide to stop cooperating in forwarding pack-
ages for others. If this behavior prevails throughout the whole network, it may
eventually result in zero throughput for everybody, a phenomenon better known
as the “Tragedy of the Commons” [5]. To cope with this problem one can of-
fer incentives to nodes such as rewards for their cooperation or punishment for
non-cooperation.

The two most commonly proposed forms of incentives are micro-payments,
and reputation-based mechanisms. One of the main motivation for developing
them is the desire of the network designer to not permanently punish a misbe-
having node, but ‘re-socialize’ it if it changes its uncooperative behavior.

Micro-payment schemes are based on the concept of distribution of credit to
nodes, so that nodes are compensated for their cooperation by (virtual) credit
payments, that they can then use to pay intermediate nodes for forwarding
their own traffic. Hence if a node is consistently uncooperative, it will run out
of credit and will have to stop transmitting. Usually, the distribution and/or
the expenditure of credit is controlled by a central authority. Examples of such
protocols are [2, 10, 11, 3].

Reputation-based systems are based on lists that the nodes keep on the
reputation of their neighbors, i.e., the fraction of packets forwarded by them.
They use this information in order to decide how much traffic they should for-
ward towards their neighbors. This may be decided in a Tit-for-Tat fashion, i.e.,
when a node has to relay a packet on behalf of a neighbor, it does so with the
same probability with which this neighbor forwards its own packets (see [8, 9]
for examples of such mechanisms). Or, the amount to forward can be decided
according to (centralized or local) ratings tables, that give the nodes an indi-
cation of the behavior of other nodes; if a node’s rating of another node falls
below a certain threshold, then the latter cannot be trusted to forward traffic,
and therefore nothing is forwarded to it by the former, i.e., the edge connecting
the two nodes is cut by the first node. An example of such a mechanism that
actually distributes the reputation information so that each node can form its
own ratings table is the CONFIDANT protocol [1]. More recent protocols [6, 7]
limit the distribution of reputation information only to one-hop neighbors.

Our results: In this work we address the connectivity issues arising in such
reputation-based systems. More specifically, we would like to study whether it is
possible in such a selfish environment to lead all nodes towards an equilibrium

with good connectivity properties. In fact, we are very ambitious: we are looking
for driving them towards an equilibrium that permits a non-zero quantity of
every traffic demand to be satisfied. The reason for such a strict requirement is
the fact that in an emergency situation police, firemen, emergency medical per-
sonnel, etc. should be able to communicate with each other even if the achieved
bandwidth is very small (but still enough for emergency signals to be able to
travel through the network). From the above, it is not at all obvious whether such
a goal can be achieved, given the fact that each network node is autonomously
playing a protocol game, after it’s been set in its initial condition. Given the
game-theoretic nature of such protocols, it is only natural to study them in
terms of their (Nash) equilibrium states. Under this light, and given the rules
of the game, i.e., the protocol, the most appropriate (indeed, in some cases the
only) time a network designer can intervene in order to control the outcome is
during the setting of the initial conditions, or, equivalently, by ‘rebooting’ the
protocol with new initial values. This can be achieved by a separate broadcasting
channel that all nodes are listening (‘snooping’) in, and whose packets are of the
highest priority. Obviously, this is a very intruding method, and it would defy the
purpose of selfishness if it were to be applied very frequently. But one does not
(hopefully) expect catastrophic emergency situations to arise that frequently.
Therefore broadcasting will not be used often.

Inspired by the CONFIDANT mechanism, we study a basic reputation-based
system. The strategy of every node consists of the amount of traffic flow it sends
to its various receivers, the routing of this flow, the amount of flow it forwards
for every commodity in which it doesn’t participate as a sender or a receiver, and
a non-negative threshold value for each outgoing edge. The latter set of values
is an abstraction of the reputation mechanism: if the amount of flow that is
forwarded by node x to node y (including flow that originates at x), but is cut
by y is more than the threshold value x has for y, then x disconnects edge (x, y).
Later on, y may end up cutting flow that is less than the current threshold value
of x for (x, y), in which case (x, y) reappears. The utility for every node increases
with the flow originating at or destined for this node and reaches its destination,
while decreases with the flow sent out or forwarded by this node (because, for
example, the node has to spend battery energy to transmit).

The main drawback of this protocol is the assumption that every node has
to make its strategy known to every other node. But at the same time, this
complete knowledge of the game state gives great potential power to each node
to affect parts of the network that are very far away, even in counter-intuitive
ways, e.g., by sending flow whose sole purpose is to affect the current topology
and discourage the flow of other nodes. Hence, this assumption may make our
demand for complete connectivity even harder to achieve, and it may mean that
things can be easier in a more restricted setting. As a first step towards achieving
this goal, we are able to characterize the complexity of computing initial values
that lead to a connected Nash equilibrium in our protocol. We do that, by giving
necessary and sufficient conditions for the existence of non-trivial Nash equilib-
ria. Then we enhance these conditions with extra conditions that give a set of

necessary and sufficient conditions for the existence of connected Nash equilibria.
Note that it is not always necessary for all the flow originating at a node to reach
its destination at equilibrium. As mentioned above, a node may be using such
unsuccessful flow in order to effect changes in a distant part of the network that
will prove quite beneficial to it. We show that in case there is a connected Nash
equilibrium without unsuccessful flows, we can calculate (in polynomial time)
initial values that impose such an equilibrium on the network using linear pro-
gramming. On the other hand, if the connected Nash equilibrium(-ia) exist, but
nodes are allowed to use unsuccessful flows, then it is NP-hard even to decide
whether an equilibrium exists.

Our results are derived using game-theoretic concepts, which is the standard
approach for analyzing such protocols, modeled as games. But we emphasize
that, other than the assumptions mentioned above, we don’t impose any re-
strictions on the network topology, or any statistical distribution on the nodes’
decisions.1

2 Model and Terminology

In this section we describe our model for the network and the protocol the nodes
follow. The set of connections that can be realized is given by a directed graph
G(V, E). We emphasize that, depending on the current state of the game, not
all these edges may be present. For every origin-destination pair (commodity)
(u, v), u, v ∈ V there is a demand d(u,v) that u wants to send to v. The flow
is splittable, and u decides how to split and route this flow. Again, the current
state of the game may not allow u to send all of d(u,v), so the latter serves more
as an upper bound on the flow actually sent. We denote by Pi the set of paths
connecting the i-th origin-destination pair in G, and let P := ∪iPi.

The current state of the network, together with the nodes’ strategies are
described by the following set of variables:

• F
y

(u,e,e′,v) with e, e′ ∈ E, e = (x, y), e′ = (y, z), u, v, x, y, z ∈ V and y 6= u, v:

This is the flow of commodity (u, v) that y receives through e, and forwards
further through e′.

• f
y

(u,e,e′,v) with e, e′ ∈ E, e = (x, y), e′ = (y, z), u, v, x, y, z ∈ V and y 6= u, v:

This is the decision variable of y that sets an upper bound on the amount

of flow
∑

g=(w,x)

F x
(u,g,e,v) routed through e′ that y actually forwards through

e′, i.e., F
y

(u,e,e′,v) = min{fy

(u,e,e′,v),
∑

g=(w,x)

F x
(u,g,e,v) routed through e′} (notice

that edge e′ can be disconnected; in that case, what is being forwarded by y

through e′ is simply lost). We emphasize that f
y

(u,e,e′,v) is just the y’s decision

1 We don’t assume any kind of synchronization amongst the nodes, but we do assume
that the decision variables changes are instantaneous. Note that the game modeling
the protocol is not a repeated game, and there isn’t any notion of rounds.

variable that determines what y will do if there is flow from u to v which has
been forwarded from x to y and needs to be forwarded through e′ = (y, z),

while
∑

g=(w,x)

F x
(u,g,e,v) is the actual flow that comes to y from x through e.

So y maintains such a variable f
y

(u,e,e′,v), for every incoming edge e = (x, y)

and every outgoing edge e′ = (y, z), and every commodity (u, v).
• O

y

(u,e,v) with e ∈ E, e = (x, y), u, v, x, y ∈ V and y 6= u, v: This is an aux-

iliary variable, defined as O
y

(u,e,v) =
∑

e′=(y,z)

F
y

(u,e,e′,v). It is simply the total

flow of commodity (u, v) coming to y through edge e, and being forwarded
by y through all its outgoing edges e′ = (y, z).

• I
y

(u,e′,v) with e′ ∈ E, e′ = (y, z), u, v, y, z ∈ V and y 6= v: This is also an

auxiliary variable, defined as I
y

(u,e′,v) =
∑

e=(x,y)

F
y

(u,e,e′,v). It is simply the

total flow of commodity (u, v) coming to y through all its incoming edges
e = (x, y), and being forwarded by y through edge e′. Note that I

y

(y,e′,v) is

the flow originated at y and routed through e′ with destination v.

• ǫy
x: This auxiliary variable is defined as ǫy

x =
∑

com.(u,v),v 6=y

(Ix
(u,e,v) −O

y

(u,e,v)),

i.e., as the part of the total flow that comes to y through e and is being
blocked by y.

• su
(u,P,v): This is the decision variable of u that determines how much flow of

commodity (u, v) node u routes through path P (whether this flow amount
eventually reaches v or not).

• THRx(y): This is the decision variable of node x that defines an upper
bound on the flow forwarded by x and cut by y that x can tolerate before
it cuts edge (x, y). We consider edge (x, y) disconnected when ǫy

x > 0 AND
THRx(y) ≤ ǫy

x. Hence edge (x, y) exists in the network provided ǫy
x = 0 OR

THRx(y) > ǫy
x.

The following definition will be used repeatedly throughout this paper:

Definition 1. An edge (x, y) is connected if ǫy
x = 0 OR THRx(y) > ǫy

x, and
disconnected otherwise.

Therefore, the strategy of a node x is determined by the vector (sx, THRx, fx).
Note that the routing of the flow x sends out is incorporated in the values for
sx. Therefore x decides the following:

• Threshold THRx(y) ≥ 0, and hence decides whether edge (x, y) is connected
or not.

• Variables ǫx
w, by deciding fx

(u,e,e′,v) which, in turn, change the flows F x
(u,e,e′,v).

As a result, x decides whether edge e = (w, x) is connected or not.

• The routing of the flow originating at x and its quantity, by deciding sx
(x,P,y)

for any path P connecting x to y. But always
∑

P sx
(x,P,y) ≤ d(x,y).

We repeat that every node sees all decision variables of all other nodes, we don’t
assume any kind of synchronization amongst the nodes, but we do assume that
the decision variables changes are instantaneous.

Definition of the utility function: Every node plays in a selfish way, i.e.,
so that its utility (defined below) is maximized. At any time t, we denote by
C−

y , C+
y , D−

y , D+
y the sets of connected incoming, connected outgoing, discon-

nected incoming and disconnected outgoing edges respectively, adjacent to node
y. Then, for every node y its utility function is defined as follows:

utilt(y) =
flow sent by y

and reached its
destination

+
flow received

by y
−

flow forwarded
by y

−

flow sent by y

and didn’t reach
its destination

.

More specifically,

utilt(y) =
∑

e∈C
+
y

Sy
e +

∑

e∈C
−

y

Ry
e −

∑

e′∈C
+
y ∪D

+
y

∑

u6=y,v∈G

I
y

(u,e′,v)−





∑

e′∈C
+
y ∪D

+
y

∑

v∈G

I
y

(y,e′,v) −
∑

e∈C
+
y

Sy
e



 (1)

where

• Sy
e is the flow which has been sent by y (i.e. originated at y) through edge e

and has reached its destination,
• Ry

e is the flow which has been received by y through edge e,
• I

y

(u,e′,v) is the flow of commodity (u, v) with y 6= v, and node y attempts

to forward (or sent, if u = y) through edge e′ (note that e′ may be discon-
nected).

The intuition behind this definition of utility (which is very similar to the
definition used in [1]), is that a node exchanges resource units (e.g., battery
energy) for information units (i.e., packets received or sent successfully). Our
assumption is that the correspondence is one for one. Different weighting of
resources and information is a generalization left for future work.

Throughout this work, we use the standard definition of Nash equilibria, i.e.,
at equilibrium, no node gains an increase of its utility by changing its decision
variables (strategy), while the other nodes maintain their own strategies. We
will focus on non-trivial equilibria.

Definition 2. A trivial equilibrium is any equilibrium with fx = 0, ∀x, and
with su

(u,(u,v),v) = d(u,v), ∀ commodities (u, v) s.t. (u, v) ∈ E and su
(u,P,v) = 0

otherwise.

So from now on, whenever we write ‘equilibrium’ we mean ‘non-trivial equlib-
rium’, unless otherwise stated. We also assume that there is always at least one
demand between non-adjacent nodes in G, since otherwise a trivial equilibrium
is a connected one, and this case is not very interesting.

Definition 3. An amount of flow with origin a node u and destination a node
v routed through a path P is successful if it reaches node v, otherwise it is
unsuccessful.

3 Characterization of Nash equilibria

In this section we give necessary and sufficient conditions for the existence of
an equilibrium. Our hope will be that these conditions (probably together with
additional ones) will simplify the study of connected equilibria.

Definition 4. An unsuccessful flow Φ which has been routed through edge e is
responsible for disconnecting edge e if e would be connected without Φ.

We group the (non-disconnected) incoming and outgoing edges for a node x

as follows:

• group 1: these edges transfer only successful flows,
• group 2: these edges transfer successful and unsuccessful flows,
• group 3: these edges transfer only unsuccessful flows.

The proof of the following Theorem appears in the full version:

Theorem 1. The game is at an equilibrium if and only if for any node x the
following conditions hold:

1. ǫy
x = 0, where g = (x, y) ∈ C+

x (i.e., node y does not cut any flow forwarded
by x through the connected edge g),

2. if there is a successful flow between nodes u,v 6= y routed through edge g =
(x, y), then THRx(y) = 0,

3. if there is no unsuccessful flow going through an edge e = (t, x), then Rx
e ≥

∑

u6=x,v

∑

g=(x,y)

F x
(u,e,g,v) (i.e., the flow that node x receives through edge e =

(t, x) is not less than the total flow which is coming through e and x has to
forward, if all this latter flow is successful),

4. for any disconnected edge g′ = (x, y′) ∈ D+
x it holds that THRx(y′) =

ǫy′

x > 0, node x does not send any flow through g′, and the (unsuccessful)
flows which are responsible for disconnecting g′ are being sent by at least two
nodes, other than x,

5. let e = (t, x) be an incoming connected edge to x such that all unsuccessful
flows which pass through e, have been routed through outgoing disconnected
edges g′ = (x, y′

i) ∈ D+
x of x; then:

• THRt(x) = 0,

• Rx
e ≥

∑

u6=x,v

∑

g′∈D
+
x

F x
(u,e,g′,v) +

∑

u6=x,v

∑

g∈C
+
x

F x
(u,e,g,v),

6. the flow that node x sends successfully through all of its (connected) outgoing
edges Φ(x) is maximized over all possible routings sx,

7. any combination of the following possible actions taken by x cannot increase
its utility:
(a) disconnecting a number of edges of group 2,
(b) decreasing the unsuccessful flow that x lets go through edges of group 3,
(c) connecting edges e′ = (t′, x) ∈ D−

x ,
(d) sending successful and unsuccessful flow through the outgoing edges of x,
(e) increasing thresholds

Theorem 1 is essentially a codification of all the conditions that happen si-
multaneously at equilibrium. But showing that such a (non-trivial) equilibrium
exists (or, even more, compute it) is non-trivial. In fact, we will show that de-
ciding the existence of an equilibrium is NP-hard. But it turns out it is much
easier to check whether there is a non-trivial equilibrium with only successful
flows; this can be reduced to the solution of a simple LP.

For every edge e = (u, v), we set d(e) equal to d(u,v) if commodity (u, v)
exists, and 0 otherwise. Let D :=

∑

e∈E d(e). We will use the following notation:

• e ∈∗ P , when edge e ∈ P is not the last edge of P ,
• e ∈0 P , when edge e ∈ P is the last edge of P .

In the following LP, variables x(P) represent the amount of flow sent along path
P :

max
∑

P∈P

x(P) s.t. (LP-S)

∑

P :e∈∗P

x(P) −
∑

P :e∈0P

x(P) ≤ 0 ∀e ∈ E

∑

P∈Pi

x(P) ≤ d(ui,vi) ∀i

x(P) ≥ 0 ∀P ∈ P

Theorem 2. A non-trivial equilibrium with only successful flows exists if and
only if (LP-S) has a solution x(P) with

∑

P∈P x(P) > D.

Proof: The proof appears in the full version. 2

The solution of (LP-S) by standard techniques [4] implies the following

Corollary 1. We can compute in polynomial time user strategies that are at
equilibrium with only successful flows, if such an equilibrium exists.

4 Connected equilibria

In this section we study the following question: given an underlying network
topology along with a set of demands between nodes, is it possible to assign
values to the decision variables, so that the game converges to a connected
equilibrium, when such an equilibrium exists?

Recall that we call the network connected iff a non-zero amount of every com-
modity reaches its destination. Therefore, if, in addition to being at equilibrium,
we want the network to be connected, we have to add to Theorem 1 the condition
that for every commodity (u, v), there is a successful non zero flow sent from u

to v through a path P in the network. This translates to the following condition
for every edge e = (x, y) in path P : THRx(y) ≥ ǫy

x = 0 AND Ix
(u,e,v) > 0 (espe-

cially when y 6= v, it must hold THRx(y) = ǫy
x = 0, as follows from condition 2

of Theorem 1).

Theorem 3. A network is at a connected equilibrium if and only if in addition
to the Theorem 1 conditions, for every commodity (u, v), either edge (u, v) is
connected or there is a path connecting u, v, so that for every edge e = (x, y) in
the path it holds that Ix

(u,e,v) > 0 AND ǫy
x = 0.

It is easy to see that there are cases in which it is impossible for a game to
converge to a connected equilibrium. For example, suppose that there is an edge
e = (x, y) in the network such that node x is neither a source nor a sink, and
there is a commodity (u, v) such that all paths between u and v pass through e.
Then it is easy to see that, in any equilibrium, there will be no flow from u to
v. Indeed, suppose that there is a connected equilibrium. Hence there should be
an edge e = (t, x) in the network which carries some successful flow. If e carries
only successful flow then the condition 3 of Theorem 1 would be violated. On the
other hand if e carries successful and unsuccessful flow condition 7(a) would be
violated since x would have a profit to disconnect edge e and gain in its utility.

As mentioned in the Introduction, the proof of existence, and the computa-
tion of strategies that lead to connected equilibria is, in general, very difficult,
since we will prove in the next section that it is an NP-hard problem. But, build-
ing on the results of the previous section, we can prove the existence (or not)
of a connected equilibrium with only successful flows in polynomial time, and
compute strategies that achieve it. Using the characterization of such equilibria
by Theorem 3, we can reduce this computation to the solution of the following
extension of (LP-S):

max w s.t. (LP-C)
∑

P :e∈∗P

x(P) −
∑

P :e∈0P

x(P) ≤ 0 ∀e ∈ E

∑

P∈Pi

x(P) ≤ d(ui,vi) ∀i

∑

P∈Pi

x(P) ≥ w ∀i

x(P) ≥ 0 ∀P ∈ P

w ≥ 0

Similarly to Theorem 2, we can prove the following

Theorem 4. A connected equilibrium with only successful flows exists if and
only if (LP-C) has a solution x(P), w with w > 0.

v 5v 1 v 2 v 3 v 4v 6 v 7 v 8v 9 v 1 3
v 1 0 v 1 1v 1 2

Fig. 1. A variable-subgraph.

Again, the solution of (LP-C) by standard techniques [4] implies the following

Corollary 2. We can compute in polynomial time user strategies that induce a
connected equilibrium with only successful flows, if such an equilibrium exists.

5 NP-hardness of existence of a connected Nash

equilibrium

Suppose a network is given together with a set of demands. In this section we
prove that it is NP-hard to decide whether there exist values for the decision
variables of the nodes so that the game converges to a connected equilibrium
(that possibly uses successful and unsuccessful flows). We prove this by reduction
from the satisfiability problem (Sat):

Sketch of the reduction: Given an instance I of the Sat problem we
construct (in polynomial time on the number of the boolean variables) a network
and a set of demands between nodes. The basic element of the construction is
the variable-subgraph (Figure 1) which corresponds to a boolean variable of I

and it is constructed in such a way, so that in any connected Nash equilibrium,
in exactly one of its edges there is no successful flow at all. We then show that
there is a truth assignment which satisfies an instance I of Sat if and only if
there is a Nash equilibrium in the constructed network with the network being
connected (i.e., for any demand there is a flow being delivered). We prove this by
giving explicitly values to decision variables of the nodes so that the network is
connected at a Nash equilibrium. We show that if a boolean variable A has value
FALSE in the truth assignment and appears as ¬A in a literal of I (negative
literal) then the corresponding subgraph (Figure 2a) is connected at a Nash
equilibrium with only successful flows. If variable A has value TRUE in the
truth assignment and appears as A in a literal of I (positive literal) then the
corresponding subgraph (Figure 2b) is connected at a Nash equilibrium with
successful and unsuccessful flows.

v cu c
v 6v 3v 1 v 2 v 4

v 1 3 v 8v 9 v 5 v 7v 1 0 v 1 1v 1 2 v 2 v 6v 3v cv 1 u c v 4
v 1 3 v 8v 9 v 5 v 7v 1 0 v 1 1v 1 2

(a) (b)
Fig. 2. (a) A negative-literal-subgraph which corresponds to a variable with value
FALSE, with routed flow-paths. (b) A positive-literal-subgraph which corresponds to
a variable with value TRUE, with routed flow-paths.

Theorem 5. Given a network and a set of demands between nodes, it is NP-
hard to decide whether there exist values for the decision variables of the nodes
so that the game converges to a connected Nash equilibrium.

The details and proofs appear in the full version of the paper.

6 Conclusion

The question of inducing Nash equilibria with specific attributes is a very gen-
eral one, and applies to any protocol. In this work we study the property of
connectivity, but other natural goals are the maximization of total utility, the
maximization of the minimum demand satisfied (similar to concurrent multicom-
modity flow problems), the maximization of total bandwidth etc. We focused on
a basic reputation-based model for ad-hoc networks, but the achievement of most
of these goals remains open for this model as well. On the other hand, we were
able to characterize the Nash equilibria for it in a way that allowed us to study
connectivity properties in a very general setting, i.e., for general topologies and
multiple commodities. We would like to combine these properties with additional
ones, e.g., maximization of the minimum demand. This would involve network
design decisions at the level of setting-up the topology, since there are simple
examples with throughput (i.e. the minimum (over all commodities) fraction
of satisfied demand) equal to dmin

(k−1)dmax
, where dmin, dmax are the minimum,

maximum demands respectively, and k is the number of commodities. Hence, a

natural extension of our results would be to study these extra network design
decisions when the installation of every new edge incurs a cost. Another natural
extension would be the study of a minimal subset of nodes whose setting of ini-
tial values induces an equilibrium with the desired properties. Note that in our
results we set the initial values for all nodes, thus inducing an equilibrium ‘in
one shot’.

References

1. S. Buchegger and J.-Y. Le Boudec. Performance Analysis of the CONFIDANT
Protocol: Cooperation Of Nodes Fairness In Dynamic Ad-hoc NeTworks. In Pro-
ceedings of MOBIHOC02, pp. 226–236, 2002.

2. L. Buttyan and J.-P. Hubaux. Stimulating Cooperation in Self-Organizing Mobile
Ad Hoc Networks. In Proceedings of ACM/Kluwer Mobile Networks and Applica-
tions, vol. 8(5), pp. 579–592, 2003.

3. S. Eidenbenz, G. Resta, and P. Santi. COMMIT: a sender-centric truthful and
energy-efficient routing protocol for ad hoc networks with selfish nodes. In Pro-
ceedings of IEEE Workshop on Algorithms for Wireless, Mobile, Ad Hoc and Sensor
Networks (WMAN), 2005.

4. M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combina-
torial Optimization. Springer Verlag, Berlin 1993.

5. G. Hardin. The Tragedy of the Commons. Science, Vol. 162, No. 3859, pp. 1243–
1248, December 1968.

6. Q. He, D. Wu, and P. Khosla. SORI: A Secure and Objective Reputation-based
Incentive Scheme for Ad-hoc Networks. In Proceedings of IEEE Wireless Commu-
nications and Networking Conference (WCNC2004), pp. 825–830, 2004.

7. R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Sustaining Cooperation
in Multihop Wireless Networks. In Proceedings of Second USENIX Symposium on
Networked System Design and Implementation (NSDI’05), 2005.

8. F. Milan, J. J. Jaramillo, and R. Srikant. Achieving cooperation in multihop
wireless networks of selfish nodes. In Proceedings of the 2006 workshop on Game
theory for communications and networks (GameNets), 2006.

9. V. Srinivasan, P. Nuggehalli, C.-F. Chiasserini, and R. Rao. Cooperation in wireless
ad-hoc networks. In Proceedings of IEEE INFOCOM 03, pp. 808–817, 2003.

10. S. Zhong, J. Chen, and Y. R. Yang. Sprite: A simple, Cheat-proof, Credit-based
System for Mobile Ad-hoc Networks. In Proceedings of IEEE INFOCOM03, pp.
1987–1997, 2003.

11. S. Zhong, L. E. Li, Y. G. Liu, and Y. R. Yang. On designing incentive-compatible
routing and forwarding protocols in wireless ad-hoc networks: an integrated ap-
proach using game theoretic and cryptographic techniques. In Wireless Networks,
Vol. 13(6), pp. 799–816, 2007.

