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1 Introduction

1.1 The background and the problem

Security of mobile agents working in a network environment is an important issue which receives

recently growing attention. Protecting agents from “host attacks”, i.e., harmful items stored

in nodes of the network, has become almost as urgent as protecting a host, i.e., a node of the

network, from an agent’s attack [9, 10]. Various methods of protecting mobile agents against

malicious hosts have been discussed, e.g., in [5, 6, 8, 9, 10, 11].

In this paper we consider hostile hosts of a particularly harmful nature, called black holes [1, 2,

3, 4]. A black hole is a stationary process residing in a node of a network and destroying all

mobile agents visiting the node, without leaving any trace. Since agents cannot prevent being

annihilated once they visit a black hole, the only way of protection against such processes is

identifying the hostile node and avoiding further visiting it. Hence we are dealing with the issue

of locating a black hole: assuming that there is at most one black hole in the network, at least

one surviving agent must find the location of the black hole if it exists, or answer that there

is no black hole, otherwise. The only way to locate the black hole is to visit it by at least one

agent, hence, as observed in [2], at least two agents are necessary for one of them to locate the

black hole and survive. Throughout the paper we assume that the number of agents is minimum

possible for our task, i.e., 2, and that they start from the same node, known to be safe.

In [1, 2, 3, 4] the issue of efficient black hole search was extensively studied in many types of

networks. The underlying assumption in these papers was that the network is totally asyn-

chronous, i.e., while every edge traversal by a mobile agent takes finite time, there is no upper

bound on this time. In this setting it was observed that, in order to solve the problem, the net-

work must be 2-connected, in particular black hole search is infeasible in trees. This is because,

in asynchronous networks it is impossible to distinguish a black hole from a “slow”link incident

to it. Hence the only way to locate a black hole is to visit all other nodes and learn that they

are safe. (In particular, it is impossible to answer the question of whether a black hole actually

exists in the network, hence [1, 2, 3, 4] worked under the assumption that there is exactly one

black hole and the task was to locate it.)

Totally asynchronous networks rarely occur in practice. Often a (possibly large) upper bound on

the time of traversing any edge by an agent can be established. Hence it is interesting to study

black hole search in such partially synchronous networks. Without loss of generality, this upper

bound on edge traversal time can be normalized to 1 which yields the following definition of the

time of a black hole search scheme: this is the maximum time taken by the scheme, i.e. the

time under the worst-case location of the black hole (or when it does not exist in the network),

assuming that all edge traversals take time 1.

Our partially synchronous scenario makes a dramatic change to the problem of searching for a

black hole. Now it is possible to use the time-out mechanism to locate the black hole in any

graph, with only two agents, as follows: agents proceed along edges of a spanning tree. If they

are at a safe node v, one agent goes to the adjacent node and returns, while the other agent
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waits at v. If after time 2 the first agent has not returned, the other one survives and knows the

location of the black hole. Otherwise, the adjacent node is known to be safe and both agents

can move to it. This is in fact a variant of the cautious walk described in [2] but combining it

with the time-out mechanism makes black hole search feasible in any graph. Hence the issue

is now not the feasibility but the time efficiency of black hole search, and the present paper is

devoted to this problem.

Since for any network, black hole search can be done using only the edges of its spanning tree,

solving the problem of fast black hole search on trees seems a natural first step. Hence in this

paper we restrict attention to black hole search in tree networks using two agents, and our goal is

to accomplish this task in minimum time. Clearly, in many graphs, there are more efficient black

hole search schemes than those operating in a spanning tree of the graph, and the generalization

of our problem to arbitrary networks remains an important and interesting open issue.

The time of a black hole search scheme should be distinguished from the time complexity of the

algorithm producing such a scheme. While the first was defined above for a given input consisting

of a network and a starting node, and is in fact the larger of the numbers of time units spent by

the two agents, the second is the time of producing such a scheme by the algorithm. In other

words, the time of the scheme is the time of walking and the time complexity of the algorithm

is the time of thinking.

Constructing a fastest black hole search scheme for arbitrary trees turns out to be far from

trivial. In particular, the following problem remains open. Does there exist a polynomial time

algorithm which, given a tree and a starting node as input, produces a black hole search scheme

working in shortest possible time for this input? Nevertheless, we show fastest schemes for some

classes of trees and give a 5/3-approximation algorithm for the general case.

1.2 Our results

For arbitrary trees we give a 5/3-approximation algorithm for the black hole search problem.

More precisely, given a tree and a starting node as input, our algorithm produces a black hole

search scheme whose time is at most 5/3 of the shortest possible time for this input.

We give optimal black hole search algorithms for two “extreme” classes of trees: the class of lines

and the class of trees in which any internal node (including the root which is the starting node)

has at least 2 children. More precisely, for every input in the respective classes these algorithms

produce a black hole search scheme whose time is the shortest possible for this input.

All our algorithms work in time linear in the size of the input.

2 Model and terminology

We consider a tree T rooted at node s which is the starting node of both agents, and is assumed

to be safe (s is not a black hole). Notions of child, parent, descendant and ancestor, are meant
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with respect to this rooted tree. The down degree of a node is the number of its children.

Agents have distinct labels. They can communicate only when they meet (and not, e.g., by

leaving messages at nodes). We assume that there is at most one black hole in the network.

This is a node which destroys any agents visiting it. A black hole search scheme (BHS-scheme)

for the input (T, s) is a pair of sequences of edge traversals (moves) of each of the two agents,

with the following properties.

• Each move takes one time unit.

• A move can be empty (this corresponds to an agent waiting at a node).

• Upon completion of the scheme there is at least one surviving agent, i.e., an agent that

has not visited the black hole, and this agent either knows the location of the black hole

or knows that there is no black hole in the tree. The surviving agents must return to s.

The time of a black hole search scheme is the number of time units until the completion of the

scheme, assuming the worst-case location of the black hole (or its absence, whichever is worse).

It is easy to see that the worst case for a given scheme occurs when there is no black hole in

the tree or when the black hole is the last unvisited node, both cases yielding the same time. A

scheme is called fastest for a given input if its time is the shortest possible for this input.

For any edge of a tree we define the following states:

• unknown, if no agent has moved yet along this edge (initial state of every edge),

• explored, if either the remaining agents know that there is no black hole incident to this

edge, or they know which end of the edge is a black hole.

Any BHS-scheme must have the following property: after a finite number of steps, at least one

agent stays alive and all edges are explored (there is at most one black hole, so once the black

hole has been found, all edges are explored).

The explored territory at step t of a BHS-scheme is the set of explored edges. At the beginning

of a BHS-scheme the explored territory is empty. We say that a meeting occurs in node v at

step t when the agents meet at node v and exchange information which strictly increases the

explored territory. Node v is called a meeting point at step t.

Note that in between meetings, an edge may be neither unknown nor explored. This is the case

when an unknown edge has been just traversed by an agent.

In any step of a BHS-scheme, an agent can traverse an edge or wait in a node. Also the two

agents can meet. If at step t a meeting occurs, then the explored territory at step t is defined as

the explored territory after the meeting. The sequence of steps of a BHS-scheme between two

consecutive meetings is called a phase.
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3 Preliminary results

Lemma 3.1 In a BHS-scheme, an unexplored edge cannot be traversed by both agents.

Proof: Suppose that an unexplored edge e has been traversed by an agent and while e remains

unexplored (which means that the two agents have not yet met after the traversal of e), the

other agent traverses it. If this edge is incident to a black hole, then both agents vanish, which

means that this is not a BHS-scheme. 2

Hence in a BHS-scheme, an edge can be explored only in the following way: an agent traverses

this edge and then a meeting is scheduled. Whether it occurs or not (in the latter case the agent

vanished in the black hole) the edge becomes explored.

Lemma 3.2 During a phase of a BHS-scheme an agent can traverse at most one unexplored

edge.

Proof: Suppose that an agent traverses two unexplored edges. If one of these edges is incident

to a black hole and hence the agent vanishes then there is no way for the other agent to locate

the black hole without vanishing, which means that this is not a BHS-scheme. 2

Therefore an unknown edge could be explored in the next phase only if it is adjacent to the

explored territory. The explored territory increases only at scheduled meeting points.

Lemma 3.3 At the end of each phase, the explored territory is increased by one or two edges,

or the black hole is found.

Proof: By the end of a phase the explored territory is increased by at least one edge. By Lemma

3.2, an agent can traverse at most one unexplored edge during a phase, thus both agents can

traverse a total of at most two unexplored edges during a phase. 2

We define a 1-phase to be a phase in which exactly one edge is explored. Similarly, we define

a 2-phase to be a phase in which exactly two edges are explored. In view of Lemma 3.3, every

phase is either a 1-phase or a 2-phase.

Lemma 3.4 Let v be a meeting point at step t in a BHS-scheme. Then at least one of the

following holds: v = s or v is an endpoint of an edge which was already explored at step t − 1.

Proof: Suppose that v 6= s and every edge incident to v was unexplored at step t − 1. Since

v is a meeting point at step t, both agents are scheduled to be at v by that time. This means

that at least one unexplored edge has been traversed by both agents which by Lemma 3.1 is

impossible. 2

Hence an agent which traversed an unexplored edge must return to the explored territory in

order to go to the meeting point. A corollary of Lemmas 3.1, 3.2 and 3.4 is that at any step of

a BHS-scheme the explored territory is connected.
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A node p is called a limit of the explored territory at step t if it is incident both to an explored

and to an unexplored edge, or if it is a leaf incident to an explored edge.

A way of exploring exactly one edge in a phase is the following: one of the agents walks through

the explored territory to a limit p, while the other agent walks through the explored territory

to p, traverses an unknown edge and returns to p. If we assume that both agents are at a limit

p of the explored territory at step t and (p, u) is an unknown edge towards node v, we define

the following procedure:

probe(v): one agent traverses edge (p, u) (which is towards node v) and returns to node p to

meet the other agent who waits. If they do not meet at step t + 2 then the black hole has been

found.

We also define a procedure that the two agents could follow to explore two new edges in a phase.

Suppose that the two agents reside at node m at step t. Let p1, ..., pi be the limits of the explored

territory at that step. Each of the unknown edges which could be explored in the following phase

has to be incident to a node from the set {p1, ..., pi}. Let the two selected unknown edges for

exploration be (pk, k) and (pl, l), pk, pl ∈ {p1, ..., pi} (possibly pk = pl). We assume that node m

belongs to the path < k, pk, . . . , pl, l >. The definition of the procedure is the following:

split(k, l): One of the agents traverses the path from node m to node k and returns towards

node pl. The other traverses the path from node m to node l and returns towards node pk. Let

dist(l, k) denote the number of edges in the path from node k to node l. If they do not meet at

step t + dist(l, k) then the black hole has been found.

4 Black hole search in a line

In this section we construct an optimal black hole search algorithm for lines, with linear time

complexity. A line is a graph L = (V,E), where V = {0, ..., n} and E = {(i, i + 1) : i =

0, 1, ..., n − 1}. 0 and n are called endpoints of the line. The starting node is denoted by s,

while a and b denote the distances between s and the endpoints of the line, with a ≤ b, hence

a + b = n. We assume that L is represented by a horizontal line segment in the plane with a

being the distance from s to the rightmost vertex of L and b being the distance from s to the

leftmost vertex of L. Hence the direction right of the starting node means that of the closer

endpoint. We assume b > 0, otherwise the line consists of a single node.

Lemma 4.1 Consider a BHS-scheme A on L. Suppose that meetings occur in A at steps ti at

nodes pi and consider the first meeting that occurs in A at step t1 such that the explored territory

after the meeting is Expl with |Expl| ≥ 2. Then we can transform A into a BHS-scheme A′ so

that:

• for every meeting which occurs in A′ such that the explored territory Expl′ after the meeting

has size |Expl′| ≥ 2 it holds that the meeting point is not a limit of Expl′, and
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• at any step ti ≥ t1 of A/A′, the agents in both BHS-schemes are at the same node and the

explored territory is the same.

Proof: Suppose that during the execution of A a meeting occurs at step ti at a node pi which

is a limit of the explored territory Expl at step ti.

If pi is not an endpoint of an edge which was already explored at step ti − 1 (i.e. both edges

incident to pi were unexplored at step ti − 1), then by Lemma 3.4 we have pi = s. The explored

territory cannot be disconnected, hence at step ti − 1 the set Expl was empty. Since |Expl| ≥ 2

at step ti, the two agents traversed two edges on different sides of pi. Hence, in this case, pi

could not be a limit of territory Expl at step ti.

Suppose that pi is an endpoint of an edge which was already explored at step ti−1. By Lemmas

3.1, 3.2 exactly one agent R1 did not traverse an unexplored edge during the previous phase

(otherwise pi could not be a limit of the explored territory at step ti). This means that agent

R2 has traversed an unexplored edge at the other limit of the explored territory and returns to

node pi.

At step ti − 1 agent R2 has to be at a node p′i which is adjacent to pi. At step ti − 1, agent R1

has to be already at node pi because otherwise, the meeting would have to take place at step

ti − 1. Thus at step ti − 2, agent R1 is either at node pi or p′i. We transform the BHS-scheme

A as follows:

- if R1 is at node p′i at step ti − 2: R1 waits for one step

- if R1 is at node pi at step ti − 2: R1 walks to node p′i

- R1 walks to node pi

Observe the following: The meeting in A′ takes place at step ti − 1 at node p′i which is not a

limit of the explored territory at step ti − 1. At step ti the two agents are at the same node pi

and the explored territory is the same. 2

Hence for any BHS-scheme A which explores the line in time t, there is a BHS-scheme A′ which

explores the line in the same time t and no meeting point in A′ is a limit of the explored territory

after the meeting (assuming that the explored territory includes at least two edges).

A BHS-scheme on L with the property of Lemma 4.1 is called regular.

Lemma 4.2 Consider a regular BHS-scheme A. Let r = |Expl| be the size of the explored

territory and m be the meeting point at the end of a phase in A. Let p, p′ be the limits of Expl

and d = min{|m − p|, |m − p′|}. If the next phase in A is a 1-phase then the time needed for it

is at least 2 units if r ≤ 1 and d + 2 ≥ 3 units if r ≥ 2.

Proof: At any 1-phase, an agent has to walk distance d in order to reach the limit of the

explored territory and then has to traverse an unknown edge and return. Hence at least d + 2

time units are needed. If r ≥ 2 then regularity of A implies d ≥ 1 (m cannot be a limit of Expl),

which concludes the lemma. 2
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Figure 1: An exploration of two new edges in a phase needs at least r + 2 time units

Lemma 4.3 Consider a BHS-scheme A. Let r = |Expl| be the size of the explored territory

and m be the meeting point at the end of a phase in A. If the next phase in A is a 2-phase then

the time needed for it is at least r + 2 units. Furthermore, if the time is exactly r + 2, then the

new meeting point is m′ = x + y − m, where x + 1 and y − 1 are, respectively, the left and right

limit of the explored territory before the phase (see Figure 1).

Proof: In view of Lemmas 3.1, 3.2 the two edges which will be explored in the 2-phase must

be right and left of m. The time spent by the agent which goes right of m until the meeting at

m′ is at least 2y − m − m′. At the same time the other agent traveled distance m + m′ − 2x.

Thus, m + m′ = x + y and the time spent is at least r + 2. The second part of the lemma is

straightforward. 2

Lemmas 4.2 and 4.3 imply:

Lemma 4.4 Suppose that the explored territory consists of at least 4 edges at the end of a phase.

Then, in any regular BHS-scheme, the two agents need at least 3 time units to explore exactly

one additional edge and at least 6 time units to explore two additional edges (in two 1-phases or

one 2-phase).

Lemma 4.5 Suppose a ≥ 1. Any regular BHS-scheme A whose first phase is a 1-phase can

be transformed into a regular BHS-scheme A′, whose first phase is a 2-phase and time(A′) ≤

time(A).

Proof: Consider a regular BHS-scheme A. Suppose w.l.o.g. that A starts with a 1-phase left

of the starting node. We transform A into a regular BHS-scheme A′ as follows:

A′ starts executing procedure split(s−1, s+1); after 2 time units in both BHS-schemes the two

agents are in s. The BHS-scheme A′ has explored one additional edge to the right of s.

• Suppose that A continues with a 1-phase exploring one edge right of s and let m be the

meeting point at the end of that phase. By regularity of A and since the size of the

explored territory is at least 2, we have m = s. In A′ both agents wait for 2 time units

and after that the situation in both BHS-schemes is exactly the same. Then A′ continues

by just copying A. If a black hole is discovered by the BHS-scheme A during the first two
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Figure 2: Exploration of the extremal edges

phases, then it must have been discovered by the BHS-scheme A′ in the first phase. After

the first two phases of A, the BHS-schemes are identical. Hence time(A′) ≤ time(A).

• Otherwise, A′ copies A until a phase φ in which A explores the first edge right of the

starting node (this edge is already explored by A′). Suppose that φ lasts t steps. Let m

be the meeting point after this phase. If φ was a 1-phase then both agents in A′ walk to

m (which can be done in less than t steps). If φ was a 2-phase, let p be the left limit of

the explored territory before φ and let (p, v) be the edge left of s, which was explored in

φ. Then the agents in A′ walk to p, execute probe(v) and then walk to m (this can be

done in at most t steps). Again, if a black hole is discovered by scheme A in a step before

phase φ, then it must have been discovered by scheme A′ by that step. After phase φ the

two BHS-schemes are identical. Therefore time(A′) ≤ time(A).

2

In view of Lemma 4.5 we may restrict attention to regular BHS-schemes which start with a

2-phase.

The following lemma and the next two theorems give lower bounds on the exploration time of

the line by any regular BHS-scheme. The idea of their proofs is the following. Take a regular

BHS-scheme A and consider the first meeting at step t1 at node m when the explored territory

Expl of size r = |Expl| is such that one of the two limits p, p′ of Expl is adjacent to one endpoint

of the line (see Figure 2). Let also t2 be the time needed by A to explore the remaining territory

which has size n − r. In Lemma 4.7 the lower bounds for time t2 are given while in Theorems

4.1 and 4.2 we provide the lower bounds for time t1 and compute the total time which is needed
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by the scheme A for black hole search.

Lemma 4.6 Let A be a regular BHS-scheme. Suppose that exactly two edges on different

sides of a meeting point are explored by A in two consecutive 1-phases. We can transform

the BHS-scheme A into a BHS-scheme A′ so that these two edges are explored in one 2-phase

and time(A′) ≤ time(A).

Proof: Let r = |Expl| be the size of the explored territory, m the meeting point, and x + 1,

y − 1 the two limits of the explored territory at the end of a phase as in Figure 1. Suppose,

without loss of generality, that y − m ≤ m − x. The time needed for exploring two new edges

right and left of m in the next two 1-phases is at least y −m + 1 + r + 2 = r + y −m + 3, while

the new meeting point is at x + 1.

Exploring them by executing procedure split(x, y) (which is a 2-phase) uses r+2 time units and

the new meeting point is at x + y − m. It requires x + y − m − x − 1 = y − m − 1 additional

time units to walk to x + 1. So the total time is r + y − m + 1. 2

Lemma 4.7 Let A be a regular BHS-scheme. Let a ≥ 3. Consider the first meeting at step t1,

when the explored territory Expl of size r = |Expl| is such that one of the two limits p, p′ of

Expl is adjacent to one endpoint of the line. Let m be the position of this meeting point (see

figure 2). Then the time t2 needed by scheme A to explore the remaining territory of size n− r,

is at least as follows:

• r + 2 + |n − m − s| time units, when n − r = 2

• when n − r > 2 and territory Expl is adjacent to the right endpoint

– 3n − 2r + b − 4 time units, when the previous phase (before step t1) is a 1-phase

– 3n− 2r + a + m− 8 time units, when the previous phase (before step t1) is a 2-phase

and m ≤ b + 1

– 4n− 2r −m + b− 6 time units, when the previous phase (before step t1) is a 2-phase

and m > b + 1

• when n − r > 2 and territory Expl is adjacent to the left endpoint

– 3n − 2r + a − 4 time units, when the previous phase (before step t1) is a 1-phase

– 4n− 2r + b−m− 8 time units, when the previous phase (before step t1) is a 2-phase

and m ≥ b − 1

– 3n− 2r + m + a− 6 time units, when the previous phase (before step t1) is a 2-phase

and m < b − 1

Proof: If n − r = 2 then by Lemma 4.3 t2 ≥ r + 2 + |n − m − s|.
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Suppose that n − r > 2. By Lemma 4.6, exploring two edges on both sides of s by a 2-

phase requires less or equal time than exploring them by two consecutive 1-phases. Thus the

minimum time is achieved when the remaining edge is explored together with an edge in the

opposite direction by a 2-phase. Furthermore, the minimum time is achieved when this 2-phase

is the first phase after step t1 or the last phase.

Suppose that territory Expl is adjacent to the right endpoint (see figure 2a). Note that in this

case, Lemma 4.5 implies r ≥ a. Using Lemmas 4.2, 4.3 we compute the following times:

• If the previous phase (before step t1) is a 1-phase then m = n − 2.

– If the first phase (after step t1) is a 2-phase then t2 ≥ r + 3 + 3(n − r − 2) + b − 1.

– If the last phase is a 2-phase then t2 ≥ r − 2 + 3(n − r − 2) + max{b + 2, b + 2a− 2}.

In this case it is easy to see that when the first phase (after step t1) is a 2-phase then time

t2 is minimum.

• If the previous phase (before step t1) is a 2-phase then:

– If the first phase (after step t1) is a 2-phase then t2 ≥ n−m+r+1+3(n−r−2)+b−1.

– If the last phase is a 2-phase then t2 ≥ m−n+r+3(n−r−2)+max{b+2, b+2a−2}.

Suppose that territory Expl is adjacent to the left endpoint (see figure 2b). Note that in this

case Lemma 4.5 implies r ≥ b.

• If the previous phase (before step t1) is a 1-phase then m = 2.

– If the first phase (after step t1) is a 2-phase then t2 ≥ r + 3 + 3(n − r − 2) + a − 1.

– If the last phase is a 2-phase then t2 ≥ r − 2 + 3(n− r − 2) + max{a + 2, a + 2b− 2}.

In this case it is easy to see that when the first phase (after step t1) is a 2-phase then time

t2 is minimum.

• If the previous phase is a 2-phase then:

– If the first phase (after step t1) is a 2-phase then t2 ≥ m+ r +1+3(n− r−2)+a−1.

– If the last phase is a 2-phase then t2 ≥ r −m + 3(n− r − 2) + max{b + 2, a + 2b− 2}.

2

Theorem 4.1 The time of any regular BHS-scheme on the line is at least 4n − 8 when a ≥ 6.

Proof: Let r, t1, t2 defined as above. In view of Lemma 4.5 we assume that the first phase is a

2-phase, hence r ≥ a. Depending on the value of r as well as to which endpoint Expl at step t1
is adjacent, several cases are possible.
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If n − r = 2 it means that the explored territory is adjacent to both endpoints of the line.

Hence the last phase before step t1 must be a 2-phase (otherwise the first meeting with Expl

adjacent to an endpoint would have occurred before step t1) and in view of Lemma 4.4, t1 ≥

2 + 4 + 3(n− 8) + n− 2. According to Lemma 4.3 we have t2 ≥ n thus the total time needed is

at least 5n − 20.

If n − r > 2 and territory Expl is adjacent to the right endpoint then:

• if r = a, since the first phase was a 2-phase, the last phase before step t1 must be a 1-phase

and t1 ≥ 2 + 3(a− 2). Lemma 4.7 implies t2 ≥ 3n− 2a + b− 4. Hence the total time is at

least 4n − 8.

• If r = a + 1 then:

If the last phase before step t1 is a 1-phase then t1 ≥ 2 + 4 + 1 + 3(a − 3). Lemma 4.7

implies t2 ≥ 3n − 2a − 2 + b − 4. Hence the total time is at least 4n − 8.

If the last phase before step t1 is a 2-phase then Lemma 4.3 implies m = n − a and

t1 ≥ 2 + 3(a− 3) + a + 1. Lemma 4.7 implies t2 ≥ 3n − 2a− 2 + a + n− a− 8. Hence the

total time is at least 4n − 8.

• If r ≥ a + 2 then:

If the last phase before step t1 is a 1-phase then t1 ≥ 2 + 4 + 3(r − 4). Lemma 4.7 implies

t2 ≥ 3n − 2r + b − 4. The total time is at least 4n − 8.

If the last phase before step t1 is a 2-phase then t1 ≥ 2+ 4+ 3(r− 6)+ r. The coordinates

of the meeting point m′ before that last phase have to be n− r + 1 ≤ m′ ≤ n− 3 (in view

of Lemma 4.1). Lemma 4.3 implies that the coordinates of meeting point m have to be

n − r + 1 ≤ m ≤ n − 3. In view of Lemma 4.7 t2 is either at least 3n − 2r + a + m − 8 ≥

4n − 3r + a− 7 or at least 4n − 2r − m + b − 6 ≥ 3n − 2r + b − 3. In both cases the total

time is greater than 4n − 8.

If n− r > 2 and territory Expl is adjacent to the left endpoint, the total time is at least 4n− 8,

using a similar argument.

Since 4n − 8 ≤ 5n − 20 when a ≥ 6, this proves the theorem. 2

The following theorem establishes lower bounds for the remaining cases.

Theorem 4.2 The time of any regular BHS-scheme A on the line is at least:

• 4n − 2, when a = 0

•
∑a

i=1
2i, when 1 ≤ a = b ≤ 5

• 4n − 6, when a = 1 < b

• 4n − 10, when a = 2 < b or a = 3 < b
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• 4n − 8, when a = 4 < b or a = 5 < b

Proof: case a = 0: In view of Lemmas 3.1, 3.2, the BHS-scheme A explores 1 new edge in

every phase. Thus, by Lemma 4.2, the total time is at least 2 + 4(n − 1).

case a = 1: In view of Lemma 4.5 we may assume that the first phase is a 2-phase. After that

only 1-phases are possible. So if a = b = 1 the time is at least 2. If a < b the total time is at

least 2 + 3(b − 1) + b − 1 = 4n − 6.

case a = 2: In view of Lemma 4.5 we may assume that the first phase is a 2-phase. If a = b = 2

then, by Lemma 4.6 we may assume that the exploration of the two remaining edges left and

right of s is done in a 2-phase and the total time is at least 6. If a < b then:

If the second phase is a 2-phase then the total time is at least 2 + 5 + 3(b − 2) + b− 1 = 4n− 8.

If the last phase is a 2-phase then the total time is at least 2 + 3(b − 2) + b + 2 = 4n − 10.

case a = 3: As before, we may assume that the first phase is a 2-phase. Consider the first

meeting at step t1, when the explored territory Expl with size r = |Expl| is such that one of

the two limits p, p′ of Expl is adjacent to one endpoint of the line. Let m be the meeting point

at t1 and let t2 be the time needed by A to explore the remaining territory of size n − r.

If n− r = 2 then the explored territory is adjacent to both endpoints of the line. Hence the last

phase before step t1 must be a 2-phase (otherwise the first meeting with Expl adjacent to an

endpoint would have occurred before step t1). Hence t1 ≥ 2 + 3(b − 3) + n − 2 and, by Lemma

4.3, we have m = n− 3. By Lemma 4.7, t2 ≥ n + |n−n + 3−n + 3|. Thus total time is at least

5n − 18 + |n − 6|. In particular if a = b = 3 then the time is at least 12 units. If a < b then the

time is at least 6n − 24 ≥ 4n − 10.

If n − r > 2 then we have:

• if territory Expl is adjacent to the right endpoint then,

– if r = a, since the first phase is a 1-phase, the last phase before step t1 must be a

1-phase right of s and t1 ≥ 5. By Lemma 4.7, t2 ≥ 3n − 2a + b − 4. Hence the total

time is at least 4n − 8.

– if r ≥ a + 1 then let r′ be the size of the territory left of s which has been explored

by step t1. Lemma 4.6 implies that the last two edges which were explored before

step t1, must have been explored by a 2-phase. Thus, by Lemma 4.3, m = n− 3 and

t1 ≥ 2 + 3(r′ − 2) + 2 + r′. By Lemma 4.7, t2 ≥ 3n − 2r′ − 4 + 3 + n − 3 − 8. Hence

the total time is at least 4n − 10.

• if territory Expl is adjacent to the left endpoint then, the last phase before step t1 must

be a 1-phase. In view of Lemma 4.2 we have t1 ≥ 2 + 3(b − 2) and in view of Lemma 4.7

we have t2 ≥ 3n − 2b + a − 4. Hence the total time is at least 4n − 8.
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case a = 4 or a = 5: If n − r = 2 then the explored territory is adjacent to both endpoints

of the line. Hence the last phase before step t1 must be a 2-phase (otherwise the first meeting

with Expl adjacent to an endpoint would have occurred before step t1) and in view of Lemma

4.4 we have t1 ≥ 2 + 4 + 3(n − 8) + n − 2. In view of Lemma 4.3 we have t2 ≥ n thus the total

time needed is at least 5n − 20. In particular, the total time is at least 20 when a = 4 and 30

when a = 5. However, if a < b, then m = n − 3. Thus t1 ≥ 2 + 4 + 1 + 3(b − 4) + n − 2 when

a = 4 and t1 ≥ 2 + 4 + 6 + 2 + 3(b − 5) + n − 2 when a = 5. In view of Lemma 4.7 we have

t2 ≥ n + |n − n + 3 − n + 4|. Thus the total time is at least 6n − 26 when a = 4 and at least

6n − 25 when a = 5.

If n − r > 2 and territory Expl is adjacent to the right endpoint then:

• if r = a, since the first phase was a 2-phase, the last phase before step t1 must be a 1-phase

and t1 ≥ 2+ 3(a− 2). In view of Lemma 4.7 we have t2 ≥ 3n− 2a+ b− 4. Hence the total

time is at least 4n − 8.

• If r = a + 1 then:

If the last phase before step t1 is a 1-phase then t1 ≥ 2 + 4 + 1 + 3(a − 3). In view of

Lemma 4.7 we have t2 ≥ 3n − 2a − 2 + b − 4. Hence the total time is at least 4n − 8.

If the last phase before step t1 is a 2-phase then, in view of Lemma 4.3 we have m = n−a

and t1 ≥ 2+3(a−3)+a+1. In view of Lemma 4.7 we have t2 ≥ 3n−2a−2+a+n−a−8.

Hence the total time is at least 4n − 8.

• If r ≥ a + 2 then:

If the last phase before step t1 is a 1-phase then t1 ≥ 2 + 4 + 3(r − 4). In view of Lemma

4.7 we have t2 ≥ 3n − 2r + b − 4. The total time is at least 4n − 8.

If the last phase before step t1 is a 2-phase then t1 ≥ 2 + 4 + 3(r − 6) + r. If m′ is

the meeting point before this last phase then n − r + 1 ≤ m′ ≤ n − 3. In view of

Lemma 4.3 we have n − r + 1 ≤ m ≤ n − 3. In view of Lemma 4.7, t2 is either at least

3n − 2r + a + m − 8 ≥ 4n − 3r + a − 7 or at least 4n − 2r − m + b − 6 ≥ 3n − 2r + b − 3.

In both cases the total time is greater than 4n − 8.

If n − r > 2 and territory Expl is adjacent to the left endpoint then:

• if r = b then, since the first phase is a 2-phase, the last phase before step t1 must be a

1-phase and t1 ≥ 2 + 3(b − 2). In view of Lemma 4.7 we have t2 ≥ 3n− 2b + a− 4. Hence

the total time is at least 4n − 8.

• If r = b + 1 then:

If the last phase before step t1 is a 1-phase then t1 ≥ 2 + 4 + 1 + 3(b − 3). In view of

Lemma 4.7 we have t2 ≥ 3n − 2b − 2 + a − 4. Hence the total time is at least 4n − 8.

If the last phase before step t1 is a 2-phase then Lemma 4.3 implies m = n − a and

t1 ≥ 2 + 3(b − 3) + b + 1. In view of Lemma 4.7 we have t2 ≥ 4n − 2b − 2 + b − n + a− 8.

Hence the total time is at least 4n − 8.
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• If r ≥ b + 2 then:

If the last phase before step t1 is a 1-phase then t1 ≥ 2 + 4 + 3(r − 4). In view of Lemma

4.7 we have t2 ≥ 3n − 2r + a − 4. The total time is at least 4n − 8.

If the last phase before step t1 is a 2-phase then t1 ≥ 2 + 4 + 3(r − 6) + r. If m′ is the

meeting point before this last phase then 3 ≤ m′ ≤ r − 1. In view of Lemma 4.3 we have

3 ≤ m ≤ r−1. In view of Lemma 4.7, t2 is either at least 3n−2r+m+a−6 ≥ 3n−2r+a−3

or at least 4n − 2r + b − m − 8 ≥ 4n − 3r + b − 7. In both cases the total time is greater

than 4n − 8.

Since 4n − 8 ≤ 6n − 26 when n ≥ 9, this proves the theorem. 2

We will now give an optimal algorithm to solve the black hole search problem for the line (i.e.

an algorithm which produces a fastest BHS-scheme for any line). The algorithm uses procedures

probe, split and the following ones:

• walk(k): both agents go 1 step towards node k.

• walk-and-probe(v):

while the position of the agents is not adjacent to node v do

walk(v);

probe(v)

• return(s):

repeat walk(s) until all remaining agents are at s

Suppose that both agents reside at the same node m. The high-level description of Algorithm

Line is the following:

• case a = 0: the two agents explore the line by probing left of s and return

• case 1 ≤ a = b ≤ 5: the two agents explore the line by repeated splits

• case a = 1 < b: the two agents first do a split and then explore the rest of the line by

probing left and return

• case a = 2 < b: the two agents first do a split, then explore all edges left of s except one

by probing, and finally explore the last two edges by a split

• case 3 ≤ a < b or a ≥ 6: the two agents first do two splits, then explore all edges left of

s except one by probing. They explore the last left edge together with an edge right of s

by a split and finally explore the remaining edges (if any) which are right of s by probing

and return
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Algorithm 1 Algorithm Line
case a = 0

probe(0);
walk-and-probe(0);

case 1 ≤ a = b ≤ 5
for i := 1 to a

split(s − i, s + i);
case a = 1 < b

split(s − 1, s + 1);
walk-and-probe(0);

case a = 2 < b
split(s − 1, s + 1);
walk-and-probe(1);
split(0, s + 2)

case a = 3 < b
split(s − 1, s + 1);
split(s − 2, s + 2);
walk(s − 1);
walk-and-probe(1);
split(0, s + 3);

case 4 ≤ a < b OR a ≥ 6
split(s − 1, s + 1);
split(s − 2, s + 2);
walk(s − 1);
walk-and-probe(1);
split(0, s + 3);
walk(s + 2);
walk-and-probe(n);

return(s)
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The precise formulation of the algorithm is given as in Algorithm 1. The time complexity of the

algorithm is clearly linear.

Notice that after any probe, split or walk-and-probe phase at least one agent is alive. During

each walk procedure, the agents are always in the explored territory. At the end of the algorithm

all edges are explored. Therefore the following lemma holds:

Lemma 4.8 Algorithm Line produces a BHS-scheme for any line.

Lemma 4.9 The time of the BHS-scheme produced by Algorithm Line is at most:

• 4n − 2, when a = 0

•
∑a

i=1
2i, when 1 ≤ a = b ≤ 5

• 4n − 6, when a = 1 < b

• 4n − 10, when a = 2 < b or a = 3 < b

• 4n − 8, when a = 4 < b or a = 5 < b or a ≥ 6

Proof: Procedure probe requires two time units. Procedure split(k,l), requires |l−k| time units.

If a = 0 then procedure walk-and-probe requires 2 + 3(n − 1) time units while n − 1 time units

are required for returning to s. Hence the total time is 4n − 2.

If 1 ≤ a = b ≤ 5, then the total time is
∑a

i=1
2i.

If a = 1 < b then the time for the split is 2. The meeting point after the split is at s, while

the limit of the explored territory is at s − 1. Thus walk-and-probe takes time 3(n − 2) and

returning takes time n − 2, for a total time 4n − 6.

If a = 2 < b then the time for the split is 2. The meeting point after the split is at s, while the

limit of the explored territory is at s − 1. Thus walk-and-probe takes time 3(n − 4). The last

split takes time n, while the last meeting point is at s. Hence the total time is 4n − 10.

For the remaining cases the time for the two first splits is 2 + 4 and the meeting point is at s.

• if a = 3 then walk takes 1 time unit and after that the two agents are at s − 1 while the

limit of the explored territory is at s − 2. Thus walk-and-probe takes time 3(n − 6). The

last split takes time n and after that the two agents are at s + 1. So returning to s takes

another 1 time unit. The total time is 7 + 3(n − 6) + n + 1 = 4n − 10.

• if 4 ≤ a ≤ 5 and a < b, or a ≥ 6 then walk takes 1 time unit and after that the two agents

are at s−1 while the limit of the explored territory is at s−2. Thus walk-and-probe takes

time 3(b − 3) and the meeting point is at 2. The next split takes b + 3 time units and the

meeting point is at s + 1. The next walk takes 1 time unit and after that the two agents
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Figure 3: In (a) e is a red edge. In (b) e is a green edge. In (c) all solid edges are blue.

are at s+2 while the limit of the explored territory is at s+3. Thus walk-and-probe takes

time 3(a− 3). The final meeting point is at n− 1, so returning to s takes a− 1 additional

time units. The total time is 7 + 3(b − 3) + b + 3 + 1 + 3(a − 3) + a − 1 = 4n − 8.

2

Theorems 4.2, 4.1 and Lemmas 4.8, 4.9 imply:

Theorem 4.3 Algorithm Line produces a fastest BHS-scheme for any line.

5 Black hole search in a tree

In this section we study the problem of black hole search in trees.

Consider a tree T rooted at the starting node s. If e is an edge, e = (u, v) means that v is the

child of u. Let e = (u, v) be an edge of the tree. Consider the following coloring which creates a

partition of the edges of the tree. This partition will be used in the analysis of our algorithms.

• assign red color to edge e if node v has at least two descendants,

• assign green color to edge e if v is a leaf and exactly one of the following holds: u = s or

the edge (t, u) is a red edge (where t is the parent of u),

• assign blue color to edge e if it has none of the above properties

Red, green and blue edges are shown in Figure 3.
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Let e = (u, v) and e′ = (v, z) be two blue edges as shown in Figure 3c, i.e., v is a child of u and

z is a leaf and the unique child of v. We call the set of these two edges a branch. The set of all

branches of blue edges with upper node u is called a block.

Let u be a node with at least two children. Let vi, vj be two children of u. We call the edges

ei = (u, vi), ej = (u, vj) sibling edges.

Lemma 5.1 In any BHS-scheme, the following holds: a green edge has to be traversed by the

agents at least 2 times, a red edge has to be traversed at least 6 times and a branch of blue edges

requires a total of at least 6 traversals.

Proof: By Lemma 3.1 any edge has to be traversed 2 times by one agent to become explored.

In particular a green edge needs 2 traversals.

Consider a red edge e = (u, v). Let l be the number of descendants of node v. In view of

Lemmas 3.1 and 3.2, if, during any phase after its exploration, edge e is traversed always by

only one agent then at least 2l ≥ 4 additional traversals are required (an agent has to traverse e

two times for every descendant of v). If there is at least one phase after exploration of e where

the edge is traversed by both agents then at least 4 additional traversals of e are required for

the exploration of the edges with upper node v (both agents traverse e and return). Thus the

total minimum number of traversals is 6.

A branch of 2 blue edges can be traversed in the following ways. 2 traversals are required for the

exploration of the upper edge of the branch. If during any phase after exploration of the upper

edge, this edge is traversed always by only one agent then at least 4 additional edge traversals on

this branch are required. If there is at least one phase after exploration of the upper edge when

this edge is traversed by both agents then at least 6 additional edge traversals on this branch

are required (both agents traverse the upper edge, then one of them explores the lower edge and

finally they return). Therefore the total minimum number of traversals on each branch is 6. 2

Since in any BHS-scheme, each of the two agents can do at most one traversal in every time

unit, the following lemma holds:

Lemma 5.2 In any BHS-scheme the two agents need at least ⌈ l
2
⌉ time units to perform l traver-

sals.

Lemmas 5.1 and 5.2 imply:

Lemma 5.3 Any BHS-scheme requires at least 3, 1 and 3b time units for the traversals of a

red edge, a green edge and a block of b branches of blue edges, respectively.

5.1 An optimal algorithm for a family of trees

Consider the family T of rooted trees with the following property: any internal node of a tree

in T (including the root) has at least 2 children. Trees in T will be called bushy trees. For
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these trees, searching for a black hole can be efficiently parallelized by an appropriate use of the

procedure split. This enables us to get an optimal algorithm for this class of trees.

Let T be a bushy tree with root s and let u be an internal node of T . The heaviest child

v = H(u) of u is defined as a child v of u such that the subtree T (v) rooted at v (which is also

a bushy tree) has a maximum height among all subtrees rooted at children of u. The lightest

child v′ = L(u) of u is defined as a child v′ of u such that the subtree T (v′) rooted at v′ has a

minimum height among all subtrees rooted in a child of u. Ties are broken arbitrarily. Notice

that H(u) and L(u) can be computed for all nodes u in linear time.

The high-level description of Algorithm Bushy-Tree is the following. Let m be the meeting point

of the two agents after a phase (initially m = s).

- Explore any pair of unknown edges (m,x), (m, y) with upper node m by executing procedure

split(x, y), leaving edge (m,L(m)) last.

- If there is one unknown edge with upper node m (which must be (m,L(m))) explore this edge

together with another unknown edge (if any) again using procedure split. If edge (m,L(m)) is

the last unknown edge in the tree, explore it by executing procedure probe(L(m)).

- If all edges with upper node m are explored, explore similarly as before any unknown edges

incident to the children of m and to ancestors of m.

Algorithm Bushy-Tree

special-explore(s)

Procedure special-explore(v)

for every pair of unknown edges (v, x), (v, y) with upper node v do
split(x, y), so that edge (v, L(v)) is explored last

end for
if every edge is explored then

repeat walk(s) until (all remaining agents are at s)
else

case 1: every edge incident to v has been explored
next := relocate(v);
special-explore(next);

case 2: there is an unknown edge (v, z) incident to v
(* must be z = L(v) *)

explore-only-child(v, next);
special-explore(next);

end if

Function relocate(v) takes as input the current node v where both agents reside and returns the

new location of the two agents. If there is an unknown edge incident to a child of v then the

agents go to that child. Otherwise the two agents go to the parent of v.

Procedure explore-only-child(v, next) takes as input the current node v where both agents reside
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Function relocate(v)

case 1.1: ∃ an unknown edge incident to w ∈ children(v)
walk(w);
relocate := w

case 1.2: every edge incident to any child of v is explored
let t be the parent of v;
walk(t);
relocate := t

and returns the new meeting point after the exploration of edge (v, L(v)). The description of

the procedure is the following:

- If there is an unknown edge incident to a child w of v, w 6= L(v), then the agents explore edge

(w,H(w)) together with edge (v, L(v)) by split(H(w), L(v)). The new meeting point is w.

- If every edge incident to any child w of v, different from L(v), is explored and edge (v, L(v)) is

not the last unknown edge in the tree, then find the deepest ancestor a of v having a descendant

incident to an unknown edge (excluding L(v)); the agents explore edge (D(a),H(D(a))) (where

D(a) is the closest descendant of a with incident unknown edges), together with edge (v, L(v)),

by split(H(D(a)), L(v)); the new meeting point is D(a).

- If edge (v, L(v)) is the last unknown edge in the tree then explore it by calling probe(L(v));

the new meeting point is v.

Procedure explore-only-child(v, next)

case 2.1: there is an unknown edge incident to w ∈ children(v), w 6= L(v)
split(L(v),H(w));
next := w

case 2.2: every edge incident to any w ∈ children(v), w 6= L(v) is explored
(* L(v) must be a leaf *)

case 2.2.1: there are at least 2 unknown edges left
let a be the deepest ancestor of v having a descendant
incident to an unknown edge (excluding L(v));
D(a) := the closest descendant of a with incident unknown edges;
split(H(D(a)), L(v));
next := D(a)

case 2.2.2: there is only 1 unknown edge left
probe(L(v));
next := v

Notice that all edges of the tree (except possibly the last one if the number of edges is odd) are

explored by calling procedure split. Observe that in any bushy tree, there are only red and green

edges. By definition, in every red edge er = (ur, vr), node vr has at least two children and every

leaf of the tree is an endpoint of a green edge eg = (ug, vg). Also ug has at least two children.

Lemma 5.4 Algorithm Bushy-Tree produces a BHS-scheme for any bushy tree.
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Proof: Consider a bushy tree T . We prove that Algorithm Bushy-Tree explores all the edges

of T .

• If every internal node of the tree has an even number of children, then the two agents

explore all edges by calling procedure split (case 1 in procedure special-explore).

• Otherwise, consider the first meeting point v incident to an odd number of unknown edges.

The two agents explore all edges with upper node v except the edge (v, L(v)) by calling

split.

If L(v) is a leaf ((v, L(v)) is a green edge):

– If this is the last unknown edge in the tree then the two agents explore it by calling

procedure probe (case 2.2.2 in procedure explore-only-child)

– Otherwise (i.e. there is at least one more unknown edge e) the agents explore the

edge (v, L(v)) together with edge e by calling split:

∗ either edge e is incident to a child w of v (case 2.1 in procedure explore-only-child)

or,

∗ edge e is incident to a descendant of an ancestor of v (case 2.2.1 in procedure

explore-only-child)

If L(v) is an internal node ((v, L(v)) is a red edge) then edge (v, L(v)) cannot be the last

unknown edge in the tree. There must also be another child w of v with an unknown

edge (w, z) incident to w because L(v) is a lightest child of v. Hence edge (v, L(v)) is

explored together with edge (w, z) by calling split(z, L(v)) (case 2.1 in procedure explore-

only-child).

2

Since all values H(u) and L(u) can be computed in linear time it is easy to see that time

complexity of Algorithm Bushy-Tree is linear.

Theorem 5.1 Algorithm Bushy-Tree produces a fastest BHS-scheme for any bushy tree.

Proof: Consider a bushy tree T . We prove that the scheme produced by Algorithm Bushy-Tree

traverses any red edge 6 times and any green edge 2 times. Moreover every phase is a 2-phase

(i.e. the two agents traverse edges in parallel), except possibly the last phase, and no agent

waits in any 2-phase.

Notice that exploration of unknown edges takes place only at the for-loop of procedure special-

explore, and in procedure explore-only-child. An edge is explored in a 1-phase (probe) only if it

is the last one unknown (therefore a green edge). If this is the case then, since all other edges

have been explored two by two, it means that the total number of edges in the tree is odd.

Let eg = (ug, vg) be a green edge of the tree (vg is a leaf). Once edge eg is explored, no agent

will traverse it again. So in every case the number of traversals of a green edge is 2.
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Let er = (ur, vr) be a red edge of the tree (ur, vr are internal nodes and each of them has at

least 2 children). Edge er is explored always during a 2-phase (split). The number of traversals

of the edge er during its exploration is 2. Further traversals of er are done as follows.

Both agents traverse er from ur to vr in exactly one of the following ways:

• during a relocation (case 1.1)

• during a split (case 2.1)

• during a split (case 2.2.1)

Both agents traverse er from vr to ur in exactly one of the following ways:

• during a relocation (case 1.2)

• during a split (case 2.2.1)

• during the return to s

In all three latter cases, every edge in subtree T (vr) is explored. Therefore none of the agents

will traverse again edge er. Thus, the total number of traversals of a red edge is 6.

Let ρ denote the number of red edges and γ the number of green edges. If the total number

of edges is even, every phase is a split. In that case the time of our scheme is 3ρ + γ which

is optimal (see Lemmas 5.2, 5.3). If the total number of edges is an odd number, every phase

except one is a split. In that case the time of our scheme is 3ρ + γ + 1. The optimal time has

to be also at least 3ρ + γ + 1, since in any BHS-scheme in that case at least one edge has to be

explored during a 1-phase.

2

5.2 An approximation algorithm for trees

In this section we give an approximation algorithm with ratio 5

3
for the black hole search problem,

working for arbitrary trees (i.e. an algorithm which produces a BHS-scheme whose time is at

most 5/3 of the shortest possible time, for every input).

The high-level description of Algorithm Tree is the following. Let v be the meeting point of

the two agents after a phase (initially v = s); the edges with upper node v are explored by

calling procedure split until either all such edges are explored or there is at most one remaining

unknown edge incident to v, which is explored by calling procedure probe; this is repeated for

any child of v. The precise formulation of the algorithm is given below. Apart from procedures

split and probe it uses function relocate defined in the previous section.

The time-complexity of Algorithm Tree is clearly linear.
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Algorithm Tree

explore(s)

Procedure explore(v)

for every pair of unknown edges (v, x), (v, y) incident to v do
split(x, y);

end for
if there is only one remaining unknown edge (v, z) incident to v then

probe(z);
end if
if every edge is explored then

repeat walk(s) until all remaining agents are at s
else

next := relocate(v);
explore(next)

end if

Lemma 5.5 Let u be a node which is neither a leaf nor a middle of a branch of blue edges. Let

d be the down degree of u. Let β be the number of branches of blue edges with upper node u, ρ

the number of red edges with upper node u and γ the number of green edges with upper node u.

Algorithm Tree spends at most d + 4β + 2ρ time units if d is even, and d + 1 + 4β + 2ρ time

units if d is odd for the traversals of all the above edges.

Proof: The exploration of all edges ej = (u, vj), for 1 ≤ j ≤ d, takes time d if d is even, and

time d + 1 if d is odd. Moreover Algorithm Tree spends also 4 time units for the additional

traversals of each branch of blue edges and 2 time units for the additional traversals of each red

edge. Therefore the total time spent is d + 4β + 2ρ for even d and d + 1 + 4β + 2ρ for odd d. 2

Theorem 5.2 Algorithm Tree achieves a 5

3
approximation ratio.

Proof: If the tree consists of a single edge, then the ratio is one. Otherwise, suppose that the

tree has k nodes u1, u2, ..., uk such that ∀ui∃vj (eij = (ui, vj)) is a red edge, a green edge or an

upper blue edge in a branch of blue edges. In any case, ∀ui 6= s ui has at least two descendants,

hence (u′
i, ui), where u′

i is the parent of ui, is a red edge. Thus there are at least k− 1 red edges

in the tree. Let di: i = 1, ..., k be the down degree of ui. Suppose that di: i = 1, ..., l is odd and

di: i = l + 1, ..., k is even. Let βi be the number of branches of blue edges with upper node ui,

ρi the number of red edges with upper node ui and γi the number of green edges with upper

node ui. We have di = βi + ρi + γi.

According to Lemma 5.3, any BHS-scheme must spend at least 3βi + 3ρi + γi time units on the

traversals of all red edges, green edges and branches of blue edges with upper node ui. Hence

in view of Lemma 5.5 the ratio between the time of our scheme and the fastest possible scheme
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is at most:

∑l
i=1

(di + 1 + 4βi + 2ρi) +
∑k

i=l+1
(di + 4βi + 2ρi)

∑k
i=1

(3βi + 3ρi + γi)
=

∑k
i=1

(5βi + 3ρi + γi) + l
∑k

i=1
(3βi + 3ρi + γi)

The above ratio is ≤ 5

3
when 3l ≤ 6

∑k
i=1

ρi + 2
∑k

i=1
γi. Since

∑k
i=1

ρi ≥ k − 1, this ratio is

lower or equal to 5

3
when

6(k − 1) + 2

k∑

i=1

γi ≥ 3l (1)

If k − 1 ≥ l (i.e. there is at least one node of even down degree) then inequality (1) is true.

If k − 1 < l it means that l = k. This is the situation when every vertex ui has an odd down

degree. If k ≥ 2, inequality (1) still holds. If k = 1 then there is no red edge (u1 = s). As

long as there are at least two green edges, inequality (1) is true. Otherwise one of the following

holds:

• The tree consists of a block of β1 branches of blue edges where β1 is even, and one green

edge. In this case the total number of edges in the tree is odd. Hence, in any BHS-scheme

at least one edge must be explored in a 1-phase. We prove that any BHS-scheme has to

spend at least 3β1 + 2 time units for all the traversals. According to Lemma 5.1 the total

number of traversals needed is at least 6β1 +2. At least 2 of the traversals are done during

a 1-phase and require at least 2 time units. Therefore, in view of Lemma 5.2, the time

needed in this case is at least 6β1

2
+ 2 = 3β1 + 2.

According to Lemma 5.5, the scheme produced by Algorithm Tree uses d1+1+4β1 = 5β1+2

time units. Thus the ratio is at most 5β1+2

3β1+2
≤ 5

3
.

• The tree consists of a block of β1 branches of blue edges where β1 is odd. If β1 = 1 then

the ratio is one. Otherwise we prove that any BHS-scheme has to spend in this case at

least 3β1 + 1 time units for all traversals.

– If there is an edge in a branch which has been traversed by both agents during a

phase then the total number of edge traversals in that branch is 8. Therefore in view

of Lemmas 5.1, 5.2 the total number of traversals is at least 6(β1 − 1) + 8 and the

time needed is at least 6β1+2

2
= 3β1 + 1.

– Otherwise, if there is at least one edge that has been explored during a 1-phase then

the total number of traversals done during 2-phases is at most 6β1−2 by Lemma 5.1,

while there are 2 traversals done in a 1-phase which requires 2 time units. Therefore,

by Lemma 5.2, the time needed is at least 6β1−2

2
+ 2 = 3β1 + 1.

– The remaining case is that every edge is explored during a 2-phase and there is no

edge which has been traversed by both agents during a phase. Since the number of

upper edges in branches is odd, there must be a 2-phase φ during which an upper

edge of a branch is explored together with a lower edge of another branch. The time

needed for this phase is at least 4 time units since both agents cannot traverse the
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Figure 4: A tree in which the approximation ratio achieved by Algorithm Tree is exactly 5/3

same edge. In view of Lemma 5.1 the total number of traversals in every phase except

φ is at least 6(β1 − 2) + 2 + 4 (there is a branch on which only 2 traversals are done

and a branch on which only 4 traversals are done). Hence by Lemma 5.2 the time

needed in this case is at least 6β1−6

2
+ 4 = 3β1 + 1.

According to Lemma 5.5, the time of the scheme produced by Algorithm Tree is d1 + 1 +

4β1 = 5β1 + 1 time units. Thus in all three cases the ratio is at most 5β1+1

3β1+1
≤ 5

3
.

2

Notice that there exists a family of trees in which the approximation ratio achieved by Algorithm

Tree is exactly 5/3. This family includes all trees which consist of an even number β of branches

of blue edges (see Figure 4). According to Lemma 5.5, the time of the scheme produced by

Algorithm Tree is β + 4β = 5β for such a tree, while the fastest BHS-scheme for this tree

requires exactly 3β time units (for example, all upper edges are explored two by two by calling

procedure split and then all lower edges are explored in the same way).

6 Conclusion

We presented algorithms for the black hole search problem on trees. For arbitrary trees we

gave a 5/3-approximation algorithm, and for two classes of trees (lines and trees all of whose

internal nodes have at least 2 children) we gave optimal algorithms, i.e., methods of constructing

a shortest possible black hole search scheme for any input in the class. The time complexity of

all our algorithms is linear in the size of the input.

It remains open if there exists a polynomial time algorithm to construct a fastest black hole

search scheme for an arbitrary tree. After the publication of the conference version of this

paper, it was proved in [7] that the problem of constructing a fastest black hole search scheme

for an arbitrary planar graph is NP-hard. The authors also gave a 33

8
approximation algorithm

for arbitrary graphs.
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