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Glossary

Brown A dataset used in experimental evaluation. It 
ontains 137 obje
t silhouettes in

total, belonging to 13 di�erent 
ategories.

Dis
onne
tivity The dis
onne
tivity of two sets of points X, Y is the smallest distan
e

between a point in X and a point in Y . It is used in the DSaM algorithm.

DSaM Dire
t Split and Merge method for line segment dete
tion.

EM Expe
tation-Maximization algorithm. A framework that by optimizing the likeli-

hood extra
ts the parameters of a model. In our work we used the EM algorithm

to train a GMM/SMM.

ETHZ A dataset used in experimental evaluation. It 
ontains 257 real images depi
ting

s
enes of 5 
ategories (Gira�e, Cup, Swan, Apple Logo and Bottle).

Gatorbait100 A dataset used in experimental evaluation. It 
ontains 38 �sh silhouettes

in total, belonging to 8 di�erent 
ategories.

Linearity The linearity is a measure that des
ribes how 
lose the points are to a straight

line. It is used in the DSaM algorithm.

MPEG7 A dataset used in experimental evaluation. It 
ontains 1400 obje
t silhouettes

in total, belonging to 70 di�erent 
ategories.

VP The Vanishing Point is the point at whi
h the parallel lines of a 3D real world image

are interse
ted after proje
ting them onto the 2D plane of an image.



Abstra
t

Gerogiannis, Demetrios, P. PhD, Department of Computer S
ien
e and Engineering, Uni-

versity of Ioannina, Gree
e. De
ember, 2014. Feature Extra
tion for Image and Point Set

Analysis. Thesis Supervisor: Christophoros Nikou.

This thesis is divided into two parts. The �rst part fo
uses on an algorithm that �ts

line segments to a set of unordered points and its appli
ation to 
omputer vision problems.

The method is based on the observation that a set of 
ollinear points are 
hara
terized by

a 
ovarian
e matrix whose minimum eigenvalue is low and therefore de�nes an e

entri


(elongated) ellipse. At �rst, a single ellipse is �tted to the whole set of points whi
h

is then iteratively split to a large number of highly e

entri
 ellipses. Then, a merge

pro
ess follows in order to 
ombine neighboring ellipses with almost 
ollinear major axes to

redu
e the 
omplexity of the model. Experimental results on various databases show that

the proposed s
heme is an eÆ
ient te
hnique for modeling unordered sets of points and

shapes by line segments. A number of 
omputer vision appli
ation of the method are also

presented: the lo
alization of the vanishing point in an image sequen
e, the dete
tion of

retinal fundus image features, su
h as end-points, jun
tions, and 
rossovers, an algorithm

for sampling image edges and a framework for modeling and removing outliers from a

set of unordered points. All of the above methods were su

essfully 
ompared to various

alternative methods of the related literature and provided in general better results.

The se
ond part of the thesis fo
uses on the problem of image and point set registra-

tion. Registration is the pro
ess of determining the parameters of a geometri
 transforma-

tion that brings into alignment two images or point sets. In this work, the images/point

sets to be registered are modeled by a mixture model and a method relying on the min-

imization of the distan
e between distributions is proposed. We address the problems

of single and multimodal registration by employing both Gaussian mixture models and

mixtures of Student's -t distributions, whi
h are robust to outliers. Moreover, we express

the task of registration as a Bayesian regression problem with by modeling the non rigid

transformation by relevan
e ve
tor ma
hines whi
h provide a 
losed form solution for the

estimation of the transformation. An iterative algorithm is presented whi
h �rst deter-

mines the 
orresponden
e between pixels/points in the two data images/points sets and

then the non rigid transformation is estimated based on that data asso
iation.



Åê�å�áìÝíç �åñßëçøç ó�á ÅëëçíéêÜ

ÄçìÞ�ñéïò �åñïãéÜííçò �ïõ �áíáãéþ�ç êáé �çò ÁëåîÜíäñáò. PhD, ÔìÞìá Ìç÷áíéêþí Ç/Õ

êáé �ëçñïöïñéêÞò, �áíåðéó�Þìéï Éùáííßíùí, ÄåêÝìâñéïò, 2014. ÅîáãùãÞ ×áñáê�çñéó�éêþí

ãéá ÁíÜëõóç Åéêüíùí êáé Óçìåßùí. ÅðéâëÝðïí�áò: ×ñéó�üöïñïò Íßêïõ.

Ç ðáñïýóá äéá�ñéâÞ áðï�åëåß�áé áðü äýï èåìá�éêÝò åíü�ç�åò. Ó�çí ðñþ�ç åíü�ç�á

ðáñïõóéÜæå�áé ìßá ìÝèïäïò ìïí�åëïðïßçóçò åíüò óõíüëïõ ìç äéá�å�áãìÝíùí óçìåßùí áðü

Ýíá óýíïëï åõèõãñÜììùí �ìçìÜ�ùí êáé ç åöáñìïãÞ �çò óå äéÜöïñá ðñïâëÞìá�á õðïëïãéó�é-

êÞò üñáóçò. Ç ìÝèïäïò âáóßæå�áé ó�çí ðáñá�Þñçóç ü�é Ýíá óýíïëï óõíåõèåéáêþí óçìåßùí

÷áñáê�çñßæå�áé áðü Ýíáí ðßíáêá óõììå�áâëç�ü�ç�áò �ïõ ïðïßïõ ç åëÜ÷éó�ç éäéï�éìÞ Ý÷åé

ðïëý ìéêñÞ �éìÞ êáé ïñßæåé ìßá Ýëëåéøç ìå ìåãÜëç åêêåí�ñü�ç�á. Áñ÷éêÜ, �ï óýíïëï �ùí

óçìåßùí ðñïóåããßæå�áé áðü ìßá Ýëëåéøç ç ïðïßá ó�ç óõíÝ÷åéá äéá÷ùñßæå�áé åðáíáëçð�éêÜ

óå ðåñéóóü�åñåò åëëåßøåéò þó�å �ï óýíïëï �ùí óçìåßùí íá ðñïóåããéó�åß áðü Ýíáí áñéèìü

Ýêêåí�ñùí åëëåßøåùí. Ó�ç óõíÝ÷åéá, ëáìâÜíåé ÷þñá ìßá äéáäéêáóßá óõã÷þíåõóçò �ùí

åëëåßøåùí ðïõ Ý÷ïõí óõããñáìéêïýò ìÝãéó�ïõò Üîïíåò ãéá íá ìåéùèåß ç ðïëõðëïêü�ç�á �ïõ

ìïí�Ýëïõ. �åéñáìá�éêÜ áðï�åëÝóìá�á äåß÷íïõí �çí áðï�åëåóìá�éêü�ç�á �çò ìåèüäïõ íá

óõìðéÝæåé �çí ðëçñïöïñßá ìç äïìçìÝíùí óõíüëùí óçìåßùí áëëÜ êáé ó÷çìÜ�ùí. Åðßóçò,

ðáñïõóéÜæå�áé ç åöáñìïãÞ �çò ìåèüäïõ ó�ïí åí�ïðéóìü �ïõ óçìåßïõ äéáöõãÞò óå åéêïíïóåé-

ñÝò, ó�ïí åí�ïðéóìü êáé ÷áñáê�çñéóìü åéêüíùí �ïõ âõèïý �ïõ áìöéâëçó�ñïåéäïýò ÷é�þíá

�ïõ ïöèáëìïý, ó�ç äåéãìá�ïëçøßá ÷áñ�þí áêìþí áðü 2Ä åéêüíåò êáèþò êáé ó�çí åîÜëåéøç

�ïõ èïñýâïõ êáé áêñáßùí ìå�ñÞóåùí óå 2Ä óýíïëá óçìåßùí. ¼ëåò áõ�Ýò ïé ìÝèïäïé

óõãêñßíïí�áé åðé�õ÷þò ìå ìåèüäïõò �çò âéâëéïãñáößáò.

Ôï äåý�åñï ìÝñïò �çò äéá�ñéâÞò åó�éÜæåé ó�ï ðñüâëçìá �çò õðÝñèåóçò åéêüíùí êáé óõ-

íüëùí óçìåßùí. ÕðÝñèåóç åßíáé ç äéáäéêáóßá �çò åê�ßìçóçò �ïõ ãåùìå�ñéêïý ìå�áó÷çìá�é-

óìïý ðïõ öÝñíåé óå áí�éó�ïé÷ßá äýï óýíïëá óçìåßùí Þ åéêüíåò. Ó�çí åñãáóßá áõ�Þ, ïé

åéêüíåò/óýíïëá óçìåßùí ìïí�åëïðïéïýí�áé áðü ìéê�Ýò êá�áíïìÝò êáé ç õðÝñèåóç åðé�õã÷Üíå-

�áé ìå �çí åëá÷éó�ïðïßçóç �çò áðüó�áóçò ìå�áîý �ùí êá�áíïìþí. �ñï�åßíå�áé ç ìïí�åëïðïß-

çóç �ùí äåäïìÝíùí ìå ìéê�Ýò êáíïíéêÝò êá�áíïìÝò üóï êáé áðü ìéê�Ýò êá�áíïìÝò Student's

t ïé ïðïßåò åßíáé åýñùó�åò óå äåäïìÝíá ðïõ äåí áêïëïõèïýí �ï êõñßáñ÷ï ìïí�Ýëï.

Åðßóçò, ç äéáäéêáóßá �çò õðÝñèåóçò ðåñéãñÜöå�áé ùò Ýíá ðñüâëçìá ÌðåûæéáíÞò ðáëéíäñü-

ìçóçò ìå �ç ìïí�åëïðïßçóç �ïõ ìå�áó÷çìá�éóìïý áðü ìç÷áíÝò äéáíõóìÜ�ùí óõíÜöåéáò

(RVM) �á ïðïßá ðáñÝ÷ïõí ìßá êëåéó�Þò ìïñöÞò ëýóç ãéá �ï ãåùìå�ñéêü ìå�áó÷çìá�éóìü.

Ó�ï ðëáßóéï áõ�ü ðáñïõóéÜæå�áé Ýíáò åðáíáëçð�éêüò áëãüñéèìïò ðïõ åê�åëåß Ýíá âÞìá

áí�éó�ïß÷éóçò ìå�áîý �ùí åéêïíïó�ïé÷åßùí/óçìåßùí êáé ó�ç óõíÝ÷åéá ìå âÜóç áõ�Þ �çí

áí�éó�ïß÷éóç åê�éìÜåé �ïí åëáó�éêü ãåùìå�ñéêü ìå�áó÷çìá�éóìü ðïõ óõíäÝåé �á äýï óýíïëá.



Prologue

0.1 Overview

0.2 Stru
ture of the thesis

0.1 Overview

The �eld of 
omputer vision has been advan
ing during the last years, bene�ted from the

development of the te
hnology and the available 
omputational resour
es. Many methods

have been proposed in a high level to deal with the diÆ
ult problem of simulating human

per
eption. A 
ommon 
hara
teristi
 of all these methods is that they are based on

preliminary feature extra
tion te
hniques to derive meaningful information from images

for further postpro
essing.

Features are very basi
 entities that 
arry information related to a spe
i�
 problem.

Computing features is performed via various algorithms and the pro
ess is 
alled feature

extra
tion and their representation may vary. A prin
ipal 
hara
teristi
 is that feature

models tend to be as simple as possible. Lines and line segments are widely used in the


omputer vision literature as feature representation models. They present low 
omplexity

and their aggregation 
an produ
e more 
omplex models enabling the a

urate represen-

tation of more 
omplex stru
tures in an image. Sin
e the early stages of the development

of the 
omputer s
ien
e �elds the interest was fo
used on the extra
tion of lines and line

segments on a set of points, that in many 
ases, is derived from the edges of an image.

The pioneering Hough Transform be
ame the basis upon whi
h many variants were based

and a numerous of appli
ations used them as a prepro
essing step.

The fa
t that a majority of stru
tures depi
ted in images (e.g. buildings, furniture,


ars, human bodies, trees, et
.) 
an be de
omposed into a set of lines, and more spe
i�
ally

line segments, makes the latter an important feature to re
ognize in images. Figure

1 depi
ts some representative examples of images were line segments 
ould be used to

des
ribe the image 
ontent. The typi
al Hough Transform is only 
apable of 
omputing

lines, while its variants that produ
e line segments demand a lot of e�ort, as they are based

on trial and error, to adjust the 
orresponding thresholds. In addition, re
ently proposed

methods may solve the 2D problem, but their generalization to more dimensions, i.e.



extra
tion of planes, is not trivial nor 
an they deal with point 
oordinates. Alternatively,

they operate dire
tly on images and thus, they 
annot handle data 
olle
ted via other

methods, e.g. range data. All these fa
tors motivated us to study the problem of line

segment dete
tion. Moreover, taking into a

ount that in most of the methods, threshold

values tuning has not been thoroughly studied, we take 
are for setting the values of the

various thresholds used by our line segment dete
tion method. In brief, the main problem

we wish to ta
kle in the �rst part of this dissertation, may be 
on
luded to the following:

given a set of unordered points X = {x
i

∈ R
2|i = 1; : : : ; N} �nd the set of line segments

E = {�
j

|j = 1; : : : ; K} be modeling a

urately the points, where �

i

is the line des
ribing

the i-th segment, while the number K of the line segments is unknown. In addition,

provide a method for automati
 tuning of any parameters of the line segment method.

(a) (b) (
) (d) (e)

Figure 1: Example of various images where line segments 
ould be used to des
ribe the

depi
ted information: (a) road 
ra
ks, (b) maps, (
) obje
t edges, (d) building edges, (e)

road lanes.

As soon as the line segments are extra
ted, various appli
ations 
an bene�t from the

established model. The following list des
ribes in brief the appli
ations that were studied

in this dissertation. The reader is referred to the related se
tion for more details.

• The dete
tion of a vanishing point in an image depi
ting stru
tured environments,

i.e. pla
es were the edges between the various regions of the image are 
learly

established (e.g. the edge line between a wall and the 
oor). Some representative

examples of the aforementioned stru
tured environments are shown in �gure 2, both

for indoor and outdoor s
enes. The vanishing point is the point of the image spa
e

where parallel lines of the real world interse
t after proje
ting them to the image

spa
e. This point is an important feature that 
an be used for posterior analysis

of the image (e.g. extra
tion of the road plane, the walls, et
.) or autonomous

navigation.

• The sampling of point 
louds in order to provide a new set with fewer points,

preserving the initial information. Sampling is an important prepro
essing step in

many 
omputer vision algorithms, be
ause the latter present high 
omplexity and

thus, their eÆ
ient exe
ution is related to the number of the observations they

are parsing. A similar problem is the re
onstru
tion of a shape, based on some


hara
teristi
 points. In brief, given a shape (i.e. a set of 2D points) it is asked

to dete
t those 
hara
teristi
 points from the initial set that summarize the shape

and enables the re
onstru
tion of the initial set of points (i.e. shape) with as low

distortion as possible. Figure 3 demonstrates a shape re
onstru
tion example. In



(a) (b) (
)

Figure 2: Example of images depi
ting stru
tured worlds. (a) Indoor s
ene (b),(
) Out-

door s
enes.

�gure 3(a) the initial set is demonstrated, while �gure 3(b) depi
ts the extra
ted


hara
teristi
 points (green stars). In �gure 3(
) the re
onstru
tion result is shown

(blue points) superpositioned over the initial shape (red points). Noti
e the small

deviation between real and 
omputed data.

(a) (b) (
)

Figure 3: Example of shape re
onstru
tion. (a) The initial set of points des
ribing a

shape, (b) The 
hara
teristi
 points (green stars) are extra
ted from the initial shape (red

points), (
) The re
onstru
tion result (blue points) superpositioned over the initial shape

(red points). Noti
e the small deviation between real and 
omputed data.

• The 
ompression of bilevel images that depi
t the edge map of a real image. More

pre
isely, we dealt with the problem of en
oding binary images that depi
t the


ontour of various shapes. This type of images is mainly used to des
ribe obje
ts in

the MPEG4 standard, in terms of video en
oding. Thus, it is plausible to en
ode

individual obje
ts in a video frame, a fa
t that provides freedom to the end user,

regarding the presentation options. The eÆ
ien
y of the 
ompression method is

di
tated by the a
hieved 
ompression rate with respe
t to distortion.

• The 
hara
terization of a retinal fundus image. The tree stru
ture of the veins

in a retinal fundus image 
an be en
oded with line segments. Then it is easy to

dete
t the interse
tion points of the various veins and pro
eed to a post pro
essing

algorithm that analyzes this spe
ial points.

• A method for extra
ting meaningful stru
tures in presen
e of outliers. In general,

an outlier is 
onsidered every point that does not obey the general model of the



real data. In other words, as outliers 
an be 
onsidered all those points that are

stru
tureless, provided that a valid model that des
ribes the stru
tured data is

established. That model is a set of line segments in our work.

On the other hand, we dealt also with the problem of image and point set registration.

Registration is a very 
ommon problem and in many 
ases it is a prepro
essing step for

other methods, e.g. the automati
 evaluation of the development of a patient's 
ondition

based on the observation of some time varying medi
al images. In general, registration

relies on the determination of that parti
ular geometri
 transformation parameter values,

that upon being applied to one image/set of points it will bring it into alignment with a

referen
e image/set of points. Figure 4 explains the registration problem. The goal is to

determine that geometri
 transformation that will be applied on the left image of �gure 4

(yellow ba
kground) and will align the pixels su
h that the pixels of the blue 
ir
le in the

left will be mat
hed with those of the green 
ir
le in the right and the pixels of the blue

ellipse in the left will be 
orresponded with those of the green ellipse in the right image.

A 
hallenging problem, whi
h motivated us to deal with registration, o

urs when the

two images to be registered are of di�erent modalities. A basi
 observation is that similar

stru
tures in the two images have similar probabilisti
 representation of their intensity.

Thus, upon perfe
t alignment the distan
e between those distributions will be small. To

that end, a mixture of Gaussian distributions was employed and in order to handle the

presen
e of outliers we extended the model with Student's-t distributions.

Figure 4: Explanation of the registration problem. The goal is to determine that geometri


transformation that will be applied on the left image (yellow ba
kground) and will align

the pixels su
h that the pixels of the blue 
ir
le in the left will be mat
hed with those of the

green 
ir
le in the right and the pixels of the blue ellipse in the left will be 
orresponded

with those of the green ellipse in the right image.

A basi
 fa
tor that a�e
ts the �nal registration result is the model that is sele
ted

to des
ribe the registration transformation. In 
ase of rigid transformations (i.e. rota-

tions and translations) the model is trivial. However, this is not true when a non-rigid

transformation is taken into 
onsideration, where more 
ompli
ated models need to be


onsidered. In that framework, we employed a Bayesian framework, the Relevan
e Ve
tor

Ma
hines, to provide a more robust model that 
an handle false mat
hes and prevent

the transformation from global failing, by redu
ing the impa
t of a false mat
h in a lo
al

region. Moreover, this approa
h provides a 
losed formula for modeling the registration

transformation.

The 
ontribution of this thesis 
an be summarized into the following:



• An iterative framework for line segment dete
tion to summarize unordered point

sets.

• A voting s
heme for the dete
tion of vanishing points in stru
tured images.

• A method for eÆ
iently annotating retinal fundus images.

• A method for eÆ
iently sampling unordered 2D points.

• A 
omparative study between line segment extra
tion methods for bilevel image


ompression.

• A method for extra
ting stru
tures (e.g. shapes) in presen
e of outliers.

• A Bayesian approa
h for modeling a non-rigid registration transformation whi
h is

robust to false mat
hes.

• An algorithm for registering multimodal images and 
loud of points.

0.2 Stru
ture of the thesis

The �rst part of this thesis deals with line segment extra
tion from a set of unordered

points and appli
ations. The se
ond part presents our work in the �eld of image and

point set registration.

In Chapter 1, we introdu
e an iterative method for the extra
tion of line segments.

A short introdu
tion of the related literature is provided and the proposed algorithm is

des
ribed in detail. Finally, an extensive experimental evaluation is provided 
omparing

our method with other 
ommonly used approa
hes.

In Chapter 2, some appli
ations based on line segment dete
tion are introdu
ed.

A short introdu
tion is presented for ea
h appli
ation, to des
ribe the problem and the

various solutions provided in the related literature. Then, the proposed method is pre-

sented along with an experimental evaluation and 
omparison with the state-of-the-art.

Thus, se
tion 2.1 deals with the dete
tion of the vanishing point in stru
tured images,

se
tion 2.2 presents an eÆ
ient algorithm for sampling unordered points, in se
tion

2.3 a method for shape en
oding and bilevel image 
ompression is presented, in se
tion

2.4 a method for 
hara
terizing a retinal fundus image is demonstrated, and �nally, in

se
tion 2.5 an algorithm for extra
ting stru
tured information (e.g. shapes) in presen
e

of outliers is introdu
ed.

In Chapter 3, the modeling of a non rigid transformation for point set registration

is presented. The algorithm is des
ribed in detail and various experimental results are

demonstrated.

In Chapter 4, we des
ribe a solution of the rigid registration problem based on

mixture models.



Part I

Features and Appli
ations



Chapter 1

Modeling sets of unordered points

using line segments

1.1 Introdu
tion

1.2 A Dire
t Split and Merge (DSaM) Framework for Line Segment Dete
tion

1.2.1 Split pro
ess

1.2.2 Merge pro
ess

1.3 Evaluation of the Line Segment Dete
tion Algorithm

1.3.1 Numeri
al Evaluation

1.3.2 Comparison with the Hough Transform

1.1 Introdu
tion

Lines are one of the most basi
 models to des
ribe features in an image due to their

simpli
ity, regarding the modeling parameters. Moreover, lines are suitable models for

des
ribing real world stru
tures as most of the human made s
enes are being represented

by 
at surfa
es. Lines 
an be used to summarize features in a higher level, e.g. 
ontours.

Examples regarding the importan
e of line extra
tion in
lude the dete
tion of vanish-

ing points [18℄, the ve
torization of raster images [19℄ and the dete
tion of road stru
tures

and parts [20℄ are among appli
ations ne
essitating line segment des
ription of image

stru
tures. In many of the aforementioned problems, the involved algorithms assume

that they are provided with an ordered point set and standard polygonal approximation

[10, 21℄ is then applied. However, determining the ordering of point sets is not a trivial

task and in the method des
ribed herein we relax this assumption by making no prior

hypothesis about the ordering of the points.

1



In the above 
ontext, the Hough transform (HT) is a widely used method for line

�tting and many variants have been proposed to improve its eÆ
ien
y [22, 23℄. One of

these variants is the randomized Hough transform (RHT) [24, 25℄ whi
h randomly sele
ts

a number of pixels from the input image and maps them into one point in the parameter

spa
e whi
h was shown to be less 
omplex, 
ompared to the original algorithm, as far

as time and storage issues are 
on
erned. In [26℄, the probabilisti
 HT was proposed

whose basi
 idea is to apply a random sampling of edge points to redu
e 
omputational


omplexity and exe
ution time. Further improvements were introdu
ed in [27℄. A similar


on
ept was proposed in [28℄, where an orientation-based strategy was adopted to �lter

out inappropriate edge pixels, before performing the standard HT line dete
tion whi
h

improves the randomized dete
tion pro
ess. Also, the idea of fuzziness is integrated in

the main algorithm in [29℄ to model the un
ertainty imposed to the 
ontour due to noise.

Thus, a point 
an 
ontribute to more than one bin in the standard HT pro
ess. A general


omparison between probabilisti
 and non-probabilisti
 HT variants 
an be found in [30℄.

The robust HT is introdu
ed in [31℄ where both the length and the end points of the

lines may be 
omputed. Moreover, the algorithm in [32℄ provides a method for adopting a

shape dependent voting s
heme for the 
al
ulation of the histogram bins. Finally, a novel

HT based on the eliminating parti
le swarm optimization (EPSO) is proposed in [33℄,

to improve the exe
ution time of the algorithm. The problem parameters are 
onsidered

to be the parti
le positions and the EPSO algorithm sear
hes the optimum solution by

eliminating the "weakest" parti
les, to speed up the pro
ess.

Line segment �tting may also be used in a shape des
ription pro
ess. The 
ommonly

used algorithm of Moore [34℄ was a �rst solution to shape following and utilizes the

neighborhood of points. However, this algorithm is appropriate only for traversing 
urves

without interse
tions and produ
es models with high 
omplexity, although improvements

of the main algorithm have also been 
onsidered up to date [35℄. Another 
ommon model

�tting method is the RANSAC algorithm [36℄, whi
h despite the fa
t that it provides

robust estimations, it is appropriate for �tting only one model at a time. Other approa
hes

are the in
remental line �tting [37℄ whi
h is sensitive to noise and, most importantly, needs

sequential ordering of the points and probabilisti
 methods [38℄ based on the Expe
tation-

Maximization algorithm, generally ne
essitating the prior determination of the number

of model 
omponents.

More re
ently a new method was introdu
ed that relies on the Helmholtz prin
iple: 'no

stru
ture is per
eived in white noise', based on the work of [39℄ for adaptive thresholding.

Its main 
hara
teristi
, a

ording to the authors, is that this method is parameterless and


an a

urately 
ontrol the false positive and false negative dete
tions. In brief, initially

the image gradient is 
omputed at ea
h pixel and then through a region growing algo-

rithm they try to align points whose gradient dire
tion is within a prede�ned threshold.

Although that there is a threshold parameter, the authors 
laim that their method is

nearly parameterless be
ause the de
ision threshold on the number of 
ontrol points in a

given segment is in a

√

( log) dependen
y of the expe
ted number of false alarms. The

2



reader is refereed to [40, 41℄ for more details and to [42℄ for the implementation details of

the method.

1.2 A Dire
t Split and Merge (DSaM) Framework for Line Seg-

ment Dete
tion

Let X = {x
i

|i = 1; : : : ; N} be a set of points and E = {�
j

|j = 1; : : : ; K} be the set of line
segments modeling the points, where �

i

is the line des
ribing the i-th segment.

We de�ne the modeling error ∆ indu
ed by the representation of line segments:

∆(X;E) =
N∑

i=1

K∑

j=1

Æ

ij

d(x
i

; �

j

); (1.1)

where K is the number of line segments the model uses to model the points, x

i

∈ R
2
,

i = 1; : : : ; N are the points, d(x
i

; �

j

) is the perpendi
ular distan
e of point x
i

to line �

j

,

Æ

ij

is an indi
ator fun
tion whose value is one if point x

i

belongs to line segment �

j

and

is zero otherwise.

In order to prevent over�tting, models having a large number of line segments should

be penalized. Therefore, an optimal model would have both low value of ∆ and low


omplexity.

The 
omputation of the ellipses, modeling the line segments, is performed in two steps:

an iterative split pro
ess, where points are modeled by a number of line segments repre-

sented by the major axes of the 
orresponding ellipses and an iterative merge pro
ess,

where small line segments are merged to redu
e the model 
omplexity. The split pro
ess

tries to minimize the modeling error while the merge pro
ess de
reases the model 
om-

plexity, i.e. the number of line segments 
ompared to the total number of points in the

set.

In what follows the two steps are presented in detail.

1.2.1 Split Pro
ess

The ultimate goal of this step is to 
over the point spa
e with line segments representing

the long axes of elongated ellipses and therefore, ea
h point of the shape should be assigned

to an e

entri
 ellipse. A split 
riterion is de�ned, based on Gestalt theory [43℄, whi
h

models the linearity and the 
onne
tivity the human brain uses when modeling 
ontours.

In order to split a set X, it should be either non linear or dis
onne
ted, or both. Lin-

earity des
ribes how 
lose the points are to a straight line, while dis
onne
tivity measures

how 
on
entrated these points are. In the ideal 
ase, the 
ovarian
e matrix of 
ollinear

2D points should have a very large eigenvalue and a zero eigenvalue. The eigenve
tor


orresponding to the larger eigenvalue indi
ates the dire
tion of the line segment. If the

linearity property is relaxed, the less 
ollinear the points be
ome (i.e. they diverge from

the linear assumption) the larger the value of the minimum eigenvalue is. Based on that

3



observation, in our method, linearity is des
ribed by the minimum eigenvalue of the 
o-

varian
e matrix of the points in X. Also, the dis
onne
tivity W of two sets of points X,

Y is the smallest distan
e between a point in X and a point in Y :

W (X; Y ) = min
x∈X
y∈Y

|x− y|: (1.2)

In the 
ase of a single set, dis
onne
tivity is the largest distan
e between two su

essive

points in that set. It may be 
omputed by proje
ting the points onto both axes de�ned by

the eigenve
tors of the 
ovarian
e matrix of the set. Then, su

essive points are de�ned

by s
anning along the axes and their distan
es are 
omputed. Let X

i

be the proje
tion

of a set X onto the the eigenve
tor e

i

. The dis
onne
tivity of X is de�ned as

W (X) = max
j=1;:::;N−1
i=1;:::;d

|xj
i

− x

j+1
i

|; (1.3)

where N is the number of points inX, d is the dimension ofX (here d = 2) and xj
i

is the j-

th point of the sorted set X

i

. A large value of dis
onne
tivity indi
ates a better separation

of the point sets. The proje
tions onto all of the eigenve
tors should be examined as we

do not know a priori whi
h dire
tion to follow while splitting. Although intuitively one

would suggest to split along the dire
tion of the prin
ipal axis, we observed that in many


ases that approa
h was not the best. Also, let us note that as the ordering of the points

is not known a priori, their proje
tion onto the eigenve
tors of their 
ovarian
e matrix,

provides a natural way of ordering.

The dis
onne
tivity of a single set of points is also important to be estimated in the

split step, as there may exist subsets that although they are linear, they are dis
onne
ted.

The split of an ellipse should be performed along the dire
tion de�ned by an eigenve
tor

of its 
ovarian
e. In order to sele
t the split dire
tion, the axis 
orresponding to an

eigenve
tor is 
onsidered as the dis
rimination border between the split line 
lusters and

points belonging to the same subplane are grouped together. Then the dis
onne
tivity

of ea
h line 
luster is 
omputed. Finally, the dire
tion with the largest dis
onne
tivity is

sele
ted for splitting (�gure 1.1).

Eventually, the adopted strategy that minimizes ∆ and prefers elongated ellipses 
an

be expressed as follows: split every ellipse whose minimum eigenvalue is greater than a

threshold T1 (linearity) and the maximum gap, within the 
urrent segment is greater than

a threshold T2 (dis
onne
tivity). The pro
ess is initialized with one ellipse, 
orresponding

to the 
ovarian
e of the initial points set 
entered at the mean value of the point lo
a-

tions. Thresholds T1 and T2 may be 
omputed with a heuristi
 algorithm, as explained

in subse
tion 1.3.1.

At iteration t + 1, a given ellipse, 
hara
terized by the eigenvalues �

t

1 and �

t

2 of its


ovarian
e matrix Σt

(with �

t

1 ≥ �

t

2), with 
enter �

t

, is split to two new ellipses with


enters the two antipodal points on the major axis:

�

t+1
1 = �

t +
√
�

t

e

t

,

�

t+1
2 = �

t −
√
�

t

e

t

,

(1.4)
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(b) (b)

Figure 1.1: Split pro
ess. (a) At iteration t+1, the ellipse with 
enter �

t

is split into two

new ellipses e1 and e2, with 
enters �

t+1
1 and �

t+1
2 given by (1.4). (b) The new 
enters

are marked with a star (*). The reassignment of the points to the new 
enters is shown.

Points of one 
ategory, assigned to e1, are marked with a square, while points assigned to

e2, are marked with a 
ir
le.

where e

t

, �

t

are the eigenve
tor and the eigenvalue 
orresponding to the split dire
tion

along whi
h split is performed (�gure 1.1).

The points of the split ellipse are then reassigned to the two new ellipses a

ording to

the nearest neighbor rule. In this way, new ellipses o

ur, whi
h are more elongated as

they have greater e

entri
ity and their minor axes are 
loser to the 
ontour (�gure 1.2).

Moreover, this detailed representation of the point set provides a

urate modeling of the

joints, 
orners and parts of the 
ontour exhibiting high 
urvature.

A variant of the method would be to 
ompute the 
ovarian
e matrix of the points on

the 
onvex hull of the point set, whi
h provide more robustness to outliers.

(a) (b) (
) (d)

Figure 1.2: Steps of the split and merge pro
ess. The pro
ess is initialized with the mean

and the 
ovarian
e of the full set of points. (a) Split into 2 ellipses. (b) Split into 4

ellipses. (
) End of split (35 ellipses). (d) The �nal merge result (23 ellipses). The �gure

is better seen in 
olor.

1.2.2 Merge Pro
ess

The role of the merge pro
ess is to redu
e the 
omplexity of the model. In 
ase there

exist adja
ent ellipses whose major axes have similar orientations, it would be bene�
ial

to merge and repla
e them with a more elongated ellipse. Therefore, in this step, ellipses

are merged using the following rule: merge two 
onse
utive ellipses, if the resulting ellipse

has minimum eigenvalue smaller than a threshold T1 (linearity) and the marginal width

between the two line 
lusters is smaller than a threshold T2 (dis
onne
tivity).
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Note that the threshold T1 
ould be set equal to the threshold used in the split pro
ess,

where the value of parameter T1 spe
i�es whether an ellipse has low e

entri
ity and needs

to be split. In the merge pro
ess, it indi
ates whether two 
andidates for merging ellipses

would result in an ellipse with high e

entri
ity. One 
ould use the same threshold in

both pro
esses, assuming the same signi�
an
e. On the other hand, a relaxation of the

merge threshold 
ould lead to a rougher model of the points, smoothing out details like

joints. In our experiments, the merge threshold was sele
ted to be the same with the split

threshold. The same applies for threshold T2 that indi
ates whether two segments are


lose enough to be 
onsidered as one line segment.

The overall des
ription of the method is presented in Algorithm 1.

SPLIT PROCESS

input: The set of points X = {x
i

|i = 1; : : : ; N}.
output: A set of ellipses {�

j

;Σ
j

}.
Initialize the algorithm by estimating the mean and 
ovarian
e of the point lo
ations.

while there are ellipses to split do

Split every ellipse whose minor eigenvalue is greater than T1 and its dis
onne
tivity

is greater than T2.

• Sele
t the dire
tion that provides the greatest dis
onne
tivity.

• Set the 
enters of the new ellipses a

ording to (1.4).

MERGE PROCESS

input: The ellipses from the split pro
ess �

j

= {�
j

;Σ
j

}; j = 1; : : : ;M .

output: A redu
ed set of ellipses.

while there are ellipses to merge do

for all ellipses �

i

; i = 1; : : : ;M do

if merging �

i

with �

j

provides an ellipse whose minor eigenvalue is less than T1

and its dis
onne
tivity is less than T2 then

A

ept merging.

Set �

i

to the ellipse that result from merging

Algorithm 1: Dire
t Split-and-Merge Algorithm

1.3 Evaluation of the Line Segment Dete
tion Algorithm

In this se
tion we evaluate the eÆ
ien
y of the introdu
ed algorithm. To that end, two 
at-

egories of experiments were 
ondu
ted. The purpose was to investigate the performan
e

of the method both in shape data, but also in real images. Thus, various well-known

databases were employed, that 
ontain either obje
t silhouettes or s
enes of real images.
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The GatorBait100 database [2℄ 
onsists of 38 shapes of di�erent �shes grouped in 8 
at-

egories. The shapes of this database are not 
losed and 
ontain many jun
tions. The

MPEG7 shape database [1℄ 
onsists of 1400 silhouettes of various obje
ts 
lustered in

70 
ategories.The shape silhouette database used in [3℄, that 
ontains 137 silhouettes of

various obje
ts, 
lustered in 13 
ategories, was also used in our experiments. Finally, to

investigate the behavior of the proposed algorithm in real s
ene images, the images (257)

from the ETHZ image set [4℄ were also used. Table 1.1 gives a brief des
ription of ea
h

database. In all 
ases, the edges were extra
ted and the 
oordinates of the edge pixels

were used to des
ribe the 
ontour. The Canny edge dete
tor [44℄ was used in all 
ases.

Table 1.1: Short des
ription of the databases used in our experiments.

Database # 
ategories # shapes/s
enes Des
ription

GatorBait100 [2℄ 8 38 Fish silhouettes

MPEG7 [1℄ 70 1400 Obje
t silhouettes

Brown [3℄ 13 137 Obje
t silhouettes

ETHZ [4℄ 5 257 Real S
ene Images

1.3.1 Numeri
al evaluation

In this se
tion, we present the results

1

of 
omparing the DSaM method with the widely

used implementation of Kovesi [5℄. This is an implementation of the polygon approxima-

tion [10℄ method. The algorithm assumes the traversal of the points is known. Initially,

it sele
ts an arbitrary point and starts traversing the shape. A line segment is 
omputed

by all points that have been visited so far, and the pro
esses iterates for all points in the

traversal order. Then, the modeling error is 
omputed, in terms of deviation of points

from the 
urrent line segment. If the deviation after a point is used top 
ompute the line

segment is larger than a threshold, this point is 
onsidered as the starting point of a new

line segment. The pro
ess terminates when all points have been visited.

Tables 1.2 and 1.3 summarize the numeri
al results. Some representative images from

those databases are given in �gure 1.3. As it 
an be observed, in some 
ases, there

exist inner stru
tures and thus, the ordering of the points is not obvious. Note that to

share 
ommon parameters, in the Kovesi [5℄ implementation, we used the dis
onne
tivity

threshold of our method. The exe
ution time for 
omputing that value, is not in
luded

in the exe
ution time of the Kovesi implementation. The model 
omplexity is 
omputed

by the index:

MC =
#ellipses

#points

: (1.5)

Lower values ofMC imply lower 
omplexity and therefore a more 
ompa
t representation.

The distortion, is the measure of the quality of the �tting, and is 
omputed as the

average distan
e between a point and its 
orresponding line segment, as 
omputed by

1

Matlab 
ode available at http://www.
s.uoi.gr/∼dgerogia
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(a) (b) (
) (d)

Figure 1.3: Some representative images of the databases we used in our experiments.

Please note that in some 
ases inner stru
tures exist. This does not permit to extra
t an

ordering of the points (a)MPEG7 [1℄, (b) Gatorbait [2℄, (
) Brown [3℄, (d) ETHZ [4℄.

Table 1.2: Modeling Error ∆ (1.1)

MPEG7 [1℄ (70 shapes)

method mean std median min max

DSaM 0.489 0.093 0.509 0.080 0.773

Kovesi 2.796 3.977 1.736 0.533 46.984

GatorBait100 [2℄ (38 shapes)

method mean std median min max

DSaM 0.454 0.033 0.452 0.383 0.509

Kovesi 2.215 0.862 1.981 1.477 6.473

Brown [3℄ (137 shapes)

method mean std median min max

DSaM 0.492 0.119 0.514 0.105 0.894

Kovesi 2.871 6.192 1.095 0.617 33.632

ETHZ [4℄ (255 s
enes)

method mean std median min max

DSaM 0.494 0.061 0.503 0.257 0.635

Kovesi 2.299 1.340 1.914 1.056 12.655
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Table 1.3: Model Complexity MC (1.5)

MPEG7 [1℄ (70 shapes)

method mean std median min max

DSaM 3.954% 0.013% 3.788% 0.269% 11.429%

Kovesi 3.624% 0.017% 3.406% 0.269% 12.442%

GatorBait100 [2℄ (38 shapes)

method mean std median min max

DSaM 3.280% 0.004% 3.172% 2.732% 4.541%

Kovesi 2.524% 0.005% 2.378% 1.961% 3.904%

Brown [3℄ (7 s
enes)

method mean std median min max

DSaM 5.792% 0.016% 6.186% 0.921% 10.145%

Kovesi 6.586% 0.022% 6.911% 0.335% 10.821%

ETHZ [4℄ (16 s
enes)

method mean std median min max

DSaM 5.342% 0.014% 5.195% 2.436% 8.427%

Kovesi 5.402% 0.018% 5.205% 1.601% 11.040%

ea
h method. Please note that the average length of the diagonal of the bounding box of

the various datasets, is about 500 units (ranging from 300 units in Brown [3℄ to 700 units

in ETHZ [4℄).

In the proposed algorithm, there are two parameters to be a priori spe
i�ed, a thresh-

old that determines the elongation of an ellipse (T1) and a threshold 
hara
terizing the

dis
onne
tivity of a set (T2). Both parameters are used to de
ide whether to split (in the

split pro
ess) or merge (in the merge pro
ess). A small value preserves the details, while

a larger one provides more 
oarse results. For our experiments, we 
omputed the values

of the parameters as:

T1 =
1

N

N∑

i=1

�

i

(1.6)

T2 =
1

N

N∑

i=1

d

i

(1.7)

where N is the number of the points of the set, �

i

is the smallest eigenvalue of the 
ovari-

an
e matrix of points {x |x ∈ N

�

x

i

; i = 1; : : : ; N}, with N�

x

being the �- neighborhood of

x, and

d

i

= min
y∈N�

x

i

||x
i

− y||; i = 1; : : : ; N: (1.8)

Large values for � de
rease the model 
omplexity providing larger modeling error and

details are not preserved. In our experiments, we set � = ⌈0:01 × N⌉ for 
omputing the

values of T1 and T2. To make our implementation more eÆ
ient, instead of taking all

points into 
onsideration, we 
omputed a random permutation of the indi
es of points
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and used only the �rst 10% of them. Thus, in high density datasets, like in the ETHZ

database [4℄, the values of the thresholds 
ould be estimated qui
kly.

In general, the DSaM method and the Kovesi implementation produ
e models with

similar 
omplexity, a fa
t that is obvious, sin
e they employ the same thresholds. However,

the DSaM method provides mu
h more a

urate results w.r.t distortion (Table 1.2 and

Table 1.3).

Figure 1.4 explains the meaning of the modeling error. Larger modeling error is

asso
iated with greater deviations of the 
omputed model from the shape 
ontour. The

reader may observe that the proposed method provides a more a

urate result, 
ompared

to the 
omputation with the Kovesi [5℄ method.

Figure 1.4: A representative result of the modeling of a shape from the MPEG7 dataset

[1℄with the proposed (left) and Kovesi [5℄ (right) methods. Green boxes highlight the

di�eren
es regarding the modeling error of the two methods. Although in general both

methods modeled the shape globally, lo
ally the proposed method modeled more a

u-

rately the shape 
ontour.

As our method models the line segments with ellipses, we tried to �t line segments

by exploiting various modi�
ations of a typi
al Gaussian Mixture Model (GMM) [45℄,

for example using an in
remental GMM, or imposing 
onstraints in the update step of

the 
ovarian
e matri
es (de
omposing the 
ovarian
e matri
es with SVD, repla
ing the


orresponding minimum eigenvalue with a very small value, threshold T1, and then re-


omputing the 
ovarian
e matrix). All these variants failed to produ
e an eÆ
ient result.

Moreover, the exe
ution time was quite high (10 times 
ompared to those of DSaM).

Thus, we opted for ex
luding the results from this presentation.

Finally, we 
ondu
ted experiments to verify the robustness of the method against the

presen
e of noise that degrades the 
ontour of an obje
t. To that end, we used three

patterns (see �gure 1.5 (a)-(
)) whi
h were randomly repeated, to 
reate new images. A

representative image is given in �gure 1.5 (e). As a ground truth for the number of line

segments, we used 4 for the square, 3 for triangle and 10 for the star.

The set of unordered points was produ
ed by simple edge dete
tion. Then, zero

10



(a) (b) (
) (d) (e)

Figure 1.5: (a) - (
) The primitive images used to 
reate the arti�
ial dataset for exper-

iments with Gaussian additive noise. (d) Contour degraded by additive Gaussian noise

of 18dB. A representative test image produ
ed by randomly repeating the patterns of

images in (a)-(
).

mean Gaussian noise with varying standard deviation was added in order to get several


on�gurations of signal-to-noise ratio (SNR). A representative result of a degraded 
ontour

is given in �gure 1.5 (d). Note that no ordering of points may be established in that


ase and thus polygon approximation may not be performed. To make the experiment

independent from the noise 
on�guration ea
h experiment was repeated 20 times. The

algorithm assumes that a form of binary data (e.g. an edge map) is provided. Degradation

by noise is performed after the edge extra
tion in order to examine the behavior of the

algorithm to the dete
tion of line segments. If the noise was added to the original image

the edges would be erroneous and we would not have a standard baseline for evaluating

the algorithm.

In �gure 1.6, we present the results of the experiments. The error is expressed as

the absolute di�eren
e between the real number of segments and the one 
omputed by

our method. It 
an be observed that while the magnitude of the noise de
reases, the

error is also de
reased. The di�eren
e between true and estimated number of segments

is generally small, 3 on average with low varian
e (±2 segments), 
ompared to the total

number of line segments, 90 line segments on average, 
orresponding to 3% deviation

between true and estimated measurement. Thus, it 
ould be 
laimed that the proposed

method exhibits a 
onsistent and eÆ
ient performan
e even if the 
ontour is 
orrupted.

1.3.2 Comparison with the Hough Transform

Sin
e the proposed algorithm �ts line segments to a set of points, we also tested it against

the 
ommonly used Hough Transform (HT). However, sin
e the standard HT is appropri-

ate for �tting lines and not line segments, we applied the Progressive Probabilisti
 Hough

Transform (PPHT), as proposed in [46℄ and implemented in the OpenCV library [47℄.

The implementation of PPHT imposes three parameters: (i) a threshold, indi
ating the

minimum number of points in a bin, in the line parameter spa
e, in order to 
onsider

that the line is represented by a suÆ
ient number of points, (ii) the minimum length of

a line segment and (iii) the maximum gap between line segments lying on the same axis.

In our experiments, we �xed the last two parameters (after a trial and error pro
edure

11



Figure 1.6: Experimental results using the datasets of �gure 1.5 (e) that demonstrate

the performan
e of our method in presen
e of Gaussian additive noise in terms of model


omplexity error. The verti
al axis represents the absolute error between the real number

of segments and the one 
omputed by our method.

keeping those parameters that best �t the examined points) and varied the threshold.

The obtained results for the PPHT exhibited signi�
ant irregularities su
h as a large

number of overlapping lines for the same segment. Also, the 
orners of the shapes were

not 
orre
tly 
aptured. Representative experiments on the MPEG7 dataset [1℄ are shown

in �gure 1.7(a)-(
) while the solution of our DSaM algorithm is illustrated in 1.7(d).

The PPHT is based on a histogram whi
h 
orrelates the a

ura
y of the result with the

number of bins used. Also, a threshold must be established to eliminate lines with small

parti
ipation in the �nal result. A small number of bins may lead to an underestimation

of the number of segments, while a large number of bins in
reases the 
omplexity of the

model. As far as the threshold is 
on
erned, its value may have similar e�e
ts in the �nal

model. A large value may drop some segments, while a small value may be responsible

for a large number of lines �tted, analogous to a GMM with one 
omponent per point.

A more important drawba
k of the PPHT is that many overlapping lines may model the

same line segment. Figure 1.7 presents solutions of PPHT for a given set of points and

various parameters values.
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(a) (b) (
) (d)

Figure 1.7: (a)-(
) Results of the PPHT algorithm to a set of points representing the shape

of a bone (MPEG7 dataset) y varying the minimum number of points in a bin (namely,

5, 15 and 25). Only a small fra
tion of the lines is drawn for visualization purposes. Note

the overlapping lines. (d) The result of our method. The �gure is better seen in 
olor.
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2.1 Vanishing Point Dete
tion

2.1.1 Introdu
tion

Human-made s
enes, su
h as roads, buildings and their fa
ades or indoor 
orridor bound-

aries have a large number of parallel lines in the 3D spa
e. In the framework of a pinhole


amera model, two parallel lines are proje
ted onto a pair of 
onverging lines in the 2D

image spa
e provided that their 3D plane is not fronto-parallel to the image plane. The


ommon point of interse
tion of all 3D parallel lines (generally belonging to di�erent

planes) in the 2D image is 
alled the vanishing point. The dete
tion of a vanishing point

in an image is a 
ru
ial step in many 
omputer vision appli
ations, like robot navigation,


amera 
alibration, single view 3D s
ene re
onstru
tion and pose estimation.

In the related literature, there are two main 
ategories of methods for vanishing point

dete
tion. There are te
hniques requiring knowledge of the intrinsi
 parameters of the


amera, whi
h exploit the notion of 3D parallelism and prominent stru
tures of the s
ene

orthogonal to ea
h other, also 
alled Manhattan dire
tions [48, 49℄. There are also te
h-

niques assuming no knowledge of the internal 
amera parameters, su
h as the method in

[50℄ using the Helmholtz prin
iple for image partitioning, the Expe
tation-Maximization

(EM) framework adopted in [51℄ or the non-iterative algorithm based on 
onsensus sets

[52℄.

In 
ontrast to the above methods, whi
h may base their estimation in the existen
e

of three orthogonal vanishing points, images a
quired in stru
tured environments su
h as

roads or 
orridors are a spe
i�
 
ategory where the dete
tion of a single vanishing point

may be suÆ
ient for the underlined appli
ation (e.g. vision-based robot motion along a


orridor). The general strategy 
onsists in partitioning the image into a

umulator 
ells


olle
ting votes from the line segments having their interse
tion in the spe
i�
 
ell. The

dete
tion of peaks in the a

umulator spa
e provides the vanishing points [53, 54℄.

An alternative approa
h is presented in that 
hapter, based on the DSaM algorithm of


hapter 1. Se
ondly, a voting step is applied through a kernel, where 
andidate vanishing

points are assigned weights proportional to the lengths of the line segments they belong

to. Therefore, longer line segments whi
h are more probable in indoor environments (e.g.

the interse
tion of wall and ground) are more probable to 
ontribute to the determination

of the vanishing point.

2.1.2 The algorithm

Given an indoor s
ene (e.g. a 
orridor), the �rst step of the method 
onsists in dete
ting

the edges of the image. Therefore, the probabilisti
 boundaries are �rst 
omputed [55℄

though in simpler, non textured environments, the output of the standard but established

Canny edge dete
tor dete
tor [44℄ is generally a

eptable. Then the DSaM algorithm is

performed to model the s
enes line segments. Please note that other methods may also

be applied.
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The next step 
onsists in �tting line segments to the extra
ted edges. Various algo-

rithms may be employed, like the one des
ribed in 1.

After the determination of the line segments in terms of the long axes of highly e
-


entri
 ellipses, the set C
vp

of 
andidate vanishing points is 
onstru
ted by 
omputing all

the pairwise interse
tion points between all the lines. To further improve the eÆ
ien
y

of the method, interse
tion points that lie outside the image plane 
ould be ignored but

this issue is optional and depends on the spe
i�
 appli
ation. For example, in a 
orridor,

the vanishing point lies within the image plain and intuitively the vanishing line usually

appears somewhere in the viewer's horizon. On the other hand, if the algorithm is to be

used by a robot navigation system, the dete
tion of the vanishing point outside the image

plane may indi
ate an abrupt turn.

Then
e, a weight w(p) = |lp1 ||lp2 | is assigned to ea
h point p ∈ C
vp

whi
h is equal

to the produ
t of the lengths |lp1 | and |lp2 | of the two line segments whose interse
tion is

the 
andidate vanishing point p. Thus, a 
andidate vanishing point produ
ed by short

segments, or one long and one short segment, is attributed with a small weight.

In the �nal step of our work
ow, the vanishing point is 
omputed by sele
ting one of

the 
andidate points, whi
h is a
hieved through a voting s
heme. This step is similar in

spirit to the approa
h presented in [53℄. However, the main di�eren
e with respe
t to that

method is that, in our algorithm, ea
h line segment votes only for the interse
tion points

belonging to it while in [53℄ a line segment votes for every 
andidate vanishing point (even

if it does not belong to the segment).

In a voting s
heme, an important fa
tor is the size of the a

umulator array bins,

whi
h in our 
ase is a grid 
overing the image support G ≡ [0, G
w

] × [0, G
h

] ⊂ R
2
. The

grid is uniformly divided into equally sized 
ells B

i

, i = 1; :::; N , using a s
aling fa
tor

� ∈ (0; 1] imposing a bin size of [�G
w

; �G

h

].

In order to assign weights to ea
h 
andidate vanishing point present in a given bin,

a kernel fun
tion 
entered at ea
h array bin is employed. To this end, a 2D Π-Sigmoid

kernel is applied to ea
h bin [56℄, imposing thus a fuzzy 
on
ept to the borders of the 
ell.

The support of a 1D Π-Sigmoid kernel:

k(x) =
1

b− a

[
1

1 + e

−�(x−a)
− 1

1 + e

−�(x−b)

]

; (2.1)

with � > 0, whi
h is depi
ted in �gure 2.1, approximates a uniform kernel whose borders

are fuzzi�ed in order to avoid abrupt 
hanges. Thus, points under the plateau 
ontribute

equally with their votes while the 
ontribution of points lying at the extremities falls o�

qui
kly but it does not be
ome zero, depending on the value of the parameter �. The

larger the value of � the less fuzzy the kernel borders be
ome and 
onsequently the edges

of the kernel are very steep (�g. 2.1). By these means, the 
apture region of the kernel

allows points from the neighboring bin to 
ontribute with a relatively low non-zero weight.

A 2D Π-Sigmoid kernel Π
s

(x; a;b; �) with parameters a = (�1; �2), b = (b1; b2), with

�

i

≤ b

i

, and � is a separable fun
tion that may be generated from the produ
t of two 1D
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Figure 2.1: Π
s

(x; a;b; �) for � = 50 and � = 1.

kernels:

Π
s

(x; a;b; �) =

2∏

d=1

1
1+e−�(x

d

−a

d

) − 1
1+e−�(x

d

−b

d

)

b

d

− a

d

:

Parameters a and b 
ontrol the width of the kernel, while the slope � 
ontrols the fuzziness

of the kernel.

Thus, the total votes 
asted to 
ell B

i

are 
omputed by:

V (B
i

) =
∑

p∈C
vp

w(p)Π
s

(p; a
i

;b

i

; �): (2.2)

The voting pro
ess is 
on
luded by dete
ting the dominant 
ell B

∗
a

ording to:

B

∗ = argmax
B

i

{V (B
i

)}: (2.3)

Finally, the 
oordinates of the vanishing point are 
omputed as the weighted average of

all the 
andidate vanishing points with respe
t to the Π-Sigmoid kernel 
entered at the


ell B

∗
:

p

∗ =

∑

p∈C
vp

w(p)pΠ
s

(p; a∗;b∗
; �

∗)

∑

p∈C
vp

w(p)Π
s

(p; a∗;b∗
; �

∗)
; (2.4)

where a

∗
;b

∗
; �

∗
are the parameters of the kernel 
orresponding to B

∗
in (2.3). Note

that all the 
andidate points 
ontribute to the solution. However, the importan
e of the

points in the dominant 
ell is overwhelming. The steps of the method are summarized in

Algorithm 1. In order to in
rease the robustness of the algorithm and to speed it up, line

segments that are shorter than a threshold T and their orientation is 
lose to horizontal or

verti
al within � degrees are pruned. Although this rule 
ould be omitted, it was dedu
ed

that setting the value of parameter T to 5% of the size of the diagonal of the image and

� = ±15o improves signi�
antly the performan
e of the method.

2.1.3 Numeri
al Evaluation

To evaluate our method, we 
reated two sequen
es, with 35 and 18 frames respe
tively,

with a frame size of 320 × 240 pixels ea
h. The images in ea
h sequen
e were 
aptured
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input: A 
olor image.

output: The 
oordinates of the vanishing point.

Dete
t the edges of the image.

Dete
t line segments (e.g. use the algorithm introdu
ed in [6℄).

Prune segments whose length is below T and their orientation is verti
al or horizontal

within ±�o.
Compute the 
oordinates of pairwise interse
tion points between all segments.

Voting

Cal
ulate the votes for ea
h 
ell B

j

, j = 1; : : : ; N using (2.2).

Find the dominant 
ell using (2.3).

Compute the vanishing point using (2.4).

Algorithm 2: Vanishing point dete
tion algorithm

periodi
ally by a robot moving on a spe
i�
 
ourse. The sequen
es represent an indoor


orridor under various illumination 
onditions. To make the task more 
hallenging, in the

se
ond sequen
e, a person walking towards the robot appears in all of the frames. Then, 5

individuals were asked to dete
t manually the vanishing point in ea
h image. The ground

truth vanishing point for ea
h image was 
onsidered to be the mean point indi
ated by

the volunteers. The standard deviation of the various vanishing points provided by the

humans is 11 pixels whi
h is approximately 3:5% of the shorter image dimension.

In order to investigate the dependen
e of the �nal result on the values of the parameters

� of the Π-Sigmoid kernel and the grid resolution tuned by �, experiments were performed,

examining the mean dete
tion error and the exe
ution (in Matlab) time with respe
t to

those parameters. Note that as the grid resolution de
reases the algorithm demands

more exe
ution time be
ause it integrates a larger number of kernels. The results are

summarized in Table 2.1, where we have tested the behavior of the algorithm for two


on�gurations for the parameter �, namely � = 10 and � = 50. As it may be observed,

the proposed method exhibits a 
onsistent behavior sin
e the variation of the dete
tion

error is rather small 
on
erning the di�erent 
on�gurations of the parameters. The pair

of parameters � = 50 and � = 0:05 is a good 
ompromise between dete
tion error and

exe
ution time. The method provides, in general, a

urate results 
onsidering that its

dete
tion error is in average 2% of the image diagonal. Moreover, as the algorithm was

developed in Matlab it may be further a

elerated and easily integrated in embedded

systems.

Table 2.1: Algorithm Performan
e

� = 10 � = 50

� 0.05 0.08 0.10 0.20 0.05 0.08 0.10 0.20

Time per image (se
) 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1

Error (pixels) 5.4 6.7 7.6 15.4 5.4 6.8 7.5 15.4
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We also 
ompared our dire
t split-and-merge framework (DSaM) to the Hough Trans-

form (HT), whi
h is widely used for line dete
tion. We kept the proposed voting s
heme

in both algorithms. At �rst, the HT needs is relatively diÆ
ult to be tuned due to the

tedious task of determining the bin sizes. Moreover, the HT provided large errors (of the

order of 15 pixels) and thus failed to 
orre
tly dete
t the vanishing point in indoor images

be
ause it was a�e
ted by spurious points.

Representative results of our method are given in �gure 2.2. The images depi
t frames

of an indoor 
orridor, with and without obsta
les. The 
orresponding error between real

and 
omputed vanishing point is 1:54 pixels. The green lines 
orrespond to the line

segments 
omputed by the DSaM algorithm and represent the image edges. The blue

lines represent the edges 
ontributing to the dete
tion of the vanishing point. The red

star sign depi
ts the vanishing point as it was 
omputed by our method, while the yellow


ir
le is the ground truth.

Figure 2.2: Representative results of the VP dete
tion with the proposed method (the

�gure is better viewed in 
olor).

Finally, we 
ondu
ted some experiments to 
ompare the proposed voting s
heme

against the trivial 
ase of the 
omputation of the VP using least squares. In this ap-

proa
h, all vanishing lines are 
omputed and the VP is 
onsidered to be the point that

has the shortest distan
e to all lines. In a prepro
essing step, a line pruning pro
edure

eliminates the lines that are either verti
al or horizontal, within a threshold range. We


ompared various line segment dete
tion methods (HT, Kovesi [5℄, LSD [40, 41, 42℄) and


on�gurations. For this experimental setup, we employed a video stream from a vehi
le

moving straight on a highway. 19 su

essive frames were extra
ted from the video, that


orrespond to a distan
e of about 130 meters. Sin
e the ground truth is not known, we

tested the stability of ea
h method, by 
omputing the number of su

essive frames where

the distan
e between the dete
ted VP in the two frames is less or equal a threshold. The

distan
e between two VP dete
ted in su

essive frames is a reje
tion 
riterion for the

validity of the 
omputation. Thus, the stability of the result is 
riti
al. Figure 2.3 shows

a representative frame of the video stream, while Table 2.2 summarizes the experimental

results.
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Ideally, large numbers should appear in the �rst 
olumns of Table 2.2, indi
ating that

the majority of the VP are lo
ated 
lose to ea
h other. On the other hand, large numbers

in the last 
olumns of Table 2.2 indi
ate that the dete
ted VP are moving within the

image spa
e between su

essive frames, and thus the asso
iated method is not 
onsidered

stable.

Multiple appearan
e of some methods, indi
ate a di�erent parameter tuning. The

name of the method indi
ates the line dete
tion algorithm and the algorithm used for point

dete
tion. In 
ase of the HT exe
utions, the size of the bins of the histogram in the voting

spa
e was altered, leading to a di�erent number of lines 
ontributing to the dete
tion of

the VP. As far as the number of peaks that should be dete
ted in the HT voting pro
ess,

it was set to the same number of line segments dete
ted by our method. Sin
e our method

provided a

urate results, this tuning minimized the impa
t of an erroneous sele
tion of

the number of lines in the HT voting pro
ess. Regarding the method of Kovesi, di�erent

values for the merging threshold were 
onsidered. To minimize the impa
t of an arbitrary

sele
tion of the threshold value, we also employed the merge threshold provided by our

method in one of the variations for the VP dete
tion based on the method of Kovesi.

One may observe that the proposed voting s
heme is superior to the 
onventional least

squares approa
h, as it provides more stable results. Moreover, the 
ombination of the

DSaM method, presented in 
hapter 1 and the LSD line dete
tor along with the proposed

voting s
heme manage to provide a quite stable and eÆ
ient dete
tion, with the latter

method presenting slightly better results. Note also that the DSaM result is highly related

to the Canny edge dete
tion, a 
ase that is handled intrinsi
ally in the LSD algorithm.

Figure 2.3: Representative results (the �gure is better viewed in 
olor).
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Table 2.2: Number of two su

essive frames where the distan
e of the dete
ted VP in the

two frames is less or equal to a threshold

Method

Distan
e (in pixels)

1 2 3 4 5 6 7 8 9 10 ≥10

DSaM+Π-Sigmoid 0 0 1 5 6 7 8 9 10 11 8

HT+LSE (1) 0 0 0 0 0 0 0 0 0 0 19

HT+LSE (2) 0 1 1 1 2 2 2 2 3 3 16

HT+LSE (3) 0 0 1 1 1 2 5 5 5 5 14

HT+LSE (4) 0 0 0 0 0 0 0 0 0 0 19

HT+LSE (5) 0 1 1 1 2 2 2 2 3 3 16

Kovesi+Π-Sigmoid (1) 0 0 1 1 1 2 2 2 4 4 15

Kovesi+Π-Sigmoid (2) 0 0 0 0 1 1 1 1 2 3 16

Kovesi+LSE (1) 0 0 0 0 0 0 0 0 0 0 19

Kovesi+LSE (2) 0 0 0 1 1 2 3 4 5 5 14

LSD+Π-Sigmoid 0 0 2 5 7 10 10 10 15 17 2

LSD+LSE 0 0 2 2 2 2 2 4 7 7 12

2.2 Point 
loud sampling and re
onstru
tion

2.2.1 Introdu
tion

As modern image analysis and 
omputer vision algorithms have be
ome more 
omplex

requiring a large number of operations and the the data to be pro
essed are big, a pre-

pro
essing step is a ne
essary task that may assist toward eÆ
ient and fast pro
essing. In

many 
ases, that step involves sampling an original image or it edge map (e.g. 
omputa-

tion of the vanishing point) in order to keep a fra
tion of points that des
ribe with �delity

the initial information. More spe
i�
ally, in image pro
essing, this leads to edge pixel

sampling so as to extra
t the eventually hidden patterns (e.g. obje
t 
ontours) inside an

initial observation so that the result is as 
lose as possible to the observation.

The most straightforward approa
h is to apply random sampling, whi
h assumes that

the edge points are observations of a random variable that follows a spe
i�
 distribution.

As soon as we model that distribution, point sampling is augmented to sampling obser-

vations from a known distribution. In the simplisti
 random sampling, it is assumed that

the original set follows a uniform distribution. A more advan
ed, but notoriously time


onsuming probabilisti
 model is Monte Carlo sampling [45℄. J. Malik independently pro-

posed 
ontour sampling in [57℄ to apply it to an obje
t retrieval algorithm [7℄. Initially,

a permutation of the points is 
omputed and a large number of the samples is drawn

from that permutation. Then iteratively, the pair of points with the minimum pairwise

distan
e is dete
ted and one of them is kept as a valid sample. This pro
ess is iterated

until the desired number of samples is rea
hed and it ensures that points from image

regions with large density will be part of the �nal data set.
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In [58℄, the fast mar
hing farthest point sampling method is introdu
ed for the pro-

gressive sampling of planar domains and 
urved manifolds in triangulated point 
louds or

impli
it forms. The basi
 idea of the algorithm is that ea
h sample is iteratively sele
ted

as the middle of the least visited area of the sampling domain. For a 
omprehensive

review of the method, the reader is also referred to [59℄.

The Fourier transform and other 2D/3D transforms have been applied for des
ribing

shape 
ontours for 
ompression purposes. For example, in [60℄, the idea is to warp a

3D spheri
al 
oordinate system onto a 3D surfa
e so as to model ea
h 3D point with

a parametri
 ar
 equation. However, this method demands an ordering of points and


annot model 
louds of points, where more 
omplex stru
tures, like jun
tions and holes,

are present.

A framework for shape retrieval is presented in [61℄. It is based on the idea of repre-

senting the signature of ea
h obje
t as a shape distribution sampled from a shape fun
tion.

An example of su
h a shape fun
tion would be the distan
e between two random points

on a surfa
e. The drawba
k of the algorithm is that the number of initial points has to be

relatively small for the method to be fast and eÆ
ient. This may lead to a 
ompromise

between the number of points of the sample and the information loss. Moreover, the

eÆ
ien
y of the method highly depends on the presen
e of noise.

This type of edge sampling is a preponderant step before other algorithms are applied.

This is the 
ase in [7℄, where sampling redu
es the amount of data for obje
t re
ognition

and in [62℄, where a shape 
lassi�
ation algorithm ne
essitates a small number of samples

to redu
e its 
omplexity. Hen
e, the quality of sampling may a�e
t the �nal result if the

resulting point set does not preserve the 
oheren
e of the initial information. Considering

also that most of these algorithms demand large 
omplexity in terms of resour
es (i.e.

memory allo
ation) in order to extra
t 
omplex features that dis
riminate better the

various data, one may 
ome to the 
on
lusion that sampling may be a very 
ru
ial step.

In this work, we propose an algorithm for fast, a

urate and 
oherent sampling of

image edge maps. The pro
edure 
onsists of two steps. At �rst, the image edges are

summarized by a set of line segments, whi
h redu
es the initial quantity of points but

a

urately preserves the underlining information 
ontained in the edge map. Then, based

on the ellipse-based representation, a de
imation of the ellipses is performed and samples

are drawn a

ording to their lo
ation on the long ellipse axis.

2.2.2 The algorithm

The �rst step of the algorithm relies in extra
ting the line segments that model the point


louds. This task 
an be ful�lled by the DSaM algorithm explained in 
hapter 1, or any

other line segment algorithm introdu
ed in the related literature. However, the a

ura
y

of the result is highly related to the eÆ
ien
y of the line segment modeling.

Assume now that the goal is to sample the set of points that are presented in Fig. 2.4

and keep only Q% of them. The bla
k dots represent the original points. This may be


onsidered as the output of the DSaM algorithm [6℄. More spe
i�
ally, these points lie on
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the long axis of a highly e

entri
 horizontal ellipse. The axis is shown in red. In order

to approximate the lo
al point distribution, a histogram is 
omputed with a number of

bins equal to Q × L, where L is the number of initial points in the set to be sampled.

Then, we represent ea
h bin by its mean value, whi
h under e.g. Gaussian assumption

it is the geometri
 
enter of the points in the bin and we sele
t in ea
h bin the point

that is 
loser (in terms of Eu
lidean distan
e) to this geometri
 mean. By repeating the

pro
edure for ea
h line segment produ
ed by the appli
ation of the DSaM algorithm we

are able to sample the original point 
loud.

Figure 2.4: An example of the sampling pro
ess. The bla
k points represent the original

set of points, while the red line is the is their summary 
omputed by DSaM [6℄. The

verti
al blue lines depi
t the limits of the histogram bins. The green points are those

sele
ted to represent the sampled set be
ause they are 
loser to the mean value of the bin.

The �gure is better seen in 
olor.

It may be easily understood that the eÆ
ien
y of the approa
h is highly related to the


orre
t determination of a model approximating the lo
al manifold of the point set. The

larger the deviation of the model from the lo
al manifold be
omes, the less a

urate is the

sampling method. This is true as the model fails to 
ompute the histograms 
orre
tly and

therefore to establish a

urately the bin 
enters. Consequently, the sele
ted samples will

be less representative of the distribution of the initial edges. For that reason, we relied

on the DSaM algorithm whi
h may a

urately des
ribe the edge map.

An important issue of the sampling algorithm is the value of the sampling frequen
y

Q, that is how densely should we sample? Moreover, the number of samples should vary

lo
ally with respe
t to the number of image edges present in an image region. To this

end, based on the 
lustering of points to highly e

entri
 ellipses, we propose to sele
t

the number of samples to be equal to Æ times the number of points that are present in

the mostly populated ellipse, where Æ ≥ 1:0. This guarantees that, highly 
on
entrated

image regions will be more densely sampled but also that sparse regions should always

have some representatives as they have already been assigned to an ellipse. This is in


ontrast to random or even Monte Carlo based sampling where sparse areas may have no

representatives in the sampled data set.

In other words, the sampling rate is 
omputed by

Q = Æ

R

L

; (2.5)

where R is the maximum number of members in the 
lusters, L is the total number of

points in the original set and Æ ≥ 1:0 is a real positive number. The larger the value of

Æ is, the more samples we get, and thus the 
loser to the initial set our sampling result

is. In other words, the estimation of the p-value of parameter Æ is a 
ompromise between

the quality of the result and its 
omplexity.
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So far we have presented an algorithm for redu
ing the number of points in a set with

a minimal impa
t regarding the information loss. This rationale, 
an be extended, to

extra
t shapes from point 
louds. In other words, we will present a method for extra
ting

shapes with a desired resolution, in terms of number of points. If we assume that the

manifold lo
ally 
an be approximated linearly, then the DSaM method introdu
ed in

se
tion 1 
an be employeed. A line segment � 
an be des
ribed by its starting and ending

points, x

s

and x

e

respe
tively, i.e. � = {x
s

;x

e

} where x

s

;x

e

∈ R
2
. In prin
ipal, a line is

modeled by the following equation Ax+By+Γ = 0. where x; y; A; B;Γ ∈ R and (x; y)

is a point laying onto the line. Sin
e x

s

and x

e

are given, determining A, B, Γ is trivial.

Then following a similar pro
ess with the sampling algorithm des
ribed earlier, we 
an

reprodu
e the 
orresponding shape part, at any desired resolution. Thus, starting from

point x

s

and following the dire
tion of the line segment with a prede�ned step � ∈ R
+

ea
h time, we may re
onstru
t (approximate) the initial points. The value of the step

� 
ontrols the density of the result: the higher its value is, the more points we extra
t.

Algorithm 3 demonstrates the steps of the proposed shape re
onstru
tion method.

The 
ontribution of the DSaM method is that in manages to model a

urately enough

the hidden manifold of the point 
loud and thus provide eÆ
ient features (line segments)

for shape re
onstru
tion. A dire
t appli
ation of this method would be the eÆ
ient

dete
tion of the proje
tion of random point onto the 
ontour of a shape, like the method

proposed in [63℄.

input: The set of unordered points X = {x
i

|i = 1; : : : ; N}, M ∈ N.

output: The 
omputed set of points Y = {x
i

|i = 1; : : : ;M} that des
ribe a shape.

Run the DSaM algorithm (refer to 
hapter 1) to model the manifold.

Let �

i

= {xi
s

;x

i

e

}, i = 1; : : : ; K be the line segments extra
ted, with x

i

s

; x

i

e

being the

starting and ending points of the i-th segment respe
tively.

for i=1:K do

Let R
i

= {ri0; ri2; : : : ; riM
i

} be the re
onstru
ted points based on the segment �

i

, where

r

i

0 = x

i

s

and r

i

M

i

= x

i

e

.

�

i

∈ R = |xi
e

−xi
s

|
M

i

.

for j=1:M-2 do

r

i

j

= r

i

j−1 + �~e, where ~e is the unit ve
tor with dire
tion similar to the dire
tion of

�

i

.

Y =
⋃

K

i=1{Ri

}.

Algorithm 3: Shape re
onstru
tion from a 2D point 
loud

2.2.3 Numeri
al Evaluation

For our experiments we used two datasets with 
ontours of various obje
ts: The MPEG7

dataset [1℄ and the Gatorbait dataset [2℄. For more details about those datasets, please
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re�er to se
tion 1.3. The edges were extra
ted with the Canny edge dete
tor [44℄ and the


oordinates of the edge pixels were used as input to our experiments.

A minimum des
ription length (MDL) approa
h [45℄ is adopted to 
ompute the value

of Æ. We de�ne:

Φ(Æ) = D(↓ (X
or

; Æ); X
or

) + �| ↓ (X
or

; Æ)| (2.6)

where X

or

is the original set of points, ↓ (X
or

; Æ) is the output of the sampling pro
ess

applied to set X

or

with the sampling rate 
omputed by (2.5), | · | denotes the 
ardinality
of the 
orresponding set and D(P;Q) is the Hausdor� distan
e between the set of points

P and Q.

In order to learn parameter Æ, we randomly sele
ted 119 images from our dataset. The

DSaM sampling method was exe
uted for various values of the parameter Æ in the interval

[1:0; 3:0] and Æ = 1:6 minimized Φ(Æ), whi
h was used in our experiments (Figure 2.5).

Figure 2.5: The value Æ = 1:6, whi
h minimizes Φ(Æ) was used in our experiments.

The eÆ
ien
y of our method was evaluated by 
omparing it to widely used methods

su
h as the sampling s
heme proposed by Malik [57℄, Monte Carlo sampling and simple

random sampling. In order to quantitatively measure the �delity of the sampled point

set to the original one we used the Hausdor� distan
e between the aforementioned point

sets.

The rational is that the smaller the D(X; Y ) be
omes, the 
loser the sample is to

the initial data. This 
on
ept may be 
onsidered as a try to minimize the distortion-


ompression rate. In other words, we wish to sample a set of points (
ompress) by keeping

the information loss small (distortion). Moreover, to establish a 
ommon baseline, we used

the same sampling rate for all of the 
ompared methods, whi
h is the one des
ribed in the

previous se
tion. In order to avoid any possible bias, we also tested smaller sampling rates

for the other methods. the idea was to explore whether they produ
e better results, in

terms of similarity with the original shape using these smaller sampling rates. However,

the results proved that by de
reasing the sampling rate the results be
ome poorer for the

other methods.
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The overall results are summarized in Table 2.3. As it 
an be observed, our method

provides better results in all 
ases with regard to all of the 
ompared methods. Repre-

sentative results on Gatorbait [2℄ dataset are demonstrated in Fig. 2.6. The reader may

observe that our method manages to preserve better the details of the original set, as it

produ
es more uniform results and thus the distribution of the points in the sampled set

is 
loser to the original.

Table 2.3: Hausdor� distan
e between the original and the sampled sets using di�erent

sampling methods.

MPEG7 [1℄ (70 shapes)

Algorithm mean std min max

Proposed method 0.00 0.02 0.00 0.29

Malik [57℄ 0.00 0.05 0.00 1.10

Monte Carlo 0.03 0.32 0.00 6.21

Random Sampling 0.01 0.19 0.00 3.31

GatorBait100 [2℄ (38 shapes)

Algorithm mean std min max

Proposed method 0.21 0.04 0.05 0.35

Malik [57℄ 0.30 0.11 0.11 0.51

Monte Carlo 3.08 3.27 0.61 17.02

Random Sampling 1.09 0.38 0.51 1.88

In a se
ond set of experiments we examined the improvement of the result of a shape

retrieval algorithm that in
ludes a sampling prepro
essing step. This is a very 
ommon

problem in 
omputer vision and image analysis and mu
h resear
h has been performed

in this �eld. We fo
used on the pioneering algorithm introdu
ed in [7℄ and explored

the improvement of the dete
tion rate (Bull's Eye Rate) by applying various sampling

methods in
luding ours.

The overall evaluation is presented in Table 2.4. It may be seen that the proposed

method improves the retrieval per
entage . In 
ase of the Gatorbait dataset [2℄ the

improvement of the Bull's Eye Rate is around 2:5% with respe
t to the se
ond method.

In order to measure the similarity between two shapes we adopted the �

2
distan
e

between shape 
ontexts, as explained in [7℄. However, in this problem, a more informative

index should be applied to take into 
onsideration the deformation (e.g. registration)

energy that is demanded so as to transform one edge map onto the other. Yet, as we wish

to investigate the improvement that our method provides in terms of similarity between

samples and original signals, we opted not to 
ompute the related parts of the similarity

metri
 in [7℄. Moreover, to speed up our experimental 
omputations, we opted not to

use a dynami
 programming approa
h to guarantee a one-to-one mat
hing. Instead, we

assigned ea
h point from one set to ea
h 
losest in the other and 
omputed the 
ost of
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(a) (b)

(
) (d)

Figure 2.6: Representative results of sampling of the Gatorbait dataset [2℄. Details of the

upper left part of a �sh 
ontour. Sampling with (a) the proposed method, (b) the method

of Malik [7℄, (
) Monte Carlo sampling and (d) Random sampling.

this assignment in terms of 
orresponding histogram distan
es. By repeating that pro
ess

for all points and summing the related distan
es, we 
omputed the total distan
e between

two shapes. These remarks, explain the di�eren
es in Bull's Eye Rate index 
omputed

for the MPEG7 dataset, 
ompared to the one provided in [7℄.

Sin
e a 
ru
ial step of the proposed method is the a

urate manifold dete
tion, we


ompared our sampling method with a widely used method for manifold dete
tion, namely

Lo
ally Linear Embedding (LLE) [64℄. The reader may observe that LLE does not provide

a

urate results, sin
e it fails to model the various inner stru
tures and jun
tions that are

present in the experimental data (Table 2.4).

Table 2.4: Bull's Eye Rates for the retrieval of sampled sets using di�erent sampling

methods.

Algorithm

Bull's Eye Rate

MPEG7 [1℄ GatorBait100 [2℄

Proposed method 65.40% 96.57%

Malik [57℄ 64.96% 93.89%

Monte Carlo 50.71% 77.69%

Random Sampling 57.86% 91.11%

LLE [64℄ 53.81% 93.98%

One may argue that instead of using the DSaM algorithm, we 
ould traverse the
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point set by visiting the nearest neighbor of ea
h point su

essively following a polygon

approximation variation. For demonstration purposes, we 
all this approa
h Nearest-

Neighbor Split (NN-S). Finally, as our algorithm is based on line segment �tting, we also

tested it against one widely used similar algorithm [5℄, that utilizes nearest neighbors.

Moreover, sin
e we are dealing with manifold learning from point 
louds, we also

tested the tensor voting framework, [8, 9℄. Tensor voting is a robust and eÆ
ient method,

however its threshold tuning is not trivial and the result is highly related to the sele
ted

threshold values. In general, tensor voting, manages to extra
t a large part of the 
ontour.

However, the large distortion is due to the fa
t that some parts of the shape silhouette

are missing, i.e. holes are present, or new points are added, that are not present in the

pure data. For our experiments, we sele
ted those threshold values that provided the

best result. Figure 2.7 demonstrates the results of our experiments. As it 
an be seen in

the �gures, the proposed method provides more a

urate results 
ompared to the other

methods in terms of shape re
onstru
tion as it is explained below.

For this experimental 
on�guration, we disturbed the shape silhouettes with additive

Gaussian noise with progressively in
reasing varian
e. The evaluation of the method is

based on a distortion-
ompression model for varying signal-to-noise (SNR) ratio, where

the distortion is measured in terms of shape similarity between the re
onstru
ted shape

and the initial one, and 
ompression is the number of segments 
omputed via DSaM over

the total number of points. Please note that although this approa
h is similar to our

analysis in 1, in this se
tion the distortion is 
omputed in a di�erent way, whi
h is more

meaningful in the 
ontext of the appli
ation.
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Distortion Compression

(a) (b)

(
) (d)

(e) (f)

(g) (h)

Figure 2.7: Shape re
onstru
tion of the Gatorbait dataset [2℄ using (a)-(b) DSaM, (
)-

(d)NN-S, (e)-(f) Kovesi [5℄, (g)-(h) vensor voting [8, 9℄.
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2.3 Shape en
oding for edge map image 
ompression

2.3.1 Introdu
tion

Shape representation is a signi�
ant task in image storage and transmission, as it 
an

be used to represent obje
ts at a lower 
omputational 
ost, 
ompared to non-en
oded

representations. For example, the widely used MPEG4 Part 2 obje
t-based video standard

uses shape 
oding for des
ribing regions, 
alled video obje
t planes, that represent an

obje
t [65℄. In that 
ase, a

urate shape en
oding leads to better preservation of 
ontour

details.

The pioneering work in [66℄, where sequen
es of line segments of spe
i�ed length and

dire
tion are represented by 
hain 
odes was proposed for the des
ription of digitized


urves, 
ontours and drawings and it was followed by numerous te
hniques. Shape 
oding

is a �eld that has been studied extensively in the past but it is still very a
tive. Vari-

ous methods have been studied in [67℄, in
luding the 
ontext-based arithmeti
 en
oding

(CAE), whi
h has been adopted by the MPEG4 Part 2 standard.

The digital straight line segments 
oder (DSLSC) was introdu
ed in [68℄ for 
oding

bilevel images with lo
ally straight edges, that is, single binary shape images and bilevel

layers of digital maps. DSLS models the edges by digital straight line segments (DSLS)

[69℄. Compared to standard algorithms like JBIG [70℄, JBIG-2 [71℄ and MPEG4 CAE

[65℄,[67℄ DSLSC provides better results, as it fully exploits the information given by the

lo
al straightness of the boundary, whi
h is not hte 
ase for the other methods.

DSLSC is further improved in [72℄, where the segmentation of the alpha plane in three

layers (binary shape layer, opaque layer, and intermediate layer) is employed. Experimen-

tal results demonstrated substantial bit rate savings for 
oding shape and transparen
y

when 
ompared to the tools adopted in MPEG4 Part 2.

Dis
rete straight lines were also employed in [73℄ for shape en
oding and improvement

of the 
ompression rate is rea
hed by 
arrying out a pattern substrings analysis to �nd

high redundan
y in binary shapes.

A lossless 
ompression of map 
ontours by 
ontext tree modeling of 
hain 
odes is

des
ribed in [74℄. An optimal n-ary in
omplete 
ontext tree is proposed to be used for

improving the 
ompression rate.

A JBIG-based approa
h for en
oding 
ontour shapes is introdu
ed in [75℄, where a

method is presented that manages to eÆ
iently 
ode maps of transition points, outper-

forming, in most 
ases, di�erential 
hain-
oding.

2.3.2 The algorithm

Line segments are important features in 
omputer vision, as they 
an en
ode ri
h infor-

mation with low 
omplexity. We take advantage of this feature for en
oding a 2D set of

points des
ribing a shape as a 
olle
tion of line segments that approximate the manifold

of the shape, by assuming that the manifold is lo
ally linear. The initial and ending

points of ea
h line segment may be 
onsidered as the 
hara
teristi
 points 
arrying the
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ompressed information that 
an reprodu
e the initial shape. The larger the number of


hara
teristi
 points is, the better shape information is preserved.

A line segment � may be des
ribed by its starting and ending points x

s

�

and x

e

�

respe
tively. The 
olle
tion of the starting and ending points of all the segments modeling

the shape manifold are the 
hara
teristi
 points of the shape. Note that the 
hara
teristi


points are ordered. Moreover, sin
e the traversal of the line segments is known, the line

segment 
an be des
ribed by its starting point and the transition ve
tor towards the

ending point. The ending point of one segment is the starting point of its su

essor in

the traversal order. Eventually, the shape 
an be en
oded by sele
ting an arbitrary initial

point from the 
hara
teristi
 points and by the 
orresponding transition ve
tors after

visiting ea
h segment based on the traversal order, in a similar manner des
ribed in [11℄.

To re
onstru
t the image we need to re
onstru
t all the points 
ontributing to the


omputation of ea
h line segment � based on the 
hara
teristi
 points. In prin
iple, a line

is modeled by the parametri
 equation Ax + By + C = 0. where x; y; A; B; C ∈ R

and (x; y) is a point laying onto the line. If the starting (x

s

�

) and ending (x

e

�

) points of

a line segment � are given, determining A, B, C is trivial. Thus, starting from point x

s

�

and following the dire
tion of the line segment with a prede�ned step � ∈ R
+
ea
h time,

we may re
onstru
t (approximate) the initial points. The value of the step � 
ontrols the

density of the result: the higher its value is, the larger is the number of extra
ted points.

In 
ase of points laying on an image grid, integer arithmeti
s need to be 
onsidered and

sele
ting � = 1 yields the algorithm of Bresenham [76℄ whi
h may re
onstru
t the line

segment pixels eÆ
iently and handle the aliasing e�e
t.

Algorithms 4-5 des
ribe the proposed framework for 
ompression/de
ompression of

bi-level images of edge maps.

input: An edge map image I, representing shapes.

output: A set of features S that en
odes image I.

Dete
t the line segments that des
ribe I. Let K be the number of line segments dete
ted.

Dete
t the traversal order of the line segments.

Re�ne shape, i.e. 
lose gaps between line segments. Extra
t the 
hara
teristi
 point

P = p

i

; i = 1 : : :K, based on the shape traversal.

S = {p
1

}.
for i=2:K do

S = S ∪ {dx; dx = p

i−1 − p

i

}.

Algorithm 4: Image 
ompression

2.3.3 Numeri
al evaluation

In this se
tion, the experimental investigation of the proposed method is presented re-

garding its robustness and eÆ
ien
y. To that end, a 
ompression-distortion study was


arried out.
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input: A set of features S that en
odes an image I.

output: The re
onstru
ted image I.

Re
over the 
hara
teristi
 points P = {p
i

; i = 1 : : :K}, based on initial point and

transitions en
oded in S.

for i=2:K do

Produ
e the set of points R, e.g. [76℄, 
ontaining the points of the line segment from

p

i−1 to pi.

Set the pixels of I 
orresponding to 
oordinates of points in R on.

Algorithm 5: Image de
ompression

Compression was 
omputed as the ratio of the �le size between the 
ompressed and

the original �les. Various lossless methods were 
onsidered and the 
orresponding size of

the output �les they produ
ed was used as the referen
e original �le size. The methods

against whi
h we 
ompared the proposed framework are the CCITT G4 standard [77℄

(denoted as FAX4 herein), adopted amongst others by the TIFF image �le format for

binary images, and the widely used standards JBIG [70℄ and JBIG2 [71℄.

As far as the distortion is 
on
erned, a twofold 
omputation was performed in terms

of measuring the loss of information and the similarity between the initial and the �nal

edge map images. Therefore, the distortion index adopted by MPEG4 [78℄, given by

D

R

=
Number of pixels in error

Number of interior pixels

; (2.7)

was also used in this work. The Hausdor� distan
e between the original edge map X and

the re
onstru
ted edge map Y s, given by

D

H

(X; Y ) = max
x∈X

min
y∈Y

{|x− y|1}; (2.8)

was used to measure the similarity between X and Y .

For the experimental study, we used two datasets. The Gatorbait dataset [2℄ 
ontains

the silhouettes of 38 �shes, belonging to 8 
ategories. The MPEG7 dataset [1℄ 
ontains

1400 obje
t 
ontours belonging to 70 
ategories, with 20 members per ea
h 
ategory. All

datasets 
onsist of binary images. In the 
ase of the Gatorbait100 dataset, the images

were initially thinned so as to extra
t the 
ontour line. Let us note that in this 
ase, there

are some inner stru
tures that were also 
onsidered in our experiments.

The overall results of our experimental analysis are demonstrated in Tables 2.5 and

2.6, with results for various 
on�gurations of the line segment dete
tion algorithms 
onsid-

ered. The values next to the method pre�x in the �rst 
olumn of the Tables indi
ates the


orresponding 
on�guration of the method. We used the line segment method presented

in 
hapter 1 and the widely used polygon approximation [10℄, as proposed in [11℄. In our

study the values 
onsidered for the DSaM thresholds were {[0:3; 2:0]; [0:4; 2:0]; [0:5; 2:0]; [0:8; 2:0];
[1:3; 2:0]; [2:3; 2:0]}. The se
ond threshold was measured in pixels. As far as the poly-

gon approximation (PA) is 
on
erned, this algorithm applies one threshold 
ontrolling
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the deviation of a set of points from linearity. In that 
ase, the thresholds used were

{1; 2; 5; 7; 10} pixels. The per
entages regarding the 
ompression values in Tables 2.5 and

2.6 refer to the �le size produ
ed by the proposed 
ompression s
heme 
ompared to the


orresponding �le size produ
ed by the related lossless method as mentioned on the se
ond

row of the tables. More spe
i�
ally, in Table 2.5, in the �rst row, we may 
on
lude that

the proposed s
heme, using DSaM for line modeling, provides a 
ompressed shape, whi
h

on average (over the whole data set) employs 16% of the bits employed when 
ompressed

by CCTTI G4 (FAX4) [77℄, 30% of the bits used when 
ompressed by JBIG [70℄, 30% of

the bits employed by a JBIG2 
ompression [71℄, 30% of the bits used when 
ompressed

with the PWC method [79℄ and 0% when used the bilevel en
oder implemented in the

open sour
e program DjVu [80℄. Moreover, the average distortion in terms of information

loss is D

R

= 9% and the average Hausdor� distan
e between the original shape and the


ompressed shape is D

H

= 8 pixels. Re
all that FAX4, JBIG and JBIG2 are lossless


ompression algorithms.

Table 2.5: Experimental results for the Gatorbait dataset [2℄ (38 shapes).

Method Compression Distortion

FAX4 [77℄ JBIG [70℄ JBIG2 [71℄ PWC [79℄ DjVu [80℄ D

R

(2.7) D

H

(2.16)

DSaM#1 10% 24% 32% 39% 32% 10% 8

DSaM#2 10% 23% 30% 36% 30% 7% 7

DSaM#3 9% 22% 28% 35% 29% 5% 7

DSaM#4 8% 20% 26% 31% 26% 5% 8

DSaM#5 8% 19% 25% 30% 25% 3% 10

DSaM#6 7% 17% 22% 27% 22% 3% 11

PA#1 17% 39% 51% 62% 52% 11% 4

PA#2 11% 27% 35% 42% 35% 1% 4

PA#3 7% 18% 23% 28% 23% 2% 8

PA#4 6% 15% 20% 25% 20% 2% 12

PA#5 6% 14% 18% 22% 18% 6% 17

Figures 2.8-2.9 demonstrate some representative results of the proposed method with

various line segment dete
tion algorithms. One may observe that the 
ompression based

on the DSaM line segment dete
tion preserves more details of the initial set, 
ompared

to the polygon approximation algorithm, whose result is more 
oarse.

Finally, the rate-distortion 
urves for the above experiments are presented in Figure

2.10. The blue line 
orresponds to the 
ompression results based on DSaM [6℄, while the

red line refers to the results based on a 
ompression using polygon approximation [11℄. As

it 
an be observed, the DSaM method provides a 
learly better performan
e. Note that

the bits needed to en
ode the information for ea
h method 
annot be �xed dire
tly, as

they are a�e
ted by the tuning of the asso
iated thresholds and parameters. Thus, equal

bit rates 
annot be established for DSaM and polygon approximation.
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Table 2.6: Experimental results for the MPEG7 dataset [1℄ (1400 shapes).

Method Compression Distortion

FAX4 [77℄ JBIG [70℄ JBIG2 [71℄ PWC [79℄ DjVu [80℄ D

R

(2.7) D

H

(2.16)

DSaM#1 16% 30% 29% 44% 37% 9% 5

DSaM#2 15% 28% 28% 41% 35% 9% 5

DSaM#3 14% 27% 26% 39% 33% 9% 6

DSaM#4 13% 24% 24% 35% 30% 10% 7

DSaM#5 12% 23% 22% 34% 28% 10% 7

DSaM#6 10% 20% 19% 29% 25% 12% 9

PA#1 25% 47% 46% 68% 58% 7% 2

PA#2 17% 32% 32% 47% 40% 4% 3

PA#3 11% 21% 21% 31% 26% 7% 6

PA#4 9% 18% 18% 27% 23% 9% 9

PA#5 8% 16% 16% 24% 20% 12% 12

(a) (b) (
) (d)

Figure 2.8: Representative results of the re
onstru
tion method on the Gatorbait [2℄

dataset. (a) The original image. Results extra
ted with (b) DSaM [6℄, (
) polygon

approximation [10℄ with automati
 tuning (d) polygon approximation [10℄ with threshold

value set to 5 pixels.

(a) (b) (
) (d)

Figure 2.9: Representative results of the re
onstru
tion method on the MPEG7 [1℄ dataset.

(a) The original image. Results extra
ted with (b) DSaM [6℄, (
) polygon approximation

[10℄ with automati
 tuning (d) polygon approximation [10℄ with threshold value set to 5

pixels.

Another appli
ation of shape 
oding is the des
ription of Video Obje
t Planes (VOP)

in MPEg4 [65℄ standard. In brief, a VOP is a region of image that des
ribes an obje
t.

Through VOP, MPEG4 standard manages to en
ode independent obje
ts. Figures 2.11
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(a) (b)

Figure 2.10: Rate-distortion 
urves for (a) the Gatorbait dataset [2℄ and (b) the MPEG7

dataset [1℄. The blue line 
orresponds to the 
ompression results based on DSaM [6℄ and

the red line refers to polygon approximation [11℄.

a, b demonstrate an example of a video frame and its 
orresponding VOP. Again, we

performed the same experimental investigation regarding the eÆ
ien
y of the proposed

en
oding s
heme. Figure 2.11 
 demonstrates the re
onstru
tion result of the 
ontour,

based on the DSaM method. The red points depi
t the initial shape and the and the

green points show the 
ontour re
onstru
ted with our method. Table 2.7 presents the

results of the 
omparison regarding the VOP en
oding of �gure 2.11 b.

(a) (b) (
)

Figure 2.11: An example of a video obje
t plane. (a) The initial image, (b) the video

obje
t plane mask and (
) the re
onstru
tion result with the DSaM method. The red

points depi
t the initial shape and and the green points show the 
ontour re
onstru
ted

with our method.

One may observe that the proposed en
oding framework provides satisfa
tory results in

terms of 
ompression, while o�ering low distortion. The DSaM method provides similar

or better results 
ompared to the polygon approximation that is used in the MPEG

standard, in terms of 
ompression, but with far lower distortion. Also, DSaM manages

to signi�
antly improve the 
ompression rate providing an image quality (in terms of

distortion) similar to the lossless algorithms.
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Table 2.7: Experimental results for the VOP of �gure 2.11.

Method Compression Distortion

FAX4 [77℄ JBIG [70℄ JBIG2 [71℄ PWC [79℄ DjVu [80℄ D

R

(2.7) D

H

(2.16)

DSaM#1 16% 44% 42% 66% 56% 169% 4

DSaM#2 12% 32% 30% 47% 40% 151% 4

DSaM#3 10% 27% 26% 40% 34% 178% 5

DSaM#4 9% 24% 23% 36% 30% 193% 4

DSaM#5 9% 23% 22% 35% 29% 261% 5

DSaM#6 7% 20% 19% 30% 25% 267% 4

PA#1 17% 45% 43% 68% 58% 105% 4

PA#2 10% 27% 26% 40% 34% 117% 3

PA#3 6% 16% 15% 24% 20% 213% 5

PA#4 5% 15% 14% 22% 19% 302% 7

PA#5 5% 14% 13% 21% 18% 345% 9

2.4 Retinal Fundus Image Feature Chara
terization

2.4.1 Introdu
tion

The dete
tion and 
hara
terization of various topologi
al features of the retinal vessels is

an important step in retinal image pro
essing algorithms within an autonomous diagnosis

system. A deviation from 
ommon topologi
al feature patterns may be an indi
ator

of anomaly. A 
omprehensive study may be found in [81℄. In a typi
al retinal vessel

stru
ture, more than 100 jun
tions may be present [82℄, a fa
t that makes the manual


hara
terization a tedious and time 
onsuming task. Typi
al retinal features are presented

in �gure 2.12.

Figure 2.12: The di�erent features that the proposed algorithm 
an dete
t. The yel-

low point is an end-point, the orange point is an interior-point and the green point is

a 
rossover. All the other points are jun
tions (a T-jun
tion is shown in red, and a

bifur
ation is shown in blue). The image is better viewed in 
olour.

In the 
urrent investigation, three types of features are dete
ted: end-points (points

at the extremities of the vessels), interior-points (points along a vessel), jun
tions (a new

vessel is a bran
h of a longer one - T-jun
tions or a vessel is split into two or more new
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vessels - bifur
ation) and 
rossovers (one vessel passes over another). Please note that

further pro
essing is needed to distinguish between a 
rossover and a bifur
ation.

A methodology that extra
ts features from the retinal fundus image and 
hara
terizes

them will be presented. The goal is to dete
t the interse
tion points between the vessels,

as they 
ould provide useful information to an automati
 diagnosis system.

2.4.2 The algorithm

The �rst step of our method is to extra
t the line segments that model the 
enter line of

the vessels. Thus, it is 
ru
ial that an a

urate prepro
essing step towards that dire
tion

is applied. For ea
h line segment, its extreme points are the points that have the largest

distan
e from the 
orresponding extreme points of the same line 
luster.

In �gure 2.13, the points x (summarizing the vessel stru
ture) are depi
ted with red

and bla
k 
olor, while the 
orresponding extreme points y are presented with green and

blue dots. A rule is de�ned to 
hara
terize a point as end point or jun
tion or 
rossover.

Let C(x) be the index of the line 
luster point where x belongs to. In �gure 2.13, two

line 
lusters are shown (C(x) = 1 and C(x) = 2). To de�ne the neighborhood of extreme

points, a neighborhood radius threshold is de�ned as

T

n

= w ∗ d̄ (2.9)

where d̄ is the mean distan
e between all the nearest neighbors and w is a 
onstant that is

learned, as explained later in this se
tion. Thus, for an extreme point y the neighborhood

N (y) is the set of the points x su
h that ||x−y|| ≤ T

n

. Note that y ∈ N (y). In order to


hara
terize point y, we de�ne CN (y) as the number of distin
t line 
lusters that points

x ∈ N (y) belong to.

In the example shown in �gure 2.13, the studied extreme point y is the green one,

while its neighborhood N (y) is de�ned by a 
ir
le 
entered at y with radius T

n

. Red and

bla
k points lying within that 
ir
le are the neighbors of y. Those points belong either

to line 
luster 1 or to line 
luster 2 and thus CN (y) = 2. If all neighbors of y belong to

the same line 
luster with that of y, then y would be an end-point (CN (y) = 1). In 
ase

where CN (y) > 2, y would be a jun
tion or a 
rossover. The algorithm in its 
urrent

form does not dis
riminate between them.

A spe
ial 
ase o

urs when CN (y) = 2, where the studied point y is either an interior-

point or a jun
tion (T-jun
tion). In that 
ase, further elaboration is needed to 
hara
terize

the extreme point by examining whether N (y) 
ontains an extreme point or not. Thus, if

y belongs also to the neighborhood of y

′
, with y

′
denoting the neighbor of y, then y is an

interior-point, otherwise it is a jun
tion (T-jun
tion). Please note that the neighboring

relationship we are des
ribing in that se
tion is not re
e
tive. For example in �gure 2.13,

the green point, whi
h is one of the extreme points of 
luster 1, is neighbor to 
luster 2 (as

there are some points of 
luster 2 within the yellow 
ir
le that de�nes the neighborhood

of the green point). However, none of the extreme points of 
luster 2 
ontain a point from


luster 1 in their neighborhood, and thus 
luster 1 is not neighboring to 
luster 2.
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Figure 2.13: An instan
e of the point 
hara
terization algorithm. Points x (in red and

bla
k) 
orrespond to the thinned lines of the extra
ted vessels. Green and blue points are

the extreme points y 
omputed by our DSaM algorithm. The yellow 
ir
le demonstrates

the neighborhood of that point (N (y)). Red and bla
k points lying in that 
ir
le are


onsidered as neighbors of that extreme point. In that 
ase, those points belong either to

line 
luster with index 1 or to line 
luster with index 2. Thus, CN (y) = 2. The orange

point 
orresponds to the nearest neighbor of y among the points of neighbor line 
luster

(bla
k points). d is the minimum distan
e between the aforementioned nearest neighbor

and the extreme points of its line 
luster.

In our example in �gure 2.13, this means that one of the two blue points would be inside

the yellow 
ir
le. In 
ase that N (y) 
ontains no extreme point, as shown in �gure 2.13,

then we 
ompute the minimum distan
e (denoted by d in �gure 2.13) between the nearest

neighbor (orange point in �gure 2.13) of y among the points of the other neighboring line


luster (bla
k points in �gure 2.13) and the 
orresponding extreme points (blue points in

�gure 2.13). If d ≤ d̄, then y is a (jun
tion) (T-jun
tion), otherwise it is an interior-point.

A detailed des
ription of the rules used to 
hara
terize an extreme point y is presented

in Algorithm 6.

2.4.3 Numeri
al evaluation

To investigate the a

ura
y of the proposed algorithm, experiments were 
ondu
ted on the

DRIVE database [83℄, whi
h in
ludes 40 retinal images along with their manual extra
tion

of the vessels. The ground truth used in [82℄, [84℄ was also employed. In our experiments,

the manual segmentations were employed, as the s
ope of our algorithm is to dete
t

jun
tions, 
rossovers and end points. The reader should refer to [85℄ or [86℄ for a detailed

vessel extra
tion algorithm, whi
h is a prepro
essing step of the whole 
hain. At �rst

a Canny edge dete
tor [44℄ is applied to extra
t the borders of the vessels and then a

thinning algorithm [87℄ is used, to extra
t the 
enter line of the vessels. In �gure 2.14(a),

the original image is shown. Figure 2.14(b) presents the manual segmentation, while the

data used in our retinal parsing algorithm are shown in �gure 2.14(
).

Note that sin
e the ground truth refers to the original vessels and not to their 
enter

lines, whi
h is the input of our method, we determined a value T


onf

that de�nes a


on�den
e region around a ground truth point. A 
omputed point is 
onsidered to mat
h

a ground truth point if it lies in its 
on�den
e region. In our experiments, T


onf

is de�ned
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input: An extreme point y 
omputed by the DSaM algorithm and the 
orresponding

set of vessel skeleton points x ∈ N (y).

output: The label of y.

if CN (y) = 1 then

y is an end-point.

else if CN (y) = 2 then

y is either a jun
tion or an interior-point.

Q = {x ∈ N (y)|C(x) 6= C(y)}
z = argmin

x∈Q
{|x− y|}

d = |y − z|.
if d ≤ d̄ then

if the line 
luster of points of Q is equal to C(y) then
y is an interior-point

else

y is a jun
tion (T-jun
tion).

else

y is a jun
tion (T-jun
tion).

else if CN (y) > 2 then

y is a jun
tion (bifur
ation) or a 
rossover.

Algorithm 6: Rules for vessel features 
hara
terization

(a) (b) (
) (d)

Figure 2.14: (a) The original retinal image. (b) The manual segmentation of the vessels

in (a). (
) Result of thinning the image in (b). (d) The 
on�den
e regions depi
ted as


ir
les with a radius equal to 1% of the diagonal of the bounding box of the original set.

The �gure is better seen in 
olor.

as a per
entage (1%) of the length of the diagonal of the bounding box of points x. Figure

2.14(d) shows the 
on�den
e regions depi
ted as 
ir
les with a radius equal to T


onf

. To

establish a robust value for 
onstant w (eq. (2.9)), the pre
ision and re
all rates were


omputed for values of w between 1:8 and 4:0 with a step of 0:8. Then the F measure

(harmoni
 mean) was 
al
ulated as

F = 2
PR

R+ P

; (2.10)
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where P is the pre
ision and R is the re
all:

P =
TP

TP + FP

; (2.11)

R =
TP

TP + FN

; (2.12)

where TP is the number of true positives, that is, the number of relevant items retrieved,

FP is the number of false positives, that is, the number of irrelevant items retrieved and

FN is the number of false negatives, that is, the number of relevant items not retrieved.

Figure 2.15 shows the plot of F measure for various values of parameter w in eq.

(2.9). In our experiments, the F measure takes its maximum value for w = 2:9. The


orresponding point is depi
ted with a bla
k square in �gure 2.15. In that 
ase, the


orresponding pre
ision is equal to 91:59% while the re
all is 98:58%. The value of d̄


omputed from our experimental data is approximately equal to

√
2, whi
h leads to T

n

=

4:10, eq. (2.9), 
orresponding to a neighborhood radius equal to 4 pixels.

Figure 2.15: The F measure, (2.10), for various values of parameter w in (2.9). The bla
k

square indi
ates the point that 
orresponds to the maximum value of F measure. This

value (F = 0:95) o

urs for w = 2:9 and provides a pre
ision rate of 91:59% and a re
all

rate of 98:58%. More details are given in se
tion 2.4.

The mean exe
ution time was 109 se
 for the extra
tion of the line segments and 12

se
 for the extra
tion and 
hara
terization of features using Matlab on a typi
al Dual

Core 2x2.50 GHz ma
hine with 2.0 GB RAM.
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2.5 Elimination of outliers from 2D point sets using the Helmholtz

prin
iple

2.5.1 Introdu
tion

The modeling and removal of outliers from a set of points has been an a
tive resear
h topi


for many de
ades in image pro
essing and 
omputer vision and a variety of algorithms

have been proposed [88℄. They may be as simple as the median �lter to more elaborate

whi
h are based on random sampling, like RANSAC [36℄ or probabilisti
 models [89℄.

The Gaussian assumption for data generation has been widely adopted but it is ap-

propriate only for sparse outlier distributions. In general, it involves the 
omparison of

Eu
lidean distan
es between points with the mean of the distribution expanded by a

number of standard deviation [90℄. Kernel density estimators-based methods provide a

probabilisti
 approa
h to determine if a point belongs to the un
orrupted set and are

inherently related to 
lustering or 
lassi�
ation te
hniques that separate pure data from

outliers [91, 92℄.

The number of neighbors of a point is a key issue in 
hara
terizing it as outlier [93℄. The

main hypothesis is that pure data are more densely populated than outlying points and

many algorithms have been designed based on this idea. The adopted strategy 
onsists

in de�ning a neighborhood for ea
h point, determining a feature that 
hara
terizes the

neighborhood and reje
ting points with features having a value smaller than a threshold.

In [12℄, the number of 
ommon neighbors is de�ned as a similarity index between points

and points with neighborhood size smaller than a threshold are reje
ted as outliers. An

o
tree is used in [94℄ to 
luster points and an impli
it quadri
 is �t to them to smooth

out outliers.

Inspired by the geometri
 Gestalt theory, whi
h addresses the answer to the funda-

mental problem in 
omputer vision: "How to arrive at global per
epts from the lo
al,

atomi
 information 
ontained in an image?" [95℄, Desolneux et al. proposed methods for

dete
ting geometri
 stru
tures [39℄ and edges [96℄ in images by a parameter free method

based on the Helmholtz prin
iple [97℄. The prin
iple states that an observed geometri


stru
ture is per
eptually meaningful if its number of o

urren
es is very small in a random

situation. In this 
ontext, geometri
 stru
tures are 
hara
terized as large deviations from

randomness. The prin
iple is a

ompanied by an a 
ontrario assumption against whi
h

stru
tures are dete
ted.

In this se
tion, we propose an algorithm for outlier elimination and stru
ture extra
tion

from 2D point 
louds based on the Helmholtz prin
iple. The main di�eren
e with the

methods in [39, 96℄ is that the input to the algorithm is not an image whose pixels lay on a

regular grid but a set of s
attered points irregularly distributed in spa
e. To over
ome this

limitation, at �rst, the point set is approximated by a lo
ally linear manifold 
onsisting

of a set of line segments. We show that the lengths of the line segments follow a Pareto

distribution whi
h is our a 
ontrario model.
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2.5.2 The Helmholtz prin
iple

The Helmholtz prin
iple is a general hypothesis of the Gestalt theory [95℄ interpreting the

way human per
eption works. Intuitively, it states that if we take into 
onsideration ran-

domness as the normal 
ase for our observations then meaningful features and interesting

events should not be expe
ted. Consequently, if they are observed they should appear

with a small probability. Moreover, the small probability of observing an event is not a

fa
tor to 
onsider it as meaningful (or true observation not generated by noise). Take

as an example the toss of an unbiased 
oin. The probability of getting a head (H) or a

tail (T ) is 1=2 respe
tively. If we toss the 
oin su

essively N times then the probability

of observing any of the possible sequen
es of H and T is (1=2)N , whi
h is a de
reasing

fun
tion of N and approa
hes zero as N → ∞. More spe
i�
ally, the following sequen
es:

S1 = HTHHTTTHTHHTHT:::H

︸ ︷︷ ︸

N times

S2 = HHHHHHHHHHHHH:::H

︸ ︷︷ ︸

N times

have equal probabilities of appearan
e. However, S2 is not expe
ted to appear for an

unbiased 
oin. Therefore, the low probability of an event may not 
hara
terize it as a

deviation from randomness, as its probability may not truly model the randomness of an

event.

Using the same sequen
es S1 and S2, we may de�ne another pair of random variables

n

H

and n

T

modeling the number of H and T present in a sequen
e. Sin
e the 
oin is

unbiased, the expe
tations of both variables is N=2. Although this is 
on�rmed in S1,

in sequen
e S2 the observed values for n

H

and n

T

is N and 0 largely deviating from the

expe
ted values.

The above observations lead to the 
on
lusion that the small probability of an event

may not be an a

urate indi
ation that this event is meaningful and we need to take into


onsideration that the model we use to validate an event des
ribes the randomness of

all possible observations. Turning ba
k to the last example of the 
oin toss, randomness

was modeled only by 
ounting the number of H and T in a sequen
e and not by the

probability of a sequen
e to appear. Taking both issues into a

ount yields the 
omplete

model used to des
ribe randomness whi
h is 
alled a 
ontrario model.

2.5.3 The algorithm

LetX = {x
i

}
i=1;:::;N be a set of observed 2D points in
luding both data points and outliers

(Fig. 2.16(a)).

In order to eliminate the outliers, we 
ompute at �rst an approximation of the point

set by line segments. To this end, the dire
t split-and-merge (DSaM) algorithm presented

in 
hapter 1 
an be employed, whi
h summarizes any point set by a set of the major axes

of highly e

entri
 ellipses. The number of ellipses is automati
ally determined by the
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(a) (b) (
)

Figure 2.16: (a) A a set of points (in red 
olor) degraded by equal in number outliers (in

blue 
olor). (b) The distribution of the sorted lengths of the line segments approximating

the point set of (a) using a line segment dete
tion algorithm. The horizontal axis rep-

resents the indi
es of the segments and the verti
al axis represents the lengths. (
) The

Pareto distribution for various values of the parameter a with b = 1.

algorithm and it depends on the number and the spatial distribution of the point sets.

In the example of Fig. 2.16(a), the large number of outliers will provide a large number

of line segments with relatively small lengths (due to noise) and a smaller number of line

segments with larger lengths (due to both the un
orrupted data and the noise around

them). This distribution of the lengths of the line segments, shown in Fig. 2.16(b) after

sorting the lengths in in
reasing order, leads to 
onsider an a 
ontrario probabilisti
 model

of the lengths by a Pareto distribution with density [98℄:

Pareto(x; a; b) =

{
ab

a

x

a+1 ; x ≥ b

0; x < b

(2.13)

where b > 0 and a is a parameter 
ontrolling the slope of the 
urve (Fig. 2.16(
)). Herein,

the length of the segment is 
onsidered in terms of the number of the points 
ontributed

to its 
omputation. The line segment dete
tion algorithm provides line segments with

uniformly distributed points. Therefore, the length of a segment is equivalent to the

number of points belonging to it.

The purpose of the a 
ontrario model is to des
ribe the randomness of the data.

However, it might be possible that outliers are organized in su
h a way that they generate

short line segments that are not part of the desired stru
ture. The Pareto distribution


omputes the probability that a segment of a given length appears in the observations.

In an analogy to the 
oin toss example, this event may be expressed by the probability

of getting H or T (with more possible out
omes, whi
h are the lengths of line segments).

By expanding our initial intuition regarding the rareness of the observation, it is possible

that segments due to outliers would be isolated, as the intrinsi
 feature of noise is to be

stru
tureless. Therefore, in order to set up the a 
ontrario model, the neighborhood of a

line segment should be de�ned to a

ount for isolated stru
tures.

Ea
h line segment has a starting and an ending point. The neighborhood N (�) of a

segment � is de�ned as the set of all those segments �

j

whose starting/ending points are
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lo
ated at a distan
e less than a threshold to the starting/ending points of �:

N (�) = {�
j

: |�k − �

l

j

| ≤ T; k; l ∈ {s; t}}; (2.14)

where the supers
ripts {s; t} indi
ate the starting or the ending point of a segment. Figure

2.17 demonstrates the de�nition of the segment neighborhood for a given line segment.

The neighborhood 
an be iteratively expanded to take into a

ount the neighbors of

neighbors up to a �xed depth.

Figure 2.17: An example of the de�nition of the neighborhood of a segment. Points A and

B (
yan squares) are the starting/ending points of segment 1. The yellow 
ir
le with radius

T determines the neighborhood. Line segments 2 and 3 are part of the neighborhood while

segment 4 is not. The same 
on�guration applies to point B.

Therefore, the a 
ontrario model is based on the assumption that a line segment is

more probable to be a true observation if its neighboring segments have large lengths.

This may be expressed by the likelihood:

L(�) =
∏

�

j

∈N (�)

Pareto(�
j

; a; b): (2.15)

Consequently, if L(�) < � we 
onsider the line segments to be a true observation. The

threshold is automati
ally determined as � = 10−a=D, where D is the maximum depth

of the neighborhood expansion. It may be observed that the value of � is independent

from the data. Thus, following the rationale in [40, 41, 42℄, it may be asserted that the

proposed method is parameter free. The pro
edure is presented in Algorithm 7.

input: A set of points X, the depth of expansion D.

output: A set of points Y .

while 
onvergen
e is not rea
hed do

Summarize X by line segments (e.g. [6℄). Let B

i

be the points 
ontributing to

segment �

i

, for i = 1 : : :N .

Y = ∅.
for i = 1 : : : N do

if L(�
i

) ≤ 10−a=D then

Y = Y ∪ B
i

.

Algorithm 7: Outlier elimination based on the Helmholtz prin
iple.
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2.5.4 Numeri
al evaluation

To investigate the eÆ
ien
y of the proposed method for outlier elimination, we used

the Gatorbait database [2℄. Degradation of the data set was arti�
ially performed in

the following way. For ea
h point of the original data set, an outlier was generated by

multiplying the 
oordinates of that point with a uniformly distributed random number in

the interval (0; 1]. The number of outliers added was set equal to the number of pure data

points. Moreover, the pure data were degraded by zero-mean additive Gaussian noise

with an appropriate standard deviation in order to obtain a signal to noise ratio (SNR)

of 55 dB (e.g. Fig. 2.16(a)). The algorithm was applied to 50 di�erent realizations of

outliers.

We 
ondu
ted 
omparisons with a density-based method (DBS
an [13℄) and the al-

gorithm of Xian
hao et al. [12℄. Let us also note that other established methods, su
h

as the algorithm in [89℄, were also 
onsidered but they failed to provide an a

eptable

result in our framework of highly 
orrupted point sets. Finally, we also show the results

of the simple, but in many 
ases powerful, median �lter for image denoising to highlight

the order of magnitude of the obtained a

ura
y with respe
t to a well known baseline.

To evaluate the results provided by the di�erent algorithms we employed the Hausdor�

distan
e between two sets of points X and Y :

dH(X; Y ) = max
x∈X

min
y∈Y

{|x− y|}; (2.16)

where X is the original set of points (the ground truth) and Y is the 
omputed set of

points after outliers removal.

Table 2.8 summarizes the performan
e of the 
ompared methods. As it may be seen,

our method may su

essfully re
over the initial shape. Its maximum distan
e (10:3),

although smaller than the other algorithms, is due to the fa
t that, in a few 
ases, parts

of the pure data were pruned be
ause the outliers were 
lose to them. Moreover, we

examined the sensitivity of our method to parameter a of the Pareto distribution by

applying the algorithm using a variety of values for this parameter, namely a = {2; 3; 4; 5}.
As it may be observed, the method is 
onsistent and its performan
e does not depend

on this parameter. Larger values of a may not be employed as the numerator in the

Pareto distribution (2.13) in
reases beyond 
omputer a

ura
y. As b is the mode of the

distribution, we have set b = 2 in all of the experiments relying on the fa
t that we sear
h

line segments and any two points de�ne a line segment. This relatively low value for b is

not in favor of our algorithm, as the model a

ounts for less populated line segments whi
h

generally are due to noise. However, the results showed the robustness of the proposed

approa
h.

Furthermore, it is worth noting that DBS
an [13℄ needs tedious parameter tuning

(performed here by trial and error) and the method in [12℄ did not dete
t many outliers

laying near the shape 
ontour. Representative results are shown in Fig. 2.18.

A se
ond set of experiments addresses the problem of outlier elimination for line �tting.

Following the same prin
iples as in the previous experiments, a set of 500 
ollinear points
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Table 2.8: Statisti
s on the Hausdor� distan
e (2.16) on the 38 shapes of the GatorBait100

data set [2℄

Method mean std median min max

Proposed method (a = 2) 6.12 1.3 5.8 4.2 10.3

Proposed method (a = 3) 6.07 1.3 5.8 4.1 10.3

Proposed method (a = 4) 6.05 1.4 5.6 4.0 10.3

Proposed method (a = 5) 5.99 1.3 5.7 4.1 10.3

DBS
an [13℄ 12.62 3.1 11.2 10.5 23.1

Xian
hao et al. [12℄ 84.59 19.6 83.0 51.4 129.7

Median Filter 208.17 17.0 208.4 174.9 243.8

(a) (b) (
) (d)

Figure 2.18: Outlier elimination from the data set of Fig. 2.16(a) by (a) the �rst and (b)

the last iterations of the proposed method, (
) Xian
hao et al. [12℄, (d) DBS
an [13℄. The

red boxes highlight representative false points provided by the methods.

were 
orrupted by outliers and Gaussian noise. Various experiments were 
ondu
ted with

an in
reasing number of outliers at ea
h 
on�guration. In the more 
hallenging setup,

the number of outliers was equal to the number of points. Ea
h experiment was repeated

50 times and statisti
s on the �tting error, in terms of Eu
lidean distan
e between the

estimated and the true parameters of the lines were 
omputed. The performan
es of the


ompared methods are shown in Fig. 2.19. For a more meaningful evaluation, we have also


ompared our method with two robust algorithms, namely RANSAC [36℄ and the robust

regression method proposed in [99℄. As it may be seen, our algorithm outperforms both

of these methods whi
h are established in the 
omputer vision literature. Please noti
e

the di�erent s
ales in the abs
issas in the graphs in Fig. 2.19 whi
h 
learly show the

a

ura
y of the proposed algorithm as its maximum error, even in the more 
hallenging

s
enario is less than one 
oordinate unit. On the other hand, only RANSAC is relatively


ompetitive but its �tting errors are mu
h more important.

A �nal set of experiments investigated the dependen
e of the proposed framework on

the involved line segment dete
tion algorithm. To this end, the Dire
t Split-and-Merge

(DSaM) framework [6℄ and the widely used polygon approximation (PA) [10℄ [5℄ were

employed in the 
orresponding step of Algorithm 7. In both 
ases, the parameters of

the algorithm were set as a = 2, b = 2, D = 3. The test image of Figure 2.20(a) was

degraded by zero-mean additive white Gaussian with varying standard deviation and then

the various outlier elimination methods were 
ompared. The algorithm was applied to

50 di�erent realizations of outliers. Figure 2.20(b) demonstrates a degraded instan
e of
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(a) Proposed method (�rst iteration). (b) Proposed method (last iteration).

(
) Xian
hao et al. [12℄. (d) DBS
an [13℄.

(e) RANSAC [36℄. (f) Dumou
hel et al. [99℄.

Figure 2.19: Boxplots of the line �tting errors for the 
ompared methods. Noti
e the

di�erent s
ales at the abs
issas.

the test image (SNR = −1dB). The overall results are shown in Table 2.9, where it may

be observed that DSaM provides better results 
ompared to PA, due to the fa
t that PA


annot 
ompute valid line segments. Representative results of the line segment modeling
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are shown in �gure 2.21. Noti
e that the PA is trapped by the outliers and produ
es a

large number of short line segments, while DSaM manages to provide a valid model. This


on�rms that the proposed framework 
an be a

urate independently of the line segment

dete
tion algorithm sele
ted, provided that the latter establishes a valid model.

(a) (b)

Figure 2.20: (a) A test image and (b) its degraded version at SNR = −1dB.

Table 2.9: Statisti
s on the Hausdor� distan
e (2.16) on the experiments based on the

test image of �gure 2.20(a).

Method mean std median min max

Helmholtz + DSaM [6℄ 16.86 2.45 16.03 15.00 21.00

Helmholtz + PA [10℄ 81.02 19.50 88.41 46.84 94.87

DBS
an [13℄ 64.97 43.22 91.83 2.24 98.81

Xian
hao et al. [12℄ 29.29 19.22 28.00 10.00 49.24

(a) (b)

Figure 2.21: Line segment modeling of image in �gure 2.20(b) 
omputed (a) by DSaM[6℄,

PA [10℄. Noti
e that the PA is trapped by the outliers and produ
es a large number of

short line segments, while DSaM manages to provide a valid model.
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Part II

Image and Point set Registration



Chapter 3

Registering sets of points using

Bayesian regression

3.1 Introdu
tion

3.2 Registration of sets of points via regression

3.3 Experimental Results and Dis
ussion

3.1 Introdu
tion

Registration of two sets of points is a 
ommon step in many appli
ations in 
omputer

vision, pattern re
ognition, image pro
essing and medi
al image analysis. The problem


onsists in determining a geometri
al transformation that brings two sets of points into

alignment. This 
ould be a
hieved, for instan
e, through the establishment of 
orrespon-

den
es. However, the problem is not always well-posed and be
omes more 
ompli
ated by

the existen
e of noise or outliers, making the determination of 
orresponden
es harder.

Another drawba
k rises from the geometri
 transformation itself, as there may be an in�-

nite number of allowed high dimensional mappings. Also, the de�nition of the similarity

measure is an open issue, sin
e one 
an 
hoose from a variety of metri
s.

Many methods have been proposed to solve the 
orresponden
e problem. A straight-

forward approa
h is based on the nearest neighbor 
riterion to establish 
orresponden
es,

as in the Iterated Closest Point (ICP) algorithm [100℄. However, despite its simpli
ity,

this method results in many lo
al minima, providing a suboptimal solution, and does not

guarantee that the 
orresponden
e is one-to-one. Many variants of this algorithm have

been proposed improving the behavior of the method in the presen
e of noise. A detailed

review 
an be found in [101℄. Nevertheless, in all 
ases, ICP methods ne
essitate a good

initialization near to the optimal solution in order to prevent the energy fun
tion from

getting trapped in lo
al minima.
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The Robust Point Mat
hing (RPM) algorithm [14℄ relies on a deterministi
 annealing

s
heme. The algorithm applies the softassign prin
iple [102℄ for mat
hing and the thin-

plate spline interpolation [15℄ for non-rigid mapping. The rationale is to transfer the

assignment problem from a hard approa
h to a soft one, that is to de�ne a probability

for ea
h assignment.

The Coherent Point Drift (CPD) algorithm was also proposed in [17℄, where the reg-

istration is treated as a Maximum Likelihood (ML) estimation problem with motion


oheren
e 
onstraints over the velo
ity �eld su
h that one point set moves 
oherently in

order to be aligned with the other. In that 
ase, transformation parameter estimation

and determination of 
orresponden
es are simultaneously handled.

Mixture models were proposed as a framework to solve the registration problem

(GMMReg) [103℄. Ea
h set of points is represented by a mixture of Gaussians and reg-

istration is de�ned as a problem of aligning the two mixtures. The L2 metri
 is used as

a measure of mixture alignment. An extension of the method using robust Student's-t

modeling for the data was also proposed in [104℄.

Shape 
ontext was 
onsidered in [105℄, where an iterative algorithm is designed to

a

ount for the shape mat
hing, registration and dete
tion. The problem is formulated in

terms of probabilisti
 inferen
e using a generative model and the EM algorithm. Shape

features are used in a data-driven te
hnique to address the problem of initialization.

A te
hnique for establishing 
orresponden
es is proposed in [106℄, where features of a

2-D point set whi
h are invariant with respe
t to a proje
tive transformation are extra
ted.

The proposed algorithm is based on the 
omparison of two proje
tive and permutation

invariants of �ve-tuples of the points. The best-mat
hed �ve-tuples are then used for the


omputation of the proje
tive transformation and the one having the maximum number

of 
orresponding points is used.

Moreover, in [107℄, a novel te
hnique is introdu
ed to solve the rigid point pattern

mat
hing problem in Eu
lidean spa
es of any dimension. The point pattern mat
hing is

modeled as a weighted graph, where nodes represent points and the weights of the edges

are equal to the Eu
lidean distan
es between nodes. The graph mat
hing is formulated

as a problem of �nding a maximum probability 
on�guration in a graphi
al model.

In [108℄, the notion of a neighborhood stru
ture for the general point mat
hing problem

is introdu
ed. Then, the point mat
hing problem is formulated as an optimization problem

to preserve lo
al neighborhood stru
tures during mat
hing. The method has a simple

graph mat
hing interpretation, where ea
h point is a node in the graph, and two nodes

are 
onne
ted by an edge if they are neighbors. The optimal mat
h between two graphs

is the one that maximizes the number of mat
hed edges.

The majority of the registration methods mentioned so far, model the non-rigid map-

ping through a spline interpolation method, and in parti
ular with the thin-plate spline

(TPS) [15℄. In this work, we 
onsider the transformation parameter estimation issue as

a regression problem and a Bayesian model, namely Relevan
e Ve
tor Ma
hine (RVM)

[109℄ is used to solve this problem. We 
onsider here the standard RVM although the
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method may employ other variants su
h as the twinned RVM [110℄ whi
h applies double

training or the multivariate RVM [111℄.

Our work is motivated by the pioneering resear
h presented in [112℄ where 
orrespon-

den
es are estimated using a softassign approa
h. Softassign is a te
hnique for solving an

assignment problem. As opposed to hard assignment, softassign weights ea
h mat
hing

to indi
ate the quality of the 
orresponden
e. Hard assignment is the limit version of

softassign. In the work herein, instead of solving the assignment problem based on the

smallest distan
e, we utilize this distan
e to 
reate a 
ost matrix that des
ribes the 
ost

of an assignment. Then, the 
orresponden
es are extra
ted with a 
ombinatorial opti-

mization algorithm, the Hungarian algorithm [113℄. The rationale behind this algorithm

is to assign a single task to a single worker, based on an assignment 
ost matrix, su
h

that the total 
ost is minimum. The temporal 
omplexity of the algorithm is polynomial,

and in parti
ular O(n3). After the 
orresponden
e between points has been established,

a Bayesian regression model (RVM) is used to infer the transformation parameters.

The Hungarian algorithm has also been used in [7℄, where a feature-based registration

method is demonstrated. Points are assumed to des
ribe a shape and a histogram (shape


ontext) is 
al
ulated, des
ribing the spa
e distribution of points. This histogram is used

to de�ne the 
ost matrix of the Hungarian algorithm. Our work di�erentiates from [7℄

in the way the geometri
 transformation is treated. We estimate the transformation's

parameters (both rigid and non rigid) through regression (RVM) while the latter method

uses thin plate splines interpolation. Another substantial di�eren
e is that in our approa
h

points are not 
onsidered as parts of a shape representation, sin
e our method is more

general.

The main 
ontribution of this work is that using a regression framework based on

RVM addresses the problem of eventual false 
orresponden
es with respe
t to methods

relying on interpolation s
hemes, like TPS. More pre
isely, a single false 
orresponden
e

may lead to a totally erroneous registration if TPS is used. For example, this is a 
ase

of the RPM [14℄, or the GMMReg [103℄ methods. In �gure 3.1(a), the 
orre
t 
orrespon-

den
es between the sour
e and the target sets are represented by line segments. In �gure

3.1(b), two points were falsely mat
hed on purpose simulating a wrong 
orresponden
e

solution. The result of TPS [15℄ is shown in �gure 3.1(
), where large registration errors

are present. The result of the proposed registration s
heme based on RVM regression

is shown in �gure 3.1(d), where the registration is 
orre
t. TPS by its de�nition tries

to minimize the total bending energy to provide a smooth model, whi
h is an approa
h

that restri
ts the 
apability of providing good results in areas where the 
orresponden
e

is 
orre
tly established. On the other hand, RVM 
onsiders only the lo
al neighborhood

to extra
t the regression model, due to the priors it implies on ea
h point. The 
losed

form solution for the transformation model provided by RVM is 
ontinuous and lo
ally

smooth depending on the assignment solution and more importantly, it is robust to false

mat
hes. The 
orresponden
e estimation step used in this work is the Hungarian algo-

rithm. Alternative methods 
ould also be used to solve the 
orresponden
e problem, like
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the standard softassign approa
h [102℄.

(a) (b) (
) (d)

Figure 3.1: A false mat
hing simulation example, with a point set used in [14℄. (a) Corre
t


orresponden
es between the sour
e and the target sets are represented by line segments.

(b) Two points were falsely mat
hed on purpose simulating a wrong 
orresponden
e solu-

tion. The yellow box depi
ts the false mat
hed points. (
) The result of TPS [15℄. Noti
e

that large registration errors are present. (d) The result of the proposed registration

s
heme based on RVM regression. In this 
ase the registration is 
orre
t.

The proposed method is similar in spirit with RPM [14℄ and CPD [17℄ in the sense that

it employs a framework of iteratively updating the 
orresponden
e and the estimation

of the transformation parameters. Both RPM and CPD are based on an expe
tation-

maximization (EM) [114℄ framework. In RPM and CPD the E-step estimates soft 
or-

responden
es through a posterior distribution. In our method the E-step involves any


orresponden
e estimation algorithm, whi
h in our 
ase is the Hungarian algorithm. A

major di�eren
e in our approa
h with respe
t to RPM and CPD is that in the M-step the

transformation is estimated using Bayesian regression (RVM). On the other hand RPM

uses TPS interpolation. Moreover, RVM provides a 
losed form transformation both for

the rigid and non-rigid 
ases 
ompared to CPD, where the two 
ases have to be mod-

eled with di�erent set of parameters [17℄. A modeling of a rigid registration 
ase with a

non-rigid model may provide ina

ura
ies in the CPD result.

We evaluated our method by 
omparing it with the CPD [17℄, RPM [14℄ and GMMReg

[103℄ algorithms for both rigid and non-rigid transformations. The results indi
ate that

our method is more a

urate than the state of the art methods 
ompared 
on
erning

the robustness against false mat
hing during the 
orresponden
e estimation step and the

parametrization of the method. The innovation of our method is that by utilizing a robust


orresponden
e estimation algorithm initially, we 
ould relax the 
onstraints imposed in

the transformation modeling step so as to handle any erroneously mat
hed points.

3.2 Registration of sets of points via regression

In a point set registration problem two sets of points are involved. The sour
e point set

X = {x
i

∈ R
d}Nx

i=1 and the target point set T = {t
i

∈ R
d}Nt

i=1. In our experiments, we

assume that N

x

= N

t

= N . In 
ase the two sets have di�erent 
ardinalities, we add

extra points (as des
ribed in appendix I). In our method the registration transformation
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is modeled by a RVM. However, one would observe that the RVM des
ribed in appendix

II is de�ned for univariate output ve
tors. In other words, the target variable has to be a

s
alar. However, in our 
ase t

i

∈ R
d

, and thus, in order to over
ome this diÆ
ulty, we used

d distin
t RVMs, one for ea
h dimension k. Alternatively, one 
ould use a multivariate

RVM, as des
ribed in [111℄ or the twinned RVM [110℄.

Eventually, the proposed model is a ve
tor valued fun
tion T , having parameters W ,

representing the geometri
 transformation bringing setX into alignment with set T . Thus,

ideally we would have for every point t

i

∈ T , i = 1; :::; N :

t

i

= T (x
C

i

;W ) = [T 1(x
C

i

;w1); :::; T k(x
C

i

;wk); :::; T d(x
C

i

;wd)]T ; (3.1)

where W = {wk ∈ R
N}d

k=1, with w
k

being the weight ve
tor of dimension N for the k-th

RVM, T k

is a RVM as des
ribed by (5.1) in appendix II and C

i

is the index of the point

in X 
orresponding to the i-th point of T . In other words, the ideal transformation is

t

k

i

= T k(x
C

i

;wk) i = 1; : : : ; N; k = 1; : : : ; d (3.2)

with t

k

i

representing the k-th 
omponent of point t

i

∈ T .

The proposed method 
onsists of an iterative s
heme, that, at ea
h iteration alternates

between the method for establishing 
orresponden
es (e.g. Hungarian algorithm) and the

method for estimating the registration transformation (RVM training). The 
orresponding

obje
tive fun
tion that is minimized has the following form:

J(Æ;W ) =

N∑

i=1

N∑

j=1

Æ

ij

C
x

i

;T (x
j

;W ) +

N∑

i=1

N∑

j=1

Æ

ij

||t
i

− T (x
j

;W )||2: (3.3)

Its optimization involves two steps at ea
h iteration. In the �rst step, we assume a known

registration transformation T (RVM) and try to estimate the optimal 
orresponden
es Æ

ij

with the Hungarian algorithm. Thus, the obje
tive fun
tion is minimized with respe
t to

Æ

ij

, ∀ i; j. In the se
ond step, the 
orresponden
es Æ

ij

are �xed to the values 
omputed in

the �rst step and a RVM training pro
ess takes pla
e to update the registration transfor-

mation T in order to mat
h the estimated 
orresponden
es. Thus, in this se
ond step, the

obje
tive fun
tion is minimized with respe
t to the set of weights W = {wk ∈ R
N}d

k=1.

Sin
e both 
omputational steps at ea
h iteration minimize the obje
tive fun
tion J , the

whole iterative pro
ess 
onverges to a minimum of J .

The overall pro
edure is presented in Algorithm 8. Ea
h iteration of the registration

algorithm involves two steps. At �rst, 
orresponden
es between points of the sour
e set

X and the target set T are estimated by the Hungarian algorithm and then based on

these 
orresponden
es, d RVMs are trained, one per dimension, to solve the regression

problem of transforming the sour
e set to the target set. We initialize the registration

transformation as the identity mapping.
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1: Initialize the registration transformation as the identity mapping and sele
t the type

of basis fun
tion �

i

(x), i = 1; :::; N for the RVM.

2: Determine the 
orresponden
es between sets of points X, T .

3: Cal
ulate distan
e matrix C
ij

= ‖T (x
i

;W )− t

j

‖ ∀ i = 1; : : :N; j = 1; : : : ; N .

4: Solve the assignment problem with the Hungarian algorithm, where C is an assignment


ost matrix.

5: Transformation parameters estimation - train one RVM per dimension of

point set X.

6: for all RVM

k

, k = 1; : : : ; d do

7: Cal
ulate m

k

and �

k

by (5.7) and (5.8).

8: Cal
ulate a

k

i

; �

k

; 


k

i

by (5.9), (5.10) and (5.11).

9: Iterate steps (3.1) and (3.2) until 
onvergen
e to obtain the new RVM

k

, with w

k =

m

k

.

10: Iterate steps 2, 3 until 
onvergen
e of the obje
tive fun
tion J(Æ;W ) (3.3).

Algorithm 8: The RVM-Hungarian method for registration of sets of points

3.3 Experimental Results and Dis
ussion

In order to evaluate our method, several experiments were 
ondu
ted in a 
olle
tion of

sets of points, �rstly used in [112℄, and widely used in the related literature (�gure 3.2).

The algorithm was tested both for its a

ura
y and its robustness to noise. Experiments

with real data were also 
ondu
ted. For that purpose we used the 2D range data from [16℄

(�gure 3.3(a)) and the 3D fa
e of [17℄ was also used in our experiments (�gure 3.3(b)).

Experiments are divided into two types, a

ording to the transformation type (either

rigid or non rigid). In 
ase of non rigid transformation, the non rigid deformation was

followed by a rigid one, to make the problem more 
hallenging. In that 
ase the whole

transformation remains non-rigid. In all 
ases the registration transformation was ini-

tialized to the identity mapping. The angle of the rigid transformation varied between

[0◦; 10◦], while the translation, varied between [−0:2; 0:2] × [−0:2; 0:2]. The registration

error is de�ned as the Eu
lidean distan
e between the referen
e point and its 
orrespond-

ing registered. Points of �gure 3.2 range in [0; 1]× [0; 1], while those of �gure 3.3(a) range

in [−40; 10]× [−10; 30] and of �gure's 3.3(b) in [−2; 2]× [−2; 2]× [−2; 2].

In our implementation, di�erent kernels were examined (Gaussian, Student's t-kernel

and Lapla
ian) as des
ribed in [109℄ and implemented in [115℄. The Lapla
ian kernel,

K(x; y) = e

− |x−y|
�

, proved to be the most eÆ
ient model for the tested input data shown

in �gure 3.2. However, the di�eren
es are not 
onsiderable as the registration a

ura
ies of

the 
ompared methods di�er at the third de
imal digit. Table 3.1 presents the registration

error statisti
s of the rigid 
ase, while table 3.2 demonstrates the results of the non rigid


ase. In all 
ases, variable kernel widths were used in the range between 5% and 30% of

the mean varian
e of the referen
e set. The Lapla
ian kernel proved to be less sensitive

to 
hanges in the variations of the kernel width 
ompared to the Gaussian and Student's
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t-kernels.

Table 3.1: Registration error statisti
s for rigid transformations using di�erent kernels

on the shapes of �gure 3.2. The kernel width varies between 5% and 30% of the mean

varian
e of the referen
e set.

Kernel mean std median min max

Gaussian 0.0021 0.0019 0.0013 0.0009 0.0049

Student's t 0.0007 0.0012 0.0001 0.0000 0.0026

Lapla
ian 0.0000 0.0000 0.0000 0.0000 0.0000

Table 3.2: Registration error statisti
s for non rigid transformations using di�erent kernels

on the shapes of �gure 3.2. The kernel width varies between 5% and 30% of the mean

varian
e of the referen
e set.

Kernel mean std median min max

Gaussian 0.0029 0.0022 0.0020 0.0013 0.0061

Student's t 0.0009 0.0015 0.0002 0.0001 0.0031

Lapla
ian 0.0001 0.0001 0.0000 0.0000 0.0002

In order to 
ompare our method with the state-of-the-art, our results were 
ompared

with the CPD [17℄, the RPM [14℄ and the GMMReg [103℄ algorithms. In this experimental


on�guration the kernel width � was set to 20% of the varian
e of sour
e point set X for

all 
ases of our experiments.

The 
ode for implementing these algorithms was found in the web pages of the 
or-

responding authors. RPM was implemented in Matlab environment, while CPD and

GMMReg were programmed in C/C++ (Mex �les). Therefore, this has an impa
t on

the di�erent exe
ution times of the algorithms. Our method was partially implemented

in Matlab (RVM training [109℄, by the oÆ
ial web page of Mike Tipping [115℄) and in C

(Hungarian algorithm for re
tangular and square 
ost matri
es, an implementation found

in the Mathwork File Ex
hange web page). Several experiments were 
ondu
ted (rigid

and non rigid transformations) and apart from the registration error (root mean squared

error) the exe
ution time and 
onvergen
e rate (i.e. how many iterations were ne
essary

for the algorithm to 
onverge) were also measured. A general 
on
lusion is that the pro-

posed Bayesian regression framework provides better results 
ompared to RPM, where

this algorithm either demands an extra post pro
essing re�nement step (e.g. registration

of the 
entroids, �gures 3.6(
)) or 
ompletely fails (e.g. tables 3.3, 3.4, 3.7, 3.8).

Ea
h experiment was run 20 times and error statisti
s were 
al
ulated. In ea
h 
on-

�guration, a di�erent registration transformation parameter set was used. The exe
ution

times are presented in table 3.5, along with the 
onvergen
e rate in table 3.6 for experi-

ments with noise free data and points in presen
e of noise. The initial sets of points, with
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representative results are demonstrated in �gure 3.4 for the rigid 
ase and in �gures 3.5,

3.6 for the non rigid 
ase. Also, to investigate the robustness of the algorithm to noise,

the points were 
orrupted by Gaussian noise (with zero mean and small varian
e so as

the shape does not 
hange signi�
antly). The initial sets of points, with the estimated

results are demonstrated in �gures 3.8 - 3.11, while the statisti
s are presented in tables

3.3 (rigid 
ase) and 3.4 (non rigid 
ase) for noise free points and in tables 3.7 (rigid 
ase)

and 3.8 (non rigid 
ase) for points 
orrupted by Gaussian noise with zero mean value. To

further support the statisti
al presentation of the registration error results, the p-value

was 
omputed, so as to verify the statisti
al signi�
an
e of the analysis. Noti
e that in


ase of un
orrupted data, the deviations between real and 
omputed values are too small

for all the studied methods, and thus the p-value was not 
omputed. In the 
ase of data


orrupted by Gaussian noise, there are di�eren
es between the results provided by ea
h

method. As it may be observed in the last row of Table 3.7 and Table 3.8, in all 
ases,

the 
omputed p-value is less than a threshold of signi�
an
e level of 5%, whi
h is usually

employed.

One 
an observe that the proposed method, provides better results in general 
ompared

to CPD, RPM and GMMReg. Observe for example the 
on
entration of estimated target

points in an erroneous spa
e (no underlying 
orresponding sour
e points) in �gure 3.6(b)

and �gure 3.6(d), even in the 
ase of noise free data. The same also applies in 
ase of

points 
orrupted by noise, where CPD and GMMReg provided results that des
ribe the

shape of the target set quite well but there are points with no underlying 
orresponden
es,

e.g. �gures 3.9 (
) and 3.9 (e) or �gures 3.10 (
) and 3.10 (e). On the other hand, RPM


omputed a good mat
hing between the registered shapes but a re�nement step is needed

to a
hieve perfe
t registration, e.g. �gure 3.6(
). In general, RPM proved too diÆ
ult to

be tuned, and therefore provided a high rate of failures.

Con
erning the CPD and the GMMReg methods, the time 
omplexity of these algo-

rithms are lower than ours whi
h is partially implemented in Matlab (table 3.5). The

fa
t that under similar 
omparison 
onditions our algorithm may provide similar results

is justi�ed by the 
onvergen
e 
omparison (table 3.6), where one may observe that our

te
hnique 
onverges quite faster than CPD and GMMReg. A general 
on
lusion regard-

ing the 
omparison of our method and CPD/GMMReg is, that, taking into a

ount the

registration error, the implementation and parameter tuning (e.g. sele
ting the type of

transformation rigid or non rigid) along with the time 
omplexity our method may pro-

vide better registration results, under the 
ondition that a good assignment solution is

provided.

Another issue studied in our experiments is the integration of an annealing s
heme,

either in the 
orresponden
e establishment (step 1 of algorithm 8) or in the RVM training

(step 2 of algorithm 8). One approa
h was to embed softassign [102℄, as solution to

the 
orresponden
e establishment instead of the Hungarian algorithm. The annealing

temperature was initialized to 10% of the maximum pairwise distan
e between the points.

After ea
h iteration, the annealing temperature was redu
ed to 0.9 of its previous value.
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(a) (b) (
) (d)

Figure 3.2: The initial set of points used in our experiments, [14℄. (a) Sine, (b) Blob, (
)

Fish and (d) Ideogram.

(a) (b)

Figure 3.3: (a) 2D range data used in our experiments [16℄. (b) 3D set of points repre-

senting a fa
e used in our experiments (3D fa
e) [17℄.

(a) (b)

Figure 3.4: Rigid transformation experiment with 2D points of a range s
an [16℄. (a) Ref-

eren
e set of points (red) and deformed set of points (bla
k) of a 3D fa
e. (b) Registration

result for the proposed method.
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(a) (b) (
)

(d) (e)

Figure 3.5: Non rigid transformation experiment. (a) Referen
e set of points (red) and

deformed set of points (bla
k). Registration result for (b) CPD, (
) RPM, (d) GMMReg

and (e) the proposed method. The di�eren
e is better highlighted in 
olor.

(a) (b) (
)

(d) (e)

Figure 3.6: Non rigid transformation experiment. (a) Referen
e set of points (red) and

deformed set of points (bla
k). Registration result for (b) CPD, (
) RPM, (d) GMMReg

and (e) the proposed method. The di�eren
e is better highlighted in 
olor.
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(a) (b)

Figure 3.7: Non rigid transformation experiment with 3D points [17℄. (a) Referen
e set

of points (red) and deformed set of points (bla
k) of a 3D fa
e. (b) Registration result

for the proposed method.

Table 3.3: Mean registration error for rigid transformations.

point set Hungarian-RVM CPD [17℄ RPM [14℄ GMMReg [103℄

Sine 0.00 0.00 14.62 0.00

Blob 0.00 0.00 11.53 0.00

Fish 0.00 0.00 22.60 0.00

Ideogram 0.00 0.00 23.62 0.00

2D range 0.01 0.04 fail 0.00

Table 3.4: Mean registration error for non-rigid transformations.

point set Hungarian-RVM CPD [17℄ RPM [14℄ GMMReg [103℄

Sine 0.00 0.00 13.45 0.00

Blob 0.00 0.00 11.19 0.00

Fish 0.00 0.00 21.87 0.00

Ideogram 0.00 0.00 23.50 0.00

3D fa
e 0.00 0.08 fail 0.00

Table 3.5: Mean exe
ution time (se
) of the 
ompared methods for the whole set of

experiments presented in se
tion 3.3. The Hungarian-RVM is partially implemented in

Matlab (RVM training) and C (Hungarian algorithm). RPM is totally implemented in

Matlab while both CPD and GMMReg are totally implemented in C.

Hungarian-RVM CPD [17℄ RPM [14℄ GMMReg [103℄

Pure Data 0.43 0.08 1.97 0.19

Gaussian Noise 0.30 0.08 2.53 0.49
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Table 3.6: Average number of iterations of the 
ompared methods for the whole set of

experiments presented in se
tion 3.3.

point set Hungarian-RVM CPD [17℄ RPM [14℄ GMMReg [103℄

Pure Data 2 21 97 55

Gaussian Noise 2 20 87 56

(a) (b)

Figure 3.8: Rigid transformation experiment in presen
e of noise. (a) Referen
e 2D range

set of points (red) and deformed set of points (bla
k), [16℄ 
orrupted with zero mean

additive Gaussian noise. (b) Registration result for the proposed method. The di�eren
e

is better highlighted in 
olor.

(a) (b) (
)

(d) (e)

Figure 3.9: Non rigid transformation experiment in presen
e of noise. (a) Referen
e set

of points (red) and deformed set of points (bla
k) 
orrupted with zero mean additive

Gaussian noise. Registration result for (b) CPD, (
) RPM, (d) GMMReg and (e) the

proposed method. The di�eren
e is better highlighted in 
olor.
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(a) (b) (
)

(d) (e)

Figure 3.10: Non rigid transformation experiment in presen
e of noise. (a) Referen
e

set of points (red) and deformed set of points (bla
k) 
orrupted with zero mean additive

Gaussian noise. Registration result for (b) CPD, (
) RPM, (d) GMMReg and (e) the

proposed method. The di�eren
e is better highlighted in 
olor.

(a) (b)

Figure 3.11: Non rigid transformation experiment in presen
e of noise. (a) Referen
e 3D

set of a fa
e points (red) and deformed set of points (bla
k), [17℄ 
orrupted with zero mean

additive Gaussian noise. (b) Registration result for the proposed method. The di�eren
e

is better highlighted in 
olor.
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The results for the various 
ombinations are presented in tables 3.9 and 3.10. As it


an be observed, all the mat
hing variants provide similar a

ura
y, regarding the mean

squared error. However, 
onsidering the 
omplexity of the model, dire
t appli
ation of

the Hungarian algorithm appeared to be the most eÆ
ient approa
h. A few parameters

have to be estimated while the exe
ution time is 
onsiderably smaller. A straightforward

implementation of the Hungarian algorithm demands less than one third of the softassign

exe
ution time. Based on the aforementioned remarks, we prefer the 
ombination of the

Hungarian algorithm (for solving the 
orresponden
e problem) with RVMs (for estimating

the transformation) without any annealing s
heme.

Table 3.7: Mean registration error for rigid transformations in presen
e of noise.

point set Hungarian-RVM CPD [17℄ RPM [14℄ GMMReg [103℄

Sine 0.00 0.01 14.62 0.01

Blob 0.00 0.01 11.53 0.01

Fish 0.00 0.01 22.61 0.01

Ideogram 0.00 0.01 23.86 0.01

2D range 0.01 0.51 fail 0.48

p-value - 0.00 10−15
0.00

Table 3.8: Mean registration error for non-rigid transformations in presen
e of noise.

point set Hungarian-RVM CPD [17℄ RPM [14℄ GMMReg [103℄

Sine 0.00 0.01 14.68 0.01

Blob 0.00 0.01 11.47 0.01

Fish 0.00 0.01 22.48 0.01

Ideogram 0.00 0.01 23.72 0.01

3D fa
e 0.00 0.01 fail 0.00

p-value - 10−4 0:05 0:03

Table 3.9: Registration error statisti
s for non-rigid transformations.

point set Hungarian-RVM

mean std median max min

sine 0.00 0.00 0.00 0.00 0.00

blob 0.00 0.00 0.00 0.00 0.00

�sh 0.00 0.00 0.00 0.00 0.00

ideogram 0.00 0.00 0.00 0.00 0.00
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Table 3.10: Registration error statisti
s for non-rigid transformations.

point set Softassign-RVM

mean std median max min

Sine 0.02 0.02 0.02 0.01 0.04

Blob 0.02 0.02 0.02 0.00 0.04

Fish 0.01 0.01 0.01 0.01 0.02

Ideogram 0.01 0.00 0.01 0.00 0.01

More experiments were 
ondu
ted to investigate the robustness of RVM regression

with respe
t to TPS interpolation in the registration of point sets. For that purpose, we

�xed the 
orresponden
es between the referen
e and the target sets in order to 
ontain

a number of false mat
hes. Two types of experiments were performed. In the �rst

type, the false mat
hes preserved the one-to-one 
orresponden
e, that is, one point of

the sour
e set 
orresponds to exa
tly one point in the target set (one to one). In the

other type of experiments, one point of the sour
e set may 
orrespond to one or more

points in the target set (one to many). Then, we applied the transformation (TPS or

RVM) and we 
ounted the number of 
orre
t alignments. An alignment of two points

was 
onsidered to be 
orre
t if the Eu
lidean distan
e between a transformed point and

its 
orresponding was less than a prede�ned threshold. By varying the threshold we may

plot a 
urve demonstrating the performan
e of the 
ompared methods. These 
urves are

shown in �gure 3.12 for various 
ases of false mat
hes on a set of 60 2D points. The 
urves


orrespond to a rigid transformation on the set of �gure 3.2(a). The translation parameters

were �xed to [0:2; 0:3]T and the rotation angle varied in the interval [0◦; 80◦] with a step of

10◦ degrees. The 
urves in �gure 3.12 show the average values between all angles examined

per threshold. Noti
e that the RVM regression always provides an a

urate result and

justi�es our 
laim that it 
an model better a registration transformation. In 
ase of one

to one 
orresponden
e, the target and the transformed sets almost 
oin
ide, while in the


ase of one to many 
orresponden
es, the registration result is 
lose to the target set, and

the shape is generally preserved. On the other hand, TPS 
ompletely fails to model the

registration transformation even with few false mat
hes. This behavior is justi�ed by the

fa
t that RVM does not 
onsider the whole set for extra
ting the regression model. A

representative example is also shown in �gure 3.1.

In the same spirit, we examined the smoothness of the resulting transformation of RVM

with respe
t to TPS. Following the same pro
edure, the number of false 
orresponden
es

was gradually in
reased and the smoothness of the transformation was 
omputed. We

de�ne the smoothness of a transformation T that registers set X to Y as

S(T ) =
∑

x∈X
x

′∈N (x)

(d(x;x′)− d(T (x)− T (x′)))
2

(3.4)

where N (x) is the set of nearest neighbors of x in X, d(p; t) = ||p− t|| is the Eu
lidean
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Figure 3.12: Curves representing the number of points 
orre
tly transformed with respe
t

to a threshold determining the 
orre
t transformation using RVM (top row) and TPS

(bottom row) when a number of initial false mat
hes is established in sour
e and target

sets. A point in the sour
e set is 
orre
tly transformed if, after transformation, its distan
e

with respe
t to its 
orre
t 
ounterpart is below the threshold. The left 
olumn shows

results with false assignments that preserve the one-to-one mat
hing. In that 
ase the

RVM provides a 
onsistent behavior and its 
urves are all at 100% 
orre
t transformation.

The right 
olumn shows results with false assignments that do not preserve the one-to-one

mat
hing.
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distan
e between points p and t, while T is either the RVM or the TPS transformation.

The quantity given by (3.4) has a high value (indi
ating non smoothness) when a point

and its neighbors in the sour
e set have 
ounterparts lo
ated at distant points in the

target set. In other words, if the distan
e of the points to its neighbors in the sour
e set

is relatively di�erent with respe
t to the distan
e of their 
ounterparts in the target set

a high penalty is added in the smoothness quantity. The 
urve in �gure 3.13 presents

the smoothness of the transformation by varying the number of false mat
hes, and the

number of neighbors inN (x). Noti
e that RVM provides a quite smoother transformation

although it may result to foldings if the number of false mat
hes is in
reased.

Figure 3.13: Smoothness (3.4) of the RVM (top row) and TPS (bottom row) under

various number of false mat
hes. The left 
olumn shows results with false assignments

that preserve the one-to-one mat
hing. Noti
e that the s
ale of verti
al axis at the top-left

plot is 10−5
indi
ating a very smooth transformation. The right 
olumn show results with

false assignments that do not preserve the one-to-one mat
hing.
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Chapter 4

Registering images and sets of points

using Mixture Models

4.1 Introdu
tion

4.2 Image registration with mixtures of Gaussian and Student's t-distributions

4.3 Robust registration of point sets with mixtures of Student's t-distributions

4.4 Experimental results

4.1 Introdu
tion

The goal of image registration is to geometri
ally align two or more images in order

to superimpose pixels representing the same underlying stru
ture. Image registration

is an important preliminary step in many appli
ation �elds involving, for instan
e, the

dete
tion of 
hanges in temporal image sequen
es or the fusion of multimodal images.

For the state of the art of registration methods we refer the reader to [116℄. Medi
al

imaging, with its wide variety of sensors (MRI, nu
lear, ultrasoni
, X-Ray) is probably

one of the �rst appli
ation �elds [117, 118, 119℄. Other resear
h areas related to image

registration are remote sensing, multisensor robot vision and multisour
e imaging used

in the preservation of artisti
 patrimony. Respe
tive appli
ations in
lude the following of

the evolution of pathologies in medi
al image sequen
es [120℄, the dete
tion of 
hanges

in urban development from aerial photographs [121℄ and the re
overy of underpaintings

from visible/X-ray pairs of images in �ne arts painting analysis [122℄.

The overwhelming majority of 
hange dete
tion or data fusion algorithms assume that

the images to be 
ompared are perfe
tly registered. Even slightly erroneous registrations

may be
ome an important sour
e of interpretation errors when inter-image 
hanges have
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to be dete
ted. A

urate (i.e. subpixel or subvoxel) registration of single modal images

remains an intri
ate problem when gross dissimilarities are observed. The problem is

even more diÆ
ult for multimodal images, showing both lo
alized 
hanges that have to

be dete
ted and an overall di�eren
e due to the variety of responses by multiple sensors.

Sin
e the seminal works of Viola and Wells [123℄ and Maes et al. [124℄, the max-

imization of the mutual information measure between a pair of images has gained an

in
reasing popularity as a 
riterion for image registration [125℄. The estimation of both

marginal and joint probability density fun
tions of the involved images is a key element

in mutual information based image alignment. However, this method is limited by the

histogram binning problem. Approa
hes to over
ome this limitation in
lude Parzen win-

dowing [123, 126℄, where we have the problem of kernel width spe
i�
ation, and spline

approximation [127, 128℄. A re
ently proposed method relies on the 
ontinuous represen-

tation of the image fun
tion and develops a relation between image intensities and image

gradients along the level sets of the respe
tive intensity [129℄.

Gaussian mixture modeling (GMM) [45, 130℄ 
onstitutes a powerful and 
exible method

for probabilisti
 data 
lustering that is based on the assumption that the data of ea
h 
lus-

ter has been generated by the same Gaussian 
omponent. In [131℄, GMMs were trained

o�-line to provide prior information on the expe
ted joint histogram when the images are


orre
tly registered. GMMs have also been su

essfully used as models for the joint [132℄

as well as the marginal image densities [133℄, in order to perform intensity 
orre
tion.

They have also been applied in the registration of point sets [134℄ without establishing

expli
it 
orresponden
e between points in the two images. The parameters of GMMs 
an

be estimated very eÆ
iently through maximum likelihood (ML) estimation using the EM

algorithm [8℄. Furthermore, it is well-known that GMMs are 
apable of modeling a large

variety of pdfs [130℄.

An important issue in image registration is the existen
e of outlying data due to

temporal 
hanges (e.g. urban development in satellite images, lesion evolution in medi
al

images) or even the 
omplimentary but non redundant information in pairs of multimodal

images (e.g. visible and infrared data, fun
tional and anatomi
al medi
al images). Al-

though a large variety of image registration methods have been proposed in the literature

only a few te
hniques address these 
ases [135, 120, 136℄.

The method proposed in this study is based on mixture model training. More spe
i�-


ally, we train a mixture model on
e for the referen
e image and obtain the 
orresponding

partitioning of image pixels into 
lusters. Ea
h 
luster is represented by the parameters

of the 
orresponding density 
omponent. The main idea is that a 
omponent in the ref-

eren
e image 
orresponds to a 
omponent in the image to be registered. If the images

are 
orre
tly registered the sum of distan
es between the 
orresponding 
omponents is

minimum.

A straightforward implementation of the above idea would 
onsider models with Gaus-

sian 
omponents. However, it is well known that GMMs are sensitive to outliers and may

lead to ex
essive sensitivity when the number of data points is small. This is easily
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understood by re
alling that maximization of the likelihood fun
tion under an assumed

Gaussian distribution is equivalent to �nding the least-squares solution whi
h la
ks ro-

bustness. Consequently, a GMM tends to over-estimate the number of 
lusters sin
e it

uses additional 
omponents to 
apture the tails of the distributions [137℄. The problem

of attaining robustness against outliers in multivariate data is diÆ
ult and in
reases with

the dimensionality. In this work, we 
onsider mixture models (SMM) with Student's-t


omponents for image registration. This pdf has heavier tails 
ompared to a Gaussian

[138℄. More spe
i�
ally, ea
h 
omponent in the SMM mixture originates from a wider


lass of ellipti
ally symmetri
 distributions with an additional parameter 
alled the num-

ber of degrees of freedom. In this way, a more robust mixture model is employed than

the typi
al GMM.

The main 
ontributions of the proposed registration method are the following: (i)

the histogram binning problem is over
ome through image modeling with mixtures of

distributions whi
h provide a 
ontinuous representation of image density. (ii) Robustness

to outlying pixel values is a
hieved by using mixtures of Student's t-distributions. The

widely used method of maximization of the mutual information is outperformed. (iii)

The method may be dire
tly applied to ve
tor valued images (e.g. di�usion tensor MRI)

where standard histogram-based methods fail due to the 
urse of dimensionality. (iv)

The proposed method is faster than histogram based methods where the joint histogram

needs to be 
omputed for every 
hange in the transformation parameters.

Moreover, the registration problem is extended to the 
ase of point sets where the

nature of the problem is di�erent sin
e there is no spatial ordering 
ontrary to image grids

(e.g. pixelized images). Therefore, the diÆ
ulty 
onsists in simultaneously estimating the

transformation parameters and establishing 
orresponden
es between points.

In the related literature of point set registration, the standard approa
h is the well

known Iterative Closest Points (ICP) algorithm [100℄ and its variants [101, 139, 140, 141℄.

In [14, 112℄ a robust point mat
hing algorithm is proposed relying on soft-assign [142℄

and an iterative optimization pro
edure. The soft-assign is based on a matrix whose

entries des
ribe the probability that a point of one set mat
hes upon transformation to

one of the other set. Mutual information was also used as a 
onstraint [143℄ for point

set mat
hing under the above framework. Features extra
ted from the point sets are

employed in [7, 105℄, a kernel-based method is used in [144℄ and a method modeling the

point sets by a GMM with 
onstraints on the 
omponent 
enters is presented in [145℄.

Also, an approa
h to the 
onstru
tion of an atlas from multiple point sets is proposed in

[146℄. Finally, a work related to the herein proposed approa
h is presented in [134℄. The

authors propose to model the probability density fun
tion (pdf) of the points of the two

sets by GMMs and estimate the transformation parameters through the minimization of

an energy fun
tion des
ribing the distan
e of the two GMMs. Our model 
ompletes this

study by proposing a more robust framework for modeling the point sets.
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4.2 Image registration with mixtures of Gaussian and Student's

t-distributions

Let I

ref

be an image of N × N pixels with intensities denoted as I

ref

(xi), where xi,

i = 1; :::; N2
, is the i

th

pixel index. The purpose of rigid image registration is to esti-

mate a set of parameters S of the rigid transformation TS minimizing a 
ost fun
tion

E(I
ref

(·); I
reg

(TS(·))) that, in a similarity metri
-based 
ontext, expresses the similarity

between the image pair. In the 2D 
ase the rigid transformation parameters are the ro-

tation angle and the translation parameters along the two axes. In the 3D 
ase, there

are three rotation and three translation parameters. Eventually, s
ale fa
tors may also be

in
luded, depending on the de�nition of the transformation.

Consider, now, a partitioning of the referen
e image I

ref

into K 
lusters (groups) by

training a mixture model with K 
omponents with arbitrary pdf p(I(x); Θ):

�(I
ref

(x)) =

K∑

k=1

�

k

p(I
ref

(x); Θref

k

)

Therefore, the referen
e image is represented by the parameters Θref

k

, k = 1; : : : ; K of

the mixture 
omponents. The partitioning of the image is des
ribed using the fun
tion

f(x) : [1; 2; :::; N ] × [1; 2; :::; N ] → {1; 2; :::; K}, where f(x) = k means that pixel x of

the referen
e image I

ref

belongs to the 
luster de�ned by the k

th


omponent. Let us also

de�ne the sets of all pixels of image I

ref

belonging to the k

th


luster:

P

k

= {xi ∈ I

ref

; i = 1; 2; :::; N2|Æ(f(xi)− k) = 1}

for k = 1; :::; K, where Æ(x) is the Dira
 fun
tion:

Æ(f(xi)− k) =

{

1; if f(xi) = k

0; otherwise

(4.1)

The above mixture-based segmentation of the referen
e image is performed on
e, at

the beginning of the registration pro
edure. The referen
e image I

ref

is, thus, partitioned

into K groups, generally, not 
orresponding to 
onne
ted 
omponents in the image. This

spatial partition is proje
ted on the image to be registered I

reg

, yielding a 
orresponding

partition of this se
ond image (i.e., the partitioning of the referen
e image a
ts as a mask

on the image to be registered). Then, we assume that the pixel values of ea
h 
luster k

in I

reg

are modeled using a mixture 
omponent with parameters Θreg

k

obtained from the

statisti
s of the intensities of pixels in group k of I

reg

.

In order to apply our method it should be possible to de�ne a distan
e measure

D(Θref

k

;Θreg

k

) between the 
orresponding mixture 
omponents with pdf p(I). Then the

energy fun
tion we propose, is expressed by the weighted sum of distan
es between the


orresponding 
omponents in I

reg

and I

ref

:

E(I
ref

(·); I
reg

(TS(·))) =
K∑

k=1

�

k

D(Θref

k

;Θreg

k

) (4.2)
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where �

k

is the mixing proportion of the k

th


omponent:

�

k

=
|P

k

|
K∑

l=1

|P
l

|

where |P
k

| denotes the 
ardinality of set P
k

. If the two images are 
orre
tly registered the


riterion in (4.2) assumes that the total distan
e between the whole set of 
omponents

would be minimum.

For a given set of transformation parameters S, the total energy between the image

pair is 
omputed through the following steps:

• segment the referen
e image I

ref

(·) into K 
lusters by a mixture model.

• for ea
h 
luster k = 1; 2; :::; K of the referen
e image:

{ proje
t the pixels of the 
luster onto the transformed image to be registered

I

reg

(TS(·)).
{ determine the parameters Θreg

k

of the proje
ted partition of I

reg

.

• evaluate the energy in eq. (4.2) by 
omputing the distan
es between the 
orrespond-

ing densities.

In the 
ase of GMMs, the above registration pro
edure 
an be applied as follows:

Consider the multivariate normal distributions N1(�1;Σ1) and N2(�2;Σ2) and denote

Θ
i

= {�
i

;Σ
i

}, with i = {1; 2}, their respe
tive parameters (mean ve
tor and 
ovarian
e

matrix). The Cherno� distan
e between these distributions is de�ned as [147℄:

C(Θ1;Θ2; s) =
s(1− s)

2
(�2 − �1)

T [sΣ1 + (1− s)Σ2]
−1(�2 − �1)

+
1

2
ln

( |sΣ1 + (1− s)Σ2|
|Σ1|s|Σ2|1−s

)

:

The Bhatta
haryya distan
e is a spe
ial 
ase of the Cherno� distan
e with s = 0:5:

B(Θ1;Θ2) =
1

8
(�2 − �1)

T

[
Σ1 + Σ2

2

]−1

(�2 − �1) +
1

2
ln

(

|Σ1+Σ2

2
|

√

|Σ1||Σ2|

)

(4.3)

A representative GMM for the referen
e image 
an be obtained via the EM algorithm

[45℄. Therefore, the referen
e image is represented by the parameters Θref

k

= {�ref
k

;Σref

k

},
k = 1; : : : ; K of the GMM 
omponents. After proje
ting the pixel groups of the referen
e

image to obtain the 
orresponding groups in the registered image, the parameters Θreg

k


an be estimated by taking the sample mean �

reg

k

and the sample 
ovarian
e matrix Σreg

k

:

�

reg

k

=
1

|P
k

|
N

2
∑

i=1

I

reg

(TS(x
i))Æ(f(xi)− k) (4.4)
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and

Σreg

k

=
1

|P
k

|
N

2
∑

i=1

(∆I i
k

)(∆I i
k

)T Æ(f(xi)− k); (4.5)

where ∆I i
k

= I

reg

(TS(x
i))−�reg

k

. The role of Æ(f(xi)−k) in eq. (4.4) and (4.5) is to deter-
mine the support (the pixel 
oordinates) for the 
al
ulation of the mean and 
ovarian
e.

These parameters are 
omputed on the image to be registered for the pixel 
oordinates

belonging to the k

th

group on the referen
e image. This also implies a Gaussian mixture

model for the 
omponents of I

reg

. The total distan
e between the two images is 
omputed

using eq. (4.2), where the Bhatta
haryya distan
e between the 
orresponding Gaussian


omponents is 
onsidered as distan
e measure D.

However, GMMs are very sensitive to outlying data and their out
ome is largely in-


uen
ed by pixels not belonging to the dominating model. In order to over
ome this

drawba
k of GMMs, we have employed in our registration method mixtures of Student's

t-distributions. These mixtures are more robust to outliers as it is des
ribed in the next

se
tion.

A d-dimensional random variable X that follows a multivariate t-distribution with

mean �, positive de�nite, symmetri
 and real d×d 
ovarian
e matrix Σ and has � ∈ [0;∞)

degrees of freedom has a density expressed by:

p(x;�;Σ; �) =
Γ
(
�+d
2

)
|Σ|− 1

2

(��)
d

2Γ
(
�

2

)
[1 + �

−1
Æ(x; �; Σ)]

�+d

2

(4.6)

where Æ(x; �; Σ) = (x− �)TΣ−1(x− �) is the Mahalanobis squared distan
e and Γ is the

Gamma fun
tion.

It 
an be shown that the Student's t distribution is equivalent to a Gaussian distri-

bution with a sto
hasti
 
ovarian
e matrix. In other words, given a weight u following a

Gamma distribution parameterized by �:

u ∼ Gamma(�=2; �=2): (4.7)

the variable X has the multivariate normal distribution with mean � and 
ovarian
e Σ=u:

X|�;Σ; �; u ∼ N(�;Σ=u); (4.8)

It 
an be shown that for � → ∞ the Student's t-distribution tends to a Gaussian

distribution with 
ovarian
e Σ. Also, if � > 1, � is the mean ofX and if � > 2, �(�−2)−1Σ

is the 
ovarian
e matrix of X. Therefore, the family of t-distributions provides a heavy-

tailed alternative to the normal family with mean � and 
ovarian
e matrix that is equal

to a s
alar multiple of Σ, if � > 2 (�g. 4.1). A K-
omponent mixture of t-distributions is

given by

�(x;Ψ) =
K∑

i=1

�

i

p(x;�
i

;Σ
i

; �

i

) (4.9)
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Figure 4.1: A univariate Student's t-distribution (� = 0, � = 1) for various degrees of

freedom. As � → ∞ the distribution tends to a Gaussian. For small values of � the

distribution has heavier tails than a Gaussian.

where x = (x1; :::; xN)
T

denotes the observed-data ve
tor and

Ψ = (�1; :::; �K ; �1; :::; �K;Σ1; :::;ΣK

; �1; :::; �K)
T

: (4.10)

are the parameters of the 
omponents of the mixture.

A Student's t-distribution mixture model (SMM) may also be trained using the EM

algorithm [138℄. Consider now the 
omplete data ve
tor

x




= (x1; :::xN ; z1; :::; zN ; u1; :::; uN)
T

(4.11)

where z1; :::; zN are the 
omponent-label ve
tors and z

ij

= (z
j

)
i

is either one or zero,

a

ording to whether the observation x

j

is generated or not by the i

th


omponent. In the

light of the de�nition of the t-distribution, it is 
onvenient to view that the observed data

augmented by the z

j

, j = 1; :::; N are still in
omplete be
ause the 
omponent 
ovarian
e

matri
es depend on the degrees of freedom. This is the reason that the 
omplete-data

ve
tor also in
ludes the additional missing data u1; :::; uN . Thus, the E-step on the (t+1)th

iteration of the EM algorithm requires the 
al
ulation of the posterior probability that

the datum x

j

belongs to the i

th


omponent of the mixture:

z

t+1
ij

=
�

t

i

p(x
j

;�t
i

;Σt

i

; �

t

i

)
K∑

m=1

�

t

m

p(x
j

;�t
m

;Σt

m

; �

t

m

)

(4.12)

as well as the expe
tation of the weights for ea
h observation:

u

t+1
ij

=
�

t

i

+ d

�

t

i

+ Æ(x
j

; �

t

i

; Σt

i

)
(4.13)

Maximizing the log-likelihood of the 
omplete data provides the update equations of

the respe
tive mixture model parameters:

�

t+1
i

=
1

N

N∑

j=1

z

t

ij

; (4.14)
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�

t+1
i

=

N∑

j=1

z

t

ij

u

t

ij

x

j

N∑

j=1

z

t

ij

u

t

ij

; (4.15)

Σt+1
i

=

N∑

j=1

z

t

ij

u

t

ij

(x
j

− �

t+1
i

)(x
j

− �

t+1
i

)T

N∑

j=1

z

t+1
ij

: (4.16)

The degrees of freedom �

t+1
i

for the i

th


omponent, at time step t + 1, are 
omputed as

the solution to the equation:

log

(
�

t+1
i

2

)

−  

(
�

t+1
i

2

)

+ 1− log

(
�

t

i

+ d

2

)

+

N∑

j=1

z

t

ij

(log ut
ij

− u

t

ij

)

N∑

j=1

z

t

ij

+  

(
�

t

i

+ d

2

)

= 0

(4.17)

where  (x) = �(lnΓ(x))
�x

is the digamma fun
tion.

At the end of the algorithm, the data are assigned to the 
omponent with maximum

responsibility using a maximum a posteriori (MAP) prin
iple.

The Student's t-distribution is a heavy tailed approximation to the Gaussian. It

is therefore, natural to 
onsider the mean and 
ovarian
e of the SMM 
omponents to

approximate the parameters of a GMM on the same data as it was des
ribed in the

previous se
tion. If the statisti
s of the images follow a Gaussian model, the degrees of

freedom �

i

are relatively large and the SMM tends to be a GMMwith the same parameters.

If the images 
ontain outliers, parameters �

i

are weak and the mean and 
ovarian
e of the

data are appropriately weighted in order not to take into a

ount the outliers. Thus, the

parameters of the SMM, 
omputed on the referen
e image I

ref

, are used as 
omponent

parameters Θref

k

in a straightforward way as they generalize the Gaussian 
ase by 
orre
tly

addressing the outliers problem. After proje
tion of the pixel groups of the referen
e image

to their 
orresponding groups in the registered image, the parameters Θreg

k

are 
omputed

using the sample mean (4.4) and the sample 
ovarian
e matrix (4.5).

On
e model inferen
e is a

omplished, the Bhatta
haryya distan
e between the 
om-

ponents of the Student's t-mixtures is minimized. The di�eren
e with respe
t to the GMM

is that the 
ovarian
e matri
es are properly s
aled by the Gamma distributed parameters

u as it is de�ned in equations (4.7)-(4.8).

Finally, let us noti
e that the energy in (4.2) may be applied to both single and

multimodal image registration. In the latter 
ase, the di�eren
e in the mean values of the

distributions in (4.3) should be ignored, as we do not sear
h to mat
h the 
orresponding

Student's t-distributions in position but only in shape. In that 
ase, the distan
e in (4.3)
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be
omes:

B(Θ1;Θ2) = ln

(

|Σ1+Σ2

2
|

√

|Σ1||Σ2|

)

(4.18)

whi
h is equivalent to a 
orrelation 
oeÆ
ient between the two distributions.

4.3 Robust registration of point sets with mixtures of Student's

t-distributions

An extension of the registration algorithm to handle point sets is des
ribed in this se
tion.

Given two sets of points X and Y su
h that Y is derived from X after applying a rigid

transformation TS with parameters S, that is Y = TS(X), the problem 
onsists in esti-

mating the transformation parameters from the two data sets without prior knowledge on

any 
orresponden
e. In fa
t, in our formulation, there 
ould be no exa
t 
orresponden
e

at all due to noise or outlying points.

Let us denote p(x) the density at a point x ∈ X and assume that it is expressed by a

GMM of M 
omponents:

p(x) =
M∑

j=1

�

x

j

N (x|�x
j

;Σx

j

): (4.19)

By the same assumption, the density at a point y ∈ Y is given by another GMM:

q(y) =

N∑

j=1

�

y

j

N (y|�y
j

;Σy

j

): (4.20)

Considering the transformed point set distribution as p

R;t

(x), where R is the rotation

matrix ant t is the translation ve
tor, that is

p

R;t

(x) =
M∑

i=1

�

x

i

N (x|R�x
i

+ t; RΣx

i

R

T ); (4.21)

we seek to minimize the energy fun
tion:

D(p
R;t

; q) =

∫

[p
R;t

(z)− q(z)]2dz (4.22)

with respe
t to R and t. More spe
i�
ally, we seek to mat
h the 
ontinuous shapes of the

mixtures p

R;t

and q over their region of support. Equation (4.22) may be simpli�ed:

D(p
R;t

; q) =

∫
[
p

2
R;t

(z) + q

2(z)− 2p
R;t

(z)q(z)
]
dz (4.23)

The �rst two terms are invariant under rigid transformation and therefore, the above

expression yields the maximum of the produ
t of the two distributions over the whole
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sets of points. This is equivalent to maximizing the 
orrelation between the pdfs. The


ross term may be also expressed as[134℄:

∫ ∫

p

R;t

(x)q(y)dxdy =
M∑

i=1

N∑

j=1

�

x

i

�

y

j

N (0|R�x
i

+ t− �

y

j

; RΣx

i

R

T + Σy

j

) (4.24)

meaning that given the i

th


omponent from the frst mixture and the j

th


omponent from

the se
ond mixture, ea
h term of the sum is evaluated as a Gaussian pdf with mean ve
tor

R�

x

i

+ t− �

y

j

and 
ovarian
e matrix RΣx

i

R

T + Σy

j

at x = 0.

Repla
ing the GMMs by the more robust SMMs in the above equations (4.19) and

(4.20) leads to a better modeling of the point sets. Figures 4.2 and 4.3 illustrate the

performan
e of a mixture of Student's t-mixture with respe
t to a standard GMM to

model a 2D point set. In the original set, both methods 
orre
tly 
aptured the shape of

the data (�g. 4.2). On the other hand, when a small amount of outliers (5%) was present

in the set the GMM failed to provide a satisfa
tory solution while the heavier tailed SMM


orre
tly modeled the point sets (�g. 4.3). Thus, SMM seems to be a preferable model

for density-based point set registration.

An alternative approa
h would be to provide a model for the outliers using a GMM

with a ba
kground 
omponent or, generally, a probabilisti
 a model for false observations

[138, 148℄. However, as it will be shown in the experimental results, if the ba
kground

outliers are not uniformly or normally distributed this approa
h has its limitations.

Let us note that the above formulas also apply for the registration of point sets using

the mixtures of Student's t-distributions by properly 
omputing the 
omponents mean

ve
tors and 
ovarian
e matri
es following the de�nition of the distributions (4.7)-(4.8)

and the respe
tive EM algorithm des
ribed in se
tion 4.2.
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Figure 4.2: A 2D point set and the obtained models (a) GMM and (b) SMM.

4.4 Experimental results

A large number of interpolations are involved in the registration pro
ess. The a

ura
y

of the rotation and translation parameter estimates is dire
tly related to the a

ura
y
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Figure 4.3: The point set of �gure 4.2 with 5% outliers and the obtained models by (a)

GMM and (b) SMM. Noti
e that the GMM solution is a�e
ted by the outliers while the

SMM is more robust.

of the underlying interpolation model. Simple approa
hes su
h as the nearest neighbor

interpolation are 
ommonly used be
ause they are fast and simple to implement, though

they produ
e images with noti
eable artifa
ts. More satisfa
tory results 
an be obtained

by small-kernel 
ubi
 
onvolution te
hniques. In our experiments, we have applied a 
ubi


interpolation s
heme, thus preserving the quality of the image to be registered.

The Matlab optimization toolbox was used to perform optimization. In parti
ular

we tested the algorithm with a derivative free optimization algorithm (simplex) and a

Quasi-Newton algorithm (BFGS) with a numeri
al 
al
ulation of the derivatives. Noti
e

that the methods mentioned perform only lo
al optimization, thus depending the �nal

result highly with the initial starting point. Global optimization methods may also be


onsidered but they are highly time 
onsuming.

In order to evaluate the proposed method, we have performed a number of experiments

in some relatively diÆ
ult registration problems. Registration errors were 
omputed in

terms of pixels and not in terms of transformation parameters. Registration a

ura
ies in

terms of rotation angles and translation ve
tors are not easily evaluated due to parameter


oupling. Therefore, the registration errors are de�ned as deviations of the 
orners of

the registered image with respe
t to the ground truth position. Let us noti
e that these

registration errors are less forgiving at the 
orners of the image (where their values are

larger) with regard to the 
enter of the image frame.

At �rst, we have simulated a multimodal image registration example. The image in

4.4(a) is an arti�
ial pie
ewise 
onstant image. The image in 4.4(b) is its negative image.

The image in 4.4(a) was degraded by uniformly distributed noise in order to a
hieve

various SNR values (between 14 dB and −1 dB). The degraded images underwent several

rigid transformations by rotation angles varying between [0; 20] degrees and translation

parameters between [−15; 10] pixels. To investigate the robustness of the proposed method

to outliers we have applied the algorithm withK = 3 
omponents 
onsidering both GMMs

and SMMs, and 256 histogram bins in the 
ase of the normalized MI. Figure 4.5 illustrates

the average registration errors for the di�erent SNR values. For ea
h SNR, four di�erent
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transformations were applied to the image and the average value of the registration error is

presented. For 
omparison purposes, the performan
e of the MI method is also shown. As

it 
an be observed, both the GMM and the SMM-based registration methods outperform

the MI whi
h fails when the SNR is low. Moreover, the heavier tailed SMM demonstrates

better performan
e for 
onsiderable amounts of noise.

(a) (b) (
)

(d) (e) (f)

Figure 4.4: (a) A three-
lass pie
ewise 
onstant image with intensity values 30, 125 and

220, and (b) its negative image (
orresponding values, 225, 130 and 35). (
) The image in

(a) degraded by uniform noise at 14 dB. This image was then registered to the image in

(b). The bottom line shows the registration errors for the 
ompared methods. The ground

truth solution is 0 deg for the rotation and zero translation (the original image). (d) MI,

(e) GMM, (f) SMM. The errors present the di�eren
e between the noise free registered

image and the referen
e image. the values are s
aled for better visualization.

Furthermore, let us noti
e that the proposed energy fun
tion involving the Bat-

ta
haryya distan
es is 
onvex around the true minimum (�g. 4.6) as it is also the 
ase for

the MI [149℄.

An open issue in mixture modeling is the determination of the number of 
omponents.

In our experiments, in the 
ase of non arti�
ial images, the number of 
omponents is

unknown. If the number of 
omponents of the mixtures is neither too high (over�tting)

nor too low (under�tting) with respe
t to the ground truth the registration a

ura
y

is not a�e
ted by that parameter. In order to demonstrate it, we have performed the

experiments involving non arti�
ial images by varying the number of 
omponents in the

experiments.

In that framework, the proposed registration method was tested on a multimodal
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Figure 4.5: Mean registration error versus signal to noise ratio (SNR) for the 3-
lass

registration experiment of �gure 4.4.
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Figure 4.6: The obje
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tion in eq. (4.2) for the registration of the image of �gure

4.4(a) with its 
ounterpart rotated by 20 degrees and translated by 10 pixels.
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Table 4.1: Statisti
s on the registration errors for the images in �g. 4.7 with varying

number of mixture 
omponents. The errors are expressed in pixels.

Registration errors - Cell images

K mean std. median max min

MI 256 bins 3.663 0.957 4.019 4.25 1.461

SMM 2 3.157 0.009 3.153 3.178 3.150

SMM 3 2.955 0.636 3.148 3.178 1.146

SMM 4 2.956 0.604 3.159 3.101 1.146

SMM 5 2.953 0.640 3.152 3.177 1.132

image pair su
h as the 
ell images in �g. 4.7. The 
omplimentary but not redundant

information 
arried by the multimodal images in
reases the diÆ
ulty of the registration

pro
ess. In both experiments we have applied 20 rigid transformations to one of the

images, for ea
h 
on�guration of the transformation parameters, with rotation angles

varying between [0; 20] degrees and translation parameters between [−15; 10] pixels.

The experiments in the 
ase of the images in �gure 4.7 were realized with the number of


omponents varying from K = 2 to K = 5. For the MI we used 256 histogram bins. Table

4.1 summarizes the statisti
s on the registration errors. As it 
an be observed, the SMM

method a
hieves highly better registration a

ura
y. Also, the number of 
omponents did

not signi�
antly a�e
t the registration a

ura
y.

(a) (b)

Figure 4.7: A pair of NIH 3T3 ele
tron mi
ros
ope images (400x magni�
ation) of rat


ells under (a) normal and (b) 
uores
ent light.

A last experiment demonstrating the ability of the proposed SMM method to deal

with outliers is the registration of a remotely sensed image pair. The meteorologi
al

images of Europe in �g. 4.8 were a
quired at di�erent dates. The image in �g. 4.8(b)

underwent 20 rigid transformations for ea
h parameter instan
e, with values of rotation

angle uniformly sampled in the interval [0; 20] degrees and translations between [−15; 10]

pixels. The experiments were realized with the number of 
omponents varying between

K = 2 and K = 6 for GMM and SMM and 256 bins for the MI.
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Table 4.2: Statisti
s on the registration errors for the images in �g. 4.8 with varying

number of mixture 
omponents. The errors are expressed in pixels.

Registration errors - Satellite images

K mean std median max min

MI 256 bins 6.742 1.493 7.463 7.733 3.565

SMM 2 2.975 0.013 2.979 2.991 2.951

SMM 3 1.857 1.202 1.251 3.653 1.283

SMM 4 2.129 2.289 2.960 3.651 1.359

SMM 5 1.208 0.237 1.142 1.999 1.141

SMM 6 1.210 0.238 1.145 2.001 1.142

The large amount of 
louds at di�erent lo
ations in the image pair introdu
e diÆ
ulties

in the registration pro
edure. It is worth 
ommenting that the MI method failed to register

the images and systemati
ally provided registration errors of the order of 6 pixels. The

SMM method produ
ed very small registration errors whi
h are summarized in table 4.2.

(a) (b)

Figure 4.8: (a) Image of Europe on 8 January 2007 at 01h00, provided by MeteoSat.

(b) Image of Europe on 9 January 2007 at 01h00, provided by MeteoSat (by 
ourtesy of

Meteo-Fran
e). Noti
e the large amount of outliers (
loudy regions in di�erent lo
ations

in the image pair) introdu
ing important diÆ
ulties in the registration pro
ess.

In order to evaluate the proposed point set registration method we have performed

three types of experiments. At �rst, a 2D set of 600 points was generated from three di�er-

ent Gaussian distributions with means (−16; 9), (0; 5) and (18; 9) and spheri
al 
ovarian
e

matri
es with the standard deviation being 2 in ea
h dimension. The point set under-

went rotations varying between [−90◦; 90◦] and translations varying between [−100; 100]

in both dimensions. In all of the 
ases the proposed algorithm provided solutions 
lose

to the true transformation parameters. The registration error was measured as the av-

erage distan
e between the points transformed by the true parameters and the points

obtained by the estimated transformation. In all 
ases, the order of the registration error

was approximatively 10−6
. This experiment was repeated for in
reased number of non

overlapping 
omponents and the previous results were 
on�rmed.
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A se
ond experiment 
onsisted in 
omparing the SMM not only to a typi
al GMM

but also to a GMM having an extra ba
kground 
omponent (
alled GMMb) in order to

model the outliers. This is a standard te
hnique to 
apture the distribution of outliers and

it is also proposed in [138, 148℄. We have observed that when the outliers are normally

or uniformly distributed the performan
e of the two approa
hes (GMMb and SMM) is

similar be
ause the fourth 
omponent is a good model for outliers. However, if the outliers

are signal-dependent the fourth 
omponent does not provide the optimal solution.

In our experiments, the previous point set was 
orrupted by outlying data from 1%

up to 15%. Ea
h of the three set of points was 
orrupted by a uniform noise having range

the double of the initial range of the points generated by the respe
tive 
omponent. By

these means, the outliers are sparsely distributed around ea
h 
omponent. Also, 1% extra

outliers were globally added to make the problem more 
hallenging. For ea
h 
on�guration

of the per
entage of the outliers, 5 registration experiments were performed with random

translation and rotation parameters. A representative example for 9% of points being


ontaminated is shown in �gure 4.9. In �gure 4.10, the results for the registration errors

are summarized. As it 
an be observed, although the GMMb performs better than the

standard GMM due to its ba
kground 
omponent, the SMM provides smaller registration

errors 
onsistently. This behavior is easily explained by the shapes of the ellipses in

�gures 4.9(b) and 4.9(
). Both the GMMb and the SMM estimated small 
ovarian
es but

in GMMb the orientations of the ellipses diverge more from the noise-free 
ase. Finally, it

is worth noti
ing that the standard ICP registration algorithm fails in all 
ases to provide

an a

eptable registration.
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Figure 4.9: Example of a set of points used in the experiments. (a) A point set (pre-

sented by dots) was generated by 3 Gaussians with means (−16; 9), (0; 5), (18; 9) and

spheri
al 
ovarian
e matri
es of standard deviation 2. The points were 
orrupted with

9% outliers. The resulting modeling of the noisy set by (b) a 3-
omponent GMM, (
) a

4-
omponent GMM with the fourth 
omponent modeling the distribution of outliers and

(d) a 3-
omponent SMM.

Finally, we have tested the eÆ
ien
y of the proposed method to the registration of

shaped or stru
tured point sets, 
ontrary to the s
attered points of the previous example.

This type of problems may 
ome up from many 
omputer vision appli
ations su
h as


omparison of traje
tories in obje
t tra
king or shape dis
rimination and the presen
e of

outliers makes registration diÆ
ult even if a good initialization is provided. To this end,

we have applied the registration algorithm to data from the Gaitor Bait 100 data base
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Figure 4.10: Registration error as a fun
tion of outliers for the experiment presented in

�gure 4.9.

(as provided by the Department of Computer and Information S
ien
e and Engineering,

University of Florida, USA, http://www.
ise.u
.edu/).

In this experimental setting, we begin by illustrating the di�eren
es of the 
ompared

methods (GMM and SMM) in 
apturing the data. At �rst, the same shape, was modeled

by a GMM (�g. 4.11(a)) and an SMM (�g. 4.11(b)) both with K = 30 
omponents. The

methods employed the same initialization by the K-means 
lustering algorithm. As it


an be observed, both methods provided similar approximations. Consequently, the reg-

istration algorithm is not a�e
ted and the 
ompared methods (GMM and SMM) provide

equivalently good performan
es.

We then eliminated a 
ertain amount of points by to simulate missing data and added

outliers to the remaining points. In that 
ase, we also used the same K-means initialization

whi
h naturally provided a 
ertain number of 
enters that 
aptured the stru
ture of the

outliers. However, in any 
ase, the SMMmodeled the degraded data better than the GMM

by eliminating the majority of erroneous 
enters, due to its heavier tails. A representative

example is presented in �gures 4.11(
) and 4.11(d) where the missing data per
entage is

20% and the per
entage of outliers is 10%. In these �gures, one 
an observe that the

GMM �nally provided two noisy 
omponents of relatively large 
ovarian
e. On the other

hand, due to the heavier tails of the SMM 
omponents, not only more outlier points were

absorbed by the 
omponents lo
ated on the �sh shape, but also the erroneous 
omponent

has smaller support. This is important in a registration pro
edure be
ause the L2 distan
e

in eq. (4.24) will be less in
uen
ed in the 
ase of the SMM, as indi
ated by the experiments

that follow.

The original point set was arti�
ially rotated, translated and 
orrupted by outliers at

15%. The transformed point set was then registered to its original, noise free 
ounterpart.

We have 
ompared the proposed GMM and SMM algorithms with the ICP by initializing

them from the ground truth. The results are summarized in table 4.3, where it is 
lear
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Figure 4.11: Modeling of a shaped point set from the GatorBait100 [2℄ data base by (a)

GMM with K = 30 
omponents and (b) SMM with K = 30 
omponents. Noti
e that the

two models provided similar solutions. The bottom row shows the modeling of the point

set with 20% missing points and 10% outliers by (
) GMM and (d) SMM. Noti
e that the

solution of the SMM was less a�e
ted. In all 
ases the mixtures were similarly initialized

using the K-means algorithm. The axes in (
) and (d) are normalized to the range of the

outliers.

that both of the proposed methods (GMM and SMM) perform better than the ICP. Also,

SMM is more a

urate than the less robust GMM. It is worth noti
ing that the ICP

algorithm, as it is sensible to initialization, is always trapped around the same minimum.

Table 4.3: Registration errors for the shaped point set of �gure 4.11 when it is 
orrupted

by 15% outliers.

Method mean std median max min

ICP 40.3784 15.8546 43.6067 58.0508 10.3555

GMM (K = 15) 2.6950 1.5169 2.8450 5.1540 0.5894

SMM (K = 15) 2.1136 0.8052 1.8880 3.5104 1.2366

GMM (K = 20) 2.4334 1.1380 2.4886 4.5563 0.9656

SMM (K = 20) 1.9506 0.9084 2.0361 3.4830 0.5927
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Chapter 5

Epilogue

5.1 Con
lusions

5.2 Future work

5.1 Con
lusions

The obje
tive of this thesis was twofold: to introdu
e a method for extra
ting features

from images and sets of points for further analysis and to present a framework for solving

the image and point set registration problem.

As far as the feature extra
tion is 
on
erned, we fo
used on modeling data with line

segments. We were motivated by the fa
t that line segments show simpli
ity and at the

same time they 
an be 
ombined into groups to model more 
ompli
ated stru
tures. The

pioneering work of Hough Transform has been the basis for the development of many

variants on the literature. A major problem of this 
lass of methods is that they assume

the number of lines as a prerequisite. Thus, the result is highly related to the tuning

of the algorithm. Moreover, they are prone to erroneous dete
tions. This observation,

motivated us to propose a framework that ta
kles that problem by estimating the number

of underlying line segments. Our method relies on two observations: i) the 
ovarian
e

matrix of the points belonging to a line segment produ
es an ellipse that is highly e
-


entri
, in fa
t the linearity of the points is modeled by the minimum eigenvalue of the


orresponding 
ovarian
e matrix and ii) the points that belong to a line segment should

follow a uniform distribution, whi
h is explained by the fa
t that the distan
e between

su

essive points is small. Eventually, those observations are quantifying some remarks

of the Gestalt theory for human per
eption regarding linear stru
tures. The proposed

algorithm was des
ribed in 
hapter 1.



Considering line segments as informative features of an image or a set of points, some

appli
ations are then demonstrated based on the dete
ted line segments. Chapter 2 is

dedi
ated to explain those appli
ations.

In the beginning we dealt with a basi
 problem of autonomous navigation, naming the

dete
tion of the vanishing point of a real s
ene. A lot of methods have been proposed for

solving that problem. The most 
ommon work
ow is to extra
t the edges of an image

with an edge dete
tor - most often the Canny edge dete
tor is used - �t lines and then


ompute the 
ommon interse
tion point. This approa
h it is widely used. However,

we noted that it demands a pre
ise tuning of the line dete
tion algorithm. A basi


obje
tive in this work was to preserve the simpli
ity of the work
ow. Sin
e an eÆ
ient

line segment dete
tion was introdu
ed in a previous 
hapter, we fo
used on the 
ommon

interse
tion point estimation pro
ess. Thus, an eÆ
ient voting s
heme was established

based on distributions that model a grid laying onto the image plane and 
olle
ts votes.

An important advantage of this approa
h is that it enables the establishment of a 
losed

form solution. The 
omplete development of this approa
h is a matter of ongoing resear
h.

A line segment is de�ned by its dire
tion along with its starting/ending points, as it

establishes a framework for reprodu
ing points in any desired density. This observation led

us to the development of an algorithm for eÆ
ient sampling of shapes that preserves the

initial distribution of points. Sampling is a 
ommon prepro
essing step for many methods.

In our study, we found that by adopting an eÆ
ient sampling method we managed to

improve already proposed algorithms, related to shape retrieval. The sampling s
heme

was further developed and embedded in a shape re
onstru
tion algorithm that enables

the eÆ
ient 
ompression of information with minimal loss.

Line segments are ideal for modeling tree stru
tures like the retinal fundus image, sin
e

they permit to lo
ate interse
tions that may be explained as bifur
ations and jun
tions. A

related algorithmwas presented by de�ning a neighboring 
riterion based on the Eu
lidean

distan
e.

Finally, a method for eliminating outliers was des
ribed. The algorithm is based on the

Helmholtz prin
iple regarding human per
eption and states that in a random generated

image the expe
tation of observing a stru
ture should be low, ideally zero. In this 
ase,

line segments serve as models of underlying stru
tures that may appear and assist the


omputation of the 
orresponding probability of a line segment. The prin
iple idea is that

long line segments should be rare. A Pareto distribution was used to model the probability

fun
tion of the random variable that des
ribes the length of a line segment. The method

was tested both in terms of shape extra
tion from heavily degraded point 
louds and line

�tting in a set were a large amount of outliers were present. Our method proved to be

robust and eÆ
ient 
ompared to other state-of-the-art and widely used methods.

The se
ond part of this dissertation fo
used on image and point set registration. A

framework that models the registration transformation was introdu
ed. A Bayesian re-

gression framework, namely the Relevan
e Ve
tor Ma
hines, was used to des
ribe a non-

rigid transformation. The basi
 
hara
teristi
 of this approa
h is that it manages to
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handle false-mat
hes without 
ompromising the eÆ
ien
y of the model, 
ompared to the


ommonly used thin plate splines. Moreover, our method provides a 
losed form solution

for the transformation that may be used for post 
omputations.

The thesis 
on
ludes with the des
ription of a method for solving the rigid image and

point set registration problem, employing mixture models. By modeling the intensity dis-

tribution of the observed and the referen
e image/point set and measuring their distan
e

under a rigid transformation, we 
ompute a quantity that is minimized with respe
t to

the transformation's parameters. The advantage of the method is that it 
an handle multi

modal images providing simultaneously eÆ
ient results, 
ompared to the state of the art

methods.

5.2 Future Work

The output of this thesis may be the basis for further resear
h, espe
ially in the �eld

of the analysis of sets of s
attered points. The following topi
s are of interest for more

detailed investigation:

• The Helmholtz prin
iple may be adopted to eliminate the need of split/merge thresh-

olds. The Helmholtz prin
iple states that no per
eption should be produ
ed on an

image of noise. In other words, if we 
onsider the input set of points as a random

distribution of noise, then line segments should be less possible to be dete
ted. Thus,

by de�ning a model to 
ompute the likelihood of an observed linear stru
ture, we

may de
lare this observation as valid if the 
orresponding probability is two small.

This approa
h di�ers from the method introdu
ed in [40, 41, 42℄ as it is more general

and does not assumes the existen
e of a grid, as is the 
ase for images.

• The development of a lo
al area des
riptor based on the line segments that 
an

be used either for image/point set registration or mat
hing. Line segments 
an be

des
ribed by their start/end points, their length and dire
tion. Relying on those

features, we 
an produ
e a des
riptor of the lo
al neighborhood of the line segment

and then employ it to 
ompute the similarity between two line segments. If the line

segments are asso
iated with image edges, then their similarity metri
 is equal to

the similarity of the 
orresponding image area that provided the edges. In [150℄, a

line des
riptor, that follows this rationale is introdu
ed.

• The use of Kalman �lters [151℄ to redu
e the distortion of the proposed binary image


ompression framework based on the DSaM algorithm.

• The use of DSaM to dete
t more 
omplex stru
tures. For instan
e, line segments


ould be grouped based on the lo
al 
urvature so as to extra
t more meaningful

stru
tures, su
h as traÆ
 signs.

• The use of DSaM and the retinal fundus image annotation 
riteria to produ
e a
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graph that des
ribes 
ra
ks on pavements and then extra
t graph based features to


lassify them.

• The use of DSaM as a prepro
essing step for extra
ting line segments for ve
torizing

raster images, like the line drawings mentioned in [152℄.
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Appendix

I The Hungarian algorithm

The Hungarian algorithm is a 
ombinatorial optimization method whi
h solves the as-

signment problem. Assume that there are m tasks that have to be assigned to n workers.

Ea
h assignment is weighted with a 
ost (or pro�t), thus a 
omplete bipartite weighted

graph is produ
ed, having as verti
es the workers and the tasks. The goal is to 
al
ulate

that parti
ular assignment su
h that the total 
ost is minimum. The assignment has to

be one to one. Sometimes the algorithm is used to maximize the total pro�t. In that


ase, we subtra
t the maximum entry of the 
ost matrix from all its 
ells. In 
ase m 6= n,

the problem is 
alled unbalan
ed and the standard Hungarian algorithm may provide a

false solution. A modi�
ation of the algorithm to handle re
tangular 
ost matri
es is

introdu
ed in [153℄. Algorithm 10 presents the steps of this modi�
ation. In algorithms

9, 10 the terms starred, primed, 
overed and un
overed are 
hara
terizations assigned to

a zero element (stared, primed) or to rows and 
olumns (
overed, un
overed), that guides

the exe
ution of the algorithm and distinguish the examined elements (zeros and rows or


olumns). The algorithm along with a detailed des
ription may also be found in [153℄.

Hereafter we 
onsider that m = n, and thus we will exploit only variable n to indi
ate

the dimension of the problem. The output of the Hungarian algorithm is the optimal

assignment, that minimizes the total 
ost. The 
omplexity of the algorithm is O(n3) in


ase of a balan
ed problem, while it may be in
reased in 
ase of unbalan
ed problems, as

a lot of trials are made to extra
t the solution of the problem.

More spe
i�
ally, suppose we have a weighted undire
ted bipartite graph with n nodes,

with 


ij

indi
ating the weight of edge from node i to node j. The variable Æ

ij

, where i; j ∈
{1; : : : ; n} indi
ates whether edge (i; j) is in
luded in the mat
hing. More spe
i�
ally,

Æ

ij

= 1 means that the 
orresponding edge is in
luded in the mat
hing, whereas Æ

ij

= 0

signi�es that the edge (i; j) is not part of the mat
hing pro
ess. The following restri
tions

apply:

• ∑n

i=1 Æij = 1,

• ∑n

j=1 Æij = 1,

• Æ

ij

> 0; ∀i; j ∈ {1; : : : ; n}.

The goal of the Hungarian algorithm is the following:



Given a n × n matrix C, where C
ij

is the weight of assigning worker i with task j,

minimize

∑
n

i=1

∑
n

j=1 ÆijCij.
The steps of the Hungarian algorithm, or Hungarian method as it is met regularly in

the literature are des
ribed in algorithm 9. Details may be found in [113℄.

1: From ea
h row subtra
t o� the row min.

2: From ea
h 
olumn subtra
t o� the row-
olumn min.

3: Use as few lines (verti
al, horizontal) as possible to 
over all rows and 
olumns 
on-

taining zeros in the matrix (trial and error). Suppose k lines are used for 
overing.

4: if k < n then

5: Let m be the minimum un
overed number.

6: Subtra
t m from every un
overed number.

7: Add m to every number 
overed with two lines.

8: goto 3.

9: else if k = n then

10: goto 11.

11: Starting with the top row, go downwards making assignments. An assignment 
an be

(uniquely) made only whenthere is exa
tly one zero in the row.

Algorithm 9: The Hungarian algorithm for square 
ost matri
es

In original version, the Hungarian algorithm assumes a square 
ost matrix, i.e. equal

number of tasks and workers. A modi�
ation of the algorithm to handle re
tangular 
ost

matri
es is introdu
ed in [153℄, solving thus problems with di�erent number of workers

and tasks (unbalan
ed problems). Algorithm 10 presents the related pro
edure. The

reader should noti
e that our goal is to propose a method that 
an model a registration

transformation upon an assignment between two point sets has been determined. The

Hungarian algorithm is a solution to that problem. In order to provide a 
omplete frame-

work, the revised Hungarian algorithm, that handles unbalan
ed sets is also in
luded in

our work.

II Relevan
e Ve
tor Ma
hines

The RVM model 
an be used to solve either the problem of 
lassi�
ation or regression.

In general, in order to use a RVM, we have to assume that we have a set of examples

of input ve
tors X = {x
i

∈ R
d}N

i=1 along with 
orresponding s
alar targets t = {t
i

}N
i=1.

Our goal is to train a model so as to learn the fun
tional mapping between input ve
tors

x

i

and targets t

i

. Sin
e the points in a registration problem lay in a 
ontinuous spa
e,

it is implied that the target variable t is 
ontinuous, leading to a regression problem. A

detailed des
ription of RVM theory may be found in [109℄ and [45℄.

More spe
i�
ally, we seek that parti
ular model f with parametersw = {w1; w2; : : : ; wN

}
su
h that f(x

i

;w) ≃ t

i

; i = 1; : : : ; N , assuming that x

i


orresponds to t

i

. The model f
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1: Let k = min(n; n) and l = max(n;m) for a 
ost matrix A, m× n.

2: if number of rows is larger than number of 
olumns then

3: goto 3.

4: if number of rows is less than number of 
olumns then

5: goto 12.

6: Update A:

7: for all row of A do

8: Subtra
t the minimum element from ea
h element in the row.

9: for all 
olumn of A do

10: Subtra
t the minimum element from ea
h element in the 
olumn.

11: for all zeros of matrix A do

12: Find a zero at lo
ation Z of the matrix A.

13: if there is no starred zero in its row nor its 
olumn then

14: Star Z.

15: Cover every 
olumn 
ontaining a 0∗.

16: if k 
olumns are 
overed then

17: {The starred zeros form the desired independent set (assignment solution).}
18: STOP.

19: for all all zeros are 
overed do

20: Choose a non 
overed zero and prime it; then 
onsider the row 
ontaining it.

21: if there is no starred zero Z in this row then

22: goto 26.

23: if there is a starred zero Z in this row then

24: Cover this row and un
over the 
olumn of Z.

25: goto 35.

26: There is a sequen
e of alternating starred and primed zeros 
onstru
ted as follows:

27: repeat

28: Let Z0 denote the un
overed 0′.

29: Let Z1 denote the 0∗ in Z0's 
olumn (if any).

30: Let Z2 denote the 0′ in Z
l

's row.

31: until The sequen
e stops at a 0′, Z2k, whi
h has no 0∗ in its 
olumn.

32: Unstar ea
h starred zero of the sequen
e, and star ea
h primed zero of the sequen
e.

33: Erase all primes and un
over every line.

34: goto 15.

35: Let h denote the smallest non 
overed element of the matrix; it will be positive.

36: Add h to ea
h 
overed row; then subtra
t h from ea
h un
overed 
olumn.

37: goto 18 without altering any asterisks, primes, or 
overed lines.

Algorithm 10: The Hungarian algorithm for re
tangular 
ost matri
es (unbalan
ed prob-

lems)
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may be analyzed into a �nite linear sum of N non-linear fun
tions �

j

, 
alled kernels.

Thus,

f(x
i

;w) =

N∑

j=1

w

j

�

j

(x
i

) = w

TΦ(x
i

); (5.1)

where Φ(x
i

) = (�1(xi); �2(xi); : : : ; �N(xi))
T

.

Assume now that the targets {t
i

}N
i=1 are samples drawn from the model with additive

noise �

i

:

t

i

= f(x
i

;w) + �

i

(5.2)

where �

i

are independent samples from some noise pro
ess. Hereafter we will assume a

Gaussian distribution with zero mean and varian
e �

2
for �

i

. Thus, a probability density

model o

urs:

p(t
i

|x
i

) = N (t
i

|f(x
i

;w); �2); (5.3)

where N is a Gaussian distribution over t

i

with mean f(x
i

;w) and varian
e �

2
.

A se
ond assumption 
on
erns the statisti
al independen
e of target variables t

i

. The

likelihood of the target ve
tor t is

p(t|w; �2) = (2��2)−
N

2 exp

{

− 1

2�2
‖t−�w‖2

}

; (5.4)

where t = (t1 : : : tN)
T

, w = (w1 : : : wN

)T and � = (Φ(x1) : : : Φ(xN )).

In Bayesian methodology, a 
ommon pra
ti
e to prevent over-�tting, 
aused by the

large number of parameters, is to impose some additional 
onstraints, penalizing the


omplexity of the model. These hyperparameters are imposed over parameters w of the

linear model in (5.1). The goal is to redu
e the number of dis
rete fun
tions of the sum,

thus o

urring a less 
omplex model. This is a
hieved by adopting a zero-mean Gaussian

prior over w, or

p(w|a) =
N∏

i=1

N (w
i

|0; a−1
i

); (5.5)

where a = (a1 : : : aN)
T

with a

i

representing the pre
ision of the 
orresponding parameter

w

i

. One 
an explain these hyperparameters as sele
tors over ea
h parameter w

i

whi
h is

the weight of fun
tion �

i

parti
ipating in the total sum. If the varian
e of the 
orrespond-

ing prior is large then the resulting probability is low, eliminating the term in the sum.

This means that the 
orresponding basis fun
tion �

i

(x
j

) plays no role in the predi
tion

made by the model.

The posterior distribution of weights is Gaussian and takes the form

p(w|t; X; a; �) = N (w|m;�); (5.6)

where � is the inverse of � in (5.4) and

m = ���

T

t; (5.7)

� = (A+ ��

T

�)−1
; (5.8)
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with A = diag{a
i

}.
Eventually, an iterative learning pro
ess o

urs. Initially, we 
hoose some values for a,

�, thus evaluating the mean and 
ovarian
e of the posterior using (5.7) and (5.8). Then

we iterate, until a 
onvergen
e 
riterion is satis�ed, by re-estimating the hyperparameters:

a

i

=



i

m

2
i

; (5.9)

�

−1 =
‖t−�m‖2
N −∑N

i=1 
i

; (5.10)

where m

i

is the i

th


omponent of the posterior mean de�ned by (5.7). and the quantity




i

is 
omputed as:




i

= 1− a

i

Σ
ii

; (5.11)

where Σ
ii

is the i

th

diagonal 
omponent of the 
ovarian
e matrix � given by (5.8).

The result of the training pro
ess des
ribed above is learning parameters w of equation

(5.1).
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