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Abstract vation of artistic patrimony. Respective applications include
the following of the evolution of pathologies in medical im-
We propose a pixel similarity-based algorithm enabling age sequence&1], the detection of changes in urban de-
accurate rigid registration between single and multimodal velopment from aerial photograph$4] and the recovery
images presenting gross dissimilarities due to noise, miss-of underpaintings from visible/X-ray pairs of images in fine
ing data or outlying measures. The method relies on the arts painting analysisLD).
partitioning of a reference image by a Student’s t-mixture ~ The overwhelming majority of change detection or data
model (SMM). This partition is then projected onto the im- fusion algorithms assume that the images to be compared
age to be registered. The main idea is that a t-component inare perfectly registered. Even slightly erroneous registra-
the reference image corresponds to a t-component in the im-tions may become an important source of interpretation er-
age to be registered. If the images are correctly registered rors when inter-image changes have to be detected. Accu-
the weighted sum of distances between the correspondingate (i.e. subpixel or subvoxel) registration of single modal
components is minimized. The use of SMM components i$mages remains an intricate problem when gross dissimi-
justified by the property that they have heavier tails than larities are observed. The problem is even more difficult
standard Gaussians, thus providing robustness to outliers.for multimodal images, showing both localized changes that
Experimental results indicate that, even in the case of im- have to be detected and an overall difference due to the va-
ages presenting low SNR or important amount of dissimilar- riety of responses by multiple sensors.
ities due to temporal changes, the proposed algorithm com-  Since the seminal works of Viola and Wel&g] and
pares favorably to the histogram-based mutual information Maeset al. [17], the maximization of the mutual infor-
method that is widely used in a variety of applications. mation measure between a pair of images has gained an
increasing popularity as a criterion for image registration
[24]. The estimation of both marginal and joint probability
1. Introduction density functions of the involved images is a key element
_ ) o _ _in mutual information based image alignment. However,
The goal of image registration is to geometrically align  {his method is limited by the histogram binning problem.
two or more images in order to superimpose pixels repre- Approaches to overcome this limitation include Parzen win-
senting the same underlying structure. Image registrationgowing 28,13, where we have the problem of kernel width
is an important preliminary step in many application fields gpecification, and spline approximatiGiv[19. A recently
involving, for instance, the detection of changes in tempo- ,roposed method relies on the continuous representation of
ral image sequences or the fusion of multimodal images. ihe jmage function and develops a relation between image
For the state of the art of registration methods we refer thejntansities and image gradients along the level sets of the
reader to/29. Medical imaging, with its wide variety of respective intensityZ].
sensors (MRI, nuclear, ultrasonic, X-Ray) is probably one & ,ssjan mixture modeling (GMMY[20] constitutes
of the first _appllcatlon fmlc?s;]]ﬁ, L/9]. Other rese_arch areas 5 powerful and flexible method for prébabilistic data clus-
related to image registration are remote sensing, Multisénye i that is based on the assumption that the data of each
sor robot vision and multisource imaging used in the preser-. | ster has been generated by the same Gaussian compo-
“This work was partially supported by Interreg llIA (Greece-ltaly) N€Nt. In [LE], GMMs were trained off-line to provide prior
grant 12101005. information on the expected joint histogram when the im-




ages are correctly registered. GMMs have also been sucof image density. (ii) Robustness to outlying pixel values
cessfully used as models for the joii] [as well as the is achieved by using mixtures of Studentdistributions.
marginal image densitied ], in order to perform intensity =~ The widely used method of maximization of the mutual in-
correction. They have also been applied in the registrationformation is outperformed. (iii) The method may be di-
of point sets/15] without establishing explicit correspon- rectly applied to vector valued images (e.g. diffusion ten-
dence between points in the two images. The parametersor MRI) where standard histogram-based method fail due
of GMMs can be estimated very efficiently through maxi- to the curse of dimensionality(iv) The proposed method
mum likelihood (ML) estimation using the EM algorithm is faster than histogram based methods where the joint his-
[8]. Furthermore, it is well-known that GMMs are capable togram needs to be computed at every change in the trans-
of modeling any pdfi20]. formation parameters.

An important issue in image registration is the existence  The remainder of this paper is organized as follows. In
of outlying data due to temporal changes (e.g. urban de-sectior2, we present our image registration method for gen-
velopment in satellite images, lesion evolution in medical eral mixture models. ML estimation of the parameters of a
images) or even the complimentary but non redundant in- Student's-mixture model and implementation issues of the
formation in pairs of multimodal images (e.g. visible and proposed registration algorithm using SMMs are described
infrared data, functional and anatomical medical images).in sectiori3. Experimental results and comparison with the
Although a large variety of image registration methods have state of the art registration method of maximization of the
been proposed in the literature only a few techniques ad-mutual information (MI) are provided in sectiéh while
dress these caser?] 22, 126). conclusions are drawn in sectién

The method proposed in this study is based on mixture

model training. More specifically, we train a mixture model 2. Image registration by minimization of the
once for the reference image and obtain the corresponding distance between mixture models
partitioning of image pixels into clusters. Each cluster is

represented by the parameters of the corresponding density | ot I,.; be animage oN x IV pixels with intensities de-
component. The main idea is that a component in the ref-,iaq adl,.;(z1), wherezi, i = 1,..., N2, is theit" pixel.
erence image corresponds to a component in the image terhe purpose of rigid image registration is to estimate a set

be r.egistered. If the images are correptly registered the SUMhf parametersS of the rigid transformatioffs minimizing
of distances between the corresponding components is miny gt fUNCEONE (e £ (+), I,eq (T (+))) that, in a similarity

imum. metric-based context, expresses the similarity between the
A straightforward implementation of the above idea image pair. In the 2D case the rigid transformation para-
would consider models with Gaussian components. How- meters are the rotation angle and the translation parameters
ever, it is well known that GMMs are sensitive to outliers along the two axes. In the 3D case, there are three rotation
and may lead to excessive sensitivity to small numbers ofand three translation parameters. Eventually, scale factors
data points. This is easily understood by recalling that may also be included, depending on the definition of the
maximization of the likelihood function under an assumed transformation.
Gaussian distribution is equivalent to finding the least-  consider, now, a partitioning of the reference imdge

squares solution which lacks robustness. Consequently, anio i clusters (groups) by training a mixture model with
GMM tends to over-estimate the number of clusters since it i~ components with arbitrary pdf(I(z); ©):

uses additional components to capture the tails of the dis-

tributions [3]. The problem of attaining robustness against K

outligrs in multiyariate Qata is difficult an.d incrgases with O(Lyes(2)) = Zwkp(fmf(x); @;ef)

the dimensionality. In this paper, we consider mixture mod- —1

els (SMM) with Student's-components for image regis-

tration. This pdf has heavier tails compared to a GaussianTherefore, the reference image is represented by the para-

[23]. More specifically, each component in the SMM mix- meters@Zef, k = 1,..., K of the mixture components.

ture originates from a wider class of elliptically symmetric The partitioning of the image is described using the function

distributions with an additional parameter called the number f(z) : [1,2,...,N] x [1,2,...,N] — {1,2,..., K}, where

of degrees of freedom. In this way, a more robust mixture f(xz) = k means that pixet of the reference imagé..

model is employed than the typical GMM. belongs to the cluster defined by th# component. Let us
The main contributions of the proposed registration also define the sets of all pixels of imafie ; belonging to

method are the following: (i) the histogram binning prob- thek'" cluster:

lem is overcome through image modeling with mixtures

of distributions which provide a continuous representation Py = {2" € I,.;,i = 1,2,..., N*/6(f(2") — k) = 1,}



fork =1, ..., K, whered(x) is the Dirac function: For example it is straightforward to apply the above reg-
4 istration procedure in the case of GMMs. Consider the mul-
S(f(a) — k) = { Lo if fa') =k () tivariate normal distributionsV (i1, %) and Na(u, o)
0, otherwise and denot®; = {u;,¥;}, with i = {1,2}, their respec-
tive parameters (mean vector and covariance matrix). The

The above mixture-based segmentation of the referencechernoff distance between these distributions is defined as
image is performed once, at the beginning of the registration[ 7:

procedure. The reference imade; is, thus, partitioned

into K groups, ger!erally, not' corre;pondirjg to' conqected C(01,0,5) = s(1—s) ApT[sS1 + (1 — )] ' Ap
components in the image. This spatial partition is projected 2

on the image to be registerédgd.,, yielding the same parti- n 11 [sX1 + (1 — 5)Xs|

tion of this second image (i.e., the partitioning of the refer- 2 |15 Ba]1—s ’

ence image acts as a mask on the image to be registered). _ _
Then, we assume that the pixel values of each clustar ~ WhereAu = pp — pu. The Bhattacharyya distance is a
I,., are modeled using a mixture component with parame- SPecial case of the Chernoff distance wtk: 0.5:
ters©,/ obtained from the statistics of the intensities of SR
pixels in groupk. B(©1,0y) = =Au” [1;2} Ap

In order to apply our method it should be possible to de-
fine a distance measui(0;*/, ©7°%) between the corre- ( | it | )
sponding mixture components with pglf7). Then the en- N =
ergy function we propose, is expressed by the weighted sum [Zul2z]
of distances between the corresponding componeris jn A representative GMM for the reference image can be
and/,;: obtained via the EM algorithm4]. Therefore, the ref-
erence image is represented by the parameﬁl%fé =
(el 2}, k= 1,..., K of the GMM components. Af-
ter projecting the pixel groups of the reference image to ob-
tain the corresponding groups in the registered image, it is

wherer;, is the mixing proportion of thé‘" component: easy to compute the parameté&r§™ by taking the sample
mean,;“? and the sample covariance matkf™:

1
8
1
2

K
E(Les(), Ireg(Ts(-))) = > mD(O;7,0)  (2)
k=1

Wk:4;Pk| 1 N?
Pl == x! zt) —
;m\ W = (g 2 rea T @D —B) - @)

where |P;| denotes the cardinality of sdt,. If the two and

images are correctly registered the criterionZhdssumes 1 N?
that the total distance between the whole set of components T = Z(A[,i)(A],i)Ta(f(xi) —k), @
would be minimum. |1Pel =
For a given set of transformation parametststhe to- _ _ .
eWhereAT; = I, (Ts(z")) =, ™. Therole ofd(f(z*)—k)

tal energy between the image pair is computed through the' i ; )
following steps: in eq. B) and @) is to determine the support (the pixel co-

ordinates) for the calculation of the mean and covariance.
« segment the reference imafe; (-) into K clustersby ~ These parameters are computedthe image to be regis-
a mixture model. tered for the pixel coordinates belonging to t#é¢" class
on the reference imagerhis also implies a Gaussian gen-
e foreach clustek = 1,2, ..., K of the reference image: erative model for the components &f.,. The total dis-
tance between the two images is computed using 8. (
— project the pixels of the cluster onto the trans- \yhere the Bhattacharyya distance between the correspond-

formed image to be registerdgl, (7s(-)). ing Gaussian components is considered as distance measure
— determine the paramete®,“? of the projected  D-
artition of I.....,. However, in order to overcome the drawbacks of GMMs
p reg

concerning outlying image data, we have employed in our
e evaluate the energy in eq2)(by computing the dis-  registration method mixtures of Studentdistributions as
tances between the corresponding densities. described in the next section.



3. Robust image registration with mixtures of
Student’s t-distributions

In what follows, we briefly present the properties of mix-
tures oft-distributions (SMMs), as well as ML estimation of
their parameters using the EM algorithm. Then, we describe
how SMMs can be employed as mixture models in the the

general registration approach presented in the previous sec-

tion.

3.1. ML estimation of mixtures of Student’s t-
distributions

A d-dimensional random variabl€ follows a multivari-
atet-distribution with meanu, positive definite, symmetric
and reald x d covariance matriXx: and hasy € [0, 0)
degrees of freedom when, given the weighthe variable
X has the multivariate normal distribution with meaand
covariance: /u:

X|,u72al/7u ~ N(M, E/u)a

and the weight: follows a Gamma distribution parameter-
ized byv:

u~ Gamma(v/2,v/2).
Integrating out the weights from the joint density leads to
the density function of the marginal distribution:
(24 5y

(mv)3T (§) [L+v=16(z, 1 D))

pz;p, X, v) = 1z (O

2

wheres(z, i1; ) = (z—p)T L1 (x—pu) is the Mahalanobis
squared distance arldis the Gamma function. It can be
shown that forr — oo the Student’s-distribution tends to
a Gaussian distribution with covariange Also, if v > 1,
wis the mean ol and ifv > 2, v(v —2)~ '3 is the covari-
ance matrix ofX. Therefore, the family of-distributions
provides a heavy-tailed alternative to the normal family with
meany and covariance matrix that is equal to a scalar mul-
tiple of ¥, if v > 2 (fig. [1).

A Student'st-distribution mixture model (SMM) may

also be trained using the EM algorithr23]. A K-
component mixture afdistributions is given by
K
G, U) = > mwip(a; i, Ti, vi) (6)

i=1

wherer = (z1,...,2y)T denotes the observed-data vector
and

T

@)

are the parameters of the components of the mixture.

U= (7T17"~77TK7M17°"7/~LK7217"'aEKvyla'“aVK)

Univariate student-t distribution {mean =0, st deviation = 1) for various values of degrees of freedom (v
0.4

Figure 1. The Student’s-distribution for various degrees of free-
dom. Asr — oo the distribution tends to a Gaussian. For small
values ofv the distribution has heavier tails than a Gaussian.

Consider now the complete data vector

To = (T1y TN, 21y ey ZN ULy oy UN) L (8)
wherezy, ..., zy are the component-label vectors ang=

(zj): is either one or zero, according to whether the ob-
servationz; is generated or not by thé" component. In

the light of the definition of the-distribution, it is conve-
nient to view that the observed data augmented by:the

j =1,..., N are stillincomplete because the component co-
variance matrices depend on the degrees of freedom. This
is the reason that the complete-data vector also includes the
additional missing data,, ..., ux. Thus, the E-step on the

(t + 1)!" iteration of the EM algorithm requires the calcu-
lation of the posterior probability that the datumbelongs

to thei’” component of the mixture:
2D
K

Z p(xj; .u);n? an? an)

m=1

t t
1 7 p( 55 s,
f;r — [ J T (9)

z

as well as the expectation of the weights for each observa-
tion:

vi+d
vi+6(zy, pt; 30)

t+1 __
iy T

(10)

Maximizing the log-likelihood of the complete data pro-
vides the update equations of the respective mixture model
parameters:



N of the underlying interpolation model. Simple approaches
Zztut(x_ t+1)(1"— t+1)T ! X .
£ 715 i\t i J i such as the nearest neighbor interpolation are commonly
AR i=1 (12) used because they are fast and simple to implement, though
) t41 they produce images with noticeable artifacts. More satis-
Z Zij factory results can be obtained by small-kernel cubic con-
=1 volution techniques. In our experiments, we have applied a

The degrees of freedom for each component are computedilinear interpolation scheme, thus preserving the quality of

N

as the solution to the equation: the image to be registered.
i1 i1 . _Finally, let us notice that 'Fhe energy i@)(may be_ap—
log (Vi ) — (%) +1—1log (Vi + d) I plied to both single and multimodal image registration. In
2 2 2 the latter case, the difference in the mean values of the dis-

tributions in ) should be ignored, as we do not search to
match the corresponding Studentdistributions in posi-

N
t t t
Zzij (log ug; — ujj) tion but only in shape as the correspondence in position is

- t
L= _ + (VZJ“d> =0 (13) established by the projection step. This also stands for the
' 2 single modal case if the intensities of the image pair have
Z; Zij significantly different contrasts.
i=

where ¢ (z) = 20"() is the digamma function. A 4. Experimental results
detailed derivation of the EM algorithm for Student’s

. ) . In order to evaluate the proposed method, we have per-
mixtures is presented i2§]. brop P

formed a number of experiments in some relatively difficult
registration problems. Registration errors were computed in
terms of pixels and not in terms of transformation parame-
The Student's-distribution is a heavy tailed approxima- ters. Registration accuracies in terms of rotation angles and
tion to the Gaussian. It is therefore, natural to consider thetranslation vectors are not easily evaluated due to parame-
mean and covariance of the SMM components to approxi-ter coupling. Therefore, the registration errors are defined
mate the parameters of a GMM on the same data as it wass deviations of the corners of the registered image with re-
described in the previous section. If the images follow a spect to the ground truth position. Let us notice that these
Gaussian model, the degrees of freedgnare relatively registration errors are less forgiving at the corners of the im-
large and the SMM tends to be a GMM with the same pa- age (where their values are larger) with regard to the center
rameters. If the images contain outliers, parameteie of the image frame.
weak and the mean and covariance of the data are appropri- At first, we have applied our method to the registration
ately weighted in order not to take into account the outliers. of a piecewise constant image with three distinct regions
Thus, the parameters of the SMM, computed on the refer-to its noisy and rigidly transformed counterpart. Know-
ence imagé€,.. ¢, are used as component parame&’,g%’ in ing the number of mixture components allows better eval-
a straightforward way as they generalize the Gaussian cas@ation of the method with respect to noise. The image in
by correctly addressing the outliers problem. After projec- fig. [2(a) was degraded by uniformly distributed noise in
tion of the pixel groups of the reference image to their cor- order to achieve various SNR values betw&eh dB and
responding groups in the registered image, the parameters.2 dB by appropriately varying the standard deviation of
©,.79 are computed using the sample megand the sam-  the noise. An example is shown in figi(b). The degraded
ple covariance matriydj. images underwent several rigid transformations by rotation
The lterated Conditional Modes (ICMP] algorithm angles varying betweefr-45,45] degrees and translation
was implemented for the minimization of the energy func- parameters betwedn 10, 10] pixels. To investigate the ro-
tion as @) is highly non-linear. ICM is a determinis- bustness the proposed method to outliers we have applied
tic Gauss-Seidel like algorithm, that only accepts config- the algorithm withKX' = 3 components considering both
urations decreasing the cost function and has fast conver-GMMs and SMMs. Figur@ illustrates the average regis-
gence properties.If good initialization is provided, Powell’s tration errors for the different SNR values. For each SNR,
method also converges fast to the correct solution without 10 different transformations were applied to the image and
having to compute derivatives of the objective functi@h (  the average value of the registration error is presented. For
with respect to the transformation parameters. comparison purposes, the performance of the MI method
A large number of interpolations are involved in the reg- is also shown. As it can be observed, both the GMM and
istration process. The accuracy of the rotation and transla-the SMM-based registration methods outperform the MI
tion parameter estimates is directly related to the accuracywhich fails when the SNR is low. Moreover, the heavier

3.2. Implementation



A (@) (b) (b)

Figure 2.(a) Athree-class piecewise constantimage with intensity Figure 4. (a) A slice of a brain MR image and (b) its SPECT
values 30, 125 and 220. (b) The image degraded by zero mearcounterpart used in our experiments. Notice the important diffu-
uniform noise in order to achieve a SNR3® dB. sion present in the SPECT image.

o

E ol 4 (a) (b)
g \\ Figure 5. A pair of NIH 3T3 electron microscope images (400x
g° ‘xﬁ,\ magnification) of rat cells under (a) normal and (b) fluorescent
2 light.
4 M,
, SMM Registration errors - Multimodal images
| MRI/SPECT | Cellimages
o} - . Mean 0.50 0.27
SNR (dB) St. dev. 0.47 0.11
Median 0.55 0.32
Figure 3. Mean registration error versus signal to noise ratio Min 0.07 0.08
(SNR) for the 3-class registration experiment of figlre Max 1.92 1.06

Table 1.Statistics on the registration errors for the images in fig.
4and5. The errors are expressed in pixels. The number of SMM

. . components ig& = 5 for the brain andK = 6 for the cell images.
tailed SMM demonstrates better performance for consider- P g

able amounts of noise. When the SNR is higher thais,

all methods provide correct registrations. proposed SMM method to deal with outliers is the registra-
The proposed registration method was also tested ontion of a remotely sensed image pair. The meteorological
multimodal image pairs such as the MRI/SPECT case inimages of Europe in figh were acquired at different dates.
fig. 4 and the cell images in fig/5. The complimen-  The image in fig.6(b) underwent 25 rigid transformation
tary but not redundant information carried by the multi- with values of rotation angle uniformly sampled in the in-
modal images increases the difficulty of the registration terval[—45, 45] degrees and translations betwéeno, 10]
process. In both experiments we have applied 25 rigid trans-pixels. The experiments were realized with the number of
formations to one of the images with rotation angles vary- components being = 2, ..., 10 and K = 16. For the MI
ing between[—45, 45] degrees and translation parameters case, wherex is the number of histogram bins, the values
between[—20, 20] pixels. The experiments were realized of K = {128,256} were also used in order to have the best
with the number of components beidg = 2,...,10 and possible performance. The large amount of clouds at dif-
K = 16. Tablel summarizes the statistics on the registra- ferent locations in the image pair introduce difficulties in
tion errors for the number of components that provided the the registration procedure. It is worth commenting that the
better performances. These valuesBre- 5 in the case of ~ MI method failed to register the images and systematically
MRI/SPECT andK = 6 for the cell images. As it can be provided registration errors of the order dto 10 pixels.
observed, the SMM method achieves sub-pixel accuracy inThis is true even for a large numbers of histogram bins. The
all cases. SMM method produced very small registration errors which
A last experiment demonstrating the performance of the are summarized in tab[



Figure 6. (a) Image of Europe on 8 January 2007
vided by MeteoSat. (b) Image of Europe on 9 January 2007 at
01h00, provided by MeteoSat (by courtesy of Meteo-France). No-
tice the large amount of outliers (cloudy regions in different lo-
cations in the image pair) introducing important difficulties in the
registration process.

(b)

images are expected to benefit from this registration tech-
nigue where the employment of high-dimensional joint his-
tograms makes the use of standard methods prohibitive.

Let us also notice that Student:snixtures overcome the
binning problem of histogram-based methods and provide a
continuous model of the image density. When successfully
trained, they produce a sensible approximation of the pdf
of the image intensity, by placing density components in a
sensibledata-driverway (i.e on intensity regions exhibiting
high density). Although there is still the problem of spec-
ifying the number of components in finite mixture model-
ing, our experimental results indicated that our SMM-based
method is robust from this point of view, provided that the
number of components is neither very big (overfitting) nor
very small (underfitting).

Important open questions for mixture-based registration
are how the number of model components can be selected
automatically ] and which features, apart from image in-
tensity, should be use®]] Moreover, the generalization
of the proposed method to the registration of scattered data
[15,21] is a perspective of our study. The difficulty in that
case consists in establishing the correspondences between
the components of the mixture between the two point sets

at 01h00, pro- [19].

£S

Registration errors - Satellite imagé
| M SMM

Mean 7.12 0.88

St. dev.| 2.66 0.63

Median| 6.40 0.67

Min 3.61 0.21

Max 11.37 1.69

Table 2.Statistics on the registration errors for the images in fig.
6. The errors are expressed in pixels. Notice that the Ml failed to

correctly register the images.

5. Conclusion

We have presented a method for the registration of sin-
gle and multimodal images. The method relies on the min-
imization of distances between probability density func-
tions defined by partitioning the two images. The first im-
age is partitioned by a SMM through the EM algorithm.
This partition is then implied onto the second image. We
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