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Abstract—An algorithm for the representation and summariza-
tion of a 2D shape is presented. The shape points are modeled
by ellipses with very high eccentricity in order to summarize the
contour of the shape by the major axes of these elongated ellipses.
To this end, at first, a single ellipse is fitted to the shape which
is then iteratively split to a large number of highly eccentric
ellipses to cover the shape points. Then, a merge process follows
in order to combine neighboring ellipses with collinear major
axes to reduce the complexity of the model. Experimental results
showed that the proposed algorithm provides a shape summary
which not only overcomes the representation of a shape by a
Gaussian mixture model but also is largely more accurate with
respect to the progressive probabilistic Hough transform for
shape representation. It must be noted that, for our method,
a shape is a unordered set of points describing the contour of a
region.

I. INTRODUCTION

Shape is an important attribute for describing objects and
plays an important role in many computer vision applications,
like image retrieval, segmentation and registration. A detailed
review of shape description techniques may be found in [21].
In the majority of these methods, before any further process-
ing, a preprocessing step is required to extract a structural
definition of the shape from an unordered collection of points.
A common approach is to represent the shape as a collection
of curves, whose simpler representative is the straight line,
turning the structural definition to a model fitting problem.

The commonly used algorithm of Moore [18] was a first
solution to shape following. However, this algorithm is ap-
propriate only for traversing curves, without intersections and
produces models with high complexity. Other approaches to
the problem are the incremental line fitting [2] which is sensi-
tive to noise and, most importantly, needs sequential ordering
of the points and probabilistic methods [13] based on the EM
algorithm, generally necessitating the prior determination of
the number of model components.

The Hough transform (HT) is widely used and many vari-
ants have been proposed to improve its efficiency [10]Among
these variants lies the Randomized Hough Transform (RHT)
[17] which randomly selects a number of pixels from the input
image and maps them into one point in the parameter space
which showed to be less complex as far as time and storage
are concerned. In [12], the probabilistic HT was proposed
whose basic idea is to apply a random sampling of the edge
points to reduce computational complexity and execution time.

The method revealed successful and further improvements
were introduced in [15]. A similar concept was proposed in
[8], where an orientation-based strategy was adopted to filter
out inappropriate edge pixels, before performing the standard
HT line detection which improves the randomized detection
process. Also, the idea of fuzziness is integrated in the main
algorithm in [5] to model the uncertainty imposed in the shape
contour due to noise. Thus, a point can contribute to more than
one bin in the standard HT process. A general comparison
between probabilistic and non-probabilistic HT variants can
be found in [11].

The Robust HT is introduced in [1] where both the length
and the end points of the lines may be computed. Moreover,
the algorithm in [6] provides a method for adopting a shape
dependent voting scheme for the calculation of the histogram
bins. Finally, a novel HT based on the eliminating particle
swarm optimization (EPSO) is proposed in [7], to improve
the execution time of the algorithm. The problem parameters
are considered to be the particle positions, and the EPSO
algorithm searches the optimum solution by eliminating the
”weakest” particles, to speed up the process.

In this paper, we propose a method to describe the contour
of a 2D shape represented by a set of points without ordering.
The result of the method is a sequence of straight line segments
modeling the shape, which correspond to the major axis of
highly eccentric ellipses fitted on the shape contour. The basic
idea relies on a split-and-merge process, where the algorithm
is initialized by one ellipse, representing the mean and the
covariance of the initial point set, which is then split, through
an iterative scheme, until a number of small and elongated
ellipses occurs. Then, a merge process takes place to combine
the resulting ellipses in order to reduce the complexity of the
representation. At the end, the algorithm provides a relatively
small number of elongated ellipses fitted on the shape. The
proposed method is general and is not limited to shapes rep-
resented by a closed curve but also models shapes containing
inner structures (joints). Numerical experiments on common
shape databases are presented to underpin the performance
of the proposed method. The number of ellipses is shape
dependent and it is determined by two parameters controlling
both the split and the merge processes.



II. DESCRIPTION OF THE METHOD

Let X = {xi|i = 1, . . . , N} be the set of points describing
the shape and E = {εi|i = 1, . . . , K} be the set of lines
describing the shape segments, where εi is the line describing
the i-th segment. The whole process may be viewed under the
concept of a rate-distortion strategy.

We define the Distortion ∆ induced by the representation
of line segments:

∆(X,E) =
N∑

i=1

K∑

j=1

δijd(xi, εj), (1)

where K is the number of line segments the model uses to
describe the contour of the shape, xi ∈ R2, i = 1, . . . , N are
the points of the shape, d(xi, εj) is the perpendicular distance
of point xi to line εj , δij is an indicator function whose value
is 1 if point xi corresponds to line segment εj , i.e. is closer
to line εj than any other line εk|k=1...N,k 6=j , otherwise it is 0.

In order to prevent overfitting, models having a large num-
ber of line segments should be penalized. Therefore, an ideal
shape representation would be the one with simultaneously
low value of ∆ and low complexity.

The computation of the ellipses, representing the shape
segments, is performed in two steps: an iterative split process,
where the shape contour is approached by a number of line
segments represented by the major axes of the corresponding
ellipses, and an iterative merge process, where small line
segments are merged to reduce the model complexity. The split
process tries to minimize the distortion of the shape while the
merge process increases the compression rate, i.e. the number
of line segments compared to the total number of points in
the set. In what follows the two steps are presented in detail.

A. Split Process

The ultimate goal of this step is to cover the shape with
line segments representing the long axes of elongated ellipses
and therefore, each point of the shape should be assigned to
an eccentric ellipse. A split criterion is defined, based on the
Gestalt theory [14]. It models the linearity and the connectivity
the human brain uses when modeling contours.

In order to split a shape segment X , it should be either non
linear or non connected, or both. Linearity describes how close
to a straight line points of X are, while connectivity measures
how close these points are. In our method linearity is described
by the minimum eigenvalue of the covariance matrix of the
points of X . The connectivity is the maximum gap between
two successive points. In order to determine it, X is projected
onto the two axis of the ellipse corresponding to the covariance
matrix of X . Let X1, X2 be the projections of X on the major
and the minor axis respectively. Then each Xi|i={1,2} is sorted
and the connectivity Wi|i={1,2} is computed:

Wi|i={1,2} = max
j=1...N−1

|xj
i − xj+1

i |. (2)

where N is the number of points in X and xj
i|i={1,2} is the j−

th point of the sorted Xi|i={1,2}. The larger the connectivity,

the better (more explicit) the distinction between the sets is.
The split direction followed is the one providing the largest
Wi|i={1,2}.

Eventually, the adopted strategy that minimizes ∆ and
privileging elongated ellipses obeys to the following rule: split
every ellipse whose minimum eigenvalue is greater than a
threshold T1 (linearity) and the maximum gap, within the
current segment is greater than a threshold T2 (connectivity).
The process is initialized with one ellipse, corresponding to
the covariance of the initial points set centered at the mean
value of the shape.

At time step t + 1, a given ellipse, characterized by the
eigenvalues λt

1 and λt
2 of its covariance matrix Σt (with λt

1 ≥
λt

2), with center µt, is split to to new ellipses with centers the
two antipodal points on the major axis:

µt+1
1 = µt +

√
λtet,

µt+1
2 = µt −

√
λtet,

(3)

where et, λt are the eigenvector, eigenvalue respectively corre-
sponding to the split direction along which split is performed
(figure 1).

The shape points are then reassigned to the new ellipses
according to the nearest neighbor rule applied only to those
of the initial cluster that was split. By these means, new
ellipses occur, which are more elongated as they have greater
eccentricity and their minor axes are closer to the shape
contour (fig. 2). Moreover, this detailed representation of the
point set provides high accuracy modeling of joints, corners
and parts of the shape exhibiting high curvature.

In order to describe accurately a shape segment, the co-
variance of the points defining the convex hull, instead of the
whole set, is computed, providing thus a more sensitive to
outliers ellipse fit, describing better the spatial distribution of
the points and providing a more precise split criterion and
direction.

B. Merge Process

The role of the merge process is to reduce the complexity of
the model. There are many adjacent ellipses whose major axes
have similar orientation and it would be beneficial to merge
them and replace them by a more elongated ellipse. Therefore,
in this step, ellipses are merged by a similar in spirit rule as in
the split process: merge two consecutive ellipse if the resulting
ellipse has minimum eigenvalue smaller than a threshold T1

(linearity) and the marginal width between the two clusters is
smaller than a threshold T2 (connectivity).

Notice that the threshold T1 may be equal to the threshold
used in split process, where the value of parameter T1 specifies
whether an ellipse has low eccentricity and needs to be split.
In the merge process, it indicates whether two candidate
for merging ellipses would result in an ellipse with high
eccentricity. On the other hand, a relaxation of the merge
threshold may lead to a rougher model of the shape, smoothing
out details like joints. In our experiments, the merge threshold
was the same with the split threshold. The same applies for



(a) (b)

Fig. 1. Split process. (a) At time step t + 1, the ellipse with center µt is split into two ellipses with centers µt+1
1 and µt+1

2 given by (3). (b) The new
centers are marked with a star (*). The reassignment of the points to the new centers is shown. Points of one category, assigned to µt+1

1 , are marked with a
circle, while points assigned to µt+1

2 , are marked with a square. The minor axis indicates the border line, thus the major axis is the split direction followed.

(a) (b) (c) (d)
Fig. 2. Steps of the split process. (a) Initialization with the mean and the covariance of the set of points. (b) Split into 2 ellipses. (c) Split into 4 ellipses.
(d) Final split.

threshold T2 that indicates whether two segments are close
enough to be considered as one line segment.

It could be argued that the involved thresholds result in
total into four parameters, instead of two, that control the
performance of the algorithm. However, it should be noticed
that the involved thresholds have similar influence both in split
and merge steps. Therefore, it is quite logical to adopt equal
numerical values for those thresholds in both of these steps.
However, different values could be employed by varying the
importance of each step in the final result. In other words,
one could seek for less elongated ellipses, for example, in the
merge step than in the split step. This strategy could improve
the time complexity of the algorithm and could be employed in
case of pure data, where the correctness of the split is highly
guaranteed, in the sense that a lot of small ellipses will be
produced, as there are no outliers in the shape. In that case,
at a second step, a relaxation of the linearity threshold could
produce the same result with fewer iterations as the detected
ellipses would describe linear structures.

The overall description of the algorithm is presented in in
algorithm 1.

III. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate the proposed algorithm we applied it to 8 shapes
of the the GatorBait100 database [19] consisting of shapes of
different fishes and to 70 shapes of the the MPEG-7 shape
database [20]. Since our method models each contour segment
with the major axis of an ellipse we compared it to Gaussian
Mixture Models (GMM) [3].

The numerical evaluation over the two data sets is presented
in table I, where statistics on the value of the distortion ∆
in (1) and compression rate (the number of ellipses over the

number of points) are shown. As it may be observed, in all
cases, the proposed method outperforms Gaussian mixture
modeling. Notice that despite the fact that the GMM provides
a slightly better compression rate, the corresponding distortion
is quite larger than this provided by our method. This is also
confirmed by the representative results shown in figure 3.
Notice that the GMM failed to model finely some parts of the
shape, especially at corners and joints although it was trained
with a large number of components, and during the training
process empty clusters were dropped (pruning). It could be
argued that by increasing the number of components of the
GMM better results could have been obtained. However, this
would have increased the model complexity and no structural
information about the shape would have been provided (e.g.
we could have a GMM with one component per point in the
extreme case). In our experiments, the number of clusters used
to train the GMM was set to 10% of the number of points of
the shape.

TABLE I
STATISTICS FOR THE DISTORTION ∆ (1), AND COMPRESSION FOR THE

COMPARED METHODS

Distortion ∆ (1)
MPEG7 [20] Gatorbait [19]

method mean std median mean std median
Our Method 0.47 .33 0.42 0.31 0.206 0.27

GMM 1.77 2.70 1.46 11.03 15.66 3.80
Compression Rate (number of ellipses over number of points - %)

MPEG7 [20] Gatorbait [19]
method mean std median mean std median

Our Method 6.90 4.79 5.39 3.76 0.69 3.59
GMM 10.04 0.05 10.03 2.79 0.75 2.67

Since the proposed algorithm fits line segments to the shape



Algorithm 1 Split-and-merge algorithm for shape 2D description
• SPLIT PROCESS

input: The set of points X = {xi|i = 1, . . . , N} representing the shape.
output: A set of ellipses {µj , Σj}.

– Initialize the algorithm by estimating the mean and covariance of the shape.
– While there are ellipses to split
∗ Split every ellipse whose smaller eigenvalue is greater than T1 and its maximum nearest neighbor distance is

greater than T2. - Select the direction that provides the greatest marginal width. - The new ellipses have centers
determined by (3).

∗ Assign every point of the old ellipse to the new ellipses based on the nearest neighbor rule, applied only to the
points of the initial cluster that was split.

∗ Update the centers and the covariance matrices of the new ellipses.
• MERGE PROCESS

input: The ellipses of the split process εj = {µj ,Σj , j = 1 . . .M}
output: A reduced number of ellipses.

– While there are ellipses to merge
– For each ellipse εi, i = 1 . . . M

∗ For each ellipse εj , j = 1 . . . M, i 6= j
∗ if merging εi with εj provides an ellipse whose minimum eigenvalue is less than T1 and its connectivity is less

than T2, perform merging. Set εi to the new merged result.

(a) (b)

(c) (d)
Fig. 3. The summarization of a set of points representing a glass (MPEG-7 dataset [20]) by (a) the proposed method and (b) a GMM. The summarization
of a set of points representing a fish (Gatorbait 100 dataset [19]) by (c) the proposed method and (d) a GMM.

we also tested it against the commonly used Hough Transform
(HT). However, since the standard HT is appropriate for fitting
lines and not line segments, we applied the Progressive Prob-

abilistic Hough Transform (PPHT), as proposed in [16] and
implemented in the OpenCV library [4]. The implementation
of PPHT imposes three parameters: (i) a threshold, indicating



(a) (b) (c) (d)
Fig. 4. (a)-(c) Results of the PPHT algorithm [16] to a set of points representing the shape of a bone (MPEG-7 dataset [20]) by varying the minimum
number of points in a bin (namely, 5, 15 and 25). Only a small fraction of the lines is drawn for visualization purposes. Notice the overlapping lines. (d)
The result of our method. The figure is better seen in color.

the minimum number of points in a bin, in the line parameter
space, in order to consider that the line is represented by a
sufficient number of points, (ii) the minimum length of a line
segment and (iii) the maximum gap between line segments
lying on the same axis. In our experiments, we fixed the last
two parameters - after a trial and error procedure by keeping
those parameters that best fit the examined shapes - and varied
the threshold. The obtained results for the PPHT exhibited
significant irregularities such as a large number of overlapping
lines for the same segment. Also, the corners of the shapes
were not correctly captured. Representative experiments are
shown in figure 4(a)-(c) while the modeling by our algorithm
is illustrated in 4(d).

The PPHT is based on a histogram which correlates the
accuracy of the result with the number of bins used. Also,
a threshold must be established so as to eliminate lines with
small participation in the final result. A small number of bins
may lead to an underestimation of the number of segments,
while a large number of bins increases the complexity of
the model. Moreover, there is no clear borderline between a
small and a large number of bins. As far as the threshold
is concerned, its value may have similar effects in the final
model. A large value may drop some shape segments, while
a small value may be responsible for a large number of
lines fitted, analogous to a GMM with one component per
point. A more important drawback of the PPHT is that many
overlapping lines may model the same line segment. Figure
4 presents outputs of PPHT for a given shape, and various
parameters values.

In our algorithm there are two tuning parameters, a thresh-
old that determines the elongation of an ellipse (T1) and
a threshold marking the connectivity of a set (T2). Both
are used to decide whether to split (in split process) or
merge (in merge process). A small value preserves the shape
details, while a larger one provides rougher results. Notice
that noise disturbing the contour, may be handled by in-
creasing the values of these thresholds. For our experiments,
T1 = T2 = α ∗ 1

N

∑
x∈X{ 1

8

∑
y∈N8

x
{|x − y|}} where N is

the number of points of shape X , N8
x is the 8-neighborhood

of x ∈ X , i.e. the 8 nearest neighbors to x and α is a

parameter controling the accuracy of the result. Large values
for α produce better compression rate with greater distortion,
and thus not preserving the shape details, while smaller values
describe better the shape, but increase the complexity. In our
experiments we fixed α to 0.6.

IV. CONCLUSION

The split and merge algorithm presented in this paper
iteratively fits a number of elongated ellipses to the contour of
a shape. The shape points are represented by the major axes
of the ellipses while the relatively small in size minor axes
account for possible perturbations from the linear modeling.
Furthermore, a merge process combines neighboring ellipses
with collinear major axes in order to reduce their number
and consequently the complexity of the model. An important
aspect of the algorithm is that it does not necessitate an
ordering of the points representing the shape. It handles shapes
that present joints and multiple structures.

The method imposes two thresholds, that controls the flexi-
bility of the result. Robust estimation of those parameters, is a
mater of ongoing research, along with the implementation of
the method in a 3D scale. A straightforward application of the
method could be in the implementation of a shape retrieval
scheme, where the contour of an object should be detected
and matched with that of a model in a reference database [9].

REFERENCES

[1] M. Atiquzzaman and M. W. Akhtar. A robust Hough transform technique
for complete line segment description. Real Time Imaging, pages 419–
426, 1995. 1

[2] P. Bhowmick and B. Bhattacharya. Fast polygonal approximation of
digital curves using relaxed straightness properties. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 29(9):1590–1602, 2007.
1

[3] C. M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006. 3

[4] G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision with
the OpenCV. O’Reilly Media, 2008. 4

[5] V. Chatzis and I. Pitas. Fuzzy cell Hough transform for curve detection.
Patter Recognition, 30(12):2031–2042, 1997. 1

[6] C. Chau and W. Siu. Adaptive dual-point Hough transform for object
recognition. Computer Vision and Image Understanding, 96(1):1–16,
2004. 1



[7] H. D. Cheng, Y. Guo, and Y. Zhang. A novel Hough transform based
on eliminating particle swarm optimization and its applications. Pattern
Recognition, 42(9):1959–1969, 2009. 1

[8] K. Chung, Z. Lin, S. Huang, Y. Huang, and H. M. Liao. New orientation-
based elimination approach for accurate line-detection. Pattern Recog-
nition Letters, 31(1):11–19, 2010. 1

[9] V. Ferrari, T. Tuytelaars, and L. V. Gool. Object Detection by Contour
Segment Networks. In European Conference on Computer Vision, 2006.
5

[10] J. Illingworth and J. Kittler. A survey of the Hough transform. Computer
Vision, Graphics, and Image Processing, 44(1):87–116, 1988. 1
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