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Abstract

A method for detecting a vanishing point in struc-
tured images is presented. The method relies on the de-
tection of line segments from an edge map by represent-
ing clusters of edge points by the long axes of highly
eccentric ellipses. The extracted lines provide a set of
candidate vanishing points computed by their intersec-
tions, which are assigned weights proportional to the
lengths of the line segments they belong to. Then, a
voting scheme is applied through an accumulator array
generated by griding the image frame. The votes of each
grid cell are weighted by the Π-sigmoid kernel allowing
cells to contribute to their neighbors.

1 Introduction

Human-made scenes, such as roads, buildings and
their facades or indoor corridor boundaries have a large
number of parallel lines in the 3D space. In the frame-
work of a pinhole camera model, two parallel lines are
projected onto a pair of converging lines in the 2D im-
age space provided that their 3D plane is not fronto-
parallel to the image plane. The common point of inter-
section of all 3D parallel lines (generally belonging to
different planes) in the 2D image is called the vanishing
point. The detection of a vanishing point in an image
is a crucial step in many computer vision applications,
like robot navigation, camera calibration, single view
3D scene reconstruction and pose estimation.

In the related literature, there are two main cate-
gories of methods for vanishing point detection. There
are techniques requiring knowledge of the intrinsic pa-
rameters of the camera, which exploit the notion of 3D
parallelism and prominent structures of the scene or-
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thogonal to each other, also called Manhattan direc-
tions [4, 5]. There are also techniques assuming no
knowledge of the internal camera parameters, such as
the method in [2] using the Helmholtz principle for im-
age partitioning, the Expectation-Maximization (EM)
framework adopted in [7] or the non-iterative algorithm
based on consensus sets [11].

In contrast to the above methods, which may base
their estimation in the existence of three orthogonal
vanishing points, images acquired in structured environ-
ments such as roads or corridors are a specific category
where the detection of a single vanishing point may be
sufficient for the underlined application (e.g. vision-
based robot motion along a corridor). The general strat-
egy consists in partitioning the image into accumula-
tor cells collecting votes from the line segments having
their intersection in the specific cell. The detection of
peaks in the accumulator space provides the vanishing
points [8, 10].

In this paper, a method for detecting a single vanish-
ing point in structured environments is presented. The
method consists two main steps. At first, line segments
are detected using the direct split-and-merge (DSaM)
algorithm [6] which allows the robust detection of lines
even in cases of points deviating from the line under
Gaussian noise assumptions. This modeling allows to
capture points which would be rejected as noise in a
standard framework like the Hough transform. Sec-
ondly, a voting step is applied through a kernel, where
candidate vanishing points are assigned weights propor-
tional to the lengths of the line segments they belong to.
Therefore, longer line segments which are more proba-
ble in indoor environments (e.g. the intersection of wall
and ground) are more probable to contribute to the de-
termination of the vanishing point.

2 Vanishing Point Detection

Given an indoor scene (e.g. a corridor), the first step
of the method consists in detecting the edges of the im-
age. Therefore, the probabilistic boundaries are first



computed [9] though in simpler, non textured environ-
ments, the output of the standard but established Canny
edge detector detector [3] is generally acceptable.

The next step consists in fitting line segments to the
extracted edges. To this end, our recently proposed
direct split-and-merge (DSaM) algorithm [6] was ap-
plied. The rational of that algorithm is based on the
assumption that 2D points may be considered collinear
if the minimum eigenvalue of their covariance matrix is
smaller than a predefined threshold. By these means,
line segments are modeled by the major axes of ellipses
with very high eccentricity capturing points which may
lie in the neighborhood of the line segment due to noise
or illumination changes. Through an iterative scheme,
by initializing the algorithm with one cluster containing
all the 2D edge points, every cluster whose ellipse does
not satisfy the aforementioned threshold is split into two
clusters. The procedure is repeated until there is no el-
lipse to split. Then, a merge process follows in order
to combine neighboring clusters with collinear major
axes to reduce the complexity of the model. The line
segment of the corresponding cluster is modeled by the
major axis, i.e. the eigenvector associated with the max-
imum eigenvalue. Figure 1 summarizes the DSaM algo-
rithm. The points in red correspond to the probabilistic
boundary pixels [9] of the image in figure 1(a).
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Figure 1. (a) Original color image. (b)-(e)
The first four iterations of the split pro-
cess and (f) the final line segments.

After the determination of the line segments in terms

of the long axes of highly eccentric ellipses, the set Cvp
of candidate vanishing points is constructed by comput-
ing all the pairwise intersection points between all the
lines. To further improve the efficiency of the method,
intersection points that lie outside the image plane could
be ignored but this issue is optional and depends on the
specific application. For example, in a corridor, the van-
ishing point lies within the image plain and intuitively
the vanishing line usually appears somewhere in the
viewer’s horizon. On the other hand, if the algorithm
is to be used by a robot navigation system, the detec-
tion of the vanishing point outside the image plane may
indicate an abrupt turn.

Thence, a weight w(p) = |lp1 ||l
p
2 | is assigned to each

point p ∈ Cvp which is equal to the product of the
lengths |lp1 | and |lp2 | of the two line segments whose in-
tersection is the candidate vanishing point p. Thus, a
candidate vanishing point produced by short segments,
or one long and one short segment, is attributed with a
small weight.

In the final step of our workflow, the vanishing point
is computed by selecting one of the candidate points,
which is achieved through a voting scheme. This step is
similar in spirit to the approach presented in [10]. How-
ever, the main difference with respect to that method is
that, in our algorithm, each line segment votes only for
the intersection points belonging to it while in [10] a
line segment votes for every candidate vanishing point
(even if it does not belong to the segment).

In a voting scheme, an important factor is the size of
the accumulator array bins, which in our case is a grid
covering the image support G ≡ [0, Gw] × [0, Gh] ⊂
R2. The grid is uniformly divided into equally sized
cells Bi, i = 1, ..., N , using a scaling factor σ ∈ (0, 1]
imposing a bin size of [σGw, σGh].

In order to assign weights to each candidate vanish-
ing point present in a given bin, a kernel function cen-
tered at each array bin is employed. To this end, a 2D
Π-Sigmoid kernel is applied to each bin [1], imposing
thus a fuzzy concept to the borders of the cell. The sup-
port of a 1D Π-Sigmoid kernel:

k(x) =
1

b− a

[
1

1 + e−λ(x−a)
− 1

1 + e−λ(x−b)

]
, (1)

with λ > 0, which is depicted in figure 2, approximates
a uniform kernel whose borders are fuzzified in order
to avoid abrupt changes. Thus, points under the plateau
contribute equally with their votes while the contribu-
tion of points lying at the extremities falls off quickly
but it does not become zero, depending on the value of
the parameter λ. The larger the value of λ the less fuzzy
the kernel borders become and consequently the edges
of the kernel are very steep (fig. 2). By these means,



the capture region of the kernel allows points from the
neighboring bin to contribute with a relatively low non-
zero weight. A 2D Π-Sigmoid kernel Πs(x;a,b, λ)

Figure 2. Πs(x;a,b, λ) for λ = 50 and λ = 1.

with parameters a = (α1, α2), b = (b1, b2), with
αi ≤ bi, and λ is a separable function that may be gen-
erated from the product of two 1D kernels:

Πs(x;a,b, λ) =

2∏
d=1

1
1+e−λ(xd−ad) − 1

1+e−λ(xd−bd)

bd − ad
.

Parameters a and b control the width of the kernel,
while the slope λ controls the fuzziness of the kernel.

Thus, the total votes casted to cell Bi are computed
by:

V (Bi) =
∑

p∈Cvp

w(p)Πs(p;ai,bi, λ). (2)

The voting process is concluded by detecting the domi-
nant cell B∗ according to:

B∗ = argmax
Bi

{V (Bi)}. (3)

Finally, the coordinates of the vanishing point are com-
puted as the weighted average of all the candidate van-
ishing points with respect to the Π-Sigmoid kernel cen-
tered at the cell B∗:

p∗ =

∑
p∈Cvp

w(p)pΠs(p;a
∗,b∗, λ∗)

∑
p∈Cvp

w(p)Πs(p;a
∗,b∗, λ∗)

, (4)

where a∗,b∗, λ∗ are the parameters of the kernel corre-
sponding to B∗ in (3). Note that all the candidate points
contribute to the solution. However, the importance of
the points in the dominant cell is overwhelming. The
steps of the method are summarized in Algorithm 1. In
order to increase the robustness of the algorithm and to
speed it up, line segments that are shorter than a thresh-
old T and their orientation is close to horizontal or ver-
tical within θ degrees are pruned. Although this rule
could be omitted, it was deduced that setting the value
of parameter T to 5% of the size of the diagonal of the
image and θ = ±15o improves significantly the perfor-
mance of the method.

Algorithm 1 Vanishing point detection algorithm

• input: A color image.

• output: The coordinates of the vanishing point.

– Detect the edges of the image.

– Apply the DSaM algorithm [6] to detect line
segments.

– Prune segments whose length is below T
and their orientation is vertical or horizontal
within ±θo.

– Compute the coordinates of pairwise inter-
section points between all segments.

– Voting

∗ Calculate the votes for each cell Bj , j =
1, . . . , N using (2).

∗ Find the dominant cell using (3).
∗ Compute the vanishing point using (4).

3 Experimental Results

To evaluate our method, we created two sequences,
with 35 and 18 frames respectively, with a frame size
of 320× 240 pixels each. The images in each sequence
were captured periodically by a robot moving on a spe-
cific course. The sequences represent an indoor corri-
dor under various illumination conditions. To make the
task more challenging, in the second sequence, a person
walking towards the robot appears in all of the frames.
Then, 5 individuals were asked to detect manually the
vanishing point in each image. The ground truth van-
ishing point for each image was considered to be the
mean point indicated by the volunteers. The standard
deviation of the various vanishing points provided by
the humans is 11 pixels which is approximately 3.5%
of the shorter image dimension.

In order to investigate the dependence of the final re-
sult on the values of the parameters λ of the Π-Sigmoid
kernel and the grid resolution tuned by σ, experiments
were performed, examining the mean detection error
and the execution (in MATLAB) time with respect to
those parameters. Note that as the grid resolution de-
creases the algorithm demands more execution time be-
cause it integrates a larger number of kernels. The re-
sults are summarized in Table 1, where we have tested
the behavior of the algorithm for two configurations for
the parameter λ, namely λ = 10 and λ = 50. As it
may be observed, the proposed method exhibits a con-
sistent behavior since the variation of the detection error
is rather small concerning the different configurations



of the parameters. The pair of parameters λ = 50 and
σ = 0.05 is a good compromise between detection error
and execution time. The method provides, in general,
accurate results considering that its detection error is in
average 2% of the image diagonal. Moreover, as the al-
gorithm was developed in MATLAB it may be further
accelerated and easily integrated in embedded systems.

Table 1. Algorithm Performance
λ = 10

σ 0.05 0.08 0.10 0.20
Time per image (sec) 0.2 0.1 0.1 0.1

Error (pixels) 5.4 6.7 7.6 15.4
λ = 50

σ 0.05 0.08 0.10 0.20
Time per image (sec) 0.2 0.1 0.1 0.1

Error (pixels) 5.4 6.8 7.5 15.4

We also compared our direct split-and-merge frame-
work (DSaM) to the Hough Transform (HT), which is
widely used for line detection. We kept the proposed
voting scheme in both algorithms. At first, the HT needs
is relatively difficult to be tuned due to the tedious task
of determining the bin sizes. Moreover, the HT pro-
vided large errors (of the order of 15 pixels) and thus
failed to correctly detect the vanishing point in indoor
images because it was affected by spurious points.

Representative results of our method are given in fig-
ure 3. The images depict frames of an indoor corridor,
with and without obstacles. The corresponding error be-
tween real and computed vanishing point is 1.54 pixels.
The green lines correspond to the line segments com-
puted by the DSaM algorithm and represent the image
edges. The blue lines represent the edges contributing
to the detection of the vanishing point. The red star sign
depicts the vanishing point as it was computed by our
method, while the yellow circle is the ground truth.

Figure 3. Representative results (the fig-
ure is better viewed in color).

4 Conclusion

In this work, a vanishing point detection algorithm
based on an iterative split-and-merge scheme for line

segment detection and a voting scheme was presented.
Our method performs significantly better compared to
a strategy adopting the widely used HT for vanishing
point localization. A perspective of this work is to ex-
tend the algorithm to outdoor environments where un-
structured image features and clutter make the problem
more challenging.
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