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Abstract

We propose a pixel similarity-based algorithm enabling
accurate rigid registration between single and multimodal
images. The method relies on the partitioning of a ref-
erence image by a Gaussian mixture model (GMM). This
partition is then projected onto the image to be registered.
The main idea is that a Gaussian component in the refer-
ence image corresponds to a Gaussian component in the
image to be registered. If the images are correctly registered
the total distance between the corresponding components is
minimum. An advantage of the proposed method is that it
may handle multidimensional (vector valued) images where
histogram-based methods such as the widely used mutual
information is not tractable due to the high dimension of
the data. Also, experimental results indicate that, even in
the case of images presenting low SNR, the proposed al-
gorithm compares favorably to the histogram-based mutual
information method that is widely used in a variety of ap-
plications.

1 Introduction

The goal of image registration is to geometrically align
two or more images in order to superimpose pixels repre-
senting the same underlying structure. Image registration
is an important preliminary step in many application fields
involving, for instance, the detection of changes in tempo-
ral image sequences or the fusion of multimodal images.
For the state of the art of registration methods we refer the
reader to [3, 22]. Medical imaging, with its wide variety
of sensors (MRI, nuclear, ultrasonic, X-Ray) is probably
one of the first application fields [14, 7]. Other research
areas concerned by image registration are remote sensing,
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multisensor robot vision and multisource imaging used in
the preservation of artistic patrimony. Respective applica-
tions include the following of the evolution of pathologies
in medical image sequences [17], the detection of changes
in urban development from aerial photographs [11] and the
recovery of underpaintings from visible/X-ray pairs of im-
ages in fine arts painting analysis [8].

The overwhelming majority of change detection or data
fusion algorithms assume that the images to be compared
are perfectly registered. Even slightly erroneous registra-
tions may become an important source of interpretation er-
rors when inter-image changes have to be detected. Accu-
rate (i.e. subpixel or subvoxel) registration of single modal
images remains an intricate problem when gross dissimi-
larities are observed. The problem is even more difficult
for multimodal images, showing both localized changes that
have to be detected and an overall difference due to the var-
ious responses of multiple sensors.

Since the seminal works of Viola and Wells [21] and
Maes et al. [13] the maximization of the mutual infor-
mation measure between a pair of images has gained an
increasing popularity as a criterion for image registration
[18]. The estimation of both marginal and joint probability
density functions of the involved images is a key element
in mutual information based image alignment. However,
this method is limited by the histogram binning problem.
Approaches to overcome this limitation include Parzen win-
dowing [21, 10], where we have the problem of kernel width
specification, and spline approximation [20, 15]. A recently
proposed method relies on the continuous representation of
the image function and develops a relation between image
intensities and image gradients along the level sets of the
respective intensity [19].

Gaussian mixture modeling [2, 16] constitutes a power-
ful and flexible method for probabilistic data clustering that
is based on the assumption that the data of each cluster has
been generated by the same Gaussian component. In [12]
GMMs were trained off-line training to provide prior infor-



mation on the expected joint histogram when the images
are correctly registered. GMMs have also been successfully
used as models for the joint [6] as well as the marginal im-
age densities [9], in order to perform intensity correction.

Inspired by the application of GMMs to image seg-
mentation and intensity correction, we apply GMM mod-
eling to image registration. More specifically, we train a
GMM model once for the reference image and obtain the
corresponding partitioning of image pixels into clusters.
Each cluster is represented by the parameters of the cor-
responding Gaussian component. The main idea is that a
Gaussian component in the reference image corresponds to
a Gaussian component in the image to be registered. If the
images are correctly registered the sum of the distances be-
tween the corresponding components is minimum.

It is well-known that GMMs overcome the binning prob-
lem of histogram-based methods and provide a continuous
model of the image density. When successfully trained,
they produce a sensible approximation of the pdf of im-
age intensity, by placing Gaussian components in a sensi-
bledata-drivenway (i.e on intensity regions exhibiting high
density). Although there is still the problem of specifying
the number of components in GMM modeling, experimen-
tal results indicate that our GMM-based method is quite ro-
bust from this point of view, provided that the number of
components is neither very big (overfitting) nor very small
(underfitting).

In the remainder of this paper, we present the proposed
registration method in section 2. Experimental results are
provided in section 3 and conclusions are drawn in section
4.

2 Registration by minimization of density
distances

Consider the multivariate normal distributions
N1(µ1, Σ1) and N2(µ2, Σ2) and denoteΘi = {µi,Σi},
with i = {1, 2}, their respective parameters (mean vector
and covariance matrix). The Chernoff distance between
these distributions is defined as [5]:
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where∆µ = µ2 − µ1. The Bhattacharyya distance is a
special case of the Chernoff distance withs = 0.5:
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The Bhattacharyya distance may still be used even if the
underlying distributions are not Gaussian. However, for dis-
tributions deviating markedly from a Gaussian, the distance
will not be informative.

Let Iref be an image ofN×N pixels with intensities de-
noted asIref (xi), wherexi, i = 1, ..., N2, is theith pixel.
The purpose of rigid image registration is to estimate a set
of parametersS of the rigid transformationTS minimizing
a cost functionE(Iref (·), Ireg(TS(·))) that, in a similarity
metric-based context, expresses the similarity between the
image pair. In the 2D case the rigid transformation para-
meters are the rotation angle and the translation parameters
along the two axes. In the 3D case, there are three rotation
and three translation parameters. Eventually, scale factors
may also be included, depending on the definition of the
transformation.

Consider, now, a partitioning of the reference imageIref

into K clusters (groups) using a GMM obtained via the EM
algorithm [2]. Therefore, the reference image is represented
by the parametersΘref

k = {µref
k , Σref

k }, k = 1, . . . ,K
of the GMM components. The partitioning of the im-
age is described using the functionf(x) : [1, 2, ..., N ] ×
[1, 2, ..., N ] → {1, 2, ...,K}, wheref(x) = k means that
pixel x of the reference imageIref belongs to the cluster
defined by thekth component. Let us also define the sets of
all pixels of imageIref belonging to thekth cluster:

Pk = {xi ∈ Iref , i = 1, 2, ..., N2/δ(f(xi)− k) = 1},

for k = 1, ..., K, whereδ(x) is the Dirac impulse:

δ(f(xi)− k) =
{

1, if f(xi) = k
0, otherwise

(3)

The above GMM-based segmentation of the reference
image is performed once, at the beginning of the registra-
tion procedure. The reference imageIref is, thus, parti-
tioned intoK clusters, generally, not corresponding to con-
nected components in the image. This spatial partition is
projected on the image to be registeredIreg, yielding the
same partition of this second image (i.e., the partitioning of
the reference image acts as a mask on the image to be regis-
tered). Then, we assume that the pixel values of each cluster
k in Ireg are modeled using a Gaussian component with pa-
rameters the sample meanµreg

k and the sample covariance
matrixΣreg

k :

µreg
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where∆Ii
k = Ireg(TS(xi)) − µreg

k and |Pk| is the cardi-
nality of setPk. The role ofδ(f(xi) − k) in eq. (4) and
(5) is to determine the support (the pixel coordinates) for
the calculation of the mean and covariance. These parame-
ters are computedon the image to be registeredfor the pixel
coordinates belonging to thekth classon the reference im-
age. This also implies a Gaussian generative model for the
components ofIreg.

The energy function we propose, is expressed by the sum
of Bhattacharyya distances (2) between the corresponding
GMM components inIreg andIref :

E(Iref (·), Ireg(TS(·))) =
K∑

k=1

πkB(Θref
k ,Θreg

k ) (6)

whereπk is the mixing proportion of thekth component:

πk =
|Pk|

K∑

k=1

|Pk|
.

If the two images are correctly registered the criterion in
(6) assumes that the total distance between the whole set of
components would be minimum.

For a given set of transformation parametersS, the to-
tal energy between the image pair is computed through the
following steps:

• segment the reference imageIref (·) into K clusters by
a Gaussian mixture model.

• for each clusterk = 1, 2, ..., K of the reference image:

– project the pixels of the cluster onto the trans-
formed image to be registeredIreg(TS(·)).

– determine the meanµreg
k (4) and covarianceΣreg

k

(5) of the projected partition ofIreg.

• evaluate the energy in eq. (6) by computing the
Bhattacharrya distances (2) between the corresponding
densities.

2.1 Optimization

The Iterated Conditional Modes (ICM) [1] algorithm
was implemented for the minimization of the energy func-
tion as (6) is highly non-linear. ICM is a deterministic
Gauss-Seidel like algorithm, that only accepts configura-
tions decreasing the cost function and has fast convergence
properties. The overall optimization algorithm may be sum-
marized as follows:

• ICM (S0, E, max)
S0 initial parameters
E energy function
ε minimum change in energy between iterations

max maximum number of iterations

– all parameters are declared unvisited ;

– S ← S0 ; k ← 0 (counter) ;

– while (k ≤ max or ∆E > ε) do:

∗ while there are unvisited parametersdo:

· randomly chose un elementSk(i) of Sk

at iterationk ;

· construct several configurations differ-
ent fromSk only by the elementSk(i) ;

· keep the configuration giving the mini-
mum energy;

· declare parameterSk(i) visited

∗ end do

– reduce parameter search space

– declare all parameters unvisited

– k ← k + 1

– end do

A large number of interpolations are involved in the reg-
istration process. The accuracy of the rotation and transla-
tion parameter estimates is directly related to the accuracy
of the underlying interpolation model. Simple approaches
such as the nearest neighbor interpolation are commonly
used because they are fast and simple to implement, though
they produce images with noticeable artifacts. More satis-
factory results can be obtained by small-kernel cubic con-
volution techniques. In our experiments, we have applied a
bilinear interpolation scheme, thus preserving the quality of
the image to be registered.

Finally, let us notice that the energy in (6) may be ap-
plied to both single and multimodal image registration. In
the latter case, the difference in the mean values of the dis-
tributions in (6) should be ignored, as we do not search to
match the corresponding Gaussians in position but in shape.
This also stands for the single modal case if the intensities
of the image pair have significantly different contrasts.

3 Experimental results

In order to evaluate our method, we have performed a
number of experiments in a relatively difficult registration
problem by aligning a range image to its intensity counter-
part. The image in fig. 1(a) is a synthetic stereo image com-
posed of natural objects and the image in fig. 1(b) its cor-
responding range image (these images are reproduced and
used in the experiments by courtesy of the Computer Sci-
ence department, University of Bonn, Germany). The com-
plimentary but not redundant information carried by the im-
age pair augments the difficulty of the registration process.

The intensity image (fig. 1(a)) underwent several rigid
transformations by different rotation angles and translation



Table 1. Statistics on the registration errors
for the compared methods. A total number
of 250 registrations was performed for each
method. The errors are expressed in pixels.

Registration error statistics
MI GMM

Mean 0.63 0.20
St. dev. 0.78 0.02
Median 0.40 0.21
Max 2.85 0.31

parameters and was corrupted by white Gaussian noise in
order to obtain signal to noise ratios (SNR) varying between
5 dB and1 dB. The resulting images were provided as in-
put to our GMM-based registration algorithm with a prede-
fined number of Gaussian components (K = 2, ..., 10 and
K = 16). The total number of registrations is250 (5 dif-
ferent rigid transformations,5 levels of SNR,10 different
clusters).

Registration errors were computed in terms of pixels and
not in terms of transformation parameters. Registration ac-
curacies in terms of rotation angles and translation vectors
are not easily evaluated due to parameter coupling. There-
fore, the registration errors are calculated at the corners of
the image frame where their values are larger with respect
to their values in the center of the image. More precisely,
these values represent the average error in pixels of the four
corners of the image frame with respect to the ground truth
position.

Table 1 summarizes the registration errors for the dif-
ferent configurations of the registration experiments. For
comparison purposes, the registration errors provided by the
mutual information (MI) method are also shown. As it can
be observed, our GMM-based registration clearly outper-
forms the standard method. This is more pronounced in the
case of low SNR. Table 2 shows the mean values of the reg-
istration errors when the intensity image was corrupted by
white Gaussian noise, thus, obtaining a SNR of1 dB. A rep-
resentative registration example, for both methods, with the
corresponding registration errors is illustrated in fig. 2.

An important advantage of the proposed method is that it
may handle multidimensional (vector valued) images where
mutual information is not tractable due to the high dimen-
sion of the data. Modern imaging techniques provide an
array of imaging modalities which enable the acquisition
of complementary information, representing for instance an
underlying anatomy in the case of multimodal medical im-
ages (MRI, SPECT, PET etc.). Also, into the same modal-
ity, an image pixel (or voxel) may be vector valued. For in-
stance, a possible application of our registration technique is

Table 2. t Mean value of the registration errors
for different numbers of clusters ( K) in the
case of noise with SNR of 1 dB.

Mean error (SNR= 1 dB)
Clusters MI GMM

K = 2 0.87 0.55
K = 3 2.10 0.49
K = 4 0.83 0.45
K = 5 0.75 0.41
K = 6 0.67 0.38
K = 7 0.64 0.38
K = 8 0.73 0.38
K = 9 0.75 0.44
K = 10 0.78 0.47
K = 16 0.86 0.48

the registration of diffusion tensor magnetic resonance im-
ages (DT-MRI) where each pixel is 6-dimensional. In that
case, the computation of image histograms and the applica-
tion of mutual information is prohibitive. Other applications
include the registration of color (RGB) images or images
where the extraction of multiple features is necessary (e.g.
textured images).

4 Conclusion

We have presented a method for the registration of sin-
gle and multimodal images. The method relies on the mini-
mization of distances between probability density functions
defined by partitioning the two images. The first image is
partitioned by a GMM through the EM algorithm. This
partition is then implied onto the second image. We have
shown the effectiveness and accuracy of the method espe-
cially with images presenting dissimilarities, such as the
range image pair, where the mutual information method
fails to correctly register the two images.

Important open questions for GMM-based registration
are how the number of model components can be selected
automatically and which features, apart from image inten-
sity, should be used. These questions are still the subject
of on going research in our group [4]. Another future work
direction is the employment of mixtures with robust density
functions that are expected to provide better results in the
case of noisy data.
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Figure 2. The range image in fig. 1(b) was registered to the grey level image in fig. 1(c) by the
standard mutual information and our GMM-based methods. The registered images and the difference
between the ground truth image in fig. 1(d) and the registered images are presented. (a) Registration
by mutual information and (b) its difference from the ground truth. (c) Registration by our GMM
method and (d) its difference from the ground truth. In the difference images, the intensity varies
between 0 and 255 with positive values being lighter, negative values being darker. Grey level zero
is represented by a value of 128.
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