
Interactive Fortran 77
A Hands on Approach

Second edition

Ian D Chivers

Jane Sleightholme

© Ian D Chivers and Jane Sleightholme

Unless otherwise specified, Ian D Chivers and Jane Sleightholme
hold all rights, including copyright and retains such rights. This
work may be distributed in its entirety provided the work is dis-
tributed as a whole with this copyright notice intact.

This work may not be distributed in hard copy or other machine
readable form, redistributed, transmitted or translated without
prior written authorization from Ian D Chivers and Jane
Sleightholme.

Commercial use can only be allowed by specific license agree-
ments. The accuracy of this document cannot be guaranteed. Ian
D Chivers and Jane Sleighthome make no warranty, either express
or implied, with respect to the use of any information and as-
sumes no liabilities for loss or damage, whether such loss or
damage is caused by error or omission.

Information about the Fortran 90 version is available at

http://www.kcl.ac.uk/kis/support/cc/fortran/f90home.html

to Joan and Martin
to Mark and Jonathan

to Glasgow

‘Flourish’

Preface to First Edition

The aim of this book is to introduce the concepts and ideas involved in problem
solving with Fortran 77 using an interactive timesharing computer system. The
book tries to achieve this using the established practices of structured and
modular programming. Two techniques of problem solving, so-called top-down
and bottom-up are also introduced.

The book has been developed from a one week full-time course on program-
ming, given several times a year at Imperial College to a variety of students,
both undergraduate and postgraduate. The course itself is a mixture of

•• Lectures

•• Tutorials

•• Terminal sessions

•• Reading

All work on the course is done in small groups, and the students have the
option of working in pairs. Initially, students are shy about showing their igno-
rance, but quickly overcome this and learn a lot by helping one another out and
articulating their problems. This is regarded as an essential part of the course.

The student is assumed to complete a minimum number of the problems. Expe-
rience on courses over several years has shown the authors that only by
completing problems fully does the student get a realistic idea of the process of
problem solving using a programming language. It is therefore recommended
that all problems attempted are completed. Certain of the problems are used as
a basis for further development in the course. This helps to reinforce the ideas
of problem solving introduced earlier.

The authors are pleased to provide more details of the course to interested par-
ties.

Ian D. Chivers
Malcolm W. Clark

1984

Preface to Second Edition

As most teachers know their ideas of how to approach a subject gradually
change with time, for a variety of reasons. This edition reflects changes in four
main areas

•• a complete rewrite of the problem solving chapter;

•• a new chapter on programming languages with an extensive bibli-
ography; firstly as background material for the inquisitive reader;
secondly to show the way Fortran has evolved and is still evolving
by the incorporation of modern language constructs. This is be-
coming increasingly necessary given the current state of the pro-
posed Fortran 8x standard;

•• an alternate introduction to arrays more appropriate to a wider
range of students.

•• a complete revamp of Appendix E, to provide a complete list of
functions in Fortran 77 with descriptions and examples.

Minor changes have been made throughout the book, reflecting the feedback we
have had from the students over the years, at a number of colleges.

There are of course several corrections, and we are thankful to the many stu-
dents who have pointed them out with great relish! We expect the same
enthusiasm from students in pointing out the mistakes in this edition.

The first edition was prepared and typeset using the Draft Format text process-
ing software running on a variety of CDC Cyber 6000 Series computers at
Imperial College. Final output was to an APS µ 5 typesetter.

The Draft Format version was then transfered to an IBM PS/2 Model 60 run-
ning Ventura Publisher. Original output was to a variety of postscript laser
printers, and final camera ready copy was obtained using the Linotron 300
typesetter at the University of London Computer Centre.

Our thanks to the students at King’s College for their comments on the drafts of
this edition, and to UNEP for the use of a variety of facilities at the Monitoring
and Assessment Research Centre, London, whilst on a very stimulating and
enjoyable secondment.

Ian D. Chivers
Jane M. Sleighthome

1990

Chapter 1 Introduction to computing 1

Chapter 2 Introduction to problem solving 7

Chapter 3 Introduction to programming languages 16

Chapter 4 Introduction to the use of a computer system 31

Chapter 5 Introduction to programming 36

Chapter 6 Arithmetic 46

Chapter 7 Arrays and DO loops (1) 58

Chapter 8 Arrays and DO loops (2) 71

Chapter 9 Output; an introduction 77

Chapter 10 Output; an extension 87

Chapter 11 Reading in data 97

Chapter 12 Making decisions (1) 107

Chpater 13 Functions 116

Chapter 14 Making decisions (2) 126

Chapter 15 Error detection and correction 133

Chapter 16 Complex, double precision and logical 137

Chapter 17 Characters 147

Chapter 18 Subroutines 159

Chapter 19 Files 170

Chapter 20 Common and data statements 175

Chapter 21 Optimisation 181

Chapter 22 Problem solving revisited 188

Chapter 23 Operating systems 195

Chapter 24 Tools in programming 199

Annotated bibliography 203

Appendix A ASCII Character Set 207

Appendix B Sample text extracts 208

Table of Contents

Appendix C Code example 209

Appendix D NAG 210

Appendix E Functions available in Fortran 211

Index 215

Table of Contents

1

Introduction to computing
‘Don’t Panic’

Douglas Adams, ‘The Hitch-Hiker’s Guide to the Galaxy’

Aims

The aims of this chapter are to introduce the following:–

• the components of a computer — the hardware;

• the component parts of a complete computer system — the other
devices that you need to do useful work with a computer;

• the software needed to make the hardware do what you want.

A computer

A computer is an electronic device, and can be thought of as a tool, like the
lever or the wheel, which can be made to do useful work. At the fundamental
level it works with bits (binary digits or sequences of zeros and ones). Bits are
often put together in larger configurations, e.g. 8, 16, 32, 60, or 64. Hence
computers are often referred to as 8-bit, 16-bit, or 32-bit, 60-bit or 64-bit ma-
chines.

Most computers consist of the following:–

CPU This is the brains of the computer. CPU stands for central
processor unit. All of the work that the computer does is or-
ganised here.

MEMORY The computer will also have a memory. Memory on a com-
puter is a solid state device that comprises an ordered
collection of bits/bytes/words that can be read or written by
the CPU. A byte is generally 8 bits (as in 8-bit byte), and a
word is most commonly accepted as the minimum number of
bits that can be referenced by the CPU. This referencing is
called addressing. The memory typically contains programs
and data. The following diagram illustrates the two ideas of

address and contents of the memory at that address.

Word sizes of 8, 16 and 32 bits are commonly found in mi-
cro-computers; 16 and 32 bits are common for
mini-computers; 32, 60 and 64 bits are common for main-

Address

1

2

3

.

.

100

Memory

Contents

Hello

this

is

2 Introduction to computing Chapter 1

frames. A computer memory is often called random access
memory, or RAM. This simply means that the access time for
any part of memory is the same; in order to examine location
(say) 97, it is not necessary to first look through locations 1
to 96. It is possible to go directly to location 97. A slightly
better term might have been access at random. The memory
itself is highly ordered.

BUS A bus is a set of connections between the CPU and other
components. The bus will be used for a variety of purposes.
These include address signals which tell the memory which
words are wanted next; data lines which are used to transfer
data to and from memory, and to and from other parts of the
computer system. This is typical of many systems, but sys-
tems do vary considerably; while the information above may

not be true in specific cases, it provides a general model.
A diagram for the constituent parts of a typical computer is given below.

The components of a computer system

So far the computer we have described is not sufficiently versatile. We have to
add on other pieces of electronics to make it really useful.

Disks

 Data Address

 lines lines

CPU Other I/O
devices

Memory

Chapter 1 Introduction to computing 3

These are devices for storing collections of bits, which are
inevitably organised in reality into bytes and files. One advan-
tage of adding these to our computer system is that we can go
away, switch the machine off, and come back at a later time
and continue with what we were doing.

Memory is expensive and fast whereas disks are slower but
cheaper. Most computer systems balance speed against cost,
and have a small memory in relation to disk capacity.

Most people would be familiar with the two main type of
disks on micro computers, and these are floppy disks, and
hard disks. Micro floppy disks come in two main physical
sizes, 5 1/4 and 3 1/2 inch. Hard disks are inside the system,
and most people do not see this type of disk.

Tapes These are slower than disks but cheaper, generally. They vary
from ordinary, domestic cassettes used with micros to very
large drives found on most mainframe systems. These devices
are used for storing large quantities of data.

Others There are a large number of other input and output devices.
These vary considerably from system to system depending on
the work being carried out. Most large computer systems have
line-printers and laser printers whilst other installations may
have more sophisticated i/o devices, e.g. plotters for the pro-
duction of graphical output and photo-type-setters for the
production of high quality printed material.

The most important i/o device is the terminal. This book has been written as-
suming that most of your work will be done at a terminal. Terminals tend to
come in two main types — either a so called dumb terminal or a micro-com-
puter with suitable terminal emulation (DEC VT100 is very common). In either
case you communicate through the keyboard. This looks rather like an ordinary
typewriter keyboard, although some of the keys are different. However, the
location of the letters, numbers and common symbols is fairly standard. Don’t
panic if you have never met a keyboard before. You don’t have to know much
more than where the keys are. Few programmers, even professionals, advance
beyond the stage of using two index fingers and a thumb for their typing. You
will find that speed of typing is rarely important, it’s accuracy that counts.

One thing that people unfamiliar with keyboards often fail to realise is that
what you have typed in is not sent to the computer until you press the carriage
return key. To achieve any sort of communication you must press that key; it
will be somewhere on the right hand side of the keyboard, and will be marked
return, c/r, send, enter, or something similar.

4 Introduction to computing Chapter 1

Software

So far we have not mentioned software. Software is the name given to the
programs that run on the hardware. Programs are written in languages. Com-
puter languages are frequently divided into two categories; high-level and
low-level. A low level language (e.g. assembler) is closer to the hardware, while
a high level language (e.g. Fortran) is closer to the problem statement. There is
typically a one to one correspondence between an assembly language statement
and the actual hardware instruction. With a high level language there is a one to
many correspondence; one high level statement will generate many machine
level instructions.

A certain amount of general purpose software will have been provided by the
manufacturer. This software will typically include the basic operating system,
one or more compilers, an assembler, an editor, and a loader or link editor.

• A compiler translates high level statements into machine instruc-
tions;

• An assembler translates low level or assembly language state-
ments into machine instructions;

• An editor makes changes to another program;

• A loader or link editor takes the output from the compiler and
completes the process of generating something that can be exe-
cuted on the hardware.

These programs will vary considerably in size and complexity. Certain pro-
grams that make up the operating system will be quite simple and small (like
copying utilities), while certain others will be relatively large and complex (like
a compiler).

In this book we concentrate on software or programs that you write for your
course, research, or work. As the book progresses you will be introduced to
ways of building on what other people have written, and how to take advantage
of the vast amount of software already written, tested and documented.

Operating systems

There are generally a variety of operating systems available for a particular
computer. The choice of operating system will depend on the kind of work that
the computer system has to do. A time- sharing operating system is one of the
best for general purpose problem solving. These systems allow tens or even
hundreds of users to use the system simultaneously. Rapid feedback is possible,
and you can model complex systems, interact with the model, and even change
the model, sometimes in a matter of minutes. It is also possible to set up a
problem quickly and have it run as a background process, whilst you work on
another aspect of the problem.

Chapter 1 Introduction to computing 5

Problems

1. Distinguish between a memory address and memory contents.

2. What does RAM stand for?

3. What would a WOM (write only memory) do? How would you use it?

4. What does CPU stand for? What does it do?

6 Introduction to computing Chapter 1

2

Introduction to Problem Solving
They constructed ladders to reach to the top of the enemy’s wall, and they did
this by calculating the height of the wall from the number of layers of bricks at
a point which was facing in their direction and had not been plastered. The
layers were counted by a lot of people at the same time, and though some were
likely to get the figure wrong the majority would get it right... Thus, guessing
what the thickness of a single brick was, they calculated how long their ladder
would have to be.

Thucydides, The Peloponenesian War

‘When I use a word,’ Humpty Dumpty said, in a rather scornful tone, ‘it means
just what I choose it to mean - neither more nor less’
‘The question is,’ said Alice, ‘whether you can make words mean so many
different things.’

Lewis Carrol, Through the Looking Glass and What Alice found there.

Aims

The aims are:–

• to examine some of the ideas and concepts involved in problem
solving;

• to introduce the concept of an algorithm;

• to introduce two ways of approaching algorithmic problem solv-
ing;

• to introduce the ideas involved with systems analysis and design,
i.e. to show the need for pencil and paper study before using a
computer system.

Introduction

It is informative to consider some of the dictionary definitions of problem

• a matter difficult of settlement or solution, Chambers

• a question or puzzle propounded for solution, Chambers

• a source of perplexity, Chambers

• doubtful or difficult question, Oxford

• proposition in which something has to be done, Oxford

• a question raised for enquiry, consideration, or solution, Webster’s

• an intricate unsettled question, Webster’s

and a common thread seems to be a question that we would like answered or
solved. So one of the first things to consider in problem solving is how to pose
the problem. This is often not as easy as is seems. Two of the most common
methods are

• in natural language

• in artificial language or stylised language

Both methods have their advantages and disadvantages.

Natural Language

Most people use natural language and are familiar with it, and the two most
common forms are the written and spoken word. Consider the following lan-
guage usage

• the difference between a three year old child and an adult describ-
ing the world;

• the difference between the way an engineer and a physicist would
approach the design of a car engine;

• the difference between a manager and worker considering the im-
plications of the introduction of new technology;

Great care must be taken when using natural language to define a problem and
a solution. It is possible that people use the same language to mean completely
different things, and one must be aware of this when using natural language
whilst problem solving.

Natural language can also be ambiguous

Old men and women eat cheese.

Are both the men and women old?

8 Introduction to problem solving Chapter 2

Artificial Language

The two most common forms of artificial language are technical terminology
and notations. Technical terminology generally includes both the use of new
words and alternate use of existing words. Consider some of the concepts that
are useful when examining the expansion of gases in both a theoretical and
practical fashion

• temperature

• pressure

• mass

• isothermal expansion

• adiabatic expansion

Now look at the following

• a chef using a pressure cooker

• a garage mechanic working on a car engine

• a doctor monitoring blood pressure

• an engineer designing a gas turbine

Each has a particular problem to solve, and each will approach their problem in
their own way; thus they will each use the same terminology in slightly differ-
ent ways.

Notations

Some examples of notations are

• algebra

• calculus

• logic

All of the above have been used as notations for describing both problems and
their solutions.

Resume

We therefore have two ways of describing problems and they both have a learn-
ing phase until we achieve sufficient understanding to use them effectively.
Having arrived at a satisfactory problem statement we next have to consider
how we get the solution. It is here that the power of the algorithmic approach
becomes useful.

Chapter 2 Introduction to problem solving 9

Algorithms

An algorithm is a sequence of steps that will solve part or all of a problem. One
of the most easily understood examples of an algorithm is a recipe. Most people
have done some cooking, if only making toast and boiling an egg.

A recipe is made up of two parts

• a check list of things you need

• the sequence or order of steps

Problems can occur at both stages, e.g. finding out halfway through the recipe
that you do not have an ingredient or utensil; finding out that one stage will
take an hour when the rest will be ready in ten minutes. Note that certain things
can be done in any order – it may not make any difference if you prepare the
potatoes before the carrots.

There are two ways of approaching problem solving when using a computer.
They both involve algorithms, but are very different from one another. They are
called top-down and bottom-up.

Top Down

In a top down approach the problem is first specified at a high or general level:
prepare a meal. It is then refined until each step in the solution is explicit and in
the correct sequence, e.g. peel and slice the onions, then brown in a frying pan
before adding the beef. One drawback to this approach is that it is very difficult
to teach to beginners because they rarely have any idea of what primitive tools
they have at their disposal. Another drawback is that they often get the se-
quencing wrong, e.g. now place in a moderately hot oven is frustrating because
you may have not lit the oven (sequencing problem) and secondly because you
may have no idea how hot moderately hot really is. However as more and more
problems are tackled top-down becomes one of the most effective methods for
programming.

Bottom up

Bottom-up is the reverse to top-down! As before you start by defining the prob-
lem at a high level, e.g. prepare a meal. However, now there is an examination
of what tools etc you have available to solve the problem. This method lends
itself to teaching since a repertoire of tools can be built up and more compli-
cated problems can be tackled. Thinking back to the recipe there is not much
point trying to cook a six course meal if the only thing that you can do is boil
an egg and open a tin of beans. The bottom-up approach thus has advantages
for the beginner. However there may be a problem when no suitable tool is
present. One of the authors’ friend’s learned how to make Bechamel sauce, and
was so pleased by his success that every other meal had a course with a

10 Introduction to problem solving Chapter 2

bechamel sauce. Try it on your eggs one morning. Here was a case of specify-
ing a problem prepare a meal, and using an inappropriate but plausible tool
Bechamel Sauce.

The effort involved in tackling a realistic problem, introducing the constructs as
and when they are needed and solving it is considerable. This approach may not
lead to a reasonably comprehensive coverage of the language, or be particularly
useful from a teaching point of view. Case studies do have great value, but it
helps if you know the elementary rules before you start on them. Imagine learn-
ing French by studying Balzac, before you even look at a French grammar. You
can learn this way but even when you have finished, you may not be able to
speak to a Frenchman and be understood. A good example of the case study
approach is given in the book Software Tools, by Kernighan and Plauger.

In this book our aim is to gradually introduce more and more tools until you
know enough to approach the problem using the top-down method, and also
realise from time to time that it will be necessary to develop some new tools.

Stepwise Refinement

Both the above techniques can be combined with what is called step-wise re-
finement. The original ideas behind this technique are well expressed in a paper
by Wirth entitled Program Development by Stepwise Refinement, published in
1971. This means that you start with a global problem statement and break the
problem down in stages, into smaller and smaller sub-problems, that become
more and more amenable to solution. When you first start programming the
problems you can solve are quite simple, but as your experience grows you will
find that you can handle more complex problems.

When you think of the way that you solve problems you will probably realise
that, unless the problem is so simple that you can answer it straight away some
thinking and pencil and paper work is required. An example that some may be
familiar with is in practical work in a scientific discipline, where coming unpre-
pared to the situation can be very frustrating and unrewarding. It is therefore
appropriate to look at ways of doing analysis and design before using a com-
puter.

Systems Analysis and Design

When one starts programming it is generally not apparent that one needs a
methodology to follow to become successful as a programmer. This is generally
because the problems are reasonably simple, and it is not necessary to make
explicit all of the stages one has gone through in arriving at a solution. As the
problems become more complex it is necessary to become more rigorous and
thorough in ones approach, to keep control in the face of the increasing com-
plexity and to avoid making mistakes. It is then that the benefit of systems

Chapter 2 Introduction to problem solving 11

analysis and design becomes obvious. Broadly we have the following stages in
systems analysis and design

• Problem definition

• Feasibility study and fact finding

• Analysis

• Initial system design

• Detailed design

• Implementation

• Evaluation

• Maintenance

and each problem we address will entail slightly different time spent in each of
these stages. Let us look at each stage in more detail.

Problem Definition

Here we are interested in defining what the problem really is. We should aim at
providing some restriction on both the scope of the problem, and the objectives
we set ourselves. We can use the methods mentioned earlier to help out. It is
essential that the objectives are

• clearly defined;

• when more than one person is involved, understood by all people
concerned, and agreed by all people concerned;

• realistic.

Feasibility Study and Fact Finding

Here we look to see if there is a feasible solution. We would try and estimate
the cost of solving the problem and see if the investment was warranted by the
benefits, i.e. cost benefit analysis.

Analysis

Here we look at what must be done to solve the problem. Note we are inter-
ested in finding what we need to do, but we do not actually do it at this stage.

Design

Once the analysis is complete we know what must be done, and we can proceed
to the design. We may find there are several alternatives, and we thus examine
alternate ways in which the problem can be solved. It is here that we use the

12 Introduction to problem solving Chapter 2

techniques of top-down and bottom-up problem solving, combined with step-
wise refinement to generate an algorithm to solve the problem. We are now
moving from the logical to the physical side of the solution. This stage ends
with a choice between one of several alternatives. Note that there is generally
not one ideal solution, but several, each with their own advantages and disad-
vantages.

Detailed Design

Here we move from the general to the specific, The end result of this stage
should be a sufficiently tightly defined specification to generate actual program
code from.

It is at this stage that it is useful to generate pseudo-code. This means writing
out in detail the actions we want carried out at each stage of our overall algo-
rithm. We gradually expand each stage (step-wise refinement) until it becomes
Fortran – or whatever language we want in fact.

Implementation

It is at this stage that we actually use a computer system to create the pro-
gram(s) that will solve the problem. It is here that we actually need to know
sufficient about a programming language to use it effectively to solve our prob-
lems. This is only one stage in the overall process, and mistakes at any of the
stages can create severe difficulties.

Evaluation and testing

Here we try to see if the program(s) we have produced actually do what they
are supposed to. We need to have data sets that enable us to say with confi-
dence that the program really does work. This may not be an easy task, as quite
often we only have numeric methods to solve the problem, which is why we are
using the computer to solve the problem — hence we are relying on the com-
puter to provide the proof; i.e. we have to use a computer to determine the
veracity of the programs – and as Heller says Catch 22.

Maintenance

It is rare that a program is run once and thrown away. This means that there
will be an on going task of maintaining the program, generally to make it work
with different versions of the operating system, compiler, and to incorporate
new features not included in the original design. It often seems odd when one
starts programming that a program will need maintenance as we are reluctant to
regard a program in the same way as a mechanical object like a car that will
eventually fall apart through use. Thus maintenance means keeping the program
working at some tolerable level, with often a high level of investment in man-

Chapter 2 Introduction to problem solving 13

power and resources. Research in this area has shown that anything up to 80%
of the manpower investment in a program can be in maintenance.

Conclusions

A drawback, inherent in all approaches to programming, and to problem solv-
ing in general, is the assumption that a solution is indeed possible. There are
problems which are simply insoluble – not only problems like balancing a na-
tional budget, weather forecasting for a year, or predicting which radioactive
atom will decay, but also problems which are apparently computationally solv-
able. Knuth gives the example of a chess problem – determining whether the
game is a forced victory for white. Although there is an algorithm to achieve
this, it requires an inordinately large amount of time to complete. For practical
purposes it is unsolvable. Other problems can be shown mathematically to be
without solution. As far as possible we will restrict ourselves to solvable prob-
lems, like learning a programming language.

Within the formal world of Computer Science our description of an algorithm
would be considered a little lax. For our introductory needs it is sufficient, but a
more rigorous approach is given by Hopcroft and Ullman in Introduction to
Automata Theory, Languages and Computation, and by Beckman in Mathe-
matical Foundations of Programming.

Problems

1. What is an algorithm?

2. What distinguishes top-down from bottom-up approaches to problem solv-
ing? Illustrate your answer with reference to the problem of a car, motorcycle
or bicycle having a flat tire.

Bibliography

Aho A. V., Hopcroft J. E., Ullman J. D., The Design and Analysis of Computer
Algorithms, Addison Wesley, 1982.

Theoretical coverage of the design and analysis of computer
algorithms.

Beckman F. S., Mathematical Foundations of Programming, Addison Wesley,
1981

Good clear coverage of the theoretical basis of computing.

Dahl O. J., Dijkstra E. W., Hoare C. A. R., Structured Programming, Academic
Press, 1972.

This is the seminal book on structured programming.

Davis M., Computability and Unsolvability, Dover, 1982.

14 Introduction to problem solving Chapter 2

The book is an introduction to the theory of computability
and non-computability – the theory of recursive functions in
mathematics. Not for the mathematically faint hearted!

Davis W. S., Systems Analysis and Design, Addison Wesley, 1983.

Good introduction to systems analysis and design, with a va-
riety of case studies. Also looks at some of the tools available
to the systems analyst.

Fogelin R. J., Wittgenstein, Routledge and Kegan Paul, 1980.

The book provides a gentle introduction to the work of the
philosopher Wittgenstein, who examined some of the philo-
sophical problems associated with logic and reason.

Hopcroft J. E., Ullman J. D., Introduction to Automata Theory, Languages and
Computation, Addison Wesley, 1979.

Comprehensive coverage of the theoretical basis of comput-
ing.

Kernighan B. W., Plauger P. J., Software Tools, Addison Wesley, 1976.

Interesting essays on the program development process, origi-
nally using a non-standard variant of Fortran. Also available
using Pascal.

Knuth D. E., The Art of Computer Programming, Addison Wesley,

Vol 1. Fundamental Algorithms, 1974

Vol 2. Semi-numerical Algorithms, 1978

Vol 3. Sorting and Searching, 1972

Contains interesting insights into many aspects of algorithm
design. Good source of specialist algorithms, and Knuth
writes with obvious and infectious enthusiasm (and erudition).

Millington D., Systems Analysis and Design for Computer Applications, Ellis
Horwood, 1981.

Short and readable introduction to systems analysis and de-
sign.

Wirth N., Program Development by Stepwise Refinement, Communications of
the ACM, April 1971, Volume 14, Number 4, pp. 221-227.

Clear and simple exposition of the ideas of stepwise refine-
ment.

Chapter 2 Introduction to problem solving 15

3

Introduction to Programming Lan-
guages

We have to go to another language in order to think clearly about the problem.

Samual Delaney, Babel–17

‘Where shall I begin, please your Majesty?’ he asked
‘Begin at the beginning,’ the King said, gravely, ‘and go on till you come to the
end: then stop.’

Lewis Carroll, Alice’s Adventures in Wonderland.

Aims

The primary aim of this chapter is to provide a short history of program lan-
guage development. It concentrates on some but not all of the major milestones
of the last 40 years, in rough chronological order. The secondary aim is to show
the breadth of languages available. The chapter concludes with coverage of a
small number of more specialised languages.

Introduction

It is important to realise that programming languages are a recent invention.
They have been developed over a relatively short period – 40 years, and are
still undergoing improvement. Time spent gaining some historical perspective
will help you understand and evaluate future changes. This chapter starts right
at the beginning and takes you through some, but not all, of the developments
during this 40 year span. The bulk of the chapter restricts itself to languages
that are reasonably widely available commercially, and therefore ones that you
are likely to meet. The chapter concludes with a coverage of some more spe-
cialised and/or recent developments.

Some Early Theoretical Work

Some of the most important early theoretical work in computing was that of
Turing and von Neumann. Turing’s work provided the base from which it could
be shown that it was possible to get a machine to solve problems. The work of
von Neumann added the concept of storage and combined with Turing’s work
to provide the basis of most computers designed to this day.

What is a programming language ?

For a large number of people a programming language provides the means of
getting a digital computer to solve a problem. There are a wide range of prob-
lems, and an equally wide range of programming languages, with particular
programming languages being suited to a particular class of problems. Thus
there are a wide variety of programming languages, which often appears bewil-
dering to the beginner.

Program Language Development and Engineering

There is much in common between the development of programming languages
and the development of anything from the engineering world. Consider the car:
old cars offer much of the same functionality as modern ones, but most people
prefer driving newer ones. The same is true of programming languages, where
you can achieve much with the older languages, but the newer ones are easier
to use.

The Early Days

A concept that proves very useful when discussing programming languages is
that of the level of a machine. By this is meant how close a language is to the
underlying machine that the program runs on. In the early days of programming
(up to 1954) there were only two broad categories, machine languages and as-
semblers. The language that a digital machine uses is that of 0 and 1, i.e. they
are binary devices. Writing a program in terms of patterns of 0 and 1 was not
particularly satisfactory and the capability of using more meaningful mnemon-

Chapter 3 Introduction to programming languages 17

ics was soon introduced. Thus it was realised quite quickly that one of the most
important aspects of programming languages is that they have to be read and
understood by both machines and humans.

Fortran

The next stage was the development of higher level languages. The first of
these was Fortran and it was developed over a three year period from 1954 to
1957 by an IBM team lead by John Backus. This group achieved considerable
success, and helped to prove that the way forward lay with high level languages
for computer based problem solving. Fortran stands for formula translation and
was used mainly by people with a scientific background for solving problems
that had a significant arithmetic content. It was thus relatively easy, for the
time, to express this kind of problem in Fortran.

By 1966 and the first standard Fortran was widely available, easy to teach, had
demonstrated the benefits of subroutines and independent compilation, was
relatively machine independent and often had very efficient implementations.
Possibly the single most important fact about Fortran was and still is its wide-
spread usage in the scientific community.

Cobol

The business world also realised that computers were useful and several lan-
guages were developed including FLOWMATIC, AIMACO, Commercial
Translator and FACT, leading eventually to Cobol - Common Business Orien-
tated Language. There is a need in commercial programming to describe data in
a much more complex fashion than for scientific programming, and thus Cobol
had far greater capability in this area than Fortran. The language was unique at
the time in that a group of competitors worked together with the objective of
developing a language that would be useful on machines used by other manu-
facturers.

The contributions made by Cobol include

• firstly the separation between

• the task to be undertaken

• the description of the data involved

• the working environment in which the task is
carried out

• secondly a data description mechanism that was largely machine
independent

• thirdly its effectiveness for handling large files

18 Introduction to programming languages Chapter 3

• fourthly the benefit to be gained from a programming language
that was easy to read

Modern developments in computing, of report generators, file handling soft-
ware, fourth generation development tools, and especially the increasing
availability of commercial relational database management systems are gradu-
ally replacing the use of Cobol, except where high efficiency and or tight
control are required.

Algol

Another important development of the 1950’s was Algol. It had a history of
development from Algol 58, the original Algol language, through Algol 60
eventually to the Revised Algol 60 Report. Some of the design criteria for Al-
gol 58 were

• the language should be as close as possible to standard mathemati-
cal notation and should be readable with little further explanation

• it should be possible to use it for the description of computing
processes in publications

• the new language should be mechanically translatable into ma-
chine programs

A sad feature of Algol 58 was the lack of any input/output facilities, and this
meant that different implementations often had incompatible features in this
area.

The next important step for Algol occurred at a UNESCO sponsored conference
in June 1959. There was an open discussion on Algol and the outcome of this
was Algol 60, and eventually the Revised Algol 60 Report.

It was at this conference that John Backus gave his now famous paper on a
method for defining the syntax of a language, called Backus Normal Form, or
BNF. The full significance of the paper by Backus was not immediately recog-
nised. However BNF was to prove of enormous value in language definition,
and helped provide an interface point with computational linguistics.

The contributions of Algol to program language development include

• block structure

• scope rules for variables because of block structure

• the BNF definition by Backus – most languages now have a for-
mal definition

• the support of recursion

• its offspring

Chapter 3 Introduction to programming languages 19

and thus Algol was to prove to make a contribution to programming languages
that was never reflected in the use of Algol 60 itself, in that it has been the
parent of one of the main strands of program language development.

Chomsky and Program Language Development

Programming languages are of considerable linguistic interest, and the work of
Chomsky in 1956 in this area was to prove of inestimable value. Chomsky’s
system of transformational grammar was developed in order to give a precise
mathematical description to certain aspects of language. Simplistically Chom-
sky describes grammars and these grammars in turn can be used to define or
generate corresponding kinds of languages. It can be shown that for each type
of grammar and language there is a corresponding type of machine. It was
quickly realised that there was a link with the earlier work of Turing.

This link helped provide a firm scientific base for programming language de-
velopment, and modern compiler writing has come a long way from the early
work of Backus and his team at IBM. It may seem important when playing a
video game at home or in an arcade, but for some it is very comforting that
there is a firm theoretical basis behind all that fun.

Lisp

There were developments in very specialised areas also. List processing was
proving to be of great interest in the 50’s and saw the development of IPLV
between 1954 and 1958. This in turn lead to the development of Lisp at the end
of the 50’s. It has proved to be of considerable use for programming in the
areas of artificial intelligence, playing chess, automatic theorem proving and
general problems solving. It was one of the first languages to be interpreted
rather than compiled. Whilst interpreted languages are invariably slower and
less efficient in their use of the underlying computer system, than compiled
languages, they do provide great opportunities for the user to explore and try
out ideas whilst sat at a terminal. The power that this gives to the computational
problem solver is considerable.

Possibly the greatest contribution to program language development made by
Lisp was its functional notation.

Snobol

Snobol was developed to aid in string processing which was seen as an impor-
tant part of many computing tasks e.g. parsing of a program. Probably the most
important thing that Snobol demonstrated was the power of pattern matching in
a programming language, e.g. it is possible to define a pattern for a title that
would include Mr, Mrs, Miss, Rev, etc and search for this pattern in a text
using Snobol. Like Lisp it is generally available as an interpreter rather than a
compiler, but compiled versions do exist, and are often called Spitbol. Pattern

20 Introduction to programming languages Chapter 3

matching capabilities are now to be found in many editors and this makes them
very powerful and useful tools. It is in the area of pattern matching that
Snobol’s greatest contribution to program language development lies.

Second Generation Languages

PL/1 and Algol 68

It is probably true that Fortran, Algol 60 and Cobol are the three main first
generation high level languages. The 60’s saw the emergence of PL/1 and Algol
68. PL/1 was a synthesis of features of Fortran, Algol 60 and Cobol. It was
soon realised that whilst PL/1 had great richness and power of expression this
was in some ways offset by the greater difficulties involved in language defini-
tion and use.

These latter problems were true of Algol 68 also. The report introduced its own
syntactic and semantic conventions and thus forced upon the prospective user
another stage in the learning process. However it has a small but very commit-
ted user population who like the very rich facilities provided by the language.

Simula

Another strand that makes up program language development is provided by
Simula. It is a general purpose programming language developed by Dahl, My-
hrhaug and Nygaard of the Norwegian Computing Centre. The most important
contribution that Simula makes is the provision of language constructs that aid
the programming of complex, highly interactive problems. It is thus heavily
used in the areas of simulation and modelling.

Pascal

The designer of Pascal, Niklaus Wirth, had participated in the early stages of
the design of Algol 68 but considered that the generality and complexity of
Algol 68 was a move in the wrong direction. Pascal like Algol 68 had its roots
in Algol 60 but aimed at providing expressive power through a small set of
straightforward concepts. This set is relatively easy to learn and helps in pro-
ducing readable and hence more comprehensible programs.

APL

APL is another interesting language of the 60’s. It was developed by Iverson in
the early 1960’s and was available by the mid to late 60’s. It is an interpretive
vector and matrix based language with an extensive set of operators for the
manipulation of vectors, arrays etc of whatever data type. As with Algol 68 it
has a small but dedicated user population. A possibly unfair comment about
APL programs is that you do not debug them, but rewrite them!

Chapter 3 Introduction to programming languages 21

Basic

Basic stands for Beginners All Purpose Symbolic Instruction Code, and was
developed by Kemeny and Kurtz at Dartmouth during the 1960’s. Its name
gives a clue to its audience and it is very easy to learn. It is generally inter-
preted, though compiled versions do exist. It is probably the most heavily used
language on micros and home computers. It has proved to be well suited to the
rapid development of small programs. It is much criticised because it lacks
features that encourage or force the adoption of sound programming techniques.

C

There is a requirement in computing to be able to access directly or at least
efficiently the underlying machine. It is therefore not surprising that computer
professionals have developed high level languages to do this. This may well
seem a contradiction, but it can be done to quite a surprising degree. Some of
the earliest published work was that of Martin Richards and the development of
BCPL.

This language directly influenced the work of Ken Thompson and can be
clearly seen in the programming languages B and C. The UNIX operating sys-
tem is almost totally written in C and demonstrates very clearly the benefits of
the use of high level languages wherever possible.

Some Other Strands in Language Development

There are many strands that make up program language development and some
of them are introduced here.

Abstraction, Stepwise Refinement and Modules

Abstraction has proved to be very important in programming. It enables a com-
plex task to be broken down into smaller parts concentrating on what we want
to happen rather than how we want it to happen This leads almost automatically
to the ideas of stepwise refinement and modules, with collections of modules to
perform specific tasks or steps.

Structured Programming

Structured programming in its narrowest sense concerns itself with the develop-
ment of programs using a small but sufficient set of statements and in particular
control statements. It has had a great effect on program language design and
most languages now support the minimal set of control structures.

In a broader sense structured programming subsumes other objectives including
simplicity, comprehensibility, verifiability, modifiability and maintenance of
programs.

22 Introduction to programming languages Chapter 3

Ada

Ada represents the culmination of many years of work in program language
development. It was a collective effort and the main aim was to produce a
language suitable for programming large scale and real time systems. Work
started in 1974 with the formulation of a series of documents by the American
Department of Defence (DoD), which lead to the Steelman documents. It is a
modern algorithmic language with the usual control structures, and facilities for
the use of modules and allows separate compilation with type checking across
modules.

Ada is a powerful and well engineered language. Its widespread use is certain
as it has the backing of the DoD. However it is a large and complex language
and consequently requires some effort to learn. It seems unlikely to be widely
used except by a small number of computer professionals.

Modula

Modula was designed by Wirth during the 1970’s at ETH, for the programming
of embedded real time systems. It has many of the features of Pascal, and can
be taken for Pascal at a glance. The key new features that Modula introduced
were those of processes and monitors.

As with Pascal it is relatively easy to learn and this makes it much more attrac-
tive than Ada for most people, achieving much of the capability, without the
complexity.

Modula 2

Wirth carried on developing his ideas about programming languages and the
culmination of this can be seen in Modula 2, and in his words

...In 1977, a research project with the goal to design a computer system (hard-
ware and software) in an integrated approach, was launched at the Institut fur
Informatik of ETH Zurich. This system (later to be called Lilith) was to be
programmed in a single high level language, which therefore had to satisfy
requirements of high level system design as well as those of low level program-
ming of parts that closely interact with the given hardware. Modula 2 emerged
from careful design deliberations as a language that includes all aspects of
Pascal and extends them with the important module concept and those of multi-
programming. Since its syntax was more in line with Modula than Pascal’s the
chosen name was Modula 2. ...

The language’s main additions with regard to Pascal are:

1. the module concept, and in particular the facility to split a module into a
definition part and an implementation part.

Chapter 3 Introduction to programming languages 23

2. A more systematic syntax which facilitates the learning process. In particu-
lar, every structure starting with a keyword also ends with a keyword, i.e. is
properly bracketed.

3. The concept of process as the key to multi-programming facilities.

4. So called low level facilities which make it possible to breach the rigid type
consistency rules and allow to map data with Modula 2 structure onto a store
without inherent structure.

5. The procedure type which allows procedures to be dynamically assigned to
variables.

Other Language Developments

The following is a small selection of language developments that the author
finds interesting – they may well not be included in other peoples coverage.

Logo

Logo is a language that was developed by Papert and colleagues at the Artifi-
cial Intelligence Laboratory at MIT. Papert is a professor of both mathematics
and education, and has been much influenced by the psychologist Piaget. The
language is used to create learning environments in which children can commu-
nicate with a computer. The language is primarily used to demonstrate and help
children develop fundamental concepts of mathematics. Probably the turtle and
turtle geometry are known by educationalists outside of the context of Logo.
Turtles have been incorporated into the Smalltalk computer system developed at
Xerox Palo Alto Research Centre – Xerox PARC.

Postscript, TeX

The 80’s have seen a rapid spread in the use of computers for the production of
printed material. The above languages are each used in this area quite exten-
sively.

Postscript is a low level interpretive programming language with good graphics
capabilities. Its primary purpose is to enable the easy production of pages con-
taining text, graphical shapes and images. It is rarely seen by most end users of
modern desk top publishing systems, but underlies many of these systems. It is
supported by an increasing number of laser printers and type-setters.

TeX is a language designed for the production of mathematical texts, and was
developed by Donald Knuth. It linearises the production of mathematics using a
standard computer keyboard. It is widely used in the scientific community for
the production of documents involving mathematical equations.

24 Introduction to programming languages Chapter 3

Prolog

Prolog was originally developed at Marseille by a group lead by Colmerauer in
1972/73. It has since been extended and developed by a variety of people in-
cluding Pereira (L.M.), Pereira (F), Warren and Kowalski. Prolog is unusual in
that it is a vehicle for logic programming. Most of the languages described here
are basically algorithmic languages and require a specification of how you want
something done. Logic programming concentrates on the what rather than the
how. The language appears strange at first, but has been taught by Kowalski
and others to 10 year old children at schools in London.

Smalltalk

Smalltalk has been under development by the Xerox PARC Learning Research
Group since the 1970’s. In their words Smalltalk is a graphical, interactive
programming environment. As suggested by the personal computer vision,
Smalltalk is designed so that every component in the system is accessible to the
user and can be presented in a meaningful way for observation and manipula-
tion. The user interface issues in Smalltalk revolve around the attempt to create
a visual language for each object. The preferred hardware system for Smalltalk
includes a high resolution graphical display screen and a pointing device such
as a graphics pen or mouse. With these devices the user can select information
viewed on the screen and invoke messages in order to interact with the infor-
mation. Thus Smalltalk represents a very different strand in program language
development. The ease of use of a system like this has long been appreciated
and was first demonstrated commercially by the Macintosh micro-computers.

Wirth has spent some time at Xerox PARC and has been influenced by their
work, and in his own words the most elating sensation was that after sixteen
years of working for computers the computer now seemed to work for me. This
influence can be seen in the design of the Lilith machine, the Modula2 engine.

SQL

SQL stands for Structured Query Language, and was originally developed by a
variety of people mainly working for IBM in the San Jose Research Laboratory.
It is a relational database language, and enables programmers to define, ma-
nipulate and control data in a relational database. Simplistically a relational
database is seen by a user as a collection of tables, comprising rows and col-
umns. It has become the most important language in the whole database field.

ICON

Icon is in the same family as Snobol, and is a high-level general purpose pro-
gramming language that has most of the features necessary for efficient
processing of non-numeric data. Griswold (one of the original design team for

Chapter 3 Introduction to programming languages 25

Snobol) has learnt much since the design and implementation of Snobol, and
the language is a joy to use in most areas of text manipulation.

Fortran 8x

Almost as soon as the Fortran 77 standard was complete and published work
began on the next version. At the moment the 8x standard is only a draft, but
should be completed very soon. The language draws on many of the ideas cov-
ered in this chapter and these help to make Fortran 8x a very promising
language for the future. Some of the new features include

user defined data types

array operations

control of the precision of numerical computation

enhanced control structures

recursion

dynamic storage allocation

A very readable coverage of the new standard can be found in Fortran 8x
Explained by Metcalfe and Reid. It is likely that 8x conformant compilers will
become available in the near future.

Fortran 77 Revisited

As should now be apparent Fortran is but one of a large family of programming
languages. It has already been standardised twice (in 1966 and 1978), and is
nearing completion of the third standardisation exercise to produce Fortran 8x.
The X3J3 committee was too circumspect to have called it Fortran 88, after
missing Fortran 77 by a year, though they look like missing this deadline now!
All of Fortran 77 is contained in 8x, so don’t worry about wasting your time
learning Fortran 77 – it will be around for a long time to come!

Summary

It is hoped that the reader now has some idea about the wide variety of uses
that programming languages are put to. Do not be put off by the range of
languages described here. All journeys have to start somewhere, and on the
journey of mastery of programming Fortran is a good place to start!

26 Introduction to programming languages Chapter 3

Bibliography

Adobe Systems Incorporated, Postscript Language Tutorial and Cookbook, Ad-
dison Wesley.

Adobe Systems Incorporated, Postscript Language Reference Manual, Addison
Wesley.

The two books provide a comprehensive coverage of the fa-
cilities and capabilities of Postscript.

Annals of the History of Computing, Special Issue: Fortran’s 25 Anniversary,
ACM publication.

Very interesting comments, some anecdotal, about the early
work on Fortran.

Birtwistle G.M., Dahl O. J., Myhrhaug B., Nygaard K., SIMULA BEGIN,
Chartwell-Bratt Ltd.

A number of chapters in the book will be of interest to pro-
grammers unfamiliar with some of the ideas involved in a
variety of areas including systems and models, simulation,
and co-routines. Also has some sound practical advice on
problem solving.

Brinch-Hansen P., The Programming Language Concurrent Pascal, IEEE
Transactions on Software Engineering, June 1975, 199-207.

Looks at the extensions to Pascal necessary to support con-
current processes.

Date C. J., A Guide to the SQL Standard, Addison Wesley.

Date has written extensively on the whole database field, and
this book looks at the SQL language itself. As with many of
Dates works quite easy to read. Appendix F provides a useful
SQL bibliography.

Geissman L. B., Separate Compilation in Modula2 and the structure of the
Modula2 Compiler on the Personal Computer Lilith, Dissertation 7286, ETH
Zurich

Jacobi C., Code Generation and the Lilith Architecture, Dissertation 7195, ETH
Zurich

Fascinating background reading concerning Modula2 and the
Lilith architecture.

Goldberg A., and Robson D., Smalltalk 80: The language and its implementa-
tion, Addison Wesley.

Written by some of the Xerox PARC people who have been
involved with the development of Smalltalk. Provides a good

Chapter 3 Introduction to programming languages 27

introduction (if that is possible with the written word) of the
capabilities of Smalltalk.

Goos and Hartmanis (Eds), The Programming Language Ada - Reference Man-
ual, Springer Verlag.

The definition of the language.

Griswold R. E., Poage J. F., Polonsky I. P., The Snobol4 Programming Lan-
guage, Prentice-Hall.

The original book on the language. Also provides some short
historical material on the language.

Griswold R. E., Griswold M. T., The Icon Programming Language, Prentice-
Hall.

The definition of the language with a lot of good examples.
Also contains information on how to obtain public domain
versions of the language for a variety of machines and operat-
ing systems.

Hoare C.A.R., Hints on Programming Language Design, SIGACT/SIGPLAN
Symposium on Principles of Programming Languages, October 1973.

The first sentence of the introduction sums it up beautifully: I
would like in this paper to present a philosophy of the design
and evaluation of programming languages which I have
adopted and developed over a number of years, namely that
the primary purpose of a programming language is to help
the programmer in the practice of his art.

Jenson K., Wirth N., Pascal: User Manual and Report, Springer Verlag.

The original definition of the Pascal language. Under-
standably dated when one looks at more recent expositions on
programming in Pascal.

Kemeny J.G., Kurtz T.E., Basic Programming, Wiley.

The original book on Basic by its designers.

Kernighan B. W., Ritchie D. M., The C Programming Language, Prentice Hall:
Englewood Cliffs, New Jersey.

The original work on the C language, and thus essential for
serious work with C.

Kowalski R., Logic Programming in the Fifth Generation, The Knowledge En-
gineering Review, The BCS Specialist Group on Expert Systems.

A short paper providing a good background to Prolog and
logic programming, with an extensive bibliography.

28 Introduction to programming languages Chapter 3

Knuth D. E., The TeXbook, Addison Wesley.

Knuth writes with an tremendous enthusiasm and perhaps this
is understandable as he did design TeX. Has to be read from
cover to cover for a full understanding of the capability of
TeX.

Lyons J., Chomsky, Fontana/Collins, 1982.

A good introduction to the work of Chomsky, with the added
benefit that Chomsky himself read and commented on it for
Lyons. Very readable.

Malpas J., Prolog: A Relational Language and its Applications, Prentice-Hall.

A good introduction to Prolog for people with some program-
ming background. Good bibliography. Looks at a variety of
versions of Prolog.

Marcus C., Prolog Programming: Applications for Database Systems, Expert
Systems and Natural Language Systems, Addison Wesley.

Coverage of the use of Prolog in the above areas. As with the
previous book aimed mainly at programmers, and hence not
suitable as an introduction to Prolog as only two chapters are
devoted to introducing Prolog.

Metcalf M. and Reid J., Fortran 8x Explained, Oxford Science Publications,
OUP.

A clear compact coverage of the main features of Fortran 8x.
Reid is secretary of the X3J3 committee.

Papert S., Mindstorms - Children, Computers and Powerful Ideas, Harvester
Press

Very personal vision of the uses of computers by children. It
challenges many conventional ideas in this area.

Sammett J., Programming Languages: History and Fundamentals, Prentice
Hall.

Possibly the most comprehensive introduction to the history
of program language development – ends unfortunately before
the 1980’s.

Sethi Ravi, Programming Languages: Concepts and Constructs, Addison
Wesley.

Eminently readable and thorough coverage of programming
languages. The annotated bibliographic notes at the end of
each chapter and the extensive bibliography make it a very
useful book.

Chapter 3 Introduction to programming languages 29

30 Introduction to programming languages Chapter 3

Young S. J., An Introduction to Ada, 2nd Edition, Ellis Horwood.

A readable introduction to Ada. Greater clarity than the first
edition.

Wirth N., An Assessment of the Programming Language Pascal, IEEE Transac-
tions on Software Engineering, June 1975, 192-198.

Wirth N., History and Goals of Modula2, Byte, August 1984, 145-152.

Straight from the horse’s mouth!

Wirth N., On the Design of Programming Languages, Proc. IFIP Congress 74,
386-393, North Holland, Amsterdam.

Wirth N., The Programming Language Pascal, Acta Informatica 1, 35-63,
1971.

Wirth N., Modula: a language for modular multi- programming, Software
Practice and Experience, 7, 3-35, 1977.

Wirth N., Programming in Modula2, Springer Verlag.

The original definition of the language. Essential reading for
anyone considering programming in Modula2 on a long term
basis.

Chapter 3 Introduction to programming languages 31

4

Introduction to Using a Computer
System

Plug in! Playback! Tapespond! The electronic network longs to set you free.

Edwin Morgan, ‘Schools’s Out’

Aims

The aims of this chapter are to introduce a small set of concepts to enable you
to work at a computer system, eithor personal workstation or timesharing sys-
tem. In particular:–

• the overall environment that programming is carried out in

• operating systems

• files

• editors

• the compilation process

• linking and libraries

Introduction

Programming involves the use of a computer system, and therefore to become
successful as a programmer you are required to learn how to use a computer
system effectively. In particular you need to know about

• operating systems

• files

• editors and editing

• the compilation process

• linking

Operating Systems

A simple definition of an operating system is the suite of programs that make
the hardware usable. Most computer systems have an operating system and they
vary considerably from those available on micros, e.g. CP/M on 8 bit systems,
PCDOS/MSDOS/DOS on 8, 16 and 32 bit machines respectively, through
VAX/VMS on DEC mini computers, and VM/CMS on IBMs large general pur-
pose mainframes.

From the programmer viewpoint the operating system must provide ways of

• creating, editing and deleting files

• copying files

• compiling, linking and running programs

• saving files

• get printed versions of files

Files

A file is a collection of information that you refer to by name, e.g. if you were
to use a word processor to prepare a letter then the letter would exist as a file
on that system, generally on a disk of some sort. In a database containing infor-
mation on student examination results and course-work marks, this information
would exist as a file.

There will be many ways of manipulating files on the computer system that you
work on. The interface to the computer system is provided by an operating
system, and unfortunately most operating systems offer similar functionality,
via commands that sometimes have similar names, but different syntax, or com-
pletely different names. So when we look at ways of manipulating files we will
generally have to learn several ways of doing the same thing, if we use more
than one computer system. You will use an editor or word processor to make

32 Introduction to the Use of a Computer System Chapter 4

changes to your program. This file would be the source of your program, and
you would then use a compiler to compile you program. The compiler will
probably generate a number of files as it compiles your program, some for its
own internal use, others that may well be of interest to you. There will be
commands to make files permanent, commands to copy files, commands to
store data on magnetic tape or floppy disks, etc. Some files can be read by
human beings e.g. text files like the source of your program, others can only be
understood by the machine, so called binary files that are the actual bits pat-
terns that the machine itself understands. Therefore it is not always possible to
examine all files on a computer system, as some are not intended to be immedi-
ately or directly comprehensible by human beings.

You will have to learn about

• what files belong to you;

• how to get rid of files;

• to get on–line help;

• getting files printed;

• display a file on the screen

and the following table looks at three operating systems (MSDOS, VAX/VMS
and UNIX) and the terminology or commands they use to achieve the above.

Operating system –> MSDOS UNIX VAX/VMS

What files are mine dir ls dir
Getting rid of files del/era rm del/pur
On-line help man help
Printing files print pr pr
Display a file type cat type

Editors and Editing

All general purpose computer systems have at least one editor so that you can
create and modify text files like your program and data files. The easiest editor
for most people to use is a screen editor. All this means is that you can move a
cursor around the screen of your terminal or work-station and make changes to
your file by typing in the new or modified text. The changes take place imme-

Chapter 4 Introduction to the Use of a Computer System 33

diately as you type in the text. Screen editors are the most widely used type of
editor.

When you use a context editor you have to type in commands to change the
text, e.g.

s/Fred/Bert/

would take the first occurrence of Fred and substitute it with Bert. These editors
are easy to use since you only need a small number of commands to do most of
what you want.

There are also editors with pattern matching capabilities. This means that you
can define a pattern, and then search for any of the possible strings that that
pattern represents, e.g.

[0..9][0..9][0..9]

is a possible pattern for a three digit number, each component

[0..9]

meaning any digit between 0 and 9. Therefore

s/[0..9][0..9][0..9]//

would remove the next three digit number occurring within a line, or put an-
other way substitute it with nothing.

On micro systems the editor may well be called a word processor, and there
will be a way of using the word processor in program mode, rather than word
processing mode. In word processing mode you will probably find that the text
will justify automatically left and right, whereas in program mode the text re-
mains as you have typed it in.

Editors that are program language sensitive, and help in consistent layout, i.e.
indentation, and style, are now becoming more widely available, and help the
beginner considerably in learning how to use a programming language effec-
tively.

The Compilation Process

It is here that we feed our program prepared using an editor or word processor
into a compiler. If the term seems a little farfetched wait until you have used a
compiler a number of times and seen the sort of (apparent) gibberish that can
be generated from a very small error. When we eventually get a program to
compile we then move onto the next stage, using a linker.

Linking

A variety of names are given by different computer manufacturers to the linker,
including linker, link loader, linkage editor and loader. The underlying func-

34 Introduction to the Use of a Computer System Chapter 4

tionality is the same and they are used in the middle part of the compile, link
and run or execute cycle. They take the output from the compiler and turn it
into something that can be executed or run on the computer.

Running a Program

It is at this stage that we actually see whether our program works. If we are
lucky it will execute as we intended and we have solved our problem. We
typically interact with it and find that it doesn’t do what we want, and we then

• locate the error

• edit the program

• compile the program

• link the program

• run it, find it doesn’t work.....

and as can be seen there is a loop that we cycle through until we have a work-
ing program.

We will look in more detail at the compilation process in the chapters on func-
tions, subroutines, common and data.

Bibliography

The best strategy here is to obtain the manufacturers documentation for the
system you use. Each manufacturer will have a particular style and terminol-
ogy, and whilst one manufacturer may use consistent and clear terminology (I
live in hope!) you will inevitably find that different manufacturers use contra-
dictory terminology.

Deitel H., Operating Systems, Addison Wesley, 1984

The book provides a comprehensive coverage of most aspects
of operating systems. There are also a number of case studies
of current operating systems.

Lister A. M., Fundamentals of Operating Systems, MacMillan, 1984.

Brief and straightforward coverage of essential aspects of op-
erating systems.

Chapter 4 Introduction to the Use of a Computer System 35

5

Introduction to Programming
‘Though this be madness, yet there is method in’t’

Shakespeare

Aims

The aims of the chapter are:–

• to introduce the idea that there is a wide class of problems that
may be solved with a computer, and that there is a relationship
between the kind of problem to be solved and the choice of pro-
gramming language that is used to solve that problem;

• to give some ofthe reasons for the choice of Fortran 77

• to introduce the fundamental components or kinds of statements to
be found in a general purpose programminglanguage

• to introduce the three concepts of name, type and value

Introduction

We have seen that an algorithm is a sequence of steps that will solve a part or
the whole of a problem. A program is the realisation of an algorithm in a pro-
gramming language, and there are at first sight a surprisingly large number of
programming languages. The reason for this is that there are a wide range of
problems that are solved using a computer, e.g. the telephone company generat-
ing a telephone directory or the meteorological centre producing a weather
forecast. These two problems make different demands on a programming lan-
guage, and it is unlikely that the same language would be used to solve both.

The range of problems that you want to solve will therefore have a strong
influence on the programming language that you use. FORTRAN stands for
FORmula TRANslation, which gives a hint of the expected range of problems.
Fortran is particularly good at numerical problems. It is designed to do things
with numbers, and to calculate. It can manipulate character information (a fea-
ture absent in earlier versions of the language). These two features make
Fortran a good all-round language. Some of the reasons for choosing Fortran
are:–

• The language is suitable for a wide class of both numeric and
non-numeric problems;

• The language is widely available in both the educational and sci-
entific sectors;

• A lot of software already exists, written in either Fortran 77 or its,
predecessor, Fortran 66. The numbers are based on the year of the
definition of the standard, 1966 or 1977. Fortran 66 is also known
as Fortran IV.

Periodically, Fortran is re-defined by the American Standards Institute, who
have a committee — the X3J3 committee — which considers changes to the
language. This new definition is then published as the definitive statement of
the form of the language. Although these changes take place about every ten
years, we are confident that we will be using Fortran well into the next century.
Therefore there will be both short-term and long-term benefits from learning
Fortran 77. In the following, Fortran is taken to mean Fortran 77.

Elements of a programming language

As with ordinary (so-called natural) languages, e.g. English, French, Gaelic
etc., programming languages have rules of syntax, grammar and spelling. The
application of the rules of syntax, grammar and spelling in a programming lan-
guage are more strict. A program has to be unambiguous, since it is a precise
statement of the actions to be taken. Many everyday activities are rather
vaguely defined — Buy some bread on your way home — but we are generally
sufficiently adaptable to cope with the variations which occur as a result. If, in

Chapter 5 Introduction to Programming 37

a program to calculate wages, we had an instruction Deduct some money for tax
and insurance we could have an awkward problem when the program calculated
completely different wages for the same person for the same amount of work
every time it was run. One of the implications of the strict syntax of a program-
ming language for the novice is that apparently silly error messages will appear
when first writing programs. As with many other new subjects you will have to
learn some of the jargon to understand these messages.

Programming languages are made up of statements. These statements fall into
the following broad categories:–

• Data description statements

These are necessary to describe what kinds of data are to be
processed. In the wages program for example, there is obvi-
ously a difference between peoples names and the amount of
money they earn, i.e. these two things are not the same, and it
would not make any sense adding your name to your wages.
The technical term for this is data type; a wage would be of a
different data type (a number) to a surname (a sequence of
characters).

• Control structures

A program can be regarded as a sequence of statements to
solve a particular problem, and it is common to find that this
sequence needs to be varied in practice. Consider again the
wages program. It will need to select between a variety of
circumstances (say married or single, paid weekly or monthly
etc), and also to repeat the program for everybody employed.
So there is the need in a programming language for state-
ments to vary and/or repeat a sequence of statements.

• Data processing statements

It is necessary in a programming language to be able to proc-
ess data. The kind of processing required will depend on the
kind or type of data. In the wages program, for example, you
will need to distinguish between names and wages. Therefore
there must be different kinds of statements to manipulate the
different types of data, i.e. wages and names.

• Input and output (i/o) statements

For flexibility, programs are generally written so that the data
that they work on exists outside the program. In the wages
example the details for each person employed would exist in
a file somewhere, and there would be a record for each per-
son in this file. This means that the program would not have
to be modified each time a person left, was ill etc., although

38 Introduction to Programming Chapter 5

the individual records might be updated. It is easier to modify
data than to modify a program, and less likely to produce un-
expected results. To be able to vary the action there must be
some mechanism in a programming language for getting the
data into and out of the program. This is done using input and
output statements, sometimes shortened to i/o statements.

Let us now consider a simple program which will read in somebody’s name
and print it out.

PROGRAM INOUT
C
C This program reads in and prints out a name
C

CHARACTER NAME*20
PRINT *,’ Type in your name, up to 20 characters’
PRINT *,’ enclosed in quotes’
READ *,NAME
PRINT *,NAME
END

There are several very important points to be covered here, and they will be
taken in turn:–

• Each line is a statement.

• There is a sequence to the statements. The statements will be
processed in the order that they are presented, so in this example
the sequence is print, print, read, print.

• Statements start in column 7. There are exceptions to this rule, as
we will see later, but, nevertheless, the main part of any statement
must lie between columns 7 and 72. This is an inherited feature
which goes back to the days when communication with a com-
puter was through 80-column cards. The last eight columns were
often used for sequencing information (just in case you dropped
your cards!). For terminal use, having to start in column 7 can be
irritating; but since you are using a terminal, there will probably
be tab commands you can use, so that you skip over the first few
columns by pressing a single tab key.

• The first statement names the program. It makes sense to choose a
name that conveys something about the purpose of the program.

• The next three lines are comment statements. They are identified
by a C in the first column. This is your first exception to the
column 7 rule above. Comments are inserted in a program to ex-
plain the purpose of the program. They should be regarded as an

Chapter 5 Introduction to Programming 39

integral part of all programs. It is essential to get into the habit of
inserting comments into your programs straight away.

• The CHARACTER statement is a type declaration. It was men-
tioned earlier that there are different kinds of data. There must be
some way of telling the programming language that this data is of
a certain type, and that therefore certain kinds of operation are
allowed and others are banned or just plain stupid! It would not
make sense to add a name to a number, e.g. what does Fred+10
mean? So this statement defines that the variable NAME to be of
type CHARACTER and only character operations are permitted.
The concept of a variable is covered in the next section.

• The PRINT statements print out an informative message to the
terminal – in this case a guide as to what to type in. The use of
informative messages like this throughout your programs is
strongly recommended.

• The READ statement is one of the i/o statements. It is an instruc-
tion to read from the terminal or keyboard; whatever is typed in
from the terminal will end up being associated with the variable
NAME. Input/output statements will be explained in greater detail
in later sections.

• The PRINT statement is another i/o statement. This statement will
print out what is associated with the variable NAME and in this
case, what you typed in.

• The END statement terminates this program. It can be thought of
as being similar to a full stop in natural language, in that it fin-
ishes the program, in the same way that a . ends a sentence.

• Note also the use of the ‘*’ in three different contexts.

• Lastly, when you do run this program, you must put a prime or
apostrophe (’) before the characters you input, and another prime
or apostrophe after them. These apostrophes will not be printed
out by the program. This feature is a result of using READ * to
input the characters, and later we will see ways of avoiding the
use of apostrophes.

The above program illustrates the use of some of the statements in the Fortran
language. Let us consider the action of the READ * statement in more detail. In
particular, what is meant by a variable and a value.

Variables — name, type and value

The idea of a variable is one that you are likely to have met before, probably in
a mathematical context. Consider the following

40 Introduction to Programming Chapter 5

tax payable = gross wages – tax allowances * tax rate

This is a simplified equation for the calculation of wage deductions. Each of the
variables on the right hand side takes on a value for each person, which allows
the calculation of the deductions for that person. The above equation expressed
in Fortran would be an example of an arithmetic assignment statement. There is
some arithmetic calculation taking place which yields a value, and this value is
then assigned to the variable on the left hand side. This could be expressed in
Fortran as

TAX= (GROSS–TAXALL) * TAXRAT

Note here the shortened form of the variable names. This is due to one of the
rules of Fortran — a variable name must be six alphanumeric characters (letters
and numbers) or less in length, and the first character must be a letter. A pro-
gram typically consists of data processing statements that involve variables. It is
a good idea to choose variable names that convey something meaningful about
the use of that variable. Occasionally it is difficult to find meaningful names of
only six characters, and it is not always easy to see what a variable is used for.
In the problems, try to choose variable names that convey something meaning-
ful about the use of the variable.

The following arithmetic assignment statement illustrates clearly the concepts
of name and value, and the difference between the = in mathematics and com-
puting:–

I=I+1

In Fortran this reads as take the current value of the variable I and add one to it,
store the new value back into the variable I, i.e. I takes the value I+1. Algebrai-
cally,

i=i+1

does not make any sense.

Variables can be of different types, and the following show some of those
available in Fortran.

Variable Data Value
name type stored

GROSS REAL 9440.30
TAXALL INTEGER 2042
TAXRAT REAL .7
NAME CHARACTER ARTHUR

Chapter 5 Introduction to Programming 41

The concept of data type seems a little strange at first, especially as we com-
monly think of integers and reals as numbers. However, the benefits to be
gained from this distinction are considerable. This will become apparent after
writing several programs.

Let us consider another program now. This program reads in three numbers,
adds them up and prints out both the total and the average.

PROGRAM AVERAG
C
C THIS PROGRAM READS IN THREE NUMBERS AND SUMS
C AND AVERAGES THEM.
C

REAL NUMBR1,NUMBR2,NUMBR3,AVRAGE,TOTAL
INTEGER N
N = 3
TOTAL = 0.0
PRINT *,’TYPE IN THREE NUMBERS’
PRINT *,’SEPARATED BY SPACES OR COMMAS’
READ *,NUMBR1,NUMBR2,NUMBR3
TOTAL= NUMBR1+NUMBR2+NUMBR3
AVRAGE=TOTAL/N
PRINT *,’TOTAL OF NUMBERS IS’,TOTAL
PRINT *,’AVERAGE OF THE NUMBERS IS’,AVRAGE
END

Notes

• The program has been given a name that means something. As
Fortran only allows a six character name, AVERAGE, with 7 let-
ters, could not have been used.

• There are comments at the start of the program describing what
the program does.

• The next two statements are type declarations. They define the
variables to be of real or integer type. Remember integers are
whole numbers, while real numbers are those which have a deci-
mal point. For example, 2 is an integer, while 2.7, 2.00000001,
and 2.0 are all real numbers. One of the fundamental distinctions
in Fortran is between integers and reals. Type declarations must
always come at the start of a program, before any processing is
done.

• The first PRINT statement makes a text message, (in this case
what is between the apostrophes) appear at the terminal. As was
stated earlier it is good practice to put out a message like this so
that you have some idea of what you are supposed to type in.

42 Introduction to Programming Chapter 5

• The READ statement looks at the input from the keyboard (i.e.
what you type) and in this instance associates these values with
the three variables. These values can be separated by commas (,),
spaces (), or even by pressing the carriage return key, i.e. they
can appear on separate lines.

• The next statement actually does some data processing. It adds up
the values of the three variables (NUMBR1, NUMBR2, and
NUMBR3), and assigns the result to the variable TOTAL. This
statement is called an arithmetic assignment statement, and is cov-
ered more fully in the next chapter.

• The next statement is another data processing statement. It calcu-
lates the average of the numbers entered and assigns the result to
AVRAGE. We could have actually used the value 3 here instead,
i.e. written AVRAGE=TOTAL/3 and had exactly the same effect.
This would also have avoided the type declaration for NUMBER.
However the original example follows established programming
practice of declaring all variables and establishing their meaning
unambiguously. We will see further examples of this type
throughout the book.

• Finally the sum and average are printed out with suitable captions
or headings. Do not write programs without putting captions on
the results. It is too easy to make mistakes when you do this, or
even forget what each number means.

Default variable types

The example used variables which held real numbers and integers. These are
declared explicitly in the declaration statements at the beginning of the pro-
gram. In general, we recommend the use of such explicit typing, where you
declare your variables and their characteristics. However, you may also use
default typing, where the initial letter of the variable name indicates its type –
real or integer. The initial letter I, J, K, L, M or N is used to identify integer
variables. Any other letter identifies a real variable. Thus, if you choose to
employ default typing, and not override it by an explicit reference, X1, QUAD,
HALF and ONE are all real variables, while NINE, INVERT, KOUNT and L2
are integers. Note that there is no default for character type variables; character
variables must be declared explicitly.

Some more Fortran rules

There are certain things to learn about Fortran which have little immediate
meaning, and some which have no logical justification at all, other than histori-
cal precedence. Why is a cat called a cat? At the end of some of the chapters

Chapter 5 Introduction to Programming 43

there will be a brief summary of these rules or regulations when necessary.
Here are a few:-

• There is an order to the statements in Fortran. Within the context
of what you have covered so far, the order is:-

• PROGRAM statement

• Type declarations, e.g. INTEGER, REAL or
CHARACTER

• Processing and i/o statements

• END statement

• Comments may appear anywhere in the program, after PRO-
GRAM and before END, and must have a C or * in the very first
column.

Fortran Character set

The Fortran character set comprises the following characters:-

Capital A through Z

The digits 0 through 9

and the characters:-

= equal

+ plus

– minus

* asterisk

/ slash or oblique

(left brackets (parenthesis)

) right brackets (parenthesis)

, comma

. decimal point

$ currency symbol

’ apostrophe

: colon

 blank (difficult to see as a character!)

44 Introduction to Programming Chapter 5

Problems

1. Write a program that will read in your name and address and print them out
in reverse order.

2. Type in the program AVERAG, given in this chapter. Demonstrate that the
input may be separated by spaces or commas. Do you need the decimal point?
What happens when you type in too much data? What happens when you type
in too little?

Chapter 5 Introduction to Programming 45

6

Arithmetic
Taking Three as the subject to reason about —
 A convenient number to state —
We add Seven, and Ten, and then multiply out
 By One Thousand diminished by Eight.

The result we proceed to divide, as you see,
 By Nine Hundred and Ninety and Two:
Then subtract Seventeen, and the answer must be
 Exactly and perfectly true.

Lewis Carroll, ‘The Hunting of the Snark’

Aims

The aims of this chapter are to introduce:–

• the rules for the evaluation of an arithmetic expression

• the idea of truncation and rounding of a number, and the care that
must be taken

• to ensure that an arithmetic expression is evaluated as you intend

• the use of the PARAMETER statement to define or set up con-
stants

• the idea that numbers on a computer have a finite size and preci-
sion

Arithmetic

Most problems in the educational and scientific community require arithmetic
evaluation as part of the algorithm. As the rules for the evaluation of arithmetic
in Fortran may differ from those that you are probably familiar with, you need
to learn the Fortran rules thoroughly. In the previous chapter, we introduced the
arithmetic assignment statement, emphasising the concepts of name, type and
value. Here we will consider the way that arithmetic expressions are evaluated
in Fortran.

The following are the five arithmetic operators available in Fortran:–

Mathematical operation Fortran symbol
or operator

Addition +
Subtraction –
Division /
Multiplication *
Exponentiation **

Exponentiation is raising to a power. Note that the exponentiation operator is
the * character twice.

The following are some examples of valid arithmetic statements in Fortran:–

TAX = GROSS – DEDUCT
COST = BILL + VAT +SERVIC
DELTA = DELTAX/DELTAY
AREA = PI * RADIUS * RADIUS
CUBE = BIG ** 3

The above expressions are all simple, and there are no problems when it comes
to evaluating them. However, now consider the following:–

NETT = GROSS – ALLOW * TAXRAT

This is ambiguous. There is a choice of doing the subtraction before or after the
multiplication. Experience with a calculator says that the subtraction would be
done before the multiplication. However, if this expression was evaluated in
Fortran the multiplication would be done before the subtraction.

Here are the rules for the evaluation of expressions in Fortran:–

• brackets are used to define priority in evaluation

Chapter 6 Arithmetic 47

• operators have a hierarchy of priority – a precedence. The hierar-
chy of operators is:–

• exponentiation; when the expression has multi-
ple exponentiation, they are evaluated right to
left. For example,

L=I**J**K

is evaluated by first raising J to the power K, and
then using this result as the exponent for I; more ex-
plicitly therefore

L=I**(J**K)

Although this is similar to the way in which we
might expect an algebraic expression to be evaluated,
it is not consistent with the rules for multiplication
and division, and may lead to some confusion. When
in doubt, use brackets.

• multiplication and division ; within successive
multiplications and divisions, the order of evalu-
ation is left to right. For example

A=B*C/D*E

would result in B and C being multiplied together;
this result divided by D; and lastly the result of the
division being multiplied by E.

• addition and subtraction; as with multiplica-
tion and division, evaluation is carried on from
left to right. However, it is seldom that the order
of addition and subtraction is important, unless
other operators are involved.

The following are all examples of valid arithmetic expressions in Fortran:–

SLOPE = (Y1-Y2)/(X1-X2)
X1=(-B+((B*B-4*A*C)**0.5))/(2*A)
Q=MASSD/2*(MASSA*VELOCA/MASSD)**2+((MASSA*VELOCA)**2)/2

Note that brackets have been used to make the order of evaluation more obvi-
ous. It is often possible to write involved expressions without brackets, but, for
the sake of clarity, it is often best to leave the brackets in, even to the extent of
inserting a few extra to ensure that the expression is evaluated correctly. The
expression will be evaluated just as quickly with the brackets as without. Also
note that none of the expressions are particularly complex. The last one is about
as complex as you should try: with more complexity than this it is easy to make
a mistake.

48 Arithmetic Chapter 6

Problems arise when the value that a faulty expression yields lies within the
range of expected values and the error may well go undetected. This may ap-
pear strange at first, but, a computer does exactly what it is instructed. If,
through a misunderstanding on the part of a programmer, the program is syn-
tactically correct but logically wrong from the point of view of the problem
definition, then this will not be spotted by the compiler. If an expression is
complex, break it down into successive statements with elements of the expres-
sion on each line, e.g.

TEMP = B*B-4*A*C
X1 = (–B + (TEMP**0.5))/(2*A)

and

MOMENT = MASSA * VELOCA
Q = MASSD/2*(MOMENT/MASSD)**2+(MOMENT**2)/2

Rounding and truncation

When arithmetic calculations are performed one of the following can occur:–

• truncation. This operation involves throwing away part of the
number, e.g. with 14.6 truncating the number to two figures leaves
14.

• rounding. Consider 14.6 again. This is rounded to 15. Basically,
the number is changed to the nearest whole number. It is still a
real number. What do you think will happen with 14.5, will this
be rounded up or down?

You must be aware of these two operations. They may occasionally cause prob-
lems in division and in expressions with more than one data type.

To see some of the problems that can occur consider the examples below:–

REAL A,B,C
INTEGER I
A=1.5
B=2.0
C=A/B
I=A/B

After executing these statements C has the value 0.75, and I has the value zero!
This is an example of type conversion across the = sign. The variables on the
right are all real, but the last variable on the left is integer. The value is there-
fore made into an integer by truncation. In this example, 0.75 is real, so I
becomes zero when truncation takes place.

Chapter 6 Arithmetic 49

Consider now an example where we assign into a real variable (so that no
truncation due to the assignment will take place), but where part of the expres-
sion on the right hand side involves integer division.

INTEGER I,J,K
REAL ANSWER
I=5
J=2
K=4
ANSWER=I/J*K

The value of ANSWER is 8, because the I/J term involves integer division. The
expected answer of 10 is not that different from the actual one of 8, and it is
cases like this that cause problems for the unwary, i.e. where the calculated
result may be close to the actual one. In complicated expressions it would be
easy to miss something like this.

To recap, truncation takes place in Fortran

• across an = sign, when a real is assigned to an integer;

• in integer division

It is very important to be careful when attempting mixed mode arithmetic – that
is, when mixing reals and integers. If a real and integer are together in a divi-
sion or multiplication, the result of that operation will be real; when addition or
subtraction takes place, in a similar situation, the result will also be real. The
problem arises when some parts of an expression are calculated using integer
arithmetic, and other parts with real arithmetic:–

C = A + B - I / J

The integer division is carried out before the addition and subtraction, hence the
result of I/J is integer, although all the other parts of the expression will be
carried out with real arithmetic.

Example program

How long does it take for light to reach the Earth from the Sun? Light travels
9.46 1012 km in one year. We can take a year as being equivalent to 365.25
days. (As all school-children know, the astronomical year is 365 days, 5 hours,
48 minutes and 45.9747 seconds – hardly worth the extra effort.) The distance
between the Earth and Sun is about 150,000,000 km. There is obviously a bit of
imprecision involved in these figures, not least since the Earth moves in an
elliptical orbit, not a circular one. One last point to note before presenting the
program is that the elapsed time will be given in minutes and seconds. Few
people readily grasp fractional parts of a year.

50 Arithmetic Chapter 6

PROGRAM TIME
REAL LTYR, LTMIN, DIST, ELAPSE
INTEGER MINUTE, SECOND

C
C LTYR :DISTANCE TRAVELLED BY LIGHT IN ONE YEAR IN KM
C LTMIN :DISTANCE TRAVELLED BY LIGHT IN ONE MINUTE IN KM
C DIST :DISTANCE FROM SUN TO EARTH IN KM
C ELAPSE:TIME TAKEN TO TRAVEL A DISTANCE DIST IN MINUTES
C MINUTE:INTEGER NUMBER PART OF ELAPSE
C SECOND:INTEGER NUMBER OF SECONDS EQUIVALENT TO
C FRACTIONAL PART OF ELAPSE
C

LTYR=9.46*10**12
LTMIN=LTYR/(365.25*24.0*60.0)
DIST=150.0*10**6

C
ELAPSE=DIST/LTMIN
MINUTE=ELAPSE
SECOND=(ELAPSE-MINUTE)*60

C
PRINT *,’ LIGHT TAKES ’,MINUTE,’ MINUTES’
PRINT *,’ ’,SECOND,’ SECONDS’
PRINT *,’ TO REACH THE EARTH FROM THE SUN’
END

The calculation is straightforward; first we calculate the distance travelled by
light in one minute, and then use this value to find out how many minutes it
takes for light to travel a set distance. Separating the time taken in minutes into
whole number minutes and seconds is accomplished by exploiting the way in
which Fortran will truncate a real number to an integer on type conversion. The
difference between these two values is the part of a minute which needs to be
converted to seconds. Given the inaccuracies already inherent in the exercise,
there seems little point in giving decimal parts of a second.

It is worth noting that some structure has been attempted by using comment
lines to separate parts of the program into fairly distinct chunks. Note also that
the comment lines describe the variables used in the program.

The PARAMETER statement.

This statement is used to provide a way associating a meaningful name with a
constant in a program. Consider a program where PI was going to be used a lot.
It would be silly to have to type in 3.14159265358 etc. every time. There would
be a lot to type and it is likely that a mistake could be made typing in the
correct value. It therefore makes sense to set up PI once and then refer to it by
name. However, if PI was just a variable then it would be possible to do the
following:–

Chapter 6 Arithmetic 51

REAL LI,PI
.
PI=3.14159265358
.
.
PI=4*ALPHA/BETA
.
.
.

The PI=4*ALPHA/BETA statement should have been LI=4*ALPHA/BETA.
What has happened is that, through a typing mistake (P and L are close together
on a keyboard), an error has crept into the program. It will not be spotted by the
compiler. Fortran provides a way of helping here with the PARAMETER state-
ment, which should be preceded with a type declaration. The following are
correct examples of the PARAMETER statement:–

REAL PI,C
PARAMETER (PI=3.14159265358,C=2.997925)

and

REAL CHARGE
PARAMETER (CHARGE=1.6021917)

The advantage of the PARAMETER statement is that you could not then assign
another value to PI, C or CHARGE. If you tried to do this, the compiler would
generate an error message.

A PARAMETER statement may contain an arithmetic expression, so that some
relatively simple arithmetic may be performed in setting up these constants. The
evaluation must be confined to addition, subtraction, multiplication, division
and integer exponentiation. The following examples help to demonstrate the
possibilities

REAL PARSEC,PI,RADIAN
PARAMETER (PARSEC=3.08*10**16)
PARAMETER (PI=3.14159265358,RADIAN=360./PI)

Precision and size of numbers

The precision and the size of a number in computing is directly related to the
number of bits allocated to its internal representation. On a large number of
computers this is the same as the word size. The following summarises this
information for three machines.

52 Arithmetic Chapter 6

Machine and Maximum Smallest real
word size (bits) Integer Largest real

Cray (2**63)–1 10.0E-2466
(64) 70368744177663 0.13634E+2466

CDC (2**48)-1 3.131513062514E-294
(60) 281474976710655 1.265014083171E+322

VAX (2**31)-1 0.29E-38
(32) 2147483647 1.7E38

IBM PC (2**31)-1 0.29E-38
(8, 16 and 32) 2147483647 1.7E38

Precision is not the same as accuracy. In this age of digital time-keeping, it is
easy to provide an extremely precise answer to the question What time is it?
This answer need not be accurate, even though it is reported to tenths (or even
hundredths!) of a second. Do not be fooled into believing that an answer re-
ported to ten places of decimals must be accurate to ten places of decimals. The
computer can only retain a limited precision. When calculations are performed,
this limitation will tend to generate inaccuracies in the result. The estimation of
such inaccuracies is the domain of the branch of mathematics known as Nu-
merical Analysis.

To give some idea of the problems, consider an imaginary decimal computer,
which retains two significant digits in its calculations. For example, 1.2, 12.0,
120.0 and 0.12 are all given to two digit precision. Note therefore that 1234.5
would be represented as 1200.0 in this device. When any arithmetic operation is
carried out, the result (including any intermediate calculations) will have two
significant digits. Thus

130+12 = 140 (rounding down from 142)

and similarly

17/3 = 5.7 (rounding up from 5.666666...)

and

16*16 = 260

Chapter 6 Arithmetic 53

Where there are more involved calculations, the results can become even less
attractive. Assume we wish to evaluate

(16*16) / 0.14

We would like an answer in the region of 1828.5718, or, to two significant
digits, 1800.0. If we evaluate the terms within the brackets first, the answer is
260/0.14, or 1857.1428; 1900.0 on the two digit machine. Thinking that we
could do better, we could re-write the fraction as

(16/0.14) * 16

This gives a result of 1800.0.

Algebra shows that all these evaluations are equivalent if unlimited precision is
available.

Care should also be taken when is one is near the numerical limits of the ma-
chine. Consider the following

Z = B * C / D

where B, C and D are all 1030 and we are using a VAX or IBM PC where the
maximum real is approximately 1038. Here the product B * C generates a num-
ber of 1060 – beyond the limits of the machine. This is called overflow as the
number is too large. Note that we could avoid this problem by retyping this as

Z = B * (C/D)

where the intermediate result would now be 1030/1030, i.e. 1.

There is an inverse called underflow when the number is too small, which is
illustrated below.

Z = X1 * Y1 * Z1

where X1 and Y1 are 10–20 and Z1 is 1020. The intermediate result of X1 * Y1
is 10–40 – again beyond the limits of the machine. This problem could have
been overcome by retyping as

Z = X1 * (Y1 * Z1)

This is a particular problem for many scientists and engineers with all machines
that use 32 bit arithmetic for integer and real calculations. This is because many
physical constants, etc are around the limits of the magnitude (large or small)
supported by single precision. This is rarely a problem with the Cray or CDC
machines.

54 Arithmetic Chapter 6

Summary

• learn the rules for the evaluation of arithmetic expressions;

• break expressions down where necessary to ensure that the expressions are
evaluated in the way you want;

• take care with truncation due to integer division in an expression. Note that
this will only be a problem where both parts of the division are INTEGER;

• take care with truncation due to the assignment statement when there is an
integer on the left hand sign of the statement, i.e. assigning a real into an inte-
ger variable;

• when you want to set up constants, which will remain unchanged throughout
the program, use the PARAMETER statement;

• do not confuse precision and accuracy.

Problems

1. Modify the program that read in your name and address to also read in and
print out your age, telephone number and sex.

2. One of the easiest ways to write a program is to modify an existing one. The
example given earlier, dealing with the time taken for light to travel from the
Sun to the Earth, could form the basis of several other programs.

(i) Many communications satellites follow a geosynchronous
orbit, some 35,870 km above the Earths surface. What is the
time lag incurred in using one such satellite for a telephone
conversation?

(ii) The Moon is about 384,400 km from the Earth on aver-
age. What implications does this have for control of
experiments on the Moon? What is the time lag?

(iii) The following table gives the distance in Mkm from the
Sun to the planets in the Solar System:

Mercury 57.9
Venus 108.2
Earth 149.6
Mars 227.9
Jupiter 778.3
Saturn 1427
Uranus 2869.6
Neptune 4496.6
Pluto 5900

Chapter 6 Arithmetic 55

Use this information to find the greatest and least time taken
to send a message from Earth to the other planets. Assume
that all orbits are in the same plane and circular (if it was
good enough for Copernicus, its good enough for this exam-
ple). For all practical purposes, the speed of light in vacuum
is a constant, and therefore an excellent candidate for a PA-
RAMETER statement. Use it.

3. Write a program to read in, sum and average five numbers.

4. Write a program to calculate the period of a pendulum. Use the following
formula:–

T=2*PI*(LENGTH/9.81)**.5

Calculate the period for at least 5 values of the length. The length (LENGTH)
is in metres, and the time (T) in seconds.

5. Unit pricing: the following table gives the price and weight of various cereals
available in the local supermarket.

Cereal Price Weight (grams)

Frostys 75 375
Special L 76 250
Rice Crispys 71 295
Rice Crispys 97 440
Bran Bits 85 625
Raisin Bran 84 375
Icicles 67 280
Frostys 58 250
Coco Puffs 77 280
Huffa Puffa Rice 76 230
Friends Oats 74 750
Weetabits 40 375
Welsh Porage Oats 74 750
More 61 250
Korn Flakes 81 500
Korn Flakes 65 375

Which of these gives best value for money, in terms of cost per gram (i.e. unit
pricing)? Which gives the poorest value, on the same criterion?

56 Arithmetic Chapter 6

5. Write a program that tests the precision and size of numbers of the system
you use. Finding out the word size of the machine you work with is the first
step. Then try some multiplication and division, and see what sort of error
messages you get as the numbers become too small and too large.

Chapter 6 Arithmetic 57

7

Arrays and DO loops
Thy gifts, thy tables, are within my brain
Full charactered with lasting memory

William Shakespeare, ‘The Sonnets’

Aims

The aims of this chapter are:–

• to introduce the ideas of tables of data and some of the formal
terms used to describe them

• Array

• Vector

• List and linear list

• to discuss the array as a random access structure where any ele-
ment can be accessed as readily as any other

• to note that the data in an array is all of the same type

• to introduce the twin concepts of data structure and corresponding
control structure

• to introduce the statements necessary in Fortran to support and
manipulate these data structures

Tables of data

Consider the following:–

¤ Telephone directory

A telephone directory consists of the following kinds of entries:–

Name Address Number

Adcroft A. 61 Connaught Road, Roath, Cardiff223309
Beale K. 14 Airedale Road, Balham 745 9870
Blunt R.U. 81 Stanlake Road, Shepherds Bush 674 4546
...
...
...
Sims Tony 99 Andover Road,Twickenham 898 7330

This structure can be considered in a variety of ways, but perhaps the most
common is to regard it as a table of data, where there are 3 columns and as
many rows as there are entries in the telephone directory.

Consider now the way we extract information from this table. We would scan
the name column looking for the name we are interested in, and then read along
the row looking for either the address or telephone number, i.e. we are using
the name to look up the item of interest.

¤ Book catalogue

An catalogue could contain:–

Author(s) Title Publisher

Carrol L. Alice through the looking Glass Penguin
Knuth D. Semi-numerical Algorithms Addison-Wesley
 ...
Steinbeck.J Sweet Thursday Penguin
 ...
Wiederhold G. Database Design McGraw-Hill

Chapter 7 Arrays and Do Loops 59

Again, this can be regarded as a table of data, having 3 columns and many
rows. We would follow the same procedure as with the telephone directory to
extract the information. We would use the Name to look up what books are
available.

¤ Examination marks or results

This could consist of:–

Name Physics Maths History Geography French

Fowler .L. 50 47 89 30 46
Barron.L.W 37 67 65 68 98
Warren.J. 25 45 48 10 36
Mallory.D. 89 56 45 30 65
Codd.S. 68 78 76 98 65

This can again be regarded as a table of data. This example has 6 columns and
5 rows. We would again look up information by using the Name.

¤ Monthly rainfall

Typically this would consist of:–

Month Rainfall

January 10.4
February 11.1
March 8.3
April 7.5
May 3.2
June 4.6
July 3.2
August 4.5
September 2.1
October 3.1
November 10.1
December 11.1

60 Arrays and Do Loops Chapter 7

In this table there are 2 columns and 12 rows. To find out what the rainfall was
in July, we scan the table for July in the Month column and locate the value in
the same row, i.e. the rainfall figure for July.

These are just some of the many examples of problems where the data that is
being considered has a tabular structure. Most general purpose languages there-
fore have mechanisms for dealing with this kind of structure. Some of the
special names given to these structures include:–

• Linear list

• List

• Vector

• Array

The term used most often here, and in most books on Fortran programming, is
array.

Arrays in Fortran

There are three key things to consider here:–

• the ability to refer to a set or group of items by a single name;

• the ability to refer to individual items or members of this set, i.e.
look them up;

• the choice of a control structure that allows easy manipulation of
this set or array.

The DIMENSION statement

The DIMENSION statement defines a variable to be an array. This satisfies the
first requirement of being able to refer to a set of items by a single name.

Some examples are given below:–

DIMENSION WAGES(100)
DIMENSION SAMPLE(10000), MATRIX(100,100)
DIMENSION PHASE(10,10,10,2)

In each of these examples, the integer values in brackets specify the maximum
number of items which may be kept in the array. In the case of WAGES, up to
100; in the case of PHASE, up to 2000.

An index

An index enables you to refer to or select individual elements of the array. In
the telephone directory, book catalogue, and exam marks table we used the

Chapter 7 Arrays and Do Loops 61

name to index or look up the items of interest; in the monthly rainfall example
we used the month name to index or look up the item of interest.

Control structure

The statement that is generally used to manipulate the elements of an array is
the DO statement. It is typical to have several statements controlled by the DO
statement, and the block of repeated statements is often called a DO loop.

Let us look at two complete programs that highlight the above.

Monthly Rainfall

Let us look at this earlier example in more depth now. Consider the following:–

Month Associated integer Array Rainfall
representation and index value

January 1 Rainfl(1) 10.4
February 2 Rainfl(2) 11.1
March 3 Rainfl(3) 8.3
April 4 Rainfl(4) 7.5
May 5 Rainfl(5) 3.2
June 6 Rainfl(6) 4.6
July 7 Rainfl(7) 3.2
August 8 Rainfl(8) 4.5
September 9 Rainfl(9) 2.1
October 10 Rainfl(10) 3.1
November 11 Rainfl(11) 10.1
December 12 Rainfl(12) 11.1

Most of you should be familiar with the idea of the use of an integer as an
alternate way of representing a month, e.g. in a date expressed as 1/3/1989, for
1st March 1989 (anglicised style) or 3rd January (americanised style). Fortran,
in common with other older programming languages, only allows the use of
integers as an index into an array. Thus when we write a program to use arrays
we have to map between whatever construct we use in everyday life as our
index (names in our examples of telephone directory, book catalogue, and exam
marks) to an integer representation in Fortran.

The following program reads in the 12 monthly values from the terminal, com-
putes the sum and average for the year, and prints the average out.

62 Arrays and Do Loops Chapter 7

PROGRAM RAIN
REAL RAINFL, SUM, AVERGE
DIMENSION RAINFL(12)
INTEGER MONTH
PRINT *,’ Type in the rainfall values’
PRINT *,’ one per line’
DO 10 MONTH=1,12

READ *, RAINFL(MONTH)
10 CONTINUE

...

...
DO 20 MONTH=1,12

SUM = SUM + RAINFL(MONTH)
20 CONTINUE

AVERGE = SUM / 12
PRINT *,’ Average monthly rainfall was’
PRINT *, AVERGE
END

RAINFL is the array name. The variable MONTH in brackets is the index. It
takes on values from 1 to 12 inclusive, and is used to pick out or select ele-
ments of the array. The index is thus a variable and this permits dynamic
manipulation of the array at run time.

The general form of the DO statement is:

DO label Counter = Start, End, Increment

The block of statements that form the loop are contained between the DO state-
ment, which marks the beginning of the block or loop, and the CONTINUE
statement with its associated label, which marks the end of the block or loop. In
Fortran, labels are integer items which occur in columns 1 to 5. They may be
placed anywhere in these columns, but may not stray into column 6. Any
blanks in labels (and in statements too) are ignored; the following are therefore
equivalent:–

197 CONTINUE
1 97 CONTINUE
197 CONTINUE
197 C O N T I N U E

Any character other than a blank or digit in a label will cause an error. Note
that the labels 010 and 10 are considered equivalent — the leading zero is
ignored.

In this program, the DO loops took the form:–

DO 10 MONTH=1,12 start
body

10 CONTINUE end

Chapter 7 Arrays and Do Loops 63

and

DO 20 MONTH=1,12 start
...
... body
...

20 CONTINUE end

The body of the loop in the program above has been indented. This is not
required by Fortran. However it is good practice and will make programs easier
to follow.

The number of times that the DO loop is executed is governed by the last part
of the DO statement, i.e. by the:–

Counter = Start, End, Increment

Start, as it implies, is the initial value which the counter (or index, or control
variable) takes. Each time the loop is executed, the value of the counter will be
increased by the value of increment, until the value of end is reached.

If increment is omitted, it is assumed to be 1. No other element of the DO
statement may be omitted. In order to execute the statements within the loop
(the body) it must be possible to reach end from start. Thus zero is an illegal
value of increment. In the event that it is not possible to reach end, the loop
will not be executed and control will pass to the statement after the end of the
loop.

In the examples above both loops would be executed 12 times. In both cases,
the first time round the loop the variable MONTH would have the value 1, the
second time round the loop the variable MONTH would have the value 2 etc.,
and the last time round the loop MONTH would have the value 12. It is cus-
tomary to restrict the DO loop counter, start, end and increment variables to
integer values.

Peoples Weight’s

Consider the following:–

Person Associated integer Array and Associated value
representation index

Andy 1 WEIGHT(1) 48.7
Barry 2 WEIGHT(2) 76.5
Cathy 3 WEIGHT(3) 58.5
Dawn 4 WEIGHT(4) 65.3

64 Arrays and Do Loops Chapter 7

Elaine 5 WEIGHT(5) 88.7
Frank 6 WEIGHT(6) 67.5
Gordon 7 WEIGHT(7) 56.7
Hannah 8 WEIGHT(8) 66.7
Ian 9 WEIGHT(9) 70.6
Jatinda 10 WEIGHT(10) 99.9

We have ten people, with their names as shown. We associate each name with
a number — in this case we have ordered the names alphabetically, and the
numbers therefore reflect their ordering. WEIGHT is the array name. The num-
ber in brackets is called the index. The index is used to pick out or select
elements of the array. Therefore the table is read as ‘the first element of the
array WEIGHT has the value 48.7, the second element of the array WEIGHT
has the value 76.5.

There are two examples in the program below:-

PROGRAM SUMAVE
C
C THE PROGRAM READS UP TO 10 WEIGHTS INTO THE
C ARRAY WEIGHT
C VARIABLES USED
C WEIGHT, HOLDS THE WEIGHT OF THE PEOPLE
C PERSON, AN INDEX INTO THE ARRAY
C TOTAL, TOTAL WEIGHT
C AVERAG, AVERAGE OF THE WEIGHTS
C
C THE WEIGHTS ARE WRITTEN OUT SO THAT THEY CAN BE CHECKED
C

REAL WEIGHT,TOTAL,AVERAG
INTEGER PERSON
DIMENSION WEIGHT(10)
TOTAL=0.0
DO 100 PERSON=1,10

READ *,WEIGHT(PERSON)
TOTAL = TOTAL + WEIGHT(PERSON)

100 CONTINUE
AVERAG = TOTAL / 10
PRINT *,’ SUM OF NUMBERS IS ’,TOTAL
PRINT *,’ AVERAGE WEIGHT IS ’,AVERAG
PRINT *,’ 10 WEIGHTS WERE ’
DO 200 PERSON=1,10

PRINT *,WEIGHT(PERSON)
200 CONTINUE

END

Chapter 7 Arrays and Do Loops 65

Higher dimension arrays

There are many instances where it is necessary to have arrays with more than
one dimension. Take the following two examples:

¤ A Map

Consider the representation of a map as a set of numbers. This might be done
as:–

Latitude 1 2 3 4 5
Longitude

1 11.113.214.515.616.7
2 12.113.412.111.811.7
3 12.013.312.811.711.4
4 11.813.012.611.411.3
5 11.312.512.311.010.9

The values in the array are the heights above sea level. A program to manipu-
late this data structure would involve something like the following:–

PROGRAM LOC8
C
C VARIABLES USED
C HEIGHT - USED TO HOLD THE HEIGHTS ABOVE SEA LEVEL
C LONGIT - USED TO REPRESENT THE LONGITUDE
C RESTRICTED TO INTEGER VALUES.
C AGAIN RESTRICTED TO INTEGER VALUES.

REAL HEIGHT
INTEGER LONGIT,LATUDE
DIMENSION HEIGHT(5,5)
.
.
.
DO 10 LATUDE=1,5

DO 11 LONGIT=1,5
PRINT *,HEIGHT(LONGIT,LATUDE)

11 CONTINUE
10 CONTINUE

.

.

Note the way in which indentation has been used to highlight the structure in
this example. The inner loop is said to be nested within the outer one. It is very

66 Arrays and Do Loops Chapter 7

common to encounter problems where nesting is a natural way to express the
solution. Nesting is permitted to any depth.

Here are two examples of valid nested DO loops.

The first example shows that more than one loop may end at the same state-
ment. In general, we do not recommend this, not least since it makes
indentation rather awkward. Extra labels do not cost anything, and generally
increase the comprehensibility of a program.

The example below is illegal. A moment’s thought shows that this must be the
case; the effect of repeating statements has no meaning when the loops cross
one another.

DO 1

DO 2
DO 3

Three loops
all nested
one within
the other.

3 CONTINUE

2 CONTINUE
1 CONTINUE

DO 1 Simple example of
two loops both
ending at the same

DO 1 point in the
program.

1 CONTINUE

Chapter 7 Arrays and Do Loops 67

Booking arrangements in a theatre or cinema

A theatre or cinema consists of rows and columns of seats. In a large cinema or
a typical theatre there would also be more than one level or storey. Thus, a
program to represent and manipulate this structure would probably have a two
or three dimensional array.

Consider the following program extract:–

PROGRAM THEATR
INTEGER ROW,COLUMN,FLOOR,NROWS,NCOLS,NFLOOR
DIMENSION SEATS(30,30,3)
.
.
.
DO 100 FLOOR=1,NFLOOR

DO 101 COLUMN=1,NCOLS
DO 102 ROW=1,NROWS
PRINT *,SEATS(ROW,COLUMN,FLOOR)

102 CONTINUE
101 CONTINUE
100 CONTINUE

...

...

...

An interesting question here is what is the best data type for SEATS. We will
leave the choice to you.

DO 1
DO 2

1 CONTINUE

2 CONTINUE

68 Arrays and Do Loops Chapter 7

Summary

The DIMENSION statement declares a variable to be an array. The DIMEN-
SION statement must come at the start of a program unit, with other declarative
statements. To recap the statements covered so far, the order is summarised
below.

PROGRAM first statement

INTEGER in any order
REAL declarative
CHARACTER
DIMENSION

PARAMETER after other declarative

Arithmetic assignment in any order
DO executable
CONTINUE

END last statement

• The statement used most often to manipulate arrays is the DO statement.

• Arrays can have up to 7 dimensions

• DO loops may be nested, but they must not overlap.

Problems

1. Using a DO loop and an array rewrite the program which calculated the
average of five numbers (question 3 in chapter 6) and increase the number of
values read in from 5 to 10.

2. Modify this program to sum and average people’s weights.

3. Generalise this program by allowing an arbitrary number of weights to be
read in. What is a sensible upper bound here?

4. Modify the program that read in your name to read in 10 names. Use an
array and a DO loop. When you have read the names into the array write them
out in reverse order on separate lines.

Chapter 7 Arrays and Do Loops 69

5. Combine the programs that read in and calculate the average weight with the
one that reads in peoples names. The program should read in the weights into
one array, and the names into another. Allow 20 characters for the length of a
name. Print out a table linking names and weights, i.e. something like

Person Weight

Andy 48.7
Barry 76.5

...

...

6. How many distinct labels could you have in a program?

70 Arrays and Do Loops Chapter 7

8

Arrays and DO loops (2)
Here, take this book, and peruse it well:
The iterating of these lines brings gold;

Christopher Marlowe, ‘The Tragical History of Doctor Faustus’

Aims

The aims of this chapter are:–

• to extend the ideas covered in the first chapter on arrays, with the
aid of several concrete examples

• to introduce an extended form of the DIMENSION statement

• to introduce the corresponding alternative form to the DO state-
ment, to help manipulate the array in this new form

• to introduce the DO loop as a mechanism for the control of repeti-
tion in general, not just for manipulating arrays

Example 1

Consider the problem of an experiment where the independent variable voltage
varies from –20 to +20 volts and the current is measured at 1 volt intervals.
Fortran has a mechanism for handling this type of problem:–

PROGRAM RESULT
DIMENSION CURRNT (–20:20)
REAL CURRNT,RESIST
INTEGER VOLTAG
.
.
.
DO 10 VOLTAG=–20,20

.
CURRNT(VOLTAG)=VOLTAG/RESIST
.
.

10 CONTINUE
.
.
END

We appreciate that, due to experimental error, the voltage will not have exact
integer values. However, we are interested in representing and manipulating a
set of values, and thus from the point of view of the problem solution and the
program this is a reasonable assumption.

There are several things to note here:–

• This form of the DIMENSION statement–

DIMENSION CURRNT(FIRST:LAST)

is of considerable use when the problem has an effective index which does not
start at 1 (as implied by the original form of the statement).

• There is a corresponding form of the DO statement which allows processing
of problems of this nature. This is shown in the above program. The general
form of the DO statement is therefore:–

DO label counter=start, end, increment

where start, end and increment can be positive or negative.

Note that zero is a legitimate value of the dimension limits and of a DO loop
index.

72 Arrays and Do Loops (2) Chapter 8

Example 2

Consider the problem of the production of a table linking time difference with
longitude. The values of longitude will vary from –180 to +180 degrees, and
the time will vary from +12 hours to –12 hours. A possible program segment
is:–

PROGRAM ZONE
DIMENSION TIME(–170:180)
REAL TIME
INTEGER DEGREE,STRIP
.
.
DO 10 DEGREE=–170,180,10

VALUE=DEGREE/15.
DO 11 STRIP=0,9

TIME(DEGREE+STRIP)=VALUE
11 CONTINUE
10 CONTINUE

.

.
END

Notes

• The values of the time are not being calculated at every degree interval.

• The variable TIME is a real variable. It would be possible to arrange for the
time to be an integer by expressing it in either minutes or seconds.

• This example takes no account of all the wiggly bits separating time zones, or
of British Summer Time.

Example 3

Consider the production of a table of temperatures. The independent variable is
the Fahrenheit value; the Celsius temperature is the dependent variable. Strictly
speaking, a program to do this does not have to have an array, i.e. the DO loop
can be used to control the repetition of a set of statements that make no refer-
ence to an array.

The following page shows a possible program segment.

Chapter 8 Arrays and Do Loops (2) 73

PROGRAM CONVRT
INTEGER FAHREN
REAL CELSIU
.
.
DO 100 FAHREN=-100,200

.
CELSIU=(FAHREN-32)*5./9.
PRINT *,FAHREN,CELSIU
.

100 CONTINUE
.
END

Note here that the DO statement has been used only to control the repetition of
a block of statements. In the conversion of Fahrenheit to Celsius, we multiply
by 5./9. rather than 5/9; do you recall why?

This is the other use of the DO statement. The DO loop thus has two functions,
its use with arrays as a control structure, and its use solely for the repetition of
a block of statements.

Example 4

In the calculation of the mean and standard deviation of a list of numbers, we
may use the following formulae It is not actually necessary to store the values,
nor to accumulate the sum of the values and their squares. In the first case, we
would possibly require a large array, while in the second, it is conceivable that
the accumulated values (especially of the squares) might be too large for the
machine. The following example uses an updating technique which avoids
these problems, but is still accurate. The DO loop is simply a control structure
to ensure that all the values are read in, with the index being used in the calcu-
lation of the updates.

PROGRAM MEANSD
C
C VARIABLES USED ARE
C MEAN - FOR THE RUNNING MEAN
C SSQ - THE RUNNING CORRECTED SUM OF SQUARES
C X - INPUT VALUES FOR WHICH MEAN AND SD REQUIRED
C W - LOCAL WORK VARIABLE
C SD - STANDARD DEVIATION
C R - ANOTHER LOCAL WORK VARIABLE
C

REAL MEAN,SSQ,X,W,SD,R
INTEGER I
MEAN=0.0
SSQ=0.0
PRINT *,’ ENTER THE NUMBER OF READINGS’

74 Arrays and Do Loops (2) Chapter 8

READ*,N
PRINT*,’ ENTER THE ’,N,’ VALUES, ONE PER LINE’
DO 1 I=1,N

READ*,X
W=X-MEAN
R=I-1
MEAN=(R*MEAN+X)/I
SSQ=SSQ+W*W*R/I

1 CONTINUE
SD=(SSQ/R)**0.5
PRINT *,’ MEAN IS ’,MEAN
PRINT *,’ STANDARD DEVIATION IS ’,SD
END

Summary

• The DIMENSION statement allows limits to be specified for a block of infor-
mation which is to be treated in a common way. The limits must be integer, and
the second limit must exceed the first e.g.

DIMENSION LIST(–123:–10)
DIMENSION X(0:2000)
DIMENSION VALUE(1:100)

The last example could equally be written

DIMENSION VALUE(100)

where the first limit is omitted, and is given the default value 1. The array LIST
would contain 114 values, while X would contain 2001.

• A DO statement and its corresponding CONTINUE statement define a loop.
The DO statement provides a starting value, terminal value, and, optionally, an
increment, for its index or counter.

• Although these values need not be integers, you are strongly advised to make
them so. The increment may be negative, but should never be zero. If it is not
present, the default value is 1. It must be possible for the terminating value to
be reached from the starting value.

• The counter in a DO loop is ideally suited for indexing an array, but it may
be used anywhere that repetition is needed, and of course the index or counter
need not be used explicitly.

Problems

1. Write a program to print out a table of values for the conversion from litres
to pints.

Chapter 8 Arrays and Do Loops (2) 75

2. Write a program to print out the 12 times table. Typical output would be of
the form:

1 * 12 = 12
2 * 12 = 24
3 * 12 = 36

etc.

3. Complete the program which calculates a table of Fahrenheit and correspond-
ing Celsius temperatures. Employ the PARAMETER statement for the constant
term.

4. In order to obtain some impression of the inaccuracies generated by limited
precision, try the following. Take the square root of an input value a given
number of times (i.e. raise it to the power 0.5); recreate the the original value
by squaring the resulting value the same number of times. Intuitively, the start-
ing and recreated value should be the same, but the limited machine precision
will lead to some inaccuracy.

76 Arrays and Do Loops (2) Chapter 8

9

Output: An Introduction
Why, sometimes I’ve believed as many as six impossible
things before breakfast.

Lewis Carroll, ‘Alice through the Looking-Glass’

Aims

The aims here are to introduce the facilities for producing neat output, and to
show how to write results to a file, rather than to the terminal. In particular

• the A, I, E, F, and X layout or edit descriptors

• the OPEN, WRITE, and CLOSE statements

Introduction

When you have used PRINT * a few times it becomes apparent that it is not
always as useful as it might be. The data is written out in a way which makes
some sense, but may not be especially easy to read. Real numbers are written
out with all their significant places, which is very often rather too many, and it
is often difficult to line up the columns for data which is notionally tabular. It is
possible to be much more precise in describing the way in which information is
presented by the program. To do this, we use FORMAT statements. Through
the use of the FORMAT, we can specify how many columns a number should
take up, and, where appropriate, where a decimal point should lie. The FOR-
MAT statement has a label associated with it; through this label, the PRINT
statement associates the data to be written with the form in which to write it.
For example:–

PRINT 100,I, XVALUE(I), YVALUE(I)
100 FORMAT(1X,I3,2X,F7.4,2X,F6.4)

The label 100 which follows the PRINT statement takes the place of the aster-
isk we have been using up to now, and links the PRINT with the FORMAT
statement. Although the FORMAT follows the PRINT in this example, this is
not obligatory. However it is recommended that these statements are always
kept together because when errors occur (which they inevitably do!) it will save
you time and effort locating the possible source of the error.

The next thing to consider is the FORMAT statement itself, and its contents,
i.e. the bits in brackets. The ‘X’ is used for generating spaces in the output, the
‘I’ is used when you want to print out an integer, and the ‘F’ is used when you
want to print out real numbers.

Integers, I format

Integer format is reasonably straightforward, and offers clues for formats used
in describing other numbers. I3 is an integer taking three columns. The number
is right justified, a bit of jargon meaning that it is written as far to the right as it
will go, so that there are no trailing or following blanks

423
-22
 9

are all right justified integers (in I3). Note that the minus sign counts as part of
the number, and takes up one of the three columns we have specified here. The
only problem with right justification is that, when you try to write something
which looks useful, such as

THERE ARE 3 IMAGES AVAILABLE FOR PROCESSING

78 Output: An Introduction Chapter 9

the integer part must be assigned a fixed size. In the above example, we might
have given the field I2 to the number of images. This is fine when there are 0
to 9 images, but when there are more than 9, the message might read:–

THERE ARE12 IMAGES AVAILABLE FOR PROCESSING

which does not look very tidy, and is more difficult to read. Another alternative
is to give that a very large field, say I10. But this would look extremely dis-
jointed:–

THERE ARE 3 IMAGES AVAILABLE FOR PROCESSING

The definition of an integer format is therefore the letter I, followed by a posi-
tive integer number, e.g.

I1
I10
I3
I6
I12

Reals, F format

The F format can be seen as an extension of the integer format. But here we
have to deal with the decimal point. The form of the F format specifies where
the decimal point will occur, and how many digits follow it. Thus, F7.4 means
that there are 4 digits after the point, in a total field width of 7 digits. Since the
decimal point is also written out, there may be up to 2 digits before the decimal
point. As in the case of the integer, any minus sign is part of the number, and
would take up one column. Thus, the format F7.4 may be used for numbers in
the range

-9.9999 to 99.9999

Let us look at the last example more closely. When a number is written out, it
is rounded; that is to say, if we write out 99.99999 in an F7.4 format, the
program will try to write out 100.0000! This is bad news, since we have not left
enough room for all those digits before the decimal point. What happens? As-
terisks will be printed. In the example above, a number out of range of the
format’s capabilities would be printed as:–

What would a format of F7.0 do? Again, seven columns have been set aside to
accommodate the number and its decimal point, but this time no digits follow
the point:–

 99.
-21375.

Chapter 9 Output: An Introduction 79

are examples of numbers written in this format. With an F format, there is no
way of getting rid of the decimal point.

The numbers making up the parts of the descriptors must all be positive inte-
gers. The definition of a real format is therefore; F followed by two integer
numbers, separated by a decimal point. The first integer must exceed the sec-
ond, and the second must be greater than or equal to zero. The following are
valid examples:–

F4.0
F6.2
F12.2
F16.8

but these are not valid:–

F4.4
F6.8
F-3.0
F6
F.2

Reals, E format

The exponential or scientific notation is useful in cases where we need to pro-
vide a format which may encompass a wide range of values. If likely results lie
in a very wide range, we can ensure that the most significant part is given. It is
possible to give a very large F format, but alternatively, the E format may be
used. This takes a form such as

E10.4

which looks something like the F, and may be interpreted in a similar way. The
10 gives the total width of the number to be printed out, that is the number of
columns it will take. The number after the decimal point indicates the number
of positions to be written after the decimal point; since all exponent format
numbers are written so that the number is between 0.1 and 0.9999..., with the
exponent taking care of scale shifts, this implies that the first four significant
digits are to be printed out.

Taking a concrete example, 1000 may be written as 10**3, or as 0.1 * 10**4.
This gives us the two parts; 0.1 gives the significant digits (in this case only
one significant digit), while the 10**4 gives the exponent, namely 4 or +4. In a
form that looks more like Fortran, this would be written .1E+04 where the
E+04 means 10**4.

There is a minimum size for an exponential format. Because of all the extra bits
and pieces it requires (the decimal point, the sign of the entire number, the sign
of the exponent, the magnitude of the exponent and the E), the width of the

80 Output: An Introduction Chapter 9

number, less the number of significant places should not be less than 6. In the
example given above, E10.4 meets this requirement. When the exponent is in
the range zero to 99, the E will be printed as part of the number; when the
exponent is greater, the E is dropped, and its place is taken by a larger value;
however, the sign of the exponent is always given, whether it is positive or
negative. The sign of the whole number will usually only be given when it is
negative. This means that, if the numbers are always positive, the rule of six
given above can be modified to a rule of five. It is safer to allow six places
over, since, if the format is insufficient, all you will get are asterisks.

The most common mistake with an E format is to make the edit descriptor too
small, so that there is insufficient room for all the padding to be printed. For-
mats like E8.4 just don’t work (on output anyway). The following are valid E
formats on output:–

E9.3
E11.2
E18.7
E10.4

but the following would not be acceptable as output formats, for a variety of
reasons

E11.7
E6.3
E4.0
E10
E7.3

The first example in this chapter could be rewritten to use E format as:–

PRINT 100,I,XVALUE(I),YVALUE(I)
100 FORMAT(1X,I3,E10.4,3X,E10.4)

This would be of use when we are unsure about the exact range of the numbers
to be printed.

Spaces

There is a shorthand way of expressing spaces (or blanks) in your output — the
X descriptor, e.g.

PRINT 100, ALPHA,BETA
100 FORMAT(1X,F10.4,10X,F10.3)

The 10X is read rather like any of the other format elements — logically it
should have been X10, to correspond to I10 or F10.4, but that would be allow-
ing intuition to run away with you. Clearly the X3J3 committee felt it important
that Fortran should have inconsistencies, just like a natural language.

Chapter 9 Output: An Introduction 81

There are other ways of achieving the same thing — having a large space de-
limited by apostrophes, or by manipulating character variables. What you use is
your choice. Remember that these blanks are in addition to any generated as a
result of the leading blanks on numbers (if any are present). If you wish to
leave a single space, you must still precede the X by a number (in this case, 1);
simply writing X is illegal. The general form is therefore; positive integer fol-
lowed by X.

Alphanumeric or character format, A

This is perhaps the simplest output of all. Since you will already have declared
the length of a character variable in your declarations:–

CHARACTER*10 B

when you come to write out B, the length is known — thus you need only
specify that a character string is to be output:–

PRINT 100,B
100 FORMAT(A)

If you feel you need a little extra control, you can append an integer value to
the A, like A10 (A9 or A1) and so on. If you do this, only the first 10 (9 or 1)
characters are written out; the remainder are ignored. Do note that 10A1 and
A10 are not the same thing. 10A1 would be used to print out the first character
of ten character variables, while A10 would write out the first ten characters of
a single character variable. The general form is therefore just A, but if more
control is required, this may be followed by a positive integer.

Within a FORMAT statement you may also write out anything within apostro-
phes. These strings of characters will be written out with no modification; e.g.

PRINT 100,A
100 FORMAT(’ THE ANSWER IS’,F10.4)

will be written out as something like:–

THE ANSWER IS 12.3457

A partial program segment to output a 3 column table with an informative
heading could be:–

PRINT *,’ NUMBER : X READING : Y READING’
DO 5 I=1,100

PRINT 100,I,XVALUE(I),YVALUE(I)
100 FORMAT(1X,I3,3X,E10.4,3X,E10.4)
5 CONTINUE

82 Output: An Introduction Chapter 9

Common mistakes

It must be stressed that an integer can only be printed out with an I format, and
a real with an F (or E) format. You cannot mix integer and F, or real and I. If
you do, unpredictable results will follow.

There are (at least) two other sorts of errors you might make on writing out a
value. You may try to write out something which has never actually been as-
signed a value; this is termed an indefinite value. You may find that the letter I
is written out. In passing, note that many loaders and link editors will preset all
values to zero — i.e. unset (indefinite) values are actually set to zero. On better
systems there is generally some way of turning this facility off, so that unde-
fined is really indefinite. More often than not, indefinite values are the result of
mis-typing, rather than never setting values. It is not uncommon to type O for
0, or 1 for either I or l. The other likely error is to try to print out a value
greater than that which the machine can calculate — out of range values. Some
machines will print out such values as R; some machines will actually print out
something which looks right, and such overflow and underflow conditions can
go unnoticed. Be wary.

OPEN (and CLOSE)

One of the particularly powerful features of Fortran is the way it allows you to
manipulate files. Up to now, most of the discussion has centred on reading
from and writing to the terminal. It is possible to read and write to one or more
files. This is achieved using the OPEN, WRITE, READ and CLOSE state-
ments. We will consider reading from files in a later chapter, and concentrate
on writing in this chapter.

The OPEN statement

This statement sets up a file for either reading or writing. A typical form is:–

OPEN (UNIT=1,FILE=’DATA’)

The file will be known to the operating system as DATA (or will have DATA
as the first part of its name), and can be written to by using the UNIT number.
This statement should come before you first read from or write to the file
DATA.

It is not possible to write to the file DATA directly; it must be referenced
through its unit number. Within the Fortran program you write to this file using
a statement like

WRITE(UNIT=1,FMT=100) XVAL,YVAL

or

WRITE(1,100) XVAL,YVAL

Chapter 9 Output: An Introduction 83

These two statements are equivalent. Besides opening a file, we really ought to
CLOSE it when we have finished writing to it:

CLOSE(UNIT=1)

In fact, on many systems it is not obligatory to OPEN and CLOSE all your
files. Almost certainly, the terminal will not require this, since INPUT and
OUTPUT units will be there by default. At the end of the job, the system will
CLOSE all your files. Nevertheless, explicit OPEN and CLOSE cannot hurt,
and the added clarity generally assists in understanding the program.

The following program segment contains all of the above statements.

PROGRAM REDO
...
OPEN (UNIT=1,FILE=’DATA’)
...
...
DO 100 I=1,100

READ (UNIT=1,FMT=200) X(I)
200 FORMAT(E10.3)

SUM = SUM + X(I)
100 CONTINUE

...
CLOSE(1)
...
...
END

Writing

PRINT is always directed to the file OUTPUT; in the case of interactive work-
ing, this is the terminal. This is not a very flexible arrangement. WRITE allows
us to direct output to any file, including OUTPUT. The basic form of the
WRITE is

WRITE(6,100) X,Y,Z

or

WRITE(UNIT=6,FMT=100) X,Y,Z

The latter form is more explicit, but the former is probably the one most widely
used. We have an example here of the use of positionally dependent parameters
in the first case and equated keywords in the second. With the exceptions of the
PRINT statement and the READ * form of the READ, all of the input/output
statements allow the unit number and the format labels to be specified either by
an equated keyword (or specifier), or in a positionally dependent form. If you
use the explicit UNIT= and FMT= it does not matter what order the elements
are placed in, but if you omit these keywords, the unit number must come first,

84 Output: An Introduction Chapter 9

followed by the format label. A list of all the possible keywords is given in
Chapter 18.

UNIT=6 means that the output will be written to the file given the unit number
6. In the next chapter we will cover the way in which you may associate file
names and unit numbers, but, for the moment, we will assume that the default
is being used. The name of the file, as defined by the system, will depend on
the particular system you use; a likely name is something like DATA06,
TAPE6, or FILE0006. One easy way to find out (apart from asking someone),
is to create such a file from a program, and then look at the names of your files
after the program has finished. A great many of computing’s minor complexi-
ties can be clarified by simple experimentation.

FMT=100 simply gives the label of the format to be used.

The overworked asterisk may be used, either for the unit, or for the format:–

UNIT=* will write to OUTPUT (the terminal), and

FMT=* will produce output controlled by the list of variables,
often called list directed output.

The following three statements are therefore equivalent:–

WRITE(UNIT=*,FMT=*) X,Y,Z
WRITE(*,*) X,Y,Z
PRINT*,X,Y,Z

There are other controls possible on the WRITE, which will be elaborated later.

Summary

• You have been introduced in this chapter to the use of format or layout
descriptors which will allow greater control over output.

• The main features are the I format for integer variables, the E and F formats
for real numbers, and the A format for characters. In addition the X, which
allows insertion of spaces, has been introduced.

• Output can be directed to files as well as to the terminal, through the WRITE
statement.

• The WRITE, together with the OPEN and CLOSE statements, also introduces
the class of Fortran statements which use equated keywords, as well as posi-
tionally dependent parameters.

Problems

1. Write a program to produce the following kind of conversion table:–

Chapter 9 Output: An Introduction 85

CELSIUS TEMPERATURE FAHRENHEIT
–73.3 –100 –148.0

etc.

The centre column of the table should start at –100 and go up to +100. Use F
format to print out the values of CELSIUS and FAHRENHEIT, whilst the cen-
tral column should use I format.

Fahrenheit temperature = (Celsius/5) * 9 +32
Celsius temperature = 5 * (Fahrenheit–32)/9

2. Write a litres and pints conversion program to produce a similar kind of
output to the above. Start at 0, and make the central column go up to 50. One
pint is 0.568 litres.

3. Information on car fuel consumption is usually given in miles per gallon in
Britain and the US, and in litres per 100 km in Europe. Just to add an extra
problem US gallons are 0.8 Imperial gallons. Prepare a table which allows con-
version from either US or Imperial fuel consumption figures to the metric
equivalent. Use the PARAMETER statement where appropriate.

1 Imperial gallon = 4.54596 litres
1 mile = 1.60934 kilometres.

4. Modify any of the above to write to a file rather than the terminal. What
changes are required to produce a general output which will be suitable for both
the terminal and a line printer? Is this degree of generality worthwhile?

5. To demonstrate your familiarity with formats, re-format questions 1, 2 or 3
to use E formats, rather than F (or vice versa).

86 Output: An Introduction Chapter 9

10

Output: An Extension
Beyond the last visible dog

Russell Hoban, ‘The Mouse and His Child’

Aims

The aims of this chapter are to extend the ideas introduced concerning the pro-
duction of neat output, and to provide an introduction to the power and
capability of the layout or edit descriptors. In particular:–

• repeated output, and implied DO loops

• formatting the output for a line-printer

Repetition

Often we need to print more than one number on a line and want to use the
same layout descriptor. Consider the following:–

PRINT 100,A,B,C,D

If each number can be written with the same layout descriptor, we can abbrevi-
ate the FORMAT statement to take account of the pattern:–

100 FORMAT(1X,4F8.2)

is equivalent to:–

100 FORMAT(1X,F8.2,F8.2,F8.2,F8.2)

as you might anticipate. If the pattern is more complex, we can extend this
approach:–

PRINT 100,I,A,J,B,K,C
100 FORMAT(1X,3(I3,F8.2))

Bracketing the description ensures that we repeat the whole entity:–

100 FORMAT(1X,3(I3,F8.2))

is equivalent to:–

100 FORMAT(1X,I3,F8.2, I3,F8.2, I3,F8.2)

Repetition with brackets can be rather more complex. In order to give some
overview of formatted Fortran output, it is helpful to delve a little into the
history of the language. Many of the attributes of Fortran can be traced back to
the days of single user mainframes (with often a fraction of the power of many
contemporary micro-computers and work-stations). These would generally take
input from punched cards (the traditional 80-column Hollerith card), and would
generate output on a line printer. In this sort of environment, the individual
punched card had a significance which lines in a file do not have today. Each
card could be seen as a single entity — a physical record unit. The record was
seen as an element of subdivision within a file. Even then, there was some
confusion between the notion of physical records and files split into logically
distinct sub-units, since these sub-units might also be termed records. The pre-
sent Fortran standard merely says that a record does not necessarily correspond
to a physical entity, although a punched card is usually considered to be a
record. This leaves us sitting at our terminals in a bemused state, especially
since we may have no idea what a punched card looks like (an ideal state of
affairs!)

It is important to have some notion of a record, since most of the formal defini-
tions dealing with output (and input) are couched in terms of records. Every

88 Output: An Extension Chapter 10

time an input or output statement is executed your nominal position in the file
changes. If we think in terms of individual records (which may be cards), the
notions of current, preceding and next record seem fairly straightforward. The
current record is simply the one we have just read or written, and the other
definitions follow naturally.

The situation becomes less clear when we realise that a single output statement
may generate many lines of output.

WRITE(UNIT=6,FMT=101) A,B,C
101 FORMAT(1X,F10.4)

writes out three separate lines. Looking at the output alone, there is no way to
distinguish this from the output generated by:–

WRITE(UNIT=6,FMT=101) A
WRITE(UNIT=6,FMT=101) B
WRITE(UNIT=6,FMT=101) C

101 FORMAT(1X,F10.4)

In the latter case we would probably be happy to consider each line a record,
although in the previous example we might swither between considering all
three lines (generated by a single statement) a single record or three records.
Consider the first of these two examples more closely; each time the format is
exhausted — that is to say, each time we run out of format description, we start
again on a new line (a new record). A new record is begun as each F10.4 is
begun. The correct interpretation is therefore that three records have been writ-
ten.

The same sort of thing happens in more complex FORMAT statements:–

WRITE(UNIT=6,FMT=105) X,I,Y
105 FORMAT(1X,F8.4,I3,(F8.4))

would write out a single record containing a real, an integer and a real. Using
the same format statement with WRITE (UNIT=6, FMT=105) X,I,Y,Z would
write out two records. The first containing the values of X, I and Y, the second
containing only Z. If there were still more values

WRITE(UNIT=6,FMT=105) X,I,Y,Z,A

would print out three records. The group in brackets — the (F8.4) — is re-
peated until we run out of items.

Some more examples

Since it is the last open bracket which determines the position at which the
format is repeated, simply writing:–

Chapter 10 Output: An Extension 89

WRITE(UNIT=6,FMT=100) A,I,B,C,J
100 FORMAT(1X,F8.4,I3,F8.2)

would imply that A, I and B would be written on one line, then, returning to the
last open brackets, (in this case the only open brackets), a new record (or line)
is begun to write out C and J. A statement like:–

100 FORMAT(1X,(F8.4),I3,F8.2)

would return to the (F8.4) group, and then continue to the I3 and F8.2 before
repeating again (if necessary). The same thing happens if the (F8.4) had no
brackets around it. On the other hand:–

100 FORMAT(1X,(F8.4),I3,(F8.2))

contains superfluous brackets around the F8.4, since the repeat statement will
never return to that group. Are you confused yet? This seems all very esoteric,
and really, we have only hinted at the complexity which is possible. It is sel-
dom that you have to create complex FORMAT statements, and clarity is far
more important than brevity.

When patterned or repeated output is used, we may want to stop when there are
no more numbers to write out. Take the following example:–

WRITE(UNIT=1,FMT=100) A,B,C,D
100 FORMAT(1X,4(F6.1,’,’))

This will give output which looks like:–

 37.4, 29.4, 14.2, –9.1,

The last comma should not be there. We can suppress these unwanted elements
by using the colon:–

100 FORMAT(1X,4(F6.1:’,’))

which would then give us:–

 37.4, 29.4, 14.2, -9.1

Since we run out of data at the fourth item, D, the output following is not
written out. It is a small point, but it does look a lot tidier. There are other ways
of achieving the same thing.

This helps to illustrate another point, namely that you may have formats which
are more extensive than the lists which reference them:–

WRITE(UNIT=1,FMT=100) A,B,C
WRITE(UNIT=1,FMT=100) X,Y

100 FORMAT(1X,6F8.2)

90 Output: An Extension Chapter 10

Both WRITE statements use the format provided, although they write out dif-
ferent amounts of data, and neither uses up the whole format.

Implied DO loops

In reading and writing it is possible to use more compact ways of indicating
that an array is being referenced, since it is often rather tedious to declare each
element which is involved, e.g.

WRITE(UNIT=6,FMT=100)Y(1),Y(2),Y(3),Y(4)
100 FORMAT(1X,F8.4)

Clearly we could improve this slightly by making it into a loop:–

DO 1 I=1,4
WRITE(UNIT=6,FMT=100) Y(I)

100 FORMAT(1X,F8.4)
1 CONTINUE

and equally we can simplify this to:–

WRITE(UNIT=6,FMT=100)(Y(I),I=1,4)
100 FORMAT(1X,F8.4)

where the DO loop is subsumed into the expression (the syntax is just the same
as for the counter part of a DO loop, with the same rules for starting, ending
and incrementing). An alternative, and yet more compact form is:–

DIMENSION Y(4)
...
...
WRITE(UNIT=6,FMT=100)Y

100 FORMAT(1X,F8.4)

In all these cases, the output would be the same — four numbers printed out on
separate lines. The FORMAT statement is controlling this layout. Changing the
format to:–

100 FORMAT(1X,4F8.4)

would change the layout in three out of the four cases outlined. Which three?
Even two (or more) dimensional arrays can be written out or read in by implied
loops.

DIMENSION Y(10,10)
NROWS=6
NCOLS=7
DO 1 J=1,NROWS

WRITE(UNIT=6,FMT=100)(Y(I,J),I=1,NCOLS)
1 CONTINUE

Chapter 10 Output: An Extension 91

100 FORMAT(1X,10F10.4)

may be written:–

WRITE(UNIT=6,FMT=100)((Y(I,J),I=1,NCOLS),J=1,NROWS)

or even as:–

WRITE(UNIT=6,FMT=100) Y

There are two points to note with this last example. Firstly, the entire contents
of the array will be written; there is no scope for fine control. Secondly, the
order in which the array elements are written may be a surprise. The order is
that of the first subscript varying 1 to 10 (the array bound), with the second
subscript as 1, then 1 to 10 with the second subscript as 2 and so on; the
sequence is

Y(1,1) Y(2,1) Y(3,1) Y(10,1)
Y(1,2) Y(2,2) Y(3,2) Y(10,2)

.

.
Y(1,10) Y(2,10) Y(10,10)

Another feature to note is that we can generate values from within a WRITE
statement:–

WRITE(UNIT=6,FMT=101)(I,I=0,9)
101 FORMAT(1X,10I3)

would produce a line like:–

 0 1 2 3 4 5 6 7 8 9

Formatting for a line-printer

There is one extension to format specifications which is relevant to line-print-
ers. Fortran defines four special characters which have a particular effect on
standard line-printers. They have an effect when they occur in the first character
position of a line. This means that a line-printer which is not under your imme-
diate control can be used to produce neat output, by sending a file to be printed
on it. This has a variety of names including spooling, queueing and routing
depending on the system. You should check with your local system for the
exact mechanism to achieve this.

The special characters are +, 0, 1 and blank. To be used, they must be the first
character of the output in each line — as if they were to be printed in column 1.
In fact, a standard line printer never prints a character that occurs in column 1
at all.

92 Output: An Extension Chapter 10

Whenever a WRITE statement is begun, the printer advances to a new record;
i.e. a new line is begun before any data is transferred. If the first character is a
special character, then this will be interpreted by the line-printer. If the first
character to be printed is a blank, the printer continues printing on that line. The
first character is also known as the carriage control character.

The blank is a do nothing special control. It signifies that the line is to be
printed as it is.

The zero indicates that you wish to leave an extra line; this is often useful in
spacing out results to make the output more readable.

The 1 makes the output skip down to the top of the next page. This is clearly
useful for separating logically distinct chunks of output. If you obtain a line
printer listing of your compiled program, each segment will start at the top of a
new page.

The plus is a no advance or overprint character. It suppresses the effect of the
line advance which a WRITE generates. No new line is begun and the previous
line is over-printed with the new. Overprinting can be useful especially when
you wish to print out grey scale maps but its use is rather restricted. In particu-
lar, it can be a dangerous control character. If you have a format starting with a
plus in a loop, you can make the printer overprint again and again and again
....... and again and again, until it has hammered itself into a pulp. This is not a
good idea.

Similarly, accidental use of the 1 as a control character in a loop will give you
lots of blank pages. It is just a bit embarrassing to be presented with a six inch
stack of paper which is (almost) blank, because you had a 1 repeatedly in col-
umn 1.

Mechanics of carriage control

The following are all quite reasonable ways of generating the blank in column
1:–

WRITE(UNIT=6,FMT=100)A
100 FORMAT(’ ’,F10.4)

or

WRITE(UNIT=6,FMT=100)A
100 FORMAT(1X,F10.4)

or

WRITE(UNIT=6,FMT=100)A
100 FORMAT(’ THE ANSWER IS ’,F10.4)

Note, however, that

Chapter 10 Output: An Extension 93

WRITE(UNIT=6,FMT=100)A
100 FORMAT(F8.4)

could result in problems. If A contained the value 100.2934, the result on a line
printer would be

00.2934

printed at the top of a new page. The 1 is taken as carriage control, and the rest
of the line then printed.

Accidentally printing zeros in column 1 is a little more difficult, but:–

WRITE(UNIT=6,FMT=100)I
100 FORMAT(I1)

might just do it. Don’t.

Remember that this only applies to line printer output, and not to the terminal.
Since Fortran only defines 4 characters as carriage control, you will find that
anything else in column 1 will give unpredictable results. On some systems, a
fair number of alternatives may be defined by the installation, and they may do
something useful. On other systems, they may do something, but they may also
fail to print the rest of the line. This can be very perplexing. Beware.

Generating a new line, on both line-printers and terminals.

There are several ways of generating new lines, other than with a 0 in column
one of your line printer output. A more general approach, which works on
terminals and also line printers, is through the oblique or slash, /. Each time this
is encountered in a FORMAT statement, a new line is begun.

PRINT 101,A,B
101 FORMAT(1X,F10.4/1X,F10.4)

would give output like:–

 100.2317
 –4.0021

This is the same as (F10.4) would have given, but clearly this opens up lots of
possibilities for formatting output more tidily:–

PRINT 102,NVAL,XMAX,XMIN
102 FORMAT(’ NUMBER OF VALUES READ IN WAS: ’,I10/
 1 ’ MAXIMUM VALUE IS: ’,F10.4/
 2 ’ MINIMUM VALUE IS: ’,F10.4)

which may be easier to read than using only one line, and is certainly more
compact to write than using three separate print statements. It is not necessary

94 Output: An Extension Chapter 10

to separate / by commas, although if you do nothing catastrophic will happen.
In this example we have put the elements of the format on three lines, using the
continuation character in column 6.

Any statement may be extended onto a subsequent line by placing a character
(with the exception of a zero) in column 6. The main reason for doing this here
is that it is often difficult to guess when you have typed to column 72. It is far
easier to break part of the format and restart with a continuation line. Errors in
formats are often very tricky to locate, and any attempt to bring a little order
will help.

You may also begin a format description with a /, in order to generate an extra
line, or even generate lots of lines with lots of slashes; e.g.

WRITE(UNIT=6,FMT=103)A,B
103 FORMAT(//1X,F10.4,4(/),1X,F10.4)

will leave two lines before printing A, and then will generate 4 new lines before
writing B (i.e. there will be three lines between A and B — the fourth new line
will contain B). While a slash by itself, or with another slash, does not have to
be separated by commas from other groups, a more complex grouping, 4(/),
does have to have commas and brackets to delimit it.

Summary

• The FORMAT statement and its associated layout or edit descriptor are pow-
erful, and allow repetition of patterns of output (both explicitly and implicitly).

• When output is to be directed to a line-printer, there are four characters de-
fined that allow reasonable control over the layout. Care must to be taken with
these characters, since it is possible to decimate forests with little effort.

Problems

1. Modify the temperature conversion program to produce output suitable for a
line-printer. Use the local operating system commands to send the file to be
printed.

2. Repeat for the litres and pints program.

3. What features of Fortran reveal its evolution from punched card input?

4. Try to create a real number greater than the maximum possible on your
computer — write it out. Try to repeat this for an integer. You may have to
exercise some ingenuity.

5. Check what a number too large for the output format will be printed as on
your local system – is it all asterisks?

Chapter 10 Output: An Extension 95

6. Write a program which stores litres and corresponding pints in arrays. You
should now be able to control the output of the table (excluding headings —
although this could be done too) in a single WRITE or PRINT statement. If you
don’t like litres and pints, try some other conversion (sterling to US dollars,
leagues to fathoms, Scots miles to Betelgeusian pfnings). The principle remains
the same.

96 Output: An Extension Chapter 10

11

Reading in data
Winne-the-Pooh read the two notices very carefully,
first from left to right, and afterwards,
in case he had missed some of it, from right to left.

A A Milne, Winne-the-Pooh

Aims

The aims of this chapter are to introduce some of the ideas involved in reading
data into a program. In particular, using the following:–

• reading from fixed fields

• integers, reals and characters

• blanks — nulls or zeros?

• READ — extensions

• END=

• ERR=

• OPEN — associating unit numbers and file names

• CLOSE

• REWIND

• BACKSPACE

Fixed fields on input

All the formats described earlier are available, and again they are limited to
particular types. Integers may only be input by the I format, reals with F and E,
and character (alphanumeric) with A.

Integers, the I format

Integers are read in with the I edit descriptor. While, on output, integers appear
right justified, on input they may appear anywhere in the field you have delim-
ited. Blanks (by default) are considered not to exist, for the purpose of the
value read, although they do contribute to the field width. Apart from the digits
0 to 9, the only other characters which may appear in an integer field are – and
+.

READ(UNIT=*,FMT=100) I,J,K
100 FORMAT(3I4)

with the following values:–

2 –4 0+ 21

would result in the values 2, – 40 and 21 being assigned to I, J and K respec-
tively.

Reals, the F and E formats

Real numbers may be input using either the E or F format, whether or not the E
descriptor is present in the field. Again, we define a width, and, as with output,
the number of places after the point:–

F10.4
E12.3
F6.0
E10.0

However, if the point is already present in the value being input, this overrides
the definition in the format. Again, blanks are treated as null values.

READ(UNIT=*,FMT=100) A,B,C
100 FORMAT(F10.6,E12.6,F6.0)

with

1234567890 14 4 .

results in A taking the value 1234.56789, B taking the value 14.0, and C the
value 4.

The absence of the E in the field for B has no adverse affect. As a general rule,
it is best to retain the decimal point with real numbers, just as a precaution.

98 Reading in Data Chapter 11

Sometimes it is difficult to line up fields properly, and the first sign of trouble
may be finding two decimal points in the one field, which will generate an error
message, e.g. consider:–

READ(UNIT=*,FMT=101) A,B,C,X,Y,Z
101 FORMAT(6F5.2)

If this was in a loop to read the following values:–

2.0 3.0 13.0 6.1 0.9 0.2
12.0 62. 9. –4.2 2.9 –3.7

The second time the READ was used, you would get an error (can you see why
and where?)

An exponential format number (which may be read in F or E formats) can take
a number of different forms. The most obvious is the explicit form:–

–1.2E–4

where all the components of the value are present — the significant digits to
the left of the E, the E itself, and the exponent to the right. We can drop almost
any two of these three components, and therefore:–

-1.2
-1.2E
-1.2-4
-4

are all valid values. Only the first two are interpreted as the same numerical
value, and just giving the exponent part would be interpreted by the format as
just giving the significant digits. If the exponent is to be given, there must be
some significant digits also. It is not even enough to give the E and assume that
the program will interpret this as 10 to the power exponent :–

E–4

is not an acceptable exponential format value, although:–

1E–4

would be.

There are opportunities for confusion with E formats.

READ(UNIT=*,FMT=102) X,Y
102 FORMAT(2E10.3)

with:–

10.23 –2

Chapter 11 Reading in Data 99

This would be interpreted as X taking the value 10.23E-2 and Y taking the
value 0.0, while with

102 FORMAT(2F8.3)

X would be 10.23, and Y would be –2.0.

Although the decimal point may also be dropped, this may generate confusion
too. While:–

 4E3
 45
 45E–4
 45–4

are all valid forms, if an E format is used, a special conversion takes place. A
format, like E10.8, when used with integral significant digits (no decimal
point), uses the 8 as a negative power of 10 scaling, e.g.

3267E05

converts to

3267*10**–8*10**5

or

3267*10**3

or

 3.267.

Therefore, the interpretation of, say, 136, read in E format, would depend on
the format used:–

Value Format Interpretation

136 E10.0 136.0
136 E10.4 136.0*10**–4

 or 0.0136
136 E10.10 136.0*10**–10

 or 0.0000000136
136. any above 136.0

One implication of all this is that the format you use to input a variable may
not be suitable to output that same variable.

100 Reading in Data Chapter 11

Blanks, nulls and zeros

You can control how Fortran treats blanks in input through two special format
instructions, BN and BZ. BN is a shorthand form of blanks become null, that is,
a blank is treated as if it was not there at all. BZ is therefore blanks become
zeros.

As we have already seen, 1 4 (i.e. the two digits separated by a blank) read in
I3 format would be read as 14; similarly, 14 (one-four-blank) is also 14 when
the BN format is in operation. All of the blanks are ignored for the purposes of
interpreting the number. They help to create the width of the number, but other-
wise contribute nothing. This is the default, which will be in operation unless
you specify otherwise.

The BZ descriptor turns blanks into zeros. Thus, 1 4 (one-blank-four) read in I3
format is 104, and 14 (one-four-blank) is 140.

There is one place where we must be very careful with the use of the BZ
format — when using exponent format input. Consider:–

5.321E+02

read in (BZ,E10.3) format. We have specified a field which is ten characters
wide, therefore the blank in column 10, which follows the E+02, is read as a
zero, making this E+020. This is probably not what was required.

Characters

When characters are read in, it is sufficient to use the A format, with no explicit
mention of the size of the character string, since this size (or length) is deter-
mined in the program by the CHARACTER declaration. This implies that any
extra characters would not be read in. You may however read in less:–

CHARACTER*10 LIST
.
.
READ(UNIT=5,FMT=100)LIST

100 FORMAT(A1)

would read only the first character of the input. The remaining 9 characters of
LIST would be set to blank.

The notion of blanks as nulls or zeros has no meaning for characters. The blank
is a legitimate character, and is treated as meaningful, completely distinct from
the notion of a null or a zero.

Skipping spaces and lines

The X format is also useful for input. There may be fields in your data which
you do not wish to read. These are easily omitted by the X format:–

Chapter 11 Reading in Data 101

READ(UNIT=5,FMT=100) A,B
100 FORMAT(F10.4,10X,F8.3)

Similarly, you can jump over or ignore entire records, by using the oblique. Do
note however, that

READ(UNIT=5,FMT=100) A,B
100 FORMAT(F10.4/F10.4)

would read A from one line (or record) and B from the next. To omit a record
between A and B, the format would need to be:–

100 FORMAT(F10.4//F10.4)

Another way to skip over a record is:–

READ(UNIT=5,FMT=100)
100 FORMAT()

with no variable name at all.

Reading

As you have seen already, reading, or the input of information, is accomplished
through the READ statement. We have used:–

READ *,X,Y

for list directed input from the terminal, and:–

READ(UNIT=5,FMT=100) X,Y

for formatted input also from the terminal. These forms may be expanded to

READ(UNIT=*,FMT=*) X,Y

or

READ(UNIT=*,FMT=100) X,Y

for input from the terminal, or to

READ(UNIT=5,FMT=*) X,Y

or

READ(UNIT=5,FMT=100) X,Y

when we wish to associate the READ statement with a particular unit number
(or format label, for formatted input). As with the WRITE statement, these last
two READ statements may be abbreviated to

READ(5,*) X,Y

102 Reading in Data Chapter 11

and

READ(5,100) X,Y

File manipulation again

The OPEN and CLOSE statements are also relevant to files which are used as
input, and they may be used in the same ways. Besides introducing the notion
of manipulating lots of files, the OPEN statement allows you to change the
default for the treatment of blanks. The default is to treat blanks as null, but the
statement BLANK=’ZERO’ changes the default to treat blanks as zeros. There
are other parameters on the OPEN, which are considered elsewhere.

Once you have OPENed a file, you may not issue another OPEN for the same
file until it has been CLOSEd, except in the case of the BLANK= parameter.
You may change the default back again with:–

OPEN(UNIT=10,FILE=’EXAMPL’)
READ(UNIT=10,FMT=100) A,B
.
.
.
OPEN(UNIT=10,FILE=’EXAMPL’,BLANK=’ZERO’)
READ(UNIT=10,FMT=100) A,B

This implies that, within the same input file, you may treat some records as
blank for null, and some as blank for zero. This sounds very dangerous, and
would be better done by manipulating individual formats if it had to be done at
all.

Given that you may write a file, you may also rewind it, in order to get back to
the beginning. The syntax is similar to the other commands:–

REWIND(UNIT=1)

This often comes in useful as a way of providing backing storage, where inter-
mediate data can be stored on file and then used at a later part of the
processing.

The notion of records in Fortran input and output has been introduced. If you
are confident in your understanding of this ambiguous and nebulous concept,
you can backspace through a file, using the statement

BACKSPACE(UNIT=1)

which moves back over a single record on the designated file. There is no point
in trying to BACKSPACE or REWIND input, if that input is the terminal.

Chapter 11 Reading in Data 103

ERR and END

In discussing some aspects of input, it has been pointed out that errors may be
made. Where such errors are noticed, in the sense that something illegal is
being attempted, there are two options

• print a diagnostic message, and allow correction of the mistake

• print a diagnostic message, and terminate the program

The only time that the first makes sense is when you are interacting with a
program at a terminal. Some Fortran implementations provide correction facili-
ties in a case like this, but most do not.

This latter case may not be desirable, and you have a mechanism through a
parameter on the READ statement to trap this.

READ(UNIT=5,FMT=102,ERR=200) X,Y

would allow faulty data to be trapped. The keyword ERR= directs the program
to label 200, where some sort of processing might occur, e.g.

.
NUM=0

1 NUM=NUM+1
READ(UNIT=5,FMT=102,ERR=200) A,B
.
.
.

200 WRITE(UNIT=6,FMT=103) NUM
103 FORMAT(’ ERROR IN DATA INPUT, AT RECORD ’,I4)
.

.

While this does not guarantee correct values in A and B, like having decimal
points in integer fields, or two decimal points in real fields (or before the sign),
you might inadvertently try to read characters in I, F or E formats. Of course,
reading numbers in A format would go by unnoticed.

Very often we do not know exactly how much data is to be read in. Unless you
do something about it, reading beyond the end of the data on a file will gener-
ate an error, a fatal error. In some cases this is probably a good thing, but
another parameter on the READ allows it to be done elegantly.

READ(UNIT=5,FMT=100,END=101) LIST

As with the ERR= parameter, this directs the program to a given label in the
event of hitting the end of the data input file (in this case, unit 5). Both the
END= and ERR= belong to a special class of statements, those which are proc-
essed on discovering an error condition. This restricts their use to particular
situations, and does not necessarily destroy the structure of the program.

104 Reading in Data Chapter 11

Summary

• Values may be read in from the terminal or from another file through fixed
formats.

• Much of the structure of input format statements is very similar to that of the
output formats. Broadly speaking, data written out in a particular format may be
read in by the same format. However, there is greater flexibility, and quite a
variety of forms can be accepted on input.

• A key distinction to make is the interpretation of blanks, as either nulls or
zeros; alternative interpretations can radically alter the structure of the input
data

• Fortran allows file names to be associated with unit numbers through the
OPEN statement. This statement allows control of the interpretation of blank,
although this can also be done through the BN and BZ formats.

• The READ statement, besides allowing the input to come from a particular
file, also allows checks to be made on the data, through the ERR= parameter,
and checks for the end of data condition through the END=.

• Files may also be manipulated through REWIND and BACKSPACE.

Problems

1. Write a program that will read in two reals and one integer, using

FORMAT(F7.3,I4,F4.1)

and that, in one instance treats blanks as zeros, and in the second treats blanks
as nulls. Use PRINT *, to print the numbers out immediately after reading them
in. What do you notice? Can you think of instances where it is necessary to use
one rather than the other?

2. Write a program to read in and write out a real number using

FORMAT(F7.2)

What is the largest number that you can read in and write out with this format?
What is the largest negative number that you can read in and write out with this
format? What is the smallest number, other than zero, that can be read in and
written out?

3. Rewrite two of the earlier programs that used READ,* and PRINT,* to use
FORMAT statements.

4. Write a program to read the file created by either the temperature conversion
program or the litres and pints conversion program. Make sure that the pro-
grams ignore the line–printer control characters, and any header and title

Chapter 11 Reading in Data 105

information. This kind of problem is very common in programming (writing a
program to read and possibly manipulate data created by another program).

5. Use the OPEN, REWIND, READ and WRITE statements to input a value
(or values) as a character string, write this to a file, rewind the file, read in the
values again, this time as real variables with blanks treated as null, then repeat
with blanks as zeros.

6. Demonstrate that input and output formats are not symmetric — i.e. what
goes in does not necessarily come out.

7. Can you suggest why Fortran treats blanks as null rather than zero?

8. What happens at your terminal when you enter faulty data, inappropriate for
the formats specified? Does the operating system intercept the data, or can you
use the ERR = escape route?

106 Reading in Data Chapter 11

12

Making decisions (1)
The more alternatives, the more difficult the choice

Abbe d’Allainval, Title of comedy

Aims

The aims of this chapter are to introduce:–

• selection between various courses of action as part of the problem
solution

• the concepts and statements in Fortran needed to support the
above. In particular:–

• logical expressions

• logical operators

• a block of statements

• several blocks of statements

Selection between courses of action

In most problems you need to chose between various courses of action e.g.

• if overdrawn, then do not draw money out of the bank

• if Monday, Tuesday, Wednesday, Thursday or Friday, then go to
work

• if Saturday, then go to watch Queens Park Rangers

• if Sunday, then lie in bed for another two hours

As most problems involve selection between two or more courses of action it is
necessary to have the concepts to support this in a programming language. For-
tran has a variety of selection mechanisms, some of which are introduced.

The BLOCK IF statement.

The following short example illustrates the main ideas:–

. wake up

.

. check the date and time
IF (TODAY.EQ.SUNDAY) THEN

.

. lie in bed for another two hours

.

.
ENDIF
.
. get up
. make breakfast

If today is Sunday then the block of statements between the IF and the ENDIF
is executed. After this block has been executed the program continues with the
statements after the ENDIF. If today is not Sunday the program continues with
the statements after the ENDIF immediately. This means that the statements
after the ENDIF are executed whether or not the expression is true.

The general form is:–

IF (Logical expression) THEN
.
.
Block of statements
.
.

ENDIF

108 Making Decisions (1) Chapter 12

The logical expression is an expression that will be either true or false, hence
its name. Some examples of logical expressions are given below:–

(ALPHA.GT.10.1)

Test if ALPHA 10.1

(BALANC.LT.0.0)

Test if overdrawn

((TODAY.EQ.SATDAY).OR.(TODAY.EQ.SUNDAY))

Test if today is Saturday or Sunday

((ACTUAL–CALC).LT.0.000001)

Test if ACTUAL minus CALC less than 0.000001

Fortran has the following relational operators:–

Operator Meaning

.EQ. Equal

.NE. Not equal

.GE. Greater than or equal

.LE. Less than or equal

.LT. Less than

.GT. Greater than

and the following logical operators:–

Operator Meaning

.AND. and

.OR. or

.NOT. not

The first six should be self-explanatory. They enable expressions or variables to
be compared and tested. The last three enable the construction of quite complex
comparisons, involving more than one test; in the example given earlier there
was a test to see whether today was Saturday or Sunday.

Chapter 12 Making Decisions (1) 109

One special case of the IF statement may be useful. From time to time there
may only be one statement to execute in a BLOCK IF:–

IF(MONTH.EQ.2)THEN
NDAYS=28

ENDIF

In these circumstances, it is possible to compress the statements to a single
logical if:–

IF(MONTH.EQ.2)NDAYS=28

This has exactly the same effect. Whichever form you use is a matter of taste –
though the general form has the advantage of flexibility.

Note that some symbols available on the keyboard e.g.

>
>=
<
<=
<>
=

are not acceptable as a shorthand way of denoting the relational operators.

Use of logical expressions and logical variables (something not mentioned so
far) are covered again in a later chapter on additional data types.

The ‘IF expression THEN statements ENDIF’ is called a BLOCK IF con-
struct. There is a simple extension to this provided by the ELSE statement.
Consider the following example:–

IF (BALNCE.GE.0.0) THEN
.
. draw money out of the bank
.
.

ELSE
.
. borrow money from a friend
.

ENDIF
.
. Buy a round of drinks
.

110 Making Decisions (1) Chapter 12

In this instance, one or other of the blocks will be executed. Then execution
will continue with the statements after the ENDIF statement (in this case buy a
round).

There is yet another extension to the BLOCK IF which allows ELSEIF state-
ment. Consider the following example:–

IF (TODAY.EQ.MONDAY) THEN
.

ELSEIF (TODAY.EQ.TUSDAY) THEN
.

ELSEIF (TODAY.EQ.WEDDAY) THEN
.

ELSEIF (TODAY.EQ.THRDAY) THEN
.

ELSEIF (TODAY.EQ.FRIDAY) THEN
.

ELSEIF (TODAY.EQ.SATDAY) THEN
.

ELSEIF (TODAY.EQ.SUNDAY) THEN
.

ELSE
there has been an error. The variable TODAY has
taken on an illegal value.

ENDIF

Note that, as soon as one of the logical expressions is true, the rest of the test is
skipped, and execution continues with the statements after the ENDIF. This
implies that a construction like:–

IF(I.LT.2)THEN
.
.

ELSEIF(I.LT.1)THEN
.
.

ELSE
.

ENDIF

is inappropriate. If I is less than 2, the latter condition will never be tested. The
ELSE statement has been used here to aid in trapping errors or exceptions. This
is recommended practice. A very common error in programming is to assume
that the data is in certain well-specified ranges. The program then fails when
the data goes outside this range. It makes no sense to have a day other than
Monday, Tuesday, Wednesday, Thursday, Friday, Saturday or Sunday.

Chapter 12 Making Decisions (1) 111

Examples

• This program is straightforward, with a simple structure. The roots of the
quadratic are either real, equal and real, or complex depending on the magni-
tude of the term B ** 2 – 4 * A * C. The program tests for this term being
greater than and less than zero, it assumes that the only other case is equality to
zero (from the mechanics of a computer, floating point equality is rare, but, we
are safe in this instance).

PROGRAM QROOTS
REAL A,B,C,TERM,A2,ROOT1,ROOT2

C
C A B AND C ARE THE COEFFICIENTS OF THE TERMS
C A*X**2+B*X+C
C FIND THE ROOTS OF THE QUADRATIC, ROOT1 AND ROOT2
C

PRINT*,’ GIVE THE COEFFICIENTS A, B AND C’
READ*,A,B,C
TERM = B*B – 4.*A*C
A2 = A*2.

C IF TERM < 0, ROOTS ARE COMPLEX
C IF TERM = 0, ROOTS ARE EQUAL
C IF TERM > 0, ROOTS ARE REAL AND DIFFERENT

IF(TERM.LT.0.0)THEN
PRINT*,’ ROOTS ARE COMPLEX’

ELSEIF(TERM.GT.0.0)THEN
TERM = TERM**0.5
ROOT1 = (–B+TERM)/A2
ROOT2 = (–B–TERM)/A2
PRINT*,’ ROOTS ARE ’,ROOT1,’ AND ’,ROOT2

ELSE
ROOT1 = –B/A2
PRINT*,’ ROOTS ARE EQUAL, AT ’,ROOT1

ENDIF
END

• This next example is also straightforward. It demonstrates that, even if the
conditions on the IF statement are involved, the overall structure is easy to
determine. The comments and the names given to variables should make the
program self-explanatory. Note the use of integer division to identify leap
years.

PROGRAM DATE
INTEGER YEAR,N,MONTH,DAY,T

C
C CALCULATES DAY AND MONTH FROM YEAR AND DAY-WITHIN-YEAR
C T IS AN OFFSET TO ACCOUNT FOR LEAP YEARS
C

PRINT*,’ YEAR, FOLLOWED BY DAY WITHIN YEAR’

112 Making Decisions (1) Chapter 12

READ*,YEAR,N
C CHECKING FOR ORDINARY LEAP YEARS

IF(((YEAR/4)*4).EQ.YEAR)THEN
T=1

ELSE
T=0

ENDIF
C CHECKING FOR LEAP YEARS AT CENTURIES

IF (((YEAR/400)*400.EQ.YEAR)
 + .OR.((YEAR/100)*100.EQ.YEAR))THEN

T=T
ELSE

T=0
ENDIF

C ACCOUNTING FOR FEBRUARY
IF(N.GT.(59+T))THEN

DAY=N+2-T
ELSE

DAY=N
ENDIF
MONTH=(DAY+91)*100/3055
DAY=(DAY+91)-(MONTH*3055)/100
MONTH=MONTH-2
PRINT*,’ CALENDAR DATE IS ’,DAY,MONTH,YEAR
END

Summary

• Decisions are a key part of problem solving, and of Fortran.

• Decisions are made on the basis of an IF statement, where some condition is
evaluated as either true or false, and then a particular course of action is fol-
lowed.

• The IF construct can be expanded quite elegantly into the IF-THEN-ELSE-
ENDIF type of structure (the Block If), where the alternatives are grouped in a
kind of parenthetical structure.

• Besides the ELSE, another statement, the ELSEIF may be used.

Problems

The physical world has many examples where processes require some threshold
to be overcome before they begin operation: critical mass in nuclear reactions, a
given slope to be exceeded before friction is overcome, and so on. Unfortu-
nately, most of these sorts of calculations become rather complex and not really
appropriate here. The following problem trys to restrict the range of calculation,
whilst illustrating the possibilities of decision making.

Chapter 12 Making Decisions (1) 113

1. If a cubic equation is expressed as

z3 + a2z2 + a1z + a0 = 0

and we let

q = a1/3 –(a2 a2)/ 9

and

r = (a1a2-3a0)/6-(a2a2a2)/27

we can determine the nature of the roots as follows:

q3 + r2 > 0; one real root and a pair of complex;
q3 + r2 = 0; all roots real, and at least two equal;
q3 + r2 < 0; all roots real;

Incorporate this into a suitable program, to determine the nature of the roots of
a cubic from suitable input.

2. The form of breaking waves on beaches is a continuum, but for convenience
we commonly recognise three major types: surging, plunging and spilling.
These may be classified empirically by reference to the wave period, T (sec-
onds), the breaker wave height, Hb (metres), and the beach slope, m. These
three variables are combined into a single parameter, B, where

B = Hb/(gmT2)

g is the gravitational constant (981 cm sec–2). If B is less than .003, the break-
ers are surging; if B is greater than 0.068, they are spilling, and between these
values, plunging breakers are observed.

(i) On the east coast of New Zealand, the normal pattern of waves is swell
waves, with wave heights of 1 to 2 metres, and wave periods of 10 to 15
seconds. During storms, the wave period is generally shorter, say 6 to 8 sec-
onds, and the wave heights higher, 3 to 5 metres. The beach slope may be taken
as about 0.1. What changes occur in breaker characteristics as a storm builds
up?

(ii) Similarly, many beaches have a concave profile. The lower beach generally
has a very low slope, say less than 1 degree (m=0.018), but towards the high
tide mark, the slope increases dramatically, to say 10 degrees or more
(m=0.18). What changes in wave type will be observed as the tide comes in?

3. Personal taxation is usually structured in the following way:–

no taxation on the first m0 units of income;
taxation at t1% on the next m1 units;
taxation at t2% on the next m2 units;

114 Making Decisions (1) Chapter 12

taxation at t3% on anything above.

For some reason, this is termed progressive taxation. Write a generalised pro-
gram to determine net income after tax deductions. Write out the gross income,
the deductions and the net income. You will have to make some realistic esti-
mates of the tax thresholds mi and the taxation levels ti. You could use this sort
of model to find out how sensitive revenue from taxation was in relation to
cosmetic changes in thresholds and tax rates.

4. The specific heat capacity of water is 2009 J kg–1 K–1; the specific latent
heat of fusion (ice/water) is 335 kJ kg–1, and the specific latent heat of vapori-
zation (water/steam) is 2500 kJ kg–1. Assume that the specific heat capacity of
ice and steam are identical to that of water. Write a program which will read in
two temperatures, and will calculate the energy required to raise (or lower) ice,
water or steam at the first temperature, to ice, water or steam at the second.
Take the freezing point of water as 273 K, and its boiling point as 373 K. For
those happier with Celsius, 0o C is 273 K, while 100o c is 373 K. One calorie is
4.1868 J, and for the truly atavistic, 1 BTU is 1055 J (approximately).

Chapter 12 Making Decisions (1) 115

13

Functions
I can call spirits from the vasty deep.
Why so can I, or so can any man; but will they come
when you do call for them?

William Shakespeare, ‘King Henry IV, part 1’

Aims

The aims of this chapter are:–

• to introduce system supplied functions

• to extend to user defined functions

• to extend to statement functions

Introduction

Fortran provides a large number of functions, chiefly for common mathematical
evaluations. They are used in a straightforward way. If we take the common
trigonometric functions, sine, cosine and tangent, the appropriate values may be
calculated quite simply by

X=SIN(Y)
Z=COS(Y)
A=TAN(Y)

This is in rather the same way that we might say that X is a function of Y, or X
is sine Y. Note that the argument, Y, is in radians not degrees. These functions
are called intrinsic functions. A selection is given here:–

Function Action Example

INT conversion to integer J=INT(X)
REAL conversion to real X=REAL(J)
ABS absolute value X=ABS(X)
MOD remaindering I=MOD(K,L)

remainder when I divided by J
MAX maximum value X=MAX(A,B,C,D)

(at least 2 arguments) I=MAX(K,L)
MIN minimum value X=MIN(A,B,C,D)

(at least 2 arguments) I=MIN(K,L)
SQRT square root X=SQRT(Y)
EXP exponentiation Y=EXP(X)
LOG natural logarithm X=LOG(Y)
LOG10 common logarithm X=LOG10(Y)
SIN sine X=SIN(Y)
COS cosine X=COS(Y)
TAN tangent X=TAN(Y)
ASIN arcsine Y=ASIN(X)
ACOS arccosine Y=ACOS(X)
ATAN arctangent Y=ATAN(X)
ATAN2 arctangent(a/b) Y=ATAN2(A,B)

A complete list is given in Appendix E.

Note that some of these functions can take either real or integer arguments.
These are special generic type, which means that the type of the result is deter-
mined by the type of the arguments.

Chapter 13 Functions 117

You should not use variables which have the same name as the intrinsic func-
tions.

There are one or two other key points to note. Some of the intrinsic functions
have multiple arguments, e.g. MIN and MAX; these arguments must all be of
the same type.

You may also replace arguments for functions by expressions, e.g.

X = LOG(2.0)

or

X = LOG(ABS(Y))

or

X = LOG(ABS(Y)+Z/2.0)

Examples

This example uses only one function, the MOD (or modulus). It is used several
times, helping to emphasise the usefulness of a convenient, easily referenced
function. The program calculates the date of Easter for a given year. It is de-
rived from an algorithm by Knuth, who also gives a fuller discussion of its
importance of its algorithm. He concludes that the calculation of Easter was a
key factor in keeping arithmetic alive during the Middle Ages in Europe. Note,
that determination of the Eastern churches’ Easter requires a different algo-
rithm.

PROGRAM EASTER
INTEGER YEAR,METCYC,CENTRY,ERROR1,ERROR2,DAY
INTEGER EPACT,LUNA

C A PROGRAM TO CALCULATE THE DATE OF EASTER
PRINT *,’ INPUT THE YEAR FOR WHICH EASTER’
PRINT *,’ IS TO BE CALCULATED’
PRINT *,’ ENTER THE WHOLE YEAR, E.G. 1978 ’
READ *,YEAR

C CALCULATING THE YEAR IN THE 19 YEAR METONIC CYCLE-METCYC
METCYC = MOD(YEAR,19)+1
IF(YEAR.LE.1582)THEN

DAY = (5*YEAR)/4
EPACT = MOD(11*METCYC-4,30)+1

ELSE
C CALCULATING THE CENTURY-CENTRY

CENTRY = (YEAR/100)+1
C ACCOUNTING FOR ARITHMETIC INACCURACIES
C IGNORES LEAP YEARS ETC.

ERROR1 = (3*CENTRY/4)-12
ERROR2 = ((8*CENTRY+5)/25)-5

118 Functions Chapter 13

C LOCATING SUNDAY
DAY = (5*YEAR/4)-ERROR1-10

C LOCATING THE EPACT(FULL MOON)
EPACT = MOD(11*METCYC+20+ERROR2-ERROR1,30)
IF(EPACT.LT.0)EPACT=30+EPACT
IF((EPACT.EQ.25.AND.METCYC.GT.11).OR.EPACT.EQ.24)THEN

EPACT=EPACT+1
ENDIF

ENDIF
C FINDING THE FULL MOON

LUNA=44-EPACT
IF(LUNA.LT.21)THEN

LUNA=LUNA+30
ENDIF

C LOCATING EASTER SUNDAY
LUNA=LUNA+7-(MOD(DAY+LUNA,7))

C LOCATING THE CORRECT MONTH
IF(LUNA.GT.31)THEN

LUNA = LUNA – 31
PRINT *,’ FOR THE YEAR ’,YEAR,
PRINT *,’ EASTER FALLS ON APRIL ’,LUNA

ELSE
PRINT *,’ FOR THE YEAR ’,YEAR,
PRINT *,’ EASTER FALLS ON MARCH ’,LUNA

END

As well as noting the use of the MOD generic function in this program, it is
also worth noting the structure of the decisions. They are nested, rather like the
nested DO loops we met earlier. Note, however, that each IF block requires its
own ENDIF.

Reasons for functions

What kinds of reasoning lead to the adoption of functions in programs?

Duplication Very often we wish to do the same sort of thing repeatedly in a
program. For example, we may wish to solve sets of simultaneous equations,
add matrices together, or find the minimum and maximum value in a set of
data. Clearly, every time we wish to do this, we could include the appropriate
bits of program, but this may involve us in lots of rather boring duplication of
instructions. Not only do we have to include it lots of times, but the poor com-
piler has to examine it lots of times too. You shouldn’t feel too bad about the
compiler, but it does seem ludicrous to risk making errors in the duplication —
after all, any statement labels will have to be changed, and it is generally when
such changes are made that errors are introduced. So one reason for adopting
functions, or sub- programs is to avoid needless, and potentially dangerous,
duplication. This also has the effect of saving space.

Chapter 13 Functions 119

Modularity In breaking logically self-contained and thus distinct modules or
segments (solving sets of simultaneous equations, etc.), we are imposing a natu-
ral structure on the problem. We have already discussed problem solving, and
one key element is to reduce an apparently unmanageable problem to a series of
manageable chunks. As long as we can actually specify the steps, we have a
chance to solve the overall problem. Sub-programs assist in achieving modular-
ity, and can give each chunk a separate identity. Thus it is easier to visualise
the problem and its solution.

Extension We need functions in order to extend the range of operations avail-
able in Fortran. For example, Fortran 77 has no operators for vectors and
matrices — to do simple arithmetic on such structures we have to write a func-
tion.

Brevity There is perhaps one other guideline to offer before considering sub-
programs in more detail. The shorter a unit is, the more likely you are to see the
errors, either before you actually run the program, or later, when you are trying
to understand why it failed. Like all rules, this is not infallible, but it is best not
to make the sub-programs too elaborate.

Supplying your own functions

There are two stages here, firstly to define the function and secondly to refer-
ence or use it. The following defines a function:–

REAL FUNCTION FUN(X,Y,Z)
REAL X,Y,Z
FUN = X*Y**Z
END

where X is a local variable, FUN is function name, which obeys all the conven-
tions regarding type and length, and A,B,C are arguments. To use this function,
you reference or call it with a form like:–

V1 = FUN(A,B,C)

A complete program including this function is given below.

PROGRAM TRIAL
REAL A,B,C,V1
.
V1 = FUN(A,B,C)
.
END

REAL FUNCTION FUN(X,Y,Z)
FUN = X*Y**Z
END

120 Functions Chapter 13

The function has two important feature which distinguishes it from the PRO-
GRAM segment:–

• the type of the function — in this case real. Functions return val-
ues, and the values returned have to be of a specific type.

• the arguments — in this case X,Y,Z. Note that, in the call, we
have three arguments, and so too in the FUNCTION statement,
and that the arguments are matched in order. There must be a
one-to-one correspondence between the arguments, including their
type and whether they are arrays, vectors, or simple variables.

Functions are treated by the compiler as completely separate entities. They will
occur before or after (but never within) other programs or sub-programs, and
when they are referenced, the flow of control will pass to them. At the end of
the sub-program, control should usually be passed back to the calling routine.
The END statement in the function terminates the action of that function, and
the next statement to be executed will be the next in the calling routine. Con-
sider the following example:–

PROGRAM FRONT
INTEGER FACT,I,J
DO 1 I=–2,10

J=FACT(I)
PRINT 100,I,J

1 CONTINUE
100 FORMAT(1X,I4,’ FACTORIAL IS ’,I10)

END

INTEGER FUNCTION FACT(N)
INTEGER N,I
FACT=1

C
C THERE ARE THREE CASES.
C 1) N > 1 FACTORIAL EVALUATED
C 2) N = 0 OR N = 1 FACTORIAL IS 1
C 3) N < 0 FACTORIAL ILLEGAL
C

IF(N.LT.0)THEN
PRINT *,’ NEGATIVE VALUE FOR FACTORIAL’
PRINT *,’ NOT DEFINED’
FACT = 0

ELSE
DO 1 I = 2,N

FACT = FACT*I
1 CONTINUE

ENDIF
END

Chapter 13 Functions 121

There is another important feature. In a function called FACT, somewhere there
must be a variable FACT appearing on the left hand side of an equals sign.
Note that the type of FACT determines the type of the returned value.

What restrictions have been forced on us? Primarily, we can get only one an-
swer, a simple variable, returned as the result of setting something equal to that
function name (i.e. an explicit reference). Imagine that we wished to find the
maximum and minimum of a vector of data. Solving this through functions
actually requires two functions, e.g.

XMIN = VMIN(X,N)
XMAX = VMAX(X,N)

where VMIN and VMAX are the functions to find the minimum and maximum,
X is the vector of values and N is the number of values in X. If we look at the
actual code to calculate the values:–

REAL FUNCTION VMIN(V,N) REAL FUNCTION VMAX(V,N)
INTEGER I,N INTEGER I,N
REAL V REAL V
DIMENSION V(100) DIMENSION V(100)
VMIN = V(1) VMAX = V(1)
DO 1 I=2,N DO 1 I=2,N

IF(V(I).LT.VMIN)THEN IF(V(I).GT.VMAX)THEN
VMIN=V(I) VMAX=V(I)

ENDIF ENDIF
1 CONTINUE 1 CONTINUE

END END

There is clearly some duplication, and in a later chapter we will look at ways of
eliminating even this overlap.

There is another way of terminating the action of a function besides the END
statement. This is done using the RETURN statement. In each of the examples
above, a RETURN could have been inserted before the END statement. Equally
well however, the RETURN could be placed at any other logically appropriate
position. The examples above offer little scope for alternative positions for a
RETURN, but in more complex functions, this may be appropriate. This flexi-
bility stems from the possibility of regarding functions in two logically distinct
ways:–

• as an action you want carried out; in which case you END the
action;

• as a section of program code that you jump to and execute; in this
case you RETURN to the calling routine.

It is considered good practice to have only one exit route from a sub-program.
This is perhaps an over-zealous interpretation of the tenets of structured pro-

122 Functions Chapter 13

gramming, since it is often necessary to indicate an error condition in the func-
tion; manipulating the structure in order to ensure a single exit at the END
statement may impose a degree of perversity on the flow. Where RETURN is
associated with an error condition, there can be little to criticise.

The notion of functions, returning a single value through the function name,
would seem to preclude notification of errors. It is possible to return other val-
ues through the arguments. In other words, the arguments to the function may
also be used to transfer information from the function to the calling sub-pro-
gram, as well as the more conventional direction. In general terms, this may be
discouraged, but from time to time it is a useful feature. Later, a better structure
to encompass this possibility will be introduced.

Statement functions

The statement function is a very simplified form of the function. If it is possible
to compress the calculation required into a single statement (which might of
course take up several continuation lines), it may be expressed as a statement
function.

Such a function would occur within a program segment, immediately before the
first executable statement. This very simplified form may not reference an array
name (although it could reference an array element), and, if character variables
are passed to it, there can be no sub-string references (see Chapter 17).

Since the statement function is specified within a program segment, it may only
be used within that segment, and cannot be referenced from any other functions
or subroutines, unlike the intrinsic or other user-defined functions.

The following are examples of the statement function:–

CUBRT(A)=A**(1./3.)

IDAY(I,J,K)=3055*(J+2)/100–(J+10)/13*2-91
 1+(1–(I–1/4*4+3)/4+(I–1/100*100+99)/100
 2–(I–1/400*400+399)/400)*(J+10)/13+K

AREA(ANG,B,C)=B*C*SIN(ANG)*0.5

or

AREA(A,B,C)=((A+B+C)*(B+C–A*0.5)*(A+C–B*0.5)*
 1 (A+B–C*0.5))**0.5

The first of these statement functions, CUBRT, is self-explanatory. The second,
IDAY, requires a little more comment. IDAY calculates the day of the year on
which a particular date falls, given the year I, the month J (where January is 1,
February is 2, and so on), and the the last pair of functions calculate the area of

Chapter 13 Functions 123

a triangle; the first from the included angle ANG, and the sides A and B; the
second from the three sides A, B and C. This last function is rather clumsy, can
you see why?

The statement function is used as follows:–

PROGRAM FACTOR
REAL RESULT,PI,EN,R
PARAMETER (PI=3.14159265358)

C STIRL CALCULATES AN APPROXIMATION TO N! FOR LARGE N
STIRL(X)=SQRT(2.*PI)*X**(X+0.5)*EXP(-X)
.
.
EN=10.
R=7.

C NUMBER OF POSSIBLE COMBINATIONS THAT CAN BE FORMED WHEN
C R OBJECTS ARE SELECTED OUT OF A GROUP OF EN
C R!/N!(N-R)!

RESULT=STIRL(EN)/STIRL(R)*STIRL(EN-R)
.
.
END

Summary

• There are a large number of Fortran supplied functions (intrinsic functions)
which extend the power and scope of the language. Some of these functions are
of generic type, and can take several different types of argument. Others are
restricted to a particular type of argument.

• When the intrinsic functions are inadequate, it is possible to write user de-
fined functions. Besides expanding the scope of computation, such functions
help in problem visualisation and logical subdivision, may reduce duplication,
and generally help in avoiding programming errors.

• In addition to separately defined user functions, statement functions may be
employed. These are single statements which are used within a program seg-
ment.

• Although the normal exit from a user defined function is through the END,
other, abnormal, exits may be defined through the RETURN statement.

• Communication with a function is through the function name and the function
arguments. The function must contain a reference to the function name on the
left hand side of an assignment. Results may also be returned through the argu-
ment list.

124 Functions Chapter 13

Problems

1. In Chapter 10 there is a program which calculates calendar dates from year
and day within year. The statement function IDAY in this chapter reverses this
operation, to calculate day within year from calendar dates. Combine these two
elements in order to test their equivalence.

2. Type in and test the factorial example given in the chapter. The explicit
formula used for the evaluation of R!/N!(N-R)! is rather crude. Write a function
which improves on it.

3. Type in and test either the minimum or maximum example function. You
will need a program segment to use the function.

4. Improve on the statement function:–

 AREA(A,B,C)=((A+B+C)*(B+C-A*0.5)*(A+C-B*0.5)*
 1 (A+B-C*0.5))**0.5

for the area of a triangle, where A, B and C are the lengths of individual sides.
This need not be a statement function; test it. You might consider the situation
where the input is incorrect, and A, B and C could not represent a triangle.

5. Find out the action of the MOD function when one of the arguments is
negative. Write your own modulus function to return only a positive remainder.
Don’t call it MOD!

6. Create a table which gives the sines, cosines and tangents for 0 degrees to 90
degrees in 1 degree intervals. There are a few minor catches in this question.

Chapter 13 Functions 125

14

Making decisions (2)
Wilt thou still go down to destruction

William Blake, ‘Jerusalem’

Aims

The aims of this chapter are:–

• to introduce two other control structures that can be used both in
decision making and for the control of repetition

• the while loop

• the repeat until construct

Other control mechanisms

There are many problems that you will meet that cannot be solved with the
control mechanisms introduced so far. The two mechanisms introduced in this
chapter do not have a direct form, rather they have to be constructed from more
primitive forms. The two high level mechanisms are often written as:–

• while (expression) do (block of statements)

and

• repeat (block of statements) until (expression)

You should now be familiar with the ideas of both a logical expression, and of
a block of statements, so the above should pose no problems to you. Note that
the while construct may never be executed, and the repeat construct will always
be executed once. The while loop is implemented in Fortran as:–

label IF (logical expression) THEN
.
. block of statements
.
GOTO label

ENDIF

The following example shows a complete program using this construct.

PROGRAM FIND
C THIS PROGRAM PICKS UP THE FIRST OCCURRENCE
C OF A NUMBER IN A LIST.
C A SENTINEL IS USED, AND THE ARRAY IS 1 MORE
C THAN THE MAX SIZE OF THE LIST.

DIMENSION A(101)
INTEGER A,MARK
INTEGER END,I
READ (UNIT=1,FMT=*) MARK
READ (UNIT=1,FMT=*) END
READ(UNIT=1,FMT=*) (A(I),I=1,END)
I=1
A(END+1)=MARK

100 IF(MARK.NE.A(I))THEN
I=I+1
GOTO 100

ENDIF
IF(I.EQ.(END+1)) THEN

PRINT*,’ ITEM NOT IN LIST’
ELSE

PRINT*,’ ITEM IS AT POSITION ’,I
ENDIF
END

Chapter 14 Making Decisions (2) 127

The repeat until construct can be written in Fortran as:–

label CONTINUE
.
.
. Body of the loop
.
.

IF (expression) GOTO label

There are problems in most disciplines that require a numerical solution. The
two main reasons for this are that either the problem can only be solved nu-
merically, or that an analytic solution involves too much work. Solutions to this
type of problem often require the use of the repeat until construct. The prob-
lem will typically require the repetition of a calculation until the answers from
successive evaluations differ by some small amount, decided generally by the
nature of the problem.

Here is a program extract to illustrate this:–

PARAMETER(TOL=10E–6)
.

10 CONTINUE
.
.
CHANGE=
.

IF (CHANGE.GT.TOL) GO TO 10
.

The value of the tolerance is set here to 10E–6.

Examples

The function ETOX illustrates one use of the repeat until construct. The func-
tion evaluates e**x. This may be written as:–

1 + x/1! + x2/2! + x3/3! ...
or

 ∞
1 + Σ xn-1/(n-1)! (x/n)
 n=1

Every succeeding term is just the previous term multiplied by x/n. At some
point the term x/n becomes very small, so that it is not sensibly different from
zero, and successive terms add little to the value. The function therefore repeats
the loop until x/n is smaller than the tolerance. The number of evaluations is not
known beforehand, since this is dependent on x.

128 Making Decisions (2) Chapter 14

REAL FUNCTION ETOX(X)
REAL TERM,X,TOL
INTEGER NTERM
PARAMETER (TOL=0.001)
ETOX=1.0
TERM=1.0
NTERM=0

1 CONTINUE
NTERM=NTERM+1
TERM=(X/NTERM)*TERM
ETOX=ETOX+TERM

IF(TERM.GT.TOL)GO TO 1
END

Both types of loop are combined in this last example. The algorithm employed
here finds the zero of a function. Essentially, it finds an interval in which the
zero must lie; the evaluations on either side are of different sign. The while
loop ensures that the evaluations are of different sign, by exploiting the knowl-
edge that the incident wave height must be greater than the reformed wave
height (to give the lower bound). The upper bound is found by experiment,
making the interval bigger and bigger. Once the interval is found, its mean is
used as a new potential bound. The zero must lie on one side or the other; in
this fashion, the interval containing the zero becomes smaller and smaller, until
it lies within some tolerance. This approach is rather plodding and unexciting,
but is suitable for a wide range of problems.

This example is drawn from a situation where a wave breaks on an offshore
reef or sand bar, and then reforms in the near-shore zone before breaking again
on the coast. It is easier to observe the heights of the reformed waves reaching
the coast than those incident to the terrace edge.

Chapter 14 Making Decisions (2) 129

PROGRAM BREAK
REAL HI,HR,HLOW,HIGH,HALF,XL,XH,XM,D,TOL
PARAMETER (TOL=10E-6)

C PROBLEM - FIND HI FROM EXPRESSION GIVEN IN FUNCTION F
F(A,B,C)=A*(1.0-0.8*EXP(-0.6*C/A))-B

C HI IS INCIDENT WAVE HEIGHT (C)
C HR IS REFORMED WAVE HEIGHT (B)
C D IS WATER DEPTH AT TERRACE EDGE (A)

PRINT*,’ GIVE REFORMED WAVE HEIGHT, AND WATER DEPTH’
READ*,HR,D

C
C FOR HLOW- LET HLOW=HR
C FOR HIGH- LET HIGH=HLOW*2.0
C
C CHECK THAT SIGNS OF FUNCTION RESULTS ARE DIFFERENT
C

HLOW=HR
HIGH=HLOW*2.0
XL=F(HLOW,HR,D)
XH=F(HIGH,HR,D)

C BEGINNING OF WHILE
1 IF((XL*XH).GE.0.0) THEN

HIGH=HIGH*2.0
XH=F(HIGH,HR,D)
GOTO 1

ENDIF
C BEGINNING OF REPEAT UNTIL
2 HALF=(HLOW+HIGH)*0.5

XM=F(HALF,HR,D)
IF((XL*XM).LT.0.0)THEN

XH=XM
HIGH=HALF

ELSE
XL=XM
HLOW=HALF

ENDIF
IF(ABS(HIGH-HLOW).GT.TOL)GO TO 2

C END OF REPEAT UNTIL
PRINT*,’ INCIDENT WAVE HEIGHT LIES BETWEEN’
PRINT*,HLOW,’ AND ’,HIGH,’ METRES’
END

130 Making Decisions (2) Chapter 14

Summary

You have been introduced in this chapter to two more control structures. These
are the:–

• the while construct

and the

• the repeat until construct

These two constructs, together with the BLOCK IF, and IF THEN ELSEIF are
sufficient to solve a wide class of problems.

The repeat until and while are both made up from the more primitive IF and
GOTO statements. These latter two statements can be used in a variety of ways.
However, it is essential that you restrict yourself to a small set of well defined
structures. Unrestricted use of IF and GOTO statements can lead to a program
that looks like a bowl of spaghetti, where the GOTOs take you on a mystery
tour. The action of the program rapidly becomes very difficult to work out.
Once this has happened inserting new features, and correcting the program may
well become impossible. This will not be apparent at the start of programming,
but experience will teach you the hard way.

Problems

1. Rewrite the program for period of a pendulum. The new program should
print out the length of the pendulum, and period for lengths of the pendulum
from 0 to 100 cms in steps of 0.5 cms. The program should incorporate a
function for the evaluation of the period.

2. Using functions, do the following:–

• Evaluate n! from n=0 to n=10

• Calculate 76 factorial.

• Now calculate (x**n)/n!, with x=13.2 and n=20.

• Now do it another way.

3. The program BREAK is taken from a real example. In the particular prob-
lem, the reformed wave height was 1 metre, and the water depth at the reef
edge was 2 metres. What was the incident wave height? Rather than using an
absolute value for the tolerance, it might be more realistic to use some value
related to the reformed wave height. These heights are unlikely to be reported
to better than about 5 per cent accuracy. Wave energy may be taken as propor-
tional to wave height squared for this example. What is the reduction in wave
energy as a result of breaking on the reef or bar, for this particular case.

Chapter 14 Making Decisions (2) 131

4. What is the effect of using INT on negative real numbers? Write a program
to demonstrate this.

5. How would you find the nearest integer to a real number? Now do it another
way. Write a program to illustrate both methods. Make sure you test it for
negative as well as positive values.

6. The function ETOX has been given in this chapter. The standard Fortran
function EXP does the same job. Do they give the same answers? Curiously the
Fortran standard does not specify how a standard function should be evaluated,
or even how accurate it should be.

132 Making Decisions (2) Chapter 14

15

Error detection and correction
We know that the program is correct, because we designed it correctly.

M. A. Jackson, ‘Principles of Program Design’

Aims

The aims of this chapter are:–

• to introduce some of the common ways that errors get into pro-
grams

• to look at some of the ways the computer system can help in the
process of error detection and correction

Introduction

Errors are due to a wide variety of causes. They may include simple typing
errors, incorrect use of certain statements, logic errors etc. The computer system
can help you in a variety of ways in the error detection and correction process.

The computer system can help detect errors at two stages. These are:–

• At the compilation stage

The methods at this stage involve the selection of
compiler options, and the use of an up-to-date listing
of the program.

• At the execution stage

Again, the method generally depends on a choice of
compiler options, but now there may be the opportu-
nity to use another program, sometimes given the
name post-mortem dump, and on some systems
there is the possibility of using an interactive de-
bugger.

Facilities like those described below should be available on most systems.

The compilation process

In the first chapter it was stated that one of the things that a compiler does is to
take a program written in a high level language and produce a set of machine
level instructions that can be executed by the hardware. In fact, this is only one
of a possibly large number of things that a compiler can do. Let us now con-
sider some of the other functions of a compiler, particularly those which may
help in error detection and correction.

Compiler options

Error trace back

What this means is that when an execution error occurs, there will be code
added to your program that will try to work back from where the error caused
the program to blow up to where the error may have been generated. Note that
an error can occur quite early on in a program and take a considerable while
before it has a serious and noticeable effect.

Array checking

Cause array bounds to be checked. An array going out of bounds is one of the
most common errors in Fortran programming. For example, if a program calcu-
lates the index for an array reference, in order to place information into that
array, it is possible for the program to go outside the memory set aside for the

134 Error Detection and Correction Chapter 15

array. This means that the program could be over-writing itself. This kind of
error is not always trapped and diagnosed by Fortran compilers.

String checking

Turn on the checking of sub-string operations on character data. This kind of
error can be very difficult to find sometimes.

Post-Mortem Dump

Switch on the post-mortem dump. If your program goes wrong at execution
time another program will try and work out where your program went wrong.
This option requires the compiler generated symbol tables to be available. Sym-
bol tables are compiler generated files. They are used in a variety of ways at the
compilation stage. They can also be of use at the execution stage by other
programs. The contents of a symbol table may be all of the variables with a list
of the variable attributes, e.g. real, integer etc. These tables enable the post-
mortem dump program to come in after your program has gone wrong and give
you useful information regarding the state of your program at the time it went
wrong. Another file that needs to be available is the load or linker listing. This
is a listing file containing information about where variables etc. are actually to
be found in memory. When you reference an array, for example, there will be a
storage location associated in the linker listing.

Debug

Make available a run-time de-bugging environment. This enables your program
to be interrupted and values of variables to be printed out or even changed. The
beauty of this option is that no changes to the program are necessary, you
interact with your program through the de-bugging program. This facility is
simple yet powerful, and can save considerable amounts of time when de-bug-
ging large programs.

Listing options

The compiler generates a file, the contents of which are discussed in more
detail below, called a listing file. This information can be written to the termi-
nal or to a file. Whilst working at a terminal it is possible to write this
information to a file and then send the file to be printed.

When the compiler gives extra information and diagnostics it refers to the
source. Hence an up-to-date listing is essential. Most people do not generate
an up-to-date source listing each time they compile However, if you are trying
to find bugs in your program, it makes no sense at all not to work from an
up-to-date listing, reflecting the program at the time it went wrong. Often you
will make small changes which you think do not cause any problems.

Chapter 15 Error Detection and Correction 135

However, changing programs tends to make them go wrong, and you should
always work from an up-to-date listing when trying to find errors.

We would want the listing to contain at least

• the complete source

• a list of all variables functions etc with their type

• a cross reference of all variables and where they occur in the pro-
gram.

It is also useful with large programs if the listing has page numbering, and that
each function (or subroutine) starts on a new page — it makes the listing easier
to use, and locate information.

Optimise off

When developing programs there is no point getting the compiler to optimise
your program when there are going to be errors. Optimisation is considered
more generally in Chapter 21.

Summary

This chapter has looked at the kinds of facilities you could expect to be avail-
able when debugging programs.

There will probably be debugging aids available on your machine that have
direct counterparts to the ones mentioned above, and really it is up to you to
see what your system has to offer in this area.

Problems

1. Find out what options there are when compiling your program. In what way
are they similar to the ones mentioned in this chapter? In what ways are they
different?

136 Error Detection and Correction Chapter 15

16

Complex, double precision and logical
A messenger yes/no semaphore
her black/white keys in/out whirl of morse
hoopooe signals salvation deviously

Nathaniel Tarn, The Laurel Tree

Aims

The aims of this chapter are:–

• to review the variable types already introduced: real, integer, char-
acter

• to examine the other variable types available in Fortran: double
precision, complex and logical

• to introduce the concepts necessary to use logical expressions ef-
fectively; namely, logical variables, hierarchy of operations, the
truth table

Introduction

Fortran recognises a variety of variable types. You have already encountered
real, integer and character. Real variables are those which may take any numeri-
cal value, within the range of the machine, while integers may take only
integral, or whole number values. Characters, as their name suggests, contain
character information, which is not numerical at all. These three types of data
store or encode their information differently, so that the actual representation of
the information is quite different. Consider the following:–

REAL X
INTEGER I
CHARACTER*2 C
X=10.0
I=10
C=’10’

Although X, I and C each contain a 10, the machine perceives these values
rather differently. The following is an example of how one machine stores the
above values. We use octal (base 8) numbers to express the underlying bit
patterns. You don’t need to understand the following completely, just appreciate
that they are radically different.

CDC, 60 bit

Integer 10 = 00000000000000000012
Real 10.0 = 17235000000000000000
Character 10 = 34335555555555555555

There are 49 characters in the standard Fortran character set. You may, how-
ever, store any character that is available within the operating system character
set. This can vary considerably. Some older machines (CDC) use 6 bits to rep-
resent characters. This means that you can only have 64 characters available,
without having to resort to some more complicated scheme. Most machines
now use eight bits to represent characters, and this makes easily available the
two most common character sets, ASCII and EBCDIC. The ASCII character set
is given in appendix A. On most machines that use ASCII, there are 95 printing
characters, and on machines that use EBCDIC (IBM and Amdahl) you have
even more! Why this difference? The Fortran character set is defined for form-
ing variable names, for numerical information, and for the operators which are
needed. However, any pattern which can be legitimately expressed on the ma-
chine may be legitimately stored into a character variable. There are no checks
performed on the contents of such variables.

If you say nothing to the contrary, reals and integers will take their types from
the first character of the variable name; integers begin with either I, J, K, L, M
or N, while reals begin with any other alphabetic character. You can over-ride

138 Complex, double precision and logical Chapter 16

this implicit typing by declaring given variables to be REAL or INTEGER, as
we have tried to do in the preceding chapters, e.g.

REAL A2,INDEX
INTEGER INCH,AGE

Any other variable type must be declared explicitly. In Fortran, up to six char-
acters are allowed for variable names.

There is another way of over-riding the default typing, through the IMPLICIT
declaration. This allows you to specify the type to be taken by all variable
names beginning with a particular letter or range of letters:

IMPLICIT REAL(K-R)
IMPLICIT INTEGER (A)
IMPLICIT CHARACTER (C-E,X)

would make all variables beginning with K, L, M, N, O, P, Q and R real
variables; those beginning A would be integer, while those whose names had
the initial letter C, D, E and X would be characters. Elsewhere, default typing
would still be in operation. The IMPLICIT statement may be used for the other
variable types to be mentioned in this chapter.

Double Precision

The double precision variable type is an extension to the real variable type and
reflects the fact that we are dealing with a digital machine which has only a
limited precision. At the top end of the range of scientific machines (Cray and
CDC) 64 and 60 bits are used respectively to represent reals. This means that
1.00 000 000 000 01 is different from 1.0. On a smaller word size machine
(e.g. 48-bit, 32-bit, 16-bit) the two numbers would not be distinguishable. In
order to accommodate some of these potential problems of different word size,
and sometimes just to increase precision (necessary with certain algorithms),
we can extend the number of bits used to represent a real number. Double
precision on a CDC or Cray gives 120 or 128 bits respectively. This is rarely
used, but is occasionally required. However, double precision used with a 32-bit
machine would give similar accuracy to the 60-bit CDC word, or 64-bit Cray
word. Double precision will be necessary on smaller word length machines in
most applications. Note that double precision is only applicable to real num-
bers. There is no concept of double precision for integers.

In order to use double precision you must declare it explicitly:

DOUBLE PRECISION A1,A2
. . .
A1=A2**2

Chapter 16 Complex, double precision and logical 139

All the functions and operators which work with real will work with double
precision, but, as always, be careful when you mix types in performing calcula-
tions.

Reading and writing double precision values is done in exactly the same way
that you read and write any other real number — through the E and F formats.

Complex

This variable type reflects a change in the nature of the data – the COMPLEX
data type, where we can store and manipulate complex variables. Unless you
are an engineer, or one of various varieties of mathematician, you won’t find
this particularly useful. Complex numbers are defined as having a ‘real’ and
‘imaginary’ part; i.e.

a = x + iy

where i is the square root of –1.

They are used heavily to solve a limited range of problems in certain disci-
plines, and they are not supported in many programming languages as a base
type. To use this variable type we have to write the number as two parts, the
real and imaginary elements of the number, for example

COMPLEX U
U=(1.0,2.0)

represents the complex number 1+i2. Note that the complex number is enclosed
in brackets. We can do arithmetic on variables like this, and most of the intrin-
sic functions like LOG, SIN, COS etc. accept complex data type as argument.
However, note that any user-defined functions which return a complex would
have to be of the form:

COMPLEX FUNCTION OMEGA(U)

or something similar. All the usual rules about mixing different variable types,
like reals and integers, also apply to complex. Complex numbers are read in
and written out in a similar way to real numbers, but with the provision that, for
each single complex value, two format descriptors must be given. You may use
either E or F formats (or indeed, mix them), as long as there are enough of
them. Although you use brackets around the pairs of numbers in a program,
these must not appear in any input, nor will they appear on the output.

Fortran has a number of functions which help to clarify the intent of mixed
mode expressions. The functions REAL, DBLE, CMPLX and INT can be used
to ‘force’ any variable to real, double precision, complex or integer type. Thus

140 Complex, double precision and logical Chapter 16

INTEGER I
DOUBLE PRECISION A
I=1
A=DBLE(I)

will convert an integer variable or value into a double precision variable or
value. In fact, in the extract above,

A=I

would have had the desired effect too. However it is generally regarded as good
practice to use the first form, as it makes explicit exactly what is meant.

Where this set of functions becomes valuable is when we have more compli-
cated expressions to evaluate, where we might be concerned that the arithmetic
might be done in mixed type, with results which were not truly anticipated;

A=I/J

will give integer arithmetic in the division, while

A=REAL(I)/REAL(J)

would do the division in real arithmetic. Note however that the following will
not do the I/J in real arithmetic.

A=REAL(I/J)

CMPLX is a little different, since, as we have already seen, it can take two
arguments. When it does, they must both be of the same type, integer, real or
double precision. When they are double precision, only the first ‘half’, i.e. the
single precision real part is used. There is no such thing as double precision
complex. When only one argument is present, it is assumed to be the ‘real’ part,
and the imaginary part is set to zero.

Remember that INT always returns the ‘truncated’ part of the number, remov-
ing the parts after the decimal point. Thus we must think carefully about its
effect on negative numbers.

Logical

Often we have situations where we need ON/OFF, TRUE/FALSE or YES/NO
switches, and in such circumstances we can use LOGICAL type variables: e.g.

LOGICAL FLAG

Logicals may take only two possible values, as shown following

Chapter 16 Complex, double precision and logical 141

FLAG=.TRUE.

or

FLAG=.FALSE.

Note the full stops, which are essential. With a little thought you can see why
they are needed. You will already have met some of the ideas associated with
logical variables from IF statements.

IF(A.EQ.B) THEN
.

ELSE
.

ENDIF

The logical expression (A.EQ.B) returns a value true or false, which then deter-
mines the route to be followed; if the quantity is true, then we execute the next
statement, else we take the other route.

Similarly, the following example is also legitimate:

LOGICAL ANSWER
ANSWER=.TRUE.
.
.
IF (ANSWER) THEN

.
ELSE

.
ENDIF

Again the expression IF (ANSWER) is evaluated; here the variable ANSWER
has been set to .TRUE., and therefore the statements following the THEN are
executed. Clearly, conventional arithmetic is inappropriate with logicals. What
does 2 times true mean? (very true?). There are a number of special operators
for logicals:

.NOT. which negates a logical value (i.e. changes true to
false or vice versa)

.AND. logical union

.OR. logical intersection

To illustrate the use of these operators, consider the following program extract:

142 Complex, double precision and logical Chapter 16

LOGICAL A,B,C
A=.TRUE.
B=.NOT.A

C (B now has the value ‘false’)
C=A.OR.B

C (C has the value ‘true’)
C=A.AND.B

C (C now has the value ‘false’)

To gauge the effect of these operators on logicals, we can consult a truth table:–

X1 X2 .NOT.X1 X1.AND.X2 X1.OR.X2

true true false true true
true false false false true
false true true false true
false false true false false

As with arithmetic operators, there is an order of precedence associated with the
logical operators.

.AND. is carried out before

.OR. and .NOT.

In dealing with logicals, the operations are carried out within a given level,
from left to right. Any expressions in brackets would be dealt with first. The
logical operators are a lower order of precedence to the arithmetic operators, i.e.
they are carried out later. A more complete operator hierarchy is therefore:

expressions within brackets
exponentiation
multiplication/division
addition/subtraction
relational logical (.GT. .GE. .LT. .LE. .EQ. .NE.)
.AND.
.OR. and .NOT.

Although you can build up complicated expressions with mixtures of operators,
these are often difficult to comprehend, and it is generally more straightforward
to break ‘big’ expressions down into smaller ones, whose purpose is more read-
ily appreciated.

Historically, logicals have not been in evidence extensively in Fortran pro-
grams, although clearly there are occasions on which they are of considerable
use. Their use often aids considerably in making programs more modular and

Chapter 16 Complex, double precision and logical 143

comprehensible. They can be used to make a complex section of code involving
several choices much more transparent by the use of one logical function, with
an appropriate name. Logicals may be used to control output, e.g.

LOGICAL DEBUG
.
DEBUG=.TRUE.
.
IF(DEBUG) PRINT *,’LOTS OF PRINTOUT’

ensures that, while de-bugging a program you have more output. Then, when
the program is ‘correct’, run with DEBUG=.FALSE.

Note that Fortran does try to protect you while you use logical variables. You
cannot do this:

LOGICAL UP, DOWN
UP=DOWN+.FALSE.

or

LOGICAL A2
REAL OMEGA
DIMENSION OMEGA(10)
.
A2=OMEGA(3)

The compiler will note that this is an error, and will not permit you to run the
program. This is an example of strong typing, since only a limited number of
predetermined operations are permitted. The real, integer, complex and double
precision variable types are much more weakly typed (which helps to lead to
the confusion inherent in mixing variable types in arithmetic assignments).

Since logicals may take only the values .TRUE. and .FALSE., the possibilities
in reading and writing logical values are clearly limited. The L format allows
logicals to be input and output. On input, if the first non-blank characters are
either T or .T, the logical value .TRUE. is stored in the corresponding list item;
if the first non-blank characters are F or .F, then .FALSE. is stored. (Note
therefore that reading, say, TED and FAHR in an L4 format would be accept-
able.) If the first non-blank character is not F, T, .F or .T, then an error message
will be generated. On output, the value T or F is written out, right justified,
with blanks (if appropriate). Thus,

LOGICAL FLAG
FLAG=.TRUE.
PRINT *, FLAG, .NOT.FLAG

100 FORMAT(2L3)

would produce

144 Complex, double precision and logical Chapter 16

T F

at the terminal.

Assigning a logical variable to anything other than a .TRUE. or .FALSE. value
in your program will result in errors. The ‘shorthand’ forms of .T, .F, F and T
are not acceptable in the program.

Typing with functions

Most of the mathematical functions will take any type of argument (excluding
logical and character), but there are cases where this is a little absurd. Integer is
not an appropriate argument for some functions, and should not be used. Al-
though a good compiler will tell you when you have made errors in typing, not
all compilers are so helpful. It is best to try to develop a defensive style where
you depend as little as possible on the compiler interpreting complicated or
abstruse statements.

With user-defined functions we need to have the function name of the correct
type (integer, real, double precision, complex, logical or character). In the case
of real and integer we can let default typing take over, through the first charac-
ter of the function name, but for the others we must use a structure like:

LOGICAL FUNCTION NOMORE(A,B)
REAL A,B
READ(5,FMT=10,END=1)A,B

10 FORMAT(2F10.4))
NOMORE=.FALSE.
RETURN

1 NOMORE=.TRUE.
END

However it is good practice to explicitly type all variables to avoid potential
errors.

Summary

In addition to reals and integers, Fortran recognises two other types of numeri-
cal data — double precision and complex.

• DOUBLE PRECISION doubles the number of bits which a real
number uses, thus extending the precision. The actual precision
obtainable depends on the characteristics of the machine being
used.

• COMPLEX is used to store and manipulate complex numbers
those with a real and imaginary part.

• There are standard functions which allow conversion between the
numerical data types — DBLE, CMPLX, REAL and INT.

Chapter 16 Complex, double precision and logical 145

Another type of data — logical — is also recognised. A LOGICAL variable
may take one of two values — true or false.

• There are special operators for manipulating logicals .NOT.,
.AND. and .OR..

• Logical operators have a lower order of precedence than any oth-
ers.

Any user defined functions which return these data types through the function
name must provide the type explicitly on the FUNCTION statement, e.g.

LOGICAL FUNCTION FLAG(A)
DOUBLE PRECISION FUNCTION ADD(X,Y)
COMPLEX FUNCTION CSINH(Z)

Problems

1. Why are the full stops needed in a statement like A = .TRUE.?

2. Generate a truth table like the one given in this chapter.

3. Write a logical function, which will read in numerical data from the terminal,
but will ‘flag’ any data which is negative, and will also turn these negative
values into positive ones. Find the largest value as well.

4. Write a program to read in an arbitrary number of numbers, using a function
called MORDAT to detect if there is more data.

5. The program used in chapter 12 which calculated the roots of a quadratic had
to abandon the calculation if the roots were complex. You should now be able
to remedy this, remembering that it is necessary to declare any complex vari-
ables. Instead of raising the expression to the power 0.5 in order to square root
it, use the function SQRT. If you manage this to your satisfaction, try your
skills on the roots of a cubic (see the problems in chapter 12).

146 Complex, double precision and logical Chapter 16

17

Characters
These metaphysics of magicians,
And necromantic books are heavenly;
Lines, circles, letters and characters;

Christopher Marlowe, ‘The Tragical History of Doctor Faustus’

Aims

The aims of this chapter are:–

• to extend the ideas about characters introduced in earlier chapters

• to demonstrate that this enables us to solve a whole new range of
problems in a satisfactory way

Introduction

Character information is of a fundamentally different type to numerical infor-
mation. There are no concepts of arithmetic associated with the manipulation of
characters. The character variable is strongly typed.

The basic unit is an individual character — any character which is available on
your keyboard. We will restrict ourselves to the Fortran character set, that is:

the alphanumerics: A–Z and 0–9

the operators: + – / *

the punctuation: , . : space () = ’ $

Any of these can be a character. Because the Fortran standard wished to make
character manipulation and processing general across a wide range of machines,
it was necessary to define a special variable type, CHARACTER. One impor-
tant consequence of this is that it is not possible to store information other than
character information in this variable type (no more than you would expect to
hold a real number in a logical variable). You will remember that it is syntacti-
cally correct to say, e.g.

A=B

where A and B are real, complex, double precision or integer, and no matter
what combination there is, something will happen (or rather, will be allowed to
happen). However, if either of A or B is a character variable, the other must be
too. Remember that the integer 2 and the character 2 are not the same as far as
Fortran is concerned.

We may declare our character variables

CHARACTER A, STRING, LINE

Notice that there is no default typing of the character variable, and we can use
any convenient name within the normal Fortran conventions. In the declaration
above, each character variable would have been permitted to store one charac-
ter. This is limiting, and, to allow character strings which are several units long,
we have to add a piece of information

CHARACTER A*10, STRING*16, LINE*80

This indicates that A holds 10 characters, STRING holds 16, and LINE holds
80. If all the character variables in a single declaration contain the same number
of characters, we may abbreviate the declaration to

CHARACTER*80 LIST, STRING, LINE

But we cannot mix both forms in the one declaration. We can now assign data
to these variables, as follows:–

148 Characters Chapter 17

A=’FIRST ONE ’
STRING=’A LONGER ONE ’
LINE=’THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG’

The delimiter apostrophe (’) is needed to indicate that this is a character string
(otherwise the assignments would have looked like invalid variable names).

This instantly raises the problem ‘How do I get an apostrophe into my character
string?’ The way chosen in Fortran is to represent a single apostrophe within a
character string by two consecutive apostrophes, e.g.

STRING=’ARTHUR’’S PROGRAM’

Note that we do not use ", the double quote, which is not part of the defined
character set anyway. Since each pair of apostrophes within a character string
counts only as a single character, we can have a situation like:

CHARACTER PRIME*1
PRIME=’’’’

Although it looks rather quaint, this is quite straightforward, and, under the
right circumstances might be quite useful. The first and last apostrophes are the
delimiters of the string, and so contribute ‘nothing’ to the string itself. The pair
of apostrophes is considered to be a single character which will be stored in a
character variable PRIME.

We can read and write character variables through the A format.

CHARACTER STRING*16, A*10
READ (UNIT=5,FMT=’(A)’) STRING

is equivalent to

READ(UNIT=5,FMT=100) STRING
100 FORMAT(A)

and also to

CHARACTER FORM*3
FORM=’(A)’
.
READ(UNIT=5,FMT=FORM)STRING

Note that, in using the first form, it is necessary to ‘delimit’ the formal ele-
ments of the format in primes to say, in effect, that this is a character string.
The READ statements would allow us to read in a character variable of 16
characters from logical unit 5. Similarly

WRITE(UNIT=6,FMT=’(A)’) STRING

or

Chapter 17 Characters 149

WRITE(UNIT=6,FMT=101) STRING
101 FORMAT(A)

would allow us to write this string out. Note that a statement like

READ(UNIT=5,FMT=10) A,STRING
10 FORMAT(2A)

would read A of length 10, and STRING of length 16, although the format
itself only indicates that two character variables are being read, and has nothing
to say about their lengths. The length information is implicit to the variables
themselves. The lengths are fixed in the declaration of the character variables.
This seems to indicate that we are restricted in what we can do with characters,
since there seems to be some limitation on sizes. This is not true however.
There are manipulations we can perform on character strings which makes it a
very flexible variable type indeed.

The first manipulator is a new operator — the concatenation operator //. With
this operator we can join two character variables to form a third, as in

CHARACTER FIRST*5, SECOND*5, THIRD*10
FIRST=’THREE’
SECOND=’BLIND’
.
.
THIRD=FIRST//SECOND
.
THIRD=FIRST//’MICE’

Where there is a discrepancy between the created length of the concatenated
string and the declared lengths of the character strings, truncation will occur.
For example

THIRD=FIRST//’ BLIND MICE’

will only append the first five characters of the string ‘ BLIND MICE’ – that is
‘ BLIN’, and THIRD will therefore contain ‘THREE BLIN’.

What would happen if we assigned a character variable of length ‘n’ to a string
which was shorter than n? e.g.

CHARACTER C2*4
C2=’AB’

The remaining two characters are considered to be blank, that is, it is equivalent
to saying

C2=’AB ’

150 Characters Chapter 17

However, while the strings ‘AB’ and ‘AB ’ are equivalent, ‘AB’ and ‘ AB’
are not. In the jargon, the character strings are always left justified, and the
unset characters are trailing blanks.

If we concatenate strings which have ‘trailing blanks’, the blanks, or spaces, are
considered to be legitimate characters, and the concatenation begins after the
end of the first string. Thus

CHARACTER*4 C2,C3
CHARACTER JJ*8
C2=’A’
C3=’MAN’
JJ=C2//C3
PRINT*, ’THE CONCATENATION OF ’,C2,’ AND ’,C3,’ IS’
PRINT*,JJ

would appear as

THE CONCATENATION OF A AND MAN GIVES

A MAN

at the terminal.

Sometimes we need to be able to extract parts of character variables — sub-
strings. The actual notation for doing this is a little strange at first, but it is very
powerful. To extract a sub-string we must reference two items;

• (i) the position in the string at which the sub-string begins,

 and

• (ii) the position at which it ends.

e.g.

STRING=’SHARE AND ENJOY’

We may extract parts of this string

BIT=STRING(3:5)

would place the characters ‘ARE’ into the variable BIT. This may be manipu-
lated further

BIT1=STRING(2:4)//STRING(9:9)
BIT2=STRING(5:5)//STRING(3:3)//STRING(1:1)//STRING(15:15)

Note that to extract a single character we reference its beginning position and
its end (i.e. repeat the same position), so that

STRING(3:3)

Chapter 17 Characters 151

gives the single character ‘A’. The sub-string reference can cut out either one of
the two numerical arguments. If the first is omitted, the characters up to and
including the reference are selected, so that

SUB=STRING(:5)

would result in SUB containing the characters ‘SHARE’. When the second ar-
gument is omitted, the characters from the reference are selected, so that

SUB=STRING(11:)

would place the characters ‘ENJOY’ in the variable SUB. In these examples it
would also be necessary to declare STRING, SUB, BIT, BIT1 and BIT2 as
CHARACTER type, of some appropriate length.

Character variables may also form arrays.

CHARACTER*10 A
DIMENSION A(20)

sets up a character array of twenty elements, where each element contains ten
characters. In order to extract sub-strings from these array elements, we need to
know where the array reference and the sub-string reference are placed. The
array reference comes first, so that

DO 1 I=1,20
FIRST=A(I)(1:1)

1 CONTINUE

places the first character of each element of the array into the variable FIRST.
The syntax is therefore ‘position in array, followed by position within string’.

Any argument can be replaced by a variable:

STRING(I:J)

This offers interesting possibilities, since we can, for example, strip out blanks
from a string

CHARACTER*80 STRING, STRIP
INTEGER IPOS,I,LEN
IPOS=0
DO 1 I=1,LEN

IF(STRING(I:I).NE.’ ’) THEN
IPOS=IPOS+1
STRIP(IPOS:IPOS)=STRING(I:I)

ENDIF
1 CONTINUE

PRINT*,STRING
PRINT*,STRIP

152 Characters Chapter 17

Character functions

There are special functions available for use with character variables: INDEX
will give the starting position of a string within another string. If, for example
we were looking for all occurrences of the string ‘GEOLOGY’ in a file, we
could construct something like

CHARACTER L*80
INTEGER I
.

1 READ (*,END=10,FMT=’(A)’) L
I=INDEX(L,’GEOLOGY’)
.

GO TO 1
10 CONTINUE

There are two things to note with this function. Firstly, it will only report the
first occurrence of the string in the line; any later occurrences in any particular
line will go unnoticed, unless you account for this in some way. Secondly, if
the string does not occur, the result is zero.

LEN provides the length of a character string. This function is not immediately
useful, since you really ought to know how many characters there are in the
string. However, as later examples will show, there are some cases where it can
be useful. Remember that trailing blanks do count as part of the character
string, and contribute to the length.

The next group of functions need to be considered together. They revolve
around the concept of a collating sequence. In other words, each character used
in Fortran is ordered as a list, and given a corresponding ‘weight’. No two
weights are equal. Although Fortran has only 49 defined characters, the ma-
chine you use will generally have more; 95 printing characters a typical
minimum number. On this type of machine the weights would vary from zero
to 94. There is a defined collating sequence, the ASCII sequence, which is
likely to be the default. The parts of the collating sequence which are of most
interest are fairly standard throughout all collating sequences.

In general, we are interested in the numerals (0–9), the alphabetics (A–Z) and a
few odds and ends like the arithmetic operators (+ – / *), some punctuation (.
and ,) and perhaps the prime. As you might expect, 0–9 carry successively
higher weights (though not the weights 0 to 9), as do A to Z. The other odds
and ends are a little more problematic, but we can find out the weights through
the function ICHAR. This function takes a single character as argument, and
returns an integer value. The ASCII weights for the alphanumerics are as fol-
lows:–

0–9 48–57
A–Z 65–90

Chapter 17 Characters 153

One of the exercises is to determine the weights for other characters. The re-
verse of this procedure is to determine the character from its weighting, which
can be achieved through the function CHAR. CHAR takes an integer argument
and returns a single character. Using the ASCII collating sequence, the alphabet
would be generated from

DO 1 I=65,90
PRINT*,CHAR(I)

1 CONTINUE

This idea of a weighting may then be used in four other functions:–

Function Action

LLE lexically less than or equal to
LGE lexically greater than or equal to
LGT lexically greater than
LLT lexically less than

In the sequence we have seen before, A is lexically less than B; i.e. its weight
is less. Clearly, we can use ICHAR and get the same result. For example

IF(LGT(’A’,’B’)) THEN

is equivalent to

IF(ICHAR(’A’).GT.ICHAR(’B’)) THEN

but these functions can take character string arguments of any length. They are
not restricted to single characters. Although the functions look a little like the
logical operators, they must be used as functions, in the manner shown.

These functions provide very powerful tools for the manipulation of characters,
and open up wide areas of non-numerical computing through Fortran. Lots of
text formatting and word processing applications may now be tackled (conven-
iently ignoring the fact that lower case characters may not be available).

Remember that any functions you write which return character results must be
explicitly declared as character type on the function statement, e.g.

CHARACTER FUNCTION OMEGA(A,B)
CHARACTER OMEGA*10, A*5, B*5
.
OMEGA=A//B
.
END

154 Characters Chapter 17

Just to show how you might wish to use a character variable which is given a
variable length, the previous example might be re-written

CHARACTER FUNCTION OMEGA(A,B)
CHARACTER*10 OMEGA
CHARACTER *(*) A,B
INTEGER LA,LB
.
.
LA=LEN(A)
LB=LEN(B)
IF(LA+LB.LE.10) THEN

OMEGA=A//B
ELSE

OMEGA=’TOO LONG’
ENDIF
.
.
END

The statement

CHARACTER *(*) A,B

indicates that we do not know the lengths of A and B, although they will have
been set in the calling routine(s). Note the strange syntax here, where the sec-
ond asterisk must be contained within brackets. The function also uses the LEN
function, just to filter out those occasions where the combined length of the
strings A and B is greater than 10.

Example

One convenient application of character variables is in creating simple graphs at
the terminal. These can never be very accurate, but they can be quick and infor-
mative.

PROGRAM DIAGRM
REAL X,Y,XMIN,YMIN,XMAX,YMAX,XW,YW
DIMENSION X(10),Y(10)
INTEGER I,ILEN,JLEN,N, IPOS, JPOS
CHARACTER*40 DIAG(20)
PARAMETER (ILEN=20,JLEN=40)
OPEN(UNIT=6,FILE=’OUTPUT’)

C GETTING THE DATA IN
WRITE(UNIT=6,FMT=104)
READ *,N
WRITE(UNIT=6,FMT=101) N
READ *,(X(I),Y(I),I=1,N)
WRITE(UNIT=6,FMT=102)
READ *,XMIN,XMAX

Chapter 17 Characters 155

WRITE(UNIT=6,FMT=103)
READ *,YMIN,YMAX

C CALCULATING SCALING CONSTANTS
XW = (XMAX-XMIN)/(JLEN-1)
YW = (YMAX-YMIN)/(ILEN-1)

C INITIALISE THE CHARACTER STRING TO ALL BLANKS
DO 1 I=1,ILEN

DIAG(I)=’ ’
1 CONTINUE

DO 2 I=1,N
JPOS=(X(I)-XMIN)/XW+1
IPOS=(Y(I)-YMIN)/YW+1

C ELIMINATING POINTS OUTSIDE THE DIAGRAM
IF(IPOS.LT.1.OR.IPOS.GT.ILEN)THEN

WRITE(UNIT=6,FMT=100) X(I),Y(I)
ELSEIF(JPOS.LT.1.OR.JPOS.GT.JLEN)THEN

WRITE(UNIT=6,FMT=100) X(I),Y(I)
ELSE

C THESE ARE INSIDE
DIAG(21-IPOS)(JPOS:JPOS)=’*’

ENDIF
2 CONTINUE
C NOW WRITE OUT THE COMPLETED DIAGRAM

DO 3 I=1,ILEN
WRITE(UNIT=6,FMT=’(1X,’’:’’,A)’) DIAG(I)

3 CONTINUE
WRITE(UNIT=6,FMT=’(1X,40(’’-’’))’)

100 FORMAT(’ POINT OUT OF RANGE ’,2F10.4)
101 FORMAT(’ GIVE ’,I5,’ PAIRS OF POINTS,X-VALUE,Y-VALUE’)
102 FORMAT(’ GIVE MAXIMUM AND MINIMUM FOR X-VALUES’)
103 FORMAT(’ GIVE MAXIMUM AND MINIMUM FOR Y-VALUES’)
104 FORMAT(’ GIVE NUMBER OF PAIRS FOR PLOTTING’)

END

One of the points to note in this program is the way in which we make sure that
all the graph points lie within the plotting area. Trying to address points outside
this area can pose problems. Note also that an x-axis and a y-axis are printed on
the plot.

There are many problems that require the use of character variables. These
range from the ability to provide simple titles on reports, or graphical output, to
the provision of a natural language interface to one of your programs, i.e. the
provision of an English-like command language. Software Tools, Kernighan
and Plauger contains many interesting uses of characters in Fortran.

156 Characters Chapter 17

Summary

• Characters represent a different data type to any other in Fortran, and as a
consequence there is a restricted range of operations which may be carried out
on them.

• A character variable has a length which must be assigned in a CHARACTER
declaration statement.

• Character strings are delimited by apostrophes. Within a character string, the
blank is a significant character.

• Character strings may be joined together (concatenated) with the // operator.

• Sub-strings, occurring within character strings, may be also be manipulated.
There are a number of functions especially for use with characters — INDEX,
LEN, CHAR, ICHAR, LLE, LGE, LGT and LLT.

Problems

1. Suggest some circumstances where PRIME=’’’’ might be useful.

2. Write a program to write out the weights for the Fortran character set.

3. Use the INDEX function in order to find the location of all the strings ’IS’ in
the following data;

IF A PROGRAMMER IS FOUND TO BE INDISPENSABLE, THE BEST
THING TO DO IS TO GET RID OF HIM AS QUICKLY AS POSSIBLE.

4. Find the ‘middle’ character in the following strings. Do you include blanks
as characters? What about punctuation?

PRACTICE IS THE BEST OF ALL INSTRUCTORS. EXPERIENCE IS A
DEAR TEACHER, BUT FOOLS WILL LEARN AT NO OTHER.

5. In English, the order of occurrence of the letters, from most frequent to least
is:–

E, T, A, O, N, R, I, S, H, D, L, F, C, M, U, G, Y, P, W, B, V, K, X, J, Q, Z.

Use this information to examine the two files given in appendix B (one is a
translation of the other) to see if this is true for these two extracts of text. The
second text is in medieval Latin (c. 1320). Note that a fair amount of compres-
sion has been achieved by expressing the passage in Latin rather than modern
English. Does this provide a possible model for information compression?

6. A very common cypher is the substitution cypher, where, for example, every
letter A is replaced by (say) an M, every B is replaced by (say) a Y, and so on.
These encyphered messages can be broken by reference to the frequency of
occurrence of the letters (given in the previous question). Since we know that
(in English) E is the most commonly occurring letter, we can assume that the

Chapter 17 Characters 157

most commonly occurring letter in the encyphered message represents an E; we
then repeat the process for the next most common and so on. Of course, these
correspondences may not be exact, since the message may not be long enough
to develop the frequencies fully. However, it may provide sufficient information
to break the cypher. The file given in Appendix C contains an encoded mes-
sage. Break it. Clue — ‘Pg Fybdujuvef jo Tdjfodf’,Jorge Luis Borges.

7. The simple graph plotting program given in the chapter could be improved
by adding titles, by making the calculation of minima and maxima automatic,
and perhaps by identifying places where two points fall on the same plotting
location. Try to implement some of these enhancements.

158 Characters Chapter 17

18

Subroutines
A man should keep his little attic stacked with all the furniture he is likely to
use, and put the rest away in the lumber room of his library, where he can get
it if he wants.

Sir Arthur Conan Doyle, Five Orange Pips.

Aims

The aims of this chapter are:–

• to introduce another way of breaking problems down into small
self-contained pieces

• to illustrate the use of subroutines

• to introduce the idea of a library of subroutines

• to make you aware of the expertise that you can draw on and the
time you can save by the use of these subroutine libraries

Introduction

You have already seen how one can use functions to help break a problem
down into manageable pieces. Fortran provides another more general way of
doing this using a SUBROUTINE.

The structure is slightly different from that of a function,

SUBROUTINE MULT(X,Y,Z,FUN)
REAL X,Y,Z,FUN
FUN=X*Y**Z
END

and the reference is also slightly different:–

PROGRAM SIMPLE
REAL A2,A,B,C,FN,X
.
CALL MULT(A,B,C,FN)
.
A2=FN/X
.
END

Notes

1. The type of MULT has no effect here.

2. The order of the arguments is again significant.

3. The names used in the calling routine have no effect in the sub-program. A
variable A in the calling routine has no relationship whatsoever with a variable
A in the subroutine or function.

4. We have to introduce a new variable (FN) to hold the result.

5. We must not name any variables MULT. This will cause great confusion.

6. To use the subroutine we CALL it.

The fourth condition (introduction of the variable FN) is not restrictive, since
we could actually write

PROGRAM SIMPLE
REAL A2,A,B,C,X
.
.
CALL MULT(A,B,C)
.
A2=C/X
.
END

160 Subroutines Chapter 18

SUBROUTINE MULT(X,Y,Z)
REAL X,Y,Z
Z=X*Y**Z
END

While functions must have at least one argument, subroutines can have any
number, including none at all. We might ask whether such a routine would be
of any value. If you return to examine some of the intrinsic functions, you may
recall that some of them could take variable numbers of arguments. You cannot
write such functions in standard Fortran.

Making subroutines (and functions) more general

Lets return to the functions for finding the minimum and maximum; these two
functions could be combined into a single subroutine, such as

SUBROUTINE MINMAX(V,N,VMAX,VMIN)
REAL V,VMIN,VMAX
INTEGER I,N
DIMENSION V(100)
VMIN=V(1)
VMAX=VMIN
DO 1 I=2,N

IF(V(I).GT.VMAX) THEN
VMAX=V(I)

ELSEIF(V(I).LT.VMIN) THEN
VMIN=V(I)

ENDIF
1 CONTINUE

END

To use this sub-program, we use the statement

CALL MINMAX(X,N,XMAX,XMIN)

where XMAX and XMIN are the results, and the other arguments are as before.
When you use subroutines more extensively, you will begin to discover that it
is irritating to have to dimension arrays to a fixed amount in the subroutine, as
in

REAL X,SUM
DIMENSION X(100)
.
CALL ADD(X,SUM)
.
END
SUBROUTINE ADD(A,TOTAL)
REAL A,TOTAL
DIMENSION A(100)
INTEGER I

Chapter 18 Subroutines 161

TOTAL=0.0
DO 1 I=1,100

TOTAL=TOTAL+A(I)
1 CONTINUE

END

The argument X is an array dimensioned to 100 in the calling routine, and is
again dimensioned to 100 in the subroutine. This is not very general, and there
are ways in which the subroutine can be made more flexible. It is possible to
dimension the array to an arbitrary length N, as long as N does not exceed the
size of the equivalent array in the calling routine, e.g.

REAL X,SUM
DIMENSION X(100)
CALL ADD(X,SUM,100)
.
SUBROUTINE ADD(A,TOTAL,N)
REAL A,TOTAL
INTEGER N
DIMENSION A(N)
TOTAL=0.0
DO 1 I=1,N
.

We have acquired an extra argument, but increased the scope of the routine
greatly, since we may now use it in other situations, such as

DIMENSION X(100),Y(10),Z(50)
.
.
CALL ADD(X,XSUM,100)
.
.
CALL ADD(Y,YSUM,10)
.
.
CALL ADD(Z,ZSUM,50)
.
.
etc

The routine we began with could not have handled this ‘adjustable’ array size,
and would have plodded away to 100 each time. Although we discussed sub-
programs earlier in terms of avoiding duplication, you can see that the
similarity between the sequence of events need not be exact. The problem
started out as ‘add 100 numbers together’, but ended up as ‘add N numbers
together’. Of course, the argument on the CALL which determines the array
length in the subroutine need not be a number, but could be a variable, as in:–

162 Subroutines Chapter 18

NX=100
NY=10
CALL ADD(X,XSUM,NX)
CALL ADD(Y,YSUM,NY)

It is important to notice that we may only use this technique when space has
already been allocated for the arrays. A structure like

SUBROUTINE ADD2(X,Y,N)
REAL X,Y,Z
INTEGER I,N
DIMENSION X(N),Y(N),Z(N)
DO 1 I=1,N

Z(I)=X(I)+Y(I)
1 CONTINUE

is not permitted, since Z is not an argument of the subroutine and has had no
dimension associated with it to set aside space for its contents. The setting aside
of space is accomplished at compile time, while this routine would expect Z to
be set up at run time (‘dynamically’). Essentially, Fortran is a static language,
which sets aside all space required at the stage before running.

Similarly, you cannot increase the size of an array beyond the limit it was
originally given in the DIMENSION statement.

It is often the case that we wish to manipulate arrays and for example, join
them together to make larger entities. We might have two vectors, A (of length
100) and B (of length 50), which we wish to join together to form C (of length
150). If we generalise this to make A of length M and B of length N, the length
of C will become M+N. Unfortunately, Fortran does not permit a DIMENSION
statement to have an argument like M+N in a sub-program. It does however
permit the use of the asterisk to take care of situations like this.

SUBROUTINE JOIN(A,M,B,N,C)
REAL A,B,C
INTEGER I,M,N
DIMENSION A(M),B(N),C(*)
DO 1 I=1,M

C(I)=A(I)
1 CONTINUE

DO 2 I=1,N
 C(I+M)=B(I)

2 CONTINUE
END

Again, C must have been dimensioned large enough in the calling routine.

One of the problems of using subroutines with variable length arrays stems
from the way in which Fortran ‘holds’ or stores arrays in memory. The array is

Chapter 18 Subroutines 163

not held as a two (three, ... n) dimensional structure, but as a vector. This
implies that a general structure like

DIMENSION X(20,20)
.
CALL SUB1(X,10)
CALL SUB1(X,15)
CALL SUB1(X,16)
.
END
SUBROUTINE SUB1(A,N)
DIMENSION A(N,N)

will not work. The array carried into the subroutine will not be a ten by ten
matrix, then a fifteen by fifteen, and so on. The array will be stored as a single
vector, taken column-wise from the twenty by twenty array. To get around this
problem, we must take the ‘true’ dimension of the array into the subroutine:

.
CALL SUB1(X,20,10)
.
END
SUBROUTINE SUB1(A,LENGTH,N)
DIMENSION A(LENGTH,LENGTH)

An alternative mechanism, which avoids using some of the extra arguments, is
through the use of the asterisk. The asterisk may be used in place of the last
dimension of the array:

DIMENSION B(20,10)
N=20
.
CALL SUB2(B,N)
END
SUBROUTINE SUB2(C,M)
DIMENSION A(M,*)

This will really only be useful for ‘rectangular’ arrays, i.e. where the maximum
dimension bounds are not the same.

The asterisk also becomes more valuable in its use with characters. When it is
necessary to take character strings into subroutines, we may have situations
where we do not know the string lengths. Of course, we could have used the
LEN function to find out, but we may also use something like

SUBROUTINE STRING(X)
CHARACTER*(*) X
PRINT*,X

164 Subroutines Chapter 18

Note the use of the brackets around the asterisk, which indicates the adjustable
bound.

Subroutines may call other subroutines, but not recursively. If you don’t know
what recursion is, you won’t even notice.

Example

Solving sets of simultaneous equations can be programmed fairly readily, espe-
cially using a technique known as Gaussian elimination; essentially this is the
same method that you would use (perhaps almost intuitively) to solve for one
term, and then ‘back substitute’.

SUBROUTINE SOLVE(A,B,N,X)
INTEGER J,K,L,N
REAL A,B,X
DIMENSION A(N,N),B(N),X(N)

C
C SOLVES A SET OF N SIMULTANEOUS EQUATIONS, OF THE FORM
C A(1,1)*X(1) + A(1,2)*X(2) + A(1,3)*X(3) = B(1)
C A(2,1)*X(1) + A(2,2)*X(2) + A(2,3)*X(3) = B(2)
C
C A(N,1)*X(1) + A(N,2)*X(2) + A(N,3)*X(3) = B(N)
C
C INPUT
C THE MATRIX A CONTAINS THE COEFFICIENTS ON THE LHS
C THE VECTOR B CONTAINS THE VALUES ON THE RHS
C OUTPUT
C THE VECTOR X RETURNS THE VALUES AS ABOVE
C NOE THAT THE CONTENTS OF A AND B ARE CHANGED
C

DO 1 K=1,N
DO 2 J=K+1,N

Y=-A(J,K)/A(K,K)
DO 3 L=K,N

A(J,L)=A(J,L)+Y*A(K,L)
3 CONTINUE

B(J)=B(J)+Y*B(K)
2 CONTINUE
1 CONTINUE
C START THE BACK SUBSTITUTION

X(N)=B(N)/A(N,N)
DO 4 J=N-1,1,-1

Y=B(J)
DO 5 K=J+1,N

Y=Y-A(J,K)*X(K)
5 CONTINUE

X(J)=Y/A(J,J)
4 CONTINUE

END

Chapter 18 Subroutines 165

It must be noted that although this method is easy to program it can be numeri-
cally unstable in the presence of rounding errors. Gaussian elimination should
therefore only be performed with pivots. Ralston and Rabinowitz provides fur-
ther information for the interested reader.

Available subroutine libraries

One reason we suggested for using sub-programs was to avoid duplication.
Very often, parts of the problems we wish to tackle have already been solved
by others. There seems little point in re- inventing the wheel if we can use the
accumulated knowledge and expertise of other wheel-wrights.

There are a number of ‘libraries’ of routines available which will allow access
to this pool of expertise.

One notable library, available in all British Universities, is the NAG, or Nu-
merical Algorithms Group, library. This is a collection of literally hundreds of
routines (some are functions, some are subroutines), all of which may be called
from a Fortran program. The general section headings are given Appendix D,
and indicate the areas which are currently available. The NAG library contains
a great many routines, arranged in some kind of useful way. A good problem to
solve, to prove you can program, is arranging real numbers in order, either
ascending or descending. It is not too difficult to do this, but doing it effi-
ciently, either in terms of time or storage, is a problem which has taxed many
minds, and the NAG library contains a variety of routines to do this well e.g.
routine M01CAF, which may be used in the following way:

PROGRAM NAGEX1
REAL A
INTEGER IFAIL,N
DIMENSION A(10)
N=10
IFAIL=0
READ *,A
CALL M01CAF(A,N,’DESCENDING’,IFAIL))
PRINT *,A
END

This takes a vector A of length 10, and sorts it into descending order. Within a
program, use of a NAG routine is the same as any other subroutine or function.

Note that the name of the sub-program is a little strange, and is not the friendly
mnemonic which we might expect. However, there is a good reason for this.
The first two letters indicate the chapter in the manual; the next two digits are a
reference within the chapter; the next two letters identify the particular sub-pro-
gram, while the last letter (F) indicates the language (Fortran). The form of the
name is close to the standard naming procedure used by the Association for
Computing Machinery (ACM), CERN (European Organisation for Nuclear Re-

166 Subroutines Chapter 18

search) etc., and is termed the ‘modified SHARE index’. When using subrou-
tine libraries, it is likely that you will have to allocate some work-space for the
routines. In this example the algorithm used is very fast and requires no extra
space, though for most routines you do. The size of these arrays is determined
by the size of the other arrays which actually store the data and results.

Most subroutine libraries have an error parameter of some description. We will
discuss the one that NAG provide to give a concrete idea of the use of a pa-
rameter like this. It is called the IFAIL parameter. For most routines the IFAIL
parameter has two purposes:–

• (i) to allow you to specify the action to be taken if an error is
detected

and

• (ii) to inform you of the success or failure of the routine.

Thus for (i), you must assign a value to IFAIL before entering the routine. Note
that IFAIL is reset by the routine, so you cannot pass a value, but must use a
variable name, which has previously been given a value. You may set either a
‘hard fail option’, or a ‘soft fail option’. Hard fail (setting IFAIL to zero) in-
structs the program to terminate if an error is detected and an appropriate error
message is printed together with the value of IFAIL; soft fail (IFAIL=1) in-
structs the routine to ‘recover’, and return to the calling routine – the value
given to IFAIL on returning will reflect the nature of the error. If you select the
soft fail option, a successful call would be represented by an IFAIL value of
zero. If you use the soft fail, you must test the value of IFAIL, or an error may
go undetected, and your subsequent results may be suspect. This is not needed
if the ‘soft fail’, (IFAIL=–1) option is taken because an error message will be
printed before recovering.

NAG have a policy of continuous improvement of their algorithms, and make
changes from version to version. In theory, each new version will contain the
elements of the previous ones. Extensive documentation is available for this
library.

Plotting

Another important area which is usually addressed through libraries is the ex-
tension of Fortran to output devices like graphics terminals, Tektronix display
units, or pen plotters. You probably have access to some sort of plotting device.
These may be controlled through Fortran programs which use subroutine librar-
ies like UNIRAS, NAG Graphics or something similar. We will only describe a
very simple conceptual plotter here.

First, assume that there is a notion of position; the pen (or light beam, or what-
ever is creating the ‘vector’) has a position. Secondly, when the pen is moved,

Chapter 18 Subroutines 167

we may either move with the pen down (when a line would be drawn), or with
the pen up (when no line would be made); at the end of a movement, the pen
has a new position. The next movement will be made from this position to the
next ‘new’ one. A possible subroutine call would be:

CALL PLOT(X1,Y1,LINE)

where X1 and Y1 are the cartesian co-ordinates of the ‘next’ point — the one
to which the pen will move. By definition the pen already has a position from
which to move. The variable LINE specifies whether a line is being drawn or
not (perhaps a logical or integer variable). With this power to move, to create
lines or not, very be very many more subroutines than this movement primitive
in a plotting library. They will allow you to write text (for titling information),
write numbers (for axis scaling), draw all sorts of symbols (for graphs), and
much more.

Algorithm libraries

Another way in which you can draw on the expertise of others is by the use of
published algorithms. One of the best known is the one published by the Asso-
ciation for Computing Machinery and often called TOMS (for Transactions on
Mathematical Software). This library may well be available in machine readable
form at your site.

Summary

• One key way of making programs more modular is through the use of sub-
routines, where a single task, or group of related tasks may be tackled.

• Subroutines are invoked differently from functions. They are CALLed; how-
ever the same notions of communication through the argument list applies. The
name of the subroutine does not return a value, and is used merely as a conven-
ient mnemonic.

• Subroutines using arrays may be made more general by permitting the arrays
to take variable length bounds; this applies only to arrays which appear in the
argument list. Arrays may be dimensioned to an integer variable, which is also
an argument, or to an asterisk. Only the last array bound may be given the
value asterisk.

• There is no restriction on the number of arguments to a subroutine, and the
apparent type of the name has no relevance.

• Subroutine libraries are widely available and permit use of the expertise of
others. Such libraries also allow access to more specialised input and output
devices.

• There are also many published algorithms which provide a basis for special-
ised subroutines and functions.

168 Subroutines Chapter 18

Problems

1. Find the eigen-values of the following matrix. You don’t even have to know
what eigen-values are to do this one.

5 4 1 1
4 5 1 1
1 1 4 2
1 1 2 4

2. Write a sub-program to concatenate the character vector A and the character
vector B, leaving a space between them. Place the result in C. Is it general, and
if not, what are the restrictions?

3. The subroutine SOLVE contains some defects; it will only solve N by N sets
of equations, where N is the same value in the calling routine. Can you correct
this? Test the subroutine on the following examples:

2x + 3y + 4z = 11
6x + 5y + 10z = 43
5x – 11y + 8z = 20

and

2x + 5y + 3z – w = 0
6x – y + z + 3w = 4
4x + y – 2z + 3w = 23
0x + 7y + 0z – w = 19

This last example reveals another inadequacy of the subroutine. This may pro-
vide a good chance to test out any facilities like ‘post-mortem dump’. Can you
solve the problem, or failing that, provide an error detection mechanism?

4. Many of the programs presented in this book could be written as subroutines.
The plotting program in the previous chapter could make a useful subroutine.
Turn it into a subroutine, giving attention to the dimensions of the finished
diagram. Large diagrams are fine on line-printers, but awkward on small vdu
screens, or over very slow lines (30 characters per second). Take these consid-
erations into account.

Chapter 18 Subroutines 169

19

Files
It is a capital mistake to theorise before one has data.

Sir Arthur Conan Doyle.

Aims

The aims of this chapter are:–

• to review the process of file creation at a terminal

• to introduce more formally the idea of the file as a fundamental
entity

• to show how files can be declared explicitly by the OPEN and
CLOSE statements

• to introduce the arguments for the OPEN and CLOSE statements

• to demonstrate the interaction between the READ/WRITE state-
ments and the OPEN/CLOSE statements

Introduction

While you are working interactively, on a terminal, you will be working with
files; files that contain programs, files that contain data, and perhaps files that
are libraries. The file is fundamental to most modern timesharing operating sys-
tems, and almost all operations are carried out on files.

In this chapter we are going to extend some of your ideas about files. Let us
consider what kinds of files you have met so far:–

1) Text files. These are the source of your programs, docu-
ments, reports etc. They can be examined by printing them.
They can also be transmitted round a computer system fairly
easily. A file sent to a printer is a text file.

2) Data files. These are generally a variation on 1. They can
be printed in much the same way as a text file.

3) Binary, object or relocatable files. Typically these will be
the output from a compiler. They cannot be printed. To exam-
ine files like these you need to use special utilities, provided
by most operating systems.

The above categories account for the majority of files that you have met so far.

Let us now consider how we can manipulate files using Fortran. They will
generally be data files, and will thus be text files. They can therefore be listed
etc., using standard operating system commands.

Files in Fortran

These allow us to associate a logical unit number with any arbitrary file name
during the running of the program, e.g.

OPEN(UNIT=1,FILE=’DATA’)

would associate the name DATA and the logical unit 1, so that

READ(UNIT=1,FMT=100) X

would read from DATA. Note that for this to work on some operating systems
the file DATA must have been ‘local’ to the session; we specify the name as a
character variable. If we then wanted to use a subsequent data file, we could
have another OPEN statement, but if we want to use the same logical unit
number, we must first CLOSE the file.

CLOSE(UNIT=1,FILE=’DATA’)

before we

OPEN(UNIT=1,FILE=’DATA2’)

Chapter 19 Files 171

In this way we can keep referring to logical unit 1, but change the file associ-
ated with it. This can be useful in interactive programs where we wish to
analyse different sets of data, e.g.

PROGRAM FLEX
REAL X
CHARACTER*7 WHICH
OPEN(UNIT=5,FILE=’INPUT’)

1 WRITE(UNIT=6,FMT=’(’’ DATA SET NAME, OR END’’)’)
READ(UNIT=5,FMT=’(A)’) WHICH
IF(WHICH.EQ.’END’) STOP
OPEN(UNIT=1,FILE=WHICH)
READ(UNIT=1,FMT=100) X
.
.
.
CLOSE(UNIT=1,FILE=WHICH)

GO TO 1
END

This last example also introduces the STOP statement. We have already en-
countered RETURN in functions, where they provide the potential for alternate
exits from the sub-program. In a main program, RETURN is obviously inappro-
priate, but we may still require termination of the process at locations other
than the END. The STOP statement may be employed, since it has the effect of
terminating the program (wherever it occurs). The STOP statement may be
placed in sub-programs, where it will also terminate the program.

One useful feature of the OPEN statement is that there are other parameters.
What would happen, for example, if the file was not there? To take care of this
you can use the ERR= and STATUS= keywords.

OPEN(UNIT=1,FILE=’DATA’,ERR=10,STATUS=’OLD’)

If an error occurs during the attempt to open the file, control will transfer to the
statement labelled 10. It is not sufficient that we use only the ERR= keyword in
order to trap the absence of a file. We must also use the STATUS parameter.
STATUS can be equated to one of four values,

STATUS=’OLD’
STATUS=’NEW’
STATUS=’SCRATCH’
STATUS=’UNKNOWN’

If we use STATUS=’OLD’ and the file is not present, this will cause an error
condition and control will pass to whichever label is equated to ERR; if we say
STATUS=’NEW’, we are creating a new file and it should not matter whether a
file of the same name is present; ’SCRATCH’ does not concern us, while ’UN-
KNOWN’ implies that, if a file of the correct name is present use it, if not

172 Files Chapter 19

create a ’NEW’ one. If you omit the STATUS= keyword altogether, the value
’UNKNOWN’ will be assumed.

OPEN(UNIT=1,FILE=’DATA’,ERR=10,STATUS=’OLD’)
READ(UNIT=1,FMT=100) X
.
.
STOP

10 WRITE(UNIT=6,FMT=200) DATA
200 FORMAT(’ Error in opening file, ’,A)

END

Although this ERR= is rather like a GOTO, it is much more restricted, in that it
is only available when an error occurs.

Summary of options on OPEN

UNIT The unit number of the file to be opened.

IOSTAT Integer variable given the value zero if there are no errors.

ERR In the event of an error control is transferred to the statement with this
label.

FILE Character expression specifying the file name.

STATUS Character expression specifying the file status. It can be one
of’OLD’, ’NEW’, ’SCRATCH’or’UNKNOWN’.

ACCESS Character expression specifying whether the file is to be used in a
sequential or random fashion. Valid values are’SEQUENTIAL’(the default), or
’RANDOM’.

FORM Character expression specifying one of:–

‘FORMATTED’ if the file is opened for formatted i/o.

’UNFORMATTED’ if the file is opened for unformatted i/o.

’BUFFERED’ if the file is opened for buffered i/o.

The default is formatted for sequential access files and unformatted for direct
access files. If the file exists, FORM must be consistent with its present charac-
teristics.

RECL Integer variable or constant specifying the record length for a direct
access file. It is specified in characters for a formatted file, and words for an
unformatted file.

BLANK Character expression having one of the following values:–

’NULL’ if blanks are to be ignored on reading. Note that a
field of all blanks is treated as 0!

Chapter 19 Files 173

’ZERO’ if blanks are to be treated as zeros.

Some of the terms on the OPEN statement will be strange. We have introduced
terms like ‘unformatted’, ‘direct access’, ‘sequential’, ‘random’ and ‘buffered’
without explanation. These terms are included for completeness, and it is prob-
able that you will never need to use the facilities they provide. All file handling
described in this book concerns sequential formatted files (the default type).

Summary

• The file is a fundamental entity within the operating system.

• Files may be manipulated in Fortran by associating their name with a unit
number. All subsequent communication within the program is through the unit
number.

• When a file is opened there are a large number of equatable keywords which
may be employed to establish its characteristics.

•The default file type used in Fortran is sequential formatted, but several other
esoteric types may be used.

Problems

1. Write a program to write the first 500 integers to a file using formatted i/o.
Put 10 values on a line, with a blank as the first character of the line, and 8
columns allowed for each integer, with two spaces between each integer field.

Now write a program to read this file into an array, and write the numbers in
reverse order over the original data. i.e. the data file now contains the first 500
numbers in descending order.

Now modify the first program to add the next 500 integers to the same file, so
that the file now comprises the first 500 numbers in descending order, and the
next 500 numbers in ascending order.

2. To write and maintain a crude data base of student details, we might do the
following; create separate files for each year — CLAS1, CLAS2, CLAS3, or
COF84, COF85, COF86, and so on. In either case there is an unchanging pre-
fix, CLAS or COF, and a variable suffix, which identifies membership within
the overall group. On each of the files we may wish to record details like;
name, date of birth, address, courses taken, etc. Such files will require updating
as details change, or as errors are noted. Write (or sketch out) a program which
would select and maintain such records, and which would allow corrected files
to be printed out. While you might feel that the most appropriate tool for this
job is an editor, you might find this too powerful a tool. An editor can leave
files in a sorry state. Naturally, any program like this should be helpful (so
called ‘user friendly’). Is this sort of information sensitive enough to require
security checks and passwords?

174 Files Chapter 19

20

Common and data statements
If we do not find anything pleasant,
at least we shall find something new.

Voltaire, Candide

Aims

The aims of this chapter are:–

• to introduce another way of providing communication between
program, subroutines and functions

• to show how this mechanism can be used to enforce structure on
the program

• to introduce a convenient mechanism for initialising data

Introduction

The communication between sub-programs has been so far through the argu-
ment list, e.g.

FUNCTION EVALUE(X,Y)

or

SUBROUTINE SOLVE(A,B,N,C)

There is one other way of sharing data between sub-programs — through the
COMMON block.

A COMMON block is declared together with any other declarative statements
at the beginning of the sub-program, e.g.

PROGRAM EXAMPLE
REAL X
DIMENSION X(100)
COMMON X
.
END
SUBROUTINE PASS1
REAL Y
DIMENSION Y(100)
COMMON Y
.
.
END

This has the effect of allowing the data stored in array X in the main program
segment to be used as array Y in the subroutine. This particular form of the
COMMON is known as ‘blank’ COMMON, since the common block has not
been given a name. We can assign names to common blocks, so that we can
distinguish them easily, e.g.

COMMON /A/ X(100)
COMMON /XRAY/ Y(20),B(30),Z
COMMON /HEAT/ A(25)

and so on. We may also write a blank common block as:

COMMON // XARRAY(25)

The name of a common block is only restricted in the sense that it must have
no more than 6 alphanumeric characters. There is no concept of typing with
common block names, and you may have all sorts of data types in the one
common block, with one exception! If any character variable or character array

176 Common and Data Statements Chapter 20

is included in a common block, then all the entities in the block must be of type
character.

The communication is effected through the sequence of the variables: a section
of memory is set aside, so that, for example:–

COMMON /DATA1/A(50),B(50)

sets aside 100 locations to a common block called DATA1. When DATA1 is
declared in a sub-program, those 100 locations are available:

COMMON /DATA1/X(10),Y(10),Z(80)

The first ten locations (from vector A in the calling routine), are usable in the
array named X, the next ten in the array Y and so on. The fact that these had
different descriptions in the calling routine is of no significance to Fortran.

Although we may redefine the ‘structure’ of the common we must not redefine
its length. Once a named common block has been set up, each reference to it in
a sub-program must be of that size. This does not apply to blank common.

We must be careful with common blocks, especially when we note that any-
thing in a named common block may become undefined when we exit or leave
a sub-program using END or RETURN, unless we use the SAVE declaration.

Essentially, this would only apply to the case where we return to a routine
which does not have the named common block in it; consider the following:–

 PROGRAM ANALYS

 COMMON /B/ X(100)

 SUBROUTINE PASS1

 COMMON /A/ I,J,K

 COMMON /B/ Y(100)

 SUBROUTINE PASS2

 COMMON /A/ L,M,I

 SUBROUTINE COMPUT

 COMMON /B/ Z(100)

Chapter 20 Common and Data Statements 177

Program ANALYS has ‘calls’ to the subroutines PASS1 and
COMPUT, and PASS1 has a ‘call’ to subroutine PASS2. This
is summarised diagrammatically below:–

The common block B is safe. It is in the main program, so we never return to a
routine which does not contain it. But, although subroutines PASS1 and PASS2
can use the common block A, when eventually PASS1 completes its action and
returns control to the main routine, i.e. to program ANALYS, the entire com-
mon block A becomes undefined, so that if the program should call PASS1
again, those values would be unavailable.

The SAVE statement is a declarative statement which may be used to retain the
values in the common block;

SUBROUTINE PASS1
COMMON /A/B(100),C(25),L,J,K
SAVE /A/

would have the effect of retaining the values of any variables in common block
A when we return to the main program. If we used PASS1 again, the values
would be available.

In fact, SAVE is more general still, we may use it to retain the values of arrays
and variables when a return takes place; otherwise the values would become
undefined.

DIMENSION X(100)
SAVE X,A,B

would retain the values of the array X and the two simple variables.

It is sensible to put variables that are related into the same common block, and
to choose a meaningful name.

COMMON is also often used with another important declaration — the DATA
statement. The DATA statement is used to provide initial values for variables
and arrays; e.g.

DATA COEFF1 /10.382/

This value of COEFF1 is set up at compile time. It is even more flexible, since
we can initialise whole arrays in a very simple way;

DIMENSION X(100)
DATA X/100*0.0/

This is a form of the implied DO loop. DATA allows us to initialise arrays or
simple variables. Variables in DATA statements are only initialised once —
either when the program is compiled, or when the program is loaded, depending

178 Common and Data Statements Chapter 20

on the system that you work on. Thus, the DATA statement is not executable,
unlike the assignment statement. You may initialise character strings thus

CHARACTER STR1*6, STR2*3
DATA STR1/’ABCDEF’/
DATA STR2/’ABC’/

Now, you might think that it would be very useful to combine DATA and
COMMON statements together, so that you could do something like:

COMMON /COEFF1/COEFF1
DATA COEFF1/10.382/

but this can only be done in one special program segment — the BLOCK
DATA sub-program, and only for named COMMON:

BLOCK DATA SETUP
COMMON /CAT/X,Y,Z
COMMON /DOG/L
DATA X,Y/1.0,2.0/
DATA Z,L/201.23,3/
END

Note that we can initialise any variables that occur in a named COMMON
statement, but only in this special sub-program which contains no RETURN or
STOP statement. This routine is never executed. It is never CALLed or refer-
enced directly in the rest of the program. It is used only at compile time to
initialise, and it is not used at run time at all. You may have several BLOCK
DATA sub-programs, each with a different name. If you have only one, it need
not have a name at all.

COMMON and SAVE are declarative statements, and therefore join the other
declaratives at the ‘beginning’ of the sub-program. DATA belongs to a post-
declaration, pre-execution limbo, and may be sandwiched between the two
groups. However, it does not matter where the DATA statement comes (pro-
vided it is not among the declarative specifications). The DATA causes
initialisation at the compile stage, as described above, and its position within
the execution statements is irrelevant.

Summary

• Common blocks allow data to be shared between sub-programs.

• Character data must be in its own common block.

• The COMMON declaration merely sets aside a section of memory with an
identifier (the COMMON block name). You may access this section of memory
however you wish in other sub-programs, through the COMMON block name.

Chapter 20 Common and Data Statements 179

• On return to a sub-program, the contents of a common block may become
undefined. Blank common never becomes undefined within a program. The
SAVE declaration will safeguard named COMMON.

• Data may be initialised in DATA statements; these are not executable state-
ments, but are set up at ‘load’ time.

• You may not use the DATA statement to set up the contents of a COMMON
block, except in the BLOCK DATA sub-program.

Problems

1. Write a program that uses a DATA statement to initialise an integer variable.
This integer variable must be in a common block. The program should contain
a main program, block data sub-program, and two subroutines. The main pro-
gram should print out the value of the integer variable initialised in the DATA
statement. Each of the two subroutines should also print out the value of this
same variable. Each subroutine just prints out the value of the integer variable.
The main program should

• print out the value of the variable

• call subroutine 1

• print out the value of the variable again.

• call subroutine 2

• print out the value of the variable again

What do you notice about the values printed out? Alter the variable to be of
type character, and run the program again. You will need to alter the DATA
statement also. What do you notice now?

2. Some of the previous programs, subroutines and functions could benefit from
using the DATA statement to initialise some information. For example, the co-
efficients of the Bessel function in the problems in Chapter 12 could usefully
be initialised in this way (either as simple variables, or as vectors in an implied
DO). Do this.

180 Common and Data Statements Chapter 20

21

Optimisation
We may define our basic attitude to optimization in two rules:

Rule 1: Don’t do it.
Rule 2: Don’t do it yet.

M. A. Jackson, ‘Principles of Program Design’

Aims

The aims of this chapter are:–

• to introduce some reasons for NOT optimising a program

• if the reasons are not sufficient then to show some ways in which
you can optimise a program

Introduction

Optimisation is rarely done for the right reasons. As you are now aware, writ-
ing programs is not easy, and re-writing a program in such a way as to make it
‘faster’, but less easy to comprehend, is dangerous. This is because finding
bugs in the program will now become much harder, and any time gained by a
shortening of the computer’s time will be more than offset by extra effort on
your part.

The first thing to consider is whether the solution to the problem is the most
appropriate. Sometimes this is not that obvious. Consider the case of a physicist
and mechanical engineer approaching the problem of designing a combustion
engine independently of one another. There will be knowledge at the disposal
of the physicist that is not at the disposal of the engineer and vice versa. Each
will solve the problem in a different way and neither is ‘correct’; both are
appropriate depending on the exact requirements of the problem. So there may
be a more appropriate way of solving the problem. The thing to consider is
whether the problem can be solved in another way. Human beings are very
reluctant to throw away something that they have done and start again. You
must force yourself to do this if circumstances demand it.

Assuming that you do not have to redesign the whole solution, the next thing to
do is find out where in your program most time is spent. There should be
profiling tools available to give you some idea here. Lacking adequate tools
one should make an educated guess. Note that, this guess may be totally erro-
neous, and, if you are not sure, then obtain some help.

It may turn out at this stage that the program spends most of its time in the
Fortran run time systems or in operating systems routines. If this is the case,
you have two options; firstly to abandon the project, or secondly consider how
you can improve on the Fortran run time library, or operating system. This is
not an easy task. You may well have to learn a considerable amount about an
area which is completely unrelated to your problem.

Let us assume now that we have identified the problem as being in your pro-
gram. What do we do next?

Some of the ‘improvements’ relate to the structure of the computer, but a few
are sufficiently general that they should be borne in mind when programming:

• eliminate redundant instructions and expressions within state-
ments, and within sequences of statements

• evaluate loop invariant expressions outside the loop

• where a subscripted variable is used several times, equate it to a
temporary variable

182 Optimisation Chapter 21

Different operations take different times on a computer. This table (from Heath
and Meek, 1979) gives some rough notions of the relative speeds of operations:

Operation Relative Example
speed

integer assignment 1 I=10
integer addition/subtraction 1.5 I+J
real assignment 2 A=10.0
real add/subtract 3 A+B
real multiply 5 A*B
integer to real 6 A=I
integer multiply 8 I*J
division 9 I/J A/B
exponentiate to integer 35 I**J
exponentiate to real 115 A**B

I**B

This implies that if you are interested in making your program efficient, you
should, for example replace the following operations by these others.

Original Replacement

2.0*X X+X
X/10.0 X*.1
X**2.0 X**2

or X*X

Similarly, reducing the numbers of operations by introducing temporary vari-
ables will also have an effect:

Z=X*Y+W/(X*Y)**2.5

could be replaced by

XY=X*Y
Z=XY+W/XY**2.5

An even more striking example, which demonstrates how a polynomial evalu-
ation can be done without any exponentiation, is the following:

Chapter 21 Optimisation 183

Y=A(0)*X**5+A(1)*X**4+A(2)*X**3+A(3)*X**2+A(4)*X+A(5)

can be replaced by:

Y=((((A(0)*X+A(1))*X+A(2))*X+A(3))*X+A(4))*X+A(5)

At a cruder level, simple recourse to algebra can simplify expressions:

A=B*(E+F)-C*(E+F)+D*(E+F)

reduces to

A=(B-C+D)*(E+F)

when the common factor is removed.

Remember that you can sometimes make one DO loop do lots of things, and
thus:

DO 1 I=1,100
A(I)=B(I)*C(I)+4.

1 CONTINUE
DO 2 J=1,100

D(J)=E(J)+5.
2 CONTINUE

is equivalent to, but not as fast as

DO 1 I=1,100
A(I)=B(I)*C(I)+4.
D(I)=E(I)+5.

1 CONTINUE

If you are using multi-dimensioned arrays, write the DO loop referencing so
that the ‘first’ index varies first:

DIMENSION X(25,5,200,100)
DO 1 I=1,100

DO 2 J=1,200
DO 3 K=1,5

DO 4 L=1,25
X(L,K,J,I)=0.0

4 CONTINUE
3 CONTINUE
2 CONTINUE
1 CONTINUE

This relates to the way in which the array is stored in the computer’s memory.
You might also note that ‘short’ DO loops are sometimes not very efficient, and
that it would be better to rewrite

184 Optimisation Chapter 21

DO 1 J=1,N
DO 2 I=1,3

X(I,J)=Y(I,J)+Z(J,I)
2 CONTINUE
1 CONTINUE

as

DO 1 J=1,N
X(1,J)=Y(1,J)+Z(J,1)
X(2,J)=Y(2,J)+Z(J,2)
X(3,J)=Y(3,J)+Z(J,3)

1 CONTINUE

even though this would take longer to write out.

Sometimes it is possible to restructure the problem slightly. In the following
example, the IF test is carried out every time round the loop;

DO 1 I=1,100
IF(FLAG)THEN

A(I)=B(I)-2.*C(I)
ELSE

A(I)=B(I)+3.*D(I)
B(I)=X*D(I)

ENDIF
1 CONTINUE

we could replace this by

IF(FLAG)THEN
DO 1 I=1,100

 A(I)=B(I)-2.*C(I)
1 CONTINUE

ELSE
DO 2 I=1,100

 A(I)=B(I)+3.*D(I)
 B(I)=X*D(I)

2 CONTINUE
ENDIF

In the latter case, the test is done only once.

The next example shows how the Fortran might be coded, straight from a set of
equations:

Chapter 21 Optimisation 185

DO 1 K=1,M
B(K)=0.0
DO 2 J=0,N-1

A(K)=A(K)+X(J)*COS(J*K*DELTAY)
B(K)=B(K)+X(J)*SIN(J*K*DELTAY)

2 CONTINUE
A(K)=A(K)*2./(N-1)
B(K)=B(K)*2./(N-1)

1 CONTINUE

With a little thought, this could have been rewritten as:

N1=N-1
C1=2./N1
DO 1 K=1,M

AK=0.0
BK=0.0
DO 2 J=0,N1

YJ=J*K*DELTAY
XJ=X(J)
AK=AK+XJ*COS(YJ)
BK=BK+XJ*SIN(YJ)

2 CONTINUE
A(K)=C1*AK
B(K)=C1*BK

1 CONTINUE

These are relatively minor improvements which can be made, without the more
major invocation of either recurrence relationships or an FFT (Fast Fourier
Transform). In the first example there are 6*M*N+4*M multiplications and/or
divisions, while in the second there are 4*M*N+2*M+1.

Summary

It may be that one problem solution is computationally more efficient than an-
other, but human efficiency is also important, and it is almost always better to
be slow and ‘correct’ than efficient and wrong. The computer is supposed to be
working for you, not you for the computer.

There are some simple rules which can be adopted which do not destroy the
comprehensibility of the program steps, and will reap some benefit, especially
if they are incorporated at the earliest stages of program development.

Problems

1. Write a program to sort 5000 numbers. The numbers should be stored in an
array. One way of obtaining the 5000 numbers is through a random number
generator. Most random number generators are machine specific, but you
should have access to one through Fortran. Likely names are RANF, RAND,

186 Optimisation Chapter 21

RND and so on. Other machine dependent functions will return central proces-
sor time used — this would provide an objective figure for any optimisation
you achieve.

Now apply the guidelines for optimisation given in this chapter. What differ-
ence do they make?

Now get hold of a book on sorting and searching and use one of the recom-
mended algorithms e.g. quick-sort. What difference does this make? How much
time have you spent so far?

Now use one of the standard subroutine libraries available on your system.
What improvement have you got now?

Now use the SORT package available on your machine. What time did this
package take?

Was it worth it?

2. Generating prime numbers is a favourite task for many mathematicians. The
Collected ACM Algorithms contain several examples of programs which will
calculate the first k prime numbers (e.g. Algorithms 35, 310 and 311). If you
have access to these algorithms, compare them and read the accompanying re-
marks. Essentially it appears that the running time to compute the first k primes
is of the order k**n, where n may be as small as 1.35. If you do not have
access to the Collected ACM Algorithms, consult Knuth, Fundamental Algo-
rithms, on the same subject.

Now answer these questions; why would you wish to create a table of the first
k primes more than once; would it be easier (and more ‘efficient’) to store the
table on file than to recalculate it?

Chapter 21 Optimisation 187

22

Problem solving revisited
As it was, their judgement was based more on wishful thinking than on sound
calculation of probabilities;

Thucydides, ‘The Peloponnesian War’

Aims

The aims of this chapter are to draw together some of the ideas that have been
presented regarding problem solving. As with many situations where new con-
cepts are involved some experience at a concrete level is required before the
ideas really make sense.

Introduction

It should be obvious by now that the intellectual skills involved in program-
ming are not to be underestimated. Part of the reason lies in the nature of the
tasks that we are asking the computer to perform. These are typically many
orders of magnitude more complex than the human mind can perform unaided.
Part of the reason lies with the statement of the problem solution in a program-
ming language.

There are two things to consider here. Firstly we need help at the design stage
to generate a possible solution, i.e. we need to adopt proven methods of work-
ing which will make the design stage easier. Some of the methods that we can
adopt have been refined over many years and go back to the Greeks, e.g. Eu-
clid. Others will be more recent and are developments based on experience over
the last 30 years of programming.

Secondly we need help at the coding stage to try and make our programs more
easily understandable. This is especially important as the programs that we
write get more and more complex as the problems that we undertake become
more ambitious.

These two parts are interconnected, and should not be regarded in isolation. We
need to have an idea about both if we are to become proficient programmers.
Let us now consider each in turn.

Algorithms

The name algorithm is derived from al-Khowarazmi, who was an Arab mathe-
matician who wrote a treatise on algebra around 830 AD. There are many
definitions of algorithm to be found in computing books, but the one given at
the start of this book is sufficient for our purposes. i.e. a sequence of operations
that will solve part or all of a problem. The next thing to consider is the way in
which we can break problems down into sequences of operations. A more for-
mal discussion on algorithms can be found in Korfhage, Logic and Algorithms.

Abstraction

The most powerful technique that we have at our disposal is that of abstraction.
This means that we can hide the complexity of what we are doing by using a
term or phrase like ‘invert a matrix’ and concentrate on the result rather than
how the action will be performed. This means that we are able to postpone the
fine detail of each step of the solution and concentrate on one aspect of a prob-
lem at a time. The importance of abstraction will become obvious when we
consider the next sections. You should already be familiar with the idea of
abstraction from your discipline when you can use the results of someone’s
work without having to actually understand all aspects of it. Further reading on
the subject of abstraction can be found in Dahl, Dijkstra and Hoare, Structured

Chapter 22 Problem solving revisited 189

Programming; in Brinch-Hansen, Operating System Principles; and in Wulf’s
contribution in Current Trends in Programming Methodology.

Structured programming

The main concerns of structured programming are firstly with the ways in
which we can reduce the complexity of a problem and achieve a solution, and
secondly with the correctness of the solution. As can be appreciated from the
last section abstraction has an important contribution to make here. Let us con-
sider the first aim which is the reduction of the complexity of the problem.

This can be achieved by breaking the problem down into parts. Most program-
mers overestimate their ability to cope with complexity. They often write large
monolithic programs with little apparent structure. This means that is difficult
to predict the action of the program or parts of the program. Consider the fol-
lowing, which is based on actual experience of the authors whilst working in an
advisory capacity.

We are trying to understand a part of a program, let us say
section A. In the middle of section A there is a jump to an-
other part of the program, section B. So to understand how
section A will work we need to examine section B. There is a
jump in section B to another part of the program, section C.
Now to predict how section A works we need to find out how
both B and C work.

It should not be imagined that the above is at all unusual. A program may grow
in complexity over several months and may be required to perform many tasks
not in the original definition and design. Thus when we start programming we
must develop habits that will allow us to retain mastery in situations like this.
Let us now consider what we can do concretely to achieve this mastery.

Firstly we use our powers of abstraction to hide the complexity of what we are
trying to do. We do this by designing and specifying actions in general terms,
and concentrate on the results of the actions rather than the how of the actions.
We gradually refine each of these actions until we are talking in terms of actual
‘code’. We structure our solution into small pieces so that we can say with
certainty that this section of code will do exactly what we want and no more.
We will consider this in more detail in a later section paying particular attention
to the impact this has on structures in programs.

Let us now consider how we can insure the correctness of our program. We can
achieve this by making our programs understandable. We should aim to pro-
duce programs that bridge the gap between the subject area specification, and
the solution in a programming language. This is not easy, as a programming
language may have no adequate base constructs in many cases. Thus we must
create our own. Consider the problem of a payroll program where the rate of
pay is different on Saturday and Sunday. We have to represent the concept of

190 Problem solving revisited Chapter 22

days of the week in terms of the types of variables at our disposal. In Fortran
we may choose integers, in the range 1 to 7 say, or we could choose characters,
and actually use the strings ‘Monday’ etc. to represent the days. Neither of the
above approaches will stop us in the first case assigning a value of 8 to the
integer variable, and an inappropriate string to the character variable. Note in
the latter case that we may misspell the string and have ‘Mnoday’. The severity
of this problem will vary with the programming language that you use. Fortran
has only a few base types, and it is unreasonable, for example, to expect to
write large database applications in the language. Pascal, on the other hand, will
allow you to define your own types of variables, and thus is suited for many
applications that Fortran is not. Thus you must be careful of the kind of prob-
lem that you try to solve with a particular programming language. It may be
quicker to learn another programming language, rather than force a solution in a
language that was not designed to cope with that particular kind of problem.
Remember that we are trying to achieve as close a correspondence as possible
between the problem and its solution in a programming language. If we strive
for this then we will make fewer errors.

Let us now consider what we can do in practical terms to achieve the above.
Firstly we can adopt a small set of program control constructs. i.e. we work
with a small set of sequencing mechanisms. These forms are:–

• sequences of operations, or concatenation

• alternatives between courses of actions

• loops, or repetition of statements

• sequential flow

As a Fortran program is sequential, this is satisfied fairly easily.

Alternatives

This has generated considerable heat in the computing world. The divide is
between the people who restrict themselves to proven forms, and the school
who want no restrictions on the way they work. There is considerable argument
in the ‘real’ world about the use of crash helmets when riding a motor-bike. We
leave you to draw your own conclusions. Let us now consider some of these
forms:–

• The IF THEN ENDIF construct. This enables to choose a course
of action if necessary. Note that we continue the sequential flow
after the execution of the if block.

• The IF THEN ELSE construct. This allows us to choose between
two courses of action before continuing with the normal sequential
flow.

Chapter 22 Problem solving revisited 191

• The IF THEN ELSEIF construct. This allows us to choose be-
tween many possible courses of action. This is sometimes given
the name a case construct — as we are choosing between several
cases.

These are sufficient to handle most problems.

Loops

Repetition can be handled by three basic forms. These are:–

• The WHILE construct. This does not exist as a base create in
Fortran. Therefore we create it from more primitive forms. These
are the IF and GOTO.

• The REPEAT UNTIL construct. Again this does not exist in For-
tran as a base form. We must construct it also from the IF and
GOTO.

• The simple loop controlled by a counter or index. This is pro-
grammed in Fortran with a DO loop.

The above are representative of current thinking in programming. It is possible
that others may be developed in the future, but for the present it is recom-
mended that you restrict yourself to these. If there are revolutionary constructs
and ideas waiting to be discovered in the future you can be sure that you will
hear of them eventually.

Structure in data

So far we have only considered structure in the program. A program manipu-
lates data, and there is generally structure to the data. To quote Wirth

Algorithms + data structures = programs

Thus one should look to see what structure exists in the data. You are already
familiar with the array as a data structure. You have also seen that tables of
data exists in many problems. There are only a few data structures in Fortran,
but they are sufficient for a large number of applications. It may be necessary
in many problems to reduce the real data structure to one that can be repre-
sented in the language we are using. The array is one of the most fundamental
data structures. It is generally possible to transform a data structure into some-
thing that can be manipulated by an array, e.g. vectors, lists, stacks etc. The
bibliography contains references to several books which emphasise this point.

Top Down and Bottom Up

We are now in a position to consider these two approaches. It should be appar-
ent that top down design is going to be of much more use than bottom up.

192 Problem solving revisited Chapter 22

However there will be instances where you have no idea where to start. Then
you consider what you can do, and work backwards to a possible solution. This
technique will be familiar to some readers as it is similar to a technique some-
times used in mathematics, i.e. we work backwards from what we want to
where we are. However the analogy should not be stretched too far.

Step wise refinement

This term should now mean something. We use this technique to work gradu-
ally towards a solution from the problem definition. It is closely linked with the
idea of top-down design.

Modular programming

We achieve modularity in programming in Fortran using functions and subrou-
tines. These enable us to construct sets of actions and we can put these actions
together to solve our problem. What has been missing so far in this chapter is
the way in which we allow the communication to take place between these
modules. This brings us to the concept of localised action. We are interested in
ensuring that when we use a function or subroutine it will do what we want and
no more. Care must be taken therefore when designing functions and subrou-
tines so that, whilst they are sufficiently general that we can use them in several
ways, we do not want to make them so complex to use that they may have
unsuspected side effects. Functions are invoked by name and communication is
generally restricted to take place through its arguments. Subroutines pose a few
problems. Communication here can take place through arguments, and often
also through common blocks. To keep control of the complexity it is therefore
recommended that the number of channels of communication is kept to a mini-
mum, to enable us to understand fully what is happening.

Concluding remarks

There are a few drawbacks in the above approaches. The main one is that the
program rarely contains any information about the decisions that took place at
the design stage, i.e. there is no information on the abstraction process, or what
went on whilst testing and debugging the program.

This can be a tremendous problem when you come to modify the program. It is
therefore recommended that you get into the habit of inserting comments into
the program about the design process. This includes putting in comments about
errors in your thinking where relevant. You should also put in comments about
alternatives that you rejected. This may enable you to develop a better approach
the next time you tackle a problem. It is the experience of the authors that
explicitly writing down your thinking, or even articulating it to another person,
can be used to great benefit in exposing the flaws in your logic. This is espe-

Chapter 22 Problem solving revisited 193

cially true when you start programming. Thus working in small groups at the
start can have a profound impact on the time spent programming.

Lastly, a plea which may go unheeded initially. Many people see programming
as an extension of their own personality. Since the program is their own crea-
tion, any criticism is seen as a personal criticism. Try to rise above this. If your
ego can be separated from your program, you will not only find it easier to seek
and find advice, but you will also avoid ulcers, and keep friends. Your pro-
grams might improve too. A criticism of your program is not a criticism of you.

194 Problem solving revisited Chapter 22

23

Operating systems
‘Mow your lawn, lady’

James Blish, ‘Cities in Flight’

Aims

The aims of this chapter are:–

• to give a brief historical review of the development of operating
systems

• to note the impact of present day operating systems on the process
of program development

• to glance at other developments in computing which are likely to
have an impact in the future on this process

The operating system

Most computer systems provide an operating system. These will vary consider-
ably from small systems available on personal computers (e.g. MS/DOS,
PC/DOS) through to very complex systems available on mainframes (e.g.
IBM’s VM system). The importance of the operating system should not be
underestimated. They greatly influence a user’s view of a computer system. The
purpose of this chapter is to provide some background information on the
changes that have taken place over the past 40 years with operating systems.
The relevance of this is that operating systems will change during the time that
you spend computing, and thus is it is important to have some perspective on
these developments. Operating systems can help or hinder the task at hand, and
it is important to get the system to help you, and maximise your productivity.
After all the computer is a tool for your use.

The 1940s

In the early days of computing there were no operating systems. The user had
complete access to the whole of the machine. This meant that programmers
were involved in areas which were nothing to do with the problem that they
were interested in.

The 1950s

As you may imagine this was not very satisfactory. The next development that
took place was the introduction of batch operating systems. The main impact
was that the user was distanced from the machine. Greater use of an expensive
resource was also made.

The 1960s

The next development was multiprogramming. This enabled the computer to
have several jobs under execution and to switch between them as resources
were available. Thus timesharing soon became possible — users could now
communicate through a keyboard. This had a considerable impact on the pro-
gram development process.

The 1960s to 1970s

This era saw the development of large multi-purpose operating systems. They
had to be able to cope with a wide variety of demands. The most famous was
the IBM System 360. Their development represented some of the most ambi-
tious programming projects ever undertaken. An amusing and instructive
discussion of the problems encountered developing the IBM system is given in
Brooks, The Mythical Man Month. A lot was learned from the failures of the
development of these operating systems.

196 Operating Systems Chapter 23

One notable success from this era was the UNIX system. The development of
the UNIX system is a very interesting way of approaching the design of an
operating system. Further information on the UNIX system can be found in the
references in the bibliography.

The 1970s to today

The operating systems of this era are primarily refinements and extensions to
the ones of the previous era. See Deitel, Operating Systems, for more informa-
tion on this subject.

Other developments

There have been developments in other areas of computing which have had
greater user impact in this era. The four areas of most interest are:–

• the availability of cheap and powerful microprocessors

• the increasing use of computer networks

• the development of parallel processing hardware

• the introduction of alternate mechanisms for interfacing to the
computer

The development of cheap and powerful micro-processors has meant that many
tasks can now be done locally, using a micro-processor, rather than using a
central system. Combined with the use of networks this often means that the
end user is unaware of exactly where the ‘computing’ is taking place. In a
network you will often have a choice of several machines, from your own ter-
minal, and each machine may support only a small part of the whole service
available.

Parallel processors help to remove the strict sequential nature inherent in many
programming languages. A simple example is adding two vectors together. In a
conventional processor, each element would be taken one at a time. On a paral-
lel processor it could be possible to do the whole operation at once. The
widening availability of parallel processing hardware will have an impact in
two areas. The first concerns the narrow idea of similar operations on data, e.g.
multiplication of arrays, and the second concerns the development of suitable
algorithms for these machines. Of these the second seems the most challenging
area.

The major device for communicating with a computer is a typewriter keyboard.
The cost of alternatives (e.g. graphics tablets, touch sensitive screens, mice) has
been prohibitive and has been restricted to a small percentage of the user com-
munity. The development of cheap and powerful micro-processors has had a
significant impact in this area. Research and development work in this area has
been going on for some time and it is only recently that this development work

Chapter 23 Operating Systems 197

is becoming available to a wider population (cf. Goldberg and Robson, 1984).
Communication is now possible through ‘touch sensitive’ vdu screens, joys-
tick, trackball or mouse controls, voice activation, as well as more mundane
means.

198 Operating Systems Chapter 23

24

Tools in programming
Man is a tool-making animal.

Benjamin Franklin.

Man is a tool-using animal...
Without tools he is nothing
With tools he is all.

Thomas Carlyle.

Aims

The aims of this chapter are:–

• to introduce the idea that there are other programs that can help in
the program development process

• to give some examples of the sorts of programs that are available

Introduction

When you become involved in programming on a regular basis it is worthwhile
considering what programs are available on the computer system. You have
already used an editor and a compiler, but these represent a small subset of
what is likely to be available. The programs that are discussed in this chapter
are given the name ‘tools’. These are programs that can be used to save time
and effort when involved in developing your own programs. They are given the
name tools because they serve a similar purpose to ‘tools’ that you use in car-
pentry, brick laying, engineering etc. You may have encountered the phrase
‘software engineering’ and can thus see the origin of the word ‘tool’ in this
sense.

The following tools were available on a number of systems the authors have
used. The aim here is to show you some of the system for examples of the tools
they provide.

Update

This is a very sophisticated tool that is used in the development and mainte-
nance of source programs. At the simplest level it allows you to keep track of
program changes. As with most good tools it can be used at a variety of levels,
and a complete understanding of a tool like this may well take some years.

Compare

This tool shows the differences between two text files, on a line by line basis. It
can be used to compare any text files on the computer system. It can be used in
conjunction with Update to compare two versions of a program, and give a list
of the changes necessary to create one from the other.

Indent/Pretty Print

A tool for indenting Fortran programs. This is a very useful tool for ‘tidying
up’ and making the structure of Fortran programs clearer. The program will
indent loops etc., making the program much easier to read and understand.

Sort/Merge

A tool for sorting and merging files. It is a very common requirement that data
will need to be sorted in some way before it can be used by another program.

The above tools exist on the system that the authors work on. Similar tools
should exist in some form or another on your system.

200 Tools in programming Chapter 24

The load process and the loader

When you compile a program, a file is generated. you work on, e.g. relocatable,
or object file, or binary file. The key thing is that the file does not contain
sufficient information for the hardware to execute it in its present form. Typi-
cally there is some linking required to a library of routines supplied by the
manufacturer, e.g. if you use the square root function there will be linking at
load time to the routine that evaluates square roots. This routine has been writ-
ten by the manufacturer, and will have already been compiled. It will exist in a
library of precompiled routines often called the Fortran run time library. On
some machines you will have been made aware of this, but on most timesharing
systems this process will have been hidden by the provision of a sophisticated
system program called a loader, or link loader. There will be manuals describ-
ing how to use and control this program on your system, and a chat with some
of the support staff of your installation is generally the best place to start.

Compiled routines and library maintenance

There will also be tools for the maintenance of compiled routines. These have
been given the name libraries in this book. There will be tools to create,
modify and update libraries. On many systems these tools are very sophisti-
cated and there will be a large investment of your time required before you
master their full capability. There will be ways of controlling the load process
so that other system libraries and user libraries can be ‘searched’ or included in
the load process. These libraries may contain routines to calculate standard sta-
tistical functions, plot graphs etc.

Job control languages

You get the system to do what you want by typing in certain commands — e.g.
ED may invoke the editor. There are many commands available on a computer
system. They are often called operating systems commands. It is worthwhile
finding out some of the commands provided on your system. There will be both
manufacturer and installation supplied commands.

On many systems it is possible to group these commands together so that it will
be possible to invoke a sequence of operating systems commands by typing in
one name. This ‘command’ file is a ‘text’ file and may be created using an
editor.

It is also possible to vary the action of these command files by the provision of
elementary programming constructs within the command file.

• Set and test system and job-control variables. This will enable us
to test for the existence of files for example, and take appropriate
action.

Chapter 24 Tools in programming 201

• Loops can be set up so that groups of commands can be repeated,
e.g. several sets of data, possibly from a magnetic tape, could be
analysed in a similar fashion.

• Arguments can be passed from one command file to another, e.g.
number of data sets, file names or magnetic tape identifiers.

• It is possible for one process to create another. Thus you may set
one command file executing, and depending on the progress of
this activity another process may be generated, e.g. a job may run
which creates a data file, and you can set up another job to archive
this data file onto magnetic tape.

These are only some of the things that can be done with a job control language.
A good job control language can be regarded as a primitive programming lan-
guage, and the investment in learning about the capabilities of your job control
language will generally repay itself fairly quickly.

Program development systems

Operating systems are developed for a variety of reasons. One of these may be
the provision of a system with facilities that aid in the program development
process. One of the operating systems that has become widely accepted for this
purpose is UNIX. If you have access to a UNIX system locally then it will be
worthwhile actually going and talking to some of the users of this system. The
book The UNIX System by Bourne gives some idea of the capabilities of the
system.

TOOLPACK represents a collaboration between America and Britain in the
provision of a suite of portable tools and it is hoped will become widely avail-
able in both countries. One of the stated purposes of TOOLPACK is the
provision of a strong, comprehensive tool system for programmers who are
producing, testing, transporting, or analysing moderate size mathematical soft-
ware written in Fortran.

Summary

It is not the intention to offer a definitive statement on tools here, rather to
present some of the ways in which you can make effective use of a computer
system. There is a considerable amount of software already written, tested, and
documented for most computer systems. It is well worth the effort finding out
about this software from local users. It may be that you will never need to write
programs yourself, but always find something that can be used to satisfy your
own particular requirements. However there is considerable satisfaction to be
gained from the production of an easy to use, well tested and documented piece
of software.

202 Tools in programming Chapter 24

Notes

Chapters 2 and 3 have their own self contained bibliographies, and should be
consulted for references on problem solving and programming languages.

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover,
1970

This book contains a fairly comprehensive collection of numerical ap-
proximations for many mathematical functions, of varying degrees of
obscurity. It is a widely used source.

ANSI X3J3, Programming Language FORTRAN, American National Standards
Institute, 1978

This is the book that defines the standard for Fortran. It is interesting
to read parts of the book and see how difficult it is to make English
totally unambiguous.

Association for Computing Machinery, Collected Algorithms, 1960–1974, and
Transactions on Mathematical Software, 1975–,

A good source of some rather specialised algorithms. Early algorithms
tend to be in Algol, but Fortran predominates now.

The Bell System Technical Journal, Unix Time–Sharing System, July August
1978, Vol.. 57, No. 6, Part 2.

A collection of papers from the original team that designed, imple-
mented and used UNIX. Extremely interesting history and insight into
the UNIX system.

S. R. Bourne, The UNIX System, Addison-Wesley, 1982

A comprehensive coverage of the facilities provided by the UNIX sys-
tem.

Per Brinch–Hansen, Operating System Principles, Prentice-Hall, 1973

An ‘old’ but interesting book on operating systems. Also contains
some brief comments on problem solving.

Annotated Bibliography 203

F. P. Brooks, The Mythical Man-Month, Addison-Wesley, 1974

The book is a collection of essays by one of the people responsible for
the development of the IBM/360 operating system. The book is very
readable, and amusing in parts. It is recommended reading for anyone
involved in programming on a regular basis.

O. J. Dahl, E. W. Dijkstra and C. A. R. Hoare, Structured Programming, Aca-
demic Press, 1972

This is the seminal book on structured programming.

H. Deitel, Operating Systems, Addison-Wesley, 1984

The book gives a comprehensive coverage of most aspects of operat-
ing systems. The book also contains several case studies of current
operating systems.

M. Elsen, Concepts of Programming Languages, Science Research Associates,
1973

Reasonable introduction to various apsects of programming languages.

A. Goldberg and D. Robson, Smalltalk-80: The Language and its Implementa-
tion, Addison-Wesley, 1984

The book presents some of the ideas and concepts involved in commu-
nicating with a machine using a sophisticated graphical, interactive,
programming environment.

P. Heath, and B. Meek, Guide to Good Programming Practice, Ellis Horwood,
1979

Contains much practical advice for the beginner (and the not so begin-
ner).

R. Hunt and J. Shelley, Computers and Common Sense, Prentice Hall, 1983

Provides a good introduction to many aspects of computing.

204 Annotated Bibliography

M. A. Jackson, Principles of Program Design, Academic Press, 1975

In this book, Jackson describes a very structured and professional ap-
proach to large scale computer software projects. Much of what he
says is also applicable at a smaller scale.

H. Katzan, Fortran 77, Van Nostrand Reinhold, 1978

A reasonably readable (and far more compact) description of the For-
tran 77 language.

B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976

Interesting ‘essays’ on the program development process.

Donald E. Knuth, The Art of Computer Programming, Addison-Wesley,

Vol.1 Fundamental Algorithms, 1974
Vol.2 Semi-numerical algorithms, 1978
Vol.3 Sorting and searching, 1972

Contains interesting insights into many apsects of algorithm design.
Good source of specialist algorithms. Knuth writes with obvious and
infectious enthusiasm (and erudition). He may yet write the definitive
computer novel.

R. Korfhage, Logic and Algorithms, Wiley, 1966

A more formal and rigorous introduction to algorithms.

M. Metcalf, Fortran Optimization, Academic Press, 1982

A very useful book for anyone wishing to optimize Fortran, especially
on large machines. Contains much which is relevant generally. An
added bonus is the program INDENT, included in the book, which will
take a Fortran 77 program and indent DO loops and Block If state-
ments.

Numerical Algorithms Group, FORTRAN Library Manual, Mark 13 (several
volumes), NAG, 1989

Description and definition of the Fortran interface for the NAG library.
Contains descriptions of the techniques used and example programs.

Annotated Bibliography 205

Adrian Oldknow and Derek Smith, Learning Mathematics with Micros, Ellis
Horwood, 1983

Although directed towards the programming language BASIC, this
book contains many useful little algorithms, and is very concerned
with discussing the reasons behind the programming.

Leon J. Osterweil, Toolpack – An Experimental Software Development Envi-
ronment Research Project, IEEE Transactions on Software Engineering, Vol.
SE–9, No. 6, pp.673–685, November 1983

Discusses the goals and methods of the Toolpack project, providing
some notion of its scope. This software is initially ‘public domain’,
and is likely to be widely available in the academic and research com-
munities.

Ralston A. and Rabinowitz P., A First Course in Numerical Analysis, 2nd Edi-
tion, McGraw Hill, 1978.

One of the classic numerical analysis textbooks.

W. A. Watson, T. Philipson and P. J. Oates, Numerical Analysis, Arnold, 1981

Subtitled The Mathematics of Computing this book provides a good
account of the problems which arise with limited machine precision,
and some of the solutions which are possible.

G. H. Weinberg, The Psychology of Computer Programming, Van Nostrand
Reinhold, 1971

Has interesting comments to make about the psychology of the pro-
grammer. The originator of the term ego-less programming.

N. Wirth, Algorithms + Data Structures = Programs, Prentice Hall, 1976

Good presentation of the ideas involved in the discipline of computer
programming.

Raymond Yeh (Editor), Current Trends in Programming Methodology, Soft-
ware Specification and Design, Prentice Hall, 1977

Contains several stimulating papers on the design process.

206 Annotated Bibliography

S. J. Young, Real Time languages, design and development, Ellis Horwood,
1982

The first part of the book contains a reasonable coverage of some of
the ideas involved in the design of a programming language.

Annotated Bibliography 207

0 nul

1 soh

2 stx

3 etx

4 eot

5 enq

6 ack

7 bel

8 bs

9 ht

10 lf

11 vt

12 ff

13 cr

14 so

15 si

16 dle

17 dc1

18 dc2

19 dc3

20 dc4

21 nak

22 syn

23 etb

24 can

25 em

26 sub

27 esc

28 fs

29 gs

30 rs

31 us

32

33 !

34 "

35 #

36 $

37 %

38 &

39 ’

40 (

41)

42 *

43 +

44 ,

45 -

46 .

47 /

48 0

49 1

50 2

51 3

52 4

53 5

54 6

55 7

56 8

57 9

58 :

59 ;

60 <

61 =

62 >

63 ? l

64 @

65 A

66 B

67 C

68 D

69 E

70 F

71 G

72 H

73 I

74 J

75 K

76 L

77 M

78 N

79 O

80 P

81 Q

82 R

83 S

84 T

85 U

86 V

87 W

88 X

89 Y

90 Z

91 [

92 \

93]

94 ^

95 _

96 ‘

97 a

98 b

99 c

100 d

101 e

102 f

103 g

104 h

105 i

106 j

107 k

108 l

109 m

110 n

111 o

112 p

113 q

114 r

115 s

116 t

117 u

118 v

119 w

120 x

121 y

122 z

123 {

124 |

125 }

126 ~

127 del

Appendix A ASCII Character Set 207

YET IF HE SHOULD GIVE UP WHAT HE HAS BEGUN, AND AGREE TO
MAKE US OR OUR KINGDOM SUBJECT TO THE KING OF ENGLAND
OR THE ENGLISH, WE SHOULD EXERT OURSELVES AT ONCE TO
DRIVE HIM OUT AS OUR ENEMY AND A SUBVERTER OF HIS OWN
RIGHTS AND OURS, AND MAKE SOME OTHER MAN WHO WAS ABLE
TO DEFEND US OUR KING; FOR, AS LONG AS BUT A HUNDRED OF
US REMAIN ALIVE, NEVER WILL WE ON ANY CONDITIONS BE
BROUGHT UNDER ENGLISH RULE. IT IS IN TRUTH NOT FOR GLORY,
NOR RICHES, NOR HONOURS THAT WE ARE FIGHTING, BUT FOR
FREEDOM - FOR THAT ALONE, WHICH NO HONEST MAN GIVES UP
BUT WITH LIFE ITSELF.
QUEM SI AB INCEPTIS DIESISTERET, REGI ANGLORUM AUT ANGLI-
CIS NOS AUT REGNUM NOSTRUM VOLENS SUBICERE, TANQUAM
INIMICUM NOSTRUM ET SUI NOSTRIQUE JURIS SUBUERSOREM
STATIM EXPELLERE NITEREMUR ET ALIUM REGEM NOSTRUM QUI
AD DEFENSIONEM NOSTRAM SUFFICERET FACEREMUS. QUIA
QUANDIU CENTUM EX NOBIS VIUI REMANSERINT, NUCQUAM AN-
GLORUM DOMINIO ALIQUATENUS VOLUMUS SUBIUGARI. NON
ENIM PROPTER GLORIAM, DIUICIAS AUT HONORES PUGNAMUS SET
PROPTER LIBERATEM SOLUMMODO QUAM NEMO BONUS NISI SI-
MUL CUM VITA AMITTIT.
from ‘The Declaration of Arbroath’ c.1320. The English translation is by Sir
James Fergusson.

208 English and Latin Text Extracts Appendix B

OH YABY NSFOUN, YAN DUBZY LZ DBUYLTUBFAJ BYYBOHNX
GPDA FNUZNDYOLH YABY YAN SBF LZ B GOHTMN FULWOHDN
DLWNUNX YAN GFBDN LZ BH NHYOUN DOYJ, BHX YAN SBF LZ
YAN NSFOUN OYGNMZ BH NHYOUN FULWOHDN. OH YAN DLPUGN
LZ YOSN, YANGN NKYNHGOWN SBFG VNUN ZLPHX GLSNALV
VBHYOHT, BHX GL YAN DLMMNTN LZ DBUYLT UBFANUG
NWLMWNX B SBF LZ YAN NSFOUN YABY VBG YAN GBSN GDBMN
BG YAN NSFOUN BHX YABY DLOHDOXNX VOYA OY FLOHY ZLU
FLOHY. MNGG BYYNHYOWN YL YAN GYPXJ LZ DBUYLTUBFAJ,
GPDDNNXOHT TNHNUBYOLHG DBSN YL RPXTN B SBF LZ GPDA
SBTHOYPXN DPSENUGLSN, BHX, HLY VOYALPY OUUNWNUNHDN,
YANJ BEBHXLHNX OY YL YAN UOTLPUG LZ GPH BHX UBOH. OH
YAN VNGYNUH XNGNUYG, YBYYNUNX ZUBTSNHYG LZ YAN SBF
BUN GYOMM YL EN ZLPHX, GANMYNUOHT BH LDDBGOLHBM EN-
BGY LU ENTTBU; OH YAN VALMN HBYOLH, HL LYANU UNMOD OG
MNZY LZ YAN XOGDOFMOHN LZ TNLTUBFAJ.

Appendix C Coded Text Extracts 209

A02 Complex arithmetic

C02 Zeros of polynomials

C05 Roots of one or more transcendental equations

C06 Summation of series

D01 Quadrature

D02 Ordinary differential equations

D03 Partial differential equations

D04 Numerical differentiation

D05 Integral equations

E01 Interpolation

E02 Curve and surface fitting

E04 Minimising or maximising a function

F01 Matrix operations including inversion

F02 Eigenvalues and eigenvectors

F03 Determinants

F04 Simultaneous linear equations

F05 Orthogonalisation

F06 Linear Algebra Support Routines

G01 Simple calculations on statistical data

G02 Correlation and regression analysis

G04 Analysis of variance

G05 Random number generators

G07 Univariate Estimation

G08 Nonparametric statistics

G11 Contingency Table Analysis

G13 Time series analysis

H Operations research

M01 Sorting

P01 Error trapping

S Approximations of special functions

X01 Mathematical constants

X02 Machine constants

X03 Innerproducts

X04 Input/Output utilities

210 NAG Chapter Headings Appendix D

INT Converts to integer
from integer, real,
double precision and
complex

1 I, R, DP,
C

I=INT(R)I

REAL Converts to real from
integer, real, double
precision and com-
plex

1 I, R, DP,
C

R R=REAL(I)

DBLE Converts to double
precision from inte-
ger, real, double pre-
cision and complex

1 I, R, DP,
C

DP D=DBLE(R)

CMPLX Converts to complex
from integer, real
double precision and
complex

2 I, R,
DP

C Z=CMPLX(X,Y)

ICHAR Converts to integer
from character - nor-
mally the ASCII
value.

1 CHAR I I=ICHAR(C)

CHAR Converts to character
from integer, nor-
mally the ASCII
value.

1 I CHAR C=CHAR(I)

AINT Truncates 1 R, DP As argu-
ment

A=AINT(R)

ANINT Rounds real and dou-
ble precision. Yields
a real or double pre-
cison answer.

1 R, DP As argu-
ment

A=ANINT(R)

NINT Yields nearest integer1 R, DP I I=NINT(R)

ABS

Name Description Arguments Result Example

No. Type Type

Appendix E Fortran Intrinsic Functions 211

Yields the absolute
value

1 I, R, DP,
C

As argu-
ment, ex-
cept com-
plex argu-
ment gives
real result.

A=ABS(B)

MOD Returns the remain-
der when first argu-
ment divided by sec-
ond

1 I, R, DP As argu-
ments

A=MOD(B,C)

SIGN Transfer of sign,
abs(A1) if A2>=0,
–abs(A1) if A2<0

2 I, R, DP As argu-
ments

A=SIGN(A1,A2)

DIM Returns first argu-
ment minus mini-
mum of the two argu-
ments. A1-
MIN(A1,A2)

2 I, R, DP As argu-
ments

A=DIM(A1,A2)

DPROD Double precision
product of two reals

2 R DP D=DPROD(R1,R2)

MAX Chooses the largest
value

a I, R, DP As argu-
ments

A=MAX(A1,A2,A3)

MIN Chooses the smallest
value

a I, R, DP As argu-
ments

B=MIN(B1,B2,B3)

LEN Length of a character
entity

1 CHAR I L=LEN(C)

INDEX Locates one sub-
string in another, i.e.
returns position of
substring C2 in char-
acter expression C1

2 CHAR I I=IN-
DEX(C1,C2)

Name Description Arguments Result Example

No. Type Type

212 Fortran Intrinsic Functions Appendix E

AIMAG Imaginary part of
complex argument

1 C R Y=AIMAG(Z)

CONJG Conjugate of a com-
plex argument

1 C C Z2=CONJG(Z1)

SQRT Square root 1 R, DP, C As argu-
ment

X=SQRT(Y)

EXP Exponential, ex 1 R, DP, C As argu-
ment

Y=EXP(X)

LOG Natural logarithm,
loge x

1 R, DP, C As argu-
ment

Y=LOG(X)

LOG10 Common logarithm,
log10 x

1 R, DP As argu-
ment

Y=LOG10(X)

SIN Sine 1 R, DP, C As argu-
ment

Y=SIN(X)

COS Cosine 1 R, DP, C As argu-
ment

Y=COS(X)

TAN Tangent 1 R, DP As argu-
ment

Y=TAN(X)

ASIN Arcsine 1 R, DP As argu-
ment

Y=ASIN(X)

ACOS Arccosine 1 R, DP As argu-
ment

Y=ACOS(X)

ATAN Arctangent 1 R, DP As argu-
ment

Y=ATAN(X)

ATAN2 Arctangent of A1/A22 R, DP As argu-
ments

A=ATAN2(A1,A2)

SINH Hyperbolic sine 1 R, DP As argu-
ment

Y=SINH(X)

Name Description Arguments Result Example

No. Type Type

Appendix E Fortran Intrinsic Functions 213

COSH Hyperbolic cosine 1 R, DP As argu-
ment

Y=COSH(X)

TANH Hyperbolic tangent 1 R, DP As argu-
ment

Y=TANH(X)

LGE Lexically greater
than or equal

2 CHAR L L=LGE(A,B)

LGT Lexically greater than2 CHAR L L=LGT(A,B)

LLE Lexically less than or
equal

2 CHAR L L=LLE(A,B)

LLT Lexically less than 2 CHAR L L=LLT(A,B)

Notes

For argument type

I=Integer

R=Real

C=Complex

DP=Double Precision

CHAR=Character

L=Logical
a Minimum of 2

All angles are expressed in radians

All arguments to an intrinsic function reference must be of the same type

Name Description Arguments Result Example

No. Type Type

214 Fortran Intrinsic Functions Appendix E

A format 82, 149–150
Abnormal termination 124, 172
Abstraction
 • and problem solving 188–189
 • and stepwise refinement and modules 22
Absolute value 117
ABS, function 117, Appendix E
ACCESS (see OPEN) 173
ACCESS valid values 173
Access time 2
Accuracy 53
ACM Association for Computing Machinery

166
ACOS, function 117, Appendix E
ADA 23
Addition 46–49
Address 2
Adjustable array size 162
Adjustable bound 165
Algebra 9, 184
ALGOL 19
ALGOL58 19
ALGOL60 19
ALGOL68 21
Algorithm 10, 37, 189 192
Algorithm libraries 168
Alphabetics 153
Alphanumeric output 82
Alternate exits and the RETURN statement 172
al-Khowarazmi 189
Ambiguity 47, 103
Analysis 12, see also systems analysis
ANSI 37
.AND. 109, 142–143
APL 21
Apostrophe 40, 44, 82, 149
Arccosine 117, Appendix E
Arcsine 117, Appendix E
Arctangent 117, Appendix E
Arguments
 • functions 117, 121, 123, 176
 • subroutines 160
Arithmetic 46–57, 118
Arithmetic assignment 41, 43
Array 58–76, 92, 162–164, 184
 • bounds 61, 72
 • bound tracing 134
 • control structure 58
 • data structure 58, 192
 • declaration 61, 72
 • elements – use of an index 61
 • DO loops 58–76
 • indices 61–62, 72
 • names 61, 72
 • random access structure 58
 • size 61, 72, 162–163

Artificial language 8, 9
ASCII 139, 153, Appendix A
ASIN, function 117, Appendix E
Assembler 5
Assembly language 5
Assignment statements 41, 43
Asterisk 44, 79, 85, 155, 164
ATAN, function 117, Appendix E
ATAN2, function 117, Appendix E
Average timing of instructions 183

Backing store 103
Background processes 5
BACKSPACE statement 103
Backus Normal Form19
BASIC 22
Batch operating systems 196
BCPL 22
Bechamel sauce 10
Binary files 171
Bits 3, 52
Blank common 176
BLANK (see OPEN) 103, 173
Blanks 44, 63, 78, 81, 92–93, 98, 101, 103,

144, 150, 153, 173–174
Blanks and nulls on input 101, 103, 173
Block (see COMMON)
BLOCK DATA
 • and named COMMON 179
 • subprogram 179–180
BLOCK IF construct 108–111
 • ELSE 110–111
 • ELSEIF 111
BN edit descriptor 101
Bottom-up programming 10, 192
Brackets 44, 47, 88–90
Brevity 120
Bugs 182
Bus 3
Byte 2
BZ edit descriptor 101

C 22
Calculus 9
CALL statement 160
Captions 43
Carriage control characters 93–94
Carriage return 4, 42
Cartesian co-ordinates 168
Case construct 192
Cassettes as data storage device 4
CDC 139
 • number size 53
Central processor unit 2
CERN – European organisation for Nuclear

Research 166

Index 215

CHAR function 154, Appendix E
CHARACTER statement 40, 148
Character(s) 37, 44, 147–158
 • arrays 152
 • assignment 39, 40, 148
 • comparison 152, 154
 • concatenation operator 150, 151
 • conversion to integer 153, 154
 • data 39, 147–158
 • format 82, 101
 • functions 153–155
 • input 39, 101, 149–150
 • length 82, 148
 • operators 150
 • output 82, 149–150
 • set, Fortran 138, 148
 • string concatenation 150
 • substring 151–152
 • type declaration 40, 148
 • variables 40, 138, 147–158, 171
Chess problem 14
Chomsky and program language development

20
Clarity in expressions 48
CLOSE statement 83, 103, 172
CMPLX function 141, Appendix E
COBOL 18
Collating sequence 153, 154
Colon 44, 72, 90, 151
Columns and Fortran statements 39
Column-wise storage 164
Commas 42, 44
Comments in programs 39, 42, 44, 193
COMMON blocks 176
 • DATA statements 175–180
 • naming restrictions 176
 • statement 176
 • SAVE statement 178, 179
Common mistakes 83
Communication between subprograms 176
Compare – a software tool 200
Compilation 134, 179
 • errors 134
 • process 134
Compiled routines and library maintenance 201
Compiler
 • options 134–135
COMPLEX statement 140–141
Complex data 140–141
 • functions 140
 • type 140–141
 • variables 140–141
Complexity hiding and problem solving 189
Complexity in programming 189
Computer 2–3
 • efficiency versus human efficiency 182

 • networks 197
 • specific optimisation 182
Computing, an introduction 1–6
Concatenation 150–151, 191
 • operator 150–151
Confusion 160
Constant 51
Contents of memory 2
Continuation 94, 123
CONTINUE statement 63
Control structures 38, 62–64
 • and arrays 62
 • and correctness 190
Conversion
 • to character 154
 • to complex 140
 • to double precision 140
 • to integer 117, 140, 153
 • to real 117, 140
Correctness and programs 190
Correctness and understandability 190
COS function 117, Appendix E
cosine 117, Appendix E
CPU 2
Cray 139
Currency symbol 148

Data
 • description statements 38
 • files 171
 • in programming 38
 • lines and the CPU 3
 • processing 38
 • processing statements 38, 41
 • structures 192
 • type 38, 41
DATA statement 178–179
• and implied DO loops 178
DBLE function 140, 141, Appendix E
Debugging and testing programs 134–136, 144,

193
Decimal point 44, 79, 98
Decisions at the design stage 193
Decision making 107–115, 126–132
Declarative statements 69, 176, 178
Declaring variables 40, 42, 44, 139, 140, 141,

148
Default 98, 173
 • DO loop increments 64
 • OPEN 173
 • type for INTEGER and REAL 43
 • types for variables 43
 • STATUS 173
Defined values for variables 178
Definition of an algorithm 189
Delimiters 149

216 Index

 • character strings 40, 42, 149
 • list directed input 42, 44, 102
Design
 • and systems analysis 12–13
 • of solutions 189
Development and maintenance of programs 200
Digits 98
Digital watches 53
DIMENSION statement 61, 72
Dimensioning arrays in subroutines 161–163
Direct access files 173
Disks 3–4
Division 47, 48
DO loops 62–64, 72, 91–92
 • and arrays 58–76, 91
 • control of repetition 73
 • examples 63, 91, 184
DO statement 62–63
 • default value of increment 64
 • end value of index 63–64, 72–73
 • start value of index 63–64, 72–73
DOUBLE PRECISION statement 139–140
Double precision 139–141
 • functions 139
 • variables 139–140
Double quote 149
Dump 134
Duplication 119, 122, 162, 166
Dynamic allocation 163
Dynamic manipulation of array indices 63

E Format 80–81, 98–100, 140
Easter 118–119
EBCDIC character set 138
Edit descriptors 77–106
Editors 5, 200
Editor as a tool 200
Ego 193–194
Elegance 104
Elements of a programming language 37–39
Else block 110
ELSE statement 110, 111
ELSEIF statement 111
END
 • and ERR option on READ statement 104
 • option as covert GOTO 172
 • statement 40, 120–121, 122
End of DO loop 63–64
ENDIF statement 108
.EQ. 109, 142–143
Equality, floating point 112
Equals sign 41, 42, 43, 44
Equated keywords 85
Equations and arithmetic assignment 41
ERR option on i/o 104, 172–173
 • and END 104

 covert GOTO 173
Error(s) 104, 111, 123, 172, 191, 193
 • and the compiler 52
 • detection and correction 133–136
 • evaluating expressions 48
 • opening a file 173
 • reading data 104
Evaluation of expressions in Fortran 47
Executable statements 44, 69, 123
Execution errors 134
Exit 122
EXP function 117, Appendix E
Explicit
 • reference in functions 122
 • type declarations 44
Exponent 99
Exponential notation 80, 99
Exponentiation 47, 48, 117, 128
Expressions 47
Expression
 • argument to functions 118
 • evaluation 47–49, 142–143
 • interpretation 47–48
 • precedence 143
Extra lines 94
Extensions 120

F format 79–80, 98, 140
Factorial 121, 125
False 142
.FALSE. 142
Faulty data 104
Field width 98
FILE 83, 171–172
File(s) 84, 88, 103, 170–174
 • access 173
 • creation (OPEN) 83, 103, 171, 172
 • defaults on OPEN 172–173
 • end of 104
 • existence (STATUS) 172, 173
 • manipulation 103
 • names and unit numbers 83
 • position 88, 103
 • record length 173
Finite size of numbers 53
Fixed fields on input 98–103
Flexibility 122, 162, 178
Floating point equality 112
FMT with i/o statements 84–85
FORM (OPEN statement) 173
FORMAT statement 78–82, 88–95, 98–103
 • A edit descriptor 82, 104, 149
 • BN edit descriptor 101
 • BZ edit descriptor 101
 • colon 90
 • E edit descriptor 80, 98–100, 140

Index 217

 • F edit descriptor 79, 98, 140
 • I edit descriptor 78, 98
 • L edit descriptor 144
 • X edit descriptor 101
Formatted i/o 102, 173
Formatting for a line printer 92–95
Formula translation – FORTRAN 37
Fortran 18, 37
 • IV 37
 • 66 37
 • 77 26, 37
 • 77 Revisited 26
 • 8x 26
 • character set 44, 148
 • rules 39–40, 43–44, 47–48, 50, 55, 69, 75,

81, 143, 178, 181
Functions 116–125, Appendix E
 • arguments 117, 120
 • character 153, 154
 • complex 140
 • double precision 140, 145
 • intrinsic 117
 • generic 117
 • logical 145, Appendix E
 • modularity 120, 193
 • name and function type 121
 • predefined 117, Appendix E
 • reasons for 119
 • recommended use 193
 • returning a value 122
 • supplying your own 120–123
 • statement functions 123–124
 • type 121, 145
 • user defined 120–123

Gaussian elimination 165
.GE. 109, 143
General optimisation 182
Generality of subprograms 193
Generating new lines on terminals and lineprin-

ters 94–95
Generic functions 117
GO TO statement 127–130, 173, 192
Grammar and syntax 37
Graphs 155, 167
.GT. 109, 143

Hard and soft fail 167
Headings on output 42
Help when coding 189
Hierarchy of operators in expressions 48, 143
High-level control structures 127
High-level problem solving 4–5
Higher dimension arrays 66
Historical aspects
 • of Fortran 88

 • of problem solving 189

IBM 138
IBM/360 operating system 196
ICHAR function 153
ICON 25
Identifier, variable 40–41
I Format 78
IF statement 108–110, 127–128, 142
IF THEN 108
IF THEN ENDIF 108
IF THEN ELSE ENDIF 110
Imaginary part of complex number 140
Implicit length of character variable 149–150
Implicit typing 43, 139
IMPLICIT statement 139
Implied DO loop 91, 178
Increment of DO loop control variable 64, 72
Indefinite values for variables 83
Indentation 64
INDEX, function 153, Appendix E
Index and arrays 61–62
Indices and identifying elements of a set 61
Initialisation of variables 43
Inner loop 66
INPUT 84
Input and output (i/o) 3, 38, 78–85, 88–95, 98–

104
Insoluble problems 14
INT function 117, Appendix E
Integer 78
 • data type 42,43
 • division 50
 • expressions and truncation 49
 • type 42,43
 • variable 42,43
Interactive debugger 134
Interactive programs 172
Internal representation of data 52, 138
Intrinsic functions 117, 161, Appendix E
Invalid DO loops 67–68
Involved expressions 48
IOSTAT (see OPEN) 173
i/o (see Input and output)
 • character 82, 149–150
 • complex 140
 • double precision 140
 • END=, and end of file 104
 • ERR=, and error conditions 104
 • integer 78–79, 98
 • list directed 42, 78, 84–85
 • logical 144
 • real 79–81, 98–100

Jargon 38
Job control languages 201

218 Index

Joke (?) 6, 10, 51, 81
Jump 122

Keyboard 4, 40, 110, 196, 197
 • access and on line problem solving 196
 • access to a computer 196
Keyword 84
Kinds of data 38

L format 144
Labels 63
 • DO loops 63
 • FORMAT statements 78
Labelled common 176–177
Languages 4–5
.LE. 109, 143
Leading zero 63
Leap years 112–113
Left justification of characters 151
Left to right order of evaluation 48
LEN function 153, 155, 164, Appendix E
Length
 • characters 82, 148–149, 155, 164
 • declaration 148
 • record 173
 • variable 41
Lexical operators 154
 • .LGE. 154
 • .LGT. 154
 • .LLE. 154
 • .LLT. 154
Libraries of subprograms 166–167, 201, Ap-

pendix D
Library functions, 117, Appendix E
Limits 61, 72, 75
Line printers 4, 92
Linear 61
Linear list 61
Link-editor 5
LISP 20
Lists 58, 61
List directed input and output 85
Listing, program 135
Loader 5
Location in memory and stored data value 23,

41–42
LOG function 117, Appendix E
Logarithm
 • common 117, Appendix E
 • natural 117, Appendix E
Logic 9
LOGO 24
LOG10 function 117, Appendix E
LOGICAL statement 141–145
Logical 108–110
 • data types 141

 • expressions 108–110, 127
 • functions 145
 • intersection, .OR. 142–143
 • negation, .NOT. 142–143
 • operator 109, 142–143, 154
 • union, .AND. 142–143
 • unit number 84–85, 171
 • variables 141
Loop control 61–65, 127–128
Loops 93, 127–128, 190
Low-level languages 4
Lower bounds of DIMENSION state-ment 72,

73, 75
Lower case 154
.LT. 109, 143

Magnetic tape 4, 201
Mainframe operating systems 196
Making decisions 108–113, 127–131
 • BLOCK IF 108–110, 192
 • ELSE 110–111, 191
 • ELSEIF 111, 192
 • while 127–128, 192
 • repeat until 127–128, 192
Manipulation of sets of items 61
Maps 66
Mathematical evaluations 117
Matrix 61
MAX function 117, Appendix E
Maximum 122, 161
 • value 117
Mean 74
Meaningful variable names 40–41
Mechanics of carriage control 93–94
Mechanisms for manipulating tables of data 61
Memory 2–3
Metonic cycle 118
Micro–computers 2
Micro–processors 196
Mini–computers 2
MIN function 117, Appendix E
Minimum 122, 161
 • size for FORMAT 79–81
 • value 117
Minus 44
Mixed mode arithmetic 49–50, 74, 140
Mixed type 49–50, 140–141
Modulus function 117, Appendix E
MOD function 117, Appendix E
Modula 23
Modula2 23
Modular programming 120, 144, 193
Modules in programs 120, 193
Multiple arguments 118, 122–123
Multiple selection between courses of action

107–115

Index 219

Multiplication 47–48

NAG library 166
Named COMMON 176–178
Name(s)
 • BLOCK DATA subprogram 178–179
 • COMMON block 176–178
 • constant 51–52
 • function type 120, 140, 145, 155
 • program 39, 42, 43–44
 • scope 123, 160
 • subprogram (see Program, Function and

Subroutine)
 • subroutine 160
 • type 43, 138–139
 • variable 40–42
Natural language 8
Negation, .NOT. 142–144
.NE. 109, 143
Negative increments and DO loops 72, 73
Nested control structures 66, 68
Nested loops 66–69
Networks 197
NEW (see OPEN and STATUS) 172
New line 92–94
NINT function Appendix E
Nonexecutable statements 69
.NOT. 109, 142–143
Notations 9
Null 98, 101
NULL (see OPEN and BLANK) 173
Numerals 153
Numeric
 • input 97–106
 • output 78–81, 140
 • type (see Real, Integer, Double Precision

and Complex)
Numerical Algorithms Group 166, Appendix D
Numerical Analysis 53
Numerical errors 53–54
Numerical solution 128

Oblique 44, 94–95, 102
Octal numbers 138
OLD (see OPEN and STATUS) 173
ON/OFF switch 141
One dimensional arrays 61
OPEN statement 83, 103, 171–173
 • summary of options 173–174
Operating systems 5, 32–34, 35, 195–198
 • and their history 196
 • 1940 to 1990, 196–197
Operator(s) 47, 109, 142, 143, 150, 153
 • precedence 48,143
Optimisation 181–187
 • DO loops 184

 • rearranging expressions 184
.OR. 109, 143
Order of evaluation 47–48, 143
Order of statements (see Declarative and Ex-

ecutable) 44, 69, 123, 179
Out of range values 79, 83
OUTPUT 84–85
Output
 • arrays with implied DO loops 91
 • extension 87–96
 • introduction 77–86
 • character 82, 149–150
 • complex 140
 • devices 4
 • double precision 140
 • integers 78–79
 • list directed 84–85
 • logical 144–145
 • numeric (see Real, Integer, Double Preci-

sion and Complex)
 • reals 79–81
 • spaces 81–82
 • unit (see Logical unit number)
Overflow 83
Overprint 93

Page throws and lineprinter output 93–94
Parallel processing 197
PARAMETER statement 51–52
Parenthesis 44, 90
PASCAL 21
Pattern matching and editors 34
Patterned output 90
Pencil and paper preparation 11
Period (see Decimal point)
Personal computers 196
Phototypesetters as output devices 4
Physical record unit 88
Plotters as output devices 4, 167–168
Plotting routines and subroutine libraries 167–

168
Plus 44, 92
PL/1 21
Polynomial evaluation and optimisation 183–

184
Position in files 88
Positional dependence 84
Post mortem dump 134–135
Postscript 24
Precedence, operator 48, 143
Precision and accuracy of numbers 52–54
Predefined functions (see Library functions)
Prediction of action of a program 190
Preparation 11
Preset data values 83
Prime (see apostrophe) 40, 44, 148, 149, 153

220 Index

Primitive(s) 127
 • Fortran data types 192
 • tools 10
PRINT statement 39, 40, 78, 84
Printer, line printer output 92–95
Printing out tables using DO loops 74
Priority in evaluation 47–48, 143
Problem solving 7–15, 188–194
Profiling tools and optimisation 182
PROGRAM
 • statement 39, 42
 • ANALYS 177
 • AVERAG 42
 • BREAK 130
 • CONVRT 74
 • DATE 112–113
 • DIAGRM 155–156
 • EASTER 118–119
 • EXAMPL 176
 • FACTOR 124
 • FIND 127
 • FLEX 172
 • FRONT 121
 • INOUT 39
 • LOC8 66
 • MEANSD 74–95
 • NAGEX1 166
 • QROOTS 112
 • RAIN 63
 • REDO 84
 • RESULT 72
 • SIMPLE 160
 • SOLVE 165
 • SUMAVE 65
 • THEATR 68
 • TIME 51
 • TRIAL 120
 • ZONE 73
Program (see Function, Subprogram, Subrou-

tine and Block Data)
 • development systems 202
 • execution 134, 179
 • library 166–167, 201
Program language development and engineer-

ing 17
Programming, an introduction 36–45
Programming
 • languages, elements of 16–30, 37–39
 • data description statements 38
 • control structures 38
 • data processing statements 38
 • input and output statements 38–39
Programming languages
 • ADA 23
 • APL 21
 • ALGOL58 19

 • ALGOL60 19
 • ALGOL68 21
 • Basic 22
 • BCPL 22
 • C 22
 • Cobol 18
 • ICON 25
 • Lisp 20
 • Logo 24
 • Modula 23
 • Modula2 23
 • Pascal 21
 • PL/1 21
 • Postscript 24
 • Prolog 25
 • Simula 21
 • Smalltalk 25
 • Snobol 20
 • SQL 25
 • TeX 24
PROLOG 25
Punctuation 148, 153
Purge 33

Quadratic 112
Queueing 92
Quotes 149

Random access memory (RAM) 3
Random access to an array 58
Range on internal numbers 53–54
READ statement 39, 40, 42, 43, 102
Reading 97–106
 • blanks, nulls, and zeros 101, 103, 173–174
 • characters 39, 101, 149–150
 • complex 140
 • double precision 140
 • integers 98
 • logicals 144–145
 • reals 98–100
 • skipping spaces and lines 101–102
REAL 117, Appendix E
 • statement 42–43
Real
 • data structures and program data structures

192
 • input 98–100
 • functions 117, 140
 • part of imaginary number 140
 • type 42, 139
 • variables 41–42
Recipe as sequence of operations 10
RECL (see OPEN) 173
Record(s) 38–39, 88, 102
 • length (see OPEN and RECL) 173
 • as subdivision on a file 88

Index 221

 • in Fortran 88, 103
Rectangular array 164
Recursion (see recursion) 165
Reduction of complexity using structured pro-

gramming 190
Redundant instructions 182
Referencing a set by a single name 61
Referencing an item of a set 61
Refinement (see step-wise refinement)
Relational expressions 109, 110, 143
Relational operators 109, 143
Remainder 117
Repeat until construct 127–128, 131
Repeating statements 38
Repetition
 • and output 88–89
 • control and DO loops 58–70
 • control, Repeat and While loops 126–132
Representation of data 190–191
Restrictions on data types in COMMON blocks

176
Restrictions using functions 122
RETURN statement 122, 172
REWIND statement 103
Rewriting programs and optimisation 182
Right justification 78, 98
Root
 • square 117
 • cube 123
 • imaginary 140
 • real 112
Rounding 49–50
 • F and E edit descriptor 79–80
Routing 92
Rules 41, 43, 120
Run time 63
 • debugging 135

SAVE statement 177–178
 • and COMMON blocks 177–178
Scale factors in i/o 80, 99–100
Scientific notation 80, 98–100
SCRATCH (see OPEN and STATUS) 172, 173
Selection between courses of action 108
Separator, list directed input 42
Sequence to statements 39, 191
Sequence as part of a problem solution 10
Sequential and random files 173
Sequential flow in a program 191
Sets 58
 • of data 58, 172
SHARE index 167
Significant digits 53, 78, 80, 99
SIGN function Appendix E
Silly errors 38
Simula 21

Simultaneous equations 119, 165–166
SIN function 117, Appendix E
Sine function 117, Appendix E
Single precision 141
SINH function Appendix E
Size of numbers 52, 79–80
Skipping
 • pages 93
 • records on input 101–102
 • spaces and lines 101–102
Slash (see oblique) 44
 • output control character 94–95
Smalltalk 25
Snobol 20
Software 4–5
 • engineeering and tools 200
Soluble problems 14
Solution to problems 14
Sorting and merging data files 200
Spaces 42, 81
Special characters
 • asterisk (far too often)
 • apostrophe as text delimiter 40, 149
 • colon in substrings 151
 • colon in DIMENSION statement 72
 • colon with edit descriptors 90
 • equals sign in assignment 41
 • for line printer control 92
 • period with logical operators 109
 • slash or oblique with i/o 94–95, 102
Spelling errors when programming 37
Spooling 92
SQL 25
Square root 117, Appendix E
SQRT function 117, Appendix E
Standard deviation 74
Start (DO loop initial value) 64
Statement(s)
 • continuation 94, 123
 • functions 123
 • in a programming language 38–39
 • label 63, 78
 • of a problem in a programming language

189
 • sequence 39, 191
Static aspects of arrays in Fortran 163
STATUS (see OPEN) 172–173
Steps in a problem solution 10, 189
Step-wise refinement 11, 193
Stirling’s approximation 124
STOP statement 172
Storage of arrays in memory 163–164
Strong typing 144
Structure in data 192
Structure of COMMON blocks 177
Structured programming 22, 104, 190

222 Index

 • and correctness of solution 190
Structureless programs 190
Strict syntax 38
Stylised language 8
Subprogram 119, 160, 172, 176
SUBROUTINE usage 160–165
Subroutine 159–169
 • libraries 166–168
 • libraries and plotting 167–168
Subscripts and arrays 61–62, 92
Substring(s) 151
 • checking 135
Subtraction 47–48
Systems analysis and design 11
 • analysis 12
 • design 12–13
 • evaluation and testing 13
 • feasibility study and fact finding 12
 • implementation 13
 • initial system design 12
 • maintenance 13–14
 • problem definition 12

Tab keys 39
Table of data 59–60
Talking at the design stage 193
Tektronix terminals 167
TAN function 117, Appendix E
Tangent function 117, Appendix E
TANH function Appendix E
Tapes magnetic 4
Technical terminology 9
Temporary variables and optimisation 183
Terminal 4, 40, 94
Terminal output and a record 88–89
Terminating a user subprogram 121, 122, 160
Termination of a program 40, 172
TeX 24
Text
 • files 171
 • formatting 154
 • strings on output 82
Textual messages 42
THEN (see IF)
Tidying up programs 200
Timesharing 5, 171, 196, 201
Timesharing operating systems 5
Time zone example 73
Titling 156
Tolerance 128
Toolpack as a development system 202
Tools in programming 199–202
TOMS – Transactions on Mathematical Soft-

ware 168
Top of page on line printer output 92–93
Top–down programming 10, 192–193

Trailing blanks 78
 • in character strings 151
Triangle 124
Trigonometric functions 117
Transformational grammar 20
True 141
.TRUE. 142
Truncation 49–50, 141
 • across an = sign 49
 • characters 150
 • integer division 50
Truth tables 143
Turing 17
Two digit arithmetic 53
Type 41
 • conversion, implicit 49, 50
 • conversion, functions 140, 153–154
 • data 40
 • data and allowable operations 40
 • declarations 42
 • explicit 43, 139
 • functions 117, 120–122, 145, 153–155
 • implicit, 144
 • loop control variable 72, 75
 • mixed 49–50, 140–141
 • strong 40, 144, 148
 • weak 144
Typing errors 52

Unambiguous problem definition 37
Undefined values for variables 83, 177–178
Unformatted output 173
UNIT (see i/o statements) 83–84, 173
UNIX 22, 197, 202
UNKNOWN (see OPEN and STATUS) 172–

173
Unnamed COMMON, (see blank COMMON)
Until, repeat 127–128
Updating 74
Upper bound on arrays 61, 72, 75
User defined functions 120

Value 40
Variable 40–41
Variable dimension arrays 162–164
Variable typing 138–139
Variable length character strings 155
Vector 58, 61
Vector plotting 167–168
von Neumann 17

Waves 129–130
Weak typing 144
Weight of characters in Fortran 153–154
Wheel 166
While structure 127, 129, 192

Index 223

Width 80, 98
Word
 • length 139
 • processing 154
Workspace for arrays 167
WRITE statement 84–85, 89–95, 102
Writing, and output 84–85

X edit descriptor 78, 101–102
X3J3 37, 81

YES/NO switch 141

Zero 92, 93, 94, 101, 103, 129, 174
ZERO (see OPEN and BLANK) 103, 174

224 Index

