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Abstract � Smart radio environments (SRE) transform the wireless propagation phenomenon in a programmable
process. Leveraging multiple recon�gurable intelligent surfaces (RIS), the wireless waves emitted by a device can be
almost freely routed and manipulated, reaching their end-destination via improbable paths, with minimized fading and
path losses. This work initiates with the observation that each such wireless communication customization occupies a
certain number of RIS units, e.g., to form a wireless path with consecutive customized re�ections. Therefore, SREs can
be modeled as a resource of constrained capacity, which needs to be sliced among interested clients. This work provides
a foundational model of SRE-as-a-resource, de�ning service level agreements (SLAs) and objectives (SLOs) for the
SRE client requests. Employing this model, we study a class of negative drift Dynamic Weighted Round Robin policies,
that is able to guarantee speci�c SRE resource shares to competing user requests. We provide a general mathematical
framework where the class of policies mapping user requests to resources requires no statistical knowledge regarding
the arrival distribution or the duration of each user communication. We study the meaning of work conserving and
non work conserving modes of SRE operation, and study the convergence properties of our scheduling framework for
both cases. Finally, we perform the feasibility space analysis for our framework and we validate our analysis through
extensive simulations.

Keywords � Smart radio environments, intelligent metasurfaces, resource slicing, theoretical foundations, 6G, service
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1. INTRODUCTION

Up until recently, resource slicing and scheduling in
wireless communications was a matter of the end-points,
i.e., con�guring the modulation attributions and the
MIMO assignment between the transmitter and the re-
ceiver system. With the emergence of SREs, the role of
the propagation environment, i.e., the scattering objects
in their vicinity, can be programmed in real-time [1�3].

An SRE�initially appearing in the literature under the
term Programmable Wireless Environment (PWE) [4]�
is a complete, end-to-end system that transforms the
propagation of electromagnetic (EM) waves into a
software-de�ned process. SREs are created by coating
all major planar objects, such as walls and ceilings in
an indoors space, with addressable RIS units [5]. An
RIS is as a rectangular, planar structure resembling a
tile. An RIS unit can receive commands via well-de�ned
application programming interfaces invoked from a cen-
tral server [5]. Employing these commands, the server
orchestrates the SRE RIS tiles, modifying the way they
interact with impinging EM waves in order to best serve
a set of client devices. Carefully orchestrated RIS units
result into SREs that can e�ectively mitigate path loss,
multi-path phenomena, Doppler e�ects and interference
in challenging Non-Line-of-Sight (NLOS) cases [6].

Based on the SRE work�ow, it is apparent that RIS

are resources that need to be e�ciently shared between
di�erent users and e�ectively exploited. However, and
despite the early and enthusiastic adoption of the RIS
technology in 6G communications, the topic of SRE re-
source scheduling has been widely overlooked in the lit-
erature. Nonetheless, the importance of dynamic con-
trol schemes that are able to provide scheduling guar-
antees is a foundational concern for any modern system
(e.g., in operating systems and thread schedulers [7], hy-
pervisor operations [8], queueing systems [9]), since re-
sources are always bounded and because of the increased
complexities in today's communications infrastructure.
In this work we introduce a resource sharing model for
SREs, enabling the di�erentiation of services by means
of providing RIS units for di�erent classes of customers,
according to speci�ed Service Level Objectives (SLOs),
de�ned in enterprise Service-level agreements (SLAs)
of the SRE operation. We de�ne the nature of SLAs
and SLOs for SREs, based on the established types of
wireless propagation manipulation in the literature, i.e.,
wireless routing for signal-to-noise ratio (SNR) max-
imization, wireless power transfer, energy harvesting
and physical-layer security [6]. Then, assuming a com-
pletely stochastic environment with unknown mean val-
ues regarding the arrival and service processes for ev-
ery customer class and without relying on prediction
techniques, we present a class of negative drift Dynamic



Weighted Round Robin (DWRR) policies used to prov-
ably apply guaranteed service di�erentiation, and en-
force a de�ned ratio of SLA types served by the SRE
over time. The rationale is that the SRE should not
serve just one type of SLA (e.g., just wireless power
transfer) under saturated user request arrivals.
Moreover, in schedulable systems, the distinction be-
tween work-conserving and non work-conserving modes
of operation is of paramount importance. The reason
is that the actual performance is largely a�ected by the
way service-capacity redistribution is made at run time.
For example, in hypervisor technologies [10], the selec-
tion of the mode can be made by tuning speci�c con�g-
uration parameters (e.g., setting the �cap� in the XEN
hypervisor, when using Credit scheduling [11]). Thus,
we study the concept and meaning of work conservation
in the SRE work�ow, and propose resource scheduling
approaches in the conserving and non-conserving cases.
The contributions of the present work are summarized
as follows:

� We propose a foundational, resource slicing layer in
the SRE work�ow stack. This allows for scheduling
the assignment of the SRE resources, i.e., its RIS
tiles, per user request and user type.

� We formalize the concepts of user requests, SLAs,
SLOs and work-conservation for the case of SREs,
deriving their de�nition from the physical capabil-
ities of the RIS.

� In the general case of arbitrary user request arrival
and service time distributions, under non-work con-
serving mode of operation, we prove that a class
of DWRR request-to-resource mapping policy ex-
ists such that the system not only regulates but
also convergences to the SLA goals. Under work
conserving mode of operation, we prove that the
same class of DWRR policies can satisfy a mini-
mum guaranteed service.

� We de�ne the feasibility space of these DWRR poli-
cies for both of work conserving and non-work con-
serving modes of operation.

The paper is organized as follows. We present the re-
lated work in section 2. In section 3, we describe the
proposed resource allocation model, the detailed provi-
sioning objectives and the corresponding mathematical
formulation. In section 4, we de�ne a class of DWRR
scheduling policies and in section 5, we provide the theo-
retical framework regarding convergence and optimality
of the de�ned class. In section 6, we evaluate the perfor-
mance of the proposed policies. We conclude our study
in section 7.

2. RELATED WORK

We divide our survey of the related studies in terms of
SREs and scheduling.

SREs SREs can be perceived as a sub-part of PWEs,
an approach for exerting deterministic control over me-
chanical, acoustic and thermal energy propagation, and
any application setting [12,13]. Within the EM domain
the PWE focus is to craft software-de�ned EM vector
�eld distributions at any location in a 3D space, employ-
ing metasurfaces. Metasurfaces are essentially passive
converters of surface current distributions. Impinging
waves create a surface distribution �A� upon a meta-
surface, and embedded control elements convert it to a
state �B� that yields the required EM �eld as a global
response [14]. This general model is denoted as software-
de�ned metasurfaces (SDMs) [5].
PWEs are de�ned as complete end-to-end systems o�er-
ing software-de�ned wireless propagation, and following
a layer organization approach [5, 15]. At the physical
layer, PWEs consider any type of metasurface equipped
with a hardware gateway o�ering standard connectiv-
ity. At the network layer, PWEs o�er the infrastructure,
protocols and work�ows covering the system operation
from user registration, authentication and statement of
requirements to the corresponding wireless channel op-
timization. The control layer is aligned with the SDN
paradigm o�ering direct integration to existing net-
work infrastructure. The central controller hosts soft-
ware interfaces for o�ering an abstracted graph model
of the wireless environment. The application layer al-
lows for customized wireless propagation-as-an-app for
increased communication quality, security and wireless
power transfer.
SREs focus the PWE concept explicitly on the signal
processing aspects of wireless communications, and es-
pecially on the use of metasurfaces for engineering a
channel matrix [2, 3, 16�18]. This direction introduced
the more marketable terms SRE and RIS instead of
PWE and SDMs, and popularized the concept to the
general public. Based on these premises, the goal is to
iteratively optimize the phase shifter states (free vari-
ables) of a re�ectarray-RIS [19], in order to maximize
a scalar quantity representing an aspect of the chan-
nel transfer function (�tness function). Additionally,
given that SREs focus on the signal processing aspect
of PWEs (e.g., deriving stochastic channel models), the
required protocols, system work�ows and integration-
to-infrastructure processes are left unde�ned, implying
an underlying PWE infrastructure. In a layered sense,
PWE is a complete, top-to-bottom systemic approach,
while the smart radio environment is an extensive set
of studies focusing on the application of PWE in wire-
less channel engineering while employing re�ectarrays.
For this reason, SREs and PWEs bear major similarities
and share common elements [20], to the point that they
are considered synonyms in the literature.
In terms of resource slicing in SREs, the challenge is
acknowledged in the literature [6, 21], but no related
solutions exist. While there exist algorithms that can
fully con�gure an SRE given a resource allocation quota
per user request [6, 22, 23], there are no algorithms to



derive this quota in the resource allocation sense. The
present work �lls-in this gap.

Scheduling There is an abundance of studies in
the area of guaranteed resource allocation in general,
across multiple application domains [8], [24], [11], [25],
[26]. Proposals to change priorities dynamically, using
feedback-based stochastic control are presented in multi-
ple works [27], [28]; the authors of these works use a sim-
ilar approach to ours but focus on rate control through
scheduling. Service di�erentiation based on feedback
control is also investigated in [29], while in [30] feedback
control together with rate predictions is used to provide
service di�erentiation. On-line measurements with pre-
diction and resource allocation techniques is examined
in [31] and a prediction based on a linear approximation
technique was proposed in [32] where convergence to the
goal vector was presented only through simulations.
Particularly related to the present work is the negative
drift concept and has been applied in multiple �elds like
mechanical engineering [33]. Related analysis regard-
ing stochastic analysis tools (namely Lyapunov analy-
sis in systems where negative drift is applied to change
priorities) were used in several works [34], [35], [36].
In [37] and [38] aggregate packet rate guarantees to
individual clients is combined with negative drift and
measurement-based admission control techniques.
The decomposition of DWRR policies was originally in-
troduced in [39] and [40], where a theoretical analysis
was presented regarding saturated arrival conditions. In
this work we extend the mathematical framework to in-
clude the stochastic arrivals case, we present proof of
convergence for the non work-conserving mode of op-
eration, while we investigate time dependence through
analysis in the limit and SLO satisfaction for all modes
of operation. In addition, we make a feasibility space
analysis and present the dependence on the service re-
distribution algorithm in the �nal performance.

3. THE PROPOSED RESOURCE

SLICING MODEL FOR SRES

3.1 Prerequisites: The SRE work�ow

SREs follow the operation work�ow summarized in
Fig 1 [15]. We proceed to describe it in a bottom-to-
top approach.
An SRE is created by placing RIS units over large sur-
faces, such as walls. Each RIS has a gateway provid-
ing basic connectivity capabilities. The gateway itself is
intended to be extremely lightweight, supporting basic
commands for getting and setting their EM behavior.
RIS units are hierarchically organized in smart walls,
with each wall being controlled by a dedicated server,
as shown in Fig. 1. The smart wall server provides ad-
vanced capabilities, such as standards-compliant com-
munication with existing infrastructure, as well as RIS
addressing, monitoring and secure interaction. The

smart wall servers are connected to a central SRE con-
troller, whose operation is summarized as follows:

1. Receive the user requests for service from the SRE
(whose acquirement is described in the next para-
graph).

2. Perform resource allocation, i.e., assign them to
a wall and a number of RIS units within it (i.e.,
a coarse RIS selection, which is the scope of the
present work). Notice that, while PWEs allow for
multi-wall wireless paths [15], their simpler coun-
terpart, the SREs, focus on single-wall communica-
tion. In this study, we adopt this simpli�cation.

3. Based on the resource allocation outcome, invoke
an SRE con�guration algorithm (e.g., KpPaths [6]
or NNPaths [22]) to perform the speci�c RIS selec-
tion and con�guration.

4. Finally, when a user has been serviced (e.g., when
exiting the SRE), update the RIS usage statistics
over time.

The users requests are gathered as shown in Fig. 1. A
beacon advertises the existence of an SRE (much like
SSIDs are broadcast for WiFi). The user passes au-
thentication and states a communication objective type
(e.g., wireless power transfer, advanced physical layer
security, or SNR maximization). These are relayed to
the SRE controller for further processing as described
above. Finally, the user enters the SRE, while receiv-
ing beamforming directions in order to aim at the smart
wall that will serve his device.

3.2 The Proposed SRE Resource Slicing

Model

We present the proposed SRE resource slicing model,
depicted in Fig. 2. The model comprises a set of ser-
vice domains, D, indexed by i = {1, . . . , D}, which
represent the SRE communication service types, such
as SINR maximization, physical-layer security, wireless
transfer, Doppler e�ect mitigation, etc. Additionally,
we consider a set of smart wall servers,M, indexed by
m = {1, . . . ,M}.
Each service domain is associated with a given percent-
age pi of aggregate RIS resources to be committed for
serving domain requests over an in�nite time horizon.
The SRE controller uses one First-In-First-Out (FIFO)
queue per domain to hold user requests, and distributes
them from the domains to the set of smart walls, seek-
ing to uphold the domain SLAs in the process. The con-
troller has no a priori knowledge of the execution time of
the requests, i.e., how much time a user will stay in the
SRE until exiting. This parameter is provided a pos-
teriori as feedback, in order to schedule future service
requests more e�ectively. It is clari�ed that a service re-
quest is modeled as a non-preemptive process that will
occupy a server for a given, non-in�nite amount of time.
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Fig. 1 � Operation work�ow of an SRE.

The following modeling assumptions are adopted, with-
out loss of generality.

� We assume that the servers have no queuing ca-
pabilities. This task is handled exclusively by the
controller.

� Whenever a server dispatches a given service re-
quest, it signals the controller for a new re-
quest/packet. The controller then assigns a new
request to the server. This communication is in-
stantaneous. In other words, the communication
overhead between the controller and the servers is
assumed to be a part of the requests.

� If all domains queues are empty, a server is fed
with interruptible null-requests from a null-domain

(Fig. 2). The null-domain is essentially an arti�cial
structure, which facilitates the mathematical analy-
sis. Its physical meaning is that the corresponding
server is deactivated, e.g., to conserve energy, or
that it enters a default type of service, such har-
vesting ambient EM waves.

� Every domain can be served by any server. The
physical meaning of this statement is that the users
are in line-of-sight with all the available smart walls,
since scheduling makes sense in the case where users
need to share commonly accessible resources. If a
user is close only to one wall, then the assignment is
trivial. Therefore, we inherently assume a physical
setup where a set of users are within a large rect-
angular room, such as a waiting area in an airport.



Fig. 2 � Overview of the proposed SRE resource slicing model,
comprising a set of SLA-speci�c service domains representing the
SRE wireless service types, and a set of smart wall servers. A con-
troller enforces the SLAs using the reported smart wall utilization
times as feedback.

Every domain i has a �nite, aggregate arrival rate of re-
quests, λi, which follows an unknown distribution with
bounded inter-arrival times. Regarding the service pro-
cess, we assume a non-i.i.d model, where the service time
distribution can vary depending on the domain identi-
�er, i. The service time of a request belonging to domain
i, is described by a random variable Si that follows some
general distribution with mean E[Si] and �nite variance,
that we assume to be bounded. Therefore, there exists
some �nite Smaxi such that:

0 < Si ≤ Smaxi <∞ (1)

We note that the bounded inter-arrival times and the
bounded service times are the only requirements for the
proposed mathematical framework. We de�ne the RIS
wall utilization, Uπi (t), of domain i up to time t, under
a request-to-server assignment policy π as:

Uπi (t) ,
total service time up to t

M · t
(2)

When the following limit exists, the system is said to
have reached a steady state, and the allotted percent of
RIS wall capacity to domain i is then de�ned as:

Ũi(π) , lim
t→∞

Uπi (t) (3)

The maximum achievable utilization for domain i, ob-
tained when all of its requests can be served in the clus-
ter for t→∞ is:

p̃i =
λi · E[Si]

M
< 1 (4)

This can be thought of as the utilization obtained if
there was a single domain in the system, utilizing all
the resources. We note that servicing all the requests
does not mean that the queue will be empty from one
point and on, but rather that the probability of noticing
queue sizes bigger than zero is negligible (convergence in
probability). The following analysis will prove that all
policies that fall under a negative-drift class of (De�cit

Table 1 � Summary of Notation

SLA Service Level Agreement
SLO Service Level Objective
D The set of service domains, representing

SRE service types.
i The domain index, i ∈ {1, . . . , D}.
M The set of smart wall servers.
m The server index, m ∈ {1, . . . ,M}.
λi The arrival rate of requests at domain i.
Si The service times for domain i requests.
π A request-to-server assignment policy.

Uπi (t) Smart wall utilization of domain i
up to time t.

Ũi(π) The allotted percent,
for t→∞ (steady state).

p̃i The maximum achievable utilization.
pi The utilization goal (%) for domain i.
p∗i The actually achieved service (%).

Weighted Round-Robin) DWRR policies, reach a steady
state whenever p̃i < pi in non-work conserving mode of
operation.
Here note that the physical meaning of non-work con-
serving operation in the SRE is that a user receives a
message to wait until his request can been processed.
This is necessary for ensuring that there is always the ca-
pability to assuredly serve all types of domain requests.
To the contrary, work conservation means that the user
is serviced without introducing arti�cial delays.
Furthermore, let ln denote the idle time between round
n and round n + 1. Idle time can occur because there
are no available requests in the system, or the system
operates in non-work conserving mode and there are no
available requests for domains for which their utilization
is below the goal. We assume only systems for which

ln < l <∞, a.s., (5)

where l ∈ <+ denotes the maximum observable idle time
(or maximum observable inter-arrival time).
Finally, we denote as pi the steady state percentage
utilization goal, and the corresponding goal vector as
p = (pi), where

∑|D|
i pi = 1. The goal vector simply

de�nes the requested percentage share of the aggregate
wall server time per domain, e.g. p = (20%, 30%, 50%),
assuming steady state. The employed notation is sum-
marized in Table 1.

3.3 Objectives

Our objective in this study, is to de�ne control policies
π that ful�ll a number of criteria. We investigate poli-
cies that uphold the SLO for every domain i, under the
assumptions of stochastic arrivals and unknown service
time distribution. No workload prediction/estimation is
assumed.
The objectives of this study are: a) the analysis of the
conditions for the existence of a steady state (i.e. that



the limit in eq. (3) exists). b) The analysis of the feasi-
bility space of the class of policies de�ned and the analy-
sis of the redistribution mechanism of the residual smart
wall service time required in order to achieve any cus-
tom but allowed steady state p∗i . It will be shown that
the redistribution mechanism greatly a�ects the actual
percentage achieved.
Taking into account the redistribution process, the SLOs
can be expressed as equations of the form:

Ũi(π) =

{
p̃i , if p̃i ≤ pi
p∗i , if p̃i > pi, p

∗
i ∈ [pi, p̃i]

(6)

An exemplary SLA can be described as follows: �without
any knowledge of statistics regarding the arrival and the
service process in a set of smart wall servers, guarantee
20% of smart wall utilization to requests of class A, 30%
of smart wall utilization to requests of class B and 50%
of smart wall utilization to requests of class C in the
long run. Also assume that no statistical knowledge is
available regarding the correlation between the request
size and the service time�.
Note that in the above de�nition there is no distinc-
tion between environments where mixed workloads are
present and environments where the system is always
saturated, meaning that there are always available re-
quests by all the domains in the controller queues. In
the case of dynamic arrivals, it is up to the policy to
decide how to redistribute service in the case where a
high priority domain must be served but has no avail-
able requests.
The study examines a class of Dynamic Weighted
Round-Robin policies (DWRR), Π and show that ev-
ery π ∈ Π achieves steady state in the non-work con-
serving mode and upholds the domain SLOs, since the
limit in eq. (3) exists and the di�erentiation objective
in eq. (6) is satis�ed. We also study the role of the
redistribution mechanism in convergence of the policies
in the work-conserving mode. In addition, we present
a thorough analysis on the feasibility space of the poli-
cies, deducing the achievable service percentages, p∗i , for
every domain.

4. THE PROPOSED, SRE DOMAIN-

SERVING POLICIES

4.1 Class Π of Dynamic Weighted Round

Robin policies

We de�ne the class Π of Dynamic Weighted Round
Robin policies, which operates at rounds, with no loss
of generality. A number of requests (weight), wni , is ser-
viced in round n, for every domain i. In order to enable
the work conserving property, we decompose Π into two
algorithmic components that we denote as f and h, re-
spectively. Any policy π ∈ Π obeys the following rules
regarding f , while any arbitrary h algorithm can be used
to enable the work conserving property and support the

redistribution mechanism.
At the beginning of round n, at time instant tn ∈ <+,
letXi(tn) denote the queue size for domain i. We de�ne:

Class Π =

{
If ∃i : Ui(tn) < pi, Xi(tn) > 0→ Algor. f

If ∀i : Ui(tn) < pi, Xi(tn) = 0→ Algor. h

(7)
The algorithm f (negative drift), calculates the weights
wni as follows:

wni =

{
0, if Ui(tn) > pi or Xi(tn) = 0.

min{k(tn, π), Xi(tn)}, if Ui(tn) ≤ pi, Xi(tn) > 0

(8)
In other words, wni job requests are scheduled for do-
main i, where k(tn, π) ≤ K and K is an arbitrary �nite
positive integer.
The class of algorithms h (work conserving) is used
whenever Xi(tn) = 0,∀i : Ui(tn) < pi, in order to enable
work conservation. In case where there are no available
requests from all under-served (�su�ering�) domains, the
class of policies Π can utilize any arbitrary scheduling
decision, as long as there are available requests to do
so. For example, the algorithm can choose one domain
j at random from the domains for which Xj(tn) > 0 and
serve it for a �nite number of times.
This algorithmic decomposition de�nes a class of policies
for two reasons. Firstly, regarding the general operation
of the policies (Algorithm f) there is no restriction on
the number of requests served per round, as long as
over-satis�ed domains are blocked when there are no
available requests from a su�ering domain. The only
requirement is imposed by the arti�cial limit K, used to
avoid the case of assigning an in�nite number of requests
to some domain. Secondly, there is no limitation, on the
operation of the h-algorithm, used for enforcing work
conservation via redistribution of residual service slots.
In general, the f -algorithm of the scheduling class is used
to guarantee the objective de�ned in eq. (6) and de�ne
the feasibility space, while the h-algorithm de�nes the
actual state achieved within the feasibility space.

5. THEORETICAL ANALYSIS

Under any policy π ∈ Π (either work-conserving or
non work conserving), the wall server utilization ran-
dom variable evolves in time according to the following
recursive formula:

Ui(tn+1) = an · Ui(tn) + bni (9)

where an = tn
tn+1

, bni =
Sn
i

tn+1
and Sni denotes the aggre-

gate service time that domain i received during round
n, expressed as a sum of service time random vari-
ables. This recursion is aligned with the classical feed-
back ARX models [41], where in this case both terms
an, bni are stochastic and thus utilization is also a ran-
dom variable. In fact, this is the reason that stochastic



analysis tools are required to e�ectively control the sys-
tem when the arrival and service process are unknown.
Term an de�nes the way the history a�ects the system
and bn is related to the control input. Note that because
of the bounded service-time and idle time assumptions,
any round duration is also bounded. In addition, for
any domain, the increase (or decrease) in utilization is
also bounded according to the following lemma.

Lemma 5.1 (Utilization di�erence) The utiliza-
tion di�erence between the beginning and the end of
each round for every domain is bounded according to:

|Ui(tn+1)− Ui(tn)| ≤
l + Smaxi +

∑
j∈D S

max
j

tn+1
(10)

Proof 5.2 (Proof of lemma 5.1) By de�nition, Sni
denotes the service time received for domain i within
the time interval [tn, tn+1]. Then using eq. (9):

Ui(t) =
tn
tn+1

· Ui(tn) +
Sni
tn+1

(11)

and, hence,

|Ui(tn+1)− Ui(tn)| =
∣∣∣∣( tn+1 − tn

tn+1

)
· Ui(tn) +

Sni
tn+1

∣∣∣∣ .
(12)

In the inequality (10), we additionally included the term
l (an upper bound for all ln), since idle time may be
experienced due to lack of available requests from all the
domains. In this case, it holds that

tn+1 − tn = ln +
∑

i:wn
i ≥1

Sni , (13)

where ln denotes the sum of �null requests� duration in
all the servers, between round n and n+ 1. Via eq. (13)
and by employing the upper bounds for the right-hand
quantities of eq. (12), we can derive inequality (10):

|Ui (tn + 1)− Ui (tn)| =
∣∣∣∣( tn+1 − tn

tn+1

)
Ui (tn)− Sni

tn+1

∣∣∣∣
(14)

≤
∣∣∣∣ tn+1 − tn

tn+1

∣∣∣∣ · Ui (tn) +

∣∣∣∣K · Smaxi

t

∣∣∣∣ (15)

≤
∣∣∣∣ l +

∑
j∈DK · Smaxj

tn+1

∣∣∣∣+

∣∣∣∣K · Smaxi

tn+1

∣∣∣∣ (16)

=
l +K · Smaxi +

∑
j∈DK · Smaxj

tn+1
(17)

A standard way of proving the convergence of a work-
conserving policy, is to show that eq. (9) converges
in the general case. This essentially means, that the

limit of eq. (3) exists and that the system will reach a
steady state. The form of eq. (9) may predispose for
convergence, since the control action has waning e�ect
on utilization, as time progress (bni → 0 and an → 1 for
t→∞).
The following theoretical results can be deduced regard-
ing the analysis of negative drift DWRR policies, under
unknown service time and arrival processes statistics:

1. In the case of stochastic arrivals, when operating
in non-work conserving mode, steady state exists
for any policy π ∈ Π. Any policy converges with
probability 1 to the minimum between the goal
percentage and the maximum utilization service.

2. Assuming steady state, the feasibility space for any
policy π ∈ Π, in the case of stochastic arrivals and
all modes of operation, can be clearly de�ned.

3. In the case of stochastic arrivals, under work con-
serving mode of operation:

[a.]

(a) any policy π ∈ Π : p̃i ≤ pi convergences to p̃i.
(b) for any policy π ∈ Π : p̃i > pi convergence

point depends on the service redistribution
algorithm h.

In order to prove 1) we introduce a novel approach for

proving convergence for the non-work conserving mode
of operation, via the concept of null-domains. For point
2) we examine the feasibility space of the DWRR policies
using a series of lemmas. We prove 3a) and we provide
detailed analysis regarding point 3b).

5.1 Convergence and Feasibility Space Analy-

sis

Before we proceed with the analysis, note that although
the utilization evolution in transient state heavily de-
pends on the time evolution and the past control actions
(due to the e�ect of term an in eq. (9)), time evolution
has no actual e�ect on convergence. It is the combina-
tion of the selected π = (f ,h) policies that is responsible
for the long-run behavior and when convergence can be
achieved in the Cauchy sense [33]. See also [40] for a
proof of the case of non-work conserving policies. For
the case of work conserving policies under saturation,
because of the use of the virtual queue operation, sim-
ilar convergence properties also hold. According to the
analysis presented in the following, we exploit results
from stochastic analysis in order to prove convergence.
In the general case of unknown arrival process, p̃i
(the maximum utilization percentage achieved in steady
state according to eq. (4), may be higher, equal or lower
than the percentage goal requested. A number of lem-
mas and theorems establishes the feasibility (�capacity�)



region formally, for every policy π ∈ Π. For the ease of
presentation, in subsection 5.1.1 we present the proof
of theorem 5.3, and proceed to study theorem 5.5 in
subsection 5.1.3.

5.1.1 Non-Work Conserving Mode: Con-

vergence w.p. 1

As the following theorem presents, under non-work con-
serving mode, every negative drift DWRR policy reaches
steady state. In addition, the capacity region is a vector.

Theorem 5.3 (Non-work conserving) In non-work
conserving mode of operation, under any policy π ∈ Π,
the limit in eq. (3) exists ∀i ∈ D. Moreover the objective
de�ned in eq. (6) is satis�ed. Thus:

Ũi(π) = min{p̃i, pi} (18)

In the non-work conserving mode, the policies operate
according to the negative drift rules of algorithm f (i.e.,
we have π = f) and no service redistribution is allowed.
If there are no available requests from all the domains
that are below their goal, the system goes to idle state.
Essentially, the class only requires to block over-satis�ed
domains at the control instances and serve one or more
of the under-utilized domains. In addition, it imposes
no restriction on the number of requests that are served
during a round.
The proof of convergence is based on the following obser-
vation. Because of the negative drift given to the over-
satis�ed domains at every control instant, in transient
state, the utilization trajectory for any domain oscillates
around its goal percentage pi. Since the utilization dif-
ference between any two successive rounds is bounded,
the oscillation is continuously decreasing and there ex-
ists some point in time when the system converges in
the Cauchy sense. In the case where p̃i < pi we prove
that the trajectory approaches p̃i.
To proceed with the proof, we introduce the null-domain
concept of Fig. 2. Essentially, based on the saturated
case analysis presented in [40], we model the idle time as
a null-domain, and treat the system state as a saturated
case variation.
Initially, since lim sup

k→∞

l+Smax
i

tk
= 0, we can write that:

lim sup
k→∞

(p∗i ) + lim sup
k→∞

l + Smaxi

tk
= pi (19)

In addition, for any domain i and round k, the utiliza-
tion is upper bounded by:

Ui(tk) ≤ pi +
Smaxi

tk
. (20)

This bound derives from eq. (12) and holds for the
general case of stochastic arrivals and non-work work
conserving mode of operation since all over-served do-
mains are blocked by the policy (even if a number K of

its requests were served during the last round). Then,
we can write that:

lim sup
k→∞

Ui(tk)
eq. (20),(19)

≤ min{p̃i, pi} a.s (21)

where p̃i is the maximum achievable utilization for do-
main i. This quantity is related with the maximum-
overshoot in classical control theory [41].

Proof 5.4 ([Proof of Theorem 5.3) We introduce
the notion of a virtual queue holding null requests.
The queuing structure of the controller now becomes
one queue per domain plus one virtual queue for null
requests (see Fig.2). A null request can be thought
of as a series of deactivate commands. This is an
arti�cial technicality, to model idle time in the system.
Moreover, we assume that null requests always exist in
the virtual queue.

In order to examine the case of idle state, say that at the
end of some round there are no available requests from
any of the domains (Xi(tn) = 0,∀i ∈ D). Then the
scheduler selects a null request from the virtual queue
and sends it to the requesting server. We assume that
the server preemptively replaces null requests. If a null
request is in service and some domain's request arrives
to the system, the controller sends the request to the idle
server. Thus the null requests can be treated essentially
as an additional domain in the system.

In the general case, not all the domains converge to the
goal percentage de�ned; some converge to the goal, oth-
ers to the maximum achievable utilization. For the ease
of presentation, we de�ne the following partition of the
domains set:

� D1: includes all the domains for which p̃i < pi.

� D2: includes all the domains for which p̃i ≥ pi.
Then D2 = D −D1.

� D3: a singleton set with the null requests domain.

� F : F = D1 ∪ D2 ∪ D3.

Now consider that the idle domain receives all the service
time that cannot be utilized due to lack of requests from
the �su�ering� domains in D1. Let C(tn) denote the
utilization of the null domain, then we can write:

lim sup
k→∞

C(tn) =
∑
i∈D1

(pi − p̃i) (22)

which is the upper bound for the null requests domain
utilization. Then, the following is true:



lim inf
k→∞

Ui(tk+1) = lim inf
k→∞

(1−
∑
j∈F

Uj(tk+1)) (23)

≥ 1 + lim inf
k→∞

(−
∑
j∈F

Uj(tk+1))

= 1− lim sup
k→∞

∑
j∈F

Uj(tk+1)

≥ 1−
∑
j∈F

lim sup
k→∞

Uj(tk+1)

≥ 1− [
∑
j∈D1

p̃j +
∑
j∈D2

pj + lim sup
k→∞

C(tn)]

Case 1: i ∈ D1

lim inf
k→∞

Ui(tk+1) (24)

≥ 1− [
∑
j∈D1

p̃j +
∑
j∈D2

pj +
∑
j∈D1

(pj − p̃j)]

= 1− [(
∑
j∈D1

p̃j)− p̃i +
∑
j∈D2

pj +
∑
j∈D1

(pj − p̃j)]

= 1− [
∑
D1∪D2

pj − p̃i] = p̃i

Case 2: i ∈ D2

lim inf
k→∞

Ui(tk+1) (25)

≥ 1− [
∑
j∈D1

p̃j +
∑
j∈D2

pj +
∑
j∈D1

(pj − p̃j)]

= 1− [
∑
j∈D1

pj +
∑
j∈D2

pj ] = pi

According to to these equations,

lim inf
k→∞

Ui(tk+1) ≥ min{pi, p̃i} = lim sup
k→∞

Ui(tk+1)

But, axiomatically, lim inf
k→∞

Ui(tk+1) ≤ lim sup
k→∞

Ui(tk+1)

and therefore we conclude that lim inf
k→∞

Ui(tk+1) =

lim sup
k→∞

Ui(tk+1) and so the limit exists in any case.

We proceed to study the feasibility space for all DWRR
policies in terms of achievable domain service vectors,
with the focus being on work conserving modes of oper-
ation.

5.1.2 Work Conserving Mode

In contrast to the non-work conserving mode, under
work conserving mode, the capacity region is a hyper-
plane, as stated by the following theorem. Note that we
restrict our attention to the policies π ∈ Π that reach
steady state, since the convergence depends not only
on the f -algorithm, but to the h-algorithm also. Thus
convergence analysis is speci�c to every π = (f ,h) pair.

Theorem 5.5 (Feasibility Region) The feasibility
space is a hyperplane de�ned by the intersection of
hyperplanes de�ned by the following constraints:

|D|∑
i=1

Ũi(π) ≤ 1, Ũi(π) ≤ p̃i (26)

and

Ũi(π) = p̃i, if p̃i < pi, Ũi(π) ≥ pi, if p̃i ≥ pi (27)

Proof 5.6 (Proof of Theorem 5.5) The constraints
de�ned in eq. (26) are irrelevant to the goal vector, while
the constraints in eq. (27) derive from the relationships
between the goal vector p = (pi) and p̃ = (p̃i). The
�rst two constraints in eq. (26) state that the utilization
achieved in steady state cannot exceed the physical max-
imum utilization of the system (which equals one) and
the third constraint simply states that a domain cannot
exceed the maximum utilization (De�nition (2)).
In contrast to the previous case of non-work conserving
mode of operation, where the system may experience idle
time even when there are available requests for service,
in the work conserving mode of operation, service re-
distribution takes place and is up to policy h to achieve
convergence. According to our presentation, the feasibil-
ity space of a class is actually de�ned by the f -algorithm
and the �nal performance depends on h-algorithm se-
lection. Constraints in eq. (27) are proven in the two
lemmas that follow.

Lemma 5.7 (Domains away from the goal) In
the case where for some domain i, p̃i < pi (the percent-
age goal pi was ambitious), under any policy π ∈ Π,

steady state exists and the achievable percentage Ũi(π)
equals p̃i.

The proof of this lemma is analogous to case 1, presented
in the non-work conserving mode of operation and thus
is omitted. The di�erence in the work conserving case, is
that there is no �null� domain and we simply don't know
how the extra service C(tn) is redistributed in domains
that can utilize extra service.

Lemma 5.8 (Domains reaching their goals) In
the case where for some domain i, p̃i ≥ pi (the goal is

feasible), under any policy π ∈ Π, Ũi ≥ pi is true.

We provide the proof of this lemma.

Proof 5.9 (Proof of lemma 5.8) Assume that there
exists some domain i ∈ D2 (includes all the domains for
which p̃i ≥ pi) and consider some very large round n0,
for which Ui(tn) < pi is true ∀n > n0. This means
that the policy can serve less than it is expected, but also
less than it could have received. According to the pol-
icy de�nition, this means that for any successive round
n > n0, the policy will set constantly wni = 1 (indepen-
dent in which other domains will also participate in all



(a) (b)

(c) (d)

Fig. 3 � Feasibility regions and scheduling dynamics (requested goal vector versus achieved goal vector) for work-conserving and non
work-conserving operation.

or to a subset of the new rounds). The reason is that
there will be unserved requests of this domain that can
participate in the following rounds. This makes ln = 0
for all successive rounds. Under the same reasoning, all
the domains that will participate in the following rounds
and on will be served constantly. Assume that we de�ne
as B ⊆ D2 as the set in which all these domains belong.

But this means that all other domains that do not be-
long in this �special� set B cannot exceed their targets
(and receive the �lost� service from domains in B), since
whenever they do so they get blocked by the policy. Then,
summing up the utilizations of all the domains, we get

that for any t > tn0 :∑
i∈B(t)

Ui(tn) <
∑
i∈B(t)

p̃i <
∑
i∈B(t)

pi

∑
i/∈B(t)

Ui(tn) ≤
∑
i/∈B(t)

pi,

and thus:

D∑
i=1

Ui(tn) =
∑
i∈B

Ui(tn) +
∑
i/∈B

Ui(tn) < 1 (28)

But this means that there must be idling, which is a
contradiction. Thus, it must hold that for any domain
i ∈ D2 : Ũi(π) ≥ p̃i.

Note that in this case we cannot guarantee that the out-
put utilization actually reaches steady state, or conver-
gences to some point, since this depends on the selected



h-algorithm. The above proofs, nevertheless, guarantees
that the utilization trajectory will move above pi inde-
pendently of the selected h-algorithm. This concludes
the proof of theorem 5.5.

The following theorem is a direct consequence of lemmas
5.7 and 5.8 and states that all the policies that belong
in class Π can be used to satisfy the objective in eq. (6).

Theorem 5.10 All the policies that belong to class Π
can be used to satisfy the objective in eq. (6).

For example, as shown in Fig. 3, in both cases of non
work-conserving and work-conserving mode, in the case
of two domains, the goal lies over the line that joins
points (0,1) and (1,0) and the feasibility region is a single
point. The point lies over the line in the case that the
available load can support the maximum utilization sum
that equals one. In the case where a very high goal was
set for both domains, then the performance point would
be a point that lies below the line that is de�ned by∑
i∈D Ũi(π) = 1.

For any policy π ∈ Π under non work-conserving mode
a domain i receives exactly the min{pi, p̃i} as can be
seen in Fig.3a. The feasibility region, in the general
case of stochastic arrivals, is de�ned by equations (26)
and (27). For example the shaded region in Fig. 3b
is de�ned by the inequalities of eq. (26). Under work-
conserving operation a domain cannot receive less than
the min{pi, p̃i} as we can see in examples presented in
Figs. 3c and 3d where di�erent relationship exists be-
tween p̃i and pi. In all cases, the presented class Π of
policies guarantees that the objective in eq. (6) is sat-
is�ed.

5.1.3 Details on the Load Redistribution

Mechanism

In the work conserving mode, for policies π ∈ Π,
π = (f ,h) the normal operation is performed accord-
ing to algorithm f and the service redistribution is per-
formed according to algorithm h. While the operation
of algorithm f guarantees the validity of the constraints
in eq. (27) and the de�nition of the feasibility space,
the algorithm h is responsible for the convergence prop-
erties and the exact points p∗i achievable by the policy
in e�ect.
The total service cycles that can be redistributed, are of-
fered by domains i ∈ D1 to domains j ∈ D2 and (as an-
alyzed in section 5.1.1) equals

∑
i∈D1

(pi− p̃i). Since we
consider only work conserving policies, the service that
is not utilized by some domains will be redistributed to
other domains. According to the previous analysis, the
actual performance is the following:

Ũi = p̃i , if i ∈ D1 (lemma 5.7) (29)

Ũi = pi + Ci , if i ∈ D2 (lemma 5.8)

Fig. 4 � A three domains scenario, where ṽ2 < p2 and redistribu-
tion must take place. The �nal performance depends on algorithm
h rules.

Note that that as the feasibility space was clearly de-
�ned, the total extra service that will be redistributed
depends only on vectors p = (pi) and p̃ = (p̃i) and is
irrelevant of the actual weight (value k(tn)) selected by
algorithm f and algorithm h. It is the extra service Ci
received by each domain, that depends on algorithm h.
The independence between f and h algorithms can be
expressed by the following lemma.

Lemma 5.11 (Service redistribution) Under any
policy in class Π and ∀i /∈ B̃, Ci(tn) redistribution
depends only on the scheduling algorithm h and is
irrelevant to algorithm's f k(tn) selection.

Proof 5.12 (Proof of lemma 5.11) In order to
prove the above lemma, we will show that the service
redistribution Ci(tn) does not depend on the number
k(tn) selected at each control instant at the end of round
tn by algorithm f . Assume a system with two domains
and two policies π1(f1,h1), π2(f2,h2) such that h1 = h2.
Both h1,h2 choose the other domain if it has requests,
while k2(tn) = k1(tn) + k, where k is any integer that
can be supported by the queueing dynamics. The same
reasoning can be followed for D domains. Also assume
that ṽ1 < p1 and ṽ2 > p2 so that service redistribution
will occur, since domain 1 has not su�cient load to
support the goal percentage. However, in both policies,

lemma 5.1 guarantees that Ũ1+1π1 = Ũ1+1π2 = ṽ1,
thus in both cases Cπ1

2 = Cπ2
2 = p1 − ṽ1 and so

Ũ2+1π1 = Ũ2+1π2 = p2 + min{C2, ṽ2 − p2}. The fact
that, under policy π2, at every round, domain 1 was
given more service cycles, plays no role in the long
run. The minimum in this equality simply states that
domain 2 cannot receive extra service that cannot be
supported by its load.



In Fig. 4, a visual representation of the feasibility space
is given, in the case where three domains are compet-
ing for service using f rules. In this example, domain
3 can utilize all the capacity, ṽ3 = 1, for domain 1,
ṽ1 > p1, while for domain 2, ṽ2 < p2. According to
the class of policies de�nition, theorem 5.5 and lemmas
5.7 and 5.8, load redistribution will take place while the
feasibility space of the class of policies is de�ned as the
intersection of the following hyperplanes: hyperplane 1
de�ned by points (1a, 1b, 1c, 1d) that presents the uti-
lization area domain 1 can exploit, hyperplane 2 de�ned
by the line de�ned by restriction ṽ2 and hyperplane 3
(triangle) de�ned by points (3a, 3b, 3c) that presents the
utilization area domain 3 can exploit. This intersection
is the line that joins points A and B in the �gure.
Depending on the service redistribution algorithm, the
long run performance and steady state (if it can be
achieved), clearly depends on the selected h-algorithm.
For example, if domain 1 utilizes all the extra service,
the long run utilization point is point B (where domain
3 receives no extra service), while the long run utiliza-
tion point is point A, where domain 3 receives all ex-
tra service. Intermediate points can be obtained, if the
appropriate redistribution algorithm is selected. Never-
theless, as this study assumes the absence of statistical
knowledge regarding the arrival and service process, it
is not easy to �nd such a policy. Note that a second
DWRR can be also deployed in order to precisely al-
locate this extra service as follows. After a long time
has elapsed and D1 is not empty, set

∑
i∈D1

pi− p̃i > 0.
Then we can create a second DWRR list of weights with
only D2 domains, de�ne new goals regarding the extra
service and redistribute service according to the policy's
negative drift rules.

5.2 Concluding Remark

The following theoretical results can be collectively de-
duced regarding the analysis of negative drift DWRR
policies, under unknown service time and arrival pro-
cess statistics:

1. In the case of saturated arrivals, ∀π ∈ Π converges
with probability 1 (w.p. 1) to the goal percentage,
pi.

2. In the case of stochastic arrivals, when operating
in non-work conserving mode, steady state exists
∀π ∈ Π and Ũi(π) = min{p̃i, pi}.

3. In the case of stochastic arrivals, under work con-
serving mode of operation and assuming steady
state:

[a.]

(a) ∀π ∈ Π : p̃i ≤ pi, Ũi(π) convergences to p̃i.

(b) ∀π ∈ Π : p̃i > pi, then Ũi(π) ≥ p̃i and the pre-
cise convergence point depends on the service
redistribution algorithm h.

6. EVALUATION

In this section, we present the evaluation of the DWRR
policies using an extensive set of simulations. The goal
is to verify the theoretical results obtained in previous
sections, while also provide to the administrators inter-
ested to apply DWRR, a better representation of the
actual DWRR performance. In the evaluation we add a
comparison to the scheduler presented in [40], which as-
sumes a system with stochastic arrivals, where a domain
was selected at random when redistribution should be
performed (we refer to this policy as OBG (serve Only
Below Goal)). Here we focus on the stochastic arrivals
case and present an indicative set of simulations regard-
ing the following:

1. convergence of the policies in non-work conserv-
ing mode of operation and comparison with other
schemes.

2. veri�cation of the feasibility space analysis, by pro-
viding points outside the feasibility space and pre-
senting the points where the system converges.

3. understanding of the h-policy e�ects on �nal per-
formance, using the goals that fall outside the fea-
sibility space, under di�erent h algorithms.

A custom, JAVA-based simulator was build to perform
the following experiments.

6.1 Convergence of the policies in work con-

serving mode of operation and comparison

with other schemes

In both, saturated systems and systems with stochastic
arrivals, DWRR can be used to satisfy the di�erentiation
objectives. The only requirement to reach a prede�ned
goal is that the goal is feasible. Figs. 5a and 5b are
used to verify the DWRR performance in the following
simulation scenarios, where the OBG is selected as the
member policy from the DWRR class de�ned (in OBG
when domain i is selected then wi = 1 [40]).
In Fig.5a the goal vector de�nes equal service shares
for three domains {33%, 33%, 33%} where in Fig. 5b
the goal vector was set equal to {50%, 30%, 20%}.
In both scenarios, Poisson arrival rates where used
for all domains, with mean rate vector equal to
{0.5%, 0.4%, 0.3%} and exponential service time distri-
bution with means {3.0%, 2.0%, 1.0%}. Note that the
reason for this selection was to use di�erent workload
characteristics per domain. As we can see in both cases,
DWRR are able to di�erentiate according to the re-
quested goal vector since the policies adapt in real time
to workload variations and to the stochastics of the sys-
tem.
In Fig. 5c a comparison is presented between DWRR
(OBG) [40], WRR [42], Random scheduling and Credit
Scheduling [8], with the workload and the goal the ones
presented in Fig.5b,({50%, 30%, 20%}). In this �gure



the total absolute deviation is presented
∑D
i=1 |Ui(tn)−

pi|. WRR is a static policy where the scheduling weights
are de�ned according to the goal vector, so at each
round, 5 requests where served by domain 1, 3 from
domain 2 and 2 from domain 3 (if there were avail-
able); in Random scheduling a domain is selected at
random; where we use a variation of the Credit schedul-
ing policy to compare it with OBG. As we can see, WRR
scheduling completely fails to align with the objective,
since the service time per domain is di�erent. In fact,
in this example random scheduling performs even bet-
ter. Adaptive policies like OBG and Credit can be used
to satisfy the objective. DWRR may be more accurate
when bursty tra�c phenomena and ON/OFF periods
are experienced. Nevertheless, this increased accuracy
comes at the expense of increased overhead, when the
application environment requires for I/O handling and
preemptive operations.
In Fig. 5d the e�ects of increasing the domains in the
system are presented. We present the case where we
want to load balance the tra�c between 2, 4 and 8
domains, respectively, and the goal is feasible. As we
can see, increasing the number of domains results in in-
creased convergence time. Additionally, increasing the
number of domains, results in less scheduling opportu-
nities per round per domain and, thus, increased con-
vergence time.
According to the class of policies de�nition, algorithm
f sets no restriction on the number of requests actually
served per round when a �su�ering� domain is selected.
In Fig. 5e we can see the e�ect of setting the weight of a
su�ering domain equal to the queue size of this domain.
(E.g., if a domain is below its goal and has 5 requests
in queue at the control instant tn, then set its schedul-
ing weight equal to 5 for round n). The setup of the
experiment is the same as in Fig. 5b. As we observe,
this greatly a�ects the convergence period. The reason
is that by giving increased gain at each control instant,
we violently change the trajectory giving a di�erent ten-
dency to the system. Since the gain cannot be controlled
by classical methods (proportional control, integrators
etc. [41]), increasing the gain indirectly by large weights,
leads to increased convergence times. In Fig. 5f we com-
pare the OBG policy with the case where the maximum
weight can be allocated according to policy f de�nition.
Furthermore to stress the algorithms we create random
ON-OFF [43] periods that essentially emulate bursts of
requests. Evidently, the convergence properties of de-
layed decision making results in slow convergence.
Remark: From a practical perspective, a major concern
when applying DWRR policies, is the increased over-
head requirements, since the policy requires to track
at the the end of every round the service per domain
and update statistics accordingly, in order to make the
control action for the next round. Selecting di�erent
weights is a way to track only the context switching in-
stances (when we start to serve the other domains) and
thus reduce overhead. Nevertheless, this comes at in-

creased convergence periods.

6.2 Feasibility spaces

As already analyzed theoretically, whenever a goal is
feasible, DWRR class of policies guarantees that in the
long run the objective is satis�ed. Under some statis-
tical assumptions regarding the arrival process or when
in non-work conserving operation, it will actually re-
ceive exactly its goal percentage. Nevertheless, if for
some domain i the goal is outside the feasibility region,
then under DWRR the maximum achievable percent-
age p̃i is achieved and the di�erence pi − p̃i will be
utilized by some other domain according to the rules
set by policy h. We can see this behavior in Fig. 6a
where the goal is on purpose set outside the feasibility
region. In this experiment, a very high goal was set (the
top bullet point in the �gure) that de�nes the vector
(10% − 20% − 70%). The arrival and service process
where such that could not satisfy this objective. As
expected theoretically, by theorem 5.5, the feasibility
space is the dashed line de�ned by the intersection of
hyperplanes set by equations (26) and (27). Note that,
the actual percentage achieved, depends on the redistri-
bution algorithm h (in this case was OBG algorithm,
that serves 1 request per domain when below goal, one
domain at random when there are no available requests
in the system from domains below the goal). DWRR
scheduling guarantees that even when workload varia-
tions exists, ON/OFF periods or random disturbances,
the feasibility space will be always given by eq. (26)
and (27) and so a minimum service is guaranteed per
class.

6.3 Load Redistribution Mechanism

In Fig. 6b we present the e�ect of using di�erent redis-
tribution policies, in the case of infeasible vector goal.
The goal vector was set equal to (70% − 30% − 20%)
and is denoted with the leftmost dot in the �gure that
nevertheless is outside the feasibility region. As in the
previous case, the goal was set on purpose outside the
feasibility region in order to perform redistribution of
service. We compare DWRR in the case of four redistri-
bution algorithms. Whenever an over-satis�ed domain
is served in order to be work conserving: a) choose one
at random; b) choose the one with the minimum queue
size; c) choose the one with the maximum queue size.
As we can see, the feasibility space is the one de�ned
according to theorem 5.5 and is irrelevant of the redis-
tribution algorithm. The application of h is responsible
for the actual percentage obtained.
An interesting observation can be made regarding the
load redistribution mechanism. As hinted by Fig. 6b the
�minQueue� redistribution algorithm exhibits a wider
variation in terms of converged state placement over
the feasibility space. To study this issue further, we
study the form of the trail produced by �minQueue�,



�maxQueue� and �random� over 100 simulation runs
with the same con�guration as Fig. 6b. For every run
h-algorithm, we log the average distances of the trail
points from the line de�ned by the points ∅ and con-
verged state. The results over the 100 runs form the box-
plot of Fig. 7. In essence, the employed distance met-
ric expresses the �wandering� rate of the system's trail
towards convergence. Ideally, a perfect f/h algorithm
combination would yield a linear trail from the point
∅ to the �nal converged state. The �maxQueue� and
�Random� h-algorithms yield approximately the same
degree of divergence from linearity. However, the �min-
Queue� approach exhibits a considerably higher diver-
gence. As shown in Fig. 6b, the �minQueue� approach is
more exploratory in terms of convergence point within
the feasibility space. By taking subtler scheduling deci-
sions (choosing the smaller queues), �minQueue� is able
to achieve a wider set of �nal converged states. On the
other hand, �maxQueue� and �random� take more crude
scheduling decisions, resulting into smaller divergence in
terms of converged states within the feasibility space. In
other words, the h-algorithms also regulate the feasibil-
ity space �exploration� rate of the system.

7. CONCLUSION

In this work, we introduced a model for performing re-
source slicing and scheduling of resources in smart radio
environments (SREs). SREs incorporate special devices
called recon�gurable intelligent surfaces (RIS) which can
alter programmatically the way they interact with im-
pinging electromagnetic waves. Thus, wireless propaga-
tion in an SRE become a programmable resource and,
since the air is naturally shared among devices, a slicing
model is required. Thus, the proposed model models
sets of RIS units as servers, and organizes the types of
SRE services as domains that can receive and enqueue
requests. Scheduling can then be performed by policies
that map requests to servers. The study showcased the
use of this model by studying a class of negative drift
Dynamic Weighted Round Robin policies, that is able
to guarantee speci�c SRE shares between competing do-
mains. We provided a general mathematical framework
where the class of policies requires no statistical knowl-
edge regarding the arrival and service process and can
be used in multiple application scenarios. The follow-
ing conclusions hold for the proposed class of negative
drift DWRR policies. In the case of saturated arrivals,
any DWRR policy converges with probability 1 to the
goal percentage. In the case of stochastic arrivals, when
operating in non-work conserving mode, any policy con-
verges with probability 1 to the minimum between the
goal percentage and the maximum utilization service.
The feasibility space for any DWRR policy, in the case
of stochastic arrivals and all modes of operation, can be
clearly de�ned. Finally, in the case of stochastic arrivals,
under work conserving mode of operation the di�eren-
tiation objective is still satis�ed, nevertheless the �nal

performance depends on the redistribution mechanism.
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Fig. 5 � The examined aspects of DWRR Performance
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Fig. 6 � DWRR Performance under various service redistribution policies.



Fig. 7 � The selected h-algorithm a�ects the way the system
converges to the �nal state.


