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Abstract—Sliding Window Random Linear Network Coding
(RLNC) offers a clear path towards achieving ultra-high relia-
bility and low latency at the same time. Such requirements are
pivotal for a wide range of applications in the future Internet as
well as in 5G and beyond networks. While traditional RLNC has
been extensively used for some years now, its Sliding Window
flavor is rather recent and extremely promising because of its
implementation advantages and the high degree of customization.
Probably the most essential parameter of Sliding Window RLNC
is the coding depth, i.e., the extent of non-coded packets protected
by a coded one. In this work, for the first time, we elaborate
on properly choosing the coding depth and shed light on the
related trade-offs. We, first, show, experimentally, that significant
performance gains can be obtained by fine-tuning the coding
depth. Then, we propose and validate an analytical framework
that allows us to decide the coding depth based on a channel’s
reliability profile. Finally, we introduce a dynamic algorithm that,
based on our analytical findings, can improve the performance
of sliding window RLNC in the presence of bursts of errors.

Index Terms—sliding window RLNC, Ultra Reliable Low-
Latency Communication (URLLC), Random Linear Network
Coding (RLNC)

I. INTRODUCTION

Ultra-reliable Low Latency Communication (URLLC) [1]
is envisioned to support a plethora of mission-critical appli-
cations in 5G and beyond networks, which pose stringent
requirements in terms of reliability and latency. In order to
perform efficiently, various domains of applications, such as
immersive entertainment platforms, e.g., Virtual Reality (VR)
and Augmented Reality (AR) systems, autonomous vehicles,
smart industries and healthcare, mandate block error rates that
typically range between 10−9 and 10−5 [2] while targeting for
end-to-end latency up to 1ms, similar to the URLLC speci-
fication. Towards achieving these goals, various sophisticated
techniques are deployed to utilize more available spectrum
and deliver information with high-data rates, e.g. techniques
related to millimeter-wave (mmWave) communication. Unfor-
tunately, those techniques focus on bandwidth and do not deal
with the severe losses observed in unreliable media. Hence,
mechanisms for tackling packet losses are a necessity either
in the data link or transport layer.

Although several legacy techniques, e.g., Automatic Repeat
ReQuest (ARQ) and Forward Error Correction (FEC) schemes,
have been deployed to mitigate packet losses in unreliable
channels, they struggle to meet the stringent requirements
specified by URLLC. Lately, RLNC schemes have been

successfully examined as an efficient reliability mechanism,
yet, there is still room for improvement. Among other vari-
ants, sliding window RLNC schemes demonstrate promising
performance towards achieving the URLLC reliability-delay
trade-off. Such methods exploit a dynamically changing group
of non-coded packets, i.e., the sliding window, during the
coding process, which provides flexibility and improved per-
formance. To further enhance reliability, some sliding window
RLNC schemes may employ re-transmissions at the expense
of increased delay. In fact, sliding window RLNC is quite
attractive to various fields, such as multimedia [3]–[5] or
IoT scenarios [6] while they have also been examined in
the context of transport-layer protocols, initially regarding the
TCP protocol [7] and, more recently, QUIC [8], as reliability
mechanisms.

While sliding window RLNC has proved to be an enabler
of URLLC, little attention has been paid to the optimization
of the coding efficiency of such schemes. In particular, a
critical parameter for the performance of sliding window
RLNC schemes is the number of non-coded packets involved
in the encoding process, also known as the coding window size.
In our previous work [9], [10], we facilitated the discussion
about the coding window size by introducing the concept of
coding depth, which refers to the range of non-coded packets
protected by a redundant coded one. A similar concept is also
proposed in [6]. However, to the best of our knowledge, there
is no previous work highlighting the impact of coding depth on
the throughput-delay vs complexity trade-off. Additionally, the
optimal determination of coding depth is still an open ques-
tion. We make the observation that an appropriate selection of
the coding depth is of high importance for the related trade-
offs and can produce significant performance improvements.
This is extremely important for operating in channels with
diverse error profiles and in channels with variable error rates,
where the coding scheme should be able to detect the level of
packet errors and appropriately adjust its coding parameters in
order to achieve an optimal performance-complexity trade-off.

In this work, our primary goal is to investigate the impact
of coding depth on the performance of sliding window RLNC
protocols. Our main contributions are:

• We experimentally show that the appropriate selection
of coding depth can provide significant performance
improvements without the need to increase the coding
redundancy, which comes at the high cost of bandwidth



consumption.
• We propose an analytical method to approximate a cod-

ing depth value that produces near-optimal performance.
More specifically, the analysis takes into account the
channel’s reliability properties to provide a coding depth
value that improves the throughput-delay vs complexity
trade-off of the coding scheme.

• We devise an efficient algorithm for the dynamic adapta-
tion of coding depth in the presence of bursts of errors in
the channel. The algorithm is tailored for protocols where
the coding and sliding windows do not coincide. Through
this algorithm, we manage to further reduce the overall
protocol complexity during idle periods, i.e., when few
or no errors are detected in the channel.

• We experimentally confirm, through extensive simula-
tions, the effectiveness of the proposed solutions. More
important, we validate our analytical model and confirm
that the appropriate selection of coding depth can produce
a noticeable reduction in complexity, especially in the
case of bursts.

The rest of this paper is organized as follows. Section II
provides the basic concepts of Sliding Window RLNC and
a review of the protocols in this class. In Section III, we
argue that the appropriate selection of coding depth size may
significantly enhance the coding operation without increasing
coding redundancy. We back up our arguments through an
extensive experimental analysis. In section IV, we detail the
analytical framework to estimate the optimal coding depth
value for specific channel conditions followed by the experi-
mental evaluation of this approach in section V. We present an
adaptive algorithm for coping with bursts of errors and assess
its performance in section VI. Section VII summarizes our
findings and provides a list of future extensions of this work.

II. BACKGROUND AND RELATED WORK

A. A Sliding Window RLNC Primer
RLNC relies on the generation of random coefficients in

a given finite field (F2s ) in order to obtain random linear
combinations of the uncoded packets, called native or source
packets [11]. The generated coded packets will be utilized by
the receiver to recover any lost source packet. It is proved
that the probability of generating linearly dependent packets
depends on the field size and becomes negligible for large field
sizes [12]. Hence, we assume a sufficiently large finite field,
such as F28 , to avoid linear dependencies of the encoded pack-
ets. As for the decoding process, the receiver needs to solve a
linear system by performing Gauss-Jordan elimination or other
decoding optimizations proposed in literature, e.g. [13]–[16],
in order to retrieve the original packets. Decoding entails the
use of a decoding matrix D, which is populated by innovative
packets, i.e., the ones that increase the rank of the matrix.

Unlike traditional RLNC schemes, i.e., block-based
ones [13], [17]–[25], where encoding uses a fixed-size group
of source packets, sliding window approaches are quite more
flexible and efficient [3]–[10], [16], [26]–[39]. In such meth-
ods, coded packets are created as random linear combinations
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c2=f(p1, . . . , p6)
c3 =

f(p4, . . . , p9)
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Fig. 1. Systematic sliding window RLNC example (W = 6, d = 2 and
R=3/4, k=3, r=1). Dashed and dotted lines indicate the coding window
contents at the time of c2’s and c3’s generation, respectively.

of a dynamic set of packets, known as the sliding (or coding)
window, where source packets may be added or removed at
any time. In systematic Sliding Window RLNC, which is
the most prominent example of this class, the source sends
out k native packets before transmitting r coded (usually
r = 1) that provide protection to the k native. Two major
parameters affect the coding performance of sliding window
RLNC, that is the level of redundancy introduced into the
original data stream, determined by the code rate R, and the
coding window size (W ). The former is expressed as R = k

k+r .
On the contrary, the coding window size delineates the number
of source packets involved in generating a coded one and,
therefore, are protected through coding. Fig. 1 illustrates the
operation of systematic Sliding Window RLNC. To facilitate
the discussion regarding the impact of the coding window
size (W ), we introduced the concept of coding depth (d)
in [9], [10]. Assuming a specific code rate R, coding depth
describes the number of k-packet groups used in constructing
a coded packet. In other words, the coding depth quantifies
the number of source packets “covered” by a coded one, i.e.,
it captures the level of protection the coding scheme offers
to the source packets. Note that, the coding window size W
can be expressed as the product of coding depth and k, i.e.,
W = d× k.

B. Review of Sliding Window RLNC schemes

Existing sliding window RLNC schemes [3]–[10], [16],
[26]–[38] could be categorized according to various classi-
fication rules, as illustrated in Fig. 2. In particular, sliding
window RLNC protocols can be classified, based on the “per-
packet” coding approach, into full-vector [28], [29] schemes,
where each transmitted packet is a coded one, and systematic
ones [40], where coding is applied only on the redundant pack-
ets. The latter allows the transmission of a mixture of source
and coded packets, thereby achieving lower mean packet
delivery delay compared to full-vector codes [10]. Hence,
the majority of the existing sliding window RLNC schemes
adopt systematic codes. Employing feedback to trigger re-
transmissions in a similar fashion as in ARQ protocols [5],
[7], [9], [10], [15], [16], [28]–[33] is commonly incorporated
in sliding window RLNC. In such schemes, unless redundant
coded packets suffice for loss recovery, feedback activates the
transmission of additional packets (coded or not) to facilitate
the decoding process and increase the probability of packet
recovery. On the contrary, schemes that rely exclusively on
coded redundancy to recover lost packets [34] can be also
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Fig. 2. A classification of existing sliding window RLNC protocols.

considered to fall into the category of FEC-based schemes.
The latter leverage feedback, if available, to solely update the
coding window’s contents [3], [4].

As mentioned earlier, probably the most critical parameter
for the performance of sliding window RLNC is the coding
window size, i.e., the number of source packets included
in the coding process. An elementary, yet computationally
prohibitive, approach entails the use of an infinite window [26],
where all previously transmitted source packets are used in the
creation of a new coded one, that is they are never removed
from the coding window. Most algorithms, though, follow a
finite window approach [3], [5], [9], [10], [16], [34] and set
an upper bound in the number of source packets existing in
the sliding window. Nevertheless, they commonly neglect to
elaborate further on the reasoning behind choosing a specific
window size. Typically, in FEC-based schemes, the coding
window size is somehow arbitrarily defined or the protocols
are tested for different values. On the other hand, in ARQ-
based sliding window RLNC [5], [7], [15], [16], [28]–[32], the
determination of the coding window size is associated with the
data flow process, i.e., based on the bandwidth-delay product.
This practice, though, poses limitations in the performance of
sliding window RLNC protocols, as we identified in [9], [10],
where we argue that coding parameters should be chosen based
on the link loss profile and not the bandwidth-delay product.

While we empirically examined the problem of correctly
choosing the coding window size (or equivalently, as we
explained previously, the coding depth) and its impact on
sliding window RLNC protocols’ performance in [9], [10],
the actual method for calculating a value is still an open
question. Additionally, a static configuration of RLNC coding
parameters is far from optimal when bursts are present in the
channel and increased protection is required to tackle packet
losses. A common approach proposed in the literature for
coping with loss variations and increase robustness focuses on
dynamically adapting the code rate R, i.e., increase the level of
redundancy [19]–[25], [27]–[29]. While rate adaptation seems
to be an appropriate solution, it comes at the high cost of
bandwidth consumption required for transmitting more redun-
dant information. On the contrary, we make the observation
that dynamically choosing the coding depth outweighs rate
adaptation in that it does not require additional bandwidth.
One can see our approach as an analogy to the existing concept
of adjusting the block size in traditional block-based RLNC
schemes [18]–[20]. However, implementing the strategy in the
context of a sliding window is an equivalently challenging
problem that is yet to be investigated.

Concluding, in this work, we thoroughly investigate the

TABLE I
EXPERIMENTAL SETUP: MAIN PARAMETERS

Parameter 5G link Satellite link
Propagation delay 66.7µs 4ms
Bandwidth 500Mbps 1Gbps
Packet error rate (pl) (one-way) 5% 10%
Sliding Window Size (W ) 43 668
Packet Size 200 bytes 1500 bytes
Traffic Type CBR CBR

impact of an appropriate coding depth on the performance
of sliding window RLNC. In the following, we first focus
on the comparison between rate adaptation and coding depth
adjustment and back up our arguments with experimental data.
Then, we focus on systematically choosing a suitable coding
depth value and investigate how to cope with bursts of errors.

III. RATE ADAPTATION VS CODING DEPTH

As we previously discussed, the common approach in the
related literature is to adapt the code rate in order to cope with
increased packet losses. Nonetheless, this comes at the cost of
bandwidth consumption because more redundant packets need
to be transmitted. On the contrary, we make the observation
that adjusting the coding depth d can improve the resilience to
packet errors without posing additional bandwidth overhead.
This is because we continue sending out the same number of
redundant packets. Should an adequate coding depth be in use,
we argue that conventional sliding window RLNC schemes
can improve their efficiency. We expect that the importance
of the optimal adaptation of d is even greater under dynamic
channel conditions, particularly when source packets require
increased protection. The trade-off is a slight overhead in the
coding complexity that can be negligible if appropriate coding
depth management is used.

To validate our observation, we evaluate the throughput-
delay performance for different values of d with respect to
the case that the we use different code rates (R). To this
end, we use Caterpillar RLNC-FB [16] as one of the most
representative ARQ-based sliding window RLNC protocol
and rapidARQ [9] as the first protocol of this class that
allows setting the coding depth. We simulate both protocols in
ns2 [41]. The comparison results can easily be reproducible in
ns3 simulator [42] after transferring the protocols’ implemen-
tation, since the underlying link and error models are directly
ported from ns2 to ns3. For the comparison, we adopt the
two different scenarios proposed in [10]. The first refers to
a typical 5G [43] terrestrial wireless link whereas the second
one corresponds to a high-speed link to a low-earth orbiting
satellite [44]. Table I summarizes the parameters used in our
evaluation for each test scenario. Without loss of generality, we
assume that channel’s losses are uniformly distributed in time,
however loss variations do exist. We examine bursty channels
in the following.

We organize the experiment as follows. For rapidARQ we
set R according to the link’s loss rate (pl), so that, on average,
the coding redundancy is sufficient for coping with the average
number of expected packet losses. We herein exploit the
typical scenario of transmitting r = 1 redundant coded packet,
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Fig. 3. Throughput-delay performance of Caterpillar RLNC-FB [16] for different R values and rapidARQ [9] for different d values: a),c) 5G and satellite
scenarios without re-transmissions, and b),d) 5G and satellite scenarios with up to RTX = 3 re-transmissions.

although the implementation can be generalized to larger r
values. More specifically, we choose R = 9/10 in the 5G
scenario and R = 4/5 in the satellite case. Then, we vary
the coding depth between [1, ⌊W

k ⌋], where W is the maximum
size of the coding window allowed by the channel. For the 5G
scenario, we illustrate all possible values, namely d ∈ [1, 4],
whereas in the satellite scenario, we choose to illustrate
indicative values, mainly those yielding the best throughput-
delay performance as well as the ones corresponding to the
upper and lower bounds of d (i.e., 2, 3, 5, 7, 20, 85, 167). For
Caterpillar RLNC-FB, again, we use the optimal R config-
uration (based on pl, similar to rapidARQ). However, since
Caterpillar RLNC-FB does not allow customizing the coding
depth (or equivalently the coding window size), we examine
the protocol’s performance for other values of R (both smaller
and greater). In other words, we study the cases with more or
less redundancy.

Figures 3(a) and 3(b) illustrate the throughput-delay per-
formance of Caterpillar RLNC-FB and rapidARQ in the 5G
scenario. At first sight, rapidARQ outweighs Caterpillar for
every value tested. Regarding Caterpillar, we can observe that
larger redundancy than the basic value of R = 9/10 (i.e.,
R = 7/8 and R = 8/9) results in poorer throughput perfor-
mance. This is expected since more redundancy consumes
more bandwidth. However, the larger the redundancy, the
smaller the average delay is, since redundant coded packets are
transmitted more often and this allows the receiver to quickly
recover any missing source packets. The advantage in average
delay dissipates, though, when re-transmissions are included
(Fig. 3(b)), since they mostly account for packet recovery at
the receiver side. By accepting a slight overhead in average
delay, we can apply a scarcer code rate, e.g., R = 9/10,
which results in improved throughput performance. On the
contrary, rapidARQ proves that it performs optimally simply
by adjusting d and without modifying R. While in Caterpillar
increased redundancy aims to enhance protection of source
packets, increased protection and superior overall performance
can be jointly achieved by only adapting d. Not only does
rapidARQ accomplish comparable average delay with R=7/8
with and without re-transmissions, but also it outperforms
Caterpillar RLNC-FB massively regarding throughput.

Similar results are obtained in the satellite scenario, too.
Figures 3(c) and 3(d) highlight the superior throughput-delay
performance when adjusting the coding depth (rapidARQ)
instead of the code rate (Caterpillar RLNC-FB). Here, the
throughput benefits are quite more evident, depending on the

applied value of R in Caterpillar RLNC-FB. In case of high
redundancy (R = 2/3), the throughput benefits can reach up to
69% and 75% for RTX = 0 and RTX = 3, respectively. For
the default code rate (R = 4/5), the net increase in throughput
runs to ∼ 169Mpbs with and without re-transmissions, which
corresponds to around 40% increase with the same introduced
redundancy. As for the average delay, rapidARQ achieves a
minimum delay equivalent to the one noticed when R = 2/3
is used in Caterpillar RLNC-FB. RapidARQ’s performance
can be considered poor only in very small values of d, such
as d = 2, in the case that re-transmissions are used. This
is reasonable because such small values of d correspond
to minimal coding protection. Thus, most packet losses are
handled by re-transmissions which increases delay. Without
re-transmissions, though, Caterpillar RLNC-FB substantially
falls short in delay, since it introduces more overhead, through
the increased code rate R, to cope with packet losses.

The previous comparison indicates that the advantages of
rate adaptation come at a high throughput cost. On the
contrary, by altering only the coding depth d, rapidARQ
demonstrates an improved performance. Equally noteworthy is
the fact that a wide range of d values can perform efficiently.
Actually, rapidARQ’s performance degrades only for very
small or large values of d. Note that, in fig. 3(c) and 3(d),
when d ranges in [5, 20], rapidARQ achieves almost optimal
performance. The improvement is notable against Caterpillar
RLNC-FB even when d = 85. However, the optimal range of
values for d depends on the test scenario and has yet to be
determined. In the following section we tackle this problem.

IV. CHOOSING THE APPROPRIATE CODING DEPTH

In the previous section, we experimentally showed that
setting an appropriate coding depth does result in superior
performance. However, an efficient method for estimating a
suitable d value based on the channel’s characteristics has
yet to be examined. At this point we should stress that the
impact of d on a protocol’s performance heavily depends on
the decoding policies implemented at the receiver to keep the
decoding matrix size at a reasonable size. In the following
analysis we assume that the receiver does not wait for a
possible decoding after receiving d coded packets for a lost
non-coded packet. This assumption is based on the reasonable
strategy not to wait for a possible decoding beyond that point
because the probability of decoding is small and the trade-off
in terms of delay and decoding matrix size is not negligible.
However, we believe that the following analysis can be used



as a starting point for delineating the performance of Sliding
Window RLNC protocols with different decoding policies.

As we observed in section III, by managing the coding
depth we can achieve increased robustness in conjunction with
enhanced throughput-delay performance under variable packet
loss rates. This is because fine-tuning the coding depth makes
possible the maximization of coding benefits. Interestingly
enough, we can achieve near-optimal performance not for a
single d value but for a wide range of values (see, for example,
fig. 3(c) and 3(d)). This is a reasonable result since increasing
d also increases the offered protection. When d goes beyond a
certain value no significant improvement is witnessed. We call
this value the threshold value of d (dth). However, depending
on the channel properties and loss profile, it is not always the
case that a wide range of d values can produce a near optimal
performance. For example, this is the case of the 5G scenario
discussed in the previous section. As can be seen in fig. 3(c)
and 3(d), the range of d values that optimize performance is
rather narrow (i.e., d = 2, 3). The reason is that, while d should
be greater than dth, it also should not exceed an upper value
dup. In other words,

dth ≤ d ≤ dup (1)

The existence of dup was discussed in our previous
work [10]. This upper limit is imposed by the limited sliding
window size at the receiver side. To elaborate on this, let
us examine Fig. 4 where a series of coding cycles (i.e., a
set of non-coded packet followed by a coded one) at the
sender is presented. As can be seen, when a coded packet
arrives at the destination, the decoding process involves all
the native packets within the coding window, i.e., the d · k
last native packets, and the corresponding coded ones in this
range. However, note that the oldest coded packet in this group
of packets also “contains” the previous d · k native packets.
As a result, in the worst case, in any given moment, the last
(2d−1) ·k packets are involved in the decoding process at the
receiver. However, the receiver has a limited sliding window
size W . Therefore, (2d − 1) · k ≤ W , otherwise the receiver
will start dropping packets that are outside the sliding window
although those packets may be necessary for the decoding
process to complete. The previous limitation results in

d ≤ 1

2
(⌊W

k
⌋+ 1) = dup (2)

Clearly, dup depends on the channel characteristics since W
is set based on the channel’s bandwidth-delay product and k
is chosen based on the packet error rate.

It is straightforward from the previous discussion that,
depending on the channel characteristics, it may either be
that dup ≤ dth or dth ≤ dup. It is reasonable that the

dk
dk

Fig. 4. Successive coding cycles observed at the sender side in a SW RLNC
protocol. The product d · k describes the coding window size.

former inequality holds in channels with small bandwidth-
delay products and/or relatively large loss rates while the latter
is valid in channels with large bandwidth-delay products and
rather small loss rates. By combining the former inequalities
with (1), the optimal value for d can be determined as

dopt = min{dth, dup} (3)

This equation can explain the behavior of rapidARQ witnessed
in the experiments of Section III. In the case of the 5G
scenario, the bandwidth delay product is rather small therefore
the best value for d is dominated by dup. The opposite is
true for the satellite scenario where the large bandwidth-delay
product indicates that dopt = dth. Keep in mind that, in
this case, rapidARQ’s throughput-delay performance is near
optimal for all values in the range [dth, dup] since all those
values provide the required protection.

While calculating dup is straightforward, determining dth
is a daunting challenge because it depends on a variety of
coding/decoding design choices. Not surprisingly, to the best
of our knowledge, such an analytical calculation does not
exist in literature. Our approach is to derive an analytical
framework (see Section IV-A) that will allow us to obtain
a rough estimation (d̃th) of dth. In the case that d̃th > dup
clearly the best choice for d is dup. However, when d̃th < dup,
our estimation will produce a near optimal performance if
d̃th ∈ [dth, dup].

A. Analysis of the Impact of Coding Depth

In this section we provide the theoretical analysis for
computing a rough estimation of dth. As previously explained,
when utilizing the idea of coding depth, the receiver side can
perceive the packet reception/decoding process as consisting
of a repetition of coding cycles. Each coding cycle consists
of k native (or uncoded) packets and a coded one. The coded
packet in a specific coding cycle is built based on the native
packets comprising the last d coding cycles, including the
current one. If the receiver misses native packets (because
they are lost) then, upon the reception of a coded packet,
checks whether decoding the lost packets is possible. Let us
assume that at time t = 0 the decoder is not missing any
packet and a new coding cycle starts where at least one native
packet is missing. The decoder will try to recover the lost
packet(s) at the end of the decoding cycle, i.e., after receiving
redundant information in the form of a coded packet. If this is
not possible, the process will continue with another chance to
recover the packet(s) in the second coding cycle. Note that, in
the meanwhile, the number of missing packets may increase
if native packets belonging to the second coding cycle are
missing. The process will continue in the following coding
cycles until decoding (the entirety of the missing packets) is
possible or the packets are confidently deemed unrecoverable.
For the latter, as we previously stated, we assume that this
happens after d cycles because, beyond that point, no more
coded packets containing the lost packets in round 1 will be
received, thus the probability of decoding beyond that point is



small and the trade-off in terms of delay and decoding matrix
size is not negligible.

We wish to calculate the probability that the receiver will
not to be able to recover (through decoding) the missing
packets after i coding cycles. Let P̃i denote this probability.
We assume that Xi denotes the random variable corresponding
to the number of lost packets (either native or coded) during
coding cycle i. Note that Xi is binomially distributed, i.e.,
Xi∼B(k+1, p) where k+1 is the number of packets (native and
coded ones) in the coding cycle and p is the channel’s loss rate.
Let also Wi denote the opposite of the decoding matrix’s rank
deficiency, i.e., the difference between the decoding matrix’s
rank and its number of rows (number of linearly independent
packets), at the end of cycle i. In other words, Wi represents
the number of linearly independent packets needed by the
receiver to perform a decoding. Note that:

Wi = max(0,Wi−1 +Xi − 1), ∀ i > 0, W0 = 0 (4)

The previous formula is easy to understand if we keep in mind
that there are two possibilities for the Xi packets missing
during cycle i. The first is that all Xi packets are native and
the one coded packet offers a linearly independent combination
containing those packets therefore it can increase the rank of
the decoding matrix. The second possibility is that only Xi−1
packets are native and the one coded packet is lost. In this case,
again, W increases by Xi − 1. It is clear that Wi = 0 implies
that decoding is possible at round i. Similarly, no decoding
is possible after i coding cycles if and only if Wi > 0 and
Wj > 0 ∀ j < i. Therefore, we can write P̃i as:

P̃i =

ik∑
x=1

P{Wi = x | Wj > 0, ∀ j < i} (5)

Note that the maximum value of Wi is i·k. This can be derived
by (4) if Xj = k+1, ∀ j, which corresponds to the worst case
where all native and all coded packets are lost in every coding
cycle. Given P̃i, we can write the probability of decoding in
any of the cycles up to i as:

P̂i = 1− P̃i (6)

Moreover, we can prove that:

Lemma 1. The probability of decoding at cycle i, i.e., without
any decoding at a previous round, is:

Pi = 1− P̃i − P̂i−1 (7)

Proof. By its definition, Pi can be written as Pi = P{Wi =
0 | Wj > 0, ∀ j < i}. Thus, we can derive Pi by examining
all sequences of W1,W2, . . .Wi−1,Wi(= 0) and eliminating
those containing at least one 0 in any place j ≤ i − 1
because those latter sequences correspond to chains of events
where a decoding occurs before cycle i. Equivalently, we first
examine all possible sequences of W1,W2, . . .Wi−1,Wi . The
probability of any such sequence occurrence is clearly 1. Then
we exclude those sequences that contain at least 0 in any place
j ≤ i − 1. Note that, by definition, the probability that any

such sequence takes place is P̂i. Finally, from the remaining
set of sequences, each of which does not contain any 0 in any
position j ≤ i−1, we exclude the ones that end with Wi > 0.
In other words, we exclude that sequences that end in 0 but
do not not contain any other 0s. The probability of any such
sequence taking place is, by definition, P̃i.

Going back to (5), clearly, it is easy to derive P̃i if we can
analytically compute P

(i)
x = P{Wi = x | Wj > 0, ∀ j < i},

i.e., the probability that the receiver’s decoding matrix requires
x linearly independent packets at cycle i while no decoding
has occurred in the previous rounds. To this end, as a first
step, we use (4) recursively to re-write P

(i)
x . More specifically,

when Wj = 0∀ j < i, we can conclude from (4) that Wi =

X1 + · · ·+Xi − i. As a result, P (i)
x can be re-written as:

P (i)
x = P{X1 + · · ·+Xi = x+ i | Wj > 0, ∀ j < i}

This makes the computation of P
(i)
x easier since

X1, X2, · · · , Xi are all binomial random variables. Therefore,
the sum of those variables is also binomially distributed
with X1 + . . . + Xi ∼ B(i · (k + 1), p) and as a result
P{X1 + · · · + Xi = x + i}, i.e., the probability of any
combination that sums up to x + i, is easy to compute.
Note that this latter probability is a good starting point for
the computation of P

(i)
x . However, we need to eliminate

from this calculation the probability of any combination
of X1, X2, · · · , Xi that results in a decoding in a previous
round j. Since a decoding in round j < i requires that
X1+· · ·+Xj = j, this means that Xj+1+· · ·+Xi = x+i−j.
The probability of such a combination happening is clearly
Pi · P{Xj+1 + · · · + Xi = x + i − j} where again
P{Xj+1 + · · · + Xi = x + i − j} is easy to calculate using
the Binomial distribution. As a result, P (i)

x can be written as:

P (i)
x =P{X1 + . . .+Xi = x}−

i−1∑
j=2

Pj ·P{
i∑

l=j+1

Xl=x+i−j}

−P{X1=0}·P{X2+. . .+Xi=x+i}
−P{X1=1}·P{X2 + . . .+Xi=x+i−1}

(8)
In the previous equation we also take into account the special
case where in round 1 there is no lost packet (X1 = 0), so
decoding is not required. Note that (8) can be used recursively
to compute P

(i)
x and therefore P̃i through (5).

Finally, we can compute the average number of packets lost
during a decoding failure, L̃. As we mentioned previously,
Wi = x means that X1+X2+ . . .+Xi = i+x ,i.e., the total
number of lost packets is i + x. However, only a percentage
of those packets are native. More specifically, it is expected
that, on average, k

k+1 (x+ i) native packets will be lost. Based
on this, we can now calculate L̃ as:

L̃ =

i·k∑
x=1

P{Wi = x | Wj > 0, ∀ j < i} · k

k + 1
· (x+ i) (9)

Note that, one can use (9) to determine the required coding
depth for a specified level of resilience to packet errors. More



1% 2.50% 5% 7.50% 10%
ploss

340

360

380

400

420

440

460

480
Th

ro
ug

hp
ut

 (M
bp

s)
d=1

d=1

d=2

d=3

d=4

dopt=1
dopt=1

dopt=2

dopt=4

dopt=5

rapidARQ
rapidARQ (theory)
Caterpillar RLNC-FB
Tetrys

(a)

1% 2.50% 5% 7.50% 10%
ploss

0.07

0.08

0.09

0.10

0.11

Av
er

ag
e 

De
la

y 
(m

s)

min delay

d=1
d=1

d=2 d=3
d=4

dopt=1
dopt=1

dopt=2 dopt=4
dopt=5

rapidARQ
rapidARQ (theory)
Caterpillar RLNC-FB
Tetrys

(b)

1% 2.50% 5% 7.50% 10%
ploss

0.005

0.010

0.015

0.020

0.025

Pa
ck

et
 D

ro
p 

Ra
te

d=1

d=1 d=2
d=3

d=4

dopt=1

dopt=1 dopt=2 dopt=4

dopt=5

rapidARQ
rapidARQ (theory)
Caterpillar RLNC-FB
Tetrys

(c)

1% 2.50% 5% 7.50% 10%
ploss

420
440
460
480
500
520
540
560
580

Th
ro

ug
hp

ut
 (M

bp
s)

d=4 d=10 d=9 d=9 d=11
dopt=7 dopt=14 dopt=15 dopt=18 dopt=15

rapidARQ
rapidARQ (theory)
Caterpillar RLNC-FB
Tetrys

(d)

1% 2.50% 5% 7.50% 10%
ploss

4

6

8

10

12

Av
er

ag
e 

De
la

y 
(m

s)
min delay
d=4 d=10 d=9 d=9 d=11

dopt=7
dopt=14 dopt=15 dopt=18 dopt=15

rapidARQ
rapidARQ (theory)
Caterpillar RLNC-FB
Tetrys

(e)

1% 2.50% 5% 7.50% 10%
ploss

0.00

0.02

0.04

0.06

0.08

Pa
ck

et
 D

ro
p 

Ra
te

d=4 d=10 d=9 d=9 d=11
dopt=7 dopt=14 dopt=15 dopt=18 dopt=15

rapidARQ
rapidARQ (theory)
Caterpillar RLNC-FB
Tetrys

(f)
Fig. 5. Performance evaluation of rapidARQ [9], rapidARQ using the analytical prediction of d, Caterpillar RLNC-FB [16] and Tetrys [3] in the 5g ((a)-(c))
and satellite scenarios ((d)-(f)) for different link loss rates (pl): a),d) throughput performance, b),e) average in-order delivery delay, and c).f) packet drop rate.

specifically, by setting a requirement for L̃ (e.g., such as 10−6

described in URLLC), one can obtain i, i.e., the coding depth.
Again, we stress that the values of coding depth obtained
through this process are a rough estimation of the optimal
coding depth. This is because the optimal value depends on
the specific decoding policies implemented at the receiver.
However, we will illustrate that the previous analysis can
produce a reasonable estimation of the optimal coding depth.

V. EVALUATION

We validate the proposed analytical framework through
simulation in ns2 simulator [41]. To this end, we use rap-
idARQ [9], [10] as the protocol that allows manipulating
the coding depth. We leverage the analytical framework (see
section IV) to obtain the best coding depth value (identified
as dopt in the following plots). More specifically, we set
a target packet loss rate of 10−6 and calculate dopt. We
illustrate the version of rapidARQ that uses this value as
“rapidARQ(theory)” in the following plots. Furthermore, we
present another version of rapidARQ (identified simply as
“rapidARQ”) where for d we use the smalest value that
produces a packet loss rate equal or smaller than 10−6.
We identify this value by exhaustively testing a wide range
of values. Note that, if such a value does not exist we
use the maximum possible value. This can happen when
the bandwidth-delay product of the channel only supports
small d values (see (3) and the relevant discussion) that can
not offer the required level of resilience to errors. The 5G
scenario discussed in Section III is such a typical example.
We also consider Caterpillar RLNC-FB [16] as a prominent
ARQ-based sliding window RLNC protocol, and a Tetrys-
like [3] implementation, as the most representative FEC-based
sliding window RLNC scheme. We exploit the same evaluation
scenarios described in Section III, i.e., a high-speed link to
a low-earth orbiting satellite and a typical 5G wireless link.
The main simulation parameters are summarized in Table I.

The choice of R is the same for all tested protocols and
follows the same principles explained in Section III. That is,
R is set according to the link’s loss rate (pl), so that, on
average, the introduced redundancy can compensate a single
packet loss every k + 1 packets. As for the channel’s error
model, we first consider a uniform error model. To ensure
that a constant flow of traffic is always available, we use a
constant bit rate (CBR) traffic generator. For each experiment,
we carry out a set of 5 trials considering a sufficiently large
simulation time of 50s and report the average values. We
assess the performance of the examined protocols based on
the throughput, the average per-packet in-order delivery delay
and the packet drop rate, i.e., the percentage of source packets
that could not be successfully received or decoded.

Figure 5 depicts the protocols’ performance for pl from
1% to 10% in the 5G and Satellite scenarios. For each value
of pl, we illustrate the experimentally identified d value for
rapidARQ as well as the one calculated through our analysis
(noted as dopt). Clearly, our analysis achieves our goal to
produce a good estimation of the best d value that can provide
the prescribed level of resilience to losses, i.e. dopt is always
close to d. This is extremely important since it eliminates the
need of an exhaustive experimental search and allows a more
efficient design of such protocols. What is, however, more
important is that the dopt values produce a performance very
close to the one received when d values, i.e. those identified
experimentally. This is true for all three performance metrics,
i.e., the throughput, the average delay and the packet drop rate.
Moreover, the effectiveness of our analysis is evident for the
entire range of pl and for both tested scenarios although they
represent two types of link with very diverse characteristics.
Note that, especially for the 5G scenario, there is no d value
that can produce a packet drop rate of 10−6 or less, as
explained previously. However, our analysis can still efficiently
approximate the best d value using (3).

As a last note, both variants of rapidARQ massively out-



weigh Caterpillar RLNC-FB and Tetrys protocols. This is
due to the appropriate definition of the coding window size
according to the channel’s loss profile through the use of
coding depth. The performance gains are more salient in
links with larger bandwidth-delay products, i.e., the satellite
link (fig. 5, cases (d)-(f)), since, in the latter, d can be
chosen among a wider range of possible values, hence its
optimal choice is more critical. While we notice a significant
improvement in throughput, the most notable gains pertain
to average delay (where the achieved delay in the satellite
scenario is three times smaller than in Caterpillar RLNC-FB
and Tetrys) and packet drop rate (∼ 70% reduction in the 5G
case). Those results are another confirmation of the importance
of correctly setting W (or equivalently d).

VI. COPING WITH BURSTS

Up to now we assumed that a static value of d can provide
the desirable protection from channel losses. However, this
is true only if the channel’s packet loss rate is relatively
stable because a static value of d results in a fixed coding
performance. If the loss rate varies then there may exist time
periods when the introduced redundancy may not be useful
because packet losses do not occur. Similarly, there may exist
periods of time that the provided protection is not sufficient to
cope with bursts of errors. Given the fact that bursty channels
are common, it is clear that the coding protocol should be able
to realize the emergence of such idle or burst time periods
and appropriately adjust its coding depth to reduce/increase
its coding efficiency.

In order to achieve the aforementioned functionality, we can
leverage the analytical framework proposed in Section IV.
Our strategy is to estimate the coding depth value (dmax)
required for achieving the prescribed loss requirements in the
presence of bursts of errors. That is, to assume that losses are
uniform and their rate is equal to the one during a burst period.
Clearly, this corresponds to the worst-case scenario. Then,
we wish to design an adaptive algorithm that can identify
the idle or bursty time periods and adjust the coding depth
according to the variations of the observed packet error rate.
More specifically, under bursts of errors, the adaptive scheme
should increase protection, i.e., d, up to the maximum value
dmax whereas in the opposite scenario, d should be reduced
for the sake of complexity gains. Note that, since our strategy
accounts for the worst case scenario (by using dmax), its
actual target is to benefit by minimizing d during idle periods.
If this minimization is successful, the receiver can experience a
small decoding matrix size which directly translates to reduced
decoding complexity.

Algorithm 1 illustrates the proposed adaptive algorithm that
incarnates our strategy. The estimation dmax is derived using
the analysis in Section IV for the packet error rate during
a burst and is given as input to the algorithm. The adaptive
algorithm follows the principle of fast-increase-slow-decrease,
which signifies an instant reaction in case of estimating an
increase in packet losses (lines 1-3) in contrast to a moderate
approach in reducing the coding depth when the packet

Algorithm 1 Adapt(lr)
Require: previouslr, dmax, d, k
1: if lr > previouslr then
2: d← min{dmax, d+ 1}
3: W ← d× k
4: else if (lr < previouslr) or (lr == 0 and previouslr == 0) then
5: if successive decrease requests ≥W/2 then
6: d← max{1, d− 1}
7: W ← d× k
8: remove oldest source packets if current window contents exceed

new W
9: end if

10: end if

TABLE II
PERFORMANCE OF ADAPTIVE VS STATIC RAPIDARQ FOR DIFFERENT

LEVELS OF BURSTINESS (5G AND SATELLITE SCENARIOS, RTX=0).
LUdiff (%) Ddiff (ms) Ldiff

B 5G (d = 2) Satellite (d = 15) 5G (d = 2) Satellite (d = 15) 5G (d = 2) Satellite (d = 15)
1 0.19448608 0.00389748 0.0086084 0.0784574 0.0053012 0.0002024
1.5 0.14134774 -0.09113904 0.0093132 1.5515418 0.0060306 0.0032904
2 0.1053732 -0.01337934 0.0095582 1.0156504 0.006386 0.0019448
3 0.12508618 0.08316014 0.0084766 0.0048696 0.005376 -0.0006404

loss rate seems to decline (lines 4-8). The “slow-decrease”
approach allows us to avoid dropping out of the coding
window unacknowledged packets that are still essential for the
decoding process. More specifically, to tackle any unnecessary
reduction of d (and equivalently W ), we monitor the estima-
tion of packet loss rate. Then, before performing a reduction
of d, we require W/2 successive observations reporting that
this rate either reduces or is zero. We should also bear in
mind that if the new value of W is smaller than the number of
packets currently in the coding window, we should remove the
oldest source packets to ensure consistency (line 8). In order
to estimate packet losses, we exploit rapidARQ’s cumulative
acknowledgements. For stability reasons, the estimation is
performed after receiving a prescribed number of ACKs, e.g.,
equal to the window size W = d × k. Subsequently, the
estimated current loss ratio lr is passed as an argument to
function Adapt, which implements the actual adjustment of d.

We are interested in the comparison of the adaptive scheme,
which we refer to as adaptive rapidARQ henceforward, with
its static counterpart. We examine performance metrics such as
link utilization, delay and loss, but we focus on the complexity
signified by the size of the decoding matrix at the receiver.
This is because, as explained, the adaptive algorithm, by
design, focuses on reducing complexity (through the reduction
of d) by taking advantage of the idle periods. Once again,
we assess the performance of the examined protocols in
both the Satellite and the 5G scenarios without employing
re-transmissions (RTX = 0). For a fair comparison, we
examine the performance of both static and adaptive rapidARQ
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Fig. 6. Percentage improvement of average decoding matrix size vs burstiness
of adaptive against static rapidARQ: (a) satellite, and (b) 5G scenario.



TABLE III
PERFORMANCE DIFFERENCE OF ADAPTIVE AND STATIC RAPIDARQ VS

PACKET ERROR RATE (SATELLITE SCENARIO, RTX=0, B=2).

Packet Error Rate pl LUdiff (%) Ddiff (ms) Ldiff

2.50% 0.07531078 -0.096753 -0.0005332
5% 0.02326052 0.0129936 0.0002836

7.50% 0.05585636 0.0132738 0.0002524
10% -0.01337934 1.0156504 0.0019448

considering as coding depth the estimated optimal values for
each evaluation scenario, i.e., d=15 in the satellite scenario
and d=2 in 5G. Recall that for the adaptive algorithm those
values represent the maximum coding depth. We introduce a
bursty error profile using an on-off model [10]. In the bursty
model, the channel error rate p′l for the “on” period is set so
that during a complete on-off cycle, the error rate is on average
equal to 5% for the 5G scenario and 10% for the satellite one.
No errors occur during the “off” period. Burstiness (B) is
expressed as B =

(T̄on+T̄off )

T̄on
, where T̄on and T̄off describe

the average values of the “on” and “off” period. Therefore,
larger B values indicate that T̄on is small and p′l high.

Table II displays the performance difference between adap-
tive and static rapidARQ in the satellite and 5G scenarios and
for different levels of burstiness. Suppose that, for a specific
performance metric M , Ma refers to the metric value for
adaptive rapidARQ and Ms for the static protocol. Then,
we define the performance difference as Mdiff =Ma−Ms.
LUdiff , Ddiff and Ldiff denote the performance difference
in link utilization, delay and loss, respectively. We observe that
in both test scenarios adaptive rapidARQ achieves a perfor-
mance that is comparable to static rapidARQ for all evaluation
metrics. This is a clear indication that the adaptive algorithm
efficiently identifies bursts and increases d to protect packets.
However, when examining the decoding matrix size (Fig. 6),
the adaptive scheme achieves significant complexity gains. The
plot illustrates the percentage change of the average decoding
matrix size that adaptive rapidARQ manages compared to
its static counterpart in both the satellite (fig. 6(a)) and in
the 5G scenario (fig. 6(b)). At first sight, we observe that
adaptive rapidARQ consistently yields improvements. This
is a confirmation that the adaptive scheme effectively takes
advantage of the idle time periods and reduces the decoding
matrix size. In the satellite scenario (fig. 6(a)), the gains for
the adaptive scheme increase with burstiness and reach up
to an impressive 23%. This is reasonable because increased
burstiness translates into longer idle periods. However, a small
decline is witnessed for B = 3, i.e., in the presence of very
intense bursts. This is because the adaptive algorithm increases
d to a larger extent in order to provide enough protection to
tackle any subsequent packet losses. Although the adaptive
scheme is able to detect the idle periods, the decrease steps
do not suffice to cancel the preceding increments in d, as
it happens when B is lower. In the 5G scenario (fig. 6(b))
the gains for the adaptive algorithm are equally impressive
(reduction up to ∼ 20%). However, the gains depend less on
B because the range of d values is very narrow.

Another interesting aspect to explore is how different chan-
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Fig. 7. Average decoding matrix size improvement (%) vs packet error rate
for adaptive rapidARQ vs static. Satellite scenario, RTX=0, B=2.

nel loss rates affect performance assuming fixed burstiness.
Here, we only examine the satellite test scenario without re-
transmissions. We also focus on the case of B = 2 where
the maximum packet loss rate during an “on” period is at
least double compared to the average loss rate (pl). Note
that, since we examine various average packet loss rates (pl),
we recalculate the estimation dopt provided by our analytical
framework. For the applied link loss rates, the estimated values
are: dopt=14 for pl=2.5%, dopt=15 for pl=5%, dopt=18
for pl = 7.5% and dopt = 15 for pl = 10%. Fig. 7 displays
the percentage change of the average decoding matrix size vs
pl. The maximum improvement exceeds 20%. Clearly, there
is an increasing trend in gain which follows the increase of
the average packet loss rate. In other words, the higher pl
is, the higher the improvements noticed. This is reasonable,
since channels with heavy losses require enhanced protection
during bursty periods, hence larger fluctuations are noticed
in the coding window size. Adaptive rapidARQ is able to
identify idle periods and shrink decoding matrix resulting
into significant complexity improvements. Interestingly, the
observed gains come without sacrificing other aspects of
performance. Table III illustrates the performance difference
between the adaptive and the static schemes for the link
utilization, the average delay and the packet drop rate. In all
cases the differences are negligible.

VII. CONCLUSION

Sliding window RLNC can be a game changer in achieving
URLLC’s requirements in 5G and beyond networks. However,
existing sliding window RLNC schemes tend to neglect the
discussion about the importance of an appropriate coding
window size, although it plays a major role in the coding
scheme’s efficiency. In this work, we focused on the impact
of the coding window size by utilizing the concept of coding
depth d. We experimentally confirmed that the appropriate
selection of d is critical in achieving an optimal performance-
complexity trade-off. Motivated by this observation, we de-
vised an analytical framework for estimating, based on the
channel’s loss profile, a suitable d value that produces a near-
optimal performance. Furthermore, we explored the dynamic
adaptation of d by implementing an efficient adaptive scheme
with the aim of minimizing the coding complexity during idle
periods. We experimentally confirm both the effectiveness of
the analytical model and the adaptive algorithm By transferring
such functionality in the transport layer, we anticipate that the
benefits will be more intense in multi-hop paths with very



large bandwidth-delay product. Another option would be to
allow intermediate nodes to take part in the coding process in
order to fully exploit the properties of network coding.
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