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Abstract. Periodic broadcast scheduling typically considers a set of dis-
crete data items, characterized by their popularity, size and scheduling
cost. A classic goal is the definition of an infinite, periodic schedule that
yields minimum mean client serving time and minimum mean schedul-
ing cost at the same time. This task has been proven to be NP-Hard
and more recent works have discarded the scheduling cost attribute, fo-
cusing only on the minimization of the mean client serving time. In the
context of the present work the scheduling cost is reinstated. An analysis-
based scheduling technique is presented, which can practically minimize
the mean client serving time and the mean scheduling cost concurrently.
Comparison with related approaches yields superior performance in all
test cases.
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1 Introduction

Broadcasting is an efficient means of bandwidth preservation and information
advertising in both wired and wireless environments [1, 2]. In the latter case,
which is examined in the present work, broadcasting is much more vital, since
there exists only one wireless medium. Thus, overcoming bandwidth limitations
by adding more physical paths in not an option. The importance of broadcast-
ing has highlighted the need for efficient broadcast scheduling, i.e. the proper
serialization of data item transmission in order to ensure minimal client serving
time and efficient quality of service.

The evaluation of wireless broadcast scheduling techniques takes place in a
widely approved system setup [2–17]. A number of wireless clients freely roam
an area covered by a broadcast network. All clients read the broadcasted data
stream synchronously, while wireless transmission parameters are idealized in
order to focus on the evaluation of the scheduling process only. The dataset to
be broadcasted contains a number of discrete data items with known sizes. All the
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aforementioned parameters may vary with time. Proposed scheduling techniques
typically have an online expression [2–5], which can re-adapt the scheduling on
the fly, based on new input regarding the client preferences or the update of
the data set. The change in these parameters can be detected and handled by
smart learning algorithms which are examined elsewhere, as a separate field of
study [6, 18]. Two types of scheduling are defined: in pull-based scheduling the
clients pose specific queries to a server [19]. The server then serializes the answers
to the requests in a way that minimizes the mean serving time. In push-based
(or periodic) scheduling, examined in the present study, the clients do not post
queries to the server. The learning algorithm monitors the request probability of
each available data item (or item class), typically through a lightweight, indirect
feedback system [2]. (E.g. by exploiting Facebook profile data in a subscription-
based system). Thus the actual number of users is not directly relevant [5]. The
goal is then to create a periodic schedule that minimizes the mean serving time
of the clients, based on the request probability distribution of the data items.

The problem with existing periodic scheduling approaches is that they do not
take into account important, practical parameters, as for example copyright costs
per item transmission or computational cost per item scheduling. A realistic
scheduling authority will strive for a balance between client satisfaction and
broadcast cost. This aspect of the scheduling process was originally taken into
account in [9], where an additional attribute, the broadcast cost, was assigned
to each data item. The set goal was the creation of the schedule that minimizes
the mean client serving time and the mean scheduling cost at the same time.
However, the problem was soon proven to be NP-Hard [7]. Subsequent studies
validated the NP-Hardness of several variations of the original problem [8]. In
the context of the studied push-based scheduling, the cost attribute was then
discarded, and related works focused on the minimization of the mean serving
time (or related metric) only [2,4–6,12–17]. In this case, the assumption of very
large schedule sizes (“infinity” assumption) was adopted as a means of facilitating
the mathematical analysis of the simplified problem [5]. This in turn resulted
into unrealistically high computational requirements [4].

In the context of the present work we reinstate the broadcast cost attribute,
and present a scheduler than can achieve minimal mean client serving time for
any user-defined mean scheduling cost. Furthermore, it is proven that this task
does not require infinite schedules, thus decreasing the overall computational
complexity by orders of magnitude. The proposed scheduler in shown to be
more efficient than the existing approaches, in all test cases. It is clarified that
the proven theoretical NP-Hardness of the problem is not alleviated, but rather
shown not to be prohibitive in practical communication systems.

1.1 Related Work

Research on push-based, wireless broadcast systems initially focused on the min-
imization of the clients’ mean serving time, over an infinite time horizon, in the
context of Teletext systems [10]. It was proven that an optimal schedule is also
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periodic. Therefore, one needs to define only the optimal number of occurrences
of each data item inside the schedule. [10] provided a solution, assuming equally-
sized data items. The problem was revisited in [11], heuristically studying items
with small variation in their sizes. It was clarified that the mean serving time
depends on data item attributes (i.e. item request probabilities and sizes), and
not on the number of clients. The same study proposed scheduling algorithms
that achieved optimality at the expense of increased complexity (O(N · B), N
being the number of data items and B > N the number of scheduled broad-
casts). These algorithms worked for small variations in item sizes only. Authors
in [4] presented an analysis-derived periodic scheduler that achieved the same
performance with O(N) complexity, for any item sizes. In the same study it was
also shown that the schedule size is a determining factor of the overall schedul-
ing complexity. Simulations indicated that finite schedules may also achieve
optimality.

Heuristic, low complexity scheduling methods were introduced in [3] with the
introduction of the Broadcast Disks model. According to it, items are grouped
by popularity, forming virtual disks rotating around a common axis. Imagi-
nary heads read and serialize data from the disks, producing the final schedule.
In [12], the authors applied clustering techniques for performing the data group-
ing. In [13] the grouping of items was analytically optimized. The analytical
results were exploited in [14] for producing minimal complexity schedulers. All
aforementioned studies focused on the minimization of the clients’ mean serving
time.

As previously stated, a more strict version of the scheduling problem assigns
an additional attribute, the scheduling cost, to each data item. It is clarified
that the scheduling cost is not related to broadcast deadlines, an extension of
the mean serving time problem [15]. The new goal is to define the schedule that
minimizes the mean serving time and the mean scheduling cost at the same time.
The authors in [8] map the updated broadcast scheduling procedure to the gen-
eralized maintenance scheduling problem, which is a known NP-Hard problem.
Several greedy algorithms are presented, as well as in [7], which generally operate
beyond the analytically optimal bounds. To the best of the authors knowledge,
no studies since [8] have attempted a practical solution for push-based systems,
possibly due to the proof of NP-Hardness.

Standard Assumptions and Notation
We regard a set of N data items arbitrarily indexed by i = 1...N . Each item i is
associated with its size li (in bytes) and its request probability pi,

∑N
i=1 pi = 1 .

Finally, ui ∈ N
∗ will denote the number of occurrences of item i in the schedule.

No assumptions are made concerning the nature of a data item during the
analysis. In accordance with the related work on scheduling, an item is simply
a piece of information that a client may acquire through a single query [2–5, 7,
8,10–17,20,21]. It is clarified that in push-based, periodic broadcast scheduling,
the term “client query” does not imply posting a request to a server, but rather
waiting for the broadcast of a specific item. According to [4], the mean serving
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time achieved by a schedule is given by:

W =
1
2
·
(∑N

i=1
ui · li

)

·
(∑N

i=1

pi

ui

)

(1)

Notice that W does not depend on the number of clients, which are handled
collectively as a Gaussian process via the central limit theorem [5]. In addition,
(1) measures W in size units (e.g. bytes). Conversion to time units requires
knowledge of the physical wireless transmission rate. The mean serving time is
minimized when the item occurrences in the schedule follow the relation [11]:

ui(λ) =
[[

λ ·
√

pi

li

]]

, i = 1 . . .N, λ >> 1 (2)

where [[.]] is the rounding function. Equation (2) is also known as the square root
rule, and the condition λ >> 1 expresses the schedule size “infinity” assumption
[5, 7, 8, 10, 11]. In order to avoid the nullification of the item occurrences, ui, ∀i,
it must generally hold that λ ∈

(
max

{ √
li

2·√pi

}
,∞
)
. Finally, for a given λ, the

total size of the schedule is expressed as:

L(λ) =
∑N

i=1
ui(λ) · li (3)

which is minimized when ui = 1, ∀i.
The remainder of this paper is organized as follows: Section 2 presents the

analysis leading to the definition of the novel, cost-aware optimal scheduler.
Comparison with related work takes place in Section 3. Conclusion is given in
Section 4.

2 Analysis of the Proposed Scheduling Scheme

We assign an additional, normalized attribute, αi ∈ (0, 1), to each of the data
items i = 1 . . .N . This attribute corresponds to the scheduling cost of [7,8], and
is open to any physical interpretation that can be efficiently expressed in the
value set (0, 1). Given a broadcast schedule of the available items, the mean cost
is:

α =

∑N
i=1i

ui · αi
∑N

i=1 ui

(4)

Notice that α is minimized when ui = 0, ∀i �= arginf(j){aj}, i.e. when we ex-
clusively broadcast the item with the lowest cost. On the other hand, W is
minimized when the relation (2) holds. Furthermore, the cost attributes, αi, are
not correlated in any way to the remaining item attributes, pi, li. Therefore,
minimizing α and W concurrently requires the definition of a metric that com-
bines both quantities. For example, [7] and [8] assume that both α and W are
of equal importance and define the combination:

S = 50% · α + 50% · W (5)
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which needs to be minimized. However, the equal importance assumption is
restrictive. In order to overcome this shortcoming, the following analysis will
derive the full relation W = f(α), i.e. the schedule that minimizes W for any
given cost α. Any custom metric can then be satisfied at the intersection of the
plot W = f(α) and the line W = b ·α, b > 0. As an example, the combination S
of eq. (5) represents the very specific case of intersecting W = f(α) and W = α.

In order to enable the use of infinitesimal calculus, we will expand the value
set of ui from N to R

+∗ . Indeed, if ui is extremely large ∀i, one can safely assume
that ui ± 0.5 ≈ ui, where ±0.5 represents any rounding error. Equation (4) then
relates ui to any arbitrary uj, j ∈ 1 . . .N, j �= i as follows:

∂uj

∂ui
= −α − αi

α − αj
(6)

Taking the first derivative of the mean client serving time, W (equation (1)),
with regard to ui, produces through (6):

∂W

∂ui
=

1
2

[

li − lj
α − αi

α − αj

]

A1

·
(

N∑

k=1

pk

uk

)

B1

+ . . .

. . . +
1
2

(
N∑

k=1

uk · lk
)

B2

·
[

− pi

u2
i

+
pj

u2
j

α − αi

α − αj

]

A2

(7)

The reader may notice that the described procedure is an application of the
Lagrange method of restricted optimization, on equations (1) and (4). The labels
A1,2, B1,2 are added for quick referencing. Concerning the possible nullification
of the (α − αj) denominator, we simply note that αj (i.e. reference item j) can
be chosen to be different from the user-defined mean cost α, which is supplied
as an input. We proceed to define Theorem 1:

Theorem 1. Assume a large schedule (infinity assumption) and the request for
minimal mean client serving time, W , for a given mean scheduling cost, α. The
corresponding optimal item occurrences are:

uopt
i =

⎡

⎣

⎡

⎣λ ·
√

pi

lj · α−αi

α−αj

⎤

⎦

⎤

⎦ , j = arginf(i) {|α̃ − αi|} , λ >> 1 (8)

where α̃ is the median of the {αi} values.

Proof. We proceed to insert equation (8) in factor A2 of (7). It is deduced after
trivial calculations that A2 = 0. Examining factor B1 of equation (7) and state-
ment λ >> 1 of (8), we derive that B1 → 0 due to the infinity assumption, while
A1 is finite. Therefore, the derivative of (7) is nullified, yielding optimality. This
concludes the proof.
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Remarks: The choice of the reference item j in equation (8) is not mandatory,
but favors a restriction imposed by the square root of (8). i.e.:

l
′
i = lj · α − αi

α − αj
> 0 ⇐⇒ α − αi

α − αj
> 0, ∀i (9)

which has the equivalent representation (α− αi) · (α − αj) > 0. This restriction
is not upheld when α is inside the interval defined by αj and αi, ∀i. The choice
of j as the item whose cost is nearest to the median, α̃, ensures that the interval
between αj and αi, ∀i is as small as possible, thus limiting possible issues.

However, the scheduling authority may require a mean cost α that is indeed
in the aforementioned interval. In this case we can exploit the fact that the
infinity assumption makes for the existence of additional solutions. The reader
may exemplary notice that inserting the transformation:

l
′
i =

∣
∣
∣
∣lj ·

α − αi

α − αj

∣
∣
∣
∣ (10)

in (8), also nullifies the derivative of (7), since the factors (B1) and (A2 · B2)
approach zero as λ (and therefore ui, ∀i) increases. The drawback of this solution
is that it requires much larger schedule sizes, since the factor (A2 ·B2) must now
also be nullified indirectly, by increasing the size of the schedule.
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Fig. 1. Comparison of the proposed scheduler with results derived via brute force. For
each given mean cost, α, the simple transformation of (9) produces a mean serving
time, W , that is optimal by brute-force standards. The dotted line corresponds to the
use of transformation (10) in the cases where restrictions (9) do not apply. The mean
serving time is measured in Bytes.

Figure 1 presents an indicative comparison of the proposed scheduling tech-
nique with the results derived via brute-force. We assume N = 5 items (a
restriction enforced by the brute force procedure), with random sizes l1−5 ∈
[10, 100]Kbyte, random request probabilities,

∑5
i=1 pi = 1, and random schedul-

ing costs, α1−5 ∈ (0, 1). We simulate 1000 wireless clients listening to the same
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broadcast schedule, each one waiting for the successive completion of 600 per-
sonal queries for items 1−5. The creation of the queries obeys to the predefined,
random request probabilities p1−5. As in [2–17], we focus on the simulation of
the scheduler. Therefore, it is assumed that there are no coverage, noise or in-
terference issues, which could cause an altered perception of the efficiency of the
proposed scheduler.

We seek a schedule with mean cost α = 0.01 : 0.01 : 1 and a minimum
corresponding mean serving time, W (α). For each α value, we calculate the
optimal number of item occurrences, ui, through equation (8). Transformation
(10) is employed only when (8) fails to comply with (9). Once the optimal ui have
been calculated, we can use any serialization technique which targets the creation
of periodic schedules. In the case of Fig. 1 we adopt the serialization scheme
of [4]. This serializer receives the desired item occurrences, ui, and the item
sizes, li, as input, and produces a periodic schedule by employing preemption.
In the case of brute force we use the same serialization scheme, but we try
all possible u1−5 = 1 : 1 : 500 combinations. Then, for each achieved mean
scheduling cost, we log the smallest achieved mean serving time. The results
of Fig. 1 yield convergence between the proposed scheme and the brute-force
approach. Small discrepancies of the brute-force results are attributed to the
computational limitations of the procedure.

The almost perfect results presented in Fig. 1 do not in any way falsify the
proof of the NP-Hardness of the scheduling problem [8]. They do however pose
a question of whether purely theoretical assumptions have magnified the prac-
tical significance of the issue. It has been proven that an optimal schedule is
periodic: the interval between two consecutive occurrences of an item must be
constant [10]. Therefore, knowledge of the ui ratio is at first sufficient for creat-
ing an optimal schedule. However, large variations in the size of the data items
may hinder periodicity. (E.g. a huge file may not fit in its predefined, periodic
positions) [4]. The NP-Hardness stems from the resulting combinatorial problem
of finding the optimal item serialization in this case. This issue is not a practical
hindrance however: in the vast majority of the modern communication systems,
large files are divided in much smaller segments or packets, prior to transmis-
sion. This approach is known to resolve the aforementioned issue in periodic
scheduling as well [4]. For limited item size variations, non-preemptive serial-
izers (e.g. [5]) produced identical, optimal results. Conclusively, having shown
that the definition of the optimal ui ratios is easily tractable, the authors claim
that the undisputed, theoretical NP-Hardness of the scheduling problem does
not pose a significant limitation in practice.

3 Comparison with Related Work

The proposed scheduler is compared with related approaches in terms of:

– Tunability. A scheduler should be able to operate at any {W, α} (mean
serving time, mean cost) combination dictated by the scheduling authority.
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– Efficiency. The scheduler should achieve minimal mean client serving time,
W , for any selected mean scheduling cost, α.

– Complexity. A scheduler should require the least possible computational
resources for the production of the chosen schedule. As proven in [4,14], the
size of a schedule defines the overall complexity and, therefore, should be
kept minimal.

The proposed scheduler is compared to the Randomized, Greedy and Periodic
schedulers of [7,8]. These schedulers are cost-aware, assigning a single attribute
αi per data item as well, and represented the most viable options prior to the
present work. As a reference point, we include the cost-agnostic schedulers of [5]
and [4], which target solely the minimization of the mean client serving time,
disregarding the cost. The scheduler of [4] surpassed [5] in terms of complexity
and performance, and represents a state-of-the-art (SOA) algorithm for periodic
scheduling. Notice that [4] comprises a scheduling technique, and a serialization
technique. The latter is generic and reusable, as discussed in the context of
Fig. 1. We use this serialization scheme in all applicable compared approaches
for fairness reasons. However, each compared approach has its own scheduling
scheme, i.e. a way of setting the optimal item occurrences, ui.

We assume the same simulation configuration employed previously, in the
experiments of Fig. 1. The number of data items is raised to N = 50, and their
request probabilities are set by the ZIPF distribution with a skewness factor of
0.6 [22]. Their sizes are picked randomly in [10, 100]KBytes, and theirs costs
in (0, 1). The topology, the number of clients and the number of queries remain
unaltered.

We examine the values α = [0.01 : 0.01 : 1] as possible requests for the
mean scheduling cost. For each value we require from the compared schedulers
to create corresponding optimal schedules, and we log the achieved mean client
serving times (MST) and schedule sizes. The results are shown in Fig. 2 and 3.

The proposed scheduler can produce multiple optimal schedules per α choice.
This is due to the fact that the serialization technique of [4] can also fine-tune
the size of the produced schedule, with trivial impact on the efficiency (smaller
schedules-slightly higher mean serving time/cost). This phenomenon creates the
grayed surface of possible operation points for the proposed solution in Fig 2 and
3. In terms of tunability, the proposed scheduler flawlessly covers the complete
range of tested α values. All other algorithms however present zero tunability,
being able to operate only at one, not user defined mean cost. This is not surpris-
ing for the cost agnostic algorithms, but is not in favor of the cost-aware ones.
Furthermore, the cost-awareness of the latter ones does not have a significant
overall impact, as their operation points nearly coincide with the those of the
cost-agnostic scheduler of [5]. This issue is more observable in the top view of
Fig. 3.

The studies of [7, 8], where the related cost-aware schedulers are proposed,
do not target the minimization of the mean client serving time for a given cost.
Instead, both studies seek to minimize the sum S = 50% · α + 50% ·W of equa-
tion (5). This results into only one possible operation point and zero tunability.
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Fig. 2. Tunability of the compared schedulers in terms of possible operation points,
{α, W , λ}. The proposed scheduler can efficiently cover all requests for scheduling cost
α = [0.01 : 0.01 : 1], enabling application-specific, fine grained balancing between
performance and cost (grayed plane). The related, cost-aware approaches are limited
to one, not-user defined point of operation, with deterring corresponding schedule size.
The arrow corresponds to a significant leap in the y-axis for presentational purposes.
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Fig. 3. Top view of Fig. 2. Even though cost-aware, the Randomized, Periodic and
Greedy schedulers do not offer significant advantages over the cost-agnostic approaches.
In fact, SOA may be a better choice instead, because of the decreased schedule size.
The use of transformation (10) causes increase in the size of the schedules produced by
the proposed scheduler, as expected by the analysis. Notice that the arrows correspond
to a significant leap in the y-axis for presentational purposes.

Furthermore, with the NP-Hardness of the problem a given, these studies mainly
target the proposal of a very lax (and therefore suboptimal) but safely achiev-
able lower bound of the S quantity. Consequently, the Randomized, Greedy and
Periodic schedulers presented therein do not behave significantly better than the
cost-agnostic approaches [4, 5].
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Fig. 4. Required schedule sizes, in the case of α = 0.47. As shown in Fig. 3, this
case represents the sole possible operation point of the compared, related schedulers.
The novel scheme requires ∼ 105 times less computational resources. Randomized item
serialization hurts periodicity and, utterly, performance.

As an additional remark on the results of Fig. 3, notice that the region be-
tween the vertical, dotted lines designates the use of transformation (10) by
the proposed scheduler. According to the analysis of Section 2, the use of this
transformation yields optimality at the expense of increased schedule size. The
results concur to this claim and the possible operation points are sparser inside
the designated region as well.

Concerning the size of the produced schedules (and therefore the complexity
of the corresponding schedulers), the novel scheduler achieves smaller sizes by
5 orders of magnitude. This fact is observable in Fig. 2 and 3, clarifying that
the black arrows represent a leap in λ values by five orders of magnitude (λ =
9000 → λ ≈ 108), for presentational purposes. The difference in complexity is
better illustrated in Fig. 4. The figure presents the required schedule sizes in the
case of α = 0.47, i.e. the only possible operation point for the related schedulers.
It is evident that the computational requirements for the scheduling procedure
can be reduced by a factor of 105, without significant impact on performance.
The randomized scheduler of [8] produces the worst results, since random item
serialization may hurt periodicity, which is a prerequisite for optimality [10].

4 Conclusion

The present study reinstated the broadcast cost per data item as a vital factor of
the periodic scheduling process. A novel scheduler was proposed which can achieve
minimal client serving times for any requested mean scheduling cost. The compu-
tational requirements of the scheduler were decreased by reducing the size of the
produced schedule. Conclusively, the study demonstrated that the theoretically
NP-Hard problem of periodic, push-based broadcast scheduling with costs may
have an efficient solution in practice. Comparison with related approaches yielded
improved performance, combined with fine-grained operational tunability.
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