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Abstract. Broadcasting is scalable in terms of served users but not in
terms of served data volume. Additionally, waiting time deadlines may be
difficult to uphold due to the data clutter, forcing the clients to flee the
system. This work proposes a way of selecting subsets of the original data
that ensure near-optimal service ratio. The proposed technique relies on
the novel data compatibility distance, which is introduced herein. Cluster-
ing techniques are then used for defining optimal data subsets. Compar-
ison with related work and brute force-derived solutions yielded superior
and near-optimal service ratios in all test cases. Thus, it is demonstrated
that a system can attract more clients by using just a small portion of
the available data pool.
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1 Introduction

Data broadcasting is an efficient means of bandwidth preservation and infor-
mation advertising. As the Internet expands incorporating a steadily increasing
number of entities, common needs and preferences begin to appear among the
clients. This fact calls for dissemination of information per user class instead of
per single user, thus saving network resources by employing broadcasting. How-
ever, it is typical of contemporary content providers to attempt coverage of all
information topics, in an effort to attract as many clients as possible. Never-
theless, broadcasting does not scale well when the data volume increases [11].
Users experience too long waiting times and flee the system. The present study
addresses this issue in the context of wireless, push-based broadcasting.

Push-based broadcasting [1] relies solely on the knowledge of the data popu-
larity distribution, disregarding individual client queries. Its opposite, pull-based
process [7], deals with individual, known client queries, serializing then in an op-
timal manner. In terms of system setup, wireless broadcasting typically assumes
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a single frequency or cellular network, which covers a densely populated area.
The clients therein are assumed to be interested in a common set of discrete data
classes. Each class is associated with a request probability and an aggregate size
of contained data measured in bytes. The class request probabilities may vary
with time and any change is detected and handled by smart learning algorithms
which are examined elsewhere, as a separate field of study [8, 14]. Once the
class probabilities have become known, a central authority creates a broadcast
schedule which optimizes a given criterion [2, 17]. The study of [4] proved that
a periodic schedule minimizes the mean client waiting time. Periodicity refers to
maintaining an approximately constant interval between consecutive broadcasts
of each data class. The scheduling problem is then twofold: a) define the optimal
number of occurrences of each class in the broadcast schedule and b) serialize
data as periodicly as possible [11]. Once the final schedule has been constructed,
it is broadcasted repeatedly over the wireless clients in range.

Initially, related studies assumed that a client may wait indefinitely for a
wanted data class [4, 16, 17] and formulated the square root rule. The rule ex-
presses the optimal number of occurrences for each class, in the form of a ra-
tio of irrational numbers. However, these studies exhibited high computational
complexity and subsequent works addressed the issue while still disregarding
deadlines [10–12]. An initial attempt to reinstate deadlines took place in [6]
where the authors presented a way of minimizing the variance of the clients’
waiting time. Modified versions of the algorithms of [17] were demonstrated,
that achieved tunable trade-off between the variance and the mean value of the
waiting time, without discriminating between variance-sensitive and variance-
independent applications. Subsequent studies model the clients’ psyche, with a
particular interest in impatience [3, 5, 15]. The optimization procedure follows
the pattern of [17], typically applying the method of Lagrange multipliers, sub-
stituting the waiting time formula with a study-specific impatience metric. The
impatience for a specific class is generally a rising function of the waiting time.

The problem with the related approaches is that they aim at improving the
quality of the provided service, but not necessarily maximize the number of sub-
scribed users. The issue stems from the fact that no data selectivity mechanism
is offered. Even when presented with a huge bulk of obviously nonmatching data,
the related approaches will attempt to disseminate all of them in a way that op-
timizes a given criterion. However, the very fact the volume of data has increased
may hinder the upholding of the client deadlines. Furthermore, recent paradigms
(e.g. Facebook) have demonstrated that a system becomes prosperous when the
number of subscribed users is maximized, not necessarily requiring a top level
of quality of service.

Differentiating from the majority of the related works, the present study will
pursue to directly maximize the total number of the clients subscribed to the
system. Initially, the optimal number of class occurrences inside the broadcast
schedule will be defined. Notice that the second part of the scheduling process,
i.e. a nearly-optimal serialization procedure, has been already proposed by the
authors in [11]. Subsequently, it will be proven that optimality is not always
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possible for the complete data set. We will then establish a procedure that can
select an optimizable data subset that yields a high number of system clients.

1.1 Notation and Standard Assumptions

We assume a set of data items organized in classes, which is to be disseminated
to a group of wireless clients. The operation of the system is push-oriented and
subscription-based; the clients do not post queries to a server, but rather listen
to the broadcast stream, waiting for updates on classes of information that are of
interest to them. However, their attention span is limited; as their waiting time
increases, the probability of abandoning the system for another, better service
increases as well. These parameters are modeled in the form of the following
information class attributes:

– The class index, i = 1 . . .N .
– The popularity, pi, expressing the probability that a given client request

refers to class i.
– The cardinality ci of class i measured in bytes, which is equal to the total

size of individual data items contained therein.

A client may not wait for a wanted item indefinitely. Related studies [5] model
the clients’ attention span as an exponential probability distribution,

Pabandon(w) = s · e−s·w (1)

which expresses the probability of a client waiting for time w before abandoning
a query and, potentially, the system. The attribute s regulates the steepness of
the distribution. High values correspond to more demanding clients.

The class popularity distribution pi and criticality metric s can be inferred
from user subscriptions [17], Facebook profile data, simple polling or automated,
adaptive schemes [14]. The present study refers to the scheduling process that
follows the estimation of these attributes.

The final schedule has a total size of:

C =
N∑

i=1

vi · ci (2)

while the interval between two consecutive appearances of class i in the schedule
is equal to:

wmax
i =

C

vi
(3)

where vi represents the number of occurrences of class i in the schedule. Finally,
as in the totality of the cited works, the idealized wireless environment is used as
a generic, broadcasting-affinitive context. The scheduling algorithms presented
in this study can be applied to any other broadcast-based environment (e.g.
wired multicasting). The proposed dissemination scheduling technique is generic
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enough to be agnostic of physical layer issues such as ray propagation, coverage,
modulation type or encoding. In order to facilitate the presentation of the paper,
the reader is encouraged to assume a TV broadcasting scenario, with the data
items representing TV shows or classes of shows (e.g. politics, sports, news, etc.).

2 Analysis

Assume that there exist N available data classes with attributes {pi, ci} , i =
1 . . .N . The well-known study of [5, Theorem 1] concluded that the class occur-
rences vopt

i that maximize the client service ratio obey to the rule:

pi

ci

[
1

C · s −
(

1
C · s +

1
vopt

i

)
· e−s· C

v
opt
i

]
= const., i = 1 . . .N (4)

The same study states that eq. (4) cannot be transformed further, and thus an
analytic formula for vopt

i is not provided. The authors then provide an algorithmic
procedure that seeks to uphold the restrictions of (4) heuristically.

We begin by arguing that the actual problem is not the derivation of an
analytic formula. In fact, such an expression is derived in the context of the
work. What actually poses a serious issue is that the restrictions (4) cannot hold
in most cases: Since vi parameters express class occurrences in a schedule, they
must always take positive integer values. However, equation (4) offers no such
guarantee. In order to address this issue, we will be begin by extracting the
analytic solution of (4) for vopt

i .

Corollary 1. The optimal class occurrence ratio, vopt
i , that maximizes the client

service ratio follows the relation:

vopt
i ∝ −s

1 + W
(

−pi+V ·ci·s
e·pi

) (5)

where W (.) is the Lambert-W function and V a constant which is calculated from
the expression:

N∑

i=1

vopt
i · ci = 1 (6)

Proof. Begin by transforming the ratio of (5) into real occurrences by multiply-
ing both parts by the total schedule size, C. The proportionality then becomes
equality which is solved for W (x). The Lambert-W function, W (x), represents
the solution to x = W · eW , which after trivial calculations leads to the original
equation (4). Finally, restriction (6) is derived from (2) when both parts are
divided by C.

The class occurrences must be expressed as positive integers. However, the pro-
portionality of equation (5) ensures that a simple rounding can be applied with
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Fig. 1. A graphical illustration of the Lambert-W function, W (x). The restriction
W ≤ −1 corresponds to −1/e ≤ x ≤ 0.

trivial precision loss, provided that the proportionality constant is big enough.
Thus, the sole substantial constraint is:

vopt
i ≥ 0 ⇐⇒ W

(−pi + V · ci · s
e · pi

)
≤ −1, i = 1 . . .N (7)

The Lambert-W function, W (x), represents the solutions to x = W · eW for
a given x. It is a multivalued function, which assigns two W values to each
x ∈ (−1/e, 0]. For x = −1/e the function is single valued and equals W (−1/e) = −1.
Figure 1 presents a graphical illustration of the function.

The restriction W (x) ≤ −1 of equation (7) corresponds to −1/e ≤ x ≤ 0.
Notice that the duality of the W-values in [−1/e, 0] does not actually offer two
alternatives. Should the upper branch of W (x) be employed, the item broadcast
frequencies would be negative, which has no physical meaning. Therefore, for all
i = 1 . . .N it must hold that:

−1/e ≤ −pi + V · ci · s
e · pi

≤ 0 ⇐⇒ 0 ≤ V ≤ pi

ci · s , ∀i (8)

and equivalently:

0 ≤ V ≤ min

{
pi

ci · s
}

(9)

Remark 1. Recall from Corollary 1 that V is a constant which is defined through
equation (6). In this context, relation (9) states that the value set of V is limited
by the class with the smallest pi

ci·s ratio. In other words, if the optimization of
equation (4) is unsolvable, then the class with minimal pi

ci·s ratio is to blame. In
that sense, this class is incompatible with the others in terms of content.
The second condition of solvability stems from relation (6) of Corollary 1. The
restriction can be rewritten in the form of the following equation:

f(Vo) =
N∑

i=1

vopt
i (Vo) · ci − 1 = 0 (10)

where Vo ∈ [0, min
{

pi

ci·s
}

], in accordance with (9).
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Notice from Fig. 1 that the Lambert-W function is monotonous for the studied
case of W (V ) < −1. Therefore, the function

vopt
i (V ) =

−s

1 + W (V )
(11)

is also monotonous, and so is the summation over all i. Thus, the function f(V )
of (10) is monotonous. Consequently, only a single value, {Vo|f(Vo) = 0}, may
exist. Furthermore, the Bolzanno theorem must hold in the range [0, min

{
pi

ci·s
}

].
According to it, the function must undergo a sign change:

f(0) · f(min

{
pi

ci · s
}

) ≤ 0 (12)

Theorem 1. A set of information classes with attributes {ci, pi} , i = 1 . . .N
is solvable in terms of maximizing the ratio of served clients, if it holds that:

N∑

i=1

s · ci

1 + W

[
1
e

(
min

{
pi

ci·s
}

pi
ci·s

− 1
)] > −1 (13)

Proof. Relation (13) comes as a direct expansion of (12).

Through relation (13), Theorem 1 provides a way of quickly checking the solv-
ability of a data class set. Furthermore, Remark 1 can be used for pinpointing
incompatible classes. Thus, an algorithm that detects solvable, optimal subsets
of the original classes can be formulated.

2.1 Solvable Data Subsets that Yield Maximum Number of Clients

Let xi denote the ratio:

xi =
min {pi/ci·s}

pi/ci·s
(14)

Equation (13) is transformed as:

N∑

i=1

xi · pi

1 + W
[

1
e (xi − 1)

] > −min {pi/ci·s} =⇒
∣∣∣∣∣

N∑

i=1

xi · pi

1 + W
[
1
e (xi − 1)

]
∣∣∣∣∣ < |min {pi/ci·s}| (15)

Consider the case of two data classes, i = 1, 2. Assume further that x2 = 1, i.e.
the second class has the lowest pi/ci·s value. From Fig. 1 notice that W [0] → −∞
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in the studied case of W < −1. Therefore, in order for the two classes to be
compatible (i.e. solvable), it must hold that:

∣∣∣∣∣
x1 · p1

1 + W
[

1
e (x1 − 1)

]
∣∣∣∣∣ < min {pi/ci·s} (16)

Relation (16) quantifies the compatibility of any two information classes. At first,
the class with the minimum pi/ci·s ratio is detected. For the remaining class, the

quantity S =
∣∣∣∣

x1·p1

1+W [ 1
e (x1−1)]

∣∣∣∣ is calculated. If S is smaller than R = min {pi/ci·s},
the classes are compatible and may be broadcasted together in a way that max-
imizes the client service ratio. If not, the classes are incompatible. Therefore,
we can define a solvability distance, which will measure the compatibility of two
given classes:

D =
{

S
R−S , 0 ≤ S < R
∞ , S ≥ R (17)

The idea is to use the metric of (17) in an iterative clustering approach. Such
schemes, such as the classic K-means algorithm [9] typically operate as follows.
At first, a predefined number of classes are randomly selected from the original
set. These are called cluster centers or centroids. Then, the distance from every
available class to each centroid is calculated. The classes are then assigned to
the centroid that is nearest to them, thus forming groups. At this point new
centroids are selected. These are set as the classes nearest to the center of the
corresponding formed groups. The process is repeated iteratively, until no change
has been made to the groups or to the centroids.

We proceed to formulate a novel procedure that employs this customized
version of the k-means algorithm for data clustering. The updated k-means uses
the metric of equation (17 - solvability distance) for calculating the distance
between a centroid and any other class. The update procedure constitutes of
selecting the class:

I = argmin(i){|pi/ci·s − E [pi/ci·s]|}, i ∈ CurrentCluster (18)

as the new centroid. E[.] denotes the mean value of a set (.). This modified
version is then incorporated to the novel, Data Clustering Algorithm for Higher
Service Ratio (DCA-HSR).

The algorithm attempts at first to create as big as possible, solvable clusters
of data classes. Thus, the NoC variable, which regulates the number of clusters,
is initialized to 1 and is then increased by unary steps. The algorithm checks
the solvability of every cluster created at each step. If a cluster is solvable, the
algorithm calculates the coverage of a cluster as follows:

Coverage =
∑

∀i∈CurrentCluster

pi (19)

The coverage metric represents the maximum service ratio that the cluster may
achieve. Notice that when a class is dropped from the scheduling process, the
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Algorithm 1. Data Clustering Algorithm for Higher Service Ratio (DCA-HSR)
INPUT: A set of N CLASSES: {pi, ci}
OUTPUT: The cluster with the maximum service ratio, best_cluster.

1 best_coverage =0;
2 FOR NoC=1 to N, step 1
3 [CLUSTERS]=ModifiedKmeans (CLASSES, NoC) ;
4 FOREACH c l u s t e r in CLUSTERS
5 IF ( c l u s t e r i s s o l v ab l e ) // eq (13)
6 coverage=sum( c l u s t e r . p_i ) ;
7 IF ( coverage>best_coverage )
8 best_coverage=coverage ;
9 be s t_c lu s t e r=c l u s t e r ;

10 ENDIF
11 ENDIF
12 ENDFOR
13 ENDFOR

total service ratio is guaranteed to decrease by the corresponding request prob-
ability, pi. The algorithm proceeds to select the solvable cluster that yields the
maximum coverage.

Since the selected cluster is guaranteed to be solvable, equation (5) can pro-
duce the optimal number of periodic class occurrences in the broadcast schedule,
vopt

i . These values, alongside the class cardinality attributes, ci, are then passed
as input to the serializing process of [11], which produces the corresponding
periodic broadcast schedule.

3 Simulation Results

In this section we compare the proposed, DCA-HSR scheme with the related ap-
proaches of [5] and [15]. The Service Scheduler of [5] constitues a classic approach
which targets the maximization of the service ratio in a broadcast environment.
The Impatience Scheduler of [15] on the other hand, follows a contemporary ap-
proach of directly minimizing the mean client impatience that a schedule incurs.
As already stated, a periodic scheduling process consists of two steps: i) defining
the optimal number of occurrences of each class in the schedule, and ii) serializ-
ing the data according to the defined occurrences. Each compared study follows
its own way of defining the optimal class occurrences. However, all studies follow
the generic serialization process of [11] for fairness reasons.

The simulation scenarios consider a varying number of data classes (N), vary-
ing class p.d.f. (pi) skewness and varying data criticality (s). Since the ratio pi/ci

is already varied through pi, the class cardinality (ci) is considered to be equal
to one size unit (e.g. GBytes), for all i. In each case, the topology consists of
a central, broadcast scheduling server and a number of 103 tuned-in clients.
Firstly, the server produces the optimal number of data class occurrences, vopt

i ,
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according to the employed algorithm. The calculated vopt
i values are fed as input

to the serialization process of [11], which has been designed to produce periodic
broadcast schedules. The resulting schedule is broadcasted to the clients, fulfill-
ing their demands. The simulation stops when 300 queries per client have been
answered or dropped. The waiting time before a client drops a given query is
picked randomly from the exponential distribution of (1). After each answer, a
client waits for a random think time ∈ [0, N ] before posting a new query. The
client queries as a whole follow the predefined class p.d.f., pi. Each simulation
is repeated 103 times in order to extract a dependable mean value. Concerning
the class request probabilities, we employ the ZIPF [13] p.d.f., as in the majority
of the cited works. A parameter θ ∈ [0,∞) regulates the skewness of the distri-
bution. The value θ = 0 corresponds to a flat distribution, while higher values
indicate an increasingly skewed p.d.f..
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Fig. 2. The behavior of the compared approaches when the commonality in the clients’
preferences increases. The proposed DCA-HSR approach focuses on the increasingly
popular data classes and achieves near-optimal service ratio in all cases. The Impa-
tience and Service scheduler strive to serve all classes, causing the abandonment of a
considerable amount of queries.

Figures 2 and 3 study the case of N = 5 available classes. The number is pur-
posefully small, in order to enable comparison with brute force-derived results.
Brute forcing constitutes of running the simulation for all possible subsets that
can be formed from the original N classes, and keeping the one that achieves the
highest service ratio. Notice that there exist 2N possible subsets in any case. As
both figures 2 and 3 illustrate, the proposed DCA-HSR algorithms achieves near-
optimal results in all test cases. In detail, Fig. 2 illustrates the performance of the
compared approaches when the skewness of the pi distribution is varied through
the θ parameter of the ZIPF formula. The data criticality is kept constant at
s = 2. Increased θ values correspond to a higher degree of commonality in the
clients’ demands (i.e. requesting common classes). The proposed DCA-HSR fo-
cuses on the common client needs, discarding non-profitable data classes. Thus,
it achieves a much higher service ratio than the compared solutions, which strive
to disseminate all data classes. When data criticality increases (Fig. 3, θ = 1.0)
all solutions suffer from decreased performance, since the client deadlines be-
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Fig. 3. All compared approaches exhibit lower performance when the data criticality is
increased. However, the proposed DCA-HSR approach minimizes the losses by focusing
on the most critical data classes.

come more restrictive. However, the proposed DCA-HSR can limit the losses in
a nearly-optimal manner, by once again focusing on the most profitable classes.

Content selectivity is more evident in Fig. 4 which studies the case of vary-
ing the number of available data classes N . The remaining variables are set as
θ = 1.0 and s = 2.0. Fig. 4a shows the achieved service ratio for each of the
compared approaches. Notice that brute forcing is no longer applicable for prac-
tical reasons (2N becomes excessively high). The proposed DCA-HSR algorithm
achieves the highest service ratio in all cases N ∈ [10, 100]. What is equally
important is the fact that this performance is achieved while using only a small
fraction of the original data set (Fig. 4b). Notice that the higher the cardinality
of the data set, the higher the aggregate broadcasting cost. Data items must
typically be selected and preprocessed by humans in order to achieve sufficient
publication quality. This factor aside, the scheduling process itself requires more
computational power to serialize the broadcast of the items [11]. Therefore, the
proposed DCA-HSR can not only attract more clients, but can actually do so
with a much reduced cost.

4 Conclusion and Future Work

The present study proposed the Data Clustering Algorithm for Higher Service
Ratio (DCA-HSR) which can choose the subset of the original data that yields
near-optimal service ratio. Comparison with related studies showed that the
DCA-HSR can attract several times more clients, while employing a small frac-
tion of the available data. This fact can also be used for cutting down on the
generic expenses associated with the broadcast process. Future work is directed
towards broadcasting the secondary data sets produced by the DCA-HSR in a
multichannel scheme, increasing the service ratio further.
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(a) Service ratios achieved by the compared approaches. By focusing on
promising data subsets only, the proposed DCA-HSR algorithm achieves
three to ten times greater performance than the related schemes.
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(b) Ratio of selected classes for broadcasting, corresponding to Fig 4a.
The Impatience Scheduler and the Service Scheduler attempt to dissem-
inate all available data classes in any case. On the other hand, the pro-
posed DCA-HSR algorithm selects a nearly-optimal subset of the classes
for broadcasting.

Fig. 4. The proposed DCA-HSR not only achieves much greater service ratio, but em-
ploys a minimal subset of the available data as well. Thus, DCA-HSR achieves both
increased performance and minimal scheduling cost (pre-processing data for publica-
tion, data serialization [11]).
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