
End-to-end TCP-compatible Backpressure Routing
Christos Liaskos, Konstantinos Alexandris, Siyu Tang, Anindya Das

Applied Network Technology Lab, Huawei Munich
Emails: {christos.liaskos.ext, konstantinos.alexandris, siyutang, anindya.das1}@huawei.com

Abstract—Backpressure constitutes a well–known throughput-
optimal packet scheduler. Backpressure scheduling decisions are
taken based on commodity queue build-ups at the network nodes,
and constant status updates among neighbors. Nonetheless, it is
also well known for its incompatibility with TCP, which uses con-
gestion control to avoid queue build-ups, while also being sensitive
to packet timeouts and their delivery order. These factors limit
the use of backpressure in the local packet forwarding plane,
e.g., within switches. The present work presents a breakthrough
in combining TCP and backpressure at the network layer,
overcoming any compatibility issues. The key-idea is to apply
the Lyapunov framework cumulatively, over a large set of router
hardware clock ticks. This approach allows for the throughput-
optimal backpressure decisions to be expressed via regular traffic
engineering routing rules, instead of explicit per-packet forward-
ing directives. Moreover, these throughput-optimizing routing
rules are derived using common metrics logged at commercial
routers, and not via queue build-ups. Simulation results validate
the analytical findings and demonstrate significant throughput
gains over state-of-the-art related approaches.

Index Terms—Backpressure, TCP, Lyapunov, Throughput,
Datacenter.

I. INTRODUCTION

Backpressure has been a highly influential routing ap-
proach [1] which, however, is inherently incompatible with
TCP due to the explicit packet-level handling it dictates.
According to it, each network node maintains a queue of
packets per network destination. Prior to deciding which
commodity packets to forward, all nodes exchange their local
commodity queue lengths with their neighbors, and calculate
the corresponding differential backlog. The commodity queues
yielding the largest difference is selected for forwarding to the
less burdened neighbor, ideally irrespective to any routing path
concern. Moreover, a network-global orchestrator calculates
and informs each node of the data transfer rate that must be
employed per network commodity.

However, TCP flows perform rate adaptation to avoid queue
build-ups, meaning that backpressure, even if the totality
of its control signaling is performed as planned, will not
yield persistent queue backlog differentiation. Additionally,
the overhead of the backpressure control signaling per-packet,
coupled with the path route-agnostic forwarding, has been
well-documented to yield packet timeouts, out of order de-
liveries and, eventually, TCP congestion window resets and
retransmissions [2]. Thus, related approaches have not targeted
network-wide deployments of backpressure and TCP. Instead,
the focus has been shifted on the network edge (i.e., the client
devices), where backpressure is employed to schedule the

data flow injection from the application layer to the transport
layer [3].

The present study brings backpressure to the core of a
wired network, such as the Internet or a datacenter, leading
to a novel, network-wide (i.e., end-to-end), TCP-compatible
version. The methodology consists of applying the Lyapunov
drift analytical framework cumulatively, over large batches of
router packet forwarding actions. This novel approach yields:
• A pure, network-layer version of backpressure routing (as

opposed to the classic backpressure packet scheduling),
which can be implemented solely via routing table entries
in the context of regular traffic engineering.

• A novel metric replacing commodity differential back-
logs, which does not require queue build-ups of packets
waiting in routers.

Subsequently, the study evaluates the novel analysis in a dat-
acenter setting, where throughput optimality has accentuated
value. The evaluation outcomes show significant throughput
gains (smaller flow completion times) over state-of-the art
related solutions [4], as well as well-established max-min
utilization approaches [5]. No increase in the frequency of TCP
timeouts or in the average packet latency is observed compared
to regular TE (i.e., changing the network’s routing rules for any
reason), given that the presented CIDAR operation is expressed
as a TE process itself. A discussion on the synergy of the
proposed approach with other traffic engineering goals at the
network layer, and schedulers at the packet layer complements
the study.

The novel analysis is given in Section II, leading to the
algorithmic formulation of the TCP-compatible backpressure
traffic engineering. Evaluation follows in Section III. The
study is concluded in Section IV.

II. TCP-COMPATIBLE BACKPRESSURE ROUTING

The course towards deriving a TCP-compatible backpres-
sure routing process follows these steps: i) Model the queue
dynamics occurring at a single router hardware clock tick,
ii) derive the time-aggregated queue dynamics over a length
of time coinciding with the next network traffic engineering
update, and iii) apply the Lyapunov drift minimization over
the aggregated dynamics.

Regarding the general network model, we initially consider
a bidirectional n-node graph as the topology, while the leaf-
spine is studied as a special case in the evaluation (Section III).
We consider that the traffic is classified according to a set
C of routing tuples upon entering a node. For instance, in
destination-based routing, a c ∈ C can be a specific IP or an

IP subnet. In Software-Defined Networks (SDN), it can be
a full TCP tuple comprising source and destination IPs and
ports.

A. Clock-tick traffic dynamics

We consider the traffic at a given node n, destined towards
c, during the time interval t to t + ∆t. ∆t is a small
time interval, representing the duration of router’s complete
workflow (denoted as clock tick), i.e.: (1) Empty the internal
buffer for any destination c, by forwarding packets to the
router’s exiting interfaces. This is done as a first step, to avoid
buffer overflows. (2) Then, read the incoming data and store
it to the internal buffer per c ∈ C. (3) Finally, add the locally
generated data to the internal buffer as well. Steps 2 and 3 can
occur in any order.

The queue dynamics for this operation are expressed by the
well-known relation, ∀n, c [6, p. 54]:

Ut+∆t
n,c =max{0,Utn,c−Ot→t+∆t

n,c }+It→t+∆t
n,c +Gt→t+∆t

n,c , (1)

where U tn,c is the amount of buffered data for c, in node n,
at time t, and: Ot→t+∆t

n,c is the outgoing traffic leaving node
n routed via rule c; It→t+∆t

n,c denote incoming traffic to the
node from neighboring nodes; Gt→t+∆t

n,c will denote the local
traffic variation component as follows.

The It→t+∆t
n,c quantity will be considered as non-varying,

while any variation, e.g., owed to the TCP traffic dynamics
or the local data generation, is captured within the Gt→t+∆t

n,c

component.

B. Time-aggregated traffic dynamics

Let T be a traffic engineering time interval, i.e., an interval
after which the routing rules at the network nodes need to be
updated. (Naturally, the update does not need to affect every
single node, nor to occur strictly periodically). Additionally,
let RTT denote a maximal (boundary) round trip time of the
active TCP flows in the network. We will assume that T fulfills
the following:

T=K·∆t, K∈N∗,where T�RTT , T�∆t⇒K�1. (2)

The router traffic dynamics every T is essentially a time
aggregated application of the ∆t dynamics expressed by
equation (1). In order to study the throughput optimality at
the T -scale, we will extract the Lyapunov drift upper bound
between the transition from U tn,c to U t+Tn,c as follows. (The
drift is defined as ∆L(t) = L(t + T) − L(t),where L(t) =∑
∀n,c

{
U tn,c

}2
. An upper bounded drift means that the system

is stable [6]).

Let’s consider some values of U (k)
n,c , with k∈K={1,...,K}, using

a shorthand writing for brevity as:

U(k)
n,c=max{0,U(k−1)

n,c −O(k)
n,c}+I(k)

n,c, (3)

where U(k)
n,c↔U

t+k·∆t
n,c , U(k−1)

n,c ↔Ut+(k−1)·∆t
n,c ,

O(k)
n,c↔O

t+(k−1)·∆t→t+k·∆t
n,c , and

I(k)
n,c↔I

t+(k−1)·∆t→t+k·∆t
n,c +Gt+(k−1)·∆t→t+k·∆t

n,c . Subsequently, we
consider the identity [6, p. 53]:

V≤max{0, U−µ}+A⇒{V }2≤{U}2+{µ}2+{A}2−2U ·{µ−A}, (4)

and we apply it to Eq. (3), ∀ k ∈ K, obtaining:

{U(1)
n,c}2≤{U(0)

n,c}2+{O(1)
n,c}2+{I(1)

n,c}2−2·U(0)
n,c·{O(1)

n,c−I
(1)
n,c}, (5)

...

{U(k)
n,c}2≤{U(k−1)

n,c }2+{O(k)
n,c}2+{I(k)

n,c}2−2·U(k−1)
n,c ·{O(k)

n,c−I
(k)
n,c},

(6)
...

{U(K)
n,c }2≤{U(K−1)

n,c }2+{O(K)
n,c }2+{I(K)

n,c }2−2·U(K−1)
n,c {O(K)

n,c −I
(K)
n,c }.

(7)
We will rewrite Eq. (6) as follows:

{U(k)
n,c}2≤{U(k−1)

n,c }2+{O(k)
n,c−U

(k−1)
n,c }2+

{I(k)
n,c+U

(k−1)
n,c }2−2·{U(k−1)

n,c }2. (8)

Applying summation by parts to all inequalities for k ∈ K,
rewritten as in Eq. (8), we obtain:

{U(K)
n,c }2−{U(0)

n,c}2≤
∑K
k=1{O(k)

n,c−U
(k−1)
n,c }2+∑K

k=1{I(k)
n,c+U

(k−1)
n,c }2−2·

∑K
k=1{U(k−1)

n,c }2. (9)

We proceed to sum both parts for all n and for all c:

∑
∀n,c
{U(K)

n,c }2−
∑
∀n,c
{U(0)

n,c}2≤∑
∀n,c

∑K
k=1{O(k)

n,c−U
(k−1)
n,c }2+

∑
∀n,c

∑K
k=1{I(k)

n,c+U
(k−1)
n,c }2

−2·
∑
∀n,c

∑K
k=1{U(k−1)

n,c }2. (10)

Considering that the Lyapunov drift is defined as
∆L(t) = L(t+ T)− L(t),where L(t) =

∑
∀n,c

{
U tn,c

}2
, we

rewrite relation (10) as:

∆L(t)≤
∑
∀n,c

∑K
k=1{O(k)

n,c−U
(k−1)
n,c }2+

∑
∀n,c

∑K
k=1{I(k)

n,c+U
(k−1)
n,c }2−2·

∑
∀n,c

∑K
k=1{U(k−1)

n,c }2. (11)

Remark 1. Our goal is to minimize the right-hand side of
relation (11), denoted as RHS(11). In other words, at time t,
we want to take the optimal routing decisions that minimize
the RHS(11), i.e., for the system operation within [t, t+ T].

Reminding that

I(k)
n,c↔I

t+(k−1)·∆t→t+k·∆t
n,c +Gt+(k−1)·∆t→t+k·∆t

n,c . (12)

We proceed to write:

I(k)
n,c=I

t+(k−1)·∆t→t+k·∆t
n,c ≤

∑
∀d(n)

∫ t+k·∆t
t+(k−1)·∆t µ

c
d(n)→ndt

=∆t·
∑
∀d(n)

µcd(n)→n. (13)

where d(n) stands for the neighboring node of n, and µcd(n)→n
is the maximum data rate destined to c and incoming to node
n from link d(n)→ n. In the same manner, O(k)

n,c becomes:

O(k)
n,c=O

t+(k−1)·∆t→t+k·∆t
n,c ≤

∑
∀b(n)

∫ t+k·∆t
t+(k−1)·∆t µ

c
n→b(n)dt

=∆t·
∑
∀b(n)

µcn→b(n), (14)

where b(n) represents the neighboring node of n, at the end
of each outgoing link. Moreover, for ease of presentation we
set:

µ̊cn=
∑
∀b(n)

µcn→b(n). (15)

Using relations (13), (14) and (15), relation (11) becomes:

∆L(t)≤
∑
∀n,c

∑K
k=1{∆t·µ̊cn−U(k−1)

n,c }2+

∑
∀n,c

∑K
k=1

{
∆t·

∑
∀d(n)

µcd(n)→n+G(k)
n,c+U

(k−1)
n,c

}2

−

2·
∑
∀n,c

∑K
k=1{U(k−1)

n,c }2. (16)

We proceed to optimize the RHS(16) subject to the routing
decisions µcn→b(n). The sufficient conditions for the presence
of a minimum are:

∂RHS(16)

∂µc
n→b(n)

= 0, (i)

0<H
(

∂2RHS(16)
∂µc
n→b(n)

·∂µc
m→b(m)

)
<∞, (ii)

RHS(16) is convex w.r.t.µcn→b(n), µcm→b(m), (iii)

(17)

where m denotes a node, H is the Hessian matrix [7] and the
requirement 0 < H <∞ refers to each of its elements. From
condition (17-i) we obtain:

2·
∑K
k=1

[
∆t·

∑
∀d(b(n))

µcd(b(n))→b(n)+U
(k−1)

b(n),c
+G

(k)

b(n),c

]
+2·
∑K
k=1[∆t·µ̊

c
n−U

(k−1)
n,c]=0⇐⇒ (18)

∆t·
∑K
k=1

[∑
∀d(b(n))

µcd(b(n))→b(n)+µ̊
c
n

]
−[∑K

k=1 U
(k−1)
n,c −

∑K
k=1 U

(k−1)

b(n),c
−
∑K
k=1 G

(k)

b(n),c

]
=0,∀n,c. (19)

It is not difficult to show that conditions (17-ii, iii) are satisfied,
since it holds:

∂2RHS(16)
∂µc
n→b(n)

·∂µc
m→b(m)

∝∆t≥0, ∀n,m. (20)

Firstly, we notice that the term
∆t·
∑K
k=1

[∑
∀d(b(n))

µcd(b(n))→b(n)+µ̊
c
n

]
includes maximum data

rates µ. Thus, this term constitutes an upper bound for the
incoming traffic towards b(n). Subsequently, we focus on the
following case:

∆t·
∑K
k=1

[∑
∀d(b(n))

µcd(b(n))→b(n)+µ̊
c
n

]
>[∑K

k=1 U
(k−1)
n,c −

∑K
k=1 U

(k−1)

b(n),c
−
∑K
k=1 G

(k)

b(n),c

]
. (21)

Here, equality (e.g., as in Eq. (19)) is not applicable. Nonethe-
less, as expressed by Eq. (20), the RHS(16) is convex. Thus,

the RHS(16) is minimal when the first derivative is nearest to
zero, i.e., when:

∆n,c(t)=
[∑K

k=1 U
(k−1)
n,c −

∑K
k=1 U

(k−1)

b(n),c
−
∑K
k=1 G

(k)

b(n),c

]
. (22)

Finally, the routing decision at node n affecting the traffic
towards node c is:

b∗(n)=arg maxb(n){∆n,c(t)} (23)

where b∗(n) is the best neighbor of n for offloading c-data to.

C. CIDAR: A queue-less backpressure metric

Notably, the re-routing decision expressed via relations (22)
and (23), derived from the time-aggregated traffic analysis, is
based on the quantities

∑
U and

∑
G.

We will denote the first quantity as the CIDAR metric
(Continuously Integrated Data Rate):

CIDARnc=
∑K
k=1 U

(k−1)
n,c (24)

The CIDAR metric does not consider a queue build-up at any
node n. On the contrary, CIDAR simply aggregates all pass-
through data bytes, i.e., traversing n while being dispatched
via routing rule c over a time duration of T = K · ∆t. As
such, CIDAR can be readily calculated in existing routers
via standard traffic accounting tools (such as the well-known
iptables command in Linux and CISCO systems [8]).

As a side-note, CIDAR is calculated per routing rule c ∈ C
at each node. However, routing rules may be expressed in
aggregated format in one node, and more specific form in a
neighbor (and vice-versa). In such cases, the more aggregated
routing rule is virtually decomposed to specific routing rules
at the same granularity rule as the neighbor.

Regarding the quantity
∑
G, recall from relation (1) that it

expresses the generic, local traffic variation component. We
proceed to specialize it to the TCP dynamics as follows.

Proposition 2. Let a node n and its neighbors b(n). The node
n must decide where to offload traffic using the routing rule
c. Let node b∗(n) as selected to forward the traffic of c to a
link with physical capacity B. Let Nb∗(n) be the number of the
TCP flows that currently compete over this link. Moreover let
µcb∗(n) be the current, steady-state TCP rate over this link. We
can employ the quantity G to represent the new TCP steady-
state that would result from offloading traffic from n to b∗(n)
as:

G
(k)

b∗(n),c
=

(
B

Nb∗(n)+1(c/∈Nb∗(n))
−µcb∗(n)

)
·∆t, ∀i, (25)

and
∑K
k=1 G

(k)

b∗(n),c
=

(
B

Nb∗(n)+1(c/∈Nb∗(n))
−µcb∗(n)

)
·∆t·T.

In other words, G can express the new TCP equilibrium,
assuming that T is much larger than the TCP convergence
interval due to condition (2).

Therefore, it becomes evident that i) CIDAR-based, and ii)∑
G-based selection of neighbors to offload traffic via a new

routing rule are not necessarily aligned: on one hand, CIDAR-
based selection does not pose a limit on how many flows can

be offloaded to neighbors. On the other hand,
∑
G calls for

a careful selection of such flows, in order to account for the
competition among TCP flows over common links.

D. Flow selection for throughput optimization: Problem for-
mulation

In general, the problem of flow selection for throughput
optimization can be formulated as a generic optimization prob-
lem under an objective function, with exclusivity constraints
on the decision variables:

max
x∈{0,1}|V|

F (x) (26)

s.t. ∑
l∈Ln x

n
l,c≤1,∀c∈Cn,∀n∈N , (27)

where V=L1×C1×···×L|N|×C|N| and x,
[
x1

1,1...x
n
l,c...x

|N|
|L|N||,|C|N||

]>
,

and following the notation below:
• Ln: set of links at router n.
• Cn: set of commodities expressing active TCP flow rules at
router n.
• C̃n: complementary commodities expressing constant bitrate
flows (CBR, e.g., UDP) at router n.
• N : set of routers in the topology.
| · |: cardinality of a set. Last, we define as xnl,c ∈ {0, 1}, the
decision (binary) variable that corresponds to the selection of
the commodity c to be associated with link l at router n and
the subvector of x:

xnl =[xnl,1,·,x
n
l,c,···x

n
l,|Cn|]

>
, l∈Ln,n∈N . (28)

The objective function F (x) is expressed as:

F (x)=
∑
n∈N

∑
l∈Ln

(
Bl−

∑
c̃∈C̃n CBRl,c̃∑
c∈Cn x

n
l,c

·
∑
c∈Cn(xn

l)
∆Rnc

)
=

F (x)=
∑
n∈N

∑
l∈Ln

(
µ(xnl ;CBRnl)·

∑
c∈Cn(xn

l)
∆Rnc

)
(29)

where
µ(xnl ;CBRnl)=

Bl−
∑
c̃∈C̃n CBRl,c̃∑
c∈Cn x

n
l,c

(30)

and ∆Rnc is the difference in the CIDAR metric of eq. (24)
between: i) router n, and ii) the next hop router of commodity
c, which is subject to the link selection xnl,c.

In more detail, in relation (29), we target to allocate flows
to the network links in order to maximize the output rate
µ (xnl ; CBRnl) per link biased by a CIDAR-based weight,∑

∆Rnc . Notice that µ (xnl ; CBRnl) expresses the TCP fair-
share over a link, i.e., all TCP flows compete equally for the
link bandwidth minus the portion taken up by CBR flows.

The exclusivity constraint in the formulated max-weight
problem can be defined and interpreted as:

∑
l∈Ln x

n
l,c≤1,∀c∈Cn,∀n∈N . (31)

The latter expresses the requirement that each flow is assigned
at up to one link. Here, notice that a solution search satisfying
(31) can yield high complexity due to the combinatorial
nature of the problem. Therefore, we proceed to present an
algorithmic approach that bypasses constraint (31) by using a
default routing tree, and focusing on optimizing relation (29).

E. Flow selection for throughput optimization: Algorithmic
approach

We proceed to propose an algorithm to serve the F (·)
objective function and the exclusivity constraint. As a ground-
work, we seek to ensure that any routing rules derived via
the optimization methodology yield: i) always assured con-
nectivity for any source-destination in the network bypassing
constraint (31), and ii) loop freedom. To these ends, we will
consider that:
• Each router n is equipped with a set of underlying,

default routing rules for each destination (e.g., via OSPF or
similar approach). These default routing rules offer assured
connectivity and can be derived, e.g., via OSPF. These default
routing rules are executed with the lowest priority, i.e., they are
activated only if there is no other overriding routing rule, that
is specifically marked as prioritized (e.g., in the SDN manner).
All routing rules derived via the CIDAR-driven optimization
are dynamic, hold until the next actuation time (e.g., t+ T in
the periodic case) and are marked as prioritized.
• The ∆Rnc notation in Eq. (29) implied the CIDAR

difference between the CIDAR of flow rule c at router n and
the CIDAR of flow c at neighboring router b (n) connected
to n via link l. In order to avoid the formation of loops, we
will consider only neighboring routers that are equidistant or
closer to the end-destination that node n for rule c, over the
default routing rules.

Moreover, we introduce the notion of CIDAR preference
tables, denoted as PT . According to it, each node n in the
studied topology contacts its neighbors, b1 (n), b2 (n), etc.,
and asks for their CIDAR value pertaining to flow rule c ∈ C.
Subsequently, it calculates the CIDAR differences, ∆R, filling
in its CIDAR PT with 〈b (n) ,∆R〉 potential flow rules. A row
of this PT for a flow rule referring to commodity c1 could
then look as follows:

Flow rule for comm.: c1 CIDAR preferences: 〈b1 (n) ,∆R1〉,〈b2 (n) ,∆R2〉,...

Essentially, the outcome of the optimization process is to
select at most one 〈b (n) ,∆R〉 potential flow rules at each row
of each CIDAR preference table(n), in order to maximize the
objective function of relation (29). Given the combinatiorial
nature of this problem we present a greedy algorithm denoted
as CIDAR-TE (CIDAR-driven traffic engineering), formulated
as Algorithm 1.

CIDAR-TE receives as inputs the CIDAR preference tables,
PT (n), for each network router, n, and outputs the optimal
routing rule (i.e., which < b (n) ,∆Rnc > pair, or no pair) to
keep at each row of every PT (n). The algorithm follows two
stages (also indicated by the comment lines in Algorithm 1):
• Flatten and join all PT entries, and sort the resulting array

by descending ∆R metric value.
• Iterate over the resulting entry and follow the process for

every entry: (a) Tentatively activate the routing rule and log
the resulting optimization objective fitness via equation (29).
(b) If the rule activation led to better fitness objective, keep it

Algorithm 1 The centralized, offline CIDAR-TE algorithm.
INPUTS: The CIDAR preference tables PT (n) , ∀n.
OUTPUT: The global_solutionn,c : 〈b (n) ,∆Rnc 〉 , ∀n, c.
//1.Flatten, join and sort all PT entries.
Sortingn,c,i ← ∅;
for each router n,

for each commodity c in router n,

global_solutionn,c ← ∅;
for each 〈b (n) ,∆Rnc 〉 in PT (n) row c, (iterated via i)

Sortingn,c,i.push (〈n, c, i,∆Rnc 〉);
Sort (Sortingn,c,i, by∆Rnc , DESC);

//Create an empty global solution.
for each router n,

for each commodity c in router n,

global_solutionn,c ← ∅;
//2.Greedily subset Sortingnci as a global solution.
best_solution← ∅;
for each 〈n, c, i,∆Rnc 〉 in Sortingn, c, i,

backup← Clone (global_solution);
if global_solutionn,c = ∅ then

global_solutionn,c = PT (n)→ rowc →
FlowRulei;

f ← F (global_solution); //Eq.(29)
if best_solution = ∅ or f > F (best_solution) then

best_solution← Copy_of (global_solution);

else

global_solution← backup;

return global_solution;

in the final solution. Else, revoke it and proceed to the next
element of the flattened/sorted array.

Remarks. CIDAR-TE: i) Initiates by dropping all priori-
tized, dynamic routing rules produced at previous executions,
keeping only the default ones. ii) Is an offline algorithm.
Only the final solution is actually deployed to the routers,
which is produced after the process concludes. iii) Requires
O (M · log (M) +M) steps to conclude, M being the total
number of PT entries (i.e., for all network routers). This is
due to the sorting at stage 1 (requiring O (M · log (M)) steps)
and the serial iteration at stage 2 (requiring O (M) steps).
iv) CIDAR-TE can be implemented as either centralized or
distributed algorithm. The only input of the algorithm is the set
of PT (n) tables. The difference for a centralized/distributed
implementation is the way these tables are gathered.

III. EVALUATION

In this Section we proceed to evaluate CIDAR-TE and the
related analytical conclusion of relation (23). We employ an
open-source network TE simulator implemented in JAVA [9].
The evaluation parameters are:

a) Topology: All runs consider a leaf-spine topology
with 2 spines and 2 leaves, given its wide-spread use in modern
datacenters [4]. A number of Nc = 5 clients are added at
each leaf. The link capacities are CLS =1 Gbps (leaf-spine)
and CCL = 100 Mbps (client-leaf). This choice represents an
over-provisioned topology with a 1 : 10 CCL to CLS ratio.
It constitutes a scaled-down version of link capacities used in
actual datacenters (which can be, e.g., 100 Gbps and 10 Gbps,
respectively [4]). The scaling-down is performed to keep the
simulation runtimes tractable. Apart from the over-provisioned
topology, we also study the under-provisioned case in the runs
below. The link latency is set to 0.1 µsec globally and ethernet

interfaces are considered everywhere. The TE controller is
collocated with a spine and communicates with all other nodes
in an out-of-band fashion.

b) Traffic generation: We assume that each client hosts:
i) a web server listening at port 1000, and ii) a set of web-
clients that each connects to one server. The web-client is an
application that works as follows. First, a server is picked at
random, but not from the same leaf as the client. The web
server popularity for this pick follows the Zipf(θ) distribution
(θ is stated per set of simulation runs) [10]. The web-client
proceeds to open a TCP connection (New Reno, advertised
window: 65535 B) and send an HTTP request with size 350 B.
The server replies by sending a data file whose total size is
picked at random from a reported distribution [11]. The MSS
for this transfer is picked at random from another reported
distribution [12]. Once the transfer is completed, the TCP
connection is closed and the web-client enters a ThinkTime
interval whose duration is exponentially distributed with 1 ms
average. Then, the web-client proceeds to re-initiate the same
connection repeat this cycle, until the end of the simulation.
The total number of web-clients per client host is picked
at the beginning of the simulation from the corresponding
distribution [11]. Additionally, we introduce background traffic
in the form of one UDP flow per client, whose rate (CBR) is
picked randomly in the range [0,CCL/Nc] prior to every TE
action. This background traffic forces the TCP flows to re-
compete for a new fair-share, thereby testing the efficiency of
the compared schemes in challenging traffic conditions.

c) Metrics of Performance: For each run, we log: i) the
average TCP flow throughput, ii) the average TCP flow com-
pletion time, and iii) the average end-to-end packet delay [13].

d) Compared Schemes : i) CONGA, first presented in [4]
constitutes a benchmark solution for Clos and leaf-spine
topologies in datacenters. Its principle of operation relies on
the timely aggregation of traffic congestion levels from all
routers and the subsequent allocation of TCP flows to the least
congested network paths. For the sake of the comparison, we
employ the same 2×2 topology and operational parameters as
in [4]. ii) The Max-Min Link Utilization (MMLU) approach,
integrated in many TE techniques such as [14], is a general ap-
proach for traffic load balancing. MMLU is given K-alternative
paths for each source-destination in a network. Subsequently,
it monitors the current data rate of each traffic flow and re-
routes it to one of the K-paths in a way that maximizes the
minimum link utilization across the network. The problem is
formulated as a mixed-integer linear program that is solved
heuristically. iii) The well-known ECMP scheme [15].

While none of the compared schemes requires a periodic
operation (i.e., the TE being repeated upon a fixed time
duration, T), we employ it for all of them for the purpose of
fair comparison since our focus is to deduce the throughout
efficiency of the network-layer TE actions per scheme. In order
to pick a value of T, we operate via a simple approximation
as follows. First, we study the employed flow size PDF [11],
and observe that ~85% of the flows have a size ≤ 0.85 MB.
Second, in the employed 2 × 2 topology, we can deduce

CONGA ECMP MMLU CIDAR-TE

7

8

9

10

11

12

13

A
v
g

.
T

C
P

 f
lo

w
 t

h
ro

u
g

h
p

u
t

-
M

b
p

s

(a) Overprovisioned leaf-spine links (1 Gbps capacity).

CONGA ECMP MMLU CIDAR-TE

1

2

3

4

5

6

7

A
v
g

.
T

C
P

 f
lo

w
 t

h
ro

u
g

h
p

u
t

-
M

b
p

s

(b) Underprovisioned leaf-spine links (100 Mbps cap.).

Fig. 1: Evaluation outcomes, performing a parametric variation study of the
compared schemes. The objective is to compare CIDAR-TE to related schemes
under realistic traffic conditions, for over-provisioned and under-provisioned
leaf-spine topologies. Each boxplot captures 100 runs.

that the upstream/downstream throughput fair-share per client
is tfs = 2 × 1 Gbps/Nc clients. Finally, if we consider n
parallel TCP flows per client as as a rule of a thumb, then
T = (0.85MB · 8/ (tfs/n) Mbps) = 3.4 · n ·Nc msec suffice
to ideally service the ~85% of the active flows within one full
TE interval, i.e., with a maximum of one route modification
during their lifetime.

Finally, all runs were repeated 100 times to yield dependable
values, and each run lasts for ~30 sec simulated system time.
Moreover, we vary θ randomly in the range [0 : 0.25 : 1.0] per
each of the 100 runs, in order to increase the traffic diversity
of the ensuing benchmarking results.

Results. The results are shown in Fig. 1 (Nc = 5). In
the over-provisioned case (Fig. 1a), the equal distribution
of the flows over the leafs (i.e., essentially ECMP) is the
optimal strategy, given that the leaf-spine links cannot be bot-
tlenecks. Thus, all compared solutions behave similarly, with
a marginal foothold for CIDAR-TE. In the under-provisioned
case (Fig. 1b), the leaf-spine links become potential bottle-
necks. CIDAR-TE, taking into consideration the future TCP
fair share optimization, yields a clear x3 improvement over
the related schemes. Moreover:

For the overprovisioned case, all schemes yielded a flow
completion time of ≈ 0.155 sec, and an end-to-end packet
delay of ≈ 2.2msec. The variations around these average
values are aligned to those presented in Fig. 1a and the cor-
responding illustration is skipped for brevity. This similarity
in performance is expected given that the compared schemes
yield almost the same average TCP flow throughput.

For the underprovisioned case, CONGA, ECMP and
MMLU yielded flow completion times of ≈ 0.92 sec, and
end-to-end packet delays of ≈ 14msec. The variations

around these average values are analogous to those presented
in Fig. 1b. CIDAR-TE yielded a flow completion time of
0.317 sec (25th percentile: 0.29 sec, 75th percentile: 0.35 sec),
and an end-to-end packet delay of 4.5msec (25th percentile:
4.2msec, 75th percentile: 5.2msec). (Once again, the corre-
sponding illustrations were skipped for brevity).

IV. CONCLUSION

Network throughput maximization constitutes an impactful
goal, especially in modern datacenters. While the well-known
backpressure packet scheduling framework offers analytically-
optimal throughput maximization, its workflow is inherently
incompatible with the TCP protocol. The present work bridged
this gap yielding a novel form of backpressure routing that is
fully TCP compliant. The key-idea was to apply the Lyapunov
network stability framework cumulatively over large sets of
individual packet scheduling decisions. This allowed the re-
sulting throughput optimization actions to be expressed as
routing rules at the network layer, as opposed to explicit packet
scheduling actions of the classic backpressure. Simulations
demonstrated the significant gains in throughput over well-
known state of the art traffic engineering approaches.

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control,
vol. 37, no. 12, pp. 1936–1948, 1992.

[2] Z. Jiao et al., “Backpressure-based routing and scheduling protocols for
wireless multihop networks,” IEEE Wireless Communications, vol. 23,
no. 1, pp. 102–110, 2016.

[3] H. Seferoglu and E. Modiano, “TCP-aware backpressure routing and
scheduling,” in ITA’14, pp. 1–9.

[4] M. Alizadeh et al., “Conga: Distributed congestion-aware load balancing
for datacenters,” in Proceedings of ACM SIGCOMM, 2014, pp. 503–514.

[5] Y. Zhang, D. Leonard, and D. Loguinov, “Jetmax: scalable max–min
congestion control for high-speed heterogeneous networks,” Computer
Networks, vol. 52, no. 6, pp. 1193–1219, 2008.

[6] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource Allocation and
Cross-Layer Control in Wireless Networks,” Foundations and Trends in
Networking, vol. 1, no. 1, pp. 1–144, 2005.

[7] J.-B. Hiriart-Urruty, J.-J. Strodiot, and V. H. Nguyen, “Generalized
Hessian matrix and second-order optimality conditions for problems
withC 1,1 data,” Applied Mathematics & Optimization, vol. 11, no. 1,
pp. 43–56, 1984.

[8] “Traffic accounting with linux iptables.” [Online]. Available: https:
//catonmat.net/traffic-accounting-with-iptables

[9] C. Liaskos et al., “A novel framework for modeling and mitigating
distributed link flooding attacks,” in IEEE INFOCOM’16, pp. 1–9.

[10] L. Durbeck, J. G. Tront, and N. J. Macias, “Energy efficiency of zipf
traffic distributions within facebook’s data center fabric architecture,” in
IEEE PATMOS’15, pp. 152–160.

[11] A. Greenberg et al., “Vl2: A scalable and flexible data center network,”
in ACM SIGCOMM’09, pp. 51–62.

[12] “Packet size distribution function for equinix-
nyc.dira.20181018-130000.utc,” Oct 2018. [Online]. Avail-
able: https://www.caida.org/catalog/datasets/trace_stats/nyc-a/2018/
equinix-nyc.dira.20181018-130000.utc.df/

[13] K.-C. Leung, V. O. Li, and D. Yang, “An overview of packet reordering
in transmission control protocol (tcp): problems, solutions, and chal-
lenges,” IEEE Transactions on Parallel and Distributed Systems, vol. 18,
no. 4, pp. 522–535, 2007.

[14] X. Li and K. L. Yeung, “Traffic engineering in segment routing networks
using milp,” IEEE Transactions on Network and Service Management,
vol. 17, no. 3, pp. 1941–1953, 2020.

[15] H. Zhang et al., “SDN-based ECMP algorithm for data center networks,”
in IEEE ITA’14, pp. 13–18.

https://catonmat.net/traffic-accounting-with-iptables
https://catonmat.net/traffic-accounting-with-iptables
https://www.caida.org/catalog/datasets/trace_stats/nyc-a/2018/equinix-nyc.dira.20181018-130000.utc.df/
https://www.caida.org/catalog/datasets/trace_stats/nyc-a/2018/equinix-nyc.dira.20181018-130000.utc.df/

