
Multivariable Extremum Seeking Controllers for Multi-Beam
Steering using Reconfigurable Metasurfaces

Abdullah Bin Masood∗†, Vasos Vassiliou∗†, Andreas Pitsillides∗‡, Christos Liaskos§, and Marios Lestas¶
∗Department of Computer Science, University of Cyprus, Nicosia, Cyprus

†CYENS-Centre of Excellence, Nicosia, Cyprus
‡Department of Electrical and Electronic Engineering Science, University of Johannesburg, South Africa (Visiting Professor)

§Department of Computer Science and Engineering, University of Ioannina, Ioannina, Greece
¶Department of Electrical Engineering, Frederick University, Nicosia, Cyprus

(masood.abdullah, vassiliou.v, andreas.pitsillides)@ucy.ac.cy, cliaskos@uoi.gr, eng.lm@frederick.ac.cy

Abstract—Intelligent Reflecting Metasurfaces constitute a rev-
olutionary technology that can alleviate the blockage problem
in mm-Wave communications. In this paper, we consider a
metasurface coding that can realize beam splitting of an inci-
dent beam in multiple directions and we address the problem
of feedback-based adaptive reconfiguration of the metasurface
controller states so that the reflected beams are guided towards
two intended receivers. As the receiver locations are unknown
and to counter system uncertainties, we employ feedback to
maximize the received power at both receivers, aiming for stand-
alone operation of the metasurface. Changes in both the elevation
and azimuth angles of the transmitted beams are considered,
thus necessitating a design beyond standard extremum-seeking
controllers, which have proved to be ineffective. Our approach
involves online parameter identification techniques for gradient
estimation, coupled with the method of steepest ascent. The
effectiveness of the method in guiding the beams towards the
reference values is shown through simulations.

I. INTRODUCTION

Intelligent Reflective Surfaces (IRS)1 is by now a well-
established technology expected to be part of 6G wireless
networks, due to their ability to programmatically alter the
wireless channel, which up to now was a given unpredictable
entity [1]. Metasurfaces constitute the most promising tech-
nology for the realization of IRSs due to their ability to exert
precise control over the impinging electromagnetic waves,
relative to competing technologies, such as phased arrays,
due to the subwavelength sizing of the unit cells [2]. In
the last few years, there has been a surge of interest in
the design and analysis of metasurfaces, especially in the
communications domain. Excellent recent reviews include [3]–
[5]. As correctly pointed out in [6], although programmable
metasurfaces have been a hot topic, the development of their
real-time implementations is rarely touched. This is relevant
to beam management and beamforming algorithms, which
usually employ single-bit feedback and refined scanning of
the parameter space in search of the optimal configuration
based on the chosen cost metric. However, the need for finer
training to achieve more accurate beam steering has been
identified in previous literature [7] paving the way for the use
of multi-bit feedback. This has been done, specifically for the

1IRSs are also known as Reconfigurable Intelligent Surfaces (RISs)

metasurface paradigm in [8], [9], however, therein the thrust
has been different, not considering the iterative calculation
of the feedback signal. The concept of extremum-seeking
control has been employed in [10] for a single user being
served by the metasurface. The approach has been shown to
be successful. However, its multivariable extensions for the
simultaneous control of both the azimuth and elevation angles
were observed to be problematic. Classical extremum seeking
strategies [11], [12] are known to implement on average,
a gradient estimation algorithm, with the obtained gradient
estimate subsequently used to direct the parameters towards
values that converge to the maximum of the considered cost
function. Taking advantage of this observation, we consider
the direct calculation of the gradient estimate, which is then
utilized in the steepest ascent algorithm to maximize the cost
function. This approach and the associated stability proofs are
scalable to the multivariate case. The main contributions of
the paper are as follows:

1) Unlike previous work, we formulate the metasurface-
based beam steering problem in the multi-user case.

2) We utilize a novel algorithm that combines online pa-
rameter identification techniques and the steepest ascent
methods in the multivariable case.

3) We show convergence of the algorithms in the vicinity
of the actual gradient.

4) We use simulations that account for the metasurface cod-
ing procedure to show the effectiveness of the proposed
algorithms.

The paper is organized as follows. The structure of the
hypersurface system and the metasurface coding procedure
are given in Section II. The problem is formulated in Section
III, followed by the design and performance evaluation of the
proposed control scheme in Sections IV and V, respectively.
Section VI concludes the research paper.

II. HYPERSURFACE SYSTEM STRUCTURE

A. Hypersurface Structure

The Hypersurface (HSF) technology is considered in this
work to realize the IRS as it can provide autonomous oper-
ation and programmability by complementing the Software-
Defined Metasurfaces (SDM) with an embedded network of978-1-6654-5975- 4/22 © 2022 IEEE



φr,1φr,2

θ r,1

θ r,2

θi = φi =0

Far Field Pattern

HyperSurface
Embedded

Control Network

CN input GW

Gateway

Pr,2

Pr,1

R2

R1

Fig. 1. The system’s physical layout.

controllers. The HSF architecture is layered in structure, in-
cluding the electromagnetic (EM) layer, the embedded control
(ECN) layer, and the gateway (GW) layer [13]. The EM
layer, comprising of a collection (usually periodic) of unit
cells referred to as the meta-atoms, deals with the physical
realization of the SDM. It allows the metasurface, through
tunable actuators, such as varactors C and varistors R, to
shape the properties of the impinging wave at the request of
corresponding Application Programming Interface (API) calls.
The ECN layer then defines the necessary protocols and hard-
ware to facilitate the information exchange between the GW
and each of the tunable elements altering the corresponding
states [14]. Each distinct controller chip referred to as CN
can assume a finite number of Ms states where each state
is a composite of RC values. The GW layer, operating on
top of the ECN layer, is responsible to connect the HSF via
standardized protocols to the external world and converting
the incoming software instructions into specific metasurface
codes. The metasurface code is the set of unit cell states or RC
values, out of the Ms available ones, by which the metasurface
achieves the desired functionality with minimum error.

B. Metasurface Coding

Anomalous reflection of the impinging wavefront on the
metasurface is achieved by applying a linear phase gradient
Φ in the desired x and y directions such as Φx = ∂Φ

∂x and
Φy = ∂Φ

∂y [15]. The relationship between the implemented
phase gradients, the angle of incidence ({θi, φi} in polar
coordinates), and the target reflection angle ({θr, φr}) is
obtained by applying the momentum conservation law for
wave vectors [10]. In general, the air is the host medium for
most communication applications, therefore, in this study, we
consider wavelengths λi and λr for the incident and the re-
flected mediums, respectively, to be equal, i.e., λi = λr = λ0.
By fixing θi = φi = 0 without loss of generality, the phase
Φmn of a square unit cell, having Su lateral size, located at
the mth column and nth row can be expressed, by applying
such gradients, as:

Φmn =
2πSu(m sin θr cosφr + n sin θr sinφr)

λ0
(1)

C. Far-Field Evaluation

In this paper, we characterize the received power at each of
the receivers using a description of the radiation pattern of the
reflected beam(s) resulting from the assumed planar impinging
wave, as a function of the states of each of the unit cells. The
model used to map the impinging wave and the controller
states to the reflected radiation pattern has been shown to
be accurate for beam steering applications by comparing the
results with full-wave simulations [16]. The far-field pattern
of the metasurface is obtained as the sum of the contributions
of all unit cells by applying Huygens’ principle, assuming
negligible cross-talk between adjacent unit cells. Considering
K numbers of receivers for the multi-beam steering case, the
scattering field of the metasurface is expressed as follows [16]:

E(θ, φ) =

M∑
m=1

N∑
n=1

ejk0ζmn(θ,φ)
K∑
k=1

ejΦmn(θr,k,φr,k) (2)

where ζmn(θ, φ) is the relative phase shift of the unit cell with
respect to the radiation pattern coordinates (θ, φ), given by:

ζmn(θ, φ) = Su sin θ[(m− 1

2
) cosφ+ (n− 1

2
) sinφ] (3)

III. PROBLEM FORMULATION

The considered multi-beam steering scenario, as shown in
Fig. 1, involves an HSF acting as the IRS, a single transmitter,
and multiple receivers Rk (where k = [1, 2, ...,K] and
K ∈ Z+). The receiver Rk (either stationary or mobile) at any
time t located at a specific position lk(t), in 3 dimensional
(3D) space, measures the received power Pr,k(t). Due to
the absence of LOS, the transmitter attempts to establish a
reliable communication channel with each of the receivers
Rk via the HSF. The impinging planar wave is characterized
by the angle of incidence ψi relative to the HSF, which,
due to the 3D nature of the considered setting requires two
scalar components for its description, the elevation angle θi
and the azimuth angle φi. We stack both components into
a vector ψi = [θi, φi] and without loss of generality we
assume them to be 0. A planar wave can result from a horn
antenna at the transmitter. As we aim for beam splitting to
be realized on the metasurface, we consider multiple reflected
beams each of which is characterized by the reflection angle
ψr,k = [θr,k, φr,k], which is similar to the incidence beam case
comprises of two scalar components. The reflection angle ψr,k
is dictated by the assumed state of each of the controllers ci.
We stack these into the vector c = [c1, c2, ..., cM ]. As the
controller states can be changed at will by issuing appropriate
command signals via the GW’s API, the vector c may be
considered as the control signal. The objective is to iteratively
reconfigure the controller states of the HSF to appropriately
shape the radiation pattern so that optimal channel quality is
attained at the receivers. In this study, the channel quality is
assessed merely in terms of the received power Pr,k(t), which
is thus required to be maximized.

The received power Pr,k(t) is considered as a function of
the transmitter power Pt, the incident angle ψi, the position



lk(t) of Rk, and the chosen c, which using the metasurface
coding procedure of (1) yields the desired far-field pattern.
This relationship can be expressed via a function Tk(.) such
that Pr,k(t) = Tk(Pt, ψi, c, lk(t)). As an example of such a
function, we may consider the link budget formula:

Pr,k(t) =
PtGtGr
PLLo

(4)

where Gt and Gr are the gains at the transmitter and receiver
antennas, respectively, PL is the path loss value that depends
on the considered scenario, and Lo are the stray losses incurred
during transmitter and receiver feed. The Gr at the metasurface
is assumed to be 1 and the Gt of the metasurface is assumed
to be proportional to the normalized radiation pattern of the
incident beam. Thus, the received power Pr,k(t) at the receiver
Rk is assumed proportional to the radiation pattern of the
reflected beam k, which is characterized using (2). Based on
the function Tk(.), one may consider c as the control variable,
posing the objective of identifying the optimal c such that the
Pr,k(t) is maximized. It can be cast as a multi-input single-
output (MISO) control problem, which, however, is difficult
and time-consuming to solve due to the multi-dimensionality
of the input space and also due to the highly nonlinear and
uncertain nature of the function Tk(.). However, as indicated
in the previous discussion, a desired ψr,k for the kth reflected
beam can be achieved by appropriately choosing the controller
states. This can be expressed via a function Ck such that
ψr,k = Ck(c, ψi). The function Ck(.) can be best described
in tabular form as it is highly nonlinear.

Thus, the multi-dimensionality problem can be overcome,
if we account for the function Ck(.) in Tk(.) and consider
ψr,k as the scalar control variable instead of c. This can
be expressed through a composite function Wk(.) such that
Pr,k(t) =Wk(Pt, ψi, lk(t), ψr,k). The resulting change in the
input control variable also ensures the concavity of Pr,k(t)
with respect to the input variable ψr,k. So, the optimization
problem becomes:

Pr,k : max
ψr,k∈[−90,90]

Pr,k(t) (5)

The difficulty in solving the (5) stems from the following
challenges: there exists only a single point of measurement
corresponding to each of the receivers Rk, the presence
of random external disturbances at different points in the
considered system, the ψi may be unknown to the Rk and the
HSF, the uncertainties in the functions Ck(.) and Tk(.) due to
modeling errors and manufacturing-related inaccuracies, and
the possibility of getting run-time errors and encountering
hardware faults which can lead to abnormal behavior of both
the CN and the metasurface [10].

These aforementioned challenges motivate us to consider
a closed-loop implementation for the multi-beam steering
problem rather than an open-loop implementation [10]. We
assume the existence of a control channel for closed-loop im-
plementation, which allows each receiver Rk to communicate
the measured power Pr,k to the input GW of the HSF. The
input GW then implements a control algorithm that iteratively
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Fig. 2. Schematic diagram of the proposed SIMO controller for beam steering.

calculates the reflection angles ψr,k. The control algorithm can
be expressed as: {

ẏk = Hk(yk, Pr,k(t))

ψr,k = Vk(yk, Pr,k(t))
(6)

where Pr,k(t) is the measured signal strength, yk is a vector
of controller states, Hk(.) and Vk(.) are possibly nonlinear
functions, and ψr,k(t) is the desired angle of reflection. The
problem is then to design the functions Hk(.) and Vk(.) such
that problem (5) is solved.

IV. PROPOSED CONTROL ALGORITHM

In this section, for ease of exposition, we first present the
control algorithm and its properties for the single variable case.
We then present the multivariable version of the algorithm.

A. Single-Input Single-Output (SISO) Controller

Consider a continuous concave function as follows:

Pr,k = f(θr,k) (7)

where θr,k and Pr,k ∈ R are the scalar input and output of
the system respectively. We assume that the function f(θr,k) is
smoothly differentiable and has a single extremum (maximum)
P ∗
r,k at θr,k = θ∗r,k. The control objective is to design an

iterative algorithm that converges to the unknown extremum
value θ∗r,k which maximizes Pr,k.

1) Control Algorithm: We add a sinusoidal perturbation
signal with an amplitude a and frequency ωf in the system
(7) about a nominal value θr,k0 such that:

Pr,k(t) = f(θr,k0 + a sin(ωf t)) (8)

The derivative of the (8) with respect to time is given by:

Ṗr,k = d0θ̇r,k + d1θ̇r,k (9)

where df
dθr,k

= d0 + d1(t), d0 = df
dθr,k

∣∣∣
θr,k=θr,k0

, and θ̇r,k =

dθr,k
dt = aωf cos(ωf t). Here, |θ̇r,k| ≤ aωf and |d1(t)| ≤ k(a).

We then apply a first order filter in (9) such that:

1

s+ ωl
[Ṗr,k] = d0

1

s+ ωl
[θ̇r,k] +

1

s+ ωl
[d1θ̇r,k] (10)

Let P = s
s+ωl

[Pr,k], u(t) = s
s+ωl

[θr,k], and d(t) = 1
s+ωl

[d1θ̇]
Here, hθ = d0 is the true gradient, ωl > 0 is a constant



design parameter, and the signals u(t) and d(t) are bounded,
i.e., |u(t)| ≤ aωf

ωl
and |d(t)| ≤ ak(a)ωf

ωl
. It follows that:

P = hθu(t) + d(t) (11)

Using ĥθ as an estimate of hθ, we can predict the value of P
as:

P̂ = ĥθu(t) (12)

The estimation error ϵ between P and P̂ is formed as:

ϵ = P − ĥθu(t) (13)

The adaptive control law to generate ĥθ can be expressed as:

˙̂
hθ = γϵu, ĥθ(0) = ĥθ0 (14)

where γ > 0 is a scalar parameter known as the controller gain.
We can then calculate θ∗r,k using the steepest ascent algorithm
shown below:

θr,k[n+ 1] = θr,k[n] + αĥθ (15)

where α is the learning rate and ĥθ is the estimated gradient
from (14) at nth iteration.

2) Properties: The properties of the estimation algorithm
are summarized in the following theorem:
Theorem 1: The control algorithm defined by (13), (14), and
(15) guarantees that the estimated value of the gradient ĥθ
is bounded to a small arbitrary region in the neighborhood
of the true gradient hθ and converges exponentially fast to it
within finite time, with an error that depends on the value of
parameters a, k(a), ωf , ωl, γ, κ, and ν.
Proof: The dependence of ϵ on the parameter estimation error
h̃θ ≜ ĥθ − hθ is given by:

ϵ = −h̃θu+ d (16)

As hθ is constant, i.e., ḣθ = 0, we can rewrite (14) using (16)
in terms of the parameter estimation error, i.e., ˙̃

hθ =
˙̂
hθ − ḣθ.

˙̃
hθ =

˙̂
hθ = −γu2h̃θ + γdu (17)

Here, (17) represents a linear time-varying system with input
similar to the system shown in (18) whose solution is given
in the closed form in (19).

ẋ = ρ(t)x(t) + η(t)ξ(t), x(0) = x0 (18)

x(t) = x0e
∫ t
0
ρ(τ)dτ + η

∫ t

0

e
∫ t
τ
ρ(σ)dσξ(τ)dτ (19)

It is well known that the exponential convergence of x(t) in
(19) relies on the Persistence of Excitation (PE) condition [17]:∫ t+T0

t

ρ(τ)dτ ≥ κ0T0 (20)

for some T0, which is equivalent to:

e
∫ t
τ
ρ(τ)dτ ≤ κeν(t−τ) (21)

for all t ≥ τ and some κ > 0 and ν < 0. If ρ(t) satisfies the
condition in (20), then the solution of the system in (19), using

(21) and considering the boundedness of ξ (i.e., |ξ(t)| ≤ |δ|),
can be written as:

x(t) ≤ x0κe
νt + ηδ

∫ t

0

κeν(t−τ)dτ (22)

lim
t→∞

|x(t)| ≤
∣∣∣∣κηδν

∣∣∣∣ (23)

Following (23), and the aforementioned bounds on u(t) and
d(t), the convergence properties of (17) can be summarized
by:

lim
t→∞

∣∣∣h̃θ(t)∣∣∣ ≤
∣∣∣∣∣γκa2k(a)ω2

f

νω2
l

∣∣∣∣∣ (24)

Therefore, we conclude that the estimated value of the gradient
ĥθ converges exponentially fast to a bounded region in the
neighborhood of the true gradient hθ, and this bounded region
can be defined using the parameters a, k(a), ωf , ωl, γ, κ, and
ν. This completes the proof of theorem 1.

B. Single-Input Multi-Output (SIMO) Controller

Consider a general MISO non-linear function. Without
loss of generality, we consider the case of two independent
variables as follows:

Pr,k = f(θr,k, φr,k) (25)

where θr,k, φr,k ∈ R are the scalar inputs and Pr,k ∈ R
is the scalar output of the system. We assume that the func-
tion f(θr,k, φr,k) is smoothly differentiable and has a single
extremum (maximum) P ∗

r,k at θr,k = θ∗r,k and φr,k = φ∗
r,k.

The control objective is to design an iterative algorithm that
converges to the unknown extremum values of θ∗r,k and φ∗

r,k

which maximize Pr,k.
1) Control Algorithm: We add two perturbation sinusoidal

signals to θr,k and φr,k, respectively, about nominal values
θr,k0 and φr,k0 in the system (25). The perturbation signals
for each input θr,k and φr,k have amplitude a1 and a2, and
frequency ωf,1 and ωf,2, respectively. After introducing the
perturbation sinusoidal signals, the (25) becomes:

Pr,k(t) = f(θr,k0+a1 sin (ωf,1t), φr,k0+a2 sin (ωf,2t)) (26)

The derivative of the (26) with respect to time is given by:

Ṗr,k = d11θ̇r,k + d21φ̇r,k + d12θ̇r,k + d22φ̇r,k (27)

where
df

dθr,k
= d11 + d12(t),

df

dφr,k
= d21 + d22(t),

θ̇r,k = a1ωf,1 cos (ωf,1t), φ̇r,k = a2ωf,2 cos (ωf,2t),

Here, |θ̇r,k| ≤ a1ωf,1, |φ̇r,k| ≤ a2ωf,2, |d12| ≤ k(a1) and
|d22| ≤ k(a2). After applying first-order filters, the (27)
becomes:

1

s+ ωl
[Ṗr,k] = d11

1

s+ ωl
[θ̇r,k] + d21

1

s+ ωl
[φ̇r,k]

+
1

s+ ωl
[d12θ̇r,k] +

1

s+ ωl
[d22φ̇r,k] (28)



Consider the following:

P =
s

s+ ωl
[Pr,k], hθ = d11, hφ = d21,

u1(t) =
s

s+ ωl
[θr,k], u2(t) =

s

s+ ωl
[φr,k],

d(t) = d1(t) + d2(t) =
1

s+ ωl
[d12θ̇r,k] +

1

s+ ωl
[d22φ̇r,k]

Here, hθ and hφ are the true gradients, ωl > 0 is a constant
design parameter, and the input signals u1(t) and u2(t), and
the disturbance signals d1(t) and d2(t) are bounded, i.e.,
|u1(t)| ≤ a1ωf,1

ωl
, |u2(t)| ≤ a2ωf,2

ωl
, |d1(t)| ≤ a1k(a1)ωf,1

ωl
, and

|d2(t)| ≤ a2k(a2)ωf,2

ωl
. It follows that:

P = hθu1(t) + hφu2(t) + d(t) (29)

Using ĥθ and ĥφ as the estimates of hθ and hφ, respectively,
we can generate the predicted or estimated value P̂ of P as:

P̂ = ĥθu1(t) + ĥφu2(t) (30)

The estimation error ϵ is evaluated as:

ϵ = P − ĥθu1(t)− ĥφu2(t) (31)

The adaptive laws to generate ĥθ and ĥφ can be expressed as:

˙̂
hθ = γ1ϵu1(t), ĥθ(0) = ĥθ0 , (32)
˙̂
hφ = γ2ϵu2(t), ĥφ(0) = ĥφ0

, (33)

where γ1 > 0 and γ2 > 0 are the controlling gains, respec-
tively, that affect the convergence properties of the system and
constitute design parameters. We can then apply the steepest
ascent algorithm in an attempt to converge to the extremum
values θ∗r,k and φ∗

r,k as follows:

θr,k[n+ 1] = θr,k[n] + α1ĥθ, (34)

φr,k[n+ 1] = φr,k[n] + α2ĥφ, (35)

where α1 and α2 are the learning rates, and ĥθ and ĥφ are the
estimated gradients from equations (32) and (33). The overall
SIMO control scheme can be summarized by equations (31),
(32), (33), (34) and (35), and a block diagram representation
is shown in Fig. 2. Due to the lack of space, we will present
the properties of the SIMO controller in an extension of this
paper.

V. PERFORMANCE EVALUATION

In this section, we have evaluated the performance of the
proposed SIMO controller scheme by first investigating its
ability to guide a single reflected beam onto a specific target
and then multiple reflected beams to multiple targets. The
simulation experiments are conducted on MATLAB with the
system under consideration comprising three main modules:
the implementation of the controller scheme, the function
which maps the θr,k and φr,k generated by the controller to
the controller states c, and the module which yields the far-
field pattern as a result of the selected controller states. The
far-field pattern determines the received signal Pr,k(t) strength
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and we have considered received power values normalized by
the maximum value throughout the evaluation procedure such
that 0 ≤ Pr,k(t) ≤ 1. In all the considered scenarios, we
have assumed zero-feedback delays and selected the following
parameters for controller scheme: ωl = 20, γ1 = γ2 = 80, and
α1 = α2 = 0.1, while the sampling time Ts is fixed at 0.01s
for updating the estimate of θr,k and φr,k in (34) and (35). The
zero-feedback delays assumption will be relaxed in extensions
of the work to be pursued in the near future.

In the first scenario, we have considered reconfiguration
of the metasurface using the SIMO controller to guide the
reflected single beam towards a single stationary receiver
located at θ∗r,1 = 50◦ and φ∗

r,1 = 80◦. We assume the initial
reflection angle components to be θr,1 = 45◦ and φr,1 = 85◦.
The amplitude and frequency values of the perturbation signals
in this scenario are: a1 = 0.15, a2 = 0.1, ωf,1 = 50, and
ωf,2 = 40. The simulation results of the considered scenario
are shown in Fig. 3, where the time evolution of the normalized
power Pr,1 of the received signal is depicted together with
the θr,1 and φr,1 of the reflected beam. It is evident from
the results, where the normalized received power rises from
0.65 at t = 0s to 1 at t = 12.13s, that the proposed SIMO
controller is successful in directing the reflected beam towards
the desired direction. The reported convergence time though
is relatively high and fine-tuning of the controller parameters
to speed up the convergence will be investigated in the future.

In the second scenario, we have considered a mobile re-
ceiver which initially resides at θ∗r,1 = 50◦ and φ∗

r,1 = 80◦

from t = 0s till t = 40s and then moves from t = 40s till
t = 70s to reach the new location θ∗r,1 = 55◦ and φ∗

r,1 = 85◦.
Here, we have assumed θr,1 = 45◦ and φr,1 = 75◦ as initial
reflecting angles, whereas parameter values of the perturbation
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signals are kept identical to the ones in the previous scenario.
The simulation results depicting the time evolution of the
normalized Pr,1, θr,1, and φr,1 in this scenario are shown in
Fig. 4. It is evident from the results that the proposed SIMO
controller scheme can also successfully direct the reflected
beam towards the desired location of the mobile receiver, even
when the values of both target angles are time-varying. A
major objective in future work will be to consider increasing
values of the speed of the mobile receiver representing for
example a car moving at a speed of 30 km/h.

Finally, in the last scenario, we have considered reconfig-
uration of the metasurface via two SIMO controllers in a
cascaded connection to guide two reflected beams towards
two stationary receivers as shown in Fig. 1. We assume the
initial reflection angles of the two beams to be θr,1 = 45◦,
φr,1 = 35◦, θr,2 = 65◦ and φr,2 = 85◦, respectively. The
target reflection angles of receivers R1 and R2 are as follows:
θ∗r,1 = 50◦, φ∗

r,1 = 40◦, θ∗r,2 = 70◦, and φ∗
r,2 = 90◦. Parameter

values for the SIMO controllers of both users were selected
as follows: a1 =0.15, a2 = 0.2, ωf,1 = 10, and ωf,2 = 5. The
results in Fig. 5 indicate that the normalized received powers
Pr,1 and Pr,2 rises from 0.77 and 0.44 at time t = 0s to 1 at
t = 57.43s and t = 11.81s, respectively. Despite a steady state
error of approximately 1% for parameter θr,2, the reflection
angles of both beams converge to a bounded region in the
neighborhood of the targeted reflection angles as predicted by
the outlined theorems.

VI. CONCLUSION

Towards autonomous operation of metasurfaces, in this
paper, we consider for the first time feedback-based real-time
reconfiguration of the metasurface controller states for guiding
reflected beams via beam splitting towards multiple, possibly
mobile users. As standard extremum seeking control strategies
have proved to be ineffective, we employ direct estimation of
the gradient via online parameters identification techniques,
coupled with the method of steepest ascent. The latter is shown
to be effective via both analysis and simulations. Future work
will involve further analytical/simulative evaluation to improve
the convergence time in the presence of faults on the controller
network and information dissemination delays. Furthermore,

we will also explore reinforcement learning-based techniques
to consider the joint optimization problem and to reduce the
time consumption of the resulting algorithms.
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