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On the analyticity of certain dissipative-dispersive systems

G. Akrivis, D. T. Papageorgiou and Y.-S. Smyrlis

Abstract

We study the analyticity properties of solutions of dissipative-dispersive evolutionary equations
possessing global attractors. We utilize an analyticity criterion for spatially periodic functions,
that involves the rate of growth of the L2

−norm of the n
th derivative, as n tends to infinity.

This criterion is applied to the dispersively modified Kuramoto–Sivashinsky equation and a
general class of semilinear evolutionary pseudo-differential equations, under certain conditions,
provided they possess global attractors. The proof is spectral and is fundamentally different
from the semigroup approach in Collet et al [3]; it utilizes an inductive method to show that the
analyticity criterion holds.

1. Introduction

This study presents analyticity properties of zero mean, spatially 2π−periodic solutions of
partial differential equations of the form

ut + uux + Pu = 0, (1.1)

possessing a global attractor (a compact attracting set). Here P is a linear pseudo–differential
operator defined by its symbol in Fourier space, i.e.,

(
P̂w
)
k
= λk ŵk, k ∈ Z,

whenever w(x) =
∑

k∈Z
ŵk e

ikx, and with λk satisfying

Reλk ≥ c1|k|γ , for all |k| ≥ k0, (1.2)

for some positive constants c1, γ and k0 a sufficiently large positive integer. Global existence
of solutions of (1.1) has been established for γ > 3/2 (see [11]); when γ ≥ 2, it can be deduced
from [4] that equation (1.1) possesses a global attractor compact in every Sobolev norm. In
this work we shall establish analyticity of solutions to (1.1) when γ > 5/2 .
A special case of equation (1.1) is the dispersively modified Kuramoto–Sivashinsky (KS)

equation

ut + uux + uxx + νuxxxx +Du = 0, (1.3)

with ν > 0 and D a linear antisymmetric pseudo–differential operator; in Fourier space

(D̂w)k = idkŵk, d−k = −dk ∈ R, (1.4)

i.e., D is dispersive. When dk = −k3 we obtain the Kawahara equation [7, 8]; another
application that emerges from the dynamics of two-phase core-annular flows yields dk in
terms of modified Bessel functions of the first kind [10]. Hence, the analysis presented here
is applicable to a wide class of models describing different physical applications. Note that
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such spatially extended systems are typically defined on L−periodic domains and equations
(1.1) and (1.3) have been scaled to have 2π periodicity. This rescaling provides a canonical
equation with a “viscosity” parameter ν = (2π/L)2 in front of the highest derivative. It can be
deduced from [4] that the 2π−periodic solutions of (1.1) possess a global attractor, bounded
in every Sobolev norm; in fact such proofs are possible for γ ≥ 2 in (1.2). This Sobolev norm
boundedness is used in our analyticity estimates to obtain a lower bound on the band of
analyticity.
The present approach is distinct from that in [3] which uses semigroup methods on the

L−periodic KS equation (a special case of (1.3) with D ≡ 0),

ut + uux + uxx + uxxxx = 0.

Given the bound (see for example [2, 6, 5, 9])

lim sup
t→∞

∫L
0

|u(x, t)|2dx ≤ R2
L,

the idea is to obtain a lower bound for αt so that the L2−norm of v := eαtAu stays bounded.
Here A is the pseudo–differential operator, which is defined in the Fourier space as (Âu)k =
|k|ûk, and thus if u =

∑
k∈Z

ûke
ikqx, where q = 2π/L, then v = eαtAu =

∑
k∈Z

ûke
ikqx+αt|k|.

The analysis obtains a lower bound for αt written as αL tL ≥ cR
−2/5
L , with a positive constant

c, and clearly better lower bounds for the size of the band of analyticity emerge when estimates
for RL are improved. The best available analytical estimate is due to Otto [9] who finds
RL = O(L1/2(logL)5/3), and hence the analyticity result can be expressed in terms of the
decay of the Fourier modes ûk,

|ûk| = O
(
exp(−c L−1/5(logL)−2/3 q|k|)

)
, (1.5)

i.e., the strip of analyticity is

βL ≥ c L−1/5(logL)−2/3,

where c is a positive constant. For comparison purposes with our 2π−periodic solutions, we
have repeated the analysis of [3] to cast the result in terms of ν. We find that the width of the
strip of analyticity, βν say, satisfies the bound βν ≥ c ν41/50.
Note that, numerical experiments in [3, 12] suggest that the band of analyticity is

independent of L. Interestingly, such numerically obtained optimal bounds persist even in
the presence of dispersion, as shown in our computations [1]. In what follows we study the
analyticity of 2π−periodic solutions of equations (1.1). A special case of this is the dispersively
modified KS equation (1.3), and bounds will be expressed in terms of ν. Note that in this case
a change of variables affords an interchange between L and ν.

2. An analyticity criterion

A real analytic and periodic function f : R → C extends holomorphically in a neighborhood

Ωβ =
{
x+ iy : x, y ∈ R and |y| < β

}
,

for some β > 0. The maximum such β∈(0,∞] is called the band of analyticity of f . For
completeness, we say that the band of analyticity of f is zero if and only if f is not real analytic.
Next we state an analyticity criterion for periodic functions which involves the Lp−norms of
their derivatives. The proof is given in the Appendix.
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Theorem 1 (Analyticity criterion). Let u : R → C be an L−periodic C∞ function and

µ := lim sup
n→∞

∥∥u(n)
∥∥1/n

n
,

with ‖ · ‖ the L2−norm over the interval [0, L]. Then the band of analyticity β of u is given by

β =





∞ if µ = 0,

1

eµ
if µ∈(0,∞),

0 if µ = ∞.

Remarks 1.

(i) According to Theorem 1, the rate of growth of u(n), as n tends to infinity, is in general
super–exponential. This rate is exponential if and only if u is a trigonometric polynomial,
as it can be readily seen.

(ii) Theorem 1 still holds if the L2−norm of u(n) is replaced by the Lp−norm, for every
p∈ [1,∞]. (This is explained in the proof of Theorem 1 in the Appendix.)

(iii) Another alternative version of our criterion in obtained when µ is defined by

µ = lim sup
s→∞

‖u‖1/sHs

s
,

where

‖u‖Hs =

(∑

k∈Z

(1 + k2)s
∣∣ûk

∣∣2
)1/2

,

with ûk = 1
L

∫L
0
u(x) e−ikqx dx and q = 2π/L. See Remark A.1 in the Appendix.

3. Analyticity of certain dissipative evolutionary systems

3.1. The dispersively modified Kuramoto–Sivashinsky equation

We shall apply our analyticity criterion to 2π−periodic solutions (with zero spatial mean) of
(1.3), where ν > 0 and D is a linear antisymmetric pseudo–differential operator with symbol
in Fourier space given by (1.4). The operator D is dispersive and equation (1.3) is known as
the dispersively modified Kuramoto–Sivashinsky equation (DKSE). Well–posedness and global
existence (in time) of solutions of (1.3) is established in [11]. Existence of a global attractor
X (a compact absorbing set) can be derived from the results in [4]. In fact, when t > 0, every
solution of (1.3) becomes C∞ with respect to x. In particular, for every n∈N, there exists an
Rn, depending on ν and D but independent of u0, such that

lim sup
t→∞

∥∥∂n
xu(·, t)

∥∥ ≤ Rn.

Expressing u(x, t) =
∑

k∈Z
ûk(t) e

ikx, equation (1.3) is transformed into the following infinite
dimensional dynamical system

d

dt
ûk = −λkûk − ik ϕ̂k, k ∈ Z, (3.1)
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with λk = −k2 + νk4 − i dk and

ϕ̂k(t) =
1

2π

∫2π
0

1

2
u2(x, t) e−ikx dx =

1

2

k−1∑

j=1

ûj(t)ûk−j(t) +

∞∑

j=1

û−j(t)ûk+j(t). (3.2)

Clearly, (3.1) implies that

ûk(t) = e−λktûk(0)− ik

∫ t
0

e−λk(t−s)ϕ̂k(s) ds,

and consequently

lim sup
t→∞

∣∣ûk(t)
∣∣ ≤ |k|

Reλk
lim sup
t→∞

∣∣ϕ̂k(t)
∣∣, (3.3)

whenever Reλk > 0. We next define

h(s) = lim sup
t→∞

(
∞∑

k=1

k2s
∣∣ûk(t)

∣∣2
)1/2

, s ∈ R.

Note that, if n∈N and n ≤ s, then

21/2h(s) ≥ lim sup
t→∞

(∑

k∈Z

k2n
∣∣ûk(t)

∣∣2
)1/2

= lim sup
t→∞

∥∥∂n
xu(·, t)

∥∥.

Also,

lim sup
t→∞

∣∣ûm(t)
∣∣ ≤ h(s)

|m|s , for all m∈Z r {0} . (3.4)

Our target is to show the following:

Claim I. There exist positive constants M and a, such that, for every s ≥ 0,

h(s) ≤ M(as)s. (3.5)

This result in turn implies that

lim sup
n→∞

( 1
n
lim sup
t→∞

∥∥∂n
xu(·, t)

∥∥1/n
)

≤ lim sup
n→∞

21/(2n)h1/n(n)

n
≤ a.

By using our analyticity criterion we shall consequently obtain a lower bound for the band of
analyticity β of solutions u in the attractor, namely β ≥ 1/(ea).

The claim will be proved by the following inductive method:

First, we pick M,a > 0, so that h(s) ≤ M(as)s, for every s∈ [0, 2]. Suitable values are, for
example,

M ≥ 21/2R2 = 21/2 lim sup
t→∞

‖uxx(·, t)‖ and a ≥ 1.

Indeed, noting that (as)s ≥ e−1/(ea) > 1/2, for all a ≥ 1 and s ≥ 0, we obtain

M(as)s >
M

2
≥ 1√

2
lim sup
t→∞

‖uxx(·, t)‖ = lim sup
t→∞

(
∞∑

k=1

k4
∣∣ûk(t)

∣∣2
)1/2

= h(2) ≥ h(s),

for all s∈ [0, 2]. Next we shall prove (by selecting a possibly larger a) that (3.5) holds for every
s ∈ [σ, σ + 1], provided that the same inequality holds for every s ∈ [0, σ] and σ ≥ 2. This in
turn establishes that (3.5) holds for every s ≥ 0. It suffices to show the following:

Claim II. If (3.5) holds for every s ∈ [0, σ] and σ ≥ 1, then it also holds for s = σ + 1.
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Proof of Claim II. For every j = 1, . . . , k − 1, we have, by virtue of (3.4),

lim sup
t→∞

∣∣ûj(t)
∣∣ ≤ h(σjk )

j
σj
k

≤ M(aσj
k )

σj
k

j
σj
k

,

and thus, the first sum in the right-hand side of (3.2) is estimated as follows

lim sup
t→∞

k−1∑

j=1

∣∣ûj(t)
∣∣ ∣∣ûk−j(t)

∣∣ ≤
k−1∑

j=1

h(σjk )

j
σj
k

· h
(σ(k−j)

k

)

(k−j)
σ(k−j)

k

≤
k−1∑

j=1

M(aσj
k )

σj
k

j
σj
k

· M
(
aσ(k−j)

k

)σ(k−j)
k

(k−j)
σ(k−j)

k

=
(k−1)M2(aσ)σ

kσ
≤ M2(aσ)σ

kσ−1
. (3.6)

For the second sum in the right-hand side of (3.2), using inequality (3.4) and the fact that∣∣û−j(t)
∣∣ =

∣∣ûj(t)
∣∣, we obtain that

lim sup
t→∞

∞∑

j=1

∣∣ûj(t)
∣∣ ∣∣ûk+j(t)

∣∣ ≤ lim sup
t→∞




∞∑

j=1

∣∣ûj(t)
∣∣2



1/2

lim sup
t→∞




∞∑

j=1

∣∣ûk+j(t)
∣∣2



1/2

≤h(0)




∞∑

j=1

h2(σ)

(k + j)2σ




1/2

≤ M h(σ)

(∫∞
0

dx

(x+ k)2σ

)1/2

≤M2(aσ)σ
(

1

2σ − 1
· 1

k2σ−1

)1/2
=

M2(aσ)σ

(2σ − 1)1/2kσ−1/2

≤ M2(aσ)σ

kσ−1
. (3.7)

In arriving at the result above, we have used the fact

lim sup
t→∞

∞∑

j=1

∣∣ûk+j(t)
∣∣2 ≤

∞∑

j=1

lim sup
t→∞

∣∣ûk+j(t)
∣∣2 ≤

∞∑

j=1

h2(σ)

(k + j)2σ
,

along with (3.4).
Also, since Reλk = −k2 + νk4, we have

Reλk ≥ νk4/2 for k ≥ k0 =
[
(2/ν)

1/2
]
+ 1. (3.8)

Combination of (3.3), (3.6), (3.7) and (3.8) provides that

lim sup
t→∞

∣∣ûk(t)
∣∣ ≤ 3M2(aσ)σ

νkσ+2
for k ≥ k0.

Thus,

lim sup
t→∞

∞∑

k=1

k2σ+2
∣∣ûk(t)

∣∣2 ≤
∞∑

k=k0

9M4(aσ)2σ

ν2k2
+ lim sup

t→∞

k0−1∑

k=1

k2σ+2
∣∣ûk(t)

∣∣2

≤ 9M4(aσ)2σ

ν2

∞∑

k=k0

1

k2
+ (k0−1)2σ−2 lim sup

t→∞

k0−1∑

k=1

k4
∣∣ûk(t)

∣∣2

≤ 9M4(aσ)2σ

ν2
· 1

k0−1
+ (k0−1)2σ−2R2

2.
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Since h2(σ + 1) = lim supt→∞

∑∞
k=1 k

2σ+2
∣∣ûk(t)

∣∣2, we have

h(σ + 1) ≤ 3M2(aσ)σ

(k0−1)1/2ν
+ (k0−1)σ−1M ≤ 6M2(aσ)σ

ν3/4
+

(
2

ν

)σ−1
2

M,

since
√
2ν−1/2 ≥ k0−1 ≥ 1

2ν
−1/2. (The second inequality is valid if and only if ν ≤ 2.) This

inductive step is complete if we can find positive constants M and a satisfying

6M2(aσ)σ

ν3/4
+

(
2

ν

)σ−1
2

M ≤ M
(
a(σ + 1)

)σ+1
for every σ ≥ 1. (3.9)

Clearly, for every M > 0, there exists an a0 > 0, such that (3.9) holds for every a ≥ a0. It can
be verified that a suitable a0 is given by

a0 = c1 max
{
ν−1/2, Mν−3/4

}
,

where M = 2R2 and c1 is a positive constant independent of ν. (This is achieved by making
the right-hand side of (3.9) larger than half of each term of the left-hand side, independently.)

Therefore, the following has been proved:

Theorem 2. Let X be the global attractor of (1.3) for 2π−periodic initial data in L2,

R2 = sup
w∈X

‖∂2
xw‖ and ̺ = max

{
ν−1/2, R2ν

−3/4
}
.

Then, every w∈X extends to a holomorphic function in Ωβ , where β ≥ c/̺, for a suitable

positive constant c independent of ν. �

3.2. A class of nonlinear evolutionary pseudo–differential equations

The technique developed above applies also to a wider class of dissipative evolutionary
equations, defined by (1.1), which possess global attractors. It can be derived from [4] that
periodic solutions of (1.1), with the eigenvalues λk of the operator P satisfying (1.2) with γ ≥ 2,
possess a global attractor, bounded in every Sobolev norm. Hence, if γ > 5/2, a global attractor
exists, and it is readily seen that the technique developed to establish the analyticity for
DKSE applies, with minor modifications, to the solutions of (1.1). Perhaps the only noteworthy
modification of the method is that Claim II will be replaced by:

Claim II. If (3.5) holds for every s ∈ [0, σ] and σ ≥ 1, then it also holds for s = σ + σ1,

where σ1∈(0, γ − 5/2).

Appendix

Proof of Theorem 1

Clearly, if 1 ≤ p ≤ q ≤ ∞, then there exists a positive constant cp,q, such that
∥∥u(n)

∥∥
p
≤ L

1
p
− 1

q

∥∥u(n)
∥∥
q
≤ cp,q

∥∥u(n+1)
∥∥
p
, (A.1)

for every n ≥ 1 and u∈C∞(R), which is L−periodic, where ‖ · ‖p is the Lp−norm over the
interval [0, L]. It is readily seen that (A.1) implies

lim sup
n→∞

∥∥u(n)
∥∥1/n
p

n
= lim sup

n→∞

∥∥u(n)
∥∥1/n
q

n
. (A.2)
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Formula (A.2) implies that it suffices to show the Theorem for the ∞−norm, instead of the

2-norm. Combining Stirling’s formula, lim
n→∞

n

(n!)1/n
= e, with (A.2) we obtain

µ̃ = lim sup
n→∞

(‖u(n)‖∞
n!

)1/n
= lim sup

n→∞

n

(n!)1/n
·
(
‖u(n)‖∞

)1/n

n
= eµ.

Therefore, in order to prove our analyticity criterion (Theorem 1) it suffices to establish the
following two Claims:

Claim I. If µ̃ < ∞ and γ :=





∞ if µ̃ = 0,

1

µ̃
if µ̃ > 0,

then u extends holomorphically in Ωγ .

Claim II. If γ∈(0,∞) and u extends holomorphically in Ωγ , then µ̃ ≤ 1/γ.

Proof of Claim I. It can be readily seen that the function

U(x+ iy) =

∞∑

n=0

u(n)(x)

n!
(iy)n

is well defined (cf. nth−root test for series) and differentiable, with respect to x and y, for every
(x, y)∈R × (−γ, γ), and satisfies the Cauchy–Riemann equations (Uy = iUx). Therefore, U is
holomorphic in Ωγ , and since U(x) = u(x), for x∈R, then u extends holomorphically in Ωγ .

Proof of Claim II. Let U be holomorphic in Ωγ and agree with u in R, and ε∈(0, γ). Set
Mε = max{|U(x+ iy)| : x ∈ [0, L] and |y| ≤ γ − ε}. We have Mε = supz∈Ωγ−ε

|U(z)|, since U
is also L−periodic. Also, for every x∈R and n ∈ N, we have

u(n)(x) = U (n)(x) =
n!

2πi

∫

|z−x|=γ−ε

U(z)

(z − x)n+1
dz, whence

∣∣u(n)(x)
∣∣ ≤ n!Mε

(γ − ε)n
,

and thus

µ̃ = lim sup
n→∞

(∥∥u(n)
∥∥

∞

n!

)1/n
≤ 1

γ − ε
,

for every ε∈(0, γ). Consequently µ̃ ≤ 1/γ. �

Remark A.1. Another alternative version of this analyticity criterion is obtained when
the L2−norm is replaced by suitable Sobolev norms, due to the fact that

lim sup
s→∞

‖u‖1/sHs

s
= lim sup

n→∞

∥∥u(n)
∥∥1/n

n
= µ. (A.3)

In order to prove this, we first observe that

lim sup
s→∞

‖u‖1/sHs

s
≥ lim sup

n→∞

‖u(n)‖1/n

n
,

since ‖u‖Hn ≥ ‖u(n)‖. On the other hand, the definition of µ implies that, for every ε > 0,
there exists an Mε > 0, such that

∥∥u(n)
∥∥ ≤ Mε

(
n(µ+ ε)

)n
, for all n ∈ N.
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Therefore,

‖u‖2Hn =
∑

k∈Z

(1 + k2)n
∣∣ûk

∣∣2 =
∑

k∈Z

n∑

j=0

(
n
j

)
k2j
∣∣ûk

∣∣2 =
n∑

j=0

(
n
j

)∥∥u(j)
∥∥2

≤
n∑

j=0

(
n
j

)
M2

ε

(
j(µ+ ε)

)2j ≤ M2
ε

n∑

j=0

(
n
j

)(
n(µ+ ε)

)2j
= M2

ε

(
1 +

(
n(µ+ ε)

)2)n
,

and consequently

‖u‖1/nHn

n
≤

M
1/n
ε

(
1 +

(
n(µ+ ε)

)2)1/2

n
−→ µ+ ε, for every ε > 0.

Thus
‖u‖1/nHn

n
≤ µ. The treatment of the case of general s > 0 is straight–forward.
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