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Abstract We use the scalar auxiliary variable (SAV) reformulation of the nonlinear Schrö-

dinger (NLS) equation to construct structure-preserving SAV–Gauss methods for the NLS

equation, namely L2-conservative methods satisfying a discrete analogue of the energy (the

Hamiltonian) conservation of the equation. This is in contrast to Gauss methods for the

standard form of the NLS equation that are L2-conservative but not energy-conservative. We

also discuss efficient linearizations of the new methods and their conservation properties.
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1 Introduction

Let Ω ⊂ Rd be a bounded domain with smooth boundary ∂ Ω , and consider the follow-

ing initial and boundary value problem for the nonlinear Schrödinger (NLS) equation with

power nonlinearity: seek a complex-valued function u : Ω̄ × [0,T ]→ C,u = u(x, t), satisfy-

The work of Dongfang Li was partially supported by NSFC (No. 11771162).

Georgios Akrivis

Department of Computer Science and Engineering, University of Ioannina, 45110 Ioannina, Greece, and

Institute of Applied and Computational Mathematics, FORTH, 70013 Heraklion, Crete, Greece

Tel.: +30-26510-08800

E-mail: akrivis@cse.uoi.gr

Dongfang Li

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074,

China, and Hubei Key Laboratory of Engineering Modeling and Scientific Computing, Huazhong University

of Science and Technology, Wuhan 430074, China

E-mail: dfli@mail.hust.edu.cn



2 Georgios Akrivis, Dongfang Li

ing

(1.1)





ut = i∆u+ iλ |u|p−1u in Ω × [0,T ],

u = 0 on ∂ Ω × [0,T ],

u(·,0) = u0 in Ω̄ ,

where λ is a nonzero real number, u0 is a given complex-valued function, and p > 1.
Two fundamental invariance properties of the NLS equation are the conservations of the

L2-norm, i.e., of the charge, density or mass, depending on the application, and of the energy

(Hamiltonian) E(u(·, t)), here multiplied by 2 for convenience,

(1.2)





I(u(·, t)) := ‖u(·, t)‖2 = ‖u0‖2,

E(u(·, t)) := ‖∇u(·, t)‖2 − 2λ

p+1
‖u(·, t)‖p+1

Lp+1 = E(u0),
0 6 t 6 T,

with ‖ · ‖ and ‖ · ‖Lp+1 the L2(Ω )- and Lp+1(Ω )-norms.

It is well known that the Gauss methods for the standard form (1.1) of the NLS equa-

tion are L2-conservative, [2,23], but are not energy-conservative. In this article, we use the

scalar auxiliary variable (SAV) reformulation of the NLS equation to construct classical,

L2-conservative SAV–Gauss methods satisfying a discrete analogue of the energy conser-

vation property. To emphasize the basic construction technique and to keep the article at a

reasonable length, we do not study convergence properties of the SAV–Gauss methods. We

note that the analysis proceeds along the lines of [23], [3] or [4], depending on the variant

of the method; cf. Remark 4.1.

The NLS equation is one of the most important equations in mathematical physics; it

is used in nonlinear optics [38, Chapter 1], in fiber optics communications [1], in plasma

physics [30], in geophysics [29], and in mathematical biology [27]. See also the survey

[31]. We refer to [38] and [35,36] for various properties of the NLS equation and for further

references. For the cubic NLS and Ω ⊂R
2 with smooth boundary ∂ Ω , it is proved in [9] that

the initial and boundary value problem (1.1) possesses a unique global solution in H2(Ω ),
provided u0 ∈ H2(Ω )∩H1

0 (Ω ) and either λ < 0 or λ > 0 and c0λ‖u0‖2 < 2, with c0 a

positive constant occurring in the Gagliardo–Nirenberg inequality,

(1.3) ∀υ ∈ H1
0 (Ω ) ‖υ‖4

L4(Ω) 6 c0‖υ‖2 ‖∇υ‖2;

see [28, Lemma 2] for the proof that c0 6 1/π as well as for uniqueness results for 1< p6 3.

We refer to the monographs [21] and [10] and to the review articles [15] and [11] for

structure-preserving numerical methods for ordinary differential equations (o.d.e’s) as well

as for partial differential equations. An important advantage of structure-preserving methods

is that they exhibit improved long time behavior; cf., e.g., [18], for the NLS equation. In the

case of the NLS equation, particularly desirable properties of numerical methods are the

conservation of the mass (density) and energy at the discrete level.

A popular structure-preserving modified Crank–Nicolson scheme for (1.1), widely used

in computations in finite difference or finite element contexts, was introduced by Delfour,

Fortin, and Payre, [17]; see (3.8); the differencing of the nonlinear term is motivated by a

method of Strauss and Vazquez, [37], for the Klein–Gordon equation. We briefly discuss

this method in section 3. So-called relaxation, second order methods, introduced in [6,7]

for the cubic NLS equation and in [8] for higher power nonlinearities, are L2-conservative
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and preserve a modified discrete energy. These methods are linearly implicit for the cu-

bic NLS equation and nonlinear for higher power nonlinearities. In [8] and [42] second

order convergence for the cubic NLS equation and for general nonlinearities, respectively,

is established. A second order two-step scheme for the original form of the NLS equation

satisfying discrete analogues at two consecutive time levels of the mass (density) and en-

ergy conservations was proposed and implemented in [19]; this method is analyzed in [41]

and [42]. High-order energy-preserving methods for the one-dimensional NLS equation are

considered in [5] and [12].

For exponential integrators for the NLS equation, we refer to [25,13,14,16] and refer-

ences therein; notice that the projected explicit Lawson methods of [13] preserve the L2-

norm and the momentum, rather than the energy, for special initial values. In [14] schemes

with exact conservation of the discrete L2-norm and/or energy are constructed by projection

and/or design of the schemes. See [22, pp. 472–474] for the basic idea for projection meth-

ods for o.d.e’s with invariants. For numerical methods that nearly conserve mass, energy and

momentum over long times, see [16].

The outline of this paper is as follows. In Section 2 we present the SAV reformulation

of the NLS equation; see (2.13). In Section 3 we briefly recall the L2-conservative stan-

dard Crank–Nicolson method as well as the L2- and energy-conservative modified Crank–

Nicolson method. We also note that the continuous Galerkin methods are energy-preserving.

In contrast to the standard formulation (1.1), as we shall see in Section 4, the SAV–Gauss

methods, i.e., the Gauss methods for the SAV reformulation (2.13) of the NLS equation, are

L2-conservative and satisfy the analogue of the energy conservation property (2.8) at the

discrete level. For the convenience of the reader, we treat the one-stage (midpoint) Gauss

method, i.e., the Crank–Nicolson method, first and subsequently the general case. Numerical

results are presented in Section 5.

2 The SAV reformulation of the NLS equation

In this section we present the SAV reformulation of the NLS equation. For the sake of

completeness, we give also details of the derivation of the well-known invariance properties

(1.2).

We denote by (·, ·) and ‖ · ‖ the L2 inner product and the corresponding norm, and by

‖ · ‖Lq the Lq-norm.

2.1 Invariants

Testing the NLS equation in (1.1) against u and against ut , respectively, and integrating by

parts in the first term on the right-hand side, we have

(2.1)
1

2

d

dt
‖u(·, t)‖2 + i Im(ut(·, t),u(·, t)) =−i‖∇u(·, t)‖2 + iλ‖u(·, t)‖p+1

Lp+1

and

(2.2)

‖ut(·, t)‖2 = Im(∇u,∇ut)−λ
(
|u(·, t)|p−1, Im(u(·, t)ut(·, t))

)

− i
1

2

d

dt

(
‖∇u(·, t)‖2 − 2λ

p+1
‖u(·, t)‖p+1

Lp+1

)
,
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0 < t 6 T, respectively. Notice that in the derivation of (2.2) the simple calculation

(2.3) ∂t

(
|u(x, t)|p+1

)
= (p+1)|u(x, t)|p−1 Re

(
u(x, t)ut(x, t)

)

is used. Taking real and imaginary parts in (2.1) and (2.2), respectively, we see that both the

L2-norm (charge, density, mass) and the energy (Hamiltonian) E(u(·, t)) are conserved,

(2.4) ‖u(·, t)‖= ‖u0‖, 0 6 t 6 T,

and

(2.5) E(u(·, t)) = ‖∇u(·, t)‖2 − 2λ

p+1
‖u(·, t)‖p+1

Lp+1 = E(u0), 0 6 t 6 T,

respectively. The Hamiltonian plays a more important role in the case of the defocusing

NLS, i.e., for negative λ , than in the case of the focusing NLS, i.e., for positive λ .

2.2 The SAV approach

The scalar auxiliary variable (SAV) approach, motivated by the invariant energy quadrati-

zation (IEQ) technique of [39] and [40], was introduced in [33] and [34] for gradient flows.

In both approaches, the energy is expressed in terms of Hilbert space norms of the new

variables; this fact considerably simplifies the construction of structure-preserving numer-

ical methods. We could have also used the IEQ approach here; we have chosen the SAV

approach since, in contrast to the IEQ approach, it only slightly increases the computational

cost.

We introduce the scalar real-valued function r,

(2.6) r(t) :=
( 1

p+1
‖u(·, t)‖p+1

Lp+1

)1/2

=
1√

p+1
‖u(·, t)‖

p+1
2

Lp+1 , 0 6 t 6 T,

and let W (υ) be given by

(2.7) W (υ) :=
|υ |p−1υ

(
1

p+1
‖υ‖p+1

Lp+1

)1/2
.

In view of (2.6), the energy is expressed as

E(u(·, t)) = ‖∇u(·, t)‖2 −2λ |r(t)|2,

and the energy conservation property (2.5) can be written in the form

(2.8) ‖∇u(·, t)‖2 −2λ |r(t)|2 = ‖∇u0‖2 −2λ |r0|2, 0 6 t 6 T,

with r0 := r(0). Notice that the energy is expressed in terms of Hilbert space norms of the

new variables; this is the main advantage of the SAV approach for the NLS equation.

Then, obviously, the NLS equation can be written in the form

(2.9) ut = i∆u+ iλ rW (u) in Ω × (0,T ].
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Now,

(2.10) r′(t) =
1

2(p+1)

1
(

1
p+1

‖u(·, t)‖p+1

Lp+1

)1/2

(
‖u(·, t)‖p+1

Lp+1

)′
.

Consider now the last factor on the right-hand side of (2.10). We have

(
‖u(·, t)‖p+1

Lp+1

)′
=

d

dt

∫

Ω
|u(x, t)|p+1 dx,

whence

(2.11)
(
‖u(·, t)‖p+1

Lp+1

)′
=

∫

Ω
∂t

(
|u(x, t)|p+1

)
dx.

Substituting (2.3) into (2.11) and the result into (2.10), we obtain

(2.12) r′(t) =
1

2
Re(W (u),ut), 0 6 t 6 T.

Summarizing, the SAV reformulation of the initial and boundary value problem (1.1) is

(2.13)





ut = i∆u+ iλ rW (u) in Ω × [0,T ],

u = 0 on ∂ Ω × [0,T ],

r′(t) =
1

2
Re(W (u),ut) in [0,T ],

u(·,0) = u0 in Ω̄ ,

r(0) =
1√

p+1
‖u0‖

p+1
2

Lp+1 .

Remark 2.1 (Definition of r and W) Notice that, in view of (2.4), for u0 6= 0, W (u(·, t)) is

well defined for all t ∈ [0,T ]; the case u0 = 0 is not of interest, since the solution u vanishes

for all t. We could, however, have added a positive constant c in the expression in the square

roots in the definition of r and in the denominator of W.

Remark 2.2 (General form of the NLS equation) We replace the power nonlinearity in the

NLS equation in (1.1) by a general nonlinearity, and consider the corresponding initial and

boundary value problem for the general NLS equation

(2.14) ut = i∆u+ i f (u)

with f (υ) := g(|υ |2)υ and g a continuous real-valued function. Let G be such that G′ = g

and G(0) = 0, and let F(υ) := 1
2
G(|υ |2) be bounded from below.

Testing (2.14) against u and against ut , respectively, and integrating by parts in the first

term on the right-hand side, we have, in analogy to (2.1) and (2.2),

(2.15)
1

2

d

dt
‖u(·, t)‖2 + i Im(ut(·, t),u(·, t)) =−i‖∇u(·, t)‖2 + i

(
g(|u|2), |u|2

)

and

(2.16)

‖ut(·, t)‖2 = Im(∇u,∇ut)−
(
g(|u(·, t)|2), Im(u(·, t)ut(·, t))

)

− i
d

dt

(1

2
‖∇u(·, t)‖2 −

∫

Ω
F
(
u(x, t)

)
dx

)
,
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0 6 t 6 T, respectively. In the derivation of (2.16) we used the easy calculation

(2.17) ∂tF
(
u(x, t)

)
= g(|u(x, t)|2)Re(u(x, t)ut(x, t)).

Taking real and imaginary parts in (2.15) and (2.16), respectively, we see that both the L2-

norm and the energy E(u(·, t)) are conserved,

(2.18) ‖u(·, t)‖= ‖u0‖, 0 6 t 6 T,

and

(2.19) E(u(·, t)) :=
1

2
‖∇u(·, t)‖2 −

∫

Ω
F
(
u(x, t)

)
dx = E(u0), 0 6 t 6 T,

respectively.

The NLS equation in (1.1) is a special case of (2.14) with g(υ) := λυ
p−1

2 . The results

of this paper can be easily extended to the general NLS equation (2.14).

The Fréchet derivative E ′ of the energy functional E(u) of (2.19) is E ′(u) =−∆u− f (u);
therefore, the NLS equation (2.14) can be written in Hamiltonian form,

(2.20) ut =−iE ′(u);

notice that the multiplication by −i is a skew operator. This explains why the energy E(u)
is also referred to as the Hamiltonian of the NLS equation (2.14). Because

d

dt
E(u) =

(
E ′(u),ut

)
= i

(
E ′(u),E ′(u)

)

and the quantity on the left-hand side is real, the Hamiltonian form (2.20) immediately yields

that the energy E(u) is a constant.

For completeness, let us derive the SAV reformulation of the general form of the NLS

equation. Let c be such that F + c|Ω | is strictly positive.

We introduce the positive function r,

(2.21) r(t) :=
(∫

Ω
F
(
u(x, t)

)
dx+ c

)1/2

, 0 6 t 6 T,

and let W (υ) be given by

(2.22) W (υ) :=
g(|υ |2)υ

(∫
Ω F(υ)dx+ c

)1/2
.

In view of (2.17), we have

(2.23) r′(t) =
1

2
Re(W (u),ut), 0 6 t 6 T.

Summarizing, the SAV reformulation of the initial and boundary value problem for the

general NLS equation (2.14) is

(2.24)





ut = i∆u+ irW (u) in Ω × [0,T ],

u = 0 on ∂ Ω × [0,T ],

r′(t) =
1

2
Re(W (u),ut) in [0,T ],

u(·,0) = u0 in Ω̄ ,

r(0) =
(∫

Ω
F
(
u0(x)

)
dx+ c

)1/2

.
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3 Crank–Nicolson methods for (1.1)

For the convenience of the reader, in this section we recall the standard as well as the modi-

fied Crank–Nicolson methods for (1.1) and their well-known conservation properties.

Let N ∈ N and, for simplicity, consider a uniform partition tn := nτ ,n = 0, . . . ,N, of the

time interval [0,T ] with time step τ := T/N. For a given sequence υn,n = 0, . . . ,N, we de-

note by ∂̄υn+1 and by υn+ 1
2 the backward difference quotient and the average, respectively,

∂̄υn+1 :=
υn+1 −υn

τ
, υn+ 1

2 :=
υn+1 +υn

2
, n = 0, . . . ,N−1.

The standard Crank–Nicolson method. With starting value U0 := u0, the Crank–Nicolson

approximations Uℓ ∈ H1
0 (Ω ) to the nodal values u(·, tℓ) of the solution u of the initial and

boundary value problem (1.1), are recursively defined by

(3.1) ∂̄Un+1 = i∆Un+ 1
2 + iλ |Un+ 1

2 |p−1Un+ 1
2 , n = 0, . . . ,N −1.

It is easily seen that the Crank–Nicolson method is L2-conservative but not energy-

conservative. Indeed, testing (3.1) against Un+ 1
2 and integrating by parts in the first term on

the right-hand side, we have

(∂̄Un+1,Un+ 1
2 ) =−i‖∇Un+ 1

2 ‖2 + iλ‖Un+ 1
2 ‖p+1

Lp+1(Ω)
,

and thus, since the right-hand side is imaginary,

Re(∂̄Un+1,Un+ 1
2 ) = 0.

Now, Re(∂̄Un+1,Un+ 1
2 ) = 1

2τ

[
‖Un+1‖2 −‖Un‖2

]
, and we obtain the invariance property

(3.2) ‖Un+1‖= ‖Un‖, n = 0, . . . ,N−1,

a discrete analogue of (2.4).

Furthermore, testing (3.1) against ∂̄Un+1 and integrating by parts in the first term on the

right-hand side, we have

(3.3) ‖∂̄Un+1‖2 =−i(∇Un+ 1
2 ,∇∂̄Un+1)+ iλ

(
|Un+ 1

2 |p−1Un+ 1
2 , ∂̄Un+1

)
.

Taking imaginary parts in (3.3), we obtain

(3.4) ‖∇Un+1‖2 −λ

∫

Ω
|Un+ 1

2 |p−1|Un+1|2 dx = ‖∇Un‖2 −λ

∫

Ω
|Un+ 1

2 |p−1|Un|2 dx,

i.e.,

(3.5) E(Un+1) = E(Un)+λD(Un,Un+1), n = 0, . . . ,N −1,

with the discrepancy term D(Un,Un+1),

(3.6)

D(Un,Un+1) :=
∫

Ω

[ 2

p+1

(
|Un+1|p+1 −|Un|p+1

)
−|Un+ 1

2 |p−1
(
|Un+1|2 −|Un|2

)]
dx.
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The discrepancy term D(Un,Un+1) does not vanish, in general; therefore, the standard

Crank–Nicolson method for (1.1) is not energy-conservative.

A structure-preserving modified Crank–Nicolson method. Motivated by the form (3.6)

of the discrepancy term D(Un,Un+1), we modify the Crank–Nicolson method (3.1) by re-

placing |Un+ 1
2 |p−1 by

(3.7)
2

p+1

|Un+1|p+1 −|Un|p+1

|Un+1|2 −|Un|2 , 1 < p < ∞,

i.e., we consider the method, cf. [17],

(3.8) ∂̄Un+1 = i∆Un+ 1
2 + iλ

2

p+1

|Un+1|p+1 −|Un|p+1

|Un+1|2 −|Un|2 Un+ 1
2 , n = 0, . . . ,N −1.

The expression (3.7) takes simpler forms for odd p; of course, for the cubic NLS, p = 3, it

reduces to
(
|Un+1|2 + |Un|2

)
/2.

Since the inner product of the last term on the right-hand side of (3.8) with Un+ 1
2 is

imaginary, the second-order method (3.8) is L2-conservative, it satisfies

(3.9) ‖Un+1‖= ‖Un‖, n = 0, . . . ,N−1.

Furthermore, it is easily seen that it also satisfies

(3.10) E(Un+1) = E(Un), n = 0, . . . ,N −1,

i.e., the method is energy-conservative.

In the case of the general NLS equation, the analogue to (3.8) structure-preserving mod-

ified Crank–Nicolson method is

(3.11) ∂̄Un+1 = i∆Un+ 1
2 +2i

F(Un+1)−F(Un)

|Un+1|2 −|Un|2 Un+ 1
2 , n = 0, . . . ,N −1.

Remark 3.1 (Energy-preservation of the continuous Galerkin method) Let In := (tn, tn+1]
and q ∈ N. To formulate the continuous Galerkin method for (1.1), we let the space V c

q

consist of continuous functions in time that are piecewise polynomials of degree at most q

in each In, with coefficients in the Sobolev space V = H1
0 (Ω ) of complex-valued functions

on Ω , i.e.,

V
c

q := {ϕ ∈C([0,T ];V ) : ϕ |In(t) =
q

∑
j=0

υ jt
j, n = 0, . . . ,N−1}.

The time discrete continuous Galerkin approximation U to the solution u of (1.1) is defined

as follows: We seek U ∈ V c
q such that U(·,0) = u(·,0) and

(3.12)

∫

In

[(Ut ,υ)+ i(∇U,∇υ)− iλ (|U |p−1U,υ)]dt = 0 ∀υ ∈ Vq−1(In),

for n = 0, . . . ,N −1. Here Vs(In) := {ϕ |In : ϕ ∈ V c
s }.

Since Ut ∈ Vq−1(In), choosing the test function υ = Ut in (3.12) and taking imaginary

parts, we easily see, as in the continuous case, cf. the derivation of (2.5), that

(3.13)

∫

In

d

dt
E
(
U(·, t)

)
dt = 0
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and infer that E
(
U(·, tn+1)

)
= E

(
U(·, tn)

)
. This shows that the continuous Galerkin method

preserves the energy at the nodes of the partition,

(3.14) E
(
U(·, tn)

)
= E(u0), n = 1, . . . ,N.

Notice, however, that the continuous Galerkin method is not L2-conservative. This is

due to the fact that U ∈ Vq(In) is, in general, not an element of Vq−1(In), whence it cannot

be used as a test function in the continuous Galerkin method (3.12). We refer to [24] for the

analysis of the continuous Galerkin method for the cubic NLS equation.

4 SAV–Gauss methods

In this section, we construct the SAV–Gauss methods, applying the Gauss methods to the

SAV reformulation (2.13) of the NLS equation, and show that they are L2-conservative and

satisfy a discrete analogue of the energy conservation property (2.8); cf. (4.10) and (4.11).

We also discuss some computationally advantageous linearizations of the SAV–Gauss meth-

ods and their conservation properties.

For the reader’s convenience, we first consider the second order SAV–Crank–Nicolson

method and subsequently high order SAV–Gauss methods.

4.1 SAV–Crank–Nicolson method

With starting values U0 := u0 and R0 := r(0), we consider the SAV–Crank–Nicolson ap-

proximations Uℓ ∈ H1
0 (Ω ) and Rℓ ∈ R to the nodal values u(·, tℓ) and r(tℓ) of the solutions

u and r of the initial and boundary value problem (2.13), defined recursively by

(4.1)





∂̄Un+1 = i∆Un+ 1
2 + iλRn+ 1

2 W (Un+ 1
2 ),

∂̄ Rn+1 =
1

2
Re

(
W (Un+ 1

2 ), ∂̄Un+1
)
,

n = 0, . . . ,N −1.

Motivated by the energy conservation property (2.8), we denote by Eτ (U
n,Rn),

Eτ (U
n,Rn) := ‖∇Un‖2 −2λ |Rn|2,

the discrete energy (also referred to as modified energy since, in general, |Rn|2 does not

coincide with 1
p+1

‖Un‖p+1

Lp+1(Ω)
) of the numerical solution at tn.

Lemma 4.1 (Structure preservation of the SAV–Crank–Nicolson method) The SAV–

Crank–Nicolson method (4.1) is L2-conservative and satisfies a discrete analogue of (2.8),

namely

(4.2) ‖Un+1‖= ‖Un‖, n = 0, . . . ,N−1,

as well as

(4.3) Eτ (U
n+1,Rn+1) = Eτ (U

n,Rn), n = 0, . . . ,N −1.
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Proof Testing the first equation of (4.1) against ∂̄Un+1 and integrating by parts in the first

term on the right-hand side, we have

(4.4) ‖∂̄Un+1‖2 =−i(∇Un+ 1
2 ,∇∂̄Un+1)+ iλRn+ 1

2
(
W (Un+ 1

2 ), ∂̄Un+1
)
.

Now,

(∇Un+ 1
2 ,∇∂̄Un+1) =

1

2τ
(∇Un+1 +∇Un,∇Un+1 −∇Un)

=
1

2τ

{[
‖∇Un+1‖2 −‖∇Un‖2

]
+
[
(∇Un,∇Un+1)− (∇Un+1,∇Un)

]}
;

the last term is imaginary and we see that

(4.5) Re(∇Un+ 1
2 ,∇∂̄Un+1) =

1

2τ

[
‖∇Un+1‖2 −‖∇Un‖2

]
=

1

2
∂̄‖∇Un+1‖2.

Therefore, taking imaginary parts in (4.4), we obtain

(4.6) −1

2
∂̄‖∇Un+1‖2 +λRn+ 1

2 Re(W (Un+ 1
2 ), ∂̄Un+1) = 0.

Using here the second equation of (4.1), we have

−1

2
∂̄‖∇Un+1‖2 +2λRn+ 1

2 ∂̄ Rn+1 = 0,

i.e.,

−1

2
∂̄‖∇Un+1‖2 +2λ

1

2τ

(
|Rn+1|2 −|Rn|2

)
= 0,

whence

∂̄‖∇Un+1‖2 −2λ ∂̄ |Rn+1|2 = 0,

and see that the energy conservation property (4.3) holds true. Notice that, since |Rn| does

not coincide with 1√
p+1

‖Un‖
p+1

2

Lp+1(Ω)
, in general, (4.3) is the discrete analogue of (2.8) and a

modified discrete analogue of (2.5).

Testing the first equation of (4.1) against Un+ 1
2 and integrating by parts in the first term

on the right-hand side, we have

(∂̄Un+1,Un+ 1
2 ) =−i‖∇Un+ 1

2 ‖2 + iλRn+ 1
2
(
W (Un+ 1

2 ),Un+ 1
2
)
,

and thus, since the right-hand side is imaginary,

Re(∂̄Un+1,Un+ 1
2 ) = 0;

as in Section 3, we infer that (4.2) is valid. The discrete invariance property (4.2) is the

discrete analogue of (2.4). Notice that, in the derivation of (4.2), from the second equation

of (4.1) we only used the fact that Rn+ 1
2 is real. ⊓⊔
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4.2 High order SAV–Gauss methods

Here, we construct the SAV–Gauss methods, applying the Gauss methods to the SAV refor-

mulation (2.13) of the NLS equation, and show that they are L2-conservative and satisfy a

discrete analogue of the energy conservation property (2.8); cf. (4.10) and (4.11). We also

discuss some computationally advantageous linearizations of the SAV–Gauss methods and

their conservation properties.

For q ∈ N, the q-stage Gauss method is specified by the Gauss points 0 < c1 < · · · <
cq < 1 in [0,1], i.e., the roots of the shifted Legendre polynomial of degree q, and the coef-

ficients ai j and bi such that the stage order of the method be q, i.e., satisfying the following

conditions:

q

∑
i=1

bic
ℓ−1
i =

1

ℓ
, ℓ= 1, . . . ,q,(B(q))

q

∑
j=1

ai jc
ℓ−1
j =

cℓi
ℓ
, ℓ= 1, . . . ,q, i = 1, . . . ,q.(C(q))

It is well known that the first relation, (B(q)), is actually valid for ℓ = 1, . . . ,2q; the q-

stage Gauss method is the only q-stage Runge–Kutta method of the highest possible order

p, p = 2q. The matrix A = (ai j)i, j=1,...,q is obviously invertible.

It is, furthermore, well known that the weights b1, . . . ,bq are positive and that the q×
q symmetric matrix M with entries mi j := biai j + b ja ji − bib j, i, j = 1, . . . ,q, vanishes. In

particular, the Gauss methods are algebraically stable. See, e.g., [22, §IV.5, §IV.12].

The first member of this family, for q = 1, is the (implicit) midpoint method, i.e., the

Crank–Nicolson method. Since this method is symplectic, it conserves quadratic invariants;

see, e.g., [32].

Assuming that nodal approximations Un, Rn to the nodal values u(·, tn) and r(tn), re-

spectively, have been computed, to include the study of possible linearizations and to avoid

repetitions, we consider the following variant of the q-stage Gauss method for the SAV

reformulation (2.13) of the initial and boundary value problem (1.1):





U̇ni = i∆Uni + iλRniW (Ũni) in Ω , i = 1, . . . ,q,

Uni =Un + τ
q

∑
j=1

ai jU̇
n j in Ω , i = 1, . . . ,q,

Uni = 0 on ∂ Ω , i = 1, . . . ,q,

(4.7)





Ṙni =
1

2
Re(W (Ũni),U̇ni), i = 1, . . . ,q,

Rni = Rn + τ
q

∑
j=1

ai jṘ
n j, i = 1, . . . ,q;

(4.8)

in Remark 4.1 we discuss three interesting choices for Ũni. Note that the quantities U̇ni and

Ṙni have been introduced here for notational convenience only. In fact, substituting U̇ni from

the first relation of (4.7) into the second relation of (4.7) as well as into the first relation of

(4.8), and subsequently substituting the new first relation of (4.8) into its second relation,

we obtain a coupled system for the internal stages Uni and Rni, i = 1, . . . ,q. In case the

quantities Ũni are known, the implementation of (4.7)–(4.8) requires only the solution of a
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coupled linear system for (Uni,Rni) ∈ H1
0 (Ω )×R, i = 1, . . . ,q. Once Uni and Rni have been

determined, we obtain the quantities U̇ni ∈ H1
0 (Ω ) and Ṙni ∈ R from the second relations

of (4.7) and (4.8), respectively, using the invertibility of the matrix A = (ai j). Using these

values, one computes the new approximations (Un+1,Rn+1) ∈ H1
0 (Ω )×R at the next time

level tn+1 through

(4.9)





Un+1 :=Un + τ
q

∑
i=1

biU̇
ni,

Rn+1 := Rn + τ
q

∑
i=1

biṘ
ni.

Remark 4.1 (Some choices for Ũni) Let Ũni := Uni, i = 1, . . . ,q, with unknown internal

stages Uni.Then, the scheme (4.7)–(4.9) reduces to the base (nonlinear) SAV–Gauss method;

for a detailed analysis of Gauss methods applied to the original initial and boundary value

problem (1.1), we refer to [23].

Next, consider the fixed-point linearization of the SAV–Gauss method, i.e., with given

Ũni = Uni
ℓ−1 and unknown Uni = Uni

ℓ ; see [3] for an analysis of this variant applied to the

original initial and boundary value problem (1.1).

A third possibility is to define Ũni by polynomial extrapolation of the values of the

intermediate approximations at the preceding time interval; see [4] for the case of the Allen–

Cahn equation and [26] for the case of the wave equation.

Theorem 4.1 (Structure preservation of the SAV–Gauss methods) The SAV–Gauss me-

thod, i.e., the method (4.7)–(4.9) with Ũni =Uni, i= 1, . . . ,q, is L2-conservative and satisfies

a discrete analogue of (2.8), namely

(4.10) ‖Un+1‖= ‖Un‖, n = 0, . . . ,N−1,

as well as

(4.11) Eτ (U
n+1,Rn+1) = Eτ (U

n,Rn), n = 0, . . . ,N −1.

Proof According to the first relation of (4.9), we have

∇Un+1 = ∇Un + τ
q

∑
i=1

bi∇U̇ni.

Squaring the L2-norms of both sides, i.e., taking the inner product of each side by itself, we

obtain

‖∇Un+1‖2 =
(

∇Un + τ
q

∑
i=1

bi∇U̇ni,∇Un + τ
q

∑
j=1

b j∇U̇n j
)

= ‖∇Un‖2 + τ
q

∑
i=1

bi

[
(∇U̇ni,∇Un)+(∇Un,∇U̇ni)

]
+ τ2

q

∑
i, j=1

bib j(∇U̇ni,∇U̇n j).

Substituting Un =Uni −τ ∑
q
j=1 ai jU̇

n j (the second relation in (4.7)) into the second term on

the right-hand side of the last relation, we obtain

‖∇Un+1‖2 = ‖∇Un‖2 +2τ
q

∑
i=1

bi Re
(
∇U̇ni,∇Uni)− τ2

q

∑
i, j=1

mi j(∇U̇ni,∇U̇n j),
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whence

(4.12) ‖∇Un+1‖2 = ‖∇Un‖2 +2τ
q

∑
i=1

bi Re
(
∇U̇ni,∇Uni),

since mi j = 0, i, j = 1, . . . ,q. Testing the first relation of (4.7) by U̇ni yields

‖U̇ni‖2 =−i(∇Uni,∇U̇ni)+ iλRni(W (Ũni),U̇ni),

which implies Re(∇U̇ni,∇Uni) = λRni Re(W (Ũni),U̇ni). Then, substituting this into (4.12),

we get

(4.13) ‖∇Un+1‖2 = ‖∇Un‖2 +2λτ
q

∑
i=1

biR
ni Re(W (Ũni),U̇ni).

Using here the first relation of (4.8), we obtain

(4.14) ‖∇Un+1‖2 = ‖∇Un‖2 +4λτ
q

∑
i=1

biṘ
niRni.

Similarly, we can obtain

|Rn+1|2 = |Rn|2 +2τ
q

∑
i=1

biṘ
niRni − τ2

q

∑
i, j=1

mi jṘ
niṘn j,

i.e.,

(4.15) |Rn+1|2 = |Rn|2 +2τ
q

∑
i=1

biṘ
niRni.

Notice that up to this point we followed the proof for the algebraic stability of the Gauss

methods; since we are interested in the energy conservation property, we do not consider

differences of approximations.

Now, multiplying (4.15) by 2λ and subtracting the result from (4.14), the last terms on

their right-hand sides cancel and we obtain the discrete energy invariance property (4.11).

The Gauss methods applied to (1.1) are L2-conservative; see [23,2]. As we shall see,

this is the case also for the (nonlinear) SAV–Gauss methods, applied to (2.13).

Indeed, squaring the L2-norms of both sides of the first relation in (4.9), i.e., taking the

L2-inner products of both sides by themselfs, we obtain

‖Un+1‖2 = ‖Un‖2 + τ
q

∑
i=1

bi

[
(U̇ni,Un)+(Un,U̇ni)

]
+ τ2

q

∑
i, j=1

bib j(U̇
ni,U̇n j).

Replacing Un in the second term on the right-hand side by Uni − τ ∑
q
j=1 ai jU̇

n j , see the

second relation in (4.7), we have

‖Un+1‖2 = ‖Un‖2 + τ
q

∑
i=1

bi

[
(U̇ni,Un,i)+(Un,i,U̇ni)

]
− τ2

q

∑
i, j=1

mi j(U̇
ni,U̇n j).

As already noted, mi j = 0, and thus

(4.16) ‖Un+1‖2 = ‖Un‖2 +Eτ (U
n,Un+1)
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with the discrepancy

(4.17) Eτ(U
n,Un+1) := 2τ

q

∑
i=1

bi Re(U̇ni,Uni).

Now, if the inner products (U̇ni,Uni), i = 1, . . . ,q, are imaginary, then the discrepancy

E (Un,Un+1) vanishes and the method is L2-conservative, i.e., it satisfies (4.10), the discrete

analogue of the first invariant (2.4). For the (nonlinear) SAV–Gauss methods, we have Ũni =
Uni, i = 1, . . . ,q, in (4.7)–(4.8), and it is evident from the first relation of (4.7) that the inner

products (U̇ni,Uni) = −i‖∇Uni‖2 + iλ (RniW (Uni),Uni), i = 1, . . . ,q, are indeed imaginary.

We infer that the (nonlinear) SAV–Gauss methods for (2.13) are L2-conservative. ⊓⊔
An immediate consequence of the proof of Theorem 4.1 is:

Corollary 4.1 (Energy preservation of the linearized SAV–Gauss methods) The SAV

method (4.7)–(4.9) with arbitrary Ũni, i = 1, . . . ,q, satisfies a discrete analogue of (2.8),

namely

(4.18) Eτ (U
n+1,Rn+1) = Eτ (U

n,Rn), n = 0, . . . ,N −1.

Remark 4.2 (Method (4.7)–(4.9) with arbitrary Ũni is not L2-conservative) Let us note

that the SAV method (4.7)–(4.9) with arbitrary Ũni, i = 1, . . . ,q, is, in general, not L2-

conservative.

Remark 4.3 (The linearized Crank–Nicolson method) The one-stage Gauss method is the

midpoint or Crank–Nicolson method. Similarly, it is easily seen that the one-stage (q = 1)

method (4.7)–(4.9) can be written in the form

(4.19)





∂̄Un+1 = i∆Un+ 1
2 + iλRn+ 1

2 W
(1

2
(Ũn+1 +Un)

)
,

∂̄ Rn+1 =
1

2
Re

(
W
(1

2
(Ũn+1 +Un)

)
, ∂̄Un+1

)
,

n = 0, . . . ,N −1.

Of course, for Ũn+1 =Un+1, (4.19) reduces to the SAV–Crank–Nicolson method (4.1).

Testing the first equation of (4.19) against ∂̄Un+1, integrating by parts the first term on

the right-hand side, and using the second equation of (4.19), we have

(4.20) ‖∂̄Un+1‖2 =−i(∇Un+ 1
2 ,∇∂̄Un+1)+2iλRn+ 1

2 ∂̄ Rn+1.

Taking imaginary parts, we see that (4.19) is energy-conservative, as it satisfies the discrete

analogue of the second invariance property (2.8), namely

(4.21) ‖∇Un+1‖2 −2λ |Rn+1|2 = ‖∇Un‖2 −2λ |Rn|2, n = 0, . . . ,N−1.

Furthermore, testing the first equation of (4.19) against Un+ 1
2 and integrating by parts

the first term on the right-hand side, we have

(∂̄Un+1,Un+ 1
2 ) =−i‖∇Un+ 1

2 ‖2 + iλRn+ 1
2
(
W
(1

2
(Ũn+1 +Un)

)
,Un+ 1

2
)
,

and thus, taking real parts,

Re(∂̄Un+1,Un+ 1
2 ) = λRn+ 1

2 Im
(
W
(1

2
(Ũn+1 +Un)

)
,Un+ 1

2
)
,
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whence

(4.22) ‖Un+1‖2 = ‖Un‖2 +2λRn+ 1
2 Im

(
W
(1

2
(Ũn+1 +Un)

)
,Un+ 1

2
)
.

Notice that from the second equation of (4.1) we only used the fact that Rn+ 1
2 is real.

Therefore, the discrete analogue of (2.4) is satisfies only if
(
W
(

1
2
(Ũn+1 +Un)

)
, Un+ 1

2

)

is real. One possibility is the nonlinear method, with Ũn+1 =Un+1; see §2.2.

Remark 4.4 (Other boundary conditions) It is evident from the derivation of the discrete

invariance properties (4.10) and (4.11) that they are valid also for homogeneous Neumann

boundary conditions as well as for periodic boundary conditions.

5 Numerical examples

We present results of several numerical experiments to illustrate our theoretical findings. In

space we discretized by the finite difference method in the first, one-dimensional example,

and used MATLAB, while in the second, two-dimensional example we discretized by the

finite element method, and used the software Freefem.

Example 5.1 We consider the following one-dimensional NLS equation

(5.1) ut = 0.1iuxx + i|u|p−1u, (x, t) ∈ [0,1]× (0,100],

subject to homogeneous Dirichlet boundary conditions, with initial value

u0(x) = sin(πx).

We present results for p = 5 and for p = 7.
We performed our calculations in double precision. In space we discretized by the stan-

dard centered three-point finite difference method with spatial stepsize h = 0.1. For the

temporal discretization of the original formulation of the NLS equation we used the lin-

earized (extrapolated) Crank–Nicolson (ECN) method, corresponding to (4.19), the stan-

dard Crank–Nicolson (CN) method (3.1), as well as the modified Crank–Nicolson (MCN)

method (3.8); in the ECN method we linearized by linearly extrapolating the values Un and

Un−1, Ũn+1 := 2Un −Un−1 and thus (Ũn+1 +Un)/2 = 1.5Un −0.5Un−1 , while the nonlin-

ear CN and MCN methods were implemented by several fixed point iterations in the nonlin-

ear term. We also employed the SAV–Crank–Nicolson (SAV–CN) method (4.1) to the SAV

reformulated problem. All these methods yield nodal approximations Un
j of the exact values

u( jh, tn), j = 0, . . . ,J = 1/h; the approximate solution Un of u(·, tn) is then the piecewise

linear interpolant of Un
0 , . . . ,U

n
J . The discrepancies Mn and Dn of the discrete mass (density)

and energy, respectively, between the numerical solutions Un and the starting value U0, the

piecewise linear interpolant of u0,

(5.2) Mn := |‖Un‖−‖U0‖| and Dn := |E(Un)−E(U0)|,

are presented in Figure 5.1–5.2 for various temporal stepsizes, for p = 7. Notice that Dn is

the discrepancy of the original energy E(Un), even for the SAV methods, rather than of the

modified energy Eτ (U
n,Rn). We can see that the discrepancies of the discrete mass are of

the order of the machine precision for the CN, MCN and SAV–CN methods; in contrast, the



16 Georgios Akrivis, Dongfang Li

 

 

PSfrag

ECN

CN

SAV–CN

MCN

M
n

0 20 40 60 80 100
t

100

10−5

10−10

10−15

10−20
 

 

ECN

CN

SAV–CN

MCN

M
n

0 20 40 60 80 100
t

10−4

10−6

10−8

10−10

10−12

10−14

10−16

10−18

10−20

Fig. 5.1 Example 5.1: The discrepancies Mn of the discrete mass (density), see (5.2), for p = 7 and τ = 1/40

(left) and τ = 1/80 (right), for the extrapolated Crank–Nicolson, Crank–Nicolson, SAV–Crank–Nicolson and

modified Crank–Nicolson methods.
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Fig. 5.2 Example 5.1: The discrepancies Dn of the discrete energy (Hamiltonian), see (5.2), for p = 7 and

τ = 1/40 (left) and τ = 1/80 (right), for the extrapolated Crank–Nicolson, Crank–Nicolson, SAV–Crank–

Nicolson and modified Crank–Nicolson methods.

discrepancies of the discrete energy are sufficiently small and remain nearly unchanged only

for the modified Crank–Nicolson (MCN) method (3.8) and for the SAV–CN method (4.1).

Furthermore, we present the modulus of the numerical solutions by the extrapolated

Crank–Nicolson, Crank–Nicolson, and SAV–Crank–Nicolson methods in Figure 5.3, as well

as the modulus of the differences of the numerical solutions by the SAV–CN method from

the numerical solutions by the ECN and CN methods, in the left and right panels of Figure

5.4, respectively. One can see that the differences between the solutions of these methods

increase in time. These results indicate that the structure-preserving methods are more ef-

fective for long time simulations.

Next, we applied the two-stage Gauss and SAV–Gauss methods. The discrepancies of the

discrete mass and energy are presented in Figures 5.5–5.6 for various temporal stepsizes, for

p= 5. One can see that the discrepancies of mass for the Gauss and the SAV–Gauss methods

as well as of the energy for the SAV–Gauss method are of the order of the machine precision.

These numerical results indicate that the SAV–CN and high-order SAV–Gauss methods

are L2-conservative and satisfy a discrete analogue of the energy conservation of the NLS

equation; in contrast, the standard Gauss methods for the original formulation of the NLS

are only L2-conservative.
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Fig. 5.3 Example 5: The modulus of the numerical solutions by the extrapolated Crank–Nicolson (left),

Crank–Nicolson (middle), and SAV–Crank–Nicolson (right) methods.

Fig. 5.4 Example 5: The modulus of the differences of the numerical solutions by the SAV–Crank–Nicolson

method from the numerical solutions by the extrapolated Crank–Nicolson (left panel) and Crank–Nicolson

(right panel) methods.

Finally, we tested the energy-conservation properties of the linearized SAV–Gauss meth-

ods. As in the case of the original form of the NLS equation, for the linearized one-stage

SAV–Gauss (or SAV–Crank–Nicolson) method, see (4.19), Ũn+1 is obtained by linearly ex-

trapolating the values Un and Un−1, Ũn+1 := 2Un −Un−1. For the linearized two-stage

SAV–Gauss method, Ũni, i = 1,2, are computed by polynomial extrapolation of the values

of the intermediate approximations Un−1,i, i = 1,2, at the preceding time interval,

(5.3)





Ũn1 =
1

c2 − c1
Un−1,2 −

( 1

c2 − c1
−1

)
Un−1,1 =

√
3Un−1,2 −

(√
3−1

)
Un−1,1,

Ũn2 =
(

1+
1

c2 − c1

)
Un−1,2 − 1

c2 − c1
Un−1,1 =

(
1+

√
3
)
Un−1,2 −

√
3Un−1,1.

The discrepancies of the discrete mass and energy for various stepsizes are presented in

Figures 5.7–5.8, for p = 5. The discrepancies of the discrete energy are of the order of the

machine precision, while the discrepancies of the discrete mass vary with time. These results

further confirm the conclusions in Remarks 4.1 and 4.3.

Example 5.2 We next consider the two-dimensional NLS equation

(5.4) ut = i(uxx +uyy)+ i|u|3u, (x,y, t) ∈ [0,1]× [0,1]× (0,100],
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(left) and τ = 1/80 (right), for the two-stage Gauss and SAV–Gauss methods.
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Fig. 5.6 Example 5.1: The discrepancies Dn of the discrete energy (Hamiltonian), see (5.2), for p = 5 and

τ = 1/40 (left) and τ = 1/80 (right), for the two-stage Gauss and SAV–Gauss methods.
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Fig. 5.7 Example 5.1: The discrepancies Mn of the discrete mass (density), see (5.2), for p = 5 and τ = 1/40

(left) and τ = 1/80 (right), for the linearized one- and two-stage Gauss and SAV–Gauss methods.
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Fig. 5.8 Example 5.1: The discrepancies Dn of the discrete energy (Hamiltonian), see (5.2), for p = 5 and

τ = 1/40 (left) and τ = 1/80 (right), for the linearized one- and two-stage Gauss and SAV–Gauss methods.

subject to homogeneous Dirichlet boundary conditions, with initial value

u0(x,y) = x2(1− x)2y2(1− y)2.

For the space discretization we used the software Freefem with linear finite elements and

a uniform triangular mesh with 11 nodes in each direction; the linear solver uses the general-

ized minimal residual (with tolerance 10−16). In time we first discretized by the extrapolated

Crank–Nicolson method, the Crank–Nicolson method (3.1) and the SAV–Crank–Nicolson

method (4.1), respectively. The discrepancies Mn and Dn of the discrete mass (density) and

energy, are presented in Figure 5.9–5.10 for various temporal stepsizes. Notice that Dn is

the discrepancy of the original energy E(Un), even for the SAV methods, rather than of the

modified energy Eτ (U
n,Rn). We can see that the discrepancies of the discrete mass are less

than 10−15 for both the Crank–Nicolson and SAV–Crank–Nicolson methods; in contrast, the

discrepancies of the discrete energy are sufficiently small and remain nearly unchanged only

for the SAV–Crank–Nicolson method.

We also present the modulus of the SAV–Crank–Nicolson approximations in Figure 5.11

as well as the modulus of the differences of the SAV–Crank–Nicolson approximations from

the extrapolated Crank–Nicolson and the Crank–Nicolson approximations in Figures 5.12

and 5.13, respectively. Again, the differences between these approximations increase as the

time increases. These results further confirm the effectiveness of the structure-preserving

methods for long time simulations.

6 Conclusions

It is well known that the Gauss methods for the nonlinear Schrödinger (NLS) equation are

L2-conservative but are not energy-conservative. In this article, we used the scalar auxiliary

variable (SAV) reformulation of the NLS equation and constructed classical, L2-conservative

SAV–Gauss methods satisfying a discrete analogue of the energy conservation property. An

important advantage of these structure-preserving methods is that they exhibit improved

long time behavior. We also developed computationally advantageous linearizations of the

base SAV–Gauss methods and discussed their conservation properties. The extrapolated lin-

early implicit variants are not L2-conservative; consequently, they are not suitable for long

time simulations.
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Fig. 5.9 Example 5.2: The discrepancies Mn of the discrete mass (density), see (5.2), for τ = 1/5 (left) and

τ = 1/10 (right), for the extrapolated Crank–Nicolson, Crank–Nicolson, and SAV–Crank–Nicolson methods.
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Fig. 5.10 Example 5.2: The discrepancies Dn of the discrete energy (Hamiltonian), see (5.2), for τ = 1/5

(left) and τ = 1/10 (right), for the extrapolated Crank–Nicolson, Crank–Nicolson, and SAV–Crank–Nicolson

methods.

IsoValue
9.86577e-05
0.000295973
0.000493288
0.000690604
0.000887919
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0.00128255
0.00147987
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0.00207181
0.00226913
0.00246644
0.00266376
0.00286107
0.00305839
0.0032557
0.00345302
0.00365033
0.00384765

IsoValue
9.11163e-05
0.000273349
0.000455581
0.000637814
0.000820047
0.00100228
0.00118451
0.00136674
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IsoValue
7.23322e-05
0.000216997
0.000361661
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0.00065099
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0.000940318
0.00108498
0.00122965
0.00137431
0.00151898
0.00166364
0.0018083
0.00195297
0.00209763
0.0022423
0.00238696
0.00253163
0.00267629
0.00282095

IsoValue
6.27685e-05
0.000188306
0.000313843
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0.000690454
0.000815991
0.000941528
0.00106706
0.0011926
0.00131814
0.00144368
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0.00194582
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0.0021969
0.00232244
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Fig. 5.11 Example 5.2: The modulus of the SAV–Crank–Nicolson approximations at t = 10,40,70,100 (from

left to right) for τ = 1/10.
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