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Abstract. We approximate the solutions of an initial- and boundary-value problem

for nonlinear Schrödinger equations (with emphasis on the ‘cubic’ nonlinearity) by two

fully discrete finite element schemes based on the standard Galerkin method in space

and two implicit, Crank–Nicolson-type second-order accurate temporal discretiza-

tions. For both schemes we study the existence and uniqueness of their solutions and

prove L
2 error bounds of optimal order of accuracy. For one of the schemes we also

analyze one step of Newton’s method for solving the nonlinear systems that arise

at every time step. We then implement this scheme using an iterative modification

of Newton’s method that, at each time step t
n, requires solving a number of sparse

complex linear systems with a matrix that does not change with n. The effect of this

‘inner’ iteration is studied theoretically and numerically.

1. Introduction

In this paper we shall study numerical methods of Galerkin-finite element type for

approximating the solution of the following initial- and boundary-value problem for

the Nonlinear Schrödinger equation (NLS). Let Ω ⊂ Rd, d = 1, 2 or 3, be a bounded

domain with boundary ∂Ω and let 0 < T < ∞ be given. We seek a complex-valued

function u = u(x, t), defined on Ω̄ × [0, T ] and satisfying

(1.1)











ut = i∆u+ if(u) in Ω̄ × [0, T ],

u = 0 on ∂Ω × [0, T ],

u(x, 0) = u0(x) in Ω̄ ,

where f : C → C is locally Lipschitz and u0 : Ω̄ → C is given. We shall assume

that the data of this problem are smooth and compatible enough so that it possesses

a unique solution, sufficiently smooth for our purposes.

Employing standard notation, we shall use the symbols Hs = Hs(Ω), H1
0 = H1

0 (Ω)

to denote the usual, complex (Hilbert) Sobolev spases. Let (·, ·) be the inner product

on L2 = H0 defined by (u, v) =
∫

Ω
u(x)v̄(x)dx for u, v ∈ L2, and denote by ‖·‖ the asso-

ciated L2 norm. We shall assume throughout the paper that f satisfies Im(f(v), v) = 0
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for any v ∈ H1
0 . Some of the results below will be obtained for such a general f .

But we shall be particularly interested in (and accordingly shall specialize our results

frequently to) the choice

(1.2) f(z) = λ|z|2z, λ real,

i.e. in the ‘cubic’ NLS, important in applications such as nonlinear optics, plasma

physics and water waves. We refer the reader to the surveys [12] and [9] and [8, §8.1]
for an overview of the physical significance and various properties of the equation, its

existence-uniqueness theory and for further references. It is straightforward to see that

the L2 norm of the solution u(·, t) = u(t) of (1.1) is an invariant of the equation, i.e.

that

(1.3) ‖u(t)‖ = ‖u0‖, 0 ≤ t ≤ T

holds. In addition, if f is given by (1.2), we obtain

(1.4) ‖∇u(t)‖2 − λ

2
|u(t)|44 = ‖∇u0‖2 − λ

2
|u0|44, 0 ≤ t ≤ T,

where, here and in the sequel, | · |p, 1 ≤ p ≤ ∞, p 6= 2, will denote the norm of

Lp = Lp(Ω) and (∇u,∇v) =
∑d

i=1(∂iu, ∂iv).

During the past ten years quite a few papers have appeared in the numerical analysis

and scientific computing literature on various aspects of numerical methods (of finite

difference, finite element, spectral or more specialized type) for NLS equations. See,

for example, [3], [4], [15], [10], [13], [5], [11], [19], [6], [17] and their lists of references.

In the present work we shall discretize (1.1) in space by the standard Galerkin

method. To this effect, for 0 < h < 1, let Sh be a finite-dimensional subspace of

continuous functions in H1
0 , (typically, vector spaces of piecewise polynomial functions

of a fixed degree defined on suitable partitions of Ω̄ and endowed with bases with

elements of small support) in which approximations to the solution u(t) of (1.1) will

be sought for 0 ≤ t ≤ T . We assume that Sh satisfies the following approximation

property: there exists an integer r ≥ 2 such that

(1.5) inf
ϕ∈Sh

(‖v − ϕ‖+ h‖v − ϕ‖1) ≤ chs‖v‖s, 1 ≤ s ≤ r, ∀v ∈ Hs ∩H1
0 ,

where ‖ · ‖s denotes the usual norm of Hs. We also suppose that, in addition, Sh

satisfies the inverse assumption

(1.6) |ϕ|∞ ≤ cI h
−d/2‖ϕ‖ ∀ϕ ∈ Sh ,

and that, if u is the solution of (1.1), there holds

(1.7) lim
h→0

sup
0≤t≤T

inf
ϕ∈Sh

{|u(t)− ϕ|∞ + h−d/2‖u(t)− ϕ‖} = 0;

this follows, as is well-known, from (1.5) and (1.6) provided there exists an interpolation

operator of smooth functions into Sh with reasonable L∞ approximation properties. In

(1.5), (1.6) and in the sequel, the symbols c, C, etc. denote positive generic constants,
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not necessarily the same at any two different places, which are independent of the dis-

cretization parameter h and the time step k, unless the contrary is explicitly indicated.

Such constants may depend of course on the solution u and the data of (1.1).

To set the stage for the Galerkin method one may define first the semidiscrete ap-

proximation of u(t) in Sh in the customary way, as the map uh : [0, T ] → Sh satisfying

(1.8)

{

(uht, ϕ) + i(∇uh,∇ϕ) = i(f(uh), ϕ) ∀ϕ ∈ Sh, 0 ≤ t ≤ T,

uh(0) = u0h,

where u0h is some approximation to u0 in Sh. In section 2 we show that uh exists

uniquely and, if u is sufficiently smooth and the initial condition u0h is chosen so that

(1.9) ‖u0 − u0h‖ ≤ chr ,

it satisfies the optimal rate-of-convergence L2 error estimate

max
0≤t≤T

‖u(t)− uh(t)‖ ≤ chr.

In the rest of the paper we are concerned with second-order accurate in t fully discrete

approximations to the system of ordinary differential equations represented by (1.8).

Let k > 0 be the (constant) time step and tn = nk, n = 0, 1, ..., J, where tJ = T . First,

we discretize (1.8) by a Crank–Nicolson type method (more precisely by the ‘midpoint’

or one-stage Gauss-Legendre implicit Runge-Kutta (IRK) scheme) and approximate

u(tj) = uj by U j ∈ Sh , 0 ≤ j ≤ J, defined by

(1.10)























1

k
(Un+1 − Un, ϕ) +

i

2
(∇(Un+1 + Un),∇ϕ)

= i(f(
1

2
(Un+1 + Un)), ϕ) ∀ϕ ∈ Sh, 0 ≤ n ≤ J − 1,

U0 = u0h.

This scheme has often been used for numerical computations in the literature, coupled

of course with various iterative techniques for solving at each time step the nonlinear

system of equations that it represents; see e.g. Sanz-Serna and Verwer [11], Tourigny

and Morris [17]. Verwer and Sanz-Serna discuss its convergence in the context of a

finite difference space discretization in [18]. It is easily seen that it is L2-conservative,

i.e. if a solution {Un} of (1.10) exists then

(1.11) ‖Un‖ = ‖U0‖ , 0 ≤ n ≤ J,

which is the discrete analog of (1.3); the scheme however does not conserve the discrete

analog of the second invariant (1.4). In section 3 we verify that, given Un, a solution

Un+1 of (1.10) exists in Sh. We next discuss the uniqueness of solutions of the discrete

scheme (1.10) when f is given by (1.2), assuming that U0 is bounded in L2 uniformly

in h – e.g. when U0 = Pu0 , where P is the L2 projection operator onto Sh – without

making any hypotheses on the existence, uniqueness and smoothness of solutions of

(1.1). If d = 1 we show that the solution Un+1 of (1.10) is unique, provided k is

sufficiently small. For d = 2, recall, cf. e.g. [1], that the continuous problem (1.1) has
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unique solutions in H2 for all t ≥ 0, provided u0 ∈ H2∩H1
0 , and, either λ ≤ 0 or λ > 0

and c0λ‖u0‖2 < 2 (where c0 is a positive constant occurring in a Gagliardo–Nirenberg

inequality, cf. (3.10) below), whilst for c0λ‖u0‖2 > 2 the solution may blow up in finite

time. We show that solutions of (1.10) are unique provided that c0|λ|‖U0‖2 < 1/4

if λ ≤ 0 and c0λ‖U0‖2 < .22... if λ > 0, which is a qualitatively ‘correct’ restriction

on the initial data U0 and λ if λ > 0. If λ < 0 we conjecture that the restriction is

not needed and uniqueness of solutions of (1.10) should hold for k sufficiently small,

perhaps under some mild hypothesis on u0 like u0 ∈ H2 ∩H1
0 , and for some reasonable

approximation U0 thereof. (It is not hard to see that uniqueness would follow, for k

sufficiently small, if one can prove a priori that for 0 ≤ n ≤ J |Un|44 = o(k−1) as k → 0

if d = 2, and |Un|44 = o(k−1/2) as k → 0 if d = 3.) Of course, if one is willing to impose

the mesh condition that |λ| ‖U0‖2kh−d be sufficiently small, then, as shown in section

3, Un is unique for d = 2 or 3.

We then proceed to prove an L2 error estimate for the scheme (1.10) for a general f

assuming that the solution of (1.1) is sufficiently smooth. In Theorem 3.1 we show that

if (1.9) holds and k = o(hd/4) then there exists a unique solution of (1.10) satisfying

(1.12) max
0≤n≤J

‖un − Un‖ ≤ c(k2 + hr).

(Uniqueness follows from the fact that solutions Un that are close to the exact solution

un in the sense of (1.12) are bounded, e.g. in L∞, uniformly in k and h.)

It is interesting to contrast these results for the scheme (1.10) with the analogous

ones for the following method, also of Crank–Nicolson type, written and analyzed here

in case that f is given by (1.2):

(1.13)























1

k
(Un+1 − Un, ϕ) +

i

2
(∇(Un+1 + Un),∇ϕ)

=
iλ

4
((|Un+1|2 + |Un|2)(Un+1 + Un), ϕ) ∀ϕ ∈ Sh, 0 ≤ n ≤ J − 1,

U0 = u0h.

This scheme was introduced by Delfour, Fortin, and Payre, [3] (the differencing of the

nonlinear term being motivated by a method of Strauss and Vazquez, [13]) and has

been used widely in computations in finite-difference or finite-element contexts; cf. e.g.

[3], [10], [14], [5]. As was pointed out in [3], solutions of (1.13) satisfy in addition to

(1.11) the discrete analog of (1.4) as well, i.e. the relation

(1.14) ‖∇Un‖2 − λ

2
|Un|44 = ‖∇U0‖2 − λ

2
|U0|44, 0 ≤ n ≤ J .

In section 3, after proving existence of solutions of (1.13), we turn to the question

of their uniqueness, which can be resolved now in a satisfactory manner, in parallel

with the results for the continuous problem, because of (1.14). In particular, it turns

out that if ‖U0‖1 ≤ c, c independent of h, then, solutions of (1.13) are unique, for

k sufficiently small, if d = 1 and, if λ ≤ 0, for d = 2 and 3 as well. In the case

d = 2, λ > 0, one must impose the condition that c0λ‖U0‖2 < 2 , exactly as for (1.1).

In [10] Sanz-Serna has proved an O(k2 + hr) L2-error estimate for the scheme (1.13)
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in one space dimension with periodic boundary conditions at the endpoints, provided

that u is sufficiently smooth, (1.9) holds and k = o(h). To complete the picture, we

show in Theorem 3.2 that if u is sufficiently smooth, (1.9) holds and k = o(hd/4) , then,

the solution of (1.13) satisfies the error estimate (1.12) as well.

Implementing the schemes (1.10) or (1.13) needs solving a nonlinear system of equa-

tions at each time step. In section 4 we study Newton’s method for scheme (1.10) with f

given by (1.2). In Theorem 4.1 we show that if suitable starting values are constructed

at each time step and one Newton iteration is performed, yielding the approximation

Un
1 ∈ Sh to Un , then, under the hypotheses of Theorem 3.1, the resulting method is

stable and

(1.15) max
1≤n≤J

‖Un
1 − Un‖ ≤ c(k2 + hr)

holds, i.e. the overall optimal-order L2 error estimate is preserved. Tourigny and

Morris, [17], have recently discussed the application of Newton’s method in the context

of (1.10) and shown computational results.

A disadvantage of Newton’s method is that the matrix of the linear system that

has to be solved at each time step tn changes with n. In section 5 we construct and

analyze a natural iterative scheme for solving at each time step this linear system

approximately. This ‘inner’ loop is implemented by solving, for each n , jn linear

sparse complex systems of size dimSh×dimSh whose matrix does not change with n or

the inner iterations and yields an approximation Un,jn of Un
1 . We show that if jn ≥ 1

, the resulting overall scheme is stable and the O(k2 + hr) global error estimate is

preserved. It is evident that increasing the number jn of inner iterations improves the

error constant and the conservation properties of the method. The scheme of course

is not L2-conservative - nor is, for that matter, the exact Newton’s method with a

finite number of Newton steps -. But it is important to gain an idea of what jn should

be in practice to yield acceptable approximations Un,jn that conserve to a satisfactory

accuracy the two invariants of the problem. With this goal in mind we close the paper

by showing the results of some relevant computations on two simple test problems.

Our conclusions are that performing jn = 3 iterations at each time step yields very

good approximations. The values of the invariants degenerate if jn = 1 or 2 whilst

there is no need to go up to jn = 4.

In a sequel to this paper we shall analyze the convergence of higher-order full dis-

cretizations of (1.8) using q-stage, q > 1, IRK methods satisfying suitable consistency

and stability conditions; these methods yield highly accurate approximations. The

specific class of the Gauss-Legendre IRK methods are, in addition, L2–conservative.

The scheme (1.10) is the lowest-order (q = 1) member of the latter class.

The authors record their thanks to their students, Messrs. Theodore Katsaounis

and Michael Plexousakis for programming the schemes and performing the numerical

experiments reported in section 5.
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2. Semidiscrete Approximation

In this section we shall briefly study the semidiscrete approximation uh of u defined

by (1.8). If uh(t) exists for 0 ≤ t ≤ T , putting ϕ = uh in (1.8) and taking real parts

leads easily to

(2.1) ‖uh(t)‖ = ‖u0h‖, 0 ≤ t ≤ T,

which is the semidiscrete counterpart of (1.3). It may also easily be seen, if f is given by

(1.2), that putting ϕ = uht in (1.8) and taking imaginary parts yields that uh satisfies

the counterpart of (1.4) as well.

Since f is locally Lipschitz, the O.D.E. system (1.8) has a unique solution, at least

locally. Fix h and assume that [0, th), 0 < th ≤ T , is the maximal interval of existence-

uniqueness of uh(t). For t ∈ [0, th) (2.1) and (1.6) yield that |uh(t)|∞ ≤ c(h) <∞ ; we

conclude by continuity that th = T , i.e. that uh exists uniquely on [0, T ].

To find a bound for the error ‖u(t)− uh(t)‖ we use the following well-known device.

Fix δ > 0 and let Mδ = {z ∈ C : ∃(x, t) ∈ Ω̄× [0, T ] |z−u(x, t)| < δ}. Let fδ : C → C

be a globally Lipschitz continuous function that coincides with f on Mδ and let L be

its Lipschitz constant; it is not assumed that Im(fδ(v), v) = 0 for v ∈ H1
0 . We consider

next the auxiliary function vh : [0, T ] → Sh, defined as the unique solution of the

system of O.D.E.’s

(2.2)

{

(vht, ϕ) + i(∇vh,∇ϕ) = i(fδ(vh), ϕ) ∀ϕ ∈ Sh, 0 ≤ t ≤ T,

vh(0) = u0h.

First, we shall estimate the error ‖u(t) − vh(t)‖ by comparing in the customary way

vh with the elliptic projection PIu of u. In general, given v ∈ H1
0 , define its elliptic

projection PIv ∈ Sh by

(2.3) (∇(PIv),∇ϕ) = (∇v,∇ϕ) ∀ϕ ∈ Sh.

Then, it may be shown that PIv satisfies

(2.4) ‖v − PIv‖+ h‖v − PIv‖1 ≤ chr‖v‖r ∀v ∈ Hr ∩H1
0 .

Lemma 2.1. Let vh be defined by (2.2). Then, if u is sufficiently smooth,

(2.5) max
0≤t≤T

‖u(t)− vh(t)‖ ≤ c(‖u0 − u0h‖+ hr).

Proof. Write u− vh = (u− PIu) + (PIu− vh) = ρ+ θ. Since f and fδ coincide on Mδ,

(2.2), (1.1) and (2.3) give for ϕ ∈ Sh

(θt, ϕ) + i(∇θ,∇ϕ) = −(ρt, ϕ) + i(fδ(vh)− fδ(u), ϕ) , 0 ≤ t ≤ T.

Putting ϕ = θ and taking real parts yields d
dt

‖θ(t)‖2
2

≤ (‖fδ(vh)− fδ(u)‖+ ‖ρt‖) ‖θ(t)‖ .
Hence,

(2.6)

d

dt
‖θ(t)‖ ≤ L‖vh − u‖+ ‖ρt‖

≤ C(‖θ(t)‖+ ‖ρt(t)‖+ ‖ρ(t)‖), 0 ≤ t ≤ T.

Gronwall’s Lemma, (2.3) and (2.4) yield now (2.5). �
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We now proceed to bound ‖u−uh‖. In the following result and in the sequel we shall

omit, in general, to state hypotheses or the type “let h (or k) be sufficiently small” or

“let u be sufficiently smooth”.

Theorem 2.1. Let uh be the solution of (1.8) and suppose that u0h satisfies (1.9). Then

(2.7) max
0≤t≤T

‖u(t)− uh(t)‖ ≤ chr .

Proof. (1.9) and (2.5) give

(2.8) max
0≤t≤T

‖u(t)− vh(t)‖ ≤ chr.

Defining ρ, θ as in the proof of Lemma 2.1 and using (1.6), (2.8) and (2.4) yields, for

0 ≤ t ≤ T and any ϕ ∈ Sh:

|u(t)− vh(t)|∞ ≤ |ρ(t)|∞ + |θ(t)|∞
≤ |u(t)− ϕ|∞ + |ϕ− PIu(t)|∞ + |θ(t)|∞
≤ |u(t)− ϕ|∞ + Ch−d/2(‖u(t)− ϕ‖+ ‖ρ(t)‖+ ‖θ(t)‖)
≤ |u(t)− ϕ|∞ + Ch−d/2‖u(t)− ϕ‖+ Chr−d/2.

We conclude, by (1.7), that there exists h0 > 0 such that for h ≤ h0 , vh(x, t) ∈Mδ for

(x, t) ∈ Ω̄ × [0, T ]. For such h , obviously uh = vh and (2.7) follows from (2.8). �

Remark 2.1. Suppose that d = 1, f is given by (1.2) and let ‖u0h‖1 ≤ C. Then, using

the Sobolev inequality (which may be easily established on [0, 1])

(2.9) |v|44 ≤ 2‖v‖3 ‖vx‖ , ∀v ∈ H1
0

we obtain from (2.1) and the semidiscrete version of (1.4) that ‖uhx(t)‖ and |uh(t)|4 are
uniformly bounded for h ∈ (0, 1) , t ∈ [0, T ] , by a constant independent of h. Hence,

by Sobolev’s theorem, a similar bound holds for |uh(t)|∞ and the error estimate (2.7)

follows with no recourse to (1.6), (1.7) or fδ. �

3. Fully Discrete Approximations

In this section we shall study the existence, uniqueness and convergence to the exact

solution of (1.1) of the solutions of the fully discrete schemes (1.10) and (1.13).

We start with (1.10) To prove existence of solutions we shall use the following

complex-valued version of a well-known Brouwer-type fixed-point result, cf. [2].

Lemma 3.1. Let (H, (·, ·)) be a finite-dimensional inner product space and ‖ · ‖ the

associated norm. Let g : H → H be continuous and assume that there exists α > 0

such that for every z ∈ H with ‖z‖ = α there holds Re(g(z), z) ≥ 0. Then, there exists

a z∗ ∈ H such that g(z∗) = 0 and ‖z∗‖ ≤ α.

Proof. Assume that for every z ∈ H with ‖z‖ ≤ α we have g(z) 6= 0. Let B = {z ∈
H : ‖z‖ ≤ α} and define p : B → B by p(z) = −αg(z)/‖g(z)‖. Since p is continuous,

by Brouwer’s fixed-point theorem, there is a z0 ∈ B such that p(z0) = z0; but this
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would yield ‖z0‖ = ‖p(z0)‖ = α and ‖z0‖2 = (p(z0), z0) = −α(g(z0), z0)/‖g(z0)‖ ≤ 0, a

contradiction. �

Put now Un+1/2 = Un+Un+1

2
and defining Φ : Sh → Sh by

(Φ(v), χ) =
1

2
[−(∇v,∇χ) + (f(v), χ)] , v, χ ∈ Sh,

rewrite (1.10) with U0 = u0h as

(3.1) Un+1/2 = Un + ikΦ(Un+1/2) , 0 ≤ n ≤ J − 1.

Given Un, let Π : Sh → Sh be defined for v ∈ Sh by Π(v) = v − Un − ikΦ(v). Then

Re(Π(v), v) = ‖v‖2 − Re(Un, v) ≥ ‖v‖ (‖v‖ − ‖Un‖). Hence, for every v ∈ Sh such

that ‖v‖ = ‖Un‖ + 1, there holds Re(Π(v), v) > 0 ; existence of a v∗ ∈ Sh such that

Π(v∗) = 0, i.e. of a Un+1 satisfying (1.10), follows from Lemma 3.1. Setting now

ϕ = Un + Un+1 in (1.10) and taking real parts yields (1.11).

We next investigate the uniqueness of solutions of (1.10) in the case that f is given

by (1.2), i.e. when f(u) = λ|u|2u, λ ∈ R. Given Un ∈ Sh let V,W ∈ Sh satisfy (3.1),

i.e. let

(3.2) V = Un + ikΦ(V ), W = Un + ikΦ(W ).

Then ‖V −W‖2 = − ik
2
‖∇(V −W )‖2 + ik

2
(f(V )− f(W ), V −W ) from which

(3.3a) ‖V −W‖2 = −k
2
Im(f(V )− f(W ), V −W ),

(3.3b) ‖∇(V −W )‖2 = Re(f(V )− f(W ), V −W ).

Hence, by Hölder’s inequality we obtain

(3.4a) ‖V −W‖2 ≤ k

2
|f(V )− f(W )|4/3 |V −W |4,

(3.4b) ‖∇(V −W )‖2 ≤ |f(V )− f(W )|4/3 |V −W |4.
Since f(z) = λ|z|2z, we have |f(z1)−f(z2)| ≤ |λ| (|z1|+ |z2|)2|z1− z2|, for z1, z2 ∈ C.

Therefore, by Hölder’s inequality

(3.5) |f(V )− f(W )|4/3 ≤ |λ|
∣

∣|V |+ |W |
∣

∣

2

4
|V −W |4 ≤ 4|λ| |V,W |24 |V −W |4,

where we denote |V,W |p = max(|V |p, |W |p). Note also that taking in the first equation

of (3.2) the inner product with V and then real parts yields for V (and ditto for W ):

(3.6) k‖∇V ‖2 − λk|V |44 = 2 Im(Un, V ) ≤ 2‖U0‖2,
where we have used the fact that, by (3.2), (1.11),

‖V,W‖ = max(‖V ‖, ‖W‖) ≤ ‖U0‖.
The estimates (3.3)–(3.6) are used below to show that, under suitable hypotheses,

V =W , a fact that implies uniqueness of Un.
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If d = 1, using the Sobolev-type inequality (2.9), (3.4) and (3.5) we obtain |V −W |44 ≤
c k3/2λ2|V,W |44 |V −W |44, from which, if V 6= W, we would have

(3.7) 1 ≤ ck3/2λ2|V,W |44.
Assume now that there exists c independent of h such that ‖U0‖ ≤ c (e.g. take U0 as

the L2 projection of u0 ∈ L2 onto Sh). First let λ ≤ 0. Then (3.6) yields

(3.8) ‖Vx‖ ≤ ck−1/2,

which by (2.9) implies in turn that

(3.9) |V |44 ≤ ck−1/2

and two analogous estimates for W . Hence by (3.7) 1 ≤ ckλ2, a contradiction if k is

sufficiently small. Let now λ > 0. (2.9) gives |V |44 ≤ c1‖Vx‖, which in view of (3.6)

yields k‖Vx‖2 − c1kλ‖Vx‖ ≤ k‖Vx‖2 − kλ|V |44 ≤ C. Therefore ‖Vx‖ ≤ λc1 + C1/2k−1/2

and consequently, if k is sufficiently small, (3.8) and (3.9) hold in this case as well;

uniqueness follows again.

If d = 2 (2.9) is replaced by the Gagliardo–Nirenberg inequality, [1], [7]:

(3.10) v|44 ≤ c0‖v‖2‖∇v‖2 , ∀v ∈ H1
0 ,

where c0 is no greater than π−1, cf. [7]. Using now (3.10) in conjunction with (3.4)

and (3.5) yields |V −W |44 ≤ 8c0kλ
2|V,W |44 |V −W |44, i.e. if V 6=W that

(3.11) 1 ≤ 8c0kλ
2|V,W |44.

If λ ≤ 0, then (3.6) yields that ‖∇V ‖2 ≤ 2k−1‖U0‖2 and, in turn, (3.10) gives

|V |44 ≤ 2c0k
−1‖U0‖4. This (which holds for W as well), inserted in (3.11) results

in a contradiction if c0|λ| ‖U0‖2 < 1
4
. If λ > 0 (3.10) substituted in (3.6) yields

‖∇V ‖2 ≤ 4k−1‖U0‖2/(2 − λ‖U0‖2) provided that λ‖U0‖2 < 2. Hence, by (3.10),

|V |44 ≤ 2c0k
−1‖U0‖4/(1 − λc0‖U0‖2). As a consequence, (3.11) gives a contradiction

if c0λ‖U0‖2 <
√
65−1
32

= .22069 . . . . As pointed out in the Introduction this is a

qualitatively ‘correct’ restriction if λ > 0. (3.11) of course shows that if the esti-

mate |Un|44 = o(k−1), k → 0, 0 ≤ n ≤ J , can be established, then the Un are

unique in two space dimensions. If d = 3, (3.10) should be replaced by the inequality

|v|44 ≤ c‖v‖ ‖∇v‖3, valid for v ∈ H1
0 . Then (3.11) becomes 1 ≤ ck1/2λ2|V,W |44 and

uniqueness holds therefore if |Un|44 = o(k−1/2), k → 0, 0 ≤ n ≤ J .

In another direction note that in any dimension, it follows from the definition of f

that

‖f(V )− f(W )‖ ≤ |λ|
(

∫

Ω

(|V |+ |W |)4 |V −W |2dx
)

1

2 ≤
√
2 |λ| |V,W |2∞‖V −W‖.

Hence (3.3a) and the Cauchy–Schwarz inequality would give if V 6=W , that

1 ≤ k√
2
|λ| |V,W |2∞.

Therefore, use of (1.6) yields uniqueness if the mesh condition kh−d|λ| ‖U0‖2 <
√
2c−2

I

is imposed.
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We collect all these observations in

Proposition 3.1. For 0 ≤ n ≤ J , there exists a solution Un ∈ Sh of the scheme (1.10)

that satisfies (1.11). If f is given by (1.2) this solution is unique provided one of the

following holds:

(i) d = 1, ‖U0‖ ≤ c for some constant c independent of h , and k is sufficiently

small.

(ii) d = 2 and c0|λ| ‖U0‖2 < 1
4
if λ ≤ 0 or c0λ‖U0‖2 <

√
65−1
32

if λ > 0.

(iii) d = 2, |Un|44 = o(k−1) as k → 0 for 0 ≤ n ≤ J and k is sufficiently small.

(iv) d = 3, |Un|44 = o(k−1/2) as k → 0 for 0 ≤ n ≤ J and k is sufficiently small.

(v) 1 ≤ d ≤ 3 and |λ| ‖U0‖2kh−d <
√
2c−2

I , where cI is the constant of (1.6). �

We proceed now to prove an L2 error estimate for (1.10). Let δ,Mδ, fδ, L be defined

as in section 2. Then define V n by

(3.12)



















1

k
(V n+1 − V n, χ) +

i

2
(∇(V n+1 + V n),∇χ) = i(fδ(

1

2
(V n+1 + V n)), χ)

∀χ ∈ Sh, 0 ≤ n ≤ J − 1,

V 0 = u0h.

The existence of V n+1 follows from a slight modification of the argument for the

existence of Un+1 since Im(fδ(v), v) is not necessarily zero for v ∈ H1
0 . We use instead

the boundedness of fδ on C, something that we can always arrange. Uniqueness of

V n+1 is trivial: (3.3a) is replaced now by the fact that

‖V −W‖2 = −k
2
Im(fδ(V )− fδ(W ), V −W ) ≤ kL

2
‖V −W‖2

implying V = W if k < 2/L. Estimating the error ‖un − V n‖ is also straightforward

by the standard energy argument for Crank–Nicolson–Galerkin methods, cf. e.g. [16]:

Lemma 3.2. If V n satisfy (3.12) and u is sufficiently smooth then

(3.13) max
0≤n≤J

‖un − V n‖ ≤ c(u, δ)(‖u0 − u0h‖+ k2 + hr).

Proof. Let θn = V n − PIu
n, ρn = PIu

n − un. By (2.4)

(3.14) ‖ρn‖ ≤ c(u)hr.

To estimate θn note that (3.12), (2.3) and (1.1) yield for 0 ≤ n ≤ J − 1, χ ∈ Sh

(3.15) (θn+1 − θn, χ) +
ik

2
(∇(θn+1 + θn),∇χ) = −k(ωn, χ),
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where ωn = ωn
1 + ωn

2 + ωn
3 + ωn

4 and

ωn
1 = k−1[(PI − I)(un+1 − un)]

ωn
2 = k−1(un+1 − un)− u

n+1/2
t

ωn
3 = i{∆un+1/2 − 1

2
∆(un + un+1)}

ωn
4 = i{fδ(un+1/2)− fδ(

1

2
(V n + V n+1))},

where we put vn+1/2 = v(tn+1/2) = v(tn + k
2
). Now it is straightforward to check that

for constants c = c(u), ‖ωn
1‖ ≤ chr, ‖ωn

i ‖ ≤ ck2, i = 2, 3, and, using the Lipschitz

condition of fδ and (3.14), that

‖ωn
4‖ ≤ L

2
(‖θn‖+ ‖θn+1‖) + c(u, δ)(k2 + hr).

Taking χ = 1
2
(θn + θn+1) in (3.15) and then real parts yields ‖θn+1‖ ≤ ‖θn‖ + k‖ωn‖,

which, in view of the above estimates for the ωn
i and (3.14), yields (3.13) for k suffi-

ciently small. �

The proof of an L2 estimate for un − Un follows:

Theorem 3.1. Suppose that u is sufficiently smooth, (1.9) holds and k = o(hd/4).

Then, there exists a unique solution Un of (1.10) that satisfies

(3.16) max
0≤n≤J

‖un − Un‖ ≤ c(u)(k2 + hr).

Proof. Fix δ > 0. Then (1.9) and (3.13) give

(3.17) max
0≤n≤J

‖un − V n‖ ≤ c(k2 + hr).

For an arbitrary χ ∈ Sh and θn as in the proof of Lemma 3.2 we have, using (1.6),

(2.4), (3.13) that for 0 ≤ n ≤ J

|un − V n|∞ ≤ |un − χ|∞ + |χ− PIu
n|∞ + |θn|∞

≤ |un − χ|∞ + ch−d/2(‖un − χ‖+ ‖ρn‖) + |θn|∞
≤ (|un − χ|∞ + ch−d/2‖un − χ‖) + chr−d/2 + ch−d/2k2.

It is seen then, using (1.7) and our hypotheses, that |un − V n|∞ < δ
2
, 0 ≤ n ≤ J,

for k, h sufficiently small. Since, for k sufficiently small, |un+1/2 − 1
2
(un + un+1)|∞ <

δ
2
, 0 ≤ n ≤ J − 1, we conclude that 1

2
(V n + V n+1)(x) ∈ Mδ for x ∈ Ω̄, 0 ≤ n ≤ J − 1.

But then (3.12) gives that for 0 ≤ n ≤ J , V n = Un, where Un is a solution of (1.10).

Moreover Un satisfies (3.16) in view of (3.17). In addition, solutions of (1.10) that are

close to the exact solution un in the sense of e.g. (3.16) are necessarily unique. To see

this, note that (1.6), (1.7), (3.16) and (2.4) give for χ ∈ Sh, 0 ≤ n ≤ J

|un − Un|∞ ≤ |Un − χ|∞ + |un − χ|∞
≤ ch−d/2‖Un − un‖+ (ch−d/2‖un − χ‖+ |un − χ|∞) → 0, as k, h→ 0.
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Therefore maxn |Un|∞ ≤ c for some constant c independent of k and h. Such solutions

are unique by Proposition 3.1. �

We now proceed to the scheme (1.13). To establish existence of solutions let Un+1/2 =
1
2
(Un + Un+1), define Ψ : Sh → Sh, given U

n ∈ Sh, by

(Ψ (v), χ) =
1

2

[

− (∇v,∇χ) + λ

2
((|2v − Un|2 + |Un|2)v, χ)

]

, v, χ ∈ Sh,

and rewrite (1.13) as

(3.18) Un+1/2 = Un + ikΨ (Un+1/2) .

Defining now Π : Sh → Sh as Π(v) = v − Un − ikΨ (v) we may easily see that

Re(Π(v), v) > 0 for v ∈ Sh such that ‖v‖ = ‖Un‖ + 1. Existence of a solution of

Π(v) = 0 , i.e. of Un+1 , follows from Lemma 3.1. Setting now ϕ = Un + Un+1 in

(1.13) and taking real parts yields (1.11), whereas putting ϕ = Un+1 − Un and taking

imaginary parts yields (1.14). The a priori estimates that (1.14) provides are crucial in

the study of uniqueness of solutions of (1.13). Indeed, given Un ∈ Sh , let V,W satisfy

(3.18), i.e. suppose that

(3.19) V = Un + ikΨ (V ) , W = Un + ikΨ (W );

recall that by (1.11) ‖V,W‖ = max(‖V ‖, ‖W‖) ≤ ‖U0‖ . Denoting now G(V,W ) =

|2V − Un|2V − |2W − Un|2W , we see from (3.19) that

‖V −W‖2 = − ik

2
‖∇(V −W )‖2 + ikλ

2
(G(V,W ) + |Un|2(V −W ), V −W ).

Consequently, taking real and imaginary parts in the above and using Hölder’s inequal-

ity in the right-hand sides of the resulting identities, we obtain the following analogs

of (3.4a,b) in the case of (1.13):

(3.20a) ‖V −W‖2 ≤ |λ|k
2

|G(V,W )|4/3 |V −W |4,

(3.20b) ‖∇(V −W )‖2 ≤ |λ| |G(V,W )|4/3|V −W |4 + |λ| (|Un|2(V −W ), V −W ).

Now, since
∣

∣|2z1 − z|2z1 − |2z2 − z|2z2
∣

∣ ≤ 4(|z1|+ |z2|+ 1
2
|z|)2|z1 − z2| for z1, z2, z ∈ C,

a straightforward application of Hölder’s inequality yields that

|G(V,W )|4/3 ≤ c |V,W, Un|24 |V −W |4,
where |V,W, Un|4 = max(|V |4, |W |4, |Un|4) and c is a numerical constant. This esti-

mate, inserted in (3.20a,b), yields, respectively,

(3.21a) ‖V −W‖2 ≤ c1|λ| k |V,W, Un|24 |V −W |24,

(3.21b) ‖∇(V −W )‖2 ≤ c2|λ| |V,W, Un|24 |V −W |24,
where c1, c2 are numerical constants. Suppose finally that the initial condition U0 of

(1.13) is chosen so that

(3.22) ‖U0‖1 ≤ c, c independent of h.
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(This would be the case e.g. if u0 ∈ H1
0 and U0 = PIu

0 implying ‖U0‖1 ≤ c‖u0‖1.)
If d = 1, it follows from (2.9) and (3.22) that |Un|44 ≤ c‖∇Un‖ , 0 ≤ n ≤ J . Then

(1.14) yields ‖∇Un‖2 − λc‖∇Un‖ ≤ c′ ; we conclude

(3.23) ‖∇Un‖+ |Un|4 ≤ c , 0 ≤ n ≤ J,

which implies |V,W, Un|4 ≤ c. Then, by (2.9), (3.21a,b) we have

|V −W |44 ≤ cλ2k3/2|V −W |44,
i.e. uniqueness for k sufficiently small.

If d = 2 and λ ≤ 0, use of (3.10), (3.22) and (1.14) gives (3.23) again. It follows,

by (3.10), (3.21a,b) that |V −W |44 ≤ cλ2k|V −W |44. If d = 3 and λ ≤ 0, the same

argument goes through, since now the Sobolev-type inequality |v|44 ≤ c‖v‖ ‖∇v‖3,
v ∈ H1

0 , (3.22) and (1.14) imply (3.23); as a consequence, (3.21a,b) yield now that

|V −W |44 ≤ cλ2k1/2|V −W |44. In both cases we have uniqueness for k sufficiently small.

Finally, if d = 2 and λ > 0, (3.10), (3.22) and (1.14) yield ‖∇Un‖2(1− c0λ
2
‖U0‖2) ≤ c

and therefore, in the same manner as above, uniqueness for k sufficiently small, provided

c0λ‖U0‖2 < 2. We summarize in the following

Proposition 3.2. For 0 ≤ n ≤ J there exists a solution Un ∈ Sh of the scheme (1.13);

Un satisfies (1.11) and (1.14). Suppose U0 is chosen so that (3.22) holds and that k

is sufficiently small. Then Un is unique if d = 1 or d = 2 and λ ≤ 0 or d = 3 and

λ ≤ 0 or d = 2, λ > 0 and c0λ‖U0‖2 < 2. �

To complete the study of these schemes we finally prove an L2 error estimate for

(1.13).

Theorem 3.2. Suppose that u is sufficiently smooth, (1.9) holds and k = o(hd/4).

Then, there exists a unique solution Un of (1.13) that satisfies

(3.24) max
0≤n≤J

‖un − Un‖ ≤ c(k2 + hr).

Proof. We shall only outline the proof as many of the estimates are analogs of similar

ones in the proofs of Lemma 3.2 and Theorem 3.1. Let F : C × C → C be defined

by F (w, z) = λ
4
(|w|2 + |z|2)(w + z). Fix δ > 0 and let M̃δ =

{

(z, w) ∈ C × C :

∃(x, t), (y, s) ∈ v̄ar × [0, T ] |z − u(x, t)|, |w − u(y, s)| < δ
}

and Fδ : C × C → C be

a (globally) Lipschitz continuous function that coincides with F on M̃δ. Define V n,

0 ≤ n ≤ J , in Sh by

(3.25)



















1

k
(V n+1 − V n, χ) +

i

2

(

∇(V n+1 + V n),∇χ
)

= i
(

Fδ(V
n+1, V n), χ

)

∀χ ∈ Sh, 0 ≤ n ≤ J − 1,

V 0 = u0h.

That the V n exist uniquely in Sh follows in a straightforward manner from Lemma 3.1

and the Lipschitz continuity of Fδ, if k is sufficiently small. In addition, V n satisfies

(3.26) max
0≤n≤J

‖un − V n‖ ≤ c(k2 + hr) .
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To see this, let θn = V n − PIu
n. Then it follows from (1.1), (3.25) that (3.15) holds

again, mutatis mutandis, with ωn =
∑4

i=1 ω
n
i , where, for 1 ≤ i ≤ 3 , the ωn

i are

defined as in the proof of Lemma 3.2 and ωn
4 = i{f(un+1/2)−Fδ(V

n+1, V n)} , un+1/2 =
1
2
(un+un+1) . (Here f is given by (1.2).) This last term is estimated as follows, in view

of (3.14)

‖ωn
4‖ ≤‖|un+1/2|2(un+1/2 − 1

2
(un + un+1))‖

+‖(|un+1/2|2 − 1

2
(|un|2 + |un+1|2))(un + un+1)‖+ ‖Fδ(u

n+1, un)− Fδ(V
n+1, V n)‖

≤ c(u)k2 + L̃(‖un+1 − V n+1‖+ ‖un − V n‖)
≤ c(u, δ)(‖θn‖+ ‖θn+1‖+ k2 + hr),

where L̃ is the Lipschitz constant of Fδ. (3.26) follows now exactly as in the proof of

Lemma 3.2. Finally, repeating the argument of the proof of Theorem 3.1 it is seen,

since k = o(hd/4), that for k and h sufficiently small, |un − V n|∞ < δ
2
, 0 ≤ n ≤ J .

Hence (V n(x), V n−1(x)) ∈ M̃δ ∀x ∈ Ω̄, i.e. V n coincides with Un, a solution of (1.13),

and (3.24) holds. As before, we may argue that solutions of (1.13) satisfying (3.24) are

unique. �

4. Newton’s Method

In this section we shall study the fully discrete scheme that results when, at each

time step, the nonlinear system represented by (1.10) is approximated by one iteration

of Newton’s method with suitable starting conditions. In the sequel we suppose that

f is given by (1.2) and let RSh denote the space of the real-valued elements of Sh.

Hence, given ϕ ∈ Sh , there exist χ, ψ ∈ RSh such that ϕ = χ + iψ .

For n ≥ 1, let in (1.10) Un = V n + iW n, V n,W n ∈ RSh. It is straightforward to

check that applying one step of Newton’s method to the nonlinear system (1.10) yields

the following time stepping scheme, that, for 0 ≤ n ≤ J − 1 , given initial approxima-

tions V n+1
0 , W n+1

0 to V n+1,W n+1 ∈ RSh, determines the (final) approximations V n+1
1 ,

W n+1
1 ∈ RSh to V n+1, W n+1 as solutions of the linear system

(4.1a)

(V n+1
1 , χ)−k

2
(∇W n+1

1 ,∇χ) + λk

4

(

(V n+1
0 +V n

1 )(W
n+1
0 +W n

1 )(V
n+1
1 −V n+1

0 ), χ
)

+
λk

8

(

[(V n+1
0 + V n

1 )
2 + 3(W n+1

0 +W n
1 )

2] (W n+1
1 −W n+1

0 ), χ
)

= (V n
1 , χ) +

k

2
(∇W n

1 ,∇χ)−
λk

8

(

[(V n+1
0 + V n

1 )
2 + (W n+1

0 +W n
1 )

2]

· (W n+1
0 +W n

1 ), χ
)

∀χ ∈ RSh,
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(4.1b)

(W n+1
1 , χ)+

k

2
(∇V n+1

1 ,∇χ)−λk

4

(

(V n+1
0 +V n

1 )(W
n+1
0 +W n

1 )(W
n+1
1 −W n+1

0 ), χ
)

− λk

8

(

[3(V n+1
0 + V n

1 )
2 + (W n+1

0 +W n
1 )

2](V n+1
1 − V n+1

0 ), χ
)

= (W n
1 , χ)−

k

2
(∇V n

1 ,∇χ) +
λk

8

(

[(V n+1
0 + V n

1 )
2 + (W n+1

0 +W n
1 )

2]

· (V n+1
0 + V n

1 ), χ
)

∀χ ∈ RSh.

To provide initial values for the scheme, define V 0
1 ,W

0
1 ∈ RSh by

(4.2) V 0
1 + iW 0

1 = U0
1 = U0 = Pu0,

where P is the L2-projection operator onto Sh. Then, at each time step n, 0 ≤ n ≤ J−1,

compute the starting values V n+1
0 + iW n+1

0 = Un+1
0 needed in (4.1a,b) by

(4.3) Un+1
0 = 2Un

1 − Un−1
1 if n = 1, . . . , J − 1,

(4.4) (U1
0 − U0

1 , χ) +
ik

2

(

∇(U1
0 + U0

1 ),∇χ
)

= ikλ
(

|U0
1 |2U0

1 , χ
)

∀χ ∈ Sh.

In the theorem that follows we shall show that these approximations exist uniquely

and satisfy an L2 optimal-order error estimate. To this effect we fix δ > 0 and, denoting

by v, resp. w, the real, resp. imaginary, parts of u, the solution of (1.1), define the

intervals Iδ, Jδ as

(4.5)
Iδ =

[

− δ + inf v(x, t) , δ + sup v(x, t)
]

,

Jδ =
[

− δ + inf w(x, t) , δ + sup w(x, t)
]

,

where the inf and sup are taken over Ω̄ × [0, T ]. We also suppose that k and h are

sufficiently small, and the hypotheses of Theorem 3.1 (with U0 = Pu0 ) hold so that

there exists a unique solution Un , 0 ≤ n ≤ J, of (1.10) satisfying

(4.6) max
0≤n≤J

|un − Un|∞ <
δ

2
.

Theorem 4.1. Suppose u is sufficiently smooth, k = o(hd/4) and let Un, 0 ≤ n ≤ J,

satisfy (1.10) and (4.6). Then, Un
1 = V n

1 + iW n
1 , n = 0, . . . , J, are uniquely defined by

(4.1)–(4.4) and satisfy

(4.7) max
0≤n≤J

‖Un
1 − Un‖ ≤ C∗(k2 + hr),

for some constant C∗ = C∗(u) , independent of k and h.

Proof. (4.4) defines U1
0 uniquely as solution of an invertible linear system. Moreover,

using techniques of section 3, we may easily see that

(4.8) ‖U1
0 − U1‖ ≤ C̃(k2 + hr).

To establish (4.7) we shall prove that U ℓ
1 exists uniquely for 0 ≤ ℓ ≤ J and that

(4.9) ‖U ℓ
1 − U ℓ‖ ≤ Cℓ(k

2 + hr)
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for constants Cℓ independent of k, h, that are given for 2 ≤ ℓ ≤ J by

(4.10) Cℓ = Dk + (1 +Dk)Cℓ−1 +DkCℓ−2,

where C0 = 0, C1 will be specified below and the constant D is defined (with 20/20

hindsight) as follows: Let c1 be the maximum of the two constants (both denoted by

c(u)) occurring in (3.16) and in

(4.11) max
1≤n≤J−1

‖un+1 − 2un + un−1‖ ≤ c(u)k2.

Define Lδ so that for g : R2 → R , g(x, y) = (x2 + y2)y there holds

(4.12) max
x,y∈Iδ∪Jδ

|∂1g(x, y)|+ max
x,y∈Iδ∪Jδ

|∂2g(x, y)| ≤ Lδ,

where we denote ∂1g = gx, ∂2g = gy etc. Moreover, for fixed 0 < γ < 1 define c2 so

that

(4.13)
1 + 2Lδ|λ|k
1− 2Lδ|λ|k

≤ 1 + c2k for k ≤ γ

2Lδ|λ|
.

Using this notation define finally D as

(4.14) D = max(5c1, 2c2 + 3).

Given C1, it may be easily seen that if the Cℓ are given by (4.10), then there exists a

constant C∗, independent of k and h, such that

(4.15) max
0≤n≤J

Cn ≤ C∗.

In the sequel we shall also suppose that k, h will be eventually taken to be sufficiently

small; in particular, so small that inequalities of the type c C∗h−d/2(k2 + hr) < δ
2
are

satisfied. This of course can always be achieved since k = o(hd/4) and r ≥ 2.

The proof of (4.9)–(4.10) will be done inductively. (4.9) holds trivially for ℓ = 0

(with C0 = 0) in view of the choice (4.2). Assume that given 0 ≤ n ≤ J − 1, U ℓ
1 exist

uniquely and (4.9) holds for 0 ≤ ℓ ≤ n. We shall show that Un+1
1 exists uniquely and

that (4.9) is true if ℓ = n + 1.

It is straightforward to check first that V n+1
1 , W n+1

1 exist uniquely in RSh (and hence

Un+1
1 in Sh) as solution of the 2dimSh×2dimSh invertible linear system represented by

(4.1a,b). To this end, consider the associated homogeneous system (given V n+1
0 , W n+1

0 ,

V n
1 ,W

n
1 ). Note that (1.6), (4.9) and (4.6) yield the a priori estimates |V ℓ

1 |∞+|W ℓ
1 |∞ ≤ c,

0 ≤ ℓ ≤ n, and that (1.6), (4.8) and (4.3) also yield then that |V 1
0 |∞ + |W 1

0 |∞ ≤ c,

|V n+1
0 |∞ + |W n+1

0 |∞ ≤ c. Conclude then, by putting χ = V n+1
1 , resp. χ = W n+1

1 ,

in (4.1a), resp. (4.1b), and adding, that the homogeneous system has only the trivial

solution.

The basic idea in the inductive step is to compare Un+1
1 with Ũn+1, where

(4.16)
(Ũ ℓ+1 − U ℓ

1, χ) +
ik

2

(

∇(Ũ ℓ+1 + U ℓ
1),∇χ

)

= ik
(

f(
1

2
(Ũ ℓ+1 + U ℓ

1)), χ
)

∀χ ∈ Sh, 0 ≤ ℓ ≤ n.
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Using techniques of section 3 it may be easily inferred from (4.9) that, for k, h suffi-

ciently small, (4.16) has a solution satisfying (since Ũ1 = U1)

(4.17) |Ũ ℓ+1 − uℓ+1|∞ <
δ

2
, 0 ≤ ℓ ≤ n.

In particular 1
2
(Ṽ ℓ+1 + V ℓ

1 )(x) ∈ Iδ,
1
2
(W̃ ℓ+1 +W ℓ

1)(x) ∈ Jδ, for 0 ≤ ℓ ≤ n , x ∈ Ω̄,

where Ũ ℓ+1 = Ṽ ℓ+1 + iW̃ ℓ+1. We also note that by (4.16), (1.10) and (4.6), (4.17),

(4.12), (4.13) there follows the stability estimate

(4.18) ‖U ℓ+1 − Ũ ℓ+1‖ ≤ (1 + c2k) ‖U ℓ − U ℓ
1‖ , 0 ≤ ℓ ≤ n.

Write now (4.16) as a system of two equations for Ṽ ℓ+1 and W̃ ℓ+1, and subtract

the first of the two resulting equations from (4.1a). Expand the nonlinear expressions

in the terms of the equation by Taylor’s theorem up to second-order terms about the

point
(

1
2
(V n+1

0 + V n
1 ),

1
2
(W n+1

0 +W n
1 )
)

to obtain

(4.19)

(V n+1
1 − Ṽ n+1, χ)− k

2

(

∇(W n+1
1 − W̃ n+1),∇χ

)

+
λk

2

(

∂1g
(1

2
(V n+1

0 + V n
1 ),

1

2
(W n+1

0 +W n
1 )
)

(V n+1
1 − Ṽ n+1), χ

)

+
λk

2

(

∂2g
(1

2
(V n+1

0 + V n
1 ),

1

2
(W n+1

0 +W n
1 )
)

(W n+1
1 − W̃ n+1), χ

)

− λk

8

(

∂21g(A,B)(Ṽ n+1 − V n+1
0 )2 + ∂22g(A,B)(W̃ n+1 −W n+1

0 )2

2∂1∂2g(A,B)(Ṽ n+1 − V n+1
0 )(W̃ n+1 −W n+1

0 ), χ
)

= 0 ∀χ ∈ RSh,

where

A =
1

2

[

ξ(Ṽ n+1 + V n
1 ) + (1− ξ)(V n+1

0 + V n
1 )
]

,

B =
1

2

[

ξ(W̃ n+1 +W n
1 ) + (1− ξ)(W n+1

0 +W n
1 )
]

,

and ξ = ξn : Ω̄ → [0, 1]. Denoting µij = maxx,y∈Iδ∪Jδ |∂i∂j g(x, y)|, cg = µ11 + 2µ12 +

µ22, taking in (4.19) χ = Ṽ n+1 − V n+1 and using (1.6), we see that

‖V n+1
1 − Ṽ n+1‖2 − k

2

(

∇(W n+1
1 − W̃ n+1),∇(V n+1

1 − Ṽ n+1)
)

≤ 1

2
|λ|Lδk

(

‖V n+1
1 − Ṽ n+1‖2 + ‖W n+1

1 − W̃ n+1‖ ‖V n+1
1 − Ṽ n+1‖

)

+
1

8
|λ|cg cI kh−d/2

(

‖Ṽ n+1 − V n+1
0 ‖2 + ‖W̃ n+1 −W n+1

0 ‖2

+ ‖Ṽ n+1 − V n+1
0 ‖ ‖W̃ n+1 −W n+1

0 ‖
)

‖V n+1
1 − Ṽ n+1‖.

In an entirely analogous manner a similar estimate may be obtained for ‖W n+1
1 −

W̃ n+1‖2. Adding the two inequalities gives

‖Un+1
1 − Ũn+1‖2 ≤Lδ|λ|k‖Un+1

1 − Ũn+1‖2

+
3
√
2

16
|λ|cg cI kh−d/2‖Ũn+1

0 − Un+1
0 ‖2 ‖Un+1

1 − Ũn+1‖.
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Hence taking Lδ|λ|k < 1
2
and putting α = 3

8

√
2|λ|cgcI gives

(4.20) ‖Un+1
1 − Ũn+1‖ ≤ αkh−d/2‖Un+1

0 − Ũn+1‖2.

(It is straightforward to check that (4.20) also holds if n = 0. This yields, in view of

(4.8), since Ũ1 = U1 and k = o(hd/4)

‖U1
1 − U1‖ ≤ αC̃2kh−d/2(k2 + hr)2

≤ C1(k
2 + hr),

where C1 is a constant independent of k and h. This inequality defines then C1 and

verifies (4.9) if ℓ = 1.) Finally, for n ≥ 1, since

Ũn+1 − Un+1
0 = (Ũn+1 − Un+1) + (Un+1 − un+1)− 2(Un − un) + (Un−1 − un−1)

+ (un+1 − 2un + un−1) + 2(Un − Un
1 )− (Un−1 − Un−1

1 ),

using (4.18), (3.16), (4.11), (4.9) for ℓ = n, n − 1 and the notation for constants

introduced in the beginning of the proof, we have

‖Ũn+1 − Un+1
0 ‖ ≤

(

5c1 + (3 + c2k)Cn + Cn−1

)

(k2 + hr) = dn+1(k
2 + hr).

It follows by (4.20), since dn+1 ≤ (4 + c2)C
∗ + 5c1, k = o(hd/4), by taking k and h

sufficiently small, that ‖Un+1
1 − Ũn+1‖ ≤ dn+1k(k

2+hr), i.e. the basic estimate sought.

This, together with (4.18), (4.9) for ℓ = n yields easily that

‖Un+1 − Un+1
1 ‖ ≤ ‖Un+1 − Ũn+1‖+ ‖Ũn+1 − Un+1

1 ‖
≤
(

Dk + (1 +Dk)Cn +DkCn−1

)

(k2 + hr)

= Cn+1(k
2 + hr),

which completes the inductive step. �

5. Implementation of Newton’s Method

To avoid having to solve the 2 dimSh × 2 dimSh real linear system of equations

represented by (4.1a,b) whose matrix changes with n, we shall devise, as stated in the

Introduction, an iterative method for solving for each n (4.1a,b) approximately. We

shall refer to it as the inner iteration, the ‘outer’ being the single step of Newton’s

method. This inner iteration requires solving, at each time step n, 0 ≤ n ≤ J, jn ≥ 1

linear sparse complex systems of size dimSh × dimSh and computes approximations

Un,j = V n,j + iW n,j, j = 0, 1, . . . , jn, to u
n as follows:

(5.1) U0,j0 = U0 = Pu0.

Using then starting values Un,0 computed by

(5.2) (U1,0 − U0, χ) +
ik

2

(

∇(U1,0 + U0),∇χ
)

= ik
(

f(U0), χ
)

∀χ ∈ Sh,

(5.3) Un+1,0 = 2Un,jn − Un−1,jn−1 if n = 1, 2, . . . , J − 1,
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the inner iteration is, for n = 0, . . . , J − 1 :

(5.4a)

(V n+1,j+1, χ)− k

2
(∇W n+1,j+1,∇χ)

+
λk

4

(

(V n+1,0 + V n,jn)(W n+1,0 +W n,jn)(V n+1,j − V n+1,0), χ
)

+
λk

8

(

[(V n+1,0 + V n,jn)2 + 3(W n+1,0 +W n,jn)2] (W n+1,j −W n+1,0), χ
)

=(V n,jn, χ) +
k

2
(∇W n,jn,∇χ)

− λk

8

(

[(V n+1,0 + V n,jn)2 + (W n+1,0 +W n,jn)2](W n+1,0 +W n,jn), χ
)

∀χ ∈ RSh , j = 0, . . . , jn+1 − 1,

(5.4b)

(W n+1,j+1, ψ) +
k

2
(∇V n+1,j+1,∇ψ)

− λk

4

(

(V n+1,0 + V n,jn)(W n+1,0 +W n,jn)(W n+1,j −W n+1,0), ψ
)

− λk

8

(

[3(V n+1,0 + V n,jn)2 + (W n+1,0 +W n,jn)2](V n+1,j − V n+1,0), ψ
)

=(W n,jn, ψ)− k

2
(∇V n,jn,∇ψ)

+
λk

8

(

[(V n+1,0 + V n,jn)2 + (W n+1,0 +W n,jn)2](V n+1,0 + V n,jn), ψ
)

∀ψ ∈ RSh , j = 0, . . . , jn+1 − 1.

The inner iteration may be written compactly in the form

(5.4′) A
(

V n+1,j+1

W n+1,j+1

)

+ Bn

(

V n+1,j

W n+1,j

)

= Fn, j = 0, . . . , jn+1 − 1,

where the real linear operators A,Bn on (RSh)
2 and the vector Fn ∈ (RSh)

2 are easily

discernible from (5.4a,b). In computations we implement the scheme in complex form,

i.e. seek Un+1,j+1 ∈ Sh, 0 ≤ n ≤ J − 1, 0 ≤ j ≤ jn+1 − 1, such that

(5.4′′)
(Un+1,j+1,ϕ) +

ik

2
(∇Un+1,j+1,∇ϕ)

= (Un,jn, ϕ)− ik

2
(∇Un,jn ,∇ϕ) + (ηn,j, ϕ) , ∀ϕ ∈ Sh,

where the complex-valued ηn,j depends on the real and imaginary parts of Un+1,j

(linearly) and on those of Un+1,0, Un,jn.

We shall estimate now the error ‖Un,jn − Un‖, where Un is the solution of (1.10).

Since the plan and most of the computations of the proof are very similar to those of

the proof of Theorem 4.1 we shall omit many details.
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Theorem 5.1. Under the hypotheses of Theorem 4.1 and given integers jn ≥ 1, Un,jn =

V n,jn + iW n,jn are defined uniquely in Sh by the scheme (5.1)–(5.4a,b) and satisfy

(5.5) max
0≤n≤J

‖Un,jn − Un‖ ≤ Ĉ∗(k2 + hr),

where Ĉ∗ is a constant that depends on u and jn but is independent of k and h.

Proof. It is obvious from (5.2) and (5.4′′) that Un,j , 0 ≤ n ≤ J − 1, 0 ≤ j ≤ jn, are

defined uniquely. Suppose that the conclusions of Theorem 3.1 and (4.6) hold given

δ > 0. We shall prove inductively that, for 0 ≤ ℓ ≤ J :

(5.6) ‖U ℓ,jℓ − U ℓ‖ ≤ Ĉℓ (k
2 + hr),

where, if 2 ≤ ℓ ≤ J ,

(5.7)
Ĉℓ =(C̃k)jℓ

{

5c1 +Dk + (3 +Dk)Ĉℓ−1 + (1 +Dk)Ĉℓ−2

}

+Dk + (1 +Dk)Ĉℓ−1 +DkĈℓ−2,

with c1, D as in the proof of Theorem 4.1 and C̃ a constant, that will be computed

below and depends on |λ|, max |u(x, t)| and δ. Given Ĉ0, Ĉ1, (5.7) implies the existence

of a constant Ĉ∗, independent of k and h, such that max0≤n≤J Ĉn ≤ Ĉ∗.

Now (5.6) is trivial for ℓ = 0 and Ĉ0 = 0. Assume that (5.6) holds for 0 ≤ ℓ ≤ n

and let Ũ ℓ+1
1 = Ṽ ℓ+1

1 + iW̃ ℓ+1
1 be defined by

(5.8) A
(

Ṽ ℓ+1
1

W̃ ℓ+1
1

)

+ Bn

(

Ṽ ℓ+1
1

W̃ ℓ+1
1

)

= Fℓ, 0 ≤ ℓ ≤ n.

As in section 4 it is easily seen that, for k, h sufficiently small, Ũ ℓ+1
1 , 0 ≤ ℓ ≤ n, exist

uniquely and

(5.9a) ‖Ũ1
1 − U1‖ ≤ C(k2 + hr),

(5.9b) ‖Ũ ℓ+1
1 − U ℓ+1‖ ≤

[

Dk + (1 +Dk)Ĉℓ +DkĈℓ−1

]

(k2 + hr) , 1 ≤ ℓ ≤ n + 1.

Subtracting (5.8) for ℓ = n from (5.4′) we obtain, after routine by now estimations,

that there exists C̃ = C̃(|λ|, |u|∞, δ) such that

(5.10) ‖Un+1,j+1 − Ũn+1
1 ‖ ≤ C̃k‖Un+1,j − Ũn+1

1 ‖, 0 ≤ j ≤ jn+1 − 1.

Also, (4.4), (5.2), (5.9a) and (5.10) give

‖U1,j1 − U1‖ ≤ Ĉ1 (k
2 + hr),

thus defining Ĉ1 and verifying (5.6) for ℓ = 1. The rest of the proof follows now that of

Theorem 4.1. Using e.g. an analogous decomposition for Ũn+1
1 −Un+1,0, the induction

hypotheses, (5.9b) and (5.10) yield

(5.11) ‖Un+1,jn+1−Ũn+1
1 ‖ ≤ (C̃k)jn+1

{

5c1+Dk+(3+Dk)Ĉn+(1+Dk)Ĉn−1

}

(k2+hr),

which together with (5.9b) implies ‖Un+1,jn+1 − Un+1‖ ≤ Ĉn+1(k
2 + hr). �
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This result tells us that, under our hypotheses, performing for each n, jn ≥ 1 inner

iterations guarantees the stability and the O(k2 + hr) asymptotic L2-error bound of

the scheme (5.1)–(5.4). (In fact, if jn = 1 for all n, and we write the scheme directly

in terms of Un,1, we get, for n ≥ 1, χ ∈ Sh

(Un+1,1 − Un,1, χ) +
ik

2

(

∇(Un+1,1 + Un,1),∇χ
)

= ik
(

f(
3

2
Un,1 − 1

2
Un−1,1), χ

)

,

which we recognize as a standard linearization of the Crank–Nicolson method obtained

by extrapolating to O(k2) from previous values in the nonlinear term. In particular,

this scheme is stable and has an L2 error bound of O(k2 + hr).)

From e.g. (5.11) it is evident that taking jn larger than one for each n should

improve the error constant and the conservation properties of the method. To get an

idea of what jn should be in practice for this purpose, we performed some numerical

experiments.

We first computed the numerical solution of an easy problem, namely of

(5.12)











ut = iuxx + i|u|2u, (x, t) ∈ [0, 1]× [0, 5],

u(0, t) = u(1, t) = 0,0 ≤ t ≤ 5,

u(x, 0) = sin πx, 0 ≤ x ≤ 1,

using piecewise linear, continuous elements in space, i.e. r = 2. (All of the experiments

reported in the sequel were performed in double precision using complex arithmetic

and the VAX Fortran compiler on a VAX 8600 at the University of Crete.) The

integrals involved in the nonlinear term, the projection of the initial condition etc.

were computed exactly. We computed the quantities

In1 = I1(t
n) = ‖Un,jn‖2(5.13)

In2 = I2(t
n) = ‖Un,jn

x ‖2 − 1
2
|Un,jn|44,(5.14)

i.e. the discrete analogs for (5.12) of the invariants (1.3) and (1.4). (Un,jn was computed

by (5.1), (5.2), (5.3), (5.4′′).) We took, for safety j1 = 4 at the first step and for n > 1

we experimented with values of jn equal to 1 or 2 or 3 or 4 for all n. In Table 1 we

show the values of I1 and I2 to 8 decimal digits at t = i, i = 0, 1, . . . , 5, from a run

with h = k = 0.01.

We deduce from this table (the evidence is corroborated by similar runs with smaller

h and k) that for the equation and time scale of (5.12) there is practically no difference

between the values of I1 and I2 corresponding to jn = 3 or 4. However there is a

distinct difference between taking jn = 2 or jn = 3. It appears that both I1 and I2 are

conserved well for jn = 3. In fact it is evident that taking jn = 3 we have practically

achieved the values that the exact Newton’s method with one step would give.

We next computed the numerical solution of a harder to integrate problem with

periodic boundary conditions at the endpoints of the spatial interval. Although the

formulation and analysis of our schemes was done for homogeneous Dirichlet boundary

conditions, it is not hard to see that under minor technical modifications (that include

e.g. defining the elliptic projection PIu as the projection of u onto Sh in the H1
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I1(t
n)

tn
jn 1 2 3 4

0 .50000000 .50000000 .50000000 .50000000

1 .49985254 .49996255 .50000116 .50000122

2 .49971053 .49992489 .50000231 .50000243

3 .49957087 .49988710 .50000339 .50000358

4 .49942461 .49984926 .50000454 .50000478

5 .49928157 .49981157 .50000572 .50000602

I2(t
n)

tn
jn 1 2 3 4

0 4.74770808 4.74770808 4.74770808 4.74770808

1 4.74628698 4.74736425 4.74771766 4.74771822

2 4.74492662 4.74701892 4.74772734 4.74772845

3 4.74359035 4.74667620 4.74774045 4.74774213

4 4.74221954 4.74633128 4.74775244 4.74775468

5 4.74088659 4.74598470 4.74776153 4.74777643

Table 5.1. Effect of jn on I1(t
n) and I2(t

n); Problem (5.12), r = 2,

h = k = 0.01.

norm and not in H1
0 etc.), and assuming a smooth periodic solution of the continuous

problem gives again our error estimates. As Sh we can take for example the space of

smooth periodic splines of order r on a uniform mesh if d = 1, etc. We consider the

test problem, cf. [15]:

(5.15)















ut = −iuxx − 2i|u|2u, (x, t) ∈ [−5, 5]× [0, 1],

u(0, t) = u(1, t), t ∈ [0, 1],

u(x, 0) = 4e−i(6x+π

2
)sech(4x), x ∈ [−5, 5].

The modulus of the initial condition is a solitary wave of amplitude 4, centered at

x = 0, and of support essentially in [-2,2]. For t > 0 this moves to the right without

change of form with speed 12 and has completed 1.2 revolutions at t = 1. We computed

again with the scheme (5.1)–(5.4) in its complex formulation, adapted of course to the

equation (5.15) which has −uxx instead of uxx. We monitored the quantities In1 = I1(t
n)

given again by (5.13) and I ′2(t
n), the discrete analog of the second invariant appropriate

for (5.15), given by

(5.16) I ′2
n
= I ′2(t

n) = ‖Un,jn
x ‖2 − |Un,jn|44.



ON FULLY DISCRETE GALERKIN METHODS 23

I1(t
n)

tn
jn 1 2 3

0 8.00000000 8.00000000 8.00000000

0.5 7.99240064 7.98710572 7.99995621

1 7.98491813 7.97431174 7.99991233

I ′2(t
n)

tn
jn 1 2 3

0 245.504539 245.504539 245.504539

0.5 244.547135 245.168987 245.503916

1 243.607008 244.835513 245.503399

Table 5.2. Effect of jn on I1(t
n) and I ′2(t

n); Problem (5.15), r = 2,

h = .01, k = .00125.

We computed with piecewise linear, continuous periodic splines on a uniform mesh

with meshlength h on [−5, 5] and evaluated the integrals in the inner products using

the three-point Gauss rule on each subinterval of the spatial discretization so that the

nonlinear term is computed exactly. In Table 2 we show I1 and I ′2 at t = 0, 0.5 and 1

with jn taken to be equal to 1, 2 or 3 for all n > 1 (again jn = 4 gives results practically

identical to those of jn = 3) and h = 0.01, k = 0.00125 (i.e. with 1000 space intervals

in [-5,5] and 800 time steps to reach T = 1).

Again we see that jn = 3 gives better approximations at tn = 1. Numerical results

with other values of h and k and also with cubic periodic splines yielded entirely

analogous results.
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equation, J. Comp. Phys. 44 (1981) 277–288.

4. D.F. Griffiths, A.R. Mitchell and J.Ll. Morris, A numerical study of the nonlinear Schrödinger

equation, Comp. Methds Appl. Mech. Engrg. 45 (1984) 177–215.

5. B.M. Herbst, J. Ll. Morris and A.R. Mitchell, Numerical experience with the nonlinear Schrödinger

equation, J. Comp. Phys. 60 (1985) 282–305.



24 GEORGIOS D. AKRIVIS, VASSILIOS A. DOUGALIS, AND OHANNES A. KARAKASHIAN

6. B. Le Mesurier, G., Papanicolaou, C. Sulem and P.–L. Sulem, The focusing singularity of the

nonlinear Schrödinger equation, In: Directions in Partial Differential Equations (M. G. Crandall,

P. H. Rabinowitz and R. E. Turner, eds.), pp. 159–201. New York: Academic Press 1987.

7. T. Ogawa, A proof of Trudinger’s inequality and its application to nonlinear Schrödinger equations,

Nonl. Anal. 14 (1990) 765–769.

8. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, New

York: Springer–Verlag, 1983.

9. J.J. Rasmussen and K. Rypdal, Blow-up in Nonlinear Schrödinger equations–I. A general review,

Phys. Scr. 33 (1986) 481–497.

10. J.M. Sanz-Serna, Methods for the numerical solution of the nonlinear Schrödinger equation, Math.

Comp. 43 (1984) 21–27.

11. J.M. Sanz-Serna and J.G. Verwer, Conservative and nonconservative schemes for the solution of

the nonlinear Schrödinger equation, IMA J. Numer. Anal. 6 (1986) 25–42.

12. W.A. Strauss, The Nonlinear Schrödinger equation, In: Contemporary Developments in Contin-

uum Mechanics and Partial Differential Equations (G. M. de la Penha and L. A. J. Medeiros,

eds.), pp. 452–465. New York: North–Holland 1978.

13. W.A. Strauss and L. Vazquez, Numerical solution of a nonlinear Klein–Gordon equation, J. Comp.

Phys. 28 (1978) 271–278.

14. P.L. Sulem, C. Sulem and A. Patera, Numerical simulation of singular solutions to the two-

dimensional cubic Schrödinger equation, Comm. Pure Appl. Math. 37 (1984) 755–778.

15. T.R. Taha and M.J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution

equations II. Numerical, nonlinear Schrödinger equation, J. Comp. Phys. 55 (1984) 203–230.

16. V. Thomée, Galerkin finite element methods for parabolic problems, Lecture Notes in Mathematics

v. 1054. Berlin-Heidelberg: Springer-Verlag, 1984.

17. Y. Tourigny and J.Ll. Morris, An investigation into the effect of product approximation in the

numerical solution of the cubic nonlinear Schrödinger equation, J. Comp. Phys. 76 (1988) 103–

130.

18. J.G. Verwer and J.M. Sanz-Serna, Convergence of method of lines approximations to partial dif-

ferential equations, Computing 33 (1984) 297–313.

19. J.A.C. Weideman and B.M. Herbst, Split-step methods for the solution of the nonlinear

Schrödinger equation, SIAM J. Numer. Anal. 23 (1986) 485–507.

Note added in proof: In a recent paper, which appeared in Nonlinear Analysis

14, 765–769 (1990), Ogawa has improved the constant that appears in the right–

hand side of the Gagliardo–Nirenberg inequality (3.10) by replacing 1/2 by a positive

number c0, no greater than π−1. It follows that if d = 2 and λ > 0 the continuous

problem (1.1) has unique global solutions in H2 provided u0 ∈ H2 ∩ H1
0 is chosen

so that c0λ‖u0‖2 < 2. Analogously, we may slightly improve the constants in the

uniqueness results of the discrete schemes in Sect. 3. Specifically, it is easily seen that

the conclusion of Proposition 3.1 holds if the hypothesis (ii) is weakened to

(ii) d = 2 and c0|λ| ‖U0‖2 < 1/4 if λ ≤ 0 or c0λ‖U0‖2 <
√
65− 1
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if λ > 0,
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and that the hypothesis of the last line of Proposition 3.2 just requires that c0λ‖U0‖2 <
2 if d = 2, λ > 0.

Mathematics Department, University of Crete, 714 09 Heraklion, Crete, Greece

Mathematics Department, University of Crete, 714 09 Heraklion, Crete, Greece

Mathematics Department, University of Tennessee, Knoxville, Tenn. 37996, USA


	1. Introduction
	2. Semidiscrete Approximation
	3. Fully Discrete Approximations
	4. Newton's Method
	5. Implementation of Newton's Method
	References

