
FINITE DIFFERENCE DISCRETIZATION

OF THE KURAMOTO–SIVASHINSKY EQUATION

GEORGIOS D. AKRIVIS

Abstract. We analyze a Crank–Nicolson–type finite difference scheme for the Kuramoto–

Sivashinsky equation in one space dimension with periodic boundary conditions. We

discuss linearizations of the scheme and derive second–order error estimates.

1. Introduction

For T , ν > 0, we consider the following periodic initial–value problem for the

Kuramoto–Sivashinsky (KS) equation: We seek a real–valued function u defined on

R× [0, T ], 1–periodic in the first variable and satisfying

(1.1) ut + u ux + uxx + ν uxxxx = 0 in R× [0, T ]

and

(1.2) u(·, 0) = u0 in R,

where u0 is a given 1–periodic function. We assume that (1.1)–(1.2) has a unique,

sufficiently smooth solution, cf. Nicolaenko, Scheurer [7].

For the mathematical theory and the physical significance of the KS equation as well

as for related computational work we refer the reader to Kuramoto [6], Sivashinsky

[14], Papageorgiou, Maldarelli, Rumschitzki [10], Hyman, Nicolaenko [5], Nicolaenko,

Scheurer [7], Temam [15], Papageorgiou, Smyrlis [11], and the references therein. De-

noting by ‖ · ‖ the norm in L2(0, 1), it is easily seen that

(1.3) ‖u(·, t)‖2 ≤ ‖u0‖2 e
t

2ν , 0 ≤ t ≤ T,

(1.4) ‖u(·, t)‖ ≤ ‖u(·, s)‖, 0 ≤ s ≤ t ≤ T, for ν ≥ 1

4π2
,

and

(1.5)

∫ 1

0

u(x, t) dx =

∫ 1

0

u0(x) dx, 0 ≤ t ≤ T,

see section 2.
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Let J,N ∈ N, h := 1
J
, xi := ih, i ∈ Z, k := T

N
, tn := nk, n = 0, . . . , N, and

R
J
per :=

{

v = (vi)i∈Z : vi ∈ R and vi+J = vi , i ∈ Z
}

.

For v ∈ R
J
per let ∆hvi :=

1
h2 (vi−1 − 2vi + vi+1), ∆

2
hvi :=

1
h2 (∆hvi−1 − 2∆hvi +∆hvi+1),

i ∈ Z, and for v0, . . . , vN ∈ R
J
per set ∂vn := 1

k
(vn+1 − vn), and vn+1/2 := 1

2
(vn + vn+1),

n = 0, . . . , N − 1.

We discretize problem (1.1)–(1.2) by the following Crank–Nicolson–type finite dif-

ference scheme: We approximate un ∈ R
J
per, u

n
i := u(xi, t

n), by Un ∈ R
J
per, where

U0 := u0, and for n = 0, . . . , N − 1

(1.6)
∂Un

i +
1

6h

(

U
n+1/2
i−1 + U

n+1/2
i + U

n+1/2
i+1

)(

U
n+1/2
i+1 − U

n+1/2
i−1

)

+∆h U
n+1/2
i + ν∆2

h U
n+1/2
i = 0, i = 1, . . . , , J.

This kind of spatial discretization of the term uux has often been used and analyzed

in the literature, see, e.g., Richtmyer, Morton [12], Zabusky, Kruskal [17], Fornberg

[3]. One possibility to get this discretization is to write the nonlinear term in the

form 1
3
uux + 1

3
(u2)x and discretize each one of these terms in the standard fashion

for second–order schemes. Another more systematical way is provided by the finite

element method when continuous and piecewise linear elements are used.

Introducing in R
J
per the discrete L2 norm ‖ · ‖h by

‖v‖h :=
(

h

J
∑

i=1

(vi)
2
)1/2

, v ∈ R
J
per,

we show in section 2 that

‖Un‖2h ≤ ‖U0‖2he
α

2ν
tn , α > 1 , k ≤ 8ν

α− 1

α
, n = 1, . . . , N,(1.7)

(1.8)

‖Un+1‖h ≤ ‖Un‖h, n = 0, . . . , N − 1, for ν ≥ [σ(h)]2,(1.9)

where σ(h) := h
sin(πh)

, and

(1.10) h

J
∑

i=1

Un
i = h

J
∑

i=1

U0
i , n = 1, . . . , N,

which correspond to (1.3), (1.4) and (1.5), respectively. Note that limh→0 σ(h) =
1
2π
.

In section 3 we show existence of the Crank–Nicolson approximations for k < 8ν,

and derive the optimal–order error estimate

(1.11) max
0≤n≤N

‖un − Un‖h ≤ c(k2 + h2),

where here and in the sequel c and C denote generic constants independent of k and

h, not necessarily the same at any two places unless indices are used. For k h−1/5

sufficiently small the Crank–Nicolson approximations are uniquely defined by (1.6). In

the last section we linearize the scheme (1.6) by Newton’s method. We extrapolate from

previous time levels to obtain starting values and perform one Newton iteration. For k
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and h sufficiently small and k = o(h1/4) the scheme is well defined, and an estimate of

the form (1.11) holds. A disadvantage of this method is that the matrix of the linear

system to be solved at each time level tn changes with n. We also discuss an efficient

implementation which requires solving linear systems with the same matrix, which is

symmetric and for k < 8ν positive definite, and prove second–order error estimates for

this scheme as well.

2. Some properties of the Crank–Nicolson approximations

First, we shall discuss some properties of the solution u of problem (1.1)–(1.2).

Multiplying the KS equation with u and integrating by parts over [0, 1], we obtain by

periodicity

(2.1)
1

2

d

dt
‖u(·, t)‖2 = ‖ux(·, t)‖2 − ν‖uxx(·, t)‖2.

Now, for v 1–periodic and smooth ‖v′‖2 = −
∫ 1

0
v(x) v′′(x) dx, i.e., ‖v′‖2 ≤ ‖v‖ ‖v′′‖,

and, therefore,

(2.2) ‖v′‖2 ≤ ν ‖v′′‖2 + 1

4ν
‖v‖2 .

Thus, (2.1) yields

d

dt
‖u(·, t)‖2 ≤ 1

2ν
‖u(·, t)‖2,

and (1.3) follows easily, cf. Temam [15, p. 141]. Using the well–known Wirtinger

inequality

(2.3) ‖v′‖ ≤ 1

2π
‖v′′‖ v 1–periodic and smooth,

cf. Osserman [9], (2.1) yields

1

2

d

dt
‖u(·, t)‖2 ≤

( 1

4π2
− ν

)

‖uxx(·, t)‖2 ,

from which (1.4) follows. Integrating the KS equation, (1.5) follows easily by period-

icity.

Before we proceed to derive some discrete analogs to (1.3)–(1.5) we introduce nota-

tion and give an auxiliary lemma. The discrete L2 inner product (·, ·)h in R
J
per is given

by

(v, w)h := h

J
∑

i=1

vi wi, v, w ∈ R
J
per.

In addition to the discrete L2 norm ‖ · ‖h, we shall use the discrete H1 and H2

seminorms, denoted by | · |1,h and | · |2,h, respectively,

|v|1,h :=
[

h

J
∑

i=1

(vi − vi−1

h

)2
]1/2

, |v|2,h :=
[

h

J
∑

i=1

(

∆hvi
)2
]1/2

, v ∈ R
J
per.



4 GEORGIOS D. AKRIVIS

Let ϕ, ψ : RJ
per ×R

J
per → R

J
per, ϕ(v, w)i :=

(

ϕ(v, w)
)

i
:= (vi−1 + vi + vi+1)(wi+1 −wi−1),

ψ(v, w)i := −(2vi−1+ vi)wi−1+(vi+1 − vi−1)wi + (2vi+1+ vi)wi+1. Note that ψ(v, w) =

ψ(w, v). In the next lemma we collect some auxiliary results.

Lemma 2.1. For v, w, r ∈ R
J
per

we have

(

ϕ(v, w), w
)

h
= −h

J
∑

i=1

(vi+1 − vi−2)wiwi−1,(2.4)

(

ϕ(v, v), w
)

h
= −h

J
∑

i=1

(

v2i + vivi+1 + v2i+1

)

(wi+1 − wi),(2.5)

(

ψ(v, w), r
)

h
= −h

J
∑

i=1

[

vi(wi+1 + 2wi) + vi+1(2wi+1 + wi)
]

(ri+1 − ri),(2.6)

(

ϕ(v, v), v
)

h
= 0,(2.7)

ϕ(v, v)− ϕ(w,w) = ψ(w, v − w) + ϕ(v − w, v − w),(2.8)

−
(

∆h v, v
)

h
= |v|21,h,(2.9)

(

∆2
h v, v

)

h
= |v|22,h,(2.10)

|v|21,h ≤ ‖v‖h |v|2,h,(2.11)

|v|21,h ≤ ν |v|22,h +
1

4ν
‖v‖2h,(2.12)

and

|v|1,h ≤ σ(h) |v|2,h, σ(h) =
h

2 sin(πh)
.(2.13)

Proof. (2.4)–(2.6) can be easily proved by summation by parts; (2.7) follows from (2.4).

(2.8) can be easily shown, by Taylor expanding ϕ around (wi−1, wi, wi+1), say. Further

(

∆2
h v, v

)

h
=

1

h

J
∑

i=1

(vi−1 − 2vi + vi+1)∆hvi

and (2.10) follows. (2.9) can be shown analogously, (2.11) follows immediately from

(2.9), and (2.12) from (2.11). Hence, it remains to show (2.13). Let R
J
per,0 :=

{

v ∈
R

J
per : v1 + v2 + · · ·+ vJ = 0

}

, and v1, v2, . . . , vJ−1 ∈ R
J
per,0 be given by

v
j
i :=

√
2 sin(2jπxi), j = 1, . . . , [

J − 1

2
], i ∈ Z,

v
[ J−1

2
]+j

i :=
√
2 cos(2jπxi), j = 1, . . . , [

J

2
], i ∈ Z.

It is well–known that v1, v2, . . . , vJ−1 are orthonormal with respect to (·, ·)h, cf. Hämmer-

lin, Hoffmann [4, pp. 190, 191, 232]. It is also easily seen that v1, v2, . . . , vJ−1 are

eigenvectors of −∆h with corresponding eigenvalues λℓ :=
4
h2 sin2(ℓπh), ℓ = 1, . . . , [J

2
],
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cf. Samarskij [13, pp. 76–77] or Thomée [16, p. 26]. Now, λ1 = [σ(h)]−2 is the smallest

eigenvalue, and using (2.9) we conclude that

‖v‖h ≤ σ(h) |v|1,h v ∈ R
J
per,0.

(2.13) follows immediately from this inequality. �

Taking in (1.6) the inner product with Un+1/2, and using (2.7), (2.9) and (2.10), we

obtain

(2.14) ‖Un+1‖2h − ‖Un‖2h = 2k
{

|Un+1/2|21,h − ν|Un+1/2|22,h
}

.

Therefore, by (2.12)

‖Un+1‖2h − ‖Un‖2h ≤ k

2ν
‖Un+1/2‖2h,

i.e.,

(2.15)
(

1− k

8ν

)

‖Un+1‖h ≤
(

1 +
k

8ν

)

‖Un‖h, n = 0, . . . , N − 1.

Obviously, for α > 1

(2.16)
8ν + k

8ν − k
≤ 1 +

α

4ν
k for k ≤ 8ν

α− 1

α
.

(1.7) follows immediately from (2.15), (2.16). Using (2.13) we obtain from (2.14)

‖Un+1‖2h − ‖Un‖2h ≤ 2k
{

[σ(h)]2 − ν
}

|Un+1/2|22,h ,
and conclude (1.9). Finally, summing in (1.6) from j = 1 to J we get (1.10).

3. Existence, Convergence and Uniqueness

In this section we show existence of the approximate solutions U1, . . . , UN ∈ R
J
per

satisfying (1.6) under the condition k < 8ν, we derive second–order error estimates,

and prove uniqueness of the Crank–Nicolson approximations for u smooth and kh−1/5

sufficiently small.

Existence. We shall use the following well–known variant of the Brouwer fixed–point

theorem, see, e.g., Browder [2].

Lemma 3.1. Let
(

H, (·, ·)H
)

be a finite dimensional inner product space and denote

by ‖ · ‖H the induced norm. Suppose that g : H → H is continuous and there exists

an α > 0 such that
(

g(x), x
)

H
> 0 for all x ∈ H with ‖x‖H = α. Then, there exists

x∗ ∈ Hsuch that g(x∗) = 0 and ‖x∗‖H ≤ α. �

The argument of existence of the Crank–Nicolson approximations proceeds in an

inductive way. So assume that U0, . . . , Un, n < N , exist. Let g : RJ
per → R

J
per be

defined by

g(V ) := 2V − 2Un +
k

6h
ϕ(V, V ) + k∆hV + νk∆2

hV,

with ϕ as in section 2. Then, g is obviously continuous. Taking the inner product with

V , and using (2.7), (2.9) and (2.10), we have
(

g(V ), V
)

h
= 2‖V ‖2h − 2(Un, V )h − k

{

|V |21,h − ν|V |22,h
}

.
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Therefore, by (2.12)

(3.1)
(

g(V ), V
)

h
≥ 2‖V ‖h

{(

1− k

8ν

)

‖V ‖h − ‖Un‖h
}

.

Hence, for k < 8ν and ‖V ‖h = 8ν
8ν−k

‖Un‖h + 1 obviously
(

g(V ), V
)

h
> 0, and via

Lemma 3.1 we deduce existence of V ∗ ∈ R
J
per such that g(V ∗) = 0. It is easily seen

that Un+1 := 2V ∗ − Un satisfies (1.6).

Convergence. The main result in this section is given in the following theorem.

Theorem 3.1. Let the solution u of (1.1)–(1.2) be sufficiently smooth, U0 = u0, and

U1, . . . , UN ∈ R
J
per

satisfy (1.6). Then, for k sufficiently small

(3.2) max
0≤n≤N

‖un − Un‖h ≤ c (k2 + h2).

Proof. Let rn ∈ R
J
per be the consistency error of method (1.6),

(3.3) rn := ∂un +
1

6h
ϕ(un+1/2, un+1/2) +∆hu

n+1/2 + ν∆2
h u

n+1/2.

Here un+1/2 = 1
2
(un + un+1). It is easily seen that

(3.4) max
i,n

|rni | ≤ c(k2 + h2).

Let en := un − Un, n = 0, . . . , N . Then, (1.6) and (3.3) yield

∂en +∆he
n+1/2 + ν∆2

he
n+1/2 =

1

6h

[

ϕ(Un+1/2, Un+1/2)

− ϕ(un+1/2, un+1/2)
]

+ rn,

which we write in a form more appropriate for our purposes

∂en +∆h e
n+1/2 + ν∆2

h e
n+1/2 =

1

6h

[

ϕ(en+1/2, en+1/2)− ϕ(en+1/2, un+1/2)

− ϕ(un+1/2, en+1/2)
]

+ rn,

cf. Baker, Dougalis, Karakashian [1]. Taking the inner product with en+1/2, using (2.7),

(2.9), (2.10), rewriting the third term on the right–hand side according to (2.4), using

the boundedness of ux and applying the Schwarz inequality, we obtain

1

2k

(

‖en+1‖2h − ‖en‖2h
)

≤ |en+1/2|21,h − ν |en+1/2|22,h + C‖en+1/2‖2h + ‖rn‖h ‖en+1/2‖h.

Therefore, using (2.12)

(1− ck)‖en+1‖h ≤ (1 + ck)‖en‖h + Ck(k2 + h2), n = 0, . . . , N − 1.

Then, (3.2) follows in view of Gronwall’s discrete inequality. �

Uniqueness. Assuming smoothness of the solution u such that (3.2) holds, we shall

show uniqueness of the Crank–Nicolson approximations for kh−1/5 sufficiently small.

(3.5) ∂V n +
1

6h
ϕ
(

V n+1/2, V n+1/2
)

+∆h V
n+1/2 + ν∆2

hV
n+1/2 = 0.



FINITE DIFFERENCE DISCRETIZATION OF THE KS EQUATION 7

Letting En := V n − Un, n = 0, . . . , N , and using (2.8), we obtain from (1.6) and (3.5)

(3.6)
∂En +∆hE

n+1/2 + ν∆2
hE

n+1/2 =

− 1

6h

[

ψ
(

Un+1/2, En+1/2
)

+ ϕ
(

En+1/2, En+1/2
)

]

.

Now, (3.2) yields

(3.7) max
i,n

|Un
i | ≤ c

(

1 + k2h−1/2
)

.

Taking in (3.6) the inner product with En+1/2, using (2.9), (2.10), (2.6), (2.7), (3.7),

and applying the Schwarz inequality, we obtain

1

2k

(

‖En+1‖2h − ‖En‖2h
)

− |En+1/2|21,h + ν|En+1/2|22,h
≤ C(1 + k2h−1/2)|En+1/2|1,h‖En+1/2‖h.

Therefore

1

2k

(

‖En+1‖2h − ‖En‖2h
)

≤ 2|En+1/2|21,h − ν|En+1/2|22,h + C(1 + k2h−1/2)2‖En+1/2‖2h,

i.e., by (2.11)

‖En+1‖2h − ‖En‖2h ≤ Ck(1 + k2h−1/2)2‖En+1/2‖2h,
from which, for kh−1/5 sufficiently small, uniqueness follows easily by induction. We

note moreover that for k = O(h1/4) and k sufficiently small

(3.8) ‖En+1‖h ≤ (1 + ck)‖En‖h,
which represents the stability of the scheme (1.6).

4. Linearization by Newton’s method

Computing the Crank–Nicolson approximations U1, . . . , UN requires solving at each

time level a J × J nonlinear system. In this section we shall discuss the approximate

solution of these systems by Newton’s method.

In the rest of the paper, for v0, . . . , vN ∈ R
J
per, we let v̂0 := v0, v̂1 := v1 unless

explicitly otherwise stated, and v̂n+1 := 2vn−vn−1, n = 1, . . . , N−1. We approximate

un by W n ∈ R
J
per where W 0 := u0, and for n = 0, . . . , N − 1

(4.1)
∂W n +∆hW

n+1/2 + ν∆2
hW

n+1/2 +
1

24h
ψ
(

W n + Ŵ n+1,W n+1 − Ŵ n+1
)

= − 1

24h
ϕ
(

W n + Ŵ n+1,W n + Ŵ n+1
)

,

where Ŵ 1 is given by

(4.2) ∂Ŵ 0 +∆h Ŵ
1/2 + ν∆2

hŴ
1/2 = − 1

6h
ϕ(u0, u0).

It is easily seen that substituting W n for Un in (1.6), and letting Ŵ n+1 be a starting

approximation to Un+1, (4.1) describes the first Newton iteration to the nonlinear
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system. It can be shown that for k and h sufficiently small and k = o(h1/4),W 1, . . . ,WN

are uniquely defined by (4.1)–(4.2), and

(4.3) max
0≤n≤N

‖un −W n‖h ≤ C(k2 + h2).

To compute W n+1 by (4.1), we have to solve a J × J linear system whose matrix

changes with n. To avoid this we next analyze an iterative scheme for the approximate

solution of (4.1) that requires solving linear systems with the same coefficient matrix.

For j1, . . . , jN ∈ N we define approximations Un(j) ∈ R
J
per, j = 0, . . . , jn, V

n :=

Un(jn), to un as follows: Let V 0 := u0, V̂ 1 := Ŵ 1, Un(0) := V̂ n, and for n = 0, . . . , N−1

(4.4)

1

k

(

Un+1(j+1) − V n
)

+
1

2
∆h

(

Un+1(j+1) + V n
)

+
ν

2
∆2

h

(

Un+1(j+1) + V n
)

= − 1

24h
ψ
(

V n + V̂ n+1, Un+1(j) − V̂ n+1
)

− 1

24h
ϕ
(

V n + V̂ n+1, V n + V̂ n+1
)

, j = 0, . . . , jn+1 − 1.

Let k < 8ν. Then, the coefficient matrix of the linear systems (4.2), (4.4) is positive

definite, cf. (3.1); in particular, Un(j), j = 0, . . . , jn, n = 1, . . . , N , are well defined.

Theorem 4.1. Let u be sufficiently smooth, k and h be sufficiently small and k =

o(h1/4). Then,

(4.5) max0≤n≤N‖un − V n‖h ≤ c(k2 + h2).

Proof. Let ê1 := u1 − V̂ 1. Using (2.8), we obtain from (4.2) and (3.3)

ê1 +
k

2
∆h ê

1 +
νk

2
∆2

h ê
1 =

= − k

24h

[

ψ(2u0, u1 − u0) + ϕ(u1 − u0, u1 − u0)
]

+ kr0.

Taking the inner product with ê1, and using (2.9), (2.10), (2.12), and the fact that

ψ(v, w)i = (vi + 2vi+1) (wi+1 − wi−1) + (2wi−1 + wi)(vi+1 − vi−1) , we obtain

(

1− k

8ν

)

‖ê1‖2h ≤ Ck2‖ê1‖h + k‖r0‖h ‖ê1‖h,

and, therefore, for k small enough

(4.6) ‖ê1‖2h ≤ c
(

k2 + h2
)2
.

Next, we shall show inductively that

(4.7) ‖uℓ − V ℓ‖2h ≤ cℓ
(

k2 + h2
)2
, ℓ = 0, . . . , N,

where c0 = 0, c1 = 1 say, and

(4.8) cℓ = 2
(

d̃ k
)jℓ

(

D + 8cℓ−1 + 2cℓ−2

)

+ (1 + dk) cℓ−1 + dk cℓ−2 + dk , ℓ = 2, . . . , N.

Here, D is such that ‖un − ûn‖2h ≤ Dk4, and d̃ and d are as follows: let sn ∈ R
J
per be

the consistency error of method (4.1). Using (2.8) and (3.3), we easily see that

sn = rn − 1

24h
ϕ(un+1 − ûn+1, un+1 − ûn+1),
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and, therefore,

(4.9) max
i,n

|sni |2 ≤ c(u)
(

k2 + h2
)2
.

Let M := maxx,t |u(x, t)| + 1, d1 := ν+1
ν

, d2 := 3M2, d3 := d1 + 30M2 + 135
16

, d4 :=

3M2 + 15
16
, d5 :=

1
2
c(u), and d̃ and d be such that for sufficiently small k

d2k

1− d1k
≤ d̃k,

δ3j + djk

(1− d1k)(1− d̃k)
≤ δ3j + dk, j = 3, . . . , 5,

where δ is the Kronecker symbol. It can be easily seen that max0≤n≤N cn ≤ c∗ with

a constant c∗ independent of h and k. In the sequel we shall assume that h and k are

small enough such that

(4.10) c∗ h−1
(

k2 + h2
)2 ≤ 1.

Note that (4.7) holds trivially for ℓ = 0. Assume now that (4.7) holds for ℓ = 0, . . . , n.

Letting en(j) := un − Un(j), j = 0, . . . , jn, and en := un − V n, n = 0, . . . , N , we have

(4.11)

1

k

(

en+1(j+1) − en
)

+
1

2
∆h

(

en+1(j+1) + en
)

+
ν

2
∆2

h

(

en+1(j+1) + en
)

= − 1

24h

[

ψ
(

V n + V̂ n+1, en+1(j) + en
)

+ ψ
(

un+1 − ûn+1, en + ên+1
)

]

− 1

24h
ϕ
(

en + ên+1, en + ên+1
)

+ sn.

Taking the inner product with en+1(j+1) + en, and using (2.6), (2.5), (4.10) and the

induction hypothesis, we obtain

1

k

(

‖en+1(j+1)‖2h − ‖en‖2h
)

− 1

2

∣

∣en+1(j+1) + en
∣

∣

2

1,h
+
ν

2

∣

∣en+1(j+1) + en
∣

∣

2

2,h

≤
(

M ‖en+1(j) + en‖h +M ‖en + ên+1‖h +
1

8
h−1/2 ‖en + ên+1‖2h

)

|en+1(j+1) + en|1,h
+ ‖sn‖h ‖en+1(j+1) + en‖h.

Therefore, by the arithmetic–geometric mean inequality

(4.12)

1

k

(

‖en+1(j+1)‖2h − ‖en‖2h
)

≤
∣

∣en+1(j+1) + en
∣

∣

2

1,h
− ν

2

∣

∣en+1(j+1) + en
∣

∣

2

2,h

+
3

2
M2

(

‖en+1(j) + en‖2h + ‖en + ên+1‖2h
)

+
3

128
h−1 ‖en + ên+1‖4h

+
1

2
‖sn‖2h +

1

2
‖en+1(j+1) + en‖2h.

Thus, using (2.11), for n ≥ 1 we have

(1− d1k)‖en+1(j+1)‖2h ≤ d2k‖en+1(j)‖2h + (1 + d3k)‖en‖2h
+ d4k‖en−1‖2h + d5k

(

k2 + h2
)2
,

and conclude that (4.7) holds for ℓ = n+ 1.

Finally, for n = 0, (4.12) and (4.6) yield for k small enough

‖e1‖2h ≤ Ck
(

‖ê1‖2h + ‖s0‖2h
)

.
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Using (4.6) and (4.9), we see that (4.7) is valid for ℓ = 1, and the proof is complete. �

Taking jn = 1, n = 1, . . . , N , the scheme described above takes for n ≥ 1 the form

(4.13)
∂V n +∆h V

n+1/2 + ν∆2
h V

n+1/2 =

= − 1

24h
ϕ
(

V n + V̂ n+1, V n + V̂ n+1
)

,

which is the standard way for linearizing the second–order scheme (1.6) by extrapolat-

ing in the nonlinear term from previous time levels.

Remark 4.1. We assume here that the initial-value u0 is an odd function. Then,

v, v(x, t) := −u(−x, t), is a solution of (1.1)–(1.2). Consequently, by uniqueness v = u,

i.e., u(·, t) is odd for 0 ≤ t ≤ T. This property is carried over to the approximations

discussed above. For instance, Ũn, Ũn
i := −Un

−i, i ∈ Z, n = 0, . . . , N, satisfy (1.6).

Therefore, for k h−1/5 sufficiently small Ũn = Un. This results to a reduction of the

number of the nonlinear equations (1.6) from J to
[

J+1
2

]

− 1.
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