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Abstract

Piperagkas, Grigorios, Department of Computer Science,

University of Ioannina, Greece, June 2012,

Solving Inventory Management Problems Using Metaheuristic Optimization Algorithms

Thesis Supervisor: Konstantinos E. Parsopoulos

We investigate the solution of inventory management problems through metaheuristic

optimization algorithms. More speci�cally, we focus on multi-item inventory problems

with limited capacity, as well as on the dynamic lot-sizing problem with stochastic de-

mand. Three quite popular optimization algorithms were selected, namely Particle Swarm

Optimization (PSO), Di�erential Evolution (DE) and Harmony Search (HS).

Initially the multi-item inventory problem with supplier selection, limited capacity

and defective items is presented. The model includes speci�c transaction and storage

cost. The objective is the determination of a replenishment policy, given the demand over

a planning horizon, while the problem is de�ned from a set of constraints and is formed as

a mixed-integer optimization problem. The PSO and DE algorithms are used for solving

the model, with appropriate modi�cations and assumptions for the speci�c model. At

the next stage, the model is simpli�ed in order to obtain the solution easier. Results are

presented and analyzed statistically.

At the second part of the thesis, we examine the dynamic lot sizing problem under

stochastic and non-stationary demand over a prede�ned �nite planning horizon. The

model is based on the dynamic Wagner-Whitin model, which was proposed in 1958 and

was recently extended with stochastic demand. Here the solution is examined with three

algorithms, namely PSO, DE and HS. It is the �rst attempt to solve this kind of problem

with metaheuristic optimization algorithms. The methods are modi�ed appropriately to

accomodate the model' s speci�cities. Their e�ciency is reported regarding the time and

solution quality, for various problem instances. The algorithms performance is statistically

analyzed along with their proper modi�cations. The results support the claim that they

can be successfully considered as an alternative for the solution of the speci�c problems.
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Ðåñßëçøç

Ãñçãüñéïò Ó. ÐéðåñÜãêáò

ÔìÞìá ÐëçñïöïñéêÞò, ÐáíåðéóôÞìéï Éùáííßíùí, Éïýíéïò 2012.

Åðßëõóç ÐñïâëçìÜôùí Äéá÷åßñéóçò ÁðïèåìÜôùí ìå ×ñÞóç Ìåôáåõñåôéêþí Áëãïñßèìùí

Âåëôéóôïðïßçóçò.

ÅðéâëÝðùí: Êùíóôáíôßíïò Å. Ðáñóüðïõëïò

Óôçí ðáñïýóá åñãáóßá ìåëåôÜôáé ç åðßëõóç ðñïâëçìÜôùí äéá÷åßñéóçò áðïèåìÜôùí ìå

÷ñÞóç ìåôáåõñåôéêþí áëãïñßèìùí âåëôéóôïðïßçóçò. ÓõãêåêñéìÝíá, åðéêåíôñþóáìå óå ðñï-

âëÞìáôá ìå ðïëëïýò ðñïìçèåõôÝò êáé ðñïúüíôá ìå ðåñéïñéóìÝíï áðïèçêåõôéêü ÷þñï, êáèþò

êáé óôï äõíáìéêü ðñüâëçìá ìå óôï÷áóôéêÞ æÞôçóç. ÅðéëÝ÷èçêáí ôñåßò éäéáßôåñá äçìïöéëåßò

áëãüñéèìïé ãéá ôçí åðßëõóÞ ôïõò, ïé Particle Swarm Optimization (PSO), Di�erential

Evolution (DE) êáé Harmony Search (HS).

Áñ÷éêÜ ðáñïõóéÜæåôáé ôï ðñüâëçìá äéá÷åßñéóçò áðïèåìÜôùí ìå ðïëëÜ ðñïúüíôá êáé

ðïëëïýò ðñïìçèåõôÝò, ðåñéïñéóìÝíç áðïèçêåõôéêü ÷þñï êáé åëáôôùìáôéêÜ ðñïúüíôá. Ôï

ìïíôÝëï ðåñéëáìâÜíåé óõãêåêñéìÝíï êüóôïò óõíáëëáãÞò áëëÜ êáé êüóôïò áðïèÞêåõóçò.

Óôü÷ïò åßíáé ï êáèïñéóìüò ôïõ ìåãÝèïõò ðáñáããåëéþí, äåäïìÝíçò ôçò æÞôçóçò ãéá Ýíá

óõãêåêñéìÝíï ÷ñïíéêü ïñßæïíôá, åíþ ôï ðñüâëçìá êáèïñßæåôáé áðü ìåãÜëï ðëÞèïò ðåñéïñé-

óìþí êáé äéáìïñöþíåôáé ùò ðñüâëçìá ìåéêôïý áêÝñáéïõ ðñïãñáììáôéóìïý. Ãéá ôçí åðßëõóç

÷ñçóéìïðïéïýíôáé ïé áëãüñéèìïé PSO êáé DE, ìå êáôÜëëçëåò ôñïðïðïéÞóåéò êáé åêäï÷Ýò

ãéá ôï óõãêåêñéìÝíï åßäïò ìïíôÝëïõ. Óå åðüìåíï óôÜäéï, ôï ìïíôÝëï áðëïðïéåßôáé ãéá

åõêïëüôåñç åðßëõóç. Ôá áðïôåëÝóìáôá ðáñïõóéÜæïíôáé êáé áíáëýïíôáé óôáôéóôéêÜ.

Óôï äåýôåñï ìÝñïò ôçò åñãáóßáò, åîåôÜæåôáé Ýíá óýóôçìá ðñïãñáììáôéóìïý êáé åëÝã÷ïõ

áðïèåìÜôùí ìå Ýíá ðñïúüí êáé ðåðåñáóìÝíï ïñßæïíôá ó÷åäéáóìïý, ìå óôï÷áóôéêÞ ìç óôÜóéìç

æÞôçóç. Ôï ìïíôÝëï åßíáé âáóéóìÝíï óôï äõíáìéêü ìïíôÝëï ôùí Wagner-Whitin ðïõ

ðñïôÜèçêå ôï 1958 êáé åðåêôÜèçêå ðñüóöáôá ãéá óôï÷áóôéêÞ æÞôçóç. Åäþ ç åðßëõóç

ãßíåôáé ìå ôñåßò áëãïñßèìïõò, ôéò ìåèüäïõò PSO, DE êáé HS. Ðñüêåéôáé ãéá ôçí ðñþôç

áðüðåéñá åðßëõóçò ôïõ ðñïâëÞìáôïò áõôïý ìå ìåôáåõñåôéêïýò áëãüñéèìïõò âåëôéóôïðïßçóçò.

Ïé ìÝèïäïé ôñïðïðïéïýíôáé êáôÜëëçëá ãéá íá ðñïóáñìïóôïýí óôéò áðáéôÞóåéò ôïõ ìïíôÝëïõ

êáé êáôáãñÜöåôáé ç åðßäïóÞ ôïõò, ùò ðñïò ôï ÷ñüíï êáé ôçí ðïéüôçôá ëýóçò, ãéá äéáöïñåôé-

êÝò åêäï÷Ýò êáé óõíèÞêåò ôïõ ðñïâëÞìáôïò. Ç áðüäïóç ôùí áëãïñßèìùí áíáëýåôáé óôáôé-

óôéêÜ. Ôá áðïôåëÝóìáôá õðïóôçñßæïõí ôçí ðåðïßèçóç üôé ïé óõãêåêñéìÝíïé áëãüñéèìïé

ìðïñïýí íá èåùñçèïýí ùò åíáëëáêôéêÝò ìÝèïäïé ãéá ôçí åðßëõóç áõôþí ôùí ðñïâëçìÜôùí.
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Chapter 1

Introduction

Operations Research (OR) has o�ered a rich ground for application of Evolutionary Al-

gorithms (EAs). Numerous works veri�ed the e�ectiveness of EAs in solving various

problems, including scheduling, routing [6], production planning, management and eco-

nomic administration [5].

In the current thesis, three well studied algorithms have been employed to solve two

interesting inventory management problems: Particle Swarm Optimization (PSO), Dif-

ferential Evolution (DE) and Harmony Search (HS). PSO [23], DE [37] and HS [15] are

three of the most popular metaheuristic optimization algorithms. Their popularity can be

attributed to the combination of high e�ciency with minor implementation e�ort, which

renders them accessible to researchers in diverse scienti�c �elds.

PSO and DE have apparent structural and operational similarities such as the use of

an iteratively updated population of potential solutions. The updating process is based

on combinations of di�erence vectors among existing population members. Selection of

the best{performing solutions produces the necessary probabilistic pressure for sampling

in the most promising regions of the search space. Their development was inspired by

the evolution and self{organization properties of living entities. PSO roughly resembles

the swarming behavior observed in bird{ocks or �sh schools, which is also intimately

related to physical laws that characterize more fundamental systems such as gases in Par-

ticle Physics. On the other hand, DE is closely associated with evolutionary algorithms,

resembling recombination and mutation procedures.

HS performs a procedure similar to the musical improvisation process, although its

structure and operation have many commons with state{of{the{art evolutionary algo-

rithms such as Evolution Strategies.

1.1 Multi-item inventory model with supplier selection

Among others, supplier selection combined with inventory management is a central prob-

lem with a remarkable amount of relative work in business management literature. Sup-
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plier selection problems are usually formulated as mixed{integer optimization problems,

incorporating purchasing, transportation and inventory costs over multiple periods, under

the conditions of multiple sourcing, criteria and constraints. Extensions on lot{sizing with

supplier selection for multi{period and multi{product cases have been studied, along with

cases with limited capacities on suppliers [2, 18].

In many research works, the products are considered to be of perfect quality. How-

ever, in realistic production environments there is often a (usually small) probability of

imperfect quality. It is important for the optimal policy to take into account the rela-

tionship between quality imperfection and lot sizing. Such a model was studied in [35],

where a probability that production goes out of control was considered. Further models

have been considered, incorporating inspection policy [36]. The issue of non{shortages

in models with proportional imperfect quality was evoked in [27], where the proportion

of imperfect items was assumed to be a random variable. Other models considered the

rework of defective products [19], exible production processes [11], as well as multi{stage

lot sizing for imperfect production processes [3].

Recently, a new model was proposed by Rezaei and Davoodi [34]. This model refers

to the problem of lot sizing with supplier selection, considering crucial concepts such as

imperfect items and limited storage capacity. The problem was formulated as a highly

constrained mixed{integer optimization task and it was solved by using two di�erent

approaches: a deterministic one using the Lindo software 1, and a stochastic one, based

on Genetic Algorithms (GAs). The latter approach was shown to be very promising

and triggered our interest in applying PSO and DE on the speci�c model, since both

algorithms have proved to be very competitive to GAs.

Also, the proposed model involves intimately related integer and real{valued variables.

In simple words, the integer variables represent the decision of ordering a product from a

speci�c supplier or not, while the real variables specify the exact quantity. However, the

decision of not ordering can be equivalently represented solely by assuming a zero value

of the corresponding real variable. This way, the model can be simpli�ed by dropping

all integer parameters, thereby reducing its dimension. However, the application of PSO

and DE on the simpli�ed problem requires some caution, as it will be analyzed in a later

section. Finally, the constraints can be handled by using a penalty function approach,

which has shown to o�er a straightforward solution in constrained optimization cases [31].

In our study, we considered the Uni�ed PSO (UPSO) [30] algorithm as well as the

�ve standard DE operators [37]. UPSO generalizes the standard PSO, producing highly

competitive schemes that combine its exploration/exploitation properties as reported in

previous works [28, 31]. For both algorithms, initialization in feasible points was not

required.

1http://www.lindo.com

10



1.2 The stochastic dynamic lot{sizing problem

The dynamic lot{size (DLS) problem consists of determining the quantity of products to

order or produce in each time period over a �nite discrete planning horizon, in order to

satisfy the demand for each period while minimizing the summation of setup and inventory

holding costs. This model was �rst introduced by Wagner and Whitin in 1958 [43], who

developed an O(H2) forward algorithm for a general dynamic version of the uncapacitated

economic lot{sizing model, where H stands for the number of time periods.

DLS is embedded within many practical production planning problems. The zero{

inventory ordering principle, which imposes that no production is undertaken if inventory

is available, constitutes a key contribution for the uncapacitated cases. Zangwill [44]

extended the Wagner{Whitin model by allowing complete backlogging of unsatis�ed de-

mand. This was the �rst work to highlight the importance of using networks to represent

some production planning problems. More speci�cally, the problem was represented as a

minimum cost ow problem in a network with concave arcs costs and a single source.

Although many alternative algorithms have been proposed, the dynamic programming

method still remains the major analytical tool for solving lot{sizing problems. Federgruen

and Tzur [10] presented a simple forward algorithm which solves the general dynamic lot{

sizing model in O(H logH) time or in O(H) under some assumptions on the cost data.

This was the key improvement over the previously recommended well{known shortest

path algorithm solution, which required O(H2) time.

Wagelmans et al. [42] extended the range of allowable cost data to permit coe�cients

with unrestricted signs. They developed an alternative algorithm to solve the resulting

problem in O(H logH) time. Aggarwal and Park [1] developed an algorithm with com-

plexity O(H logH), which solved the problem of H periods by solving two sub{problems

of H=2 periods. Two recent review papers on the dynamic lot{sizing problem are those by

Karimi et al. [21] and Jans and Degraeve [20]. The �rst one reviews single{level lot{sizing

problems, their variants and solution approaches. The second one presents an overview

of recent developments on the deterministic dynamic lot{sizing problem, focusing on the

modeling of various industrial extensions rather than solution approaches.

All the above models assume that relevant data, such as the demand, are known

and deterministic. However, this assumption is unrealistic in many situations. Guan

and Miller [17] studied the stochastic version of the deterministic lot{sizing problem and

proposed a polynomial time algorithm to obtain the optimal solution. Guan [16] studied

a more general setting of the stochastic lot{sizing problem, assuming varying capacities

and backlogging of unsatis�ed demand.

Recently, Vargas [41] investigated the problem of planning dynamic order quanti-

ties, extending the Wagner{Whitin algorithm to the case of stochastic, time{varying de-

mand with known density function. Safety stock requirements were implicitly included

in planned order quantities whereby the objective was to minimize the sum of expected

setup, backorder and inventory holding costs. A particularly elegant solution procedure

was developed for the case of normally distributed periodic demands. In his analysis,
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Vargas [41] stated that his work:

\...may serve as a basis for the development of improved production scheduling heuris-

tics for the stochastic case and new heuristics can be directly incorporated in production

scheduling systems."

Motivated by this proposal, we selected three metaheuristic optimization algorithms, still

unstudied on the speci�c problem. The algorithms were selected on the basis of popular-

ity, number of interdisciplinary applications, easy implementation and veri�ed e�ciency,

which imply a prevailing position among similar approaches. (PSO) [23], DE [37] and

HS [15] are three algorithms that perfectly matched our criteria. Although they were not

the only candidate approaches, the ongoing interest of the research community on their

properties and applications was the motive for our choice in the present study.

The aforementioned algorithms have been successfully applied also in other OR prob-

lems. For instance, we can refer to ow shop and machine scheduling problems [26, 29, 39],

optimal scheduling of multiple dam systems and uid{transport network design [13, 14],

inventory optimization [28], dynamic lot{sizing problems [12] etc.

1.3 Thesis organization

The rest of this thesis is organized as follows: in Chapter 2, the three employed algorithms

are presented and analyzed thoroughly, as well as their variants that were used in each

model, in Chapter 3, the multi{item inventory model with supplier selection and the

stochastic dynamic lot-sizing model with an introduction to the Wagner-whitin algorithm

are presented. In Chapter 4 we present the experimental settings and all the results for

both problems and all the instances that were examined. Finally, an epilogue is presented

in Chapter 5.
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Chapter 2

Employed algorithms

The main features of the employed algorithms, namely PSO, DE and HS, are presented.

In our presentation, we assume that the optimization problem under consideration is

de�ned as:

min
x∈X⊂Rn

f(x); (2.1)

where X is the search space. No additional assumptions on the objective function f(x)

are required, except of the availability of its value at any given point in X.

2.1 Particle Swarm Optimization

We present the PSO algorithm in its standard formation, as well as the recently proposed

uni�ed scheme.

2.1.1 Main scheme

The original PSO algorithm was introduced in 1995 by Eberhart and Kennedy [23]. The

method utilizes a swarm, i.e., a population of search points that iteratively probe the

search space for the global minimizer. The search points are called particles, and they

concurrently move with an adaptable velocity (position shift) to new positions.

Moreover, each particle has a memory where it retains the best position it has ever

visited, i.e., the position with the lowest function value. This can be considered as expe-

rience storage for the particle, which exploits this information to guide its search towards

the most promising regions of the search space. The search stops as soon as a stopping

criterion is achieved, usually related to the quality of the best solution found so far or to

the number of function evaluations spent by the algorithm.

Apart from the personal memory, each particle has a neighborhood, i.e., a set of indices

of other particles that share their memories (best positions) with it. Thus, the particle

decides on its next move by aggregating its own discoveries with the best �ndings of its

neighboring mates.
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Figure 2.1: The ring (left) and star (right) neighborhood topologies of PSO.

Based on the concept of neighborhood, two main PSO schemes were proposed. The

�rst one is called the global PSO (also known as gbest) model on account of the underlying

global information{sharing scheme. According to this, all particles assume the whole

swarm as their neighborhood and each particle takes into consideration its own memory

as well as the overall best memory, i.e., the best position ever discovered by the whole

swarm.

The second model is the local PSO (also known as lbest), where each particle is as-

signed a neighborhood usually consisting of a few particles. The organization of particles

in neighborhoods rises the concept of neighborhood topologies, which refers to abstract

representations of information{ow channels among the particles. Usually, the topologies

are represented as graphs consisting of nodes (particles) and interconnections (communi-

cation channels) among them. The most common topology is the ring, where all particles

are assumed to lie on a ring ordered according to their indices, such that each parti-

cle has two immediate neighbors with adjacent indices. Then, for a given particle, its

neighborhood is completely de�ned by determining a radius, i.e., the number of particles

with adjacent indices that constitute the neighborhood. More information on the e�ect

of neighborhoods can be gained in [22, 38]. Figure 2.1 illustrates the aforementioned ring

topology (left) as well as another popular scheme called star (right).

In general, the search procedure of heuristic algorithms such as PSO consists of two

phases, namely exploration and exploitation. In the �rst, the swarm attempts to detect

the most promising regions of the search space. In the latter, it promotes the faster

convergence to the most promising regions detected so far. It has been experimentally

veri�ed that the neighborhood topology can inuence the swarm's convergence dynamic.

As can be easily inferred, the gbest model promotes the search around the overall best

position in favor of exploitation. On the other hand, the lbest model with its regional

and gradual information transmission between particles, leans e�ectively to exploration.

To put it formally, let:

S = {x1; x2; : : : ; xN};

be a swarm of N particles, xi ∈ X ⊂ Rn, i = 1; 2; : : : ; N . The i{th particle has a velocity

(position shift), vi, and retains in memory the best position, pi ∈ X, it has ever visited.

A ring neighborhood of radius m for the particle xi, is de�ned as the set of indices:

Bi = {i−m; i−m+ 1; : : : ; i; : : : ; i+m− 1; i+m} :
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The ring is assumed to recycle at its end, i.e., the particles xN and x2 are the immediate

neighbors of x1.

Assume that gi is the index of the best position found so far in the neighborhood of

xi, i.e.,

gi = argmin
j∈Bi

f(pj);

and let t denote the iteration counter. Then, according to the constriction coe�cient

version of PSO [8], the swarm is updated as follows:

v
(t+1)
ij = �

[
v
(t)
ij + '1

(
p
(t)
ij − x

(t)
ij

)
+ '2

(
p
(t)
gij

− x
(t)
ij

)]
; (2.2)

x
(t+1)
ij = x

(t)
ij + v

(t+1)
ij ; (2.3)

where i = 1; 2; : : : ; N , and j = 1; 2; : : : ; n. The parameter � is the constriction coe�cient

and it is used as a means to control the magnitude of the velocities. The other two

parameters are de�ned as:

'1 = c1 r1; '2 = c2 r2;

where c1 and c2 are positive constants, also called the cognitive and the social parameter,

respectively, and r1, r2, are random variables uniformly distributed in [0; 1], assuming

di�erent values for each i, j and t.

The constriction coe�cient is needed to restrict the magnitude of the velocities, pro-

moting convergence and alleviating the \swarm explosion" e�ect that has been shown to

be detrimental for the search procedure [8]. In early PSO versions, the parameters were

empirically determined based on trial runs. In more recent versions, the PSO stability

analyses by Clerc and Kennedy [8] and Trelea [40] imply that parameters are selected

such that the following equation holds:

� =
2

|2− '−
√
'2 − 4'|

(2.4)

where ' > 4 and ' = c1 + c2. Following this result, the values � = 0:729, c1 = c2 = 2:05,

are considered as the default parameter set.

A full iteration of PSO is completed with the best positions update:

p
(t+1)
i =

{
x
(t+1)
i ; if f

(
x
(t+1)
i

)
< f

(
p
(t)
i

)
;

p
(t)
i ; otherwise:

PSO was primarily designed to operate in continuous search spaces. However, experimen-

tal evidence have shown signs of e�ciency also in integer and mixed{integer problems,

without the need of radical modi�cations in the algorithm [29, 24]. The most straight-

forward approach to achieve this, is the use of its standard form with the particles been

rounded to the closest integer prior to each function evaluation, while their position up-

dates are performed in the continuous domain. This is the approach adopted also in the

present paper. A typical example is provided in a later section.
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2.1.2 Uni�ed Particle Swarm Optimization

UPSO was proposed as an alternative PSO scheme that combines the di�erent explo-

ration/exploitation properties of the gbest and lbest PSO models [30]. The original UPSO

scheme is based on the constriction coe�cient PSO variant de�ned in Eqs. (2.2) and (2.3),

although it can be straightforwardly de�ned also for other variants. Putting it formally,

let G(t+1)
i and L(t+1)

i denote the velocity update of the i{th particle for the gbest and lbest

PSO, respectively:

G
(t+1)
ij =�

[
v
(t)
ij + '1

(
p
(t)
ij − x

(t)
ij

)
+ '2

(
p
(t)
gj − x

(t)
ij

)]
; (2.5)

L
(t+1)
ij =�

[
v
(t)
ij + '′

1

(
p
(t)
ij − x

(t)
ij

)
+ '′

2

(
p
(t)
gij

− x
(t)
ij

)]
; (2.6)

where t denotes the iteration counter; g is the index of the overall best particle in swarm;

and gi is the index of the best particle in the neighborhood of xi. Then, UPSO updates

the particle's position according to the scheme [30]:

U
(t+1)
ij = (1− u)L

(t+1)
i + uG

(t+1)
i (2.7)

x
(t+1)
ij = x

(t)
ij + U

(t+1)
ij ; (2.8)

where the parameter u is called the uni�cation factor and balances the inuence (trade{

o�) of the global and local search directions. Note that the lbest and gbest PSO models

can be obtained for u = 0 and u = 1, respectively.

The standard UPSO scheme was further extended by introducing a stochastic parame-

ter to imitate mutation in EAs. Mutation can help towards the preservation of population

diversity, which has a crucial impact on swarm's exploration capability. Thus, depending

on the variant of UPSO under consideration, Eq. (2.7) can be written either as:

U
(t+1)
i = (1− u)L

(t+1)
i + r3 uG

(t+1)
i ; (2.9)

which is mostly based on the lbest PSO, or as:

U
(t+1)
i = r3 (1− u)L

(t+1)
i + uG

(t+1)
i ; (2.10)

which is mostly based on the gbest PSO. The mutation parameter, r3, is a normally

distributed variable. The convergence properties of these variants were studied in [30]

and the superiority of UPSO against the standard PSO was experimentally veri�ed in

various problems [31].

2.2 Di�erential Evolution

The DE algorithm was introduced by Storn and Price [37] as a population{based, stochas-

tic optimization algorithm for numerical optimization problems. Similarly to PSO, DE

employs a population, S = {x1; x2; : : : ; xN}, of individuals to probe the search space.
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The population is randomly initialized, usually following a uniform distribution over the

search space. At each iteration, N competitions are held to determine the members of the

population for the next iteration. This is achieved by iteratively applying three operations

on each individual: mutation, crossover and selection.

The mutation operator produces a new vector, vi, for each individual, xi, i = 1; 2; : : : ; N ,

by combining it with some of the rest. Di�erent operators have been proposed for this

task. The following �ve operators are among the most common DE mutation schemes:

DE1 : v
(t+1)
i = x(t)g + F

(
x(t)r1 − x(t)r2

)
; (2.11)

DE2 : v
(t+1)
i = x(t)r1 + F

(
x(t)r2 − x(t)r3

)
; (2.12)

DE3 : v
(t+1)
i = x

(t)
i + F

(
x(t)g − x

(t)
i + x(t)r1 − x(t)r2

)
; (2.13)

DE4 : v
(t+1)
i = x(t)g + F

(
x(t)r1 − x(t)r2 + x(t)r3 − x(t)r4

)
; (2.14)

DE5 : v
(t+1)
i = x(t)r1 + F

(
x(t)r2 − x(t)r3 + x(t)r4 − x(t)r5

)
; (2.15)

where t denotes the iteration counter; F is a �xed user{de�ned parameter; g denotes the

index of the best individual in the population, i.e.:

g = arg min
j=1;:::;N

f(xj);

and ri ∈ {1; 2; : : : ; N}, i = 1; 2; : : : ; 5, are mutually di�erent, randomly selected indices

that di�er also from the index i. Obviously, in order to enable all mutation operators,

it must hold that N > 5. All vector operations in Eqs. (2.11){(2.15), are performed

componentwise.

After mutation, the recombination operator is applied on the generated vector, vi,

producing a trial vector:

ui = (ui1; ui2; : : : ; uin) ;

which is de�ned as follows:

u
(t+1)
ij =

{
v
(t+1)
ij ; if Rj ⩽ CR or j = RI(i);

x
(t)
ij ; otherwise;

(2.16)

where j = 1; 2; : : : ; n; Rj is the j{th evaluation of a uniform random number generator

in the range [0; 1]; CR ∈ [0; 1] is a user{de�ned crossover constant; and RI(i) is an index

randomly selected from the set {1; 2; : : : ; n}.
Finally, the produced trial vector, ui, is compared against the corresponding individual

and the best between them is included in the population of the next generation, i.e.:

x
(t+1)
i =

{
u
(t+1)
i ; if f

(
u
(t+1)
i

)
< f

(
x
(t)
i

)
;

x
(t)
i ; otherwise:

(2.17)

Apparently, DE does not require a separate memory as PSO, since it operates directly on

the best solutions found so far (the corresponding best positions in PSO). This renders
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DE a greedier algorithm than PSO. Also, there is no sound theoretical evidence on the

proper parameter setting of the algorithm. Several di�erent settings have been used in

the literature [9] but their performance appears to be strongly dependent on the operator

and problem at hand. Nevertheless, by their nature, the mutation operators that involve

the best individual of the population are expected to be more exploitation{oriented than

those that use randomly selected individuals.

2.3 Harmony search

HS was proposed by Geem, Kim and Longanthan in 2001 [15]. Inspiration was drawn

from musical performance processes that occur when a musician searches for a better

state of harmony, improvising the instrument pitches towards a better aesthetic outcome.

In a similar manner, the algorithm seeks for the global optimum, maintaining and iter-

atively updating a memory, called the Harmony Memory (HM), of candidate solutions

(harmonies). HM contains the best harmonies considered so far, i.e., candidate solutions

with the smallest objective function values.

HM consists of N randomly initialized vectors (memory size is user{de�ned) along

with their function values [25]:

HM =


x11 · · · x1n f(x1)

x21 · · · x2n f(x2)
...

. . .
...

...

xN1 · · · xNn f(xN)

 (2.18)

The harmonies in HM are ordered in ascending order with respect to their values, i.e.:

f(x1) ⩽ f(x2) ⩽ · · · ⩽ f(xN):

Also, two additional parameters must be de�ned. The �rst one is the Harmony Memory

Considering Rate (HMCR), which stands for the probability of selecting a vector compo-

nent value among those already stored in HM. The second parameter is called the Pitch

Adjusting Rate (PAR) and it de�nes the mutation probability of a selected value from

HM. The role of these parameters is clari�ed below.

The algorithm works iteratively, exploiting the stored information in HM for the pro-

duction of one or many new solutions at each iteration. The new solutions are built

component by component, selecting at each step either a stored component or a random

value. More speci�cally, let x = (x1; x2; : : : ; xn)
⊤ be a new solution to be built, with

components:

xj ∈ Xj; j = 1; 2; : : : ; n;

where Xj ⊂ R is the subspace of the search space X that corresponds to the j{th com-

ponent. Then, xj is probabilistically selected according to the scheme:

xj =

{
xsj ∈ {x1j; x2j; : : : ; xNj} ; if rj ⩽ HMCR;

y ∈ Xj; otherwise;
(2.19)
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where rj is a random variable uniformly distributed in [0; 1]; s is an index selected from

the set {1; 2; : : : ; N}; and y is a random value in Xj.

The selection of s is probabilistic and can be either uniform over the set of indices or it

can be a linear ranking selection scheme [7] of the stored harmonies in HM. In the latter,

high selective pressure can impose strong selection bias towards the indices of the best

solutions, in contrast to uniform selection which assigns equal selection probabilities to

all indices. Consequently, uniform selection is expected to be more diversity{preserving

in the produced harmonies.

After the construction of the new solution, x = (x1; x2; : : : ; xn)
⊤, each component is

mutated as follows:

xj =

{
xj + q w; if Rj ⩽ PAR;

xj; otherwise;
(2.20)

where Rj is a uniformly distributed random variable in [0; 1]; q is a uniformly distributed

random variable in [−1; 1]; and w is a user{de�ned mutation magnitude.

The aforementioned operations can be repeated to produce a number, Mprod, of new

harmonies. Each new harmony is evaluated with the objective function, and the best

Mrep ⩽ Mprod of them replace the worst Mrep harmonies stored in HM, if they improve

them. Both parameters Mrep and Mprod are user de�ned. In the simplest case, Mrep =

Mprod = 1 is used.

In contrast to PSO and DE, the HS operators with proper parameter setting can

directly handle integer and mixed{integer problems without any modi�cation. Also, we

shall notice that HS has shown many structural similarities with the established Evolution

Strategies (ES) approaches [4]. In fact, HS can be considered as an alternative ES variant,

although with a di�erent motivation and inspiration source. In view of this similarities, it

is anticipated that the performance of HS can provide evidence also on the performance

of standard ES variants.

2.4 Synopsis

We have thoroughly presented the three main algorithms used to solve the inventory

management problems, namely PSO, DE and HS, as well as their variants that were used.

In the following chapter the models that were solved are presented and analyzed.
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Chapter 3

The investigated problems

We present the model of multi-item inventory problem with supllier selection, limited

capacity and defective items, with known demand over a planning horizon, along with

the model of dynamic lot-sizing with stochastic demand.

3.1 Multi-item inventory problem with supplier selection: problem

formulation

In this chapter, we describe the original model [34] as well as the simpli�ed one, along

with the penalty function used in our study. Prior to the descriptions, we shall state the

following assumptions [34]:

(1) The transaction cost, oj, for supplier j is independent of the variety and quantity

of the ordered products.

(2) The holding cost, hi, of product i is product{dependent.

(3) The demand, dit, for product i at time period t is known over a planning horizon.

(4) Items of imperfect quality are kept in stock and sold prior to the next period in a

single batch.

(5) Each lot of product i received from supplier j contains a percentage �ij of defective

items.

(6) Purchasing price of product i from supplier j is bij. Good quality items are sold in

price sgi per unit, while defective items are sold in a single batch at a discounted

price, sdi.

(7) A screening process of the lot is conducted with a unit screening cost, ci, for product

i.

(8) Each supplier has a limited capacity.

(9) All requirements must be ful�lled in the period in which they occur. Backordering

and shortage is not allowed.

(10) Product i needs a storage space, wi, and the total storage capacity is W .

20



Figure 3.1: Diagram of the proposed inventory model
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3.1.1 Original model

Following the above assumptions, Rezaei and Davoodi [34] developed a mathematical

model that refers to the scenario of supply chain with multiple products and multiple

suppliers, all of which have limited capacity. The demand over a �nite planning horizon

is also known and an optimal procurement strategy for this multi{period horizon is to be

determined.

Each of the products can be sourced from a number of approved suppliers. However,

a supplier{dependent transaction cost applies whenever an order is placed. A product{

dependent holding cost per period applies for each product in the inventory that is carried

across a period in the planning horizon. Also a maximum storage space at each period

is considered. In order to maximize the total pro�t, the decision maker needs to decide

what products to order, in what quantities, by which suppliers, and at which time periods.

Assuming that i denotes the product, j denotes the supplier and t denotes the time period,

the required quantity is denoted as xijt.

The objective function is de�ned as follows and henceforth it will be called the original

model [34]:

max f (xijt; yjt) =

[∑
i

∑
j

∑
t

xijt (1− �ij) sgi +
∑
i

∑
j

∑
t

xijt�ijsdi

]

−

[∑
i

∑
j

∑
t

xijtbij +
∑
j

∑
t

ojyjt +
∑
i

∑
j

∑
t

xijtci+

+
∑
i

∑
t

hi

(
t∑

k=1

∑
j

xijk (1− �ij)−
t∑

k=1

dik

)]
(3.1)

It consists of the sum of the revenues of selling good quality products and imperfect

quality products, subtracting the purchase cost of the products, the transaction cost for

the suppliers, the screening cost of the products and the holding cost for the remaining

inventory at each time period. Obviously, since the problem is de�ned as maximization,

the negative of the objective function de�nes the corresponding minimization task. The

parameters yjt are binary and they are de�ned as yjt = 1, if an order is placed to supplier

j at time period t, otherwise yjt = 0. Also, the problem is highly constrained. More

speci�cally, there are four types of constraints [34]:

Type I: CI(i; j; t) =
∑t

k=1

∑
j xijk (1− �ij)−

∑t

k=1 dik ⩾ 0; for all i and t.

Type II: CII(i; j; t) =
(∑T

k=1 dik

)
yjt − xijt (1− �ij) ⩾ 0; for all i; j and t.

Type III: CIII(i; j; t) =
∑

iwi

(∑t

k=1

∑
j xijk (1− �ij)−

∑t

k=1 dik

)
⩽ W; for all t.

Type IV: 0 ⩽ xijt ⩽ kij; for all i; j and t,

where kij is the capacity of supplier j for product i. The following interpretations can be
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stated for the four types of constraints [34]:

(1) All requirements must be ful�lled in the period in which they occur.

(2) Backordering and shortage are not allowed (Type I).

(3) All orders are accompanied by the appropriate transaction cost (Type II).

(4) The total storage space is limited by W (Type III).

(5) Suppliers have limited capacities (Type IV).

If I, J and T denote the number of products, suppliers and time periods, respectively,

then the number of constraints is equal to Mc(I; J; T ) = (I × T ) + (I × J × T ) + T + 2×
(I × J × T ), while the number of variables yjt and xijt (problem dimension) is equal to

Mv(I; J; T ) = (J × T ) + (I × J × T ). Obviously, even for small values of I, J and T , the

corresponding problem constitutes a challenging task due to the large number of variables

and constraints.

3.1.2 Simpli�ed model

The original model can be simpli�ed by eliminating the integer parameters, thereby re-

ducing its dimension. Indeed, based on the de�nition of the parameters yjt, we can infer

a dependence between them and xijt, as follows:

yjt =

{
1; if xijt > 0 for at least one i;

0; otherwise:
(3.2)

Thus, the variables yjt are set to 1 if an order is placed on supplier j at time period t,

otherwise they are set to 0. If an order is not placed, i.e., yjt = 0, then the quantities,

xijt, of all products ordered from supplier j at time period t, shall also be equal to zero.

In practice, we consider that xijt is equal to zero if it is actually smaller than a prede�ned

small threshold, i.e., 0 < xijt ⩽ "z.

Therefore, we may drop the integer parameters, yjt, from our optimization problem

and retain only xijt. It is not required to modify the form of the objective function in

Eq. (3.9), as far as we determine the parameters yjt by using Eq. (3.2) whenever a function

evaluation is conducted. We will call this formulation the simpli�ed model.

The gain of removing the variables yjt is twofold. On the one hand, the problem's

dimension is reduced by J × T . On the other hand, the integer part of the problem is

removed, hence it can be tackled as a pure real{valued optimization problem. Neverthe-

less, for both the original and the simpli�ed model, the number of constraints remains

unchanged.

3.1.3 Penalty function

In our approach, the constraints were handled by using a multi{stage penalty function.

Assume that:

C̃s(i; j; t) =

{
|Cs(i; j; t)|; if Cs(i; j; t) is violated;

0; otherwise;
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where s ∈ {I; II; III}, i = 1; 2; : : : ; I, j = 1; 2; : : : ; J , and t = 1; 2; : : : ; T . Also, let Ppen
be a �xed positive parameter. Then, the penalty function for the minimization problem

is de�ned as follows:

F (xijt; yjt) = −f (xijt; yjt) +
∑
i;j;t;s

C̃s(i; j; t)Ppen; (3.3)

i.e., a penalty that depends on the degree of violation is added to the objective value for

each violated constraint. Usually, in order to avoid false penalization due to approximation

errors, a violated constraint is penalized only if its value exceeds a prede�ned violation

tolerance, i.e.:

C̃s(i; j; t) ⩾ "c > 0:

Also, we shall note that it is not required to include Type IV constraints in the penalty

function, as they simply de�ne the ranges of the variables and they can be explicitly

handled by restricting the populations within these box constraints. If an individual

violates such a constraint, it is either blocked on the violated limit or bounces back inside

the search space.

3.2 The stochastic dynamic lot{sizing problem

We present the Wagner-Whitin model that was proposed in 1958, along with the recently

proposed model that incorporates stochastic demand over the planning horizon.

3.2.1 The Wagner{Whitin model

The formula for an economic lot size under the assumption of a steady state demand

is well studied and the calculation is based on the balance between the cost of holding

inventory and placing an order. However, it is becoming more complicated when the

demand in each period is known but with di�erent value.

The mathematical model proposed by Wagner and Whitin [43] is an "one{way feasi-

billity" problem, meaning that an order can be placed in period t for period t+ i but not

vice versa.

Mathematical model

We assume that, similarly to the standard lot size formulation, the buying or manufac-

turing costs and the selling price of an item are constant for all time periods and only the

costs of the inventory management are varying. For period t = 1; 2; : : : ; N , we de�ne the

following quantities:

dt : amount demanded

it : interest charge per unit of inventory carried forward to period t+ 1
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st : setup cost

xt : amount ordered or manufactured

It is obvious that all demands and costs are non{negative. The aim is to �nd a sequence

of orders such that all demands are met at a minimum total cost. Such a sequence, unique

or not, is called optimal.

A detrimental method to solve the problem is by exhaustive search on the sequences

of possible solutions, the 2N−1 combinations of ordering or not in each period (for N total

periods), assuming that we place an order in the �rst period.

Let K the inventory entering a period and K0 the initial inventory. Therefore, for

period t the inventory follows:

K = K0 +
t−1∑
i=1

xi −
t−1∑
i=1

di ⩾ 0: (3.4)

The minimal cost policy then can be expressed as:

gt(K) = min
(K+xt⩾dt)

{it−1K + u(xt)st + gt+1(K + xt − dt)} ; (3.5)

where,

u(xt) =

{
0; if xt = 0;

1; if xt > 0:
(3.6)

For the last period N we have

gN(K) = min
(K+xt≥dt)

{iN−1K + u(xN)sN} ; (3.7)

Computation of gt starts at t = N , as a function of K, which is speci�ed for period 1.

Thus g1 can be �nally derived.

Complementary to the main equations of the model, the following theorems are pre-

sented (for each, the proof is stated extensively in [43]):

THEOREM 3.1. There exists an optimal sequence such that Kxt = 0 ∀t (where K is

the inventory entering period t).

THEOREM 3.2. There exists an optimal sequence such that for all t, xt = 0 or xt =∑k

i=t di for some k and t ≤ k ≤ N

THEOREM 3.3. There exists an optimal sequence such that if a demand dt′ is satis�ed

by some xt′′, t
′′ < t′, then dt,t = t′′ + 1; : : : ; t′ − 1 is also satis�ed by xt′′.

THEOREM 3.4. If K = 0 for a period t, it is optimal to solve the problem for periods

1 to t− 1 without considering the following periods.

THEOREM 3.5. If for a period t′ the minimum of equation 3.5 occurs for i = t′′ ≤ t′

then in periods t > t′ we can only consider t′′ ≤ i ≤ t. In the speci�c case where t′ = t′′

it is su�cient to consider only sequences with xt′ > 0.
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The Wagner{Whitin algorithm

As stated in [43], the algorithm steps can be listed as follows, for a period, t′ = 1; 2; : : : ; N :

Step 1 Consider the policies of ordering at period t′′, t′′ = 1; 2; : : : t′ satisfying the demands

dt, t = t′′; t′′ + 1; : : : ; t′, with this order.

Step 2 Determine the total cost of these t′ di�erent policies by adding the ordering and

holding costs associated with placing an order at period t′′, and the cost of acting

optimally for periods 1 through t′′− 1. This cost has been determined previously in

computations for the periods t = 1; 2; : : : ; t′ − 1

Step 3 From all the t′ alternatives, select the minimum cost policy for periods 1 through t′

considered independently.

Step 4 Proceed to period t′ + 1 or stop if t′ = N

3.2.2 Stochastic model: problem formulation

The mathematical description of the stochastic lot{size problem is deployed in the follow-

ing paragraphs, closely following the presentation of Vargas [41].

Assumptions and notation

The formal representation of the problem requires the following assumptions for the

stochastic version of the Wagner{Whitin lot{size problem:

(1) The planning horizon is composed of H time periods.

(2) Demand in each period, t, is non{negative, independent and stochastic with known

density.

(3) The production capacity is unlimited.

(4) Unsatis�ed demand is fully backlogged and a backlogging cost is assessed at the end

of each period per unit backlogged.

(5) A �xed lead time, L, is assumed and no disposal of inventory is allowed.

(6) At the conclusion of the horizon, holding or backlogging costs are assessed and any

backlogged demand is left un�lled.

(7) An order must be placed in the �rst period, which arrives at the start of this period,

and there are no pipeline lots.

Additional notation used in the problem formulation, follows below:

dt: demand in period t = 1; 2; : : : ; H, with known density function, gt(x).

26



ht: holding cost assessed at the end of period t per unit.

bt: backlogging cost assessed at the end of period t per unit, assumed to be proportional

to the holding cost, i.e., bt = p ht.

At: �xed production set up for each time period.

St: cumulative sum of all production lots to arrive up to and including period t (initially

S0 = 0).

k(x): binary decision variable de�ned as:

k(x) =

{
1; x ̸= 0;

0; x = 0:

Now we can give the general mathematical formulation of the problem, in the following

section.

Mathematical model and objective function

The expected cost incurred in period t = 1; 2; : : : ; H, is given by the following expression:

Et (S1; S2; :::; St) = At−L k(St − St−1)

+ ht

∫ St

0

(St − q) ft(q) dq

+ bt

∫ ∞

St

(q − St) ft(q) dq; (3.8)

where ft(q) is the convolution of demand for periods 1 − L to t. The corresponding

optimization problem is to specify the cumulative production amounts, St, t = 1; 2; : : : ; H,

that produce the minimum total expected set{up, holding and backlogging costs [41], i.e.:

min
0<S1⩽S2⩽···⩽SH

H∑
t=1

Et (S1; S2; :::; St) : (3.9)

Actually, the problem is solved in two stages. At �rst the optimal replenishment quan-

tities for any sequence of epochs is determined and, afterwards, the optimal sequence of

replenishment epochs is identi�ed.

More speci�cally, if S is the cumulative production quantity received up to period i,

then the expected cost incurred in periods i; i+ 1; : : : ; j − 1, is computed as:

K(S; i; j) = Ai−L +

j−1∑
t=i

ht

∫ S

0

(S − q) ft(q) dq

+

j−1∑
t=i

bt

∫ ∞

S

(q − S) ft(q) dq; (3.10)
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where i and j are periods in which a production lot is available, with:

1 ⩽ i < j ⩽ H + 1;

while no replenishment occurs for j = H + 1.

As stated in [41], Eq. (3.10) is di�erentiable and convex in S so that we obtain the

optimal solution by setting its derivative equal to zero. Consequently, if:

Ft(x) =

∫ x

0

ft(q) dq;

then,
j−1∑
t=1

(ht + bt)Ft(S) =

j−1∑
k=i

bt;

which can be extended as:
j−1∑
t=i

{
(ht + bt)∑j−1
k=i(hk + bk)

Ft(S)

}
=

∑j−1
t=i bt∑j−1

k=i(ht + bt)
=

p

(1 + p)
: (3.11)

The �rst optimization stage is completed by computing the root, S∗(i; j), of Eq. (3.11),

which represents the optimal cumulative production amount to be received up to period i

while no subsequent production lot is received before period j, and p is the parameter for

which, bt = p ht, holds.

The second optimization stage consists of the computation of the optimal sequence of

replenishment epochs, i.e., the sequence that gives the minimum value of the objective

function de�ned in Eq. (3.9). This can be done by using di�erent techniques and it con-

stitutes the point of our interference in the solution process with the heuristic algorithms.

Exhaustive search is the most trivial algorithm for solving the problem and may even

be e�ective in small problem instances. However, it becomes exponentially laborious with

the number of time periods, since the number of all possible sequences becomes very large,

requiring prohibitive computation time for their assessment. Nevertheless, it is still used

by many practitioners for small problem instances.

Vargas [41] proposed a sophisticated technique that builds a tree{like structure and

translates the problem to an equivalent one of �nding the shortest path of the resulting

acyclic network. The corresponding arcs of the network represent the options of replen-

ishment occurring in period i with no subsequent replenishment until period j, and they

are labeled with non{negative arc costs:

Cij = K
(
S∗(i; j); i; j

)
; 1 ⩽ i < j ⩽ H + 1: (3.12)

Further analysis on this technique can be found in [41].

LEMMA 3.1. For any i < j < k, it holds that S∗(j; k) ⩾ S∗(i; j).

The proof of Lemma 3.1 can be found in [41]. The speci�c lemma presents that for any

sequence of replenishment epochs, the cumulative production amounts are non-decreasing,

meaning that the individual lot sizes are non-negative.

In the current work, we propose the solution of the second optimization stage by using

the heuristic optimization algorithms mentioned in the previous chapter.
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3.3 Synopsis

We have presented the two problems that were investigated: the multi-item inventory

problem with supplier selection, defective items and limited capacity, along with the

dynamic lot{sizing problem with stochastic demand. In the next chapter we present the

experimental settings and the results for both problems.
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Chapter 4

Experimental settings and results

In the following sections we present the experimental settings for the two models and the

corresponding results and analysis.

4.1 Settings for the multi-item inventory model with supplier se-

lection

In our experimental setting, we considered the problem instance de�ned in [34] with 3

products, 3 suppliers and 4 time periods. Thus, following the notation used in the previous

sections, we have:

I = 3; J = 3; T = 4:

The demands and the prices of the products considered in our experiments are reported

in Tables 4.1 and 4.2, respectively. The dimension of the corresponding mixed{integer

original model, as de�ned in Eq. (3.9), is equal to Mv(3; 3; 4) = 48. The corresponding

real{valued simpli�ed problem has dimension M ′
v(3; 3; 4) = 36. In both cases, the num-

ber of constraints is equal to Mc(3; 3; 4) = 124. In this number there are included 12

constraints of Type I, 36 of Type II, 4 of Type III, and the remaining are of Type IV.

Regarding the penalty function, the parameters:

"c = 10−6; Ppen = 103;

were used as violation tolerance and �xed penalty, respectively. Also, the parameter

"z = 10−6 was used to identify a zero component in a solution vector.

Regarding the employed algorthms, di�erent parameter settings and operators were

considered. Speci�cally, UPSO was considered for the uni�cation factor values u = 0:0

(lbest), 0:1, 0:5, 0:9 and 1:0 (gbest). These choices aimed at investigating the behavior

of both lbest{oriented and gbest{oriented UPSO variants. The cases of u = 0:1, 0:5

and 0:9, were also considered in their mutated variants de�ned in Eqs. (2.9) and (2.10).

Henceforth, we will denote the UPSO variants as UPSO`, UPSO.1, UPSO.1m, UPSO.5,

30



Table 4.1: Demand of the three products over a planning horizon of four periods.

Planning horizon (four periods)

Products 1 2 3 4

1 170 155 160 140

2 85 90 80 105

3 280 255 290 300

Table 4.2: Prices of the three products supplied by the three suppliers and the corre-

sponding transaction costs.

Price (supplied from three suppliers)

Products 1 2 3

1 25 27 24

2 30 32 33

3 54 50 49

Transaction cost 1000 900 1500

Table 4.3: Parameter sets for UPSO.

UPSO Parameter Sets

A B C

� 0:729 0:6 0:721

c1; c2 2:05 2:83 1:654

Table 4.4: Parameter sets for DE.

DE Parameter Sets

A B C D E F G H I

F 0:3 0:3 0:3 0:5 0:5 0:5 0:7 0:7 0:7

CR 0:3 0:5 0:7 0:3 0:5 0:7 0:3 0:5 0:7

UPSO.5m, UPSO.9, UPSO.9m, and UPSOg, respectively, where \m" denotes a variant

with mutation. All mutated variants assumed a normally distributed mutation term,
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r3 ∼ N (0; 1). Regarding the parameters �, c1 and c2, the three parameter sets de�ned in

Eq. (2.4) were tested with all the aforementioned UPSO variants.

Regarding DE, the �ve basic operators de�ned in Eqs. (2.11){(2.15) were considered.

Due to their sensitivity on the parameters F and CR, we tested all possible combinations

with F;CR ∈ {0:3; 0:5; 0:7}. The parameter settings for both algorithms are summarized

in Tables 4.3 and 4.4. The speci�c parameter set that is used with an algorithm will be

denoted with a corresponding superscript. For example, UPSO.1[B] denotes UPSO with

uni�cation factor u = 0:1 and the parameter set B, i.e., � = 0:6, c1 = c2 = 2:83, while

DE3[H] denotes the DE3 operator using the parameter set H, i.e., F = 0:7, CR = 0:5.

Both UPSO and DE were originally designed to tackle real{valued variables. For this

reason, the integer variables in the original problem were assumed to take real values in

the range [0; 1] for the swarm/population update, while they were rounded to the nearest

integer (either 0 or 1) for the function evaluation. Contrary to this, the simpli�ed model

does not require such assumptions, since all the independent decision parameters are

real{valued.

The populations in both algorithms were randomly initialized in the search space,

based on the variables' ranges reported in [34]. In the original model, uniform initialization

within the ranges is adequate. However, the simpli�ed model raises a crucial initialization

issue. Speci�cally, in the original model an integer parameter has equal probability of

being initialized either to 0 or 1, since the algorithms uniformly sample real numbers

within [0; 1]. On the other hand, the simpli�ed model samples only within the ranges of

the real parameters xijt, and then computes the corresponding yjt by using Eq. (3.2) and

the relaxation parameter "z. Yet, this initialization almost surely assigns values xijt > "z,

which correspond to yjt = 1, since the volume (Lebesque measure) of the fraction of the

search space that corresponds to xijt < "z for all i (and hence yjt = 0) is very small,

compared to the whole search space.

Therefore, a completely random initialization for the simpli�ed model would be heavily

biased towards values yjt = 1 that correspond to solutions where all suppliers are getting

product orders. In order to alleviate this de�ciency, initialization in the simpli�ed model

was conducted as follows:

xijt =

{
rijt; if Rijt > 0:5;

0; otherwise;
∀i; j; t;

where Rijt is a random value, uniformly distributed in [0; 1]. Thus, each component of the

initial population had equal probability of being initialized to zero or a non{zero value.

4.2 Results and discussion

The performance of all UPSO and DE variants under all parameter sets, was tested

on both the original and the simpli�ed model. For each algorithm, 100 independent

experiments were performed. At each experiment, the algorithm was allowed to perform
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Table 4.5: Results for the original (48{dimensional) model.

Par. Set Algorithm Suc. Mean St.D. Min Max Mean{NF StD{NF

A UPSO` 100 15421:64 1914:48 8951:05 20971:63 − −
UPSO:1 100 15212:12 2127:72 10375:01 20151:81 − −
UPSO:1m 100 15668:70 2659:13 10428:47 24292:16 − −
UPSO:5 91 14500:79 2438:09 8607:04 21344:48 9468:36 8710:50

UPSO:5m 99 15045:86 2799:24 9358:54 23203:40 243:50 0:00

UPSO:9 56 13859:20 2223:46 8478:83 22280:95 85763:78 73177:19

UPSO:9m 57 13993:82 1934:43 9927:13 18307:67 92979:01 70864:78

UPSOg 45 13415:84 1418:20 9323:64 16255:25 79836:19 72462:18

B UPSO` 100 16038:85 2304:36 11812:53 22502:33 − −
UPSO:1 100 16532:74 2448:75 12141:43 24239:41 − −
UPSO:1m 100 15803:60 2294:03 11113:09 22856:12 − −
UPSO:5 93 14503:87 2787:31 9234:30 24330:26 67315:30 78975:54

UPSO:5m 100 14840:61 2564:40 10085:19 22944:63 − −
UPSO:9 67 14431:56 2133:04 9961:11 21332:90 81346:06 74831:47

UPSO:9m 50 14918:88 2000:13 10641:39 20022:54 96290:43 73952:45

UPSOg 46 14020:47 1873:16 10122:79 18485:73 107048:28 72468:41

C UPSO` 100 15921:00 2231:32 10566:48 24651:15 − −
UPSO:1 100 15451:92 2324:91 11211:14 20934:17 − −
UPSO:1m 100 16074:32 2818:37 10819:31 23621:70 − −
UPSO:5 91 13597:54 2302:49 9018:64 19260:53 23579:52 55674:28

UPSO:5m 100 14953:93 3005:48 8621:36 22315:34 − −
UPSO:9 70 13698:67 2211:16 7510:87 19705:86 82698:38 79657:03

UPSO:9m 57 14085:24 2091:52 8457:35 18474:54 58001:63 63954:17

UPSOg 62 13906:82 2309:39 9486:54 20520:18 57271:92 66923:11

A DE1 75 14559:15 2542:46 9594:67 24221:82 50181:80 58648:24

DE2 95 12608:52 1941:84 6755:38 15970:42 2544:27 1511:81

DE3 100 16397:80 2336:46 12002:27 23445:69 − −
DE4 86 15115:88 2496:64 7882:80 22409:93 58598:11 69066:23

DE5 60 10385:70 2528:90 5754:32 15056:00 3814:12 2402:44

B DE1 53 13963:80 2266:26 10670:87 20347:21 92550:63 76565:95

DE2 95 13659:89 1745:42 6669:91 17712:97 14713:47 6589:16

DE3 100 16488:09 2782:94 10939:02 24328:46 − −
DE4 79 15109:43 2789:85 8940:14 22365:54 115492:95 63699:07

DE5 85 12030:76 2329:54 5351:02 18058:41 2083:88 2790:76

C DE1 8 12970:13 1324:98 10904:66 14656:34 131506:73 95750:99

DE2 94 14366:92 1545:68 10937:93 18795:41 10366:81 6519:84

DE3 100 16131:38 2543:41 12047:10 23310:21 − −
DE4 63 15248:52 3029:65 10118:01 22890:32 131123:72 61536:85

DE5 100 13959:04 2394:37 8472:37 23030:60 − −
D DE1 95 13220:86 3149:01 7136:59 23544:69 37328:77 49425:27

DE2 35 6156:90 2293:36 1579:34 11442:20 3321:93 2930:96

DE3 100 14589:90 2614:71 8152:96 21897:24 − −
DE4 100 11264:49 3995:33 3628:60 23101:00 − −
DE5 19 7024:98 2793:20 3143:21 14145:63 5307:43 3158:89

E DE1 95 12690:39 3539:93 6073:78 21095:05 52324:84 50566:85

DE2 35 6124:32 2169:77 3052:99 13021:80 3913:89 2691:21

DE3 100 18866:74 2742:57 9234:27 23780:44 − −
DE4 100 10795:47 3174:45 5136:31 20503:74 − −
DE5 2 7307:34 1123:77 6512:72 8101:97 11858:66 5825:67

F DE1 91 14624:70 4093:28 4924:90 23278:21 86100:71 62665:31

DE2 92 8516:30 2349:54 3624:98 15511:66 1978:72 1095:68

DE3 100 20142:90 1658:85 11280:75 22690:86 − −
DE4 100 12999:85 3619:56 5792:37 22410:83 − −
DE5 3 7233:88 2969:75 5078:29 10621:32 11953:12 6506:82

G DE1 95 14335:34 1129:22 11682:55 19402:85 17865:09 8237:40

DE2 9 10176:90 1519:37 8160:27 12993:36 8032:20 5857:71

DE3 100 14280:57 2095:88 9204:23 23947:20 − −
DE4 38 11651:67 2168:63 6064:30 16483:25 4950:78 5303:61

DE5 1 8584:26 0:00 8584:26 8584:26 13651:09 7355:91

H DE1 79 14007:59 1246:80 10574:54 17376:06 31555:15 43556:65

DE2 9 11267:39 2482:72 6995:72 14284:34 12981:05 7790:02

DE3 100 14504:43 1819:04 9950:94 21836:79 − −
DE4 33 12550:27 1876:63 8305:99 17126:70 10283:64 7914:71

DE5 0 − − − − 30932:03 11213:42

I DE1 80 14095:89 1622:62 10159:60 17604:50 38442:86 50921:62

DE2 28 10365:33 2622:55 5851:03 14971:19 10284:19 6590:51

DE3 100 15057:91 2315:43 10441:52 21595:31 − −
DE4 53 11534:51 2694:72 4193:69 16363:93 11097:23 9136:05

DE5 0 − − − − 38481:31 12186:73

103 iterations using a swarm/population size of N = 50. The best solution detected

throughout each experiment was recorded for each algorithm along with its feasibility.

If a solution was infeasible, the corresponding penalty term was recorded to reveal the
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Table 4.6: Indices of the algorithms reported in the statistical test of Fig. 4.1.

1{UPSO`[A], 2{UPSO:1[A], 3{UPSO:1m[A], 4{UPSO`[B], 5{UPSO:1[B], 6{UPSO:1m[B], 7{UPSO:5m[B], 8{UPSO`[C],

9{UPSO:1[C], 10{UPSO:1m[C], 11{UPSO:5m[C], 12{DE3[A], 13{DE3[B], 14{DE3[C], 15{DE5[C], 16{DE3[D],

17{DE4[D], 18{DE3[E], 19{DE4[E], 20{DE3[F ], 21{DE4[F ], 22{DE3[G], 23{DE3[H], 24{DE3[I],

degree of violation per case. All experiments were conducted using the data provided

in [34].

4.2.1 Results for the original model

The results for the original (48{dimensional) model are reported in Table 4.5 (notice

that higher function values correspond to better solutions since the problem is de�ned as

maximization). The �rst two columns of the table report the corresponding parameter

set and algorithm, followed by seven columns that refer to the results. The �rst one

(labeled as \Suc.") reports the percentage of success in detecting a feasible solution in

100 experiments. The next four columns expose the mean, standard deviation, minimum

and maximum of the obtained solution's value only for the successful runs. For the

infeasible cases, the last two columns (labeled as \Mean{NF" and \StD{NF") report the

mean and standard deviation of the corresponding penalties of the �nal solutions. Finally,

the best performing algorithms that achieved success of 100% are boldfaced.

The reported results draw a clear picture of the algorithms' performances. Regarding

the PSO{based approaches, there is an evident superiority of exploration{oriented variants

for all parameter sets. UPSO`, UPSO:1 and its mutated counterpart UPSO:1m, shown a

remarkable consistency regardless of the selected parameter values. The UPSO:5m variant

was also very promising but with marginally inferior average performance than the rest

in the case of parameter set A. Finally, no clear correlation of speci�c parameter set and

best performing UPSO variant is revealed by the reported values.

Regarding the DE variants, DE3 was clearly the less sensitive variant with respect

to the di�erent parameter settings, since it was completely successful in all cases. Less

robust behavior was obtained for DE4 and DE5, which attained complete success only for

a few parameter settings. The sensitivity of DE5 was remarkable since it was downgrading

from 100% for DE5[C], to 0% for DE5[H] and DE5[I]. Also, we shall notice that DE3[F ]

achieved the best average performance among all the algorithms for the original model.

We must underline that the three best performing DE operators are all de�ned using

two di�erence vectors (see Eqs. (2.13), (2.14) and (2.15)), while two of them (including

DE3) take advantage of the best member, xg, of the population. Especially for DE3, its

structural similarities with PSO are more than obvious.

Despite the undoubted dominance of the aforementioned UPSO and DE variants over

the rest, no sound comparisons can be straightforwardly inferred among them due to
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Figure 4.1: Statistical signi�cance tests. The algorithms are indexed as in Table 4.6.

Table 4.7: Indices of the algorithms reported in the statistical test of Fig. 4.3.

Index 1 2 3 4 5 6

Algorithm DE3[E] DE3[E] DE3[E] DE3[F ] DE3[F ] DE3[F ]

Iterations 1× 103 2× 103 3× 103 1× 103 2× 103 3× 103

frequent overlapping of the obtained data statistics reported in Table 4.5. To this end, the

24 completely successful variants that are boldfaced in the table, were compared through

statistical signi�cance tests. More speci�cally, pairwise comparisons of the performances

of all 24 variants were conducted using the non{parametric Wilcoxon rank{sum test at

99% signi�cance level. For each algorithm, we recorded the number of cases where it

was better or worse with statistical signi�cance, as well as the number of cases where its

performance di�erence was statistically insigni�cant from the rest of the algorithms.

The results of these tests are graphically illustrated in Fig. 4.1, where the algorithms

are indexed in order of appearance, as reported in Table 4.6. More speci�cally, for each

algorithm there is a corresponding bar in Fig. 4.1. The bar is divided in three parts,

colored with white, black and gray. The white part shows the number of other algorithms

(out of 23) with which the algorithm was positively compared, i.e., it was dominant with

statistical signi�cance. The black part of the bar shows the number of other algorithms

(out of 23) with which the algorithm was negatively compared, i.e., it was outperformed

with statistical signi�cance. Finally, the gray part shows the number of other algorithms

with which there was no statistically signi�cant di�erence in performance. Obviously, the

larger the white part is, the better is the algorithm with respect to the rest of the tested

variants.

The white parts of the bargraph in Fig. 4.1, clearly implies the superiority of DE3[E]

(indexed as 18) and DE3[F ] (indexed as 20), which can be fairly characterized as the best

approaches for the original model. Nevertheless, this conclusion is based only on the

speci�c setting of population size (N = 50) and 103 iterations, raising questions regarding
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Figure 4.2: Performance of DE3[E] and DE3[F ] under iteration number scaling.

Figure 4.3: Statistical signi�cance tests. The algorithms are indexed as in Table 4.7.

their behavior under di�erent settings.

For this reason, further experiments were conducted for these two algorithms in order

to discover additional evidence regarding their performance scaling. Thus, our experi-

mentation was extended in two directions: �rstly, we kept the population size �xed to 50
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Figure 4.4: Performance of DE3[E] and DE3[F ] under population size scaling.

Figure 4.5: Statistical signi�cance tests. The algorithms are indexed as in Table 4.7.

and linearly increased the available iterations to k × 103 for k = 2; 3. This setting would

help us to discover whether the attained behavior and relative performance of the most

successful algorithms for the case of 103 iterations could be counterbalanced by additional

computational budget. Secondly, we kept the number of iterations �xed to an adequately
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high value, namely 3×103, and tested again the algorithms under population size scaling,

i.e., N = k × 50, k = 1; 1:5; 2.

The results for the experiments with iteration number scaling are graphically illus-

trated in Fig. 4.2, with respect to the value of the �nal solution found after 100 experi-

ments. The corresponding statistical comparisons are illustrated in Fig. 4.3. From these

�gures, it is easily derived that both algorithms improved their performance, with DE3[E]

being marginally ahead of DE3[F ]. Yet, there is a clear tendency of the boxplots in Fig. 4.2

for both algorithms to get narrower as the number of iterations increases. This veri�es

the general feeling that increasing the computational budget does not necessarily produce

the same trend in performance.

The outcome for the experiments with population size scaling are graphically illus-

trated in Fig. 4.4, with respect to the value of the �nal solution found after 100 experi-

ments, while the corresponding statistical comparisons are illustrated in Fig. 4.5. As we

observe, the roles are reversed for the two algorithms in this case, with DE3[F ] taking head

as population size increases. This is derived by the white parts of the bars in Fig. 4.5. A

possible explanation of this e�ect could be the di�erent parameter sets used by the two

variants. Indeed, DE3[F ] has the same value, F = 0:5, with its mate variant, but di�ers

at CR, which is higher for DE3[F ] than DE3[E] (see Table 4.4). Thus, DE3[F ] has higher

probability of accepting components from newly produced vectors than retaining the ex-

isting components, as can be seen in Eq. (2.13), thereby favoring exploration. Remember

that exploration{oriented variants were superior also for UPSO in our initial experiments.

As expected, increasing the population size strengthens this e�ect further.

As a �nal comment for the original model, we shall mention that the best feasible

solution obtained with the GA approach in [34] has objective value 15266:8. In the next

section, the results for the simpli�ed model are presented.

4.2.2 Results for the simpli�ed model

The results for the simpli�ed (36{dimensional) model are reported in Table 4.8, follow-

ing the presentation motif of the previous section. A �rst inspection of the table o�ers

some immediate conclusions. More speci�cally, the successful UPSO variants remarkably

improved their performance, while the same is observed also for the most e�cient DE

approaches. However, we can see considerable di�erences for DE with parameter sets A,

B and C. Indeed, the dominant DE3 for these cases was outperformed by other variants

in the simpli�ed model.

Also, there is a noticeable performance improvement for DE variants with one rather

than two di�erence vectors, i.e., DE1 and DE2. This can be interpreted as a consequence

of the reduced dimensionality of the simpli�ed model. This can also account for the

reduced penalty terms (violation magnitude) observed for the variants that retained their

inferior performance also in the simpli�ed model.

Further analysis of the results reveals a complete dominance of UPSO:1 against the

rest PSO{based variants (mutated or not). Obviously, the reduced problem dimension-
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Table 4.8: Results for the simpli�ed (36{dimensional) model.

Par. Set Algorithm Suc. Mean St.D. Min Max Mean{NF StD{NF

A UPSO` 100 16759:17 3278:01 7509:59 24417:35 − −
UPSO:1 100 18859:93 2238:09 11760:49 21770:91 − −
UPSO:1m 100 16473:78 2618:19 8485:52 20836:61 − −
UPSO:5 87 16455:72 3125:58 7345:19 23142:99 5351:26 5928:03

UPSO:5m 86 15294:78 2772:99 6973:88 20877:98 8886:35 11535:16

UPSO:9 45 15088:82 2780:00 10010:74 20087:92 54858:49 67414:87

UPSO:9m 53 14991:10 3460:81 7498:16 23208:42 78242:57 74742:21

UPSOg 40 14908:15 2973:21 10283:91 22636:29 78306:92 97846:59

B UPSO` 100 17136:33 2503:24 9955:92 22171:36 − −
UPSO:1 100 19804:36 1385:60 14157:15 21712:73 − −
UPSO:1m 100 17260:02 2537:20 10722:93 22125:78 − −
UPSO:5 89 15757:12 2717:69 7908:57 20426:22 2152:33 3937:44

UPSO:5m 89 15872:29 2732:52 9283:88 21427:43 13363:53 17319:03

UPSO:9 67 16177:61 3362:40 8911:48 23527:84 41020:65 61171:56

UPSO:9m 58 16558:38 3865:34 8265:28 23977:88 40028:42 64368:63

UPSOg 59 14896:71 3240:53 8082:66 21081:66 58381:39 66775:30

C UPSO` 100 17510:62 2470:74 11599:80 22487:18 − −
UPSO:1 100 19075:84 2148:43 10947:89 22189:06 − −
UPSO:1m 100 17755:93 2010:20 10889:56 21172:55 − −
UPSO:5 82 13508:11 3067:00 4299:81 20145:10 20308:60 58711:26

UPSO:5m 40 13302:91 2315:85 8220:24 17000:62 23315:20 25042:97

UPSO:9 47 14052:46 2765:54 7727:73 20750:58 61369:61 69703:66

UPSO:9m 49 13707:07 3450:26 7459:08 21551:97 54792:29 97782:37

UPSOg 37 16114:44 3432:76 8707:23 23744:53 76744:08 79459:57

A DE1 100 15984:49 2765:95 9388:31 21822:34 − −
DE2 100 11780:78 1901:86 7210:81 16944:50 − −
DE3 88 16395:45 2164:90 10860:46 20440:12 9954:55 12194:72

DE4 100 16623:82 2470:09 9655:99 20927:67 − −
DE5 93 10670:92 2182:30 5702:02 15630:71 1974:37 1870:77

B DE1 70 13922:19 3133:28 5303:14 20277:95 18126:23 25327:49

DE2 100 12125:32 1634:36 6514:34 15649:21 − −
DE3 6 13744:13 2388:96 11402:06 18206:96 75883:24 52511:67

DE4 100 18356:69 2360:10 11851:68 21870:83 − −
DE5 65 10410:58 1661:34 7111:17 13532:27 2270:85 1484:78

C DE1 3 10430:29 4537:52 7041:52 15585:35 143482:71 104973:00

DE2 100 16990:51 1677:95 12388:14 20902:19 − −
DE3 0 − − − − 206190:39 94357:79

DE4 81 17329:37 3094:78 9567:92 22213:98 16762:81 22898:26

DE5 100 14064:60 1403:47 9223:34 17726:10 − −
D DE1 100 15793:91 2830:30 7556:60 22701:53 − −

DE2 61 9599:96 2397:13 3359:51 15859:96 2293:09 1521:34

DE3 100 18296:31 1219:76 13717:56 20497:22 − −
DE4 94 11703:96 1903:15 7686:59 16444:87 1588:12 1611:85

DE5 7 8879:81 1826:91 6147:96 11762:54 5542:72 3598:24

E DE1 100 16904:64 3160:43 8519:29 22453:12 − −
DE2 24 9095:77 2038:00 5916:90 13046:64 3237:87 2210:46

DE3 100 20579:86 702:24 17821:38 22004:01 − −
DE4 96 11834:47 2385:84 6192:86 17526:98 1075:11 1136:44

DE5 1 9501:12 0:00 9501:12 9501:12 14446:91 6224:22

F DE1 96 18651:37 2720:45 10802:69 23491:00 5751:31 6651:73

DE2 96 11995:80 1764:43 6495:59 14921:55 1314:26 378:57

DE3 100 20191:47 1307:50 13530:06 22064:48 − −
DE4 100 14869:66 2134:99 8000:83 19298:33 − −
DE5 4 8706:46 1121:83 7967:51 10378:10 14405:69 6870:72

G DE1 95 12402:31 3112:72 5370:04 18704:73 3794:68 3848:22

DE2 6 7975:03 1770:66 5912:67 10151:68 6373:32 4466:43

DE3 100 14096:14 1615:40 10410:08 17182:87 − −
DE4 1 8467:92 0:00 8467:92 8467:92 8831:10 5161:54

DE5 0 − − − − 21111:12 9222:42

H DE1 96 12601:53 2838:62 6667:11 17973:07 3576:89 6110:49

DE2 0 − − − − 15438:37 6267:39

DE3 100 14202:29 1867:94 9269:24 17993:76 − −
DE4 0 − − − − 24633:79 9047:56

DE5 0 − − − − 53013:67 14042:80

I DE1 100 16521:72 2903:66 9958:85 23138:23 − −
DE2 2 10714:10 953:53 10039:85 11388:34 13369:71 6866:40

DE3 100 17779:32 1499:10 14035:22 20761:56 − −
DE4 1 6645:59 0:00 6645:59 6645:59 23390:84 10251:23

DE5 0 − − − − 86763:25 21377:91

ality along with the adequate search diversi�cation attained by UPSO, o�ers a properly

balanced search capability to the algorithm. On the other hand we can observe an ex-

ceptionally high failure rate of some DE variants, especially for the parameter sets G,
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Figure 4.6: Statistical signi�cance tests. The algorithms are indexed as in Table 4.9.

Table 4.9: Indices of the algorithms reported in the statistical test of Fig. 4.6.

1{UPSO`[A], 2{UPSO:1[A], 3{UPSO:1m[A], 4{UPSO`[B], 5{UPSO:1[B], 6{UPSO:1m[B], 7{UPSO`[C], 8{UPSO:1[C],

9{UPSO:1m[C], 10{DE1[A], 11{DE2[A], 12{DE4[A], 13{DE2[B], 14{DE4[B], 15{DE2[C], 16{DE5[C],

17{DE1[D], 18{DE3[D], 19{DE1[E], 20{DE3[E], 21{DE3[F ], 22{DE4[F ], 23{DE3[G], 24{DE3[H],

25{DE1[I], 26{DE3[I],

H and I, which correspond to the parameter value F = 0:7. Even the successful DE

variants (e.g. DE3) exhibited inferior performance for these cases, compared to the other

parameter sets.

Similarly to the analysis in the previous section, the completely successful variants

that are boldfaced in Table 4.8 were compared through statistical signi�cance tests. Thus,

pairwise comparisons of the performances of all 26 variants were conducted using the non{

parametric Wilcoxon rank{sum test and the obtained results are graphically illustrated

in Fig. 4.6, where the algorithms are indexed in order of appearance, as reported in

Table 4.9. Again, the white part of each bar shows the number of other algorithms (out

of 25) with which the algorithm was positively compared. On the other hand, the black

part of the bar shows the number of algorithms (out of 25) with which it was negatively

compared. Finally, the gray part shows the number of algorithms with which there was

no statistically signi�cant di�erence.

Despite the fact that UPSO`[A] achieved the best maximum value in all experiments,

the better average performance with statistical signi�cance was achieved by the same

DE variants that prevailed also in the original model, namely DE3[E] (indexed as 20) and

DE3[F ] (indexed as 21), verifying their merit for the speci�c application. As in the previous

model, we further expanded our experimental analysis by considering linearly increased

number of iterations (k × 103 for k = 2; 3) and population size scaling (N = k × 50,

k = 1; 1:5; 2).

All the obtained results and statistics are graphically illustrated in Figs. 4.7{4.10.
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Figure 4.7: Performance of DE3[E] and DE3[F ] under iteration scaling.

Figure 4.8: Statistical signi�cance tests. The algorithms are indexed as in Table 4.7.

The results are completely aligned with these of the original model. More speci�cally,

in the case of iteration scaling both algorithms improved their performance, with DE3[E]

being signi�cantly superior than the rest as the number of iterations increases, as derived
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Table 4.10: Indices of the algorithms reported in the statistical test of Fig. 4.8.

Index 1 2 3 4 5 6

Algorithm DE3[E] DE3[E] DE3[E] DE3[F ] DE3[F ] DE3[F ]

Iterations 1× 103 2× 103 3× 103 1× 103 2× 103 3× 103
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Figure 4.9: Performance of DE3[E] and DE3[F ] under population size scaling.

from Figs. 4.7 and 4.8. On the other hand, under population size scaling, DE3[F ] was

particularly e�cient, especially for higher values of the population size as derived from

Figs 4.9 and 4.10. From these observations, we can infer that the simpli�ed model does

not modify the general performance pro�le and trend of the most successful algorithms

in the speci�c problem. This is a signi�cant property, since it allows the generalization of

conclusions regarding the observed performances from the one model to the other.
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Figure 4.10: Statistical signi�cance tests. The algorithms are indexed as in Table 4.10.

4.3 Stochastic dynamic lot{sizing model

In this section, we expose the exact settings used in our experiments as well as the obtained

results, followed by the corresponding discussion.

4.3.1 Solution representation

As mentioned in Section 3.2.2, a production schedule for the entire planning horizon that

minimizes the total cost de�ned in Eq. (3.9) can be determined through a two{stage

optimization procedure. In the �rst stage, the optimal replenishment quantities for any

sequence of replenishment epochs are analytically computed using Eq. (3.11) [41].

The second stage, consists of a binary optimization problem that aims at identifying

the optimal sequence of replenishment epochs. For each epoch, a decision of placing an

order (corresponding to 1) or not (corresponding to 0) must be made. If the decision is

to place an order then the optimal quantity is already known from the �rst optimization

stage and it is directly used for the computation of the total cost.

For a problem ofH epochs, the employed algorithms need to work on the n{dimensional

binary space X = {0; 1}n with n = H. However, as we already mentioned, the employed

algorithms are primarily destined to work on real variables (with the exception of HS,

which can alleviate this problem). For this reason, the tried{and{true rounding technique

was adopted in the present study. More speci�cally, the algorithms were let to operate

on the real search space X = [0; 1]n but, whenever the function evaluation of a particle

(or individual) was required, its components were rounded to the nearest integer (0 or 1)

without substituting the real components with the integers in the vectors. For example,

the candidate solution:

x = (0:31; 0:74; 0:56; 0:91; 0:22)⊤;

would be mapped to the binary vector:

x̄ = (0; 1; 1; 1; 0)⊤;
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and:

f(x) = f(x̄):

This approach imposes only minimal intervention in the algorithms' dynamics. Only for

the case of HS, the real components of the harmonies were replaced by their nearest

integers both in HM and in the new harmonies produced by mutation.

4.3.2 The case of normally distributed demand

Without restricting the applicability of the considered algorithms, stochastic demand was

assumed to follow a normal distribution in our study, in accordance to the case study

reported in [41]. Under this assumption, Eqs. (3.10) and (3.11) can be simpli�ed to

avoid multiple numerical integrations for determining the optimal cumulative production

quantities.

In this manner, two functions are involved, namely the cumulative normal distribution

and the standard normal loss integral. Let �t and �t denote the mean and standard

deviation of cumulative demand in period t, with density function ft(x). Let also �(x)

denotes the standard normal density function with cumulative distribution function Φ(x),

and let:

IN(x) =

∫ ∞

z=x

(z − x)�(z) dz;

be the normal loss integral.

THEOREM 4.1. With normally distributed demand, Eq. (3.10) is simpli�ed as follows:

K(S; i; j) = Ai−L +

j−1∑
t=i

ht �t [zt + (1 + p) IN(zt)] ; (4.1)

where:

zt =
S − �t
�t

:

The proof of Lemma 4.1 can be directly derived, based on the following lemmas.

LEMMA 4.1. It holds that
∫∞
S
(q − S)f(q)dq = �IN(

S−�
�

)

LEMMA 4.2. It holds that
∫ S
−∞(S − q)f(q)dq = S−�

�
+ �IN(

S−�
�

)

The proofs of Lemmas 4.1 and 4.2 are extensively presented in [41].

4.3.3 Test problems

Our aim in the present study was the investigation of the employed algorithms on various

instances of the problem with respect to its dimension. The main interest behind this, is

the scaling of the run{time required to �nd the optimal sequence of replenishment epochs.

As we already mentioned in previous sections, the exhaustive inspection of all possible
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combinations requires exponentially increasing time with the problem dimension (number

of epochs), which becomes prohibitive even for modern computer systems. Therefore,

e�ciency with respect to both solution accuracy and run{time was in the center of our

investigation.

For consistency, the test problems used in our experiments were based on the 12{

dimensional problem presented in [41]. The data provided in this source includes the

setup cost and cumulative demand for 12 epochs. We used this data and extended them

for up to 48 epochs. For this purpose, we �tted a Gaussian distribution on the provided

data and generated new setup cost and cumulative demand values by sampling the �tted

distribution. The obtained values are reported in Table 4.11.

We considered the problem for dimensions 12, 18, 24, 30, 36, 42 and 48. The optimal

sequence of the replenishment epochs for each instance was initially determined through

exhaustive search. The total number of binary sequences per case as well as the required

run{time1 for their evaluation are reported in Table 4.12. As we can see, problem instances

with more than 36 epochs need excessive computation time due to the huge number of

sequences, which becomes larger than 1010.

It must be stressed out that the actual number of binary variables for a problem

instance of H epochs is equal to H − 1, due to the model assumption that there is always

an order decision in the �rst epoch [41], which implies that the corresponding binary

variable is always �xed to 1. Thus, a problem with H epochs corresponds to 2H−1 binary

sequences.

4.3.4 Experimental setup

We performed extensive experiments with the three employed algorithms under di�er-

ent parameter settings and variants. PSO was considered in both its global and local

variant with ring neighborhoods of radius 1 and the default parameter set given in Sec-

tion 2.1.1. DE was considered in its �ve basic operators and all possible combinations of

its parameters, F;CR ∈ {0:3; 0:5; 0:7}. HS was considered under various harmony mem-

ory sizes and for both the uniform and the linear ranking selection schemes. Preliminary

experiments provided clear evidence that for harmony memory size equal to N , the val-

ues Mprod = N=2 and Mrep = N=5 for the produced and replaced new harmonies (see

Section 2.3), respectively, constitute appropriate choices.

The swarm size in PSO (equivalently the population size in DE and harmony memory

size in HS) was set to 10×n for all problem instances, where n is the corresponding prob-

lem dimension. For each algorithm, 100 independent experiments were performed per

problem instance. The stopping condition was the determination of the optimal sequence

of replenishment epochs within a prescribed maximum number of function evaluations.

For the smallest problem instances, this number was equal to the total number of se-

quences. For larger instances, it was limited to the value Tmax = 5 × 106 as reported in

1The time refers to an Intel I7 machine with 8GB of memory.
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Table 4.11: Setup cost and cumulative demand (ft(q)) used in the test problems.

Time Setup Cumulative demand

period cost Mean St.D.

1 85 69 7:7

2 102 98 8:3

3 102 134 9:2

4 101 195 11:4

5 98 256 13:3

6 114 282 13:6

7 105 316 14:1

8 86 383 16:0

9 119 428 16:7

10 110 495 18:3

11 98 574 20:3

12 114 630 21:2

13 108 657 25:1

14 122 718 25:6

15 79 767 26:8

16 111 816 27:7

17 106 894 28:6

18 89 952 29:9

19 98 1008 30:9

20 106 1089 31:7

21 140 1127 33:0

22 132 1192 33:6

23 89 1259 34:5

24 135 1307 35:5

25 110 1363 36:2

26 102 1395 36:9

27 110 1427 37:3

28 101 1481 37:8

29 102 1546 38:5

30 119 1644 39:3

31 118 1685 40:5

32 118 1741 41:0

33 110 1792 41:7

34 90 1810 42:3

35 110 1855 42:5

36 120 1876 43:1

37 108 1943 43:3

38 114 1980 44:1

39 110 2034 44:5

40 100 2077 45:1

41 106 2135 45:6

42 95 2177 46:2

43 112 2238 46:6

44 91 2304 47:3

45 92 2387 48:0

46 94 2436 48:9

47 72 2450 49:4

48 118 2488 49:5
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Table 4.12: Total number of sequences and run{time required for the exhaustive search

per problem instance. The symbol \∼" stands for \order of" and \>" denotes \higher

than".

Dim. Sequences Time

12 2048 0:1 sec.

18 131072 0:5 sec.

24 ∼ 106 ∼ 5 sec.

30 ∼ 108 ∼ 312 sec.

36 > 1010 > 7 hrs.

42 > 1010 > 2 days

48 > 1010 > 5 days

Table 4.13: Maximum function evaluations (Tmax) and swarm/population/harmony mem-

ory size (N) per problem instance.

Dim. Tmax N

12 2048 120

18 131072 180

24 5× 106 240

30 5× 106 300

36 5× 106 360

42 5× 106 420

48 5× 106 480

Table 4.13.

All variants were extensively tested. The total number of independent experiments for

all problem instances was higher than 26000. For each algorithm, variant, parameter set

and problem instance, we recorded the success rate, i.e., the number of experiments (out

of 100) where it succeeded to reach the optimal solution within the maximum number of

function evaluations. Also, the mean, standard deviation, minimum and maximum value

of the expected number of function evaluations, as well as the average required run{time

(in seconds) were recorded per algorithm and problem instance.

4.3.5 Presentation of results and discussion

In view of the huge amount of the obtained results, it was necessary to make a selection of

only the most interesting cases to report in our presentation. For this reason, we identi�ed

the most promising variant of each algorithm. For PSO, the lbest model was far the most
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successful variant. The gbest model was prone to get stuck in suboptimal solutions, even

for the low{dimensional problem instances. This can be attributed to its exploitation

orientation in combination with the rounding scheme. Very often, the particles in the

gbest model were rapidly clustered in very small ranges around the best solutions, also

assuming very small velocities. This e�ect, combined with the fact that components in

the range [0; 0:5] were mapped to 0 while components in (0:5; 1] were mapped to 1, o�ers

a reasonable explanation for the low e�ciency of gbest PSO. On the other hand, lbest

PSO is clearly more exploration{oriented than gbest. Thus, the particles were able to

retain su�ciently higher velocities that allowed them to move from the one half of the

search space to the other, thereby exploring a higher number of binary sequences.

Regarding the DE algorithm, two operators were clearly distinguished among the �ve

presented in Section 2.2, namely DE2 and DE5, while the most successful parameter

values were F = 0:7 and CR = 0:3. A closer look at these two operators reveals that they

both use only randomly selected individuals from the population, in contrast to the rest

operators that exploit the best individual. This can be interpreted as an evidence that,

on average, operators with higher diversity{preserving properties are related to the best

observed performance. This is aligned with our observations reported above for the PSO

algorithm.

Finally, for the HS algorithm, the uniform selection scheme was more e�cient than the

linear ranking scheme. It must be underlined that, since uniform selection represents the

most fair scheme (equal selection probability for all vectors stored in memory), the linear

ranking scheme was assigned high selective pressure, representing the completely biased

selection towards the best harmonies. Obviously, uniform selection is more diversity{

preserving than the linear ranking. Hence, its superiority aligns with the observations for

the previous two algorithms, i.e., diversity{preserving variants are more successful in the

speci�c problem.

In fact, this is the �rst interesting conclusion of the present work and it can be at-

tributed to the nature of the binary optimization problem, with local minimizers that

di�er slightly (in one or two components) from the global one while their function values

di�er less than 0:6% from the global minimum.

Table 4.14 reports the detailed results for the aforementioned most successful algorith-

mic variants. More speci�cally, for each algorithm and problem instance, the success rate

(successful experiments out of 100), mean, standard deviation, minimum, and maximum

value of the required function evaluations for the successful experiments, as well as the

required run{time (in seconds) are reported. The column that corresponds to the best

algorithm is boldfaced. As best algorithm, we considered the one that primarily had the

largest success rate and the smallest mean, and secondarily the smallest run{time.

In addition to Table 4.14, the results are also graphically illustrated in Figs. 4.11{4.12

to provide intuitive evidence of their performance and facilitate visual comparisons among

them. Figure 4.11 illustrates the success rate per algorithm, with di�erent colors denoting

the di�erent problem instances in ascending dimension order. In Figs. 4.13{4.19 boxplots
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Figure 4.11: Success rate for each algorithm. Di�erent colors denote the di�erent problem

instances.

are used to illustrate the distribution of the number of function evaluations required

for each algorithm in the 100 independent experiments. On each box, the central mark

is the median, the edges of the box are the 25{th and 75{th percentiles, the whiskers

extend to the most extreme values, and the outliers are plotted individually (denoted

with crosses). The notches de�ne comparison intervals between medians. Two medians

are signi�cantly di�erent at the 5% level if the corresponding intervals do not overlap.

The interval endpoints are the extremes of the notches. Finally, Fig. 4.12 illustrates the

scaling of the required run{time per algorithm as dimension increases.

A �rst inspection of Table 4.14 provides some immediate conclusions. Firstly, there is

an undoubtful superiority of the DE variants against PSO and HS. Evidently, DE2 is the

overall best performing variant, followed by DE5, PSO and HS. Secondly, the performance

di�erences among them exhibit an increasing pattern with the problem's dimension. As

we observe, even DE5 grows an exponentially increasing di�erence with DE2, although

it has a slightly better mean in the 12{dimensional case. However, the latter problem

instance needs special attention. A closer inspection of the reported data reveals that,

despite the slightly lower mean of DE5, DE2 has slightly smaller standard deviation, which

may suggest statistical insigni�cance between them. This is also visible in Fig. 4.13 with

the overlapping comparison intervals between their medians in the boxplots. Also, we

can observe that HS had also very satisfactory performance. In fact, it had the smallest

mean in the successful experiments but with a slightly worse success rate, which is the

reason for not considering it as the best algorithm in the 12{dimensional case. The same

question as previously for the DE variants rises also here, i.e., how (statistically) crucial

is the observed di�erence.

In order to answer this question, we performed a statistical signi�cance test for each

pair of algorithms. For this purpose, the non{parametric Wilcoxon rank{sum test was

used. Each pair was tested against the null hypothesis that the samples have the same
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Figure 4.12: The required running time per algorithm and problem instance.
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Figure 4.13: Boxplots of the mean number of function evaluations required for each

algorithm in 100 independent experiments for the 12{dimensional problem instance.
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Figure 4.14: Boxplots of the mean number of function evaluations required for each

algorithm in 100 independent experiments for the 18{dimensional problem instance.
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Figure 4.15: Boxplots of the mean number of function evaluations required for each

algorithm in 100 independent experiments for the 24{dimensional problem instance.
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Figure 4.16: Boxplots of the mean number of function evaluations required for each

algorithm in 100 independent experiments for the 30{dimensional problem instance.
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Figure 4.17: Boxplots of the mean number of function evaluations required for each

algorithm in 100 independent experiments for the 36{dimensional problem instance.
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Figure 4.18: Boxplots of the mean number of function evaluations required for each

algorithm in 100 independent experiments for the 42{dimensional problem instance.
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Figure 4.19: Boxplots of the mean number of function evaluations required for each

algorithm in 100 independent experiments for the 48{dimensional problem instance.
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median in a 95% level of signi�cance. The outcome of the tests is reported in Table 4.15,

where the existence of statistical signi�cance is denoted with the symbol \*" and the lack

is denoted with the symbol \-".

The statistical tests revealed that, as anticipated, the two DE algorithms had essen-

tially the same performance in the 12{dimensional problem. Also, the visual evidence from

Fig. 4.13, which suggests that HS has noteworthy performance in the speci�c problem in-

stance, is veri�ed by the statistical signi�cance of HS against the rest of the algorithms.

However, the performance of HS exhibits a rapid decline as dimension increases. The

picture becomes clearer in higher{dimensional instances, where all algorithms are statis-

tically di�erent, with a single exception between PSO and HS in the 18{dimensional case,

which can be attributed to their large standard deviations.

Regarding the running time illustrated in Fig. 4.12, we observe an anticipated supe-

riority of the computationally cheapest approach, i.e., the DE2 variant, while PSO and

DE5 had virtually the same run{time requirements. HS remained the more computa-

tionally demanding algorithm, evidently due to the excessive required number of function

evaluations and its reduced success rate in the higher{dimensional cases.

As a closing remark, we must underline that notwithstanding their di�erences, the em-

ployed heuristic algorithms o�ered immense improvement against the exhaustive search,

which is the trivial baseline for addressing such problems.

4.4 Synopsis

We have extensively presented the experimental settings for the speci�c problems and the

algorithms used for both models, along with the results and the statistical analysis for

the algorithms performance. They were part of the work published as [32] and [33]. In

the next chapter, the concluding remarks of the current thesis are presented.
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Table 4.14: Results for all algorithms and problem instances.

Dim. Stat. PSO HS DE2 DE5

12 Succ. 86 99 100 100

Mean 911:16 556:36 823:20 778.80

StD 454:33 291:81 363:19 373.54

Min 240 180 240 240

Max 2040 1740 1800 1800

Time 0:00023 0:00000 0:00000 0.00010

18 Succ. 100 100 100 100

Mean 7524:00 10693:80 3556.80 3997:80

StD 6736:47 9927:87 1277.40 1417:39

Min 540 540 360 720

Max 46440 53730 7560 8100

Time 0:007 0:014 0.005 0:007

24 Succ. 100 100 100 100

Mean 20846:40 29565:60 10022.40 11714:40

StD 16223:65 23897:46 2440.96 3581:99

Min 4080 1920 3840 3600

Max 92160 126600 16560 20880

Time 0:026 0:063 0.036 0:053

30 Succ. 100 100 100 100

Mean 61653:00 63703:50 25302.00 31272:00

StD 92675:79 33648:22 6189.35 8393:15

Min 8100 7200 10800 4800

Max 899700 219600 37800 52500

Time 0:119 0:191 0.123 0:152

36 Succ. 100 99 100 100

Mean 122878:80 198676:36 41648.40 56170:80

StD 79122:15 159591:75 8280.73 11729:42

Min 11160 21780 19440 29880

Max 383040 801360 63000 84960

Time 0:274 0:756 0.245 0:354

42 Succ. 100 99 100 100

Mean 277708:20 607986:06 74991.00 103286:40

StD 198676:70 308601:75 14390.06 21287:47

Min 16380 28560 44520 53760

Max 1086120 1339380 106680 156660

Time 0:756 2:772 0.562 0:735

48 Succ. 100 88 100 100

Mean 607920:00 1199640:00 130032.00 203716:80

StD 387796:66 452624:87 21837.47 36113:55

Min 63360 105360 72480 98880

Max 1770240 2167440 189120 291360

Time 1:913 6:611 1.149 1:835
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Table 4.15: Wilcoxon rank{sum tests between the algorithms.

Dim. PSO HS DE2 DE5

12 PSO { * * *

HS { * *

DE2 { {

DE5 {

18 PSO { { * *

HS { * *

DE2 { *

DE5 {

24 PSO { * * *

HS { * *

DE2 { *

DE5 {

30 PSO { * * *

HS { * *

DE2 { *

DE5 {

36 PSO { * * *

HS { * *

DE2 { *

DE5 {

42 PSO { * * *

HS { * *

DE2 { *

DE5 {

48 PSO { * * *

HS { * *

DE2 { *

DE5 {

56



Chapter 5

Conclusions

The �rst part of the thesis constitutes an experimental investigation of the PSO and

DE algorithms on a recently proposed model for supply chain with multiple items and

suppliers, where the goal is the determination of an optimal procurement strategy given

the demand for a �nite planning horizon. In its original formulation, the problem was

modeled as a highly{constrained mixed{integer optimization task. Besides the application

of the two algorithms on the original model, a simpli�ed model that reduces it to a real{

valued optimization task was also proposed and tackled with the same algorithms. The

obtained results suggest that the simpli�ed model can be more advantageous for the

successful algorithms than the original one. Also, it was shown that UPSO and DE are

highly competitive to the GA{based approaches reported in the literature, constituting

promising alternatives solutions.

The Wagner{Whitin dynamic lot{size problem has been widely studied in literature.

The original deterministic model recently has been extended by considering stochastic de-

mand. This was the main problem tackled in the present thesis. Our approach was based

on PSO, DE and HS, three established algorithms with an ongoing increasing popularity

in research community. Proper modi�cations were introduced in the algorithms to ad-

dress the most controversial part of problem, which consists of a binary optimization task.

Special attention was paid to avoid radical modi�cations of the algorithms' dynamics.

Experimental results on a previously used test case with normally distributed demand

manifest that the employed algorithms, especially DE and PSO, can be very e�cient even

in high{dimensional problems, with respect to both solution accuracy and time e�ciency.

The next step in our research will consider problems with di�erent distributions of demand

as well as di�erent heuristic optimization approaches.
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