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Abstract

This paper presents an incremental approach for training a Markov mixture model

to a set of sequences of discrete states. Starting from a single Markov model that

captures the background information, at each step a new component is added to

the mixture in order to improve the data fit. This is done by making at first an

exploration of a relevant parametric space to initialize the new component, based

on an extension of the k-means algorithm. Then, by performing a two-stage scheme

of the EM algorithm, the new component is optimally incorporated to the body of

the current mixture. To assess the effectiveness of the proposed method, we have

conducted experiments with several data sets and we make a performance comparison

with the classical mixture model.

1 Introduction

Sequential data analysis is an important research area with a wide range of applications,

such as web log mining, bioinformatics, speech recognition, robotics, natural language

processing and many others. Several attempts have been made on the task of clustering

sequential data of discrete states [8, 3, 1]. In model-based approaches the most efficient

scheme used is through mixture models [6]. Therefore, each cluster is described by a

generative model and the aim of clustering is to find an optimal set of such models in order

to best fit the data. Markov models [7] provide a reasonable tool for modeling sequential

data. Recently, many efforts have been also made to address visualization capabilities of

clustering approaches using Markov models [3, 5, 11, 9]. Thus, we can display the behavior

of sequences within clusters and provide an explanatory analysis for the dynamics of data.

In most of the these approaches, the EM algorithm [4] is used for estimating the parameters

of the Markov mixture models. Since the EM algorithm has the drawback to be dependent

on the initial values of their parameters, several schemes have been introduced to reduce
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this effect. In [3] for example, a noisy-marginal scheme is proposed by perturbing the

parameters of a single model to obtain K sets of models. An alternative approach is

presented in [8], where an agglomerative clustering technique is applied together with an

appropriate distance function for sequences, in order to initialize the K parametric models

of the mixture.

In this paper we propose an incremental approach for achieving an efficient training

of Markov mixture models. Borrowing strength from recent advances on mixture models

[10, 2], our method performs a more systematic exploration of the parameter space and

simultaneously tries to eliminate the dependence of the EM algorithm on the initialization.

The method starts with a single Markov model that fits all sequences, and sequentially

adds new components to the mixture following three major steps. At first we initialize the

new inserted Markov model by searching over a parametric likelihood space. The latter

is specified by a set of candidate models that have been constructed through the use of

an adaptation of the classical k-means algorithm for treating sequential data. This is the

initialization step. Then, we perform a partial EM scheme allowing the adjustment of only

the new model parameters. Finally, the new component is incorporated to the current

mixture and the EM algorithm can be applied to fit the new mixture model with the

data. The procedure stops when reaching a number of K components. We have tested our

training method on a suite of artificial and real benchmarks taking into account a variety

of cases with excellent results. During the experiments we have evaluated the proposed

scheme in terms of its capability to fit the data and measure its robustness. Comparative

results have been also obtained with the classical Markov mixture model under two schemes

for initialization.

In section 2 we give the basic scheme of the Markov mixture models, while section 3

describes the proposed approach for incremental training. In section 4 we present experi-

mental results and finally, in section 5 we give some concluded remarks.

2 Markov mixture models

Consider a dataset X = {X1, . . . , XN}, where each data point Xi = (Xil)
Li

l=1 is a sequence of

length Li observed states. We further assume that each state takes values from a discrete

alphabet of M symbols, i.e. Xil ∈ {1, . . . ,M}. The problem of clustering is to find a

grouping of the set X into K clusters, such that each cluster will contain similar in nature

sequences. Every cluster is represented by a generative model that fits well the observed

data that supports.
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Mixture models represent an efficient architecture that is particularly suitable for clus-

tering. It assumes that data have been generated from a mixture model with K components

according to the following density function

f(Xi|ΘK) =
K
∑

j=1

πjp(Xi|θ
j) , (1)

where ΘK = {πj, θ
j} denotes the set of the mixture parameters. In particular, the parame-

ters πj determine the prior probabilities of the K components satisfying that
∑K

j=1 πj = 1.

Each component captures a data generation mechanism through a probability distribution

function p(Xi|θ
j), whose parameters θj are unknown. A natural way to modeling sequential

data is through the first-order Markov model. It is defined by the initial states probabilities

θ
j
0m = p(Xi1 = m), as well as the transition probabilities θj

nm = p(Xi,l+1 = m|Xil = n)

from every state to another. Thus, each model parameter θj is a stochastic matrix with a

set of M +1 multinomial distributions (rows), holding that
∑M

m=1 θj
nm = 1, ∀n = 0, . . . ,M .

The density function for the jth component can be then written as

p(Xi|θ
j) = θ

j
0,Xi1

Li−1
∏

l=1

θ
j
Xil,Xi,l+1

==
M
∏

m=1

(θj
0m)γi(m)

M
∏

n=1

M
∏

m=1

(θj
nm)δi(n,m), (2)

where γi(m) =

{

1 if Xi1 = m

0 otherwise
and δi(n,m) defines the number of transitions from

state n to state m in the sequence Xi. Following the Bayes rule, we can then associate

every sequence Xi to the cluster j that has the maximum posterior probability value

p(j|Xi) = πjp(Xi|θ
j)

f(Xi|ΘK)
.

Clustering the set X into K clusters is then equivalent to estimating the mixture model

parameters ΘK . This in turn leads to maximize the log-likelihood function arisen from the

model. We can also introduce non-informative Dirichlet priors, which are conjugate for the

multinomial distributions {θj
nm}

M
m=1, of the form

p(θj
n|a

j
n) =

Γ(
∑M

m=1(a
j
nm + 1))

∏M
m=1 Γ(aj

nm + 1)

M
∏

m=1

(θj
nm)a

j
nm , (3)

where the parameter aj
n is a M -vector with components aj

nm > 0 and Γ(a) is the Gamma

function. Adding Dirichlet priors in effect introduces pseudo-counts for regularization

purposes. Therefore, the derived maximum a-posteriori (MAP) log-likelihood function is

given by

L(X|ΘK) =
N

∑

i=1

log f(Xi|ΘK) +
K
∑

j=1

M
∑

n=0

log p(θj
n|a

j
n) . (4)
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It must be noted that in our case the Dirichlet parameters aj
n were common to every

component j and set equal to a small proportion (e.g. 10%) of the corresponding maximum

likelihood (ML) estimated multinomial parameter values of the single Markov model that

fits the data set X (using relative frequencies of states). The latter from now on it will be

referred to as “single ML-estimated Markov model”.

The EM algorithm [4] is an efficient framework for estimating the mixture model pa-

rameters. It requires the computation of the conditional expectation values zij (posterior

probabilities) of the hidden variables during the E-step

z
(t)
ij =

π
(t)
j p(Xi|θ

j(t)
)

∑K
j′=1 π

(t)
j′ p(Xi|θj′ (t))

, (5)

while at the M-step the maximization of the following log-likelihood function of the com-

plete dataset is performed

Q(X,ΘK |Θ
(t)
K ) =

N
∑

i=1

K
∑

j=1

z
(t)
ij {log πj +

M
∑

m=1

γi(m) log θ
j
0m +

+
M
∑

n=1

M
∑

m=1

δi(n,m) log θj
nm} +

K
∑

j=1

M
∑

n=0

K
∑

m=1

aj
nm log θj

nm . (6)

This leads to the following updated equations for the mixture model parameters:

π
(t+1)
j =

N
∑

i=1

z
(t)
ij

N
, (7)

θj
nm

(t+1)
=


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









N
∑

i=1

z
(t)
ij γi(m) + a

j
0m

N
∑

i=1

z
(t)
ij +

M
∑

m′=0

a
j
0m′

n = 0

N
∑

i=1

z
(t)
ij δi(n,m) + aj

nm

N
∑

i=1

z
(t)
ij

M
∑

m′=1

δi(n,m′) +
M
∑

m′=1

a
j
nm′

n > 0

(8)

The EM algorithm guarantees the convergence of the log-likelihood function to a local

maximum satisfying all the constraints of the parameters. However, due to its local na-

ture, the enormous dependence on the initial parameter values may drastically effect its

performance [6]. In the next section we present a greedy approach for building a Markov

mixture models that eliminates this problem of poor initialization.
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3 Incremental mixture training

The proposed method starts with a simple model with one component that comes from

the single ML-estimated Markov model of the whole dataset X. At each step a new

component is added to the mixture by performing a combined scheme of searching for

good initial estimators and for fine local tuning its parameters. It must be noted that

a same in nature strategy have been also presented in [10] and [2] for Gaussian mixture

models and for discovering patterns in biological sequences, correspondingly.

Lets assume that we have already constructed a k-length mixture model with Θk pa-

rameters. By inserting a new component, the resulting mixture can take the following

form

f(Xi|Θk, π
∗, θ∗) = (1 − π∗)f(Xi|Θk) + π∗p(Xi|θ

∗) . (9)

where π∗ ∈ (0, 1) is the prior probability. The above scheme can be viewed as a two-

component mixture model, where the first one captures the current mixture with density

f(Xi|Θk) and the second one the new Markov model that has a density function p(Xi|θ
∗)

with an unknown stochastic matrix θ∗.

If we fix the parameters of the old mixture model Θk we can then maximize the resulting

log-likelihood function Lk of the above two-components mixture with respect only to the

new model parameters {π∗, θ∗}

Lk(X|π∗, θ∗) =
N

∑

i=1

log{(1 − π∗)f(Xi|Θk) + π∗p(Xi|θ
∗)} + +

M
∑

n=0

log p(θ∗n|an) . (10)

In this light, we can applied the EM algorithm for estimating only the parameters of

the new model, namely as partial EM. This results into obtaining the following update

equations:

at the E-step

ζ
(t)
i =

π∗(t)p(Xi|θ
∗(t))

(1 − π∗(t))f(Xi|Θk) + π∗(t)p(Xi|θ∗
(t))

, (11)

and at the M-step

π∗(t+1) =

N
∑

i=1

ζ
(t)
i

N
, (12)
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θ∗nm
(t+1) =
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N
∑

i=1

ζ
(t)
ij γi(m) + a0m

N
∑

i=1

ζ
(t)
ij +

M
∑

m′=0

a0m′

n = 0

N
∑

i=1

ζ
(t)
ij δi(n,m) + anm

N
∑

i=1

ζ
(t)
ij

M
∑

m′=1

δi(n,m′) +
M
∑

m′=1

anm′

n > 0

(13)

The above partial EM steps offer more flexibility to the general scheme and simplifies the

estimation problem during the insertion of a new Markov model to the mixture. At a

second stage, the new component can be incorporated to the body of the current mixture

and construct a new mixture f(Xi|Θk+1) with k + 1 components. The EM algorithm can

be then used to maximize the log-likelihood function L(X|Θk+1) in the new parameter

space Θk+1, following Eqs. 5-8. The mixture parameters are initialized from the solution

of the partial EM, i.e. π
(0)
k+1 = π∗, π

(0)
j = (1 − π∗)πj, ∀j = 1, . . . , k, and θ

(0)
k+1 = θ∗. This

iterative procedure is repeated until the desired order K of the Markov mixture model is

reached.

3.1 Initializing new model parameters

As it is clear from the previous analysis, we must provide good initial estimates of the

new component parameters in order to conduct the partial EM scheme. This can be

accomplished by establishing a parametric search space through a set of Km candidate

Markov models {φj}
Km

j=1. In particular, we perform one step of the partial EM, after

initializing the multinomial parameters of the new model with a candidate Markov model

(θ∗(0) = φj) and the prior probability π∗ with the typical value π∗(0) = 1
k+1

. Finally, we

select the solution that corresponds to the maximum value of the log-likelihood function

Lk (Eq. 10) for initializing the parameters {π∗, θ∗}.

In our study we have used an extension of the known k-means algorithm in order to

create such a set of candidate models. In the general case, the k-means algorithm aims

at finding a partition of Km disjoint clusters Cj to a set of N objects, so as the overall

sum of distances between cluster centers µj and objects Xi is minimized. In order to

adopt this framework to sequential data we need to make some modifications. At first, a

distance function between two sequences Xi and Xk. must be provided so as to encapsulate

an appropriate measure of dissimilarity between data. For this purpose we have used a
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symmetrized log-likelihood distance defined as [8]

D(i, k) =
1

2
{log p(Xi|ϑk) + log p(Xk|ϑi)} ,

where the parameters ϑi denote the single ML-estimated Markov model specified by each

sequence Xi. Furthermore, at each step t of the k-means algorithm we re-estimate the

new center µ
(t+1)
j of every cluster Cj by finding the medoid sequence among the sequences

that currently supports, i.e. µ
(t+1)
j = arg min

Xi∈C
(t)
j

∑

Xk∈C
(t)
j

D(i, k). At the end of the

algorithm, we assign a Markov model φj to each cluster Cj found by finding the single

(ML-estimated) Markov model that fits well all sequences associated with this cluster. The

above scheme allows us to create a pool of Km candidate models capable for initializing the

parameter θ∗ during the partial EM steps. As experimental study has shown, the proposed

method is not sensitive to the value of Km. A small proportion of the population size of

sequences N (e.g. 5%) is enough for constructing a rich search space that can provide good

initial estimators.

3.2 The proposed algorithm

The proposed incremental approach for training a mixture of K Markov models can be

summarized in the following algorithmic form.

• Set Θ1 = {θ1, π1 = 1} using the single ML-estimated Markov model from the data

set X.

Use k-means to provide Km candidate Markov models φj.

• for k = 1 : K − 1

1. ∀j = 1, . . . ,Km perform one partial EM step (Eqs.11-13) by setting π∗(0) = 1
k+1

and θ∗(0) = φj. Select the solution that has the maximum log-likelihood value

Lk (Eq. 10).

2. Perform partial EM (Eqs.11-13) until convergence and estimate new model pa-

rameters {π∗, θ∗}.

3. Set Θk+1 = Θk ∪ {πk+1, θk+1}, where πk+1
(0) = π∗, πj

(0) = (1 − π∗)πj ∀j ≤ k,

θk+1(0)
= θ∗.

4. Perform general EM (Eqs.5-8) to maximize L(X|Θk+1).
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M symbols K components
model 5 8 10 15
IMM 100% 100% 100% 100%

5 RMM 80.5% 67.5% 50% 25.5%
KMM 56% 49.5% 31.5% 7%
IMM 100% 100% 100% 100%

8 RMM 67% 47.5% 35.5% 11.5%
KMM 50% 32% 19% 7%
IMM 100% 100% 100% 100%

10 RMM 74.5% 45.5% 28.5% 10%
KMM 47% 28.5% 15.5% 2.5%
IMM 100% 100% 100% 100%

12 RMM 70% 42% 26.5% 9.5%
KMM 35% 25% 11% 2.5%
IMM 100% 100% 100% 100%

15 RMM 75% 35.5% 21% 6%
KMM 52% 20.5% 9.5% 1%

Table 1: Percentage of times the correct model was detected by each one of the three meth-
ods IMM, KMM and RMM. The results were taken using several values for the alphabet
size M and the number of components K.

4 Experimental results

Several experiments have been made in an attempt to evaluate the performance of the

proposed incremental training approach, namely as IMM. Comparative results have been

also taken using two methods for initializing Markov mixture models:

• the RMM that follows the initialization scheme presented in [3], which creates K

noisy copies from the single ML-estimated Markov model.

• the KMM that first determines K Markov models using the k-means algorithm as

described previously (Km = K), and then uses this information to initialize the EM

algorithm.

Since both last methods depends on the initialization, twenty (20) runs of the EM algorithm

were performed for each data set. We kept records of the mean value and the standard

deviation of the log-likelihood function. On the other hand, the proposed IMM model was

executed only once for fitting a Markov mixture model to each data set.
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The first series of experiments was carried out using artificial data in order to evaluate

the robustness of our method. We created artificial sequences by sampling from a K Markov

mixture model using a discrete alphabet of M different symbols. Totally, we generated

N = 1000 number of sequences of length between 50 and 100 states (Li ∈ [50, 100]).

Since we are aware of the true mixture model that best fit the experimental sequences,

we used this information to evaluate each method. In particular, we created ten (10)

different datasets for several values of the pair (M,K) and calculated the percentage of

times each met hod found the log-likelihood value that corresponds to the true model.

Table 4 summarizes the results from the experiments in these artificial datasets. The

weakness of both the RMM and KMM approaches in obtaining the global maximum value,

especially in higher model order values is obvious. On the other hand, the proposed IMM

approach was able to correctly estimate the true model in all cases.

Another series of experiments with artificial sequences has been made using sets of

K patterns of length 50 from an alphabet of M = 10 symbols. The data generation

mechanism follows the next scheme: A pattern is randomly selected at first, and then a

noisy copy of it, according to a probability pn for mutation common to every pattern site, is

located at a random position in the sequence. The rest non-pattern sites are filled uniformly

from the same alphabet. Following this scheme, two sets of N = 1000 sequences of length

Li ∈ [50, 100] were created: one used for training and another one for testing. As it is clear,

this clustering problem is more difficult since the Markov property exists only locally in

the sequences and under different levels of noise. Again, for each pattern family we created

ten (10) different datasets and we evaluated each method in terms of the log-likelihood

value found. Figure 1 illustrates the results obtained with four values for the number of

components K = {5, 8, 10, 15} and five different levels of noise pn = {0.1, 0.2, 0.3, 0.4, 0.5}.

In each diagram, the error bars display the standard deviation of the difference between the

log-likelihood values of the true model that is known and those reached by each method.

Our method was able to achieve a high degree of noise tolerance since always managed to

discover the correct model, with no deviation from it, even for extremely noisy datasets.

Moreover, we have tested our method on the msnbc.com web navigation dataset [3].

This is a collection of sequences that corresponds to page-category views of users during

twenty-four hour period. Totally there are M = 17 such page categories. In our study we

have considered only a subset of the whole collection containing 4600 sequences of length

between [40, 100]. We randomly divided it into a training set (40% of the total size) and

a set for testing (the rest of them). Our method was executed only once until reaching
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Figure 1: The log-likelihood values found by the three comparative methods as a function
of noise parameter pn. The experiments were made with artificial datasets created from
various K noisy patterns.
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Figure 2: Application of the three methods to the msnbc.com dataset. The log-likelihood
values are calculated for several values of K in the training and the test set.
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Figure 3: Visualization of the clustering results of our method on the msnbc.com data as
generated by K = 10 components. Each image represents a cluster of user sessions in a
colored raw form.
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K = 16 components in the training set. For the other two approaches we calculated the

mean value and the standard deviation of the log-likelihood function by executing 20 times

the EM algorithm per value of K. Figure 2 shows the results depicted by each method in

both sets. Our training method showed an improvement performance and achieved better

generalization capabilities on the test set in comparison with the other two approaches.

Finally, in Figure 3 we give a visualization of the clustering results obtained by our method

to the training set in the case of K = 10. Each one of the ten images corresponds to a

cluster, where we have convert every page category with a unique color. Therefore, each

sequence is represented as a raw of colored squares. In the case of applications such as

web log mining, the visualization techniques provide a useful mechanism for identifying

and interpreting user behavior patterns for the Web data [3, 5].

5 Conclusions

In this paper we have presented an incremental strategy for training Markov mixture

models to a set of sequences of discrete states. The approach sequentially adds components

to a mixture model by performing a combined scheme of the EM algorithm. In order to

initialize properly each new component, we have also set up an efficient parameter search

space of Markov models. Experiments on a variety of benchmarks have shown the ability

of our method to improve the data fit and also demonstrated its generalization capability.

Further research can be made in the light of employing the proposed approach in mixtures

of hidden Markov models, since they can be seen as more general probabilistic models for

sequential data. Applying also other techniques for creating candidate models and efficient

parameter search spaces constitutes one of our future directions.
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