
isadifferentialoperatorand

withDirichletorNeumannBCs.Theboundary

canbeanyarbitrarilycomplexgeometricalshape.Weconsider

thattheboundaryisdefinedasasetofpointsthatarechosen

soastorepresentitsshapewithreasonableaccuracy.Suppose

that points arechosentorepresentthe

boundaryandhencetheboundaryconditionsaregivenby

Dirichlet (2)

or

Neumann (3)

where istheoutwardunitvector,normaltotheboundaryat

thepoint .

Toobtainasolutiontotheabovedifferentialequation,the col-
locationmethod [9] is adopted which assumes the discretization
of the domain into a set of points (these points are denoted
by ). The problem is then transformed into the
following system of equations:

with

or (4)

Let denote a trial solution to the above problem
where stands for a set of model parameters to be adjusted.

1045–9227/00$10.00 © 2000 IEEE
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Fig. 1. Exact solution of problem 1.

Fig. 2. Accuracy of obtained solution for problem 1 with Dirichlet BCs.

A. 2-D Problems

Problem 1: Consider the linear problem

(21)

with Dirichlet boundary conditions

(22)

The analytic solution is: . This ex-
ample has been treated in [1] by a simpler neural-network model
and by the Galerkin FEM. According to the results reported in

[1], the neural-network approach seems to have certain advan-
tages both in efficiency and in, interpolation accuracy.

For comparison purposes, the same problem is treated here
by picking points on the square boundary as if it were an ir-
regular shape. More specifically, we consider points on
the boundary, by dividing the interval [0, 1] on theaxis and
axis, respectively, using equidistant points. The total number of
points taken on the boundary is . Inside the definition
domain we pick points on a rectangular grid by subdividing the
[0, 1] interval in ten equal subintervals that correspond to nine
points in each direction. Thus a total of points are se-
lected. The analytic solution is presented in Fig. 1, while the
accuracy of the obtained solution using
an MLP with 20 hidden units is presented in Fig. 2. Comparing
this solution with the one obtained in [1] we can conclude that
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Fig. 3. The star-shaped domain and the boundary points corresponding to problem 2. Boundary points are shown as crosses.

Fig. 4. Exact solution of problem 2.

the proposed method is equally effective and retains its advan-
tages over the Galerkin FEM as well.

Problem 2: The following highly nonlinear problem is con-
sidered:

(23)

with thestar-shapeddomain displayed in Fig. 3. The analytical
solution is (displayed in Fig. 4)
and it has been used to compute the values at the boundary
points. We have considered both Dirichlet and Neumann BCs

with boundary points and grid points. An
MLP with 20 hidden units was used. The accuracy of the ob-
tained solution is displayed in Fig. 5 for the case of Dirichlet
BCs, while Fig. 6 displays the output of the RBF network, which
contributes as a correction term to satisfy the BCs exactly. Sim-
ilar results are obtained for the case of Neumann BCs.

To show the interpolative ability of our solutions, the plot
in Fig. 5 was made using points belonging to a finer grid (test
points), in addition to the collocation (training) points. We found
that the accuracy of the solution at these intermediate test points
is maintained at the level of the neighboring training ones. This
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Fig. 5. Accuracy of obtained solution for problem 2 with Dirichlet BCs.

Fig. 6. The output of the RBF network for the domain of problem 2.

is a very desirable feature that is attributed to the MLP interpola-
tion capability (the RBF contributes only around the boundary)
and constitutes one of the assets of the proposed method.

Problem 3: We have solved the previous nonlinear PDE con-
sidering the cardioid domain displayed in Fig. 7. We have used

boundary points and grid points displayed
in Fig. 6. An MLP with 20 hidden units was used. The accuracy
of the obtained solution (with Neumann BCs) at a dense grid of
interpolation points is shown in Fig. 8. The results are similar
for the case of Dirichlet BCs.

B. Three Dimensional Problem

Problem 4: We considered the problem

(24)

The domain is most conveniently described in spherical coor-
dinates as: .

The problem, however, is solved using Cartesian coordinates
.

The analytical solution is
. We considered boundary points and

grid points and solve the nonlinear equation with
both Dirichlet and Neumann BCs. The obtained solutions using
an MLP with 40 hidden units are accurate with absolute error
value less than 10 .

C. Convergence and Stability Issues

In order to investigate the convergence properties of the
method, we conducted several numerical experiments using the
nonlinear example of problem 2 with Dirichlet BCs. Specifi-
cally we calculated the approximation error in the max norm
for several choices of the number of the hidden MLP units.

This is plotted in Fig. 9. Notice that it is very similar to earlier
findings [1], where in addition a comparison to the performance
of the finite elements method is provided. We see that the accu-
racy can be controlled efficiently by varying the number of the
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Fig. 7. The domain and the boundary points for problem 3. Boundary points are shown as crosses.

Fig. 8. Accuracy of obtained solution for problem 3 with Neumann BCs.

hidden units. We also investigated how the solution is affected
by considering different boundary point sets, while keeping all
other computational parameters unaltered. We conducted our
experiments again with problem 2 as above.

Let us denote by the total number of the points on the
boundary. The star shaped boundary has 12 vertices (and 12
sides). On each side equal number of points were considered
and care has been taken that the star vertices are always in-
cluded. We also experimented with various distributions, for in-
stance uniform and several sinusoidal forms. An extreme case
is , i.e., only the star vertices are taken as representative

boundary points. For to we observed a slight varia-
tion among the obtained solutions. For and above the
obtained solutions are identical. In Table I we list the approxi-
mation error in the max norm for several choices of, using
an MLP with 20 hidden units. In addition, we investigated the
case where a vertex is intentionally excluded from the set for the
extreme case of and also for the case . The so-
lution for the former case is eminently different only around the
omitted vertex and the pointwise approximation error is plotted
in Fig. 10. Notice that the approximation error in the area of
the missing vertex is of the order 410 . For (again
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Fig. 9. Plot of the logarithm of the approximation error in the max-norm as a function of the number of MLP hidden units.

Fig. 10. Accuracy of the obtained solution for problem 2 with Dirichlet BCs when the boundary contains only the star vertices and one of them is missing.

TABLE I
APPROXIMATION ERROR FORPROBLEM 2 WITH DIRICHLET BCS FOR

DIFFERENTCHOICES OF THEBOUNDARY SET

with one vertex ommited) this phenomenon, while still being
present, is supressed by two orders of magnitude (510 .

This is both expected since, the boundary is poorly represented
when some vertex is ommited, and at the same time desirable,
since it demonstrates that the boundary does indeed, as it should,
affect the solution. Hence we conclude that the method yields
consistent results and therefore is suitable for application to real
problems.

V. CONCLUSION

We presented a method capable of solving boundary value
problems of the Dirichlet and Neumann types, for boundaries
that due to their geometrical complexity can only be described




