
An Approach to Geometric Constraint Solving for CAD
Representations

Ioannis Fudos, Vicky Stamati and Antonis Protopsaltou
Department of Computer Science

University of Ioannina
GR45110 Ioannina, Greece

fudos@cs.uoi.gr

1. INTRODUCTION
A new generation of CAD systems has become
available in which geometric constraints can be
defined to determine properties of mechanical parts.
The new design concept, often called constraint-based
design or design by features [9, 17], offers users the
capability of easily defining and modifying a design,
but introduces the problem of solving complicated,
not always well defined, constraint problems [3]. In
this paper, we present the development of a user-
friendly interactive system for editing and solving
geometric configurations that arise in feature-based
CAD/CAM systems. The system is built around a
powerful graph-constructive constraint solving
method presented in [14], capable of efficiently
analyzing certain classes of well-determined, over-
determined and under-determined configurations.
Minimal systems of geometric constraints that are not
solvable by the core constructive method are detected
and may either be handled by a numerical method and
treated afterwards as rigid bodies, or edited by the
user. A main issue pertinent to geometric constraint
solving is the solution selection problem. To this end,
we have provided an interactive tool for navigating
the constraint solver, to the intended solution.
Consistent over-determined sub-configurations can be
detected, interactively relaxed and solved
appropriately. Under-determined subsystems are
detected, isolated and subsequently presented to the
user annotated with all possible constraint addition

choices for interactive editing. To realize the
constraint solver we have developed a prototype on a
SUN workstation running Solaris 2.5.1. The graphical
user interface was built in Java AWT, the core method
was implemented in SETL (SET Language) as part of
the work described in [5], the extensions for detecting
underdetermined and over-determined configurations
were also programmed in SETL, and for numerical
solving MATLAB packages were invoked.

Section 2 provides an overview of methods for
geometric constraint solving, and justifies the
selection of the graph-constructive method of [14] for
developing an interactive sketcher/solver appropriate
for use in CAD / CAM systems. Section 3 briefly
outlines the core graph-constructive method used.
Section 4 presents the design and development of the
graphical user interface, and the basic user interaction
and system flow. Section 5 describes our experience
with methods for treating over-determined and under-
determined constraint configurations and their
realization as part of our interactive software. Section
6 offers conclusions.

2. APPROACHES TO GEOMETRIC
CONSTRAINT SOLVING

We present an overview of approaches to geometric
constraint solving. We outline the most representative
methods and evaluate their behavior in terms of the
major concerns faced in CAD/CAM systems: solution
selection, interactive speed, edit-ability, handling of

over and underconstrained configurations and scope.
A first version of this overview was presented in [16].

2.1 Numerical Constraint Solvers
In numerical constraint solvers, the constraints are
translated into a system of algebraic equations and are
solved using iterative methods. To handle the
exponential number of solutions and the large number
of parameters, iterative methods require sharp initial
guesses. Also, most iterative methods have difficulties
handling overconstrained or underconstrained
instances. The advantage of these methods is that they
have the potential to solve large nonlinear system that
may not be solvable using any of the other methods.
All existing solvers more or less switch to iterative
methods when the given configuration is not solvable
by the native method. This fact emphasizes the need
for further research in the area of numerical constraint
solving.

Sketchpad [31] was the first system to use the method
of relaxation as an alternative to propagation.
Relaxation is a slow but quite general method. The
Newton-Raphson method has been used in various
systems [24, 27], and it proved to be faster that
relaxation but it has the problem that it may not
converge or it may converge to an unwanted solution
after a chaotic behavior. For that reason, Juno [24]
uses as initial state the sketch interactively drafted by
the user. However, Newton-Raphson is so sensitive to
the initial guess [4], that the sketch drafted must
almost satisfy all constraints prior to constraint
solving. A sophisticated use of the Newton-Raphson
method was developed in [22], where an improved way
for finding the inverse Jacobian matrix is presented.
Furthermore, the idea of dividing the matrix of
constraints into submatrices as presented in the same
work has the potential of providing the user with
useful information regarding the constraint structure
of the sketch. Though this information is usually
quantitative and nonspecific, it may help the user in

basic modifications. To check whether a constraint
problem is well-constrained, Chyz [10] proposes a
preprocessing phase where the graph of constraints is
analyzed to check whether a necessary condition is
satisfied. The method is however quite expensive in
time and it cannot detect all the cases of singularity.
An alternative method to Newton-Raphson for
geometric constraint solving is homotopy or
continuation [2], that is argued in [21] to be more
satisfactory in typical situations where Newton-
Raphson fails. Homotopy, is global, exhaustive and
thus slow when compared to the local and fast
Newton's method [23], however it may be more appropriate for

CAD/CAM systems when constructive methods fail,
since it may return all solutions if designed carefully.

2.2 Constructive Constraint Solvers
This class of constraint solvers is based on the fact
that most configurations in an engineering drawing
are solvable by ruler, compass and protractor or using
other less classical repertoires of construction steps. In
these methods the constraints are satisfied in a
constructive fashion, which makes the constraint
solving process natural for the user and suitable for
interactive debugging. There are two main approaches
in this direction.

Rule-constructive Solvers

Rule-constructive solvers use rewrite rules for the
discovery and execution of the construction steps. In
this approach, complex constraints can be easily
handled, and extensions to the scope of the method
are straightforward to incorporate [3]. Although it is a
good approach for prototyping and experimentation,
the extensive computations involved in the
exhaustive searching and matching make it
inappropriate for real world applications.

A method that guarantees termination, ruler and
compass completeness and uniqueness using the
Knuth-Bendix critical pair algorithm is presented in

[7, 28]. This method can be proved to confirm
theorems that are provable under a given system of
axioms [6]. A system based on this method was
implemented in Prolog. Aldefeld in [1] uses a forward
chaining inference mechanism, where the notion of
direction of lines is imposed by introducing additional
rules, and thus restricting the solution space. A similar
method is presented in [32], where handling of
overconstrained and underconstrained problems is
given special consideration. Sunde in [30] uses a rule-
constructive method but adopts different rules for
representing directed and nondirected distances,
giving flexibility for dealing with the solution
selection problem. In [36], the problem of nonunique
solutions is handled by imposing a topological order
on three geometric objects. An elaborate description
of a complete set of rules for 2D geometric constraint
solving can be found in [34]. In their work, the scope
of the particular set of rules is characterized. [20]
presents an extension of the set of rules of [34], and
provides a correctness proof based on the techniques
of [13].

Graph-constructive Solvers
The graph-constructive approach has two phases.
During the first phase the graph of constraints is
analyzed and a sequence of construction steps is
derived. During the second phase these construction
steps are followed to place the geometric elements.
These approaches are fast and more methodical. In
addition, conclusions characterizing the scope of the
method can be easily derived. A major drawback is
that as the repertoire of constraints increases the
graph-analysis algorithm needs to be modified.

Fitzgerald [12] follows the method of dimensioned
trees introduced by Requicha [26]. This method
allows only horizontal and vertical distances and it is
useful for simple engineering drawings. .Todd in [33]
first generalized the dimension trees of Requicha.
Owen in [25] presents an extension of this principle
that includes circularly'dimensioned sketches. -DCM
[11] is a system that uses some extension of Owen's

method. [14] presents an elaborative graph-
constructive method, with fast analysis and
construction algorithms, and extensions for handling
classes of nonsolvable, underconstrained and
consistently overconstrained configuration

2.3 Propagation Methods
Propagation methods follow the approach met in
traditional constraint solving systems. In this
approach, the constraints are first translated into a
system of equations involving variables and constants.
The equations are then represented by an undirected
graph which has as nodes the equations, the variables
and the constants, and whose edges represent whether
a variable or a constant appears in an equation.
Subsequently, we try to direct the graph so as to
satisfy all the equations starting from the constants.
To accomplish this, various propagation techniques
have been used" but none of them guarantees to derive
a solution and at the same time have a reasonable
worst case running time. For a review of these
methods see [28]. In a sense, the constructive
constraint solvers can be thought of as a sub case of
the propagation method (fixed geometric elements for
constants and variable geometric elements for
variables). However, constructive constraint solvers
utilize domain specific information to derive more
powerful and efficient algorithms.

2.4 Symbolic Constraint Solvers
In symbolic solvers, the constraints are transformed to
a system of algebraic equations which is solved using
methods from algebraic manipulation, such as
Grabner basis calculation [8] or Wu's method [35].
Although, these methods are interesting from a
theoretical viewpoint, their practical significance is
limited, since their time and space complexity is
typically exponential or even hyperexponential.

3. A GRAPH CONSTRUCTIVE METHOD

The method is presented in detail in [14]. We provide
here a brief outline. A geometric constraint problem is
given by a set of points, lines, rays, circles with
prescribed radii, line segments and circular arcs,
called the geometric elements, along with required
relationships of incidence, distance, angle,
parallelism, concentricity, tangency, and
perpendicularity between any two geometric
elements, called the constraints. The problem can be
coded as a constraint graph G = (V, E), in which the
graph nodes are the geometric elements and the
constraints are the graph edges. The edges of the
graph are labeled with the values of the distance and
angle dimensions. Our constraint solving method first
forms a number of rigid bodies1 with three degrees of
freedom, called clusters. For simplicity we will
assume that a maximum number of clusters is formed,
each cluster consisting of exactly two geometric
elements between which there exists a constraint.
Three clusters can be combined into a single cluster if
they pairwise share a single geometric element.
Geometrically, the combination corresponds to
placing the associated geometric objects with respect
to each other so that the given constraints can be
satisfied. The constraint solving method works in two
conceptual phases.

Phase 1 (analysis phase): The constraint graph is
analyzed and a sequence of constructions is
stipulated. Each step in this sequence corresponds to
positioning three rigid geometric bodies (clusters)
which pairwise share a geometric element (point or
line).

Phase 2 (construction phase): The actual construction
of the geometric elements is carried out, in the order

determined by Phase 1, by solving certain standard
sets of algebraic equations.

To
and
as s
grap
cons
of p
thre
com
pair
mer
clus
prob
cons

- th
loca
over

- the
of
sequ
cons
anal

4.
FLO

We
inte
for
repr

1 A rigid body is a set of geometric elements whose position and
orientation relative to each other is known.

Figure 1. Constraint problem (left), and associated
constraint graph (right).
illustrate the process, consider three points A, B,
C between which distances have been prescribed,
hown in Figure 1 left. The associated constraint
h is shown on the right. In Phase 1 of the
traint solving, we determine first that every pair
oints can be constructed separately, resulting in
e clusters. Moreover, the three clusters can be
bined into a single cluster since they share
wise a geometric element. The combination
ges the three clusters into one. As soon as a single
ter is obtained, Phase 1 considers the constraint
lem solvable, Phase 1, the analysis phase,
ists of two parts:

e reduction analysis that produces a sequence of
l cluster merges and handles well-constrained and
constrained problems, and

 decomposition analysis that produces a sequence
decompositions (that correspond to a reverse
ence of duster merges) and handles under
trained cases, The outcome of the reduction
ysis is fed as input to the decomposition analysis.

USER INTERACTION AND SYSTEM
W

have developed a graphical user interface that
grates a geometric constraint solver with an editor
constructing and modifying dimensioned sketches
esenting CAD cross-sections [9]. For the

development of the graphical user interface we used
Java's AWT (Advanced Window Toolkit), for three
main reasons:

- We were interested in building a rapid prototype to
test and tune the effectiveness of our interactive
method, Java's AWT provides a relatively easy way
for producing graphical user interfaces. Moreover,
the new version of AWT has additional flexibility
and an improved method for relating user triggered
events with actions. These features made AWT a
good candidate for developing the GUI of our
interactive solver.

- Although executing Java code induces a significant
overhead in terms of CPU and memory
consumption, this overhead is not noticeable in
workstations with sufficient memory.

- Producing Java code makes our graphical user
interface portable to the vast majority of platforms.

The overall user-system interaction is as follows. The
user draws a sketch and then imposes constraints on
the sketched elements. The user can then invoke the
solver which will try to solve the system of geometric
constraints and return a new sketch with the geometric

elements placed appropriately. If the solver is
incapable of solving completely the sketch the user is
notified and certain actions may be taken to correct
the source of the problem. After successfully solving a
dimensioned sketch the user may add/delete geometric
objects and constraints, and re-invoke the solver. We
have implemented points, circles, rays, lines, line
segments and arcs. The available constraints are
distance, tangency, angle, coincidence, concentricity
and constraints that can be expressed as a combination
of the above. We have also included text, for user
annotation, in the form of constrained rectangles.

In Figure 2, a snapshot of the graphical user interface
is depicted. The menu for inserting geometric objects
and text lays on the right hand side of the main
window. At the bottom of this menu above the Exit
button there is the the Place Constraint button that
transforms the functionality of the right-hand side
menu for adding geometric constraints. At the top side
there are four pull-down menus. The File menu has
the Save/Load functions, and some auxiliary ones
such as Merge and Quit. The files contain
description of geometric objects, constraints, display
information and annotation expressed in a language
similar to the one presented in [15]. The
communication with the main solver program and the
numerical solver is realized through files with the
same content augmented with solution specific
information from the solver to the user and vice versa.
The processing of the files is made possible by
translating the high level language to an easy to read
list of values, by using a compiler developed in C,
using the flex and bison tools.

Figure 2. The Graphical User Interface. The View menu hides or makes visible certain classes
of objects such as constraints, geometric elements,
and annotation. The Edit menu contains the basic
Delete, Move and Copy operations which are
applicable to both geometric objects and constraints.

Figure 3. Interaction Flow for Solving a Sketch.

The Solve menu is illustrated in Figure 2. It contains
the basic functions for performing geometric
constraint solving of the given dimensioned sketch.
Figure 3 shows the overall interaction flow for
solving a sketch. The user first attempts to solve the
sketch by the extended graph-constructive method
outlined in Section 3. This is performed by choosing
Solve from the Solve menu. If the analysis finds a
valid sequence of construction steps for placing all
geometric elements, this sequence is followed for
producing the final Solved Sketch. However, if the
solution does not consist of real numbers, or is not the
one intended by the user, an interactive tool may be
used for navigating the solver to a meaningful
solution. The user is presented with the construction
sequence and is given the capability of modifying the
relative positioning of the objects involved, thus
affecting stepwise the overall solution selection.

Changing the values of some constraints (e.g
distances, angles), of a solved sketch will result in re
evaluating the placement steps (not the graph
analysis). When the method cannot solve the
configuration, an error message is returned and the
user is provided with an enhanced right-hand side
menu for interactive intervention. Using this menu,
the user may browse the part(s) of the design that
correspond(s) to the subgraph(s) that is(are) not
solvable. Finding minimal well-constrained subparts
is a difficult process that has a worst case time
complexity O(n4) in our implementation. A more
sophisticated method O(n2) has been proposed in
[18], but it may need some care to to be applied to
rigid bodies without spoiling the quadratic
complexity. The nonsolvable parts can be edited by
deleting and adding constraints and geometric objects.
These modifications are incorporated to the overall

design by pressing the Incorporate button at the
enhanced right-hand side menu. This drives the
design process back to the first step. Currently, the
Text, Copy and Move buttons are disabled during
the process of editing the nonsolvable parts of the
design. Another option for handling nonsolvable parts
is to invoke the Numerical Solver for one or more of
the nonsolvable parts. If this succeeds, the parts are
subsequently treated as rigid bodies. To support this
feature we have defined a rigid body structure in the
representation language. If the basic solver detects
overconstrained or underconstrained configurations it
notifies the user. The process for treating such
configurations is described in more detail in the next
section.

Finally, the user may choose to incrementally edit the
solved sketch by adding constraints and geometric
elements. Invoking solve in this case tries to
incrementally solve the new design. If incremental
solving fails, analyzing the overall system of
constraints is attempted. Deleting a geometric element
or constraint is not considered an incremental change
and analysis of the overall graph is attempted.

5. HANDLING OVER AND UNDER-
DETERMINED CONFIGURATIONS

Each line or point on the Euclidean plane has two
degrees of freedom. Each distance or angle
corresponds to one equation. If there are no fixed geo-
metric elements (i.e., geometric elements whose
absolute coordinates have been specified explicitly by
the user), then we expect that, |E| = 2|V| - 3, where |V|
is the number of geometric elements and |E| is the
number of constraints. This holds for lines and points
with distances and angles constraints only. When
other objects or constraints exist, we have to substitute
with sums for the degrees of freedom and for the
constraints. Note that the solution will be a rigid body
with three remaining degrees of freedom, because the

constraints determine only the relative position of the
geometric elements. An example is shown in Figure 4.
In the figure, the vertex P of the quadrilateral has a
well-defined position when α+β=900. But for
α+β≠900the position of P is not determined. This
"semantic" notion of well-constrained problems can
be made specific for the constraint graph analysis,
because there the generic problem of constructing a
solution is considered independently of dimension
values. Intuitively, a dimensioned sketch is considered
to be well-constrained, if it has a finite number of so-
lutions for nondegenerate configurations. Similarly, a
dimensioned sketch is considered to be
underconstrained, if it has an infinite number of so-
lutions for nondegenerate configurations. Finally, a
dimensioned sketch is considered to be
overconstrained, if it has no solutions for
nondegenerate configurations. The intuitive notions
above can be made technically precise for the
euclidean plane (see e.g., [13]). For the 3D case,
however, the necessary and sufficient conditions for
specifying whether a configuration is well-constrained
are not known.

Fo
st
N
ov
th
Th
co
de
un
Figure 4. Degenerate Configuration (right) for α+β=900 .
r an algorithm that tests whether a graph is
ructurally well-constrained in 2D see e.g. [19, 29].
ote that a structurally well-constrained graph can be
erconstrained in a geometric sense, for example if
ere are three lines with pairwise angle constraints.
e core reduction analysis handles structurally well-
nstrained and overconstrained problems. The
composition analysis handles structurally
derconstrained problems. Thus, the graph analysis

may succeed to produce a sequence for placement,
even for overconstrained or underconstrained
configurations. In any case, the user is notified about
the existence of ill-determined configurations. The
user may then use the Detect
Underconstrained and Detect
Overconstrained buttons to analyze the graph.
To detect the overconstrained subgraph, the system
executes a reduction analysis and keeps track of
cluster merging that states the existence of
overconstrained configurations. Then, the user is
presented with the corresponding part that is
overconstrained, after running a simple algorithm that
marks constraints that can be candidates for
elimination. To detect the underconstrained, the result
of the decomposition analysis is run, and the plausible
constraint additions are highlighted.

6. CONCLUSIONS

We have presented an overview of approaches to
geometric constraint solving and selected a powerful
graph-constructive method for building around it an
interactive system for designing and solving
dimensioned sketches. We have presented an
innovative paradigm of user interaction for using the
core method, treating ill-determined configurations,
handling nonsolvable cases and performing solution
selection. We have developed a prototype to evaluate
this paradigm and to fine tune the system-user
interaction.

7. ACKNOWLEDGMENTS

This work is supported by a Research Grant (PENED
– 01ED329) by the General Secretariat of Research
and Technology, Greece.

8. REFERENCES

[1] B. Aldefeld. Variation of geometries based on a
geometric-reasoning method. Computer Aided Design,
20(3):117-126, April 1988.

[2] E. L. Allgower and K. Georg. Continuation and path
following. Acta Numerica, pages 1-64, 1993.

[3] Bruderlin and D. Roller (eds). Geometric Constraint
Solving and Applications.Springer Verlag, 1998.

[4] Paula L. Beaty, Patrick A. Fitzhorn, and Gary J.
Herron. Extensions in variational geometry that
generate and modify object edges composed of rational
Bezier curves. Computer Aided Design, 26(2):98-107,
1994.

[5] W. Bouma, 1. Fudos, C. M. Hoffmann, J. Cai, and R.
Paige. A Geometric Constraint Solver. Computer
Aided Design, 27(6):487-501, June 1995.

[6] B. Bruderlin. Using geometric rewrite rules for solving
geometric problems symbolically. Theoretical
Computer Science, 116:291-303, 1993.

[7] Beat Bruderlin. Constructing Three-Dimensional
Geometric Objects Defined by Constraints. In
Workshop on Interactive 3D Graphics, pages 111-129.
ACM, October 23-24 1986.

[8] B. Buchberger. Grobner Bases: An Algorithmic
Method in Polynomial Ideal Theory. In N. K. Bose,
editor, Multidimensional Systems Theory, pages 184-
232. D. Reidel Publishing Company, 1985.

[9] X. Chen and C. M. Hoffmann. On Editability of
Feature Based Design. Computer Aided Design,
27:905-914, 1995.

[10] W. Chyz. Constraint management for CSG. Master's
thesis, MIT, June 1985.

[11] D-Cubed Ltd, 68 Castle Street, Cambridge, CB3 OAJ,
England. The Dimensional Constraint Manager, June
1994. Version 2.7.

[12] W. Fitzerland. Using Axial Dimensions to Determine
the Proportions of Line Drawings in Computer
Graphics. Computer Aided Design, 13(6), November
1981.

[13] Fudos and C. M. Hoffmann. Correctness Proof of a
Geometric Constraint solver. International Journal of
Computational Geometry 8 Applications, 1995.

[14] Fudos and C. M. Hoffmann. A Graph-constructive
Method to Solving systems of Geometric Constraints.
ACM Transactions on Graphics, 16(2):179-216, 1997.

[15] Ioannis Fudos. Editable Representations for 2D
Geometric Design. Master's thesis, Dept of Computer
Sciences, Purdue University, December 1993.

[16] Ioannis Fudos. Constraint Solving for Computer Aided
Design. PhD thesis, Department of Computer
Sciences, Purdue University, August 1995.

[17] C. M. Hoffmann and R. Joan. On User-Defined
Features. Computer Aided Design, 30:321-332, 1998.

[18] C. M. Hoffmann, A. Lomonosov, and M. Sitharam.
Finding Solvable Subsets of Constraint Graphs. In G.
Smolka, editor, LNCS 1330, pages 463-477. Springer
Verlag, 1997.

[19] H. Imai. On combinatorial structures of line drawings
of polyhedra. Discrete and applied Mathematics,
10:79, 1985.

[20] R. Juan-Arinyo and Antoni Soto. A rule-constructive
geometric constraint solver. Technical Report LSI-95-
25-R, Universitat Politecnica de Catalunya, 1995.

[21] H. Lamure and D. Michelucci. Solving geometric
constraints by homotopy. In Proc. Third Symposium
on solid Modeling and Applications, pages 263-269,
Salt Lake City, 1995. ACM.

[22] Robert Light and David Gossard. Modification of
geometric models through variational geometry.
Computer Aided Design, 14(4):209-214, July 1982.

[23] A. Morgan. Solving polynomial systems using
continuation for engineering and scientific problems.
Prentice-Hall, Inc., 1987.

[24] G. Nelson. Juno, a costraint-based graphics system. In
SIGGRAPH, pages 235-243, San Francisco, July 22-
26 1985. ACM.

[25] J. C. Owen. Algebraic Solution for Geometry from
Dimensional Constraints. In ACM Symp. Found. of
Solid Modeling, Austin, TX, pages 397-407. ACM,
1991.

[26] A. Requicha. Dimensionining and tolerancing.
Technical report, Production Automation Project,
University of Rochester, May 1977. PADL TM-19.

[27] D. Serrano and D. Gossard. Combining mathematical
models and geometric models in CAE systems. In
Proc. ASME Computers in Eng. Conf., pages 277-284,
Chicago, July 1986. AS ME.

[28] Wolfang Sohrt. Interaction with Constraints in three-
dimensional Modeling. Master's thesis, Dept of
Computer Science, The University of Utah, March
1991.

[29] K. Sugihara. Detection of Structural Inconsistencies in
Systems of Equations with Degrees of Freedom and its
Applications. Discrete Applied Mathematics, 10:297-
312, 1985.

[30] Geir Sunde. Specification of shape by dimensions' and
other geometric constraints. In M. J. 'Wozny, H. W.
McLaughlin, and J. L. Encarnacao, editors, Geometric
modeling for CAD applications, pages 199-213. North
Holland, IFIP, 1988.

[31] I. Sutherland. Sketchpad, a man-machine graphical
communication system. In Proc. of the spring Joint
Compo Conference, pages 329-345. IFIPS, 1963.

[32] Hirimasa Suzuki, Hidetoshi Ando, and Fumihiko
Kimura. Variation of geometries based on a geometric-
reasoning method. Comput. & Graphics, 14(2):211-
224, 1990.

[33] Philip Todd. A k-tree generalization that characterizes
consistency of dimensioned engineering drawings.
SIAM J. DISC. MATH., 2(2):255-261, 1989.

[34] A. Verroust, F. Schonek, and D. Roller. Rule-oriented
method for parameterized computer-aided design.
Computer Aided Design, 24(3):531-540, October
1992.

[35] Wu Wen- Tsun. Basic Principles of Mechanical
Theorem Proving in Elementary Geometries. Journal
of Automated Reasoning, 2:221-252, 1986.

[36] Yasushi Yamaguchi and Fumihiko Kimura. A
constraint modeling system for variational geometry.
In M. J. Wozny, J. U. Turner, and K. Preiss, editors,

Geometric Modeling for Product Engineering, pages
221-233. Elsevier Science Publishers B.V. (North
Holland), 1990.

	INTRODUCTION
	APPROACHES TO GEOMETRIC CONSTRAINT SOLVING
	Numerical Constraint Solvers
	Constructive Constraint Solvers
	Propagation Methods
	Symbolic Constraint Solvers

	A GRAPH CONSTRUCTIVE METHOD
	USER INTERACTION AND SYSTEM FLOW
	HANDLING OVER AND UNDER-DETERMINED CONFIGURATIONS
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

