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1. INTRODUCTION 
A new generation of CAD systems has become 
available in which geometric constraints can be 
defined to determine properties of mechanical parts. 
The new design concept, often called constraint-based 
design or design by features [9, 17], offers users the 
capability of easily defining and modifying a design, 
but introduces the problem of solving complicated, 
not always well defined, constraint problems [3]. In 
this paper, we present the development of a user-
friendly interactive system for editing and solving 
geometric configurations that arise in feature-based 
CAD/CAM systems. The system is built around a 
powerful graph-constructive constraint solving 
method presented in [14], capable of efficiently 
analyzing certain classes of well-determined, over-
determined and under-determined configurations. 
Minimal systems of geometric constraints that are not 
solvable by the core constructive method are detected 
and may either be handled by a numerical method and 
treated afterwards as rigid bodies, or edited by the 
user. A main issue pertinent to geometric constraint 
solving is the solution selection problem. To this end, 
we have provided an interactive tool for navigating 
the constraint solver, to the intended solution. 
Consistent over-determined sub-configurations can be 
detected, interactively relaxed and solved 
appropriately. Under-determined subsystems are 
detected, isolated and subsequently presented to the 
user annotated with all possible constraint addition 

choices for interactive editing. To realize the 
constraint solver we have developed a prototype on a 
SUN workstation running Solaris 2.5.1. The graphical 
user interface was built in Java AWT, the core method 
was implemented in SETL (SET Language) as part of 
the work described in [5], the extensions for detecting 
underdetermined and over-determined configurations 
were also programmed in SETL, and for numerical 
solving MATLAB packages were invoked. 

Section 2 provides an overview of methods for 
geometric constraint solving, and justifies the 
selection of the graph-constructive method of [14] for 
developing an interactive sketcher/solver appropriate 
for use in CAD / CAM systems. Section 3 briefly 
outlines the core graph-constructive method used. 
Section 4 presents the design and development of the 
graphical user interface, and the basic user interaction 
and system flow. Section 5 describes our experience 
with methods for treating over-determined and under-
determined constraint configurations and their 
realization as part of our interactive software. Section 
6 offers conclusions. 

2. APPROACHES TO GEOMETRIC 
CONSTRAINT SOLVING 
 

We present an overview of approaches to geometric 
constraint solving. We outline the most representative 
methods and evaluate their behavior in terms of the 
major concerns faced in CAD/CAM systems: solution 
selection, interactive speed, edit-ability, handling of 



over and underconstrained configurations and scope. 
A first version of this overview was presented in [16]. 

  

2.1 Numerical Constraint Solvers 
In numerical constraint solvers, the constraints are 
translated into a system of algebraic equations and are 
solved using iterative methods. To handle the 
exponential number of solutions and the large number 
of parameters, iterative methods require sharp initial 
guesses. Also, most iterative methods have difficulties 
handling overconstrained or underconstrained 
instances. The advantage of these methods is that they 
have the potential to solve large nonlinear system that 
may not be solvable using any of the other methods. 
All existing solvers more or less switch to iterative 
methods when the given configuration is not solvable 
by the native method. This fact emphasizes the need 
for further research in the area of numerical constraint 
solving. 

Sketchpad [31] was the first system to use the method 
of relaxation as an alternative to propagation. 
Relaxation is a slow but quite general method. The 
Newton-Raphson method has been used in various 
systems [24, 27], and it proved to be faster that 
relaxation but it has the problem that it may not 
converge or it may converge to an unwanted solution 
after a chaotic behavior. For that reason, Juno [24] 
uses as initial state the sketch interactively drafted by 
the user. However, Newton-Raphson is so sensitive to 
the initial guess [4], that the sketch drafted must 
almost satisfy all constraints prior to constraint 
solving. A sophisticated use of the Newton-Raphson 
method was developed in [22], where an improved way 
for finding the inverse Jacobian matrix is presented. 
Furthermore, the idea of dividing the matrix of 
constraints into submatrices as presented in the same 
work has the potential of providing the user with 
useful information regarding the constraint structure 
of the sketch. Though this information is usually 
quantitative and nonspecific, it may help the user in 

basic modifications. To check whether a constraint 
problem is well-constrained, Chyz [10] proposes a 
preprocessing phase where the graph of constraints is 
analyzed to check whether a necessary condition is 
satisfied. The method is however quite expensive in 
time and it cannot detect all the cases of singularity. 
An alternative method to Newton-Raphson for 
geometric constraint solving is homotopy or 
continuation [2], that is argued in [21] to be more 
satisfactory in typical situations where Newton-
Raphson fails. Homotopy, is global, exhaustive and 
thus slow when compared to the local and fast 
Newton's method [23], however it may be more appropriate for 

CAD/CAM systems when constructive methods fail, 
since it may return all solutions if designed carefully. 

 

2.2 Constructive Constraint Solvers 
This class of constraint solvers is based on the fact 
that most configurations in an engineering drawing 
are solvable by ruler, compass and protractor or using 
other less classical repertoires of construction steps. In 
these methods the constraints are satisfied in a 
constructive fashion, which makes the constraint 
solving process natural for the user and suitable for 
interactive debugging. There are two main approaches 
in this direction. 

 

Rule-constructive Solvers 

Rule-constructive solvers use rewrite rules for the 
discovery and execution of the construction steps. In 
this approach, complex constraints can be easily 
handled, and extensions to the scope of the method 
are straightforward to incorporate [3]. Although it is a 
good approach for prototyping and experimentation, 
the extensive computations involved in the 
exhaustive searching and matching make it 
inappropriate for real world applications. 

A method that guarantees termination, ruler and 
compass completeness and uniqueness using the 
Knuth-Bendix critical pair algorithm is presented in 



[7, 28]. This method can be proved to confirm 
theorems that are provable under a given system of 
axioms [6]. A system based on this method was 
implemented in Prolog. Aldefeld in [1] uses a forward 
chaining inference mechanism, where the notion of 
direction of lines is imposed by introducing additional 
rules, and thus restricting the solution space. A similar 
method is presented in [32], where handling of 
overconstrained and underconstrained problems is 
given special consideration. Sunde in [30] uses a rule-
constructive method but adopts different rules for 
representing directed and nondirected distances, 
giving flexibility for dealing with the solution 
selection problem. In [36], the problem of nonunique 
solutions is handled by imposing a topological order 
on three geometric objects. An elaborate description 
of a complete set of rules for 2D geometric constraint 
solving can be found in [34]. In their work, the scope 
of the particular set of rules is characterized. [20] 
presents an extension of the set of rules of [34], and 
provides a correctness proof based on the techniques 
of [13]. 

 

Graph-constructive Solvers 
The graph-constructive approach has two phases. 
During the first phase the graph of constraints is 
analyzed and a sequence of construction steps is 
derived. During the second phase these construction 
steps are followed to place the geometric elements. 
These approaches are fast and more methodical. In 
addition, conclusions characterizing the scope of the 
method can be easily derived. A major drawback is 
that as the repertoire of constraints increases the 
graph-analysis algorithm needs to be modified. 

Fitzgerald [12] follows the method of dimensioned 
trees introduced by Requicha [26]. This method 
allows only horizontal and vertical distances and it is 
useful for simple engineering drawings. .Todd in [33] 
first generalized the dimension trees of Requicha. 
Owen in [25] presents an extension of this principle 
that includes circularly'dimensioned sketches. -DCM 
[11] is a system that uses some extension of Owen's 

method. [14] presents an elaborative graph-
constructive method, with fast analysis and 
construction algorithms, and extensions for handling 
classes of nonsolvable, underconstrained and 
consistently overconstrained configuration 

 

2.3  Propagation Methods 
Propagation methods follow the approach met in 
traditional constraint solving systems. In this 
approach, the constraints are first translated into a 
system of equations involving variables and constants. 
The equations are then represented by an undirected 
graph which has as nodes the equations, the variables 
and the constants, and whose edges represent whether 
a variable or a constant appears in an equation. 
Subsequently, we try to direct the graph so as to 
satisfy all the equations starting from the constants. 
To accomplish this, various propagation techniques 
have been used" but none of them guarantees to derive 
a solution and at the same time have a reasonable 
worst case running time. For a review of these 
methods see [28]. In a sense, the constructive 
constraint solvers can be thought of as a sub case of 
the propagation method (fixed geometric elements for 
constants and variable geometric elements for 
variables). However, constructive constraint solvers 
utilize domain specific information to derive more 
powerful and efficient algorithms. 

 

2.4 Symbolic Constraint Solvers 
In symbolic solvers, the constraints are transformed to 
a system of algebraic equations which is solved using 
methods from algebraic manipulation, such as 
Grabner basis calculation [8] or Wu's method [35]. 
Although, these methods are interesting from a 
theoretical viewpoint, their practical significance is 
limited, since their time and space complexity is 
typically exponential or even hyperexponential. 

 
 



3. A GRAPH CONSTRUCTIVE METHOD 
 

The method is presented in detail in [14]. We provide 
here a brief outline. A geometric constraint problem is 
given by a set of points, lines, rays, circles with 
prescribed radii, line segments and circular arcs, 
called the geometric elements, along with required 
relationships of incidence, distance, angle, 
parallelism, concentricity, tangency, and 
perpendicularity between any two geometric 
elements, called the constraints. The problem can be 
coded as a constraint graph G = (V, E), in which the 
graph nodes are the geometric elements and the 
constraints are the graph edges. The edges of the 
graph are labeled with the values of the distance and 
angle dimensions. Our constraint solving method first 
forms a number of rigid bodies1 with three degrees of 
freedom, called clusters. For simplicity we will 
assume that a maximum number of clusters is formed, 
each cluster consisting of exactly two geometric 
elements between which there exists a constraint. 
Three clusters can be combined into a single cluster if 
they pairwise share a single geometric element. 
Geometrically, the combination corresponds to 
placing the associated geometric objects with respect 
to each other so that the given constraints can be 
satisfied. The constraint solving method works in two 
conceptual phases. 

Phase 1 (analysis phase): The constraint graph is 
analyzed and a sequence of constructions is 
stipulated. Each step in this sequence corresponds to 
positioning three rigid geometric bodies (clusters) 
which pairwise share a geometric element (point or 
line). 

Phase 2 (construction phase): The actual construction 
of the geometric elements is carried out, in the order 

determined by Phase 1, by solving certain standard 
sets of algebraic equations. 
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1 A rigid body is a set of geometric elements whose position and 
orientation relative to each other is known. 
 

Figure 1. Constraint problem (left), and associated 
constraint graph (right). 
illustrate the process, consider three points A, B, 
C between which distances have been prescribed, 
hown in Figure 1 left. The associated constraint 
h is shown on the right. In Phase 1 of the 
traint solving, we determine first that every pair 
oints can be constructed separately, resulting in 
e clusters. Moreover, the three clusters can be 
bined into a single cluster since they share 
wise a geometric element. The combination 
ges the three clusters into one. As soon as a single 
ter is obtained, Phase 1 considers the constraint 
lem solvable, Phase 1, the analysis phase, 
ists of two parts: 

e reduction analysis that produces a sequence of 
l cluster merges and handles well-constrained and 
constrained problems, and 

 decomposition analysis that produces a sequence 
decompositions (that correspond to a reverse 
ence of duster merges) and handles under 
trained cases, The outcome of the reduction 
ysis is fed as input to the decomposition analysis. 

USER INTERACTION AND SYSTEM 
W 

have developed a graphical user interface that 
grates a geometric constraint solver with an editor 
constructing and modifying dimensioned sketches 
esenting CAD cross-sections [9]. For the 



development of the graphical user interface we used 
Java's AWT (Advanced Window Toolkit), for three 
main reasons: 

- We were interested in building a rapid prototype to 
test and tune the effectiveness of our interactive 
method, Java's AWT provides a relatively easy way 
for producing graphical user interfaces. Moreover, 
the new version of AWT has additional flexibility 
and an improved method for relating user triggered 
events with actions. These features made AWT a 
good candidate for developing the GUI of our 
interactive solver.  

- Although executing Java code induces a significant 
overhead in terms of CPU and memory 
consumption, this overhead is not noticeable in 
workstations with sufficient memory. 

- Producing Java code makes our graphical user 
interface portable to the vast majority of platforms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The overall user-system interaction is as follows. The 
user draws a sketch and then imposes constraints on 
the sketched elements. The user can then invoke the 
solver which will try to solve the system of geometric 
constraints and return a new sketch with the geometric 

elements placed appropriately. If the solver is 
incapable of solving completely the sketch the user is 
notified and certain actions may be taken to correct 
the source of the problem. After successfully solving a 
dimensioned sketch the user may add/delete geometric 
objects and constraints, and re-invoke the solver. We 
have implemented points, circles, rays, lines, line 
segments and arcs. The available constraints are 
distance, tangency, angle, coincidence, concentricity 
and constraints that can be expressed as a combination 
of the above. We have also included text, for user 
annotation, in the form of constrained rectangles. 

In Figure 2, a snapshot of the graphical user interface 
is depicted. The menu for inserting geometric objects 
and text lays on the right hand side of the main 
window. At the bottom of this menu above the Exit 
button there is the the Place Constraint button that 
transforms the functionality of the right-hand side 
menu for adding geometric constraints. At the top side 
there are four pull-down menus. The File menu has 
the Save/Load functions, and some auxiliary ones 
such as Merge and Quit. The files contain 
description of geometric objects, constraints, display 
information and annotation expressed in a language 
similar to the one presented in [15]. The 
communication with the main solver program and the 
numerical solver is realized through files with the 
same content augmented with solution specific 
information from the solver to the user and vice versa. 
The processing of the files is made possible by 
translating the high level language to an easy to read 
list of values, by using a compiler developed in C, 
using the flex and bison tools. 

Figure 2. The Graphical User Interface. The View menu hides or makes visible certain classes 
of objects such as constraints, geometric elements, 
and annotation. The Edit menu contains the basic 
Delete, Move and Copy operations which are 
applicable to both geometric objects and constraints. 



 
 
 

Figure 3. Interaction Flow for Solving a Sketch. 

The Solve menu is illustrated in Figure 2. It contains 
the basic functions for performing geometric 
constraint solving of the given dimensioned sketch. 
Figure 3 shows the overall interaction flow for 
solving a sketch. The user first attempts to solve the 
sketch by the extended graph-constructive method 
outlined in Section 3. This is performed by choosing 
Solve from the Solve menu. If the analysis finds a 
valid sequence of construction steps for placing all 
geometric elements, this sequence is followed for 
producing the final Solved Sketch. However, if the 
solution does not consist of real numbers, or is not the 
one intended by the user, an interactive tool may be 
used for navigating the solver to a meaningful 
solution. The user is presented with the construction 
sequence and is given the capability of modifying the 
relative positioning of the objects involved, thus 
affecting stepwise the overall solution selection. 

Changing the values of some constraints (e.g 
distances, angles), of a solved sketch will result in re 
evaluating the placement steps (not the graph 
analysis). When the method cannot solve the 
configuration, an error message is returned and the 
user is provided with an enhanced right-hand side 
menu for interactive intervention. Using this menu, 
the user may browse the part(s) of the design that 
correspond(s) to the subgraph(s) that is(are) not 
solvable. Finding minimal well-constrained subparts 
is a difficult process that has a worst case time 
complexity O(n4) in our implementation. A more 
sophisticated method O(n2) has been proposed in 
[18], but it may need some care to to be applied to 
rigid bodies without spoiling the quadratic 
complexity. The nonsolvable parts can be edited by 
deleting and adding constraints and geometric objects. 
These modifications are incorporated to the overall 



design by pressing the Incorporate button at the 
enhanced right-hand side menu. This drives the 
design process back to the first step. Currently, the 
Text, Copy and Move buttons are disabled during 
the process of editing the nonsolvable parts of the 
design. Another option for handling nonsolvable parts 
is to invoke the Numerical Solver for one or more of 
the nonsolvable parts. If this succeeds, the parts are 
subsequently treated as rigid bodies. To support this 
feature we have defined a rigid body structure in the 
representation language. If the basic solver detects 
overconstrained or underconstrained configurations it 
notifies the user. The process for treating such 
configurations is described in more detail in the next 
section.  

Finally, the user may choose to incrementally edit the 
solved sketch by adding constraints and geometric 
elements. Invoking solve in this case tries to 
incrementally solve the new design. If incremental 
solving fails, analyzing the overall system of 
constraints is attempted. Deleting a geometric element 
or constraint is not considered an incremental change 
and analysis of the overall graph is attempted. 

 

5. HANDLING OVER AND UNDER-
DETERMINED CONFIGURATIONS 
 

Each line or point on the Euclidean plane has two 
degrees of freedom. Each distance or angle 
corresponds to one equation. If there are no fixed geo-
metric elements (i.e., geometric elements whose 
absolute coordinates have been specified explicitly by 
the user), then we expect that, |E| = 2|V| - 3, where |V| 
is the number of geometric elements and |E| is the 
number of constraints. This holds for lines and points 
with distances and angles constraints only. When 
other objects or constraints exist, we have to substitute 
with sums for the degrees of freedom and for the 
constraints. Note that the solution will be a rigid body 
with three remaining degrees of freedom, because the 

constraints determine only the relative position of the 
geometric elements. An example is shown in Figure 4. 
In the figure, the vertex P of the quadrilateral has a 
well-defined position when α+β=900. But for 
α+β≠900the position of P is not determined. This 
"semantic" notion of well-constrained problems can 
be made specific for the constraint graph analysis, 
because there the generic problem of constructing a 
solution is considered independently of dimension 
values. Intuitively, a dimensioned sketch is considered 
to be well-constrained, if it has a finite number of so-
lutions for nondegenerate configurations. Similarly, a 
dimensioned sketch is considered to be 
underconstrained, if it has an infinite number of so-
lutions for nondegenerate configurations. Finally, a 
dimensioned sketch is considered to be 
overconstrained, if it has no solutions for 
nondegenerate configurations. The intuitive notions 
above can be made technically precise for the 
euclidean plane (see e.g., [13]). For the 3D case, 
however, the necessary and sufficient conditions for 
specifying whether a configuration is well-constrained 
are not known. 
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Figure 4. Degenerate Configuration (right) for α+β=900 .
r an algorithm that tests whether a graph is 
ructurally well-constrained in 2D see e.g. [19, 29]. 
ote that a structurally well-constrained graph can be 
erconstrained in a geometric sense, for example if 
ere are three lines with pairwise angle constraints. 
e core reduction analysis handles structurally well-
nstrained and overconstrained problems. The 
composition analysis handles structurally 
derconstrained problems. Thus, the graph analysis 



may succeed to produce a sequence for placement, 
even for overconstrained or underconstrained 
configurations. In any case, the user is notified about 
the existence of ill-determined configurations. The 
user may then use the Detect 
Underconstrained and Detect 
Overconstrained buttons to analyze the graph. 
To detect the overconstrained subgraph, the system 
executes a reduction analysis and keeps track of 
cluster merging that states the existence of 
overconstrained configurations. Then, the user is 
presented with the corresponding part that is 
overconstrained, after running a simple algorithm that 
marks constraints that can be candidates for 
elimination. To detect the underconstrained, the result 
of the decomposition analysis is run, and the plausible 
constraint additions are highlighted. 

 

6. CONCLUSIONS 
 

We have presented an overview of approaches to 
geometric constraint solving and selected a powerful 
graph-constructive method for building around it an 
interactive system for designing and solving 
dimensioned sketches. We have presented an 
innovative paradigm of user interaction for using the 
core method, treating ill-determined configurations, 
handling nonsolvable cases and performing solution 
selection. We have developed a prototype to evaluate 
this paradigm and to fine tune the system-user 
interaction. 
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