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Abstract

George Rigas. PhD, Computer Science Department, University of Ioannina, Greece. De-

cember, 2009. Assessment of driver's physiological state using physiological signals. The-

sis Supervisor: Christophoros Nikou.

Among the most important factors in accident provocation is the human factor.

Driver's loss of attention, aggressiveness and ine�cient decision making, often lead to

hazardous situations. A common reason of all the above is the physiological state of the

driver. The last few decades several studies have designated the role of physiological state

in driving performance and accident provocation. However the design of in-vehicle sys-

tems, able to assess physiological state with high credibility and in a rather unobtrusive

way is still an ambitious goal.

This thesis makes a contribution towards the goal of driver's status recognition in a

real-car application. Based mainly on the monitoring of driver's physiological signals and

using additional sources such as video from driver's face as well as driving environment in-

formation, we focused on the detection of driver's fatigue and stress levels. The data used

were collected during a long-lasting experimental protocol on a real driving environment

and under di�erent weather, tra�c and road conditions. During the real-world experi-

ments a set of physiological signals have been recorded, in particular: electrocardiograph

(ECG), respiration and electrodermal activity (EDA), from which a number of features

from both time and frequency space were extracted. The set of features were examined

in terms of their contribution to the detection of fatigue and stress and the most powerful

indicators for each state of interest were selected following a feature selection technique.

Four di�erent classi�ers were employed and the classi�cation results were evaluated in

terms of sensitivity, speci�city and accuracy. Our results indicate good performance for

both fatigue and stress classi�cation problems. The evaluation of features' contribution

to the detection of the two states revealed that all information sources contribute equally

to the two-class stress classi�cation problem, while a three-class fatigue classi�cation is

feasible by using physiological features only, as those are the features with the major

contribution.
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Although the majority of relevant works concentrate on the detection of high levels of

fatigue (drowsiness) with our methodology we can achieve also detection of early fatigue

stages (low fatigue). To quantify the impact of these early fatigue stages on driving

performance, we built a driving simulation environment, which allowed us to monitor

driving performance measures (i.e. reaction times) and correlate them with the states

under investigation. The outcomes of the simulation study veri�ed the association of the

di�erent fatigue levels and the physiological features used for their classi�cation with the

degree of impairment in driver's performance. This �nding demonstrates the value and

potential of an in-vehicle system able to recognize progressive fatigue levels and predict

driver's reaction time based on physiological signals monitoring.

Unlike fatigue which is a progressive state, driver stress is a more time-variant condi-

tion which is highly dependent on the driving context and it is temporarily inuenced by

events occurring en-route. We call the driving environment-related events (such as over-

take, hard braking, junction, curve, etc) "driving events" and the temporal stress that

may impose to the driver, "stress events". The detection of stress events can contribute

to the driver's state estimation in the sense that the frequent occurrence of stress events

could have more prolonged e�ects on driver's state, i.e. increase the overall driver's stress

level. In our thesis, we developed a methodology for online detection of stress events,

using the same set of physiological signals (ECG, Respiration, EDA) as well as driv-

ing behavior parameters (position, velocity, acceleration, deceleration) acquired from car

equipment (GPS and CAN bus). We achieved 95% accuracy in the detection of stress

events which is expected to increase with the introduction of visual information from the

road environment.

A very important requirement for a system for driver physiological state assessment,

is the adaptation of system's parameters on the physiological features of new drivers.

We consider a system based on a Gaussian mixture model, and the basic assumption is

that the feature distribution of the new driver is a geometric transformation of the feature

distribution used for the training of the system. The method is based on the Expectation-

Maximization (EM) approach for the estimation of the geometric transformation applied

on the initial Gaussian Mixture model. We evaluated the proposed method using arti�cial

dataset. Since EM is a local optimization algorithm, the method does not guarantee the

correct solution identi�cation. To confront this limitation we proposed a multiple start EM

algorithm which increased the method performance. Next we extended the model allowing

each mixture component to have an individual (local) transformation, and applied a

MAP-EM approach for estimating both the common (global) transformation as well as

the local ones. We evaluated the proposed method using both arti�cial and real driver's

data, collected in a simulation environment. Apart from adaptation to new drivers, the

proposed method can be applied also to other problems, such as image registration and
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tracking.

Based on the fact that driver's state is a signi�cant factor for road safety, we made a

step further and designed the building blocks of an advanced driver support systems that

exploits driver's state estimation as well as vehicle communication abilities for increasing

safety in every day driving. As a �rst step we developed a simulation environment of

vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communication. Experiments

on the simulation environment con�rmed that the exploitation of those types of commu-

nication can increase driving safety. Moreover, it helped to de�ne minimum requirements

for communication characteristics (range, latencies and broadcasting frequency) in real-

istic scenarios of co-operative driving. The second step was the implementation of two

basic subsystems: a) the information handler and b) the decision maker. The information

handler applies information fusion of low con�dence sensors (other vehicles) and employs

Bayesian Networks for the extraction of high-level information, useful for the driver. The

decision maker is based upon sampling of Dynamic Bayesian networks for driving risk

evaluation and decides upon the best warning strategy, taking into account both envi-

ronmental conditions and driver's state. Concluding, this thesis studies the assessment of

driver's psycho-physiological state exploiting mainly physiological signals as well as other

information sources towards the development of a real-application driver support system

that contributes to the increase of driving safety.
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ÅêôåíÞò Ðåñßëçøç óôá ÅëëçíéêÜ

Ãåþñãéïò ÑÞãáò ôïõ Áíôùíßïõ êáé ôçò ÂáóéëéêÞò. PhD, ÔìÞìá ÐëçñïöïñéêÞò, ÐáíåðéóôÞìéï

Éùáííßíùí, ÄåêÝìâñéïò, 2009. Áíáãíþñéóç ôçò øõ÷ïóõíáéóèçìáôéêÞò êáôÜóôáóçò ôïõ

ïäçãïý ìå ÷ñÞóç âéïóçìÜôùí. ÅðéâëÝðïíôáò: ×ñéóôüöïñïò Íßêïõ.

Áðü ôïõò ðéï óçìáíôéêïýò ðáñÜãïíôåò óôçí ðñüêëçóç áôõ÷çìÜôùí åßíáé ï áíèñþðéíïò

ðáñÜãïíôáò. Ìåôáîý Üëëùí, ç ìåßùóç ôçò ðñïóï÷Þò ôïõ ïäçãïý, ç åðéèåôéêüôçôá óôçí

ïäÞãçóç êáé ïé ëáíèáóìÝíåò áðïöÜóåéò, óõ÷íÜ ìðïñïýí íá ïäçãÞóïõí óôçí ðñüêëçóç

áôõ÷çìÜôùí. ¸íá êïéíü áßôéï üëùí ôùí ðáñáðÜíù åßíáé ç øõóïóõíáéóèçìáôéêÞ êáôÜóôáóç

ôïõ ïäçãïý. Ôéò ôåëåõôáßåò äåêáåôßåò Ý÷ïõí ãßíåé áñêåôÝò ìåëÝôåò ðïõ ôïíßæïõí ôïí ñüëï

ôçò øõ÷ïóõíáéóèçìáôéêÞò êáôÜóôçóçò óôçí áðüäïóç ôïõ ïäçãïý êáé óôçí ðéèáíÞ ðñüêëçóç

áôõ÷çìÜôùí. Ùóôüóï ç áíÜðôõîç óõóôÞìáôùí ðïõ èá âñßóêïíôáé ìÝóá óôï ü÷çìá êáé èá

áíé÷íåýïõí ôçí êáôÜóôáóç ôïõ ïäçãïý ìå ìåãÜëç áîéïðéóôßá êáé ÷ùñßò íá åðéâáñýíïõí Þ

íá åíï÷ëïýí ôïí ïäçãü, åßíáé áêüìá óå ðñþéìá óôÜäéá.

Áíôéêåßìåíï Ýñåõíáò ôçò ðáñïýóáò äéáôñéâÞò åßíáé ç áíáãíþñéóç ôçò øõ÷ïóõíáéóèçìáôéêÞò

êáôÜóôáóçò ôïõ ïäçãïý óå ðñáãìáôéêÝò ïäçãéêÝò óõíèÞêåò. ÂáóéóôÞêáìå êõñßùò óôçí

ëÞøç êáé åðåîåñãáóßá âéïóçìÜôùí ôïõ ïäçãïý, üðùò åðßóçò óå ðáñáêïëïýèçóç ôïõ ðñïóþðïõ

ôïõ ïäçãïý êáé óå ìåôáâëçôÝò ôïõ ðåñéâÜëëïíôïò ïäÞãçóçò ãéá ôçí áíáãíþñéóç ôùí

êáôáóôÜóåùí êïýñáóçò êáé óôñåò ôïõ ïäçãïý. Ôá äåäïìÝíá ðïõ ÷ñçóéìïðïéÞèçêáí óõëëÝ÷èçêáí

óå Ýíá ìáêñï÷ñüíéï óôÜäéï äéåîáãùãÞò ðåéñáìÜôùí óå ðñáãìáôéêÝò ïäçãéêÝò óõíèÞêåò.

Óôçí äéÜñêåéá áõôþí ôùí ðåéñáìÜôùí óõëëÝîáìå Ýíá óýíïëï áðü âéïóÞìáôá ôïõ ïäçãïý, êáé

óõãêåêñéìÝíá çëåêôñïêáñäéïãñÜöçìá, áíáðíïÞ êáé çëåêôñïäåñìéêÞ äñáóôçñéüôçôá. Áðü

ôá âéïóÞìáôá, ôï âßíôåï êáé ôéò óõíèÞêåò ïäÞãçóçò åîÜãáìå Ýíáí óçìáíôéêü áñéèìü áðü

÷áñáêôçñéóôéêÜ êáé ôá áîéïëïãÞóáìå ùò ðñïò ôçí óõíåéóöïñÜ ôïõò óôçí áíáãíþñéóç ôüóï

ôçò êïýñáóçò üóï êáé ôïõ óôñåò. Óå ìéá äéáäéêáóßá åðéëïãÞò ÷áñáêôçñéóôéêþí, ìüíï

áõôÜ ìå ôçí ìåãáëýôåñç óõíåéóöïñÜ ÷ñçóéìïðïéÞèçêáí óôï åðüìåíï âÞìá ôçò ôáîéíüìçóçò.

ÔÝóóåñåéò äéáöïñåôéêïß ôáîéíïìçôÝò áîéïëïãÞèçêáí þò ðñïò ôçí áêñßâåéá ôáîéíüìçóçò, ôçí

åõáéóèçóßá êáé ôçí åîåéäßêåõóç. Ôá áðïôåëÝóìáôá ìáò Þôáí ðïëý éêáíïðïéçôéêÜ ôüóï

ãéá ôçí áíáãíþñéóçò ôçò êïýñáóçò êáé ôïõ óôñåò. Óôçí óõíÝ÷åéá áîéïëïãÞóáìå ôçí

óõíåéóöïñÜ ôïõ êÜèå áéóèçôÞñá óôçí áíáãíþñéóç ôçò êïýñáóçò êáé ôïõ óôñåò. Ìßá ôÝôïéá

ìåëÝôç åßíáé óçìáíôéêÞ óôïí ó÷åäéáóìü åíüò óõóôÞìáôïò áíáãíþñéóçò ôçò êáôÜóôáóçò

ôïõ ïäçãïý, ôüóï ãéá ôçí ìåßùóç ôçò ðïëõðëïêüôçôáò üóï êáé ôïõ êüóôïõò. Ôá ðåéñÜìáôá

ðïõ ðñáãìáôïðïéÞóáìå Ýäåéîáí üôé óôçí áíáãíþñéóç ôçò êïýñáóçò ôá âéïóÞìáôá åßíáé áõôÜ

15



ðïõ óõíåéóöÝñïõí ðåñéóóüôåñï êáé åéäéêüôåñá ôï çëåêôñïêáñäéïãñÜöçìá öáßíåôáé íá åßíáé

ï óçìáíôéêüôåñïò áéóèçôÞñáò, åíþ ãéá ôï óôñåò üëïé ó÷åäüí ïé áéóèçôÞñåò Ý÷ïõí ðáñüìïéá

óõíåéóöïñÜ.

Åíþ ïé ðåñéóóüôåñåò ó÷åôéêÝò åñãáóßåò åóôéÜæïõí óôçí áíáãíþñéóç õøçëþí åðéðÝäùí

êïýñáóçò (õðíçëßá) ìå ôçí ìåèïäïëïãßá ìáò åðéôõã÷Üíåôáé åðßóçò ç áíáãíþñéóç ôùí ðñüéìùí

óôáäßùí ôçò êïýñáóçò (ìÝôñéá êïýñáóç). Ãéá íá ðïóïôéêïðïéÞóïõìå ôçí åðßäñáóç ôùí

÷áìçëþí åðéðÝäùí êïýñáóçò óôçí ïäçãéêÞ áðüäïóç, áíáðôýîáìå Ýíá ðåñéâÜëëïí åîïìïßùóçò,

ôï ïðïßï ìáò åðÝôñåøå ôçí êáôáãñáöÞ ìÝôñùí ïäçãéêÞò áðüäïóçò (üðùò ÷ñüíïé áíôßäñáóçò)

êáé ôçí óõó÷Ýôéóç ôïõò ìå ôá åðßðåäá êïýñáóçò. Ôá áðïôåëÝóìáôá áðü ôçí ìåëÝôç óôï

ðåñéâÜëëïí åîïìïßùóçò åðáëÞèåõóáí ôçí óõó÷Ýôéóç ôùí äéáöïñåôéêþí åðéðÝäùí êïýñáóçò

êáé ôùí ÷áñáêôçñéóôéêþí áðü ôá âéïóÞìáôá ìå ôïí âáèìü ìåßùóçò ôçò ïäçãéêÞò áðüäïóçò.

Áõôü ôï åýñçìá åðéäåéêíýåé ôçí áîßá êáé ôçí ðñïïðôéêÞ åíüò óõóôÞìáôïò éêáíïý íá áíáãíùñßæåé

ôá ðñïïäåõôéêÜ åðßðåäá êïýñáóçò êáé íá ðñïâëÝðåé ôïí ÷ñüíï áíôßäñáóçò ôïõ ïäçãïý,

âáóéæüìåíï óôçí êáôáãñáöÞ âáóéêþí âéïóçìÜôùí. Áíôßèåôá ìå ôçí êïýñáóç, ç ïðïßá

åßíáé ìßá ðñïïäåõôéêÞ êáôÜóôáóç ôï óôñåò åßíáé ðéï åõìåôÜâëçôï, êáèþò åðçñåÜæåôáé óå

ìåãÜëï âÜèìï áðü ôï ðåñéâÜëëïí ïäÞãçóçò êáé áðü ãåãïíüôá ðïõ ëáìâÜíïõí ÷þñá óå

áõôü. ÏíïìÜæïõìå áõôÜ ôá ãåãïíüôá êáôá ôçí äéÜñêåéá ôçò ïäÞãçóçò (ðñïóðÝñáóç,

áðüôïìç ðÝäçóç ê.á.) "ïäçãéêÜ ãåãïíüôá" êáé ôï ðáñïäéêü óôñåò ðïõ áõôÜ ðñïêáëïýí

óôïí ïäçãü "ãåãïíüôá óôñåò". Ç áíß÷íåõóç ôùí ãåãïíüôùí óôñåò óõìâÜëåé óôçí åêôßìçóç

ôçò øõ÷ïóùìáôéêÞò êáôÜóôáóçò ôïõ ïäçãïý, êáèþò ç óõ÷íÞ åìöÜíéóç ôÝôïéùí ãåãïíüôùí

ìðïñåß íá ðñïêáëÝóåé ðáñáôåôáìÝíï óôñåò óôïí ïäçãü. Óå áõôÞí ôçí äéáôñéâÞ áíáðôýîáìå

ìßá ìåèïäïëïãßá ãéá ôçí áíáãíþñéóç ãåãïíüôùí óôñåò óå ðñáãìáôéêü ÷ñüíï, ÷ñçóéìïðïéþíôáò

ôï ßäéï óýíïëï âéïóçìÜôùí (çëåêôñïêáñäéïãñÜöçìá, áíáðíïÞ êáé çëåêôñïäåñìéêÞ äñáóôçñéüôçôá)

êáèþò êáé ðáñáìÝôñïõò ôçò ïäçãéêÞò óõìðåñéöïñÜò (èÝóç, ôá÷ýôçôá, åðéâñÜäõíóç ê.á.) ôá

ïðïßá óõëëÝîáìå áðü ôïí åîïðëéóìü ôïõ áõôïêéíÞôïõ (GPS êáé Can-Bus). Ìå ôçí ÷ñÞóç

Bayesian äéêôýùí áíáãíùñßæïõìå ìå áêñßâåéá 95% ôá ãåãïíüôá óôñåò.

¸íá ðñüâëçìá ðïõ óõ÷íÜ ðáñïõóéÜæåôáé ìå ðáñüìïéá óõóôÞìáôá, åßíáé ç áíÜãêç ãéá

"ðñïóáñìïãÞ" ôïõ óõóôÞìáôïò óå Ýíá íÝï ïäçãü. Ðñïò áõôÞí ôçí êáôåýèõíóç ðáñïõóéÜæïõìå

ìßá ìÝèïäï ãéá ôçí åêôßìçóç ôùí ðáñáìÝôñùí ìßá ìåéêôÞò êáíïíéêÞò êáôáíïìÞò ç ïðïßá

õößóôáôáé Ýíáí ãåùìåôñéêü ìåôáó÷çìáôéóìü. Ç ìÝèïäïò âáóßæåôáé óôïí áëãüñéèìï ÅÌ.

Êáèþò ï áëãüñéèìïò EM åßíáé Ýíáò áëãüñéèìïò ôïðéêÞò âåëôéóôïðïßçóçò, ç ìÝèïäïò äåí

åããõÜôáé ôçí åýñåóç ôçò ðñáãìáôéêÞò ëýóçò. Ãéá íá áíôéìåôþðéóïõìå áõôüí ôïí ðåñéïñéóìü,

ðñïôåßíáìå ôçí ÷ñÞóç ôïõ áëãïñßèìïõ EM ìå ðïëëáðëÝò åêêéíÞóåéò. ÁõôÞ ç ðñïóÝããéóç

áõîÜíåé óçìáíôéêÜ ôçí ðéèáíüôçôá åýñåóçò ôçò ðñáãìáôéêÞò ëýóçò. Óôçí óõíÝ÷åéá åðåêôåßíïõìå

ôï áñ÷éêü ìïíôÝëï, üðïõ Ý÷ïõìå Ýíáí êïéíü ìåôáó÷çìáôéóìü óå üëåò ôéò óõíéóôþóåò,

áíáèÝôïíôáò Ýíáí ôïðéêü ìåôáó÷çìáôéóìü óå êÜèå óõíéóôþóá. Óôéò ðáñáìÝôñïõò ôùí

ôïðéêþí ìåôáó÷çìáôéóìþí, èåùñïýìå ìßá åê ôùí ðñïôÝñùí êáôáíïìÞ êáé ÷ñçóéìïðïéïýìå

ìßá ðñïóÝããéóç MAP-EÌ ãéá ôçí åêôßìçóç ôùí ðáñáìÝôñùí ôïõ ïëéêïý êáé ôùí ôïðéêþí

ìåôáó÷çìáôéóìþí. ÄïêéìÜóáìå ôçí ìÝèïäï óôçí ðñïóáñìïãÞ åíüò ìïíôÝëïõ áíáãíþñéóçò

ôçò êáôÜóôáóçò ôïõ ïäçãïý, ôï ïðïßï Ý÷åé åêðáéäåõèåß óå Ýíá óõãêåêñéìÝíï óýíïëï ïäçãþí,
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óå íÝïõò ïäçãïýò. Ôá ðñþôá áðïôåëÝóìáôá åßíáé áñêåôÜ õðïó÷üìåíá. Åðßóçò ðñÝðåé

íá ôïíßóïõìå üôé ç óõãêåêñéìÝíç ìÝèïäïò ìðïñåß êÜëéóôá íá åöáñìïóôåß óå ðáñüìïéá

ðñïâëÞìáôá áëëÜ êáé óå Üëëá üðùò ç õðÝñèåóç åéêüíùí.

Âáóéæüìåíïé óôï ãåãïíüò üôé ç êáôÜóôáóç ôïõ ïäçãïý åßíáé óçìáíôéêÞ óôçí ïäçãéêÞ

áóöÜëåéá, ðñï÷ùñÞóáìå Ýíá âÞìá ðáñáðÝñá êáé ìåëåôÞóáìå ôá âáóéêÜ ìÝñç åíüò "Ýîõðíïõ"

óõóôÞìáôïò õðïâïÞèçóçò ôïõ ïäçãïý ôï ïðïßï ìðïñåß íá åêìåôáëëåõôåß ôüóï ôçí êáôÜóôáóç

ôïõ ïäçãïý üóï êáé äßêôõá åðéêïéíùíßáò ìåôáîý áõôïêéíÞôùí. ÔÝôïéá óõóôÞìáôá óôï÷åýïõí

óôçí áýîçóç ôçò ïäçãéêÞò áóöÜëåéáò, áöåíüò åðåêôåßíïíôáò ôï ðåäßï áíôßëçøçò ôïõ ïäçãïý

êáé áöåôÝñïõ ðáñÝ÷ïíôáò êáôÜëëçëá åéäïðïéçôéêÜ ìçíýìáôá óôïí ïäçãü ãéá ðñïóå÷åßò

êéíäýíïõò. Ôï ðñþôï âÞìá Þôáí ï ó÷åäéáóìüò åíüò ðñïãñÜììáôïò ìáêñïóêïðéêÞò åîïìïßùóçò

åíüò ïäçãéêïý ðåñéâÜëëïíôïò ìå åðéêïéíùíßá ìåôáîý ï÷çìÜôùí êáèþò êáé ï÷çìÜôùí ìå

ôçí õðïäïìÞ ôïõ äñüìïõ. ÐåéñÜìáôá óå áõôü ôï ðåñéâÜëëïí Ýäåéîáí üôé ôÝôïéá óõóôÞìáôá

ìðïñïýí ðñÜãìáôé íá áõîÞóïõí ôçí ïäçãéêÞ áóöÜëåéá, êÜôù áðü ïñéóìÝíåò ôéìÝò ôùí

ðáñáìÝôñùí åðéêïéíùíßáò (êáèõóôÝñçóç, åìâÝëåéá, óõ÷íüôçôá åêðïìðÞò). Óå áõôü ôï

óýóôçìá õðÜñ÷ïõí äýï âáóéêÜ õðïìÝñç, ðïõ óôá áñ÷éêÜ ðåéñÜìáôá èåùñïýíôáí äåäïìÝíá

áëëÜ ÷ñßæïõí åêôåíÝóôåñçò ìåëÝôçò. Ôï ðñþôï åßíáé ï ôñüðïò ìå ôïí ïðïßï ÷åéñéæüìáóôå

ôçí ðëçñïöïñßá. ÌåëåôÞóáìå ìßá ìÝèïäï ìå ÷ñÞóç Bayesian äéêôýùí ãéá ÷åéñéóìü ôçò

ðëçñïöïñßáò áðü ðçãÝò ÷áìçëÞò áîéïðéóôßáò êáé åîáãùãÞò íÝáò ðëçñïöïñßáò. Ôï äåýôåñï

êïììÜôé ôïõ óõóôÞìáôïò ðïõ åîåôÜæïõìå åßíáé ï ìç÷áíéóìüò ëÞøçò áðïöÜóåùí ï ïðïßïò

åßíáé õðåýèõíïò ãéá ôïí ôñüðï êáé ôïí ÷ñüíï ðñïþèçóçò ìçíõìÜôùí ãéá ôçí Ýãêáéñç

åéäïðïßçóç ôïõ ãéá ðéèáíïýò êéíäýíïõò. Ï ìç÷áíéóìüò áðüöáóçò âáóßóôçêå óå äåéãìáôïëåøßá

äõíáìéêþí Bayesian äéêôýùí ãéá ôçí åêôßìçóç ôçò áíáìåíüìåíçò ôéìÞò ìßáò óõíÜñôçóçò

êüóôïõò êáé ôçí åêôßìçóç ôçò âÝëôéóôçò åíÝñãåéáò.

Ç óõãêåêñéìÝíç äéáôñéâÞ óõíïøßæïíôáò, ìåëåôÜ ôçí áíáãíþñéóçò ôçò øõ÷ïóõíáéóèçìáôéêÞò

êáôÜóôáóçò ôïõ ïäçãïý ìåëåôþíôáò êõñßùò âéïóÞìáôá áëëÜ êáé Üëëåò ðçãÝò ðëçñïöïñéþí

êáé ðñï÷ùñÜ óôçí áîéïðïßçóç áõôÞò ôçò ðëçñïöïñßáò ìåôáîý Üëëùí ãéá ôçí åðßôåõîç

óõóôçìÜôùí ðïõ åíôÝëåé èá óõíåéóöÝñïõí óôçí ìåßùóç ôùí áôõ÷çìÜôùí êáé óôçí áýîçóç

ôçò áóöÜëåéáò óôçí ïäÞãçóç.
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Chapter 1

Introduction

1.1 De�nition of Fatigue

1.2 De�nition of Stress

1.3 Contribution of this thesis

The human physiological state is well studied in many �elds of science and industry,

such as medicine, human factors, aviation, and automotive. Generally in any critical task

involving a decision process by a human, the quality of the decision and hence the success-

ful execution of the task strongly depends on human's physiological state. Such a task,

which daily perils the life of millions of people is driving. Driving in a real-world envi-

ronment is a di�cult task, because decisions are made given only incomplete information

in real time. A great number of fatalities occurring in motor vehicles could be avoided

if behaviors such as driver inattention, stress, fatigue, and sleepiness were detected. The

inability to manage one's condition during driving is identi�ed as one of the major causes

of accidents [57]. The task to determine the driver state in a vehicle is an active topic

both for the scienti�c community and research institutes as well as software companies for

real world applications. The most common aspects of physiology that contribute greatly

to degradation of driving performance and consequently increase road risk are the mental

fatigue and stress. High stress inuences adversely drivers' reactions in critical situations,

thus it is one of the most important reasons for car accidents according to the American

Highway Tra�c Safety Administration. Recent �ndings have shown that stress is not only

tightly intertwined neurologically with the mechanisms responsible for cognition, but also

plays a vital role in decision making, problem solving and adapting to unpredictable en-

vironments such as driving [95]. When drivers are overwhelmed by anger or stress, their

thinking, perceptions, and judgments are impaired, leading to misinterpretation of events.

In addition, drivers often lack the ability to calm themselves when they are angry or frus-

trated [67]. In the context of everyday driving, similar situations are not even tolerable

since they may not only compromise the performance of the drivers but also endanger
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their lives. On the other hand, fatigue impairs human performance elements, which are

critical for safe driving [6]. More speci�cally, the most common fatigue e�ects identi�ed

in in-vehicle studies include:

• Increased reaction time: Drowsy drivers appear to have slower reaction times, which

hinders e�ective braking to avoid a collision. At high speeds in particular, even small

impairments in reaction time can have a profound e�ect on crash risk.

• Hypo-vigilance: Performance of tasks requiring attention declines with fatigue, in-

cluding prolonged periods of non-responding or delayed responding.

• Information processing impairment: Processing and integration of information needs

more time, the accuracy of short-term memory is reduced, and the overall perfor-

mance of situation perception declines.

Having the most negative impact on road safety, driver fatigue and stress constitute

the two physiological states of interest for this study. However, since both terms may

be assigned with several interpretations, it is considered fundamental to provide hereby

de�nitions of fatigue and stress that describe best the conditions studied in this work. A

review of the impact of each state on driving performance is also given, in order to justify

the necessity of the detection of these two states, regarding the driver and the driving

task.

1.1 De�nition of Fatigue

Fatigue is a general term which has been used to describe several expressions of this

psycho-physiological state. The most common are mental fatigue and muscle fatigue. In

this thesis we focus on mental fatigue. However, even for mental fatigue there are several

de�nitions. According to Brown [18], "physiological fatigue is de�ned as a subjectively ex-

perienced disinclination to continue the task". Another de�nition from NASA [126], states

than "fatigue may refer to feeling tired, sleepy or exhausted". Hancock's [2] de�nition of

fatigue is "an individual's multi-dimensional physiological-cognitive state associated with

stimulus repetition which results in prolonged residence beyond a zone of performance

comfort". A more comprehensive de�nition given by Hancock [2], that ful�lls a number

of criteria necessary for a complete de�nition of fatigue is that "fatigue refers to the state

of an organism's muscles, viscera, or central nervous system, in which prior physical ac-

tivity and/or mental processing, in the absence of su�cient rest, results in insu�cient

cellular capacity or system wide energy to maintain the original level and/or processing

by using normal resources". In this thesis the studied fatigue is well described by all the

above de�nitions. From the de�nition of fatigue, as well as from personal experience, the

most probable symptoms of fatigue on a driver's performance are rather expected.
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1.1.1 Fatigue and Driving performance

According to the previous de�nitions, mental fatigue is a cumulative and gradual process

that is highly related with loss of alertness. It is associated with reluctance for any e�ort,

with reduced e�ciency and impaired mental performance [39]. Although the factors that

inuence mental fatigue could vary from physical health and nutrition [156] to physical

activity and environmental factors [137] or even to recuperation periods [108], the symp-

toms of mental fatigue are quite common: unwillingness for any physical or mental e�ort,

feeling of weariness, and impaired activity. According to Grandjean [38], the functional

states of a person range from deep sleep, light sleep, drowsy, weary, hardly awake, relaxed,

resting, fresh, alert, very alert, stimulated and a state of alarm. In this context, mental

fatigue is a condition grading in one direction into sleep, and in the other direction into

a relaxed, resting state. Both directions, though, are considered likely to reduce atten-

tion and decline alertness. When individuals are allowed to rest, these resting conditions

are not considered unpleasant; but they can be distressing if one needs to deal with a

demanding task such as driving. When mental fatigue leads to drowsiness it becomes sig-

ni�cant contributing factor to road crashes. According to NCSDR/NHTSA Expert Panel

on Driver Fatigue and Sleepiness[138] there are 56,000 crashes each year (in the United

States) in which drowsiness or fatigue was cited by police as a causal factor. These crashes

lead to, on average, 40,000 nonfatal injuries and 1,550 fatalities per year. Data from the

U.S.-based 100-car naturalistic driving study indicated that drowsy driving (compared to

alert driving) resulted in a �ve-fold increase in risk of a crash or near-crash [73]. MacLean

et al. [92] concluded that "while estimates of the number of crashes due to sleepiness

have varied widely, there is converging evidence that about 20% of crashes are related

to sleepiness". Taken together, these statistics indicate that driver drowsiness imposes a

signi�cant burden on society, and constitutes a serious public health issue. All the above

indicate that mental fatigue and especially drowsiness is a high risk physiological state in

the driving context. Apart from late fatigue stages such as drowsiness, even earlier fatigue

states, which are characterized by a reduced driver's arousal are followed by a driving per-

formance impairment [25]. In neurological research the terms vigilance and arousal are

used interchangeably, both referring to a general state of wakefulness, characterized as

alertness [110]. An important factor related to fatigue and hypovigilance is the circadian

rhythm. It is the biological clock that normally has a 24 h period. Physiological parame-

ters such as motor activity, body temperature, blood pressure and work performance are

disturbed from disruptions to the circadian rhythm [127]. Apart from circadian rhythm,

a number of environmental factors a�ect vigilance, such as noise, vibration, ambient tem-

perature, frequency and variety of stimulations during driving. For instance, the higher

levels of noise during driving can lead to driver fatigue. This type of mental fatigue,

also known as "cognitive fatigue", results from the higher demand for driver's attention

imposed by the presence of such stressors [25]. Driver performance is also deteriorated

with long hours of continuous driving, with monotonous driving environment and during

night/early morning hours driving [100].

20



In a road environment, drivers' fatigue can be severe before its e�ects in routine driv-

ing performance become noticeable. This is because, even lower fatigue levels can still

cause declines in physiological vigilance/arousal, slow sensorimotor functions (i.e. slower

perception and reaction times) and information processing impairments, which in turn di-

minish driver's ability to respond to unexpected and emergency situations [94]. Therefore,

the impact of fatigue on driver performance cannot be measured using only direct indices

of driving task, like speed maintenance and steering control, but additional parameters,

associated with driving performance, are needed (such as perceptual, motor and cognitive

skills). [154]. This is also the main drawback of approaches measuring physical appear-

ance measures, such as eye blinking, head movement and yawning. Those are symptoms

of late fatigue stages and the driving performance has already a signi�cant reduction. It

is therefore critical for a real-time operational driving environment to develop strategies

for early fatigue detection and provide countermeasures that optimize performance and

maintain an adequate margin of safety.

1.2 De�nition of Stress

According to European ISO 10075 [1], mental stress is de�ned as: "The total of all as-

sessable inuences impinging upon a human being from external sources and a�ecting it

mentally." Situational inuences on mental stress include: task requirements (e.g. sus-

tained concentration, responsibility for others), physical conditions (e.g. lighting, noise),

social and organisational factors (e.g. control structure, communication structure, or-

ganisational environment), social factors, external to the organisation (e.g. economic

situation). Another de�nition by Lazarus and Folkman [3] states that: "stress is a feel-

ing experienced when a person thinks that the demands exceed the personal and social

resources the individual is able to mobilize".

1.2.1 Stress and driving performance

Moderate levels of stress appear to be fairly common in everyday driving. In a diary

study of company car drivers, around 50% of drivers reported adverse a�ective reactions

on any given day [40]. Although negative moods experienced during driving are often

relatively mild, strong emotional reactions to driving also occur in forms of driving phobias

and in so-called road rage. Stress appears to predispose drivers to a heightened risk of

motor vehicle accidents. Variables that discriminate between accident-involved and non

accident-involved drivers include speci�c sources of stress, such as interpersonal and job

problems, as well as overall assessments of recent exposure to stressful life events. Accident

likelihood is also connected to personality characteristics that are associated with stress

vulnerability, such as personal maladjustment, depression, anxiety, and aggression (see

[40]). Stress e�ects can sometimes be quite large in magnitude. Brenner and Selzer [16]

estimated that drivers who have experienced a recent stressful event are �ve times more
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likely to cause fatal accidents than are unstressed drivers. There are two limitations of

current research. First, stress is often used as a vague, umbrella term. However, a variety

of distinct emotional and cognitive components of stress reactions can be distinguished

that might have di�ering consequences for performance [150]. Second, existing works

provide little information on the behavioral mechanisms that might link stress to increased

accident risk[136]. Accident research suggests a variety of mechanisms for human error in

driving, such as impairment of attentional e�ciency and change in strategy [96], but it is

unclear how these mechanisms are inuenced by stress reactions. Hence, to understand

how stress inuences safety, it is necessary to discriminate di�erent aspects of driver stress

and then to link these di�erent aspects of stress to behavioral measures.

1.3 Outline of this thesis

The literature reports many attempts to develop safety systems for reducing the number

of automobile accidents: these systems detect both the "driving behavior" by monitoring

lane keeping, steering movements, acceleration, braking and gear changing, and also the

"driver status" by such means as tracking the driver's head and the eye movements,

monitoring the heart and breathing rates, the brain activity, and recognizing the torso

and arm/leg motion. An in-depth literature review focused on speci�c aspects of driver

stress and fatigue estimation was conducted. Di�erent methodologies based on biosignal

and machine vision driver monitoring along with their experimental protocols and their

achieved results were studied and analyzed. Both advantages and limitations of state-of-

the-art methods are de�ned. Before proceeding with the presentation of literature review

the basic physiological measures used in the majority of similar works are described in

section 2.2 along with their association to the human physiology. Moreover, in Chapter 2

the most insightful research studies are presented. Those constitute the baseline for our

research and they have contributed signi�cantly to move beyond the state-of-the art in

the �eld of driver state recognition based mostly on physiological signals.

Discussions with neurologists and human factor experts helped in the de�nition of the

stress and fatigue classi�cation problems. As previously mentioned stress inuences driv-

ing performance through nervous reactions and has negative e�ects on drivers' judgment.

From human factor point of view, a driver assistance system should be able to discrimi-

nate stress from normal driver state and alternate its warning strategy accordingly. Stress

detection is therefore tackled as a two-class classi�cation problem. Driver fatigue, on the

other hand, although it is the subject of numerous studies in literature, the majority of

the existing works focus mainly on the detection of late stages of fatigue (drowsiness),

when driver experiences micro sleep episodes, which is most probable to lead to potential

accidents. However, as noticed before, according to experts in the human physiology, even

earlier stages of fatigue (low-fatigue) may have signi�cant impact on driving performance
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and the detection of those stages could be very useful for driver assistance systems. In our

work we tackle the fatigue detection as a three-class problem, i.e. discriminate: normal,

low-fatigue and high-fatigue states.

The collection of experimental data for di�erent driver states (stress and fatigue)

requires a protocol which ensures that driver experiences these states. The major part of

our experiments was conducted in real-world considering the di�culty in controlling the

driver's state since it highly depends on the prevailing driving environment. A series of

experiments were also conducted in a simulation environment, specially built for studying

the impact of human physiology on driving performance. In Chapter 3 we present the

dataset collection which was performed in both real driving conditions and a simulation

environment. Details about the equipment of the study, the experimental protocol and

software developed for data acquisition and annotation are also presented.

Making use of the data collected during real driving conditions we developed a method-

ology for the aforementioned stress and fatigue classi�cation problems. The validation

and quanti�cation of the impact of the di�erent levels of fatigue on degradation of driv-

ing performance was achieved through a series of experiments conducted in a simulation

environment, which we built speci�cally for this purpose. In Chapter 4 we present the

methodology for fatigue and stress estimation based on physiological signals and video

monitoring of driver's face.

An important aspect of driver physiology related to driving behavior, is stress reactions

to speci�c driving events. The term stress used here does not refer to the permanent

stress condition, which determines the long-term driver's psycho-physiological state but

rather addresses the temporal increase of stress level of the driver that is directly related

with a speci�c stimulation, i.e. a driving event. However, the detection of those stress

events is rather signi�cant since they contribute to the overall stress state of the driver,

and can provide an indication of the driver's behavior and the quality of the decisions

taken during driving. Analyzing the intermediate en-route self-annotated data, interesting

�ndings could come out regarding the temporal stress experienced by driver during driving

and its connection to the occurrence of driving events on-route (e.g. overtaking, hard

braking, high speeding). We call these non-permanent stressful conditions stress events,

to discriminate them from the psychological state that one experiences for relatively longer

period of time. Although the causes of driver stress events and stress state may di�er

(the former is due to events occurring on road while the second is perhaps the result of

deeper psychological factors), their impact on safety is quite similar since in both cases

the driver becomes more vulnerable to driving errors, which can lead to accidents. The

analysis of the collected data has shown high association of the stress events occurrence

23



and the physiological signal responses. This �nding is of high importance in the sense that

such stress events could be easily detected when observing the variation of the driver's

physiological signals during en-route recordings. To this end we developed a methodology

for real time stress events detection, described in Chapter 5. The methodology is based on

the incorporation of features extracted from physiological signals and vehicle information

into a Bayesian network model.

The main di�culty in developing a reliable system for driver's physiological state as-

sessment lies on the fact that each human has a di�erent baseline on his/her physiological

signals and we need to have a reliable adaptation procedure of the system to the new

subject-driver. In Chapter 6 we describe a study on the adaptation of a classi�er based

on mixture of Gaussians. The classi�er is trained on an initial dataset and needs �tting to

a new dataset which is obtained through a geometric transformation of the initial dataset.

We derive an EM based algorithm and a schema with multiple starts in order to increase

the probability of convergence to the correct solution. We extended the initial transfor-

mation to a more generic, where each component has a local also transformation and we

tested both approaches on data collected in a driving simulation environment.

The cutting-edge technology of driver assistance systems is moving towards the coop-

erative driving that exploits wireless communications (vehicle -to- vehicle communication

and road infrastructure -to- vehicle communication) with the scope to extend driver's

perception through the information coming from the external environment and to de-

velop more accurate pre-crash warning systems. The incorporation of driver psycho-

physiological state into the pre-crash warning mechanisms can evolve further this tech-

nology by increasing the safety margins with the provision of alerts tailored to the current

driver state. The rationale is that a driver under stress or fatigue should be noti�ed of

a road hazard earlier and in a di�erent way, comparing to a driver of normal status, be-

cause the former would need more time to process the information and make decisions.

Therefore, monitoring the driver and performing on-line evaluation of his/her state is a

necessity for a system targeting at preparing the driver in the best way for upcoming risks.

In Chapter 7 we present a study towards an advanced cooperative driving system, which

incorporates information of driver's state and external information coming from other

vehicles and road infrastructure, with the scope to provide timely and useful noti�cations

and alerts to the driver. The �rst step towards this direction is the development of a

simulation environment of vehicle to vehicle communication. Based on this simulation

environment we performed a study on communication requirements in order to achieve

a safety gain. The second step was the implementation of two basic subsystems: a) the

information handler and b) the decision maker. The information handler applies infor-

mation fusion of low con�dence sensors (other vehicles) and employs Bayesian Networks

for the extraction of high-level information (e.g. Tra�c congestion due to road works).
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The decision maker is based on sampling of Dynamic Bayesian networks for driving risk

evaluation and decides upon the best warning strategy, taking into account both envi-

ronmental conditions and driver's state. The decision mechanism is evaluated on a user

interactive simulation environment.
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Chapter 2

Literature Review

5.1 Introduction

2.2 Physiological Signals

2.3 Fatigue Detection

2.4 Stress Detection

2.1 Introduction

In this chapter we present an introduction to the physiological signals mainly used in

similar works, and their relation to the physiological state of interest (fatigue/stress).

Then we present the most important works in literature for fatigue and stress detection.

2.2 Physiological Signals

A variety of physiological signal have been used in the literature, for physiological state

assessment. However, the most informative and therefore gained the larger attention are:

i) electrocardiogram , ii) electrodermal activity, iii) respiration, iii) electromyogram and

iv) electroencephalography. From the aforementioned signals, in this study we employed

the �rst three and in the following section we provide a detailed description of their

physiology and their use in physiological mental state assessment.

2.2.1 Electrocardiography

The heart is innervated both by the Parasympathetic Nervous System (PNS) and the

Sympathetic Nervous System (SNS) and each heart contraction forces the blood through
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the circulatory system. The contraction is produced by electrical impulses that can be

measured in the form of the electrocardiogram (ECG). From the ECG signal (a) time

domain measures, (b) frequency measures and (c) amplitude measures can be derived. In

the time domain the R-waves[76, 103] of the ECG are detected, and the time between

these peaks, the Inter-Beat-Interval (IBI), is calculated. Heart Rate (HR) is directly

related to Heart Period (HP) or IBI , however, this relation is non-linear and IBI is more

normally distributed in samples compared with HR [59]. Therefore, IBI scores should be

used for detection and testing of di�erences between mean HR scores, the IBI scale is less

inuenced by trends than the HR scale [49]. Average heart rate during task performance

compared to rest-baseline measurements is a fairly accurate measure of metabolic activity

[115]. Not only physical e�ort a�ects heart rate level [81], emotional factors, such as high

responsibility or the fear of failing for a test, also inuence mean heart rate [63]. Other

factors a�ecting cardiac activity are speech and high G-forces [155]. The e�ect of sedative

drugs and time-on-task resulting in fatigue is a decrease in average HR [94], while low

amounts of alcohol are reported to increase HR [93]. A continuous feedback between the

central nervous system (CNS) and peripheral autonomic receptors causes irregularities in

heart rate. Heart rate variability is a marker of performance of this feedback system and

in healthy humans this is reected in large deviations from the mean rate [115]. Compared

to time-domain analysis, frequency analysis of IBI has as a major advantage that HRV

is decomposed into components that are associated with biological control mechanisms

[76, 115]. Three frequency bands have been identi�ed [104, 105]: A low frequency band

(0.02 - 0.06 Hz) believed to be related to the regulation of the body temperature, a mid

frequency band (0.07 - 0.14 Hz) related to the short-term blood-pressure regulation and

a high frequency band (0.15 - 0.50 Hz) believed to be inuenced by respiratory-related

uctuations (vagal, PNS inuenced)[76]. A decrease in power in the mid frequency band

(also called the "0.10 Hz component" after the main frequency component), and in the

high frequency band have been shown to be related to mental e�ort and task demands

[105, 63, 9]. Jorna [62] and Paas et al. [109], however, conclude that spectral measures

are primarily sensitive to task-rest di�erences, and not to moderate increases in di�culty

within a task. Measurement of heart rate is not very complex, the ECG signal needs little

amplifying (about 10 to 20 times less as ongoing EEG) and if measurement is limited to

R-wave detection and registration then electrode placement is not very critical. Heart

rate may provide an index of overall workload, spectral analysis of heart rate variability is

more useful as index of cognitive, mental workload [155]. A restriction in the use of heart

rate measures is that, due to the idiosyncratic nature of the measure, operators are usually

required to serve as their own control in stress assessment. Another major restriction to

the use of ECG measures is the e�ect speech has on blood pressure, and therefore on the

0.10 Hz component of heart rate variability [105, 135]. If verbalization is a predominant

aspect of operator performance the 0.10 Hz component may be less suitable for mental

load assessments. However, speech is not necessarily a disturbing factor, Porges and Byrne

[115] recommend no corrective action in cases in which the verbalization duration is short
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(less than 10 s) or in the case that speech is relatively infrequent (one to �ve times per

minute).

2.2.2 Respiration

Respiration is indispensable to supply the blood with oxygen and to expel carbon dioxide.

Measures of respiration could provide an index of energy expenditure. Recently, evidence

has been found supporting the hypothesis that cognitive e�ort coincides with a small

but signi�cant increase in energy expenditure [9]. The most frequently used measure of

respiration is respiration rate [155]. Respiration rate increases under stressful attention

conditions[115] and as a result of increased memory load or increased temporal demands

[9]. Wientjes [152], [153] states that respiration rate without information about tidal

volume is meaningless and has led to inconclusive results. The multiplication of respiration

rate (i.e. timing) with tidal volume (i.e. intensity) gives the minute ventilation, the

quantity of air breathed per minute. Wientjes [153] found an increase in minute ventilation

(and an increase in respiration rate and a decrease in tidal volume) as a result of mental

e�ort or mild stress. Moreover, the measure is, just as many other physiological measures,

not uniquely sensitive to mental e�ort and is a�ected by, for instance, speech and physical

e�ort. It is also closely linked to emotions and personality characteristics. Wientjes [152]

as well as Backs and Seljos [9], however, consider the use of respiration measures to be

undervalued in psychophysiological research. In applied settings, respiration measures, in

particular respiration rate, have been used several times as measures of mental load. Use

of the measures has been con�ned to aviation, mainly to (simulated) highspeed jet-ight

[125, 155]. In these �eld studies it was also found that, in general, a decrease in respiration

rate coincided with increases in cognitive activity.

2.2.3 Electrodermal activity

Electrodermal activity (EDA) refers to the electrical changes in the skin. These changes

are the result of Autonomic Nervous System (ANS) activity. Two techniques arein use, ex-

osomatic and endosomatic measurement. With exosomatic measurement a small current

from an external source is led through the skin and is measured, while the less frequently

applied endosomatic measurement makes no use of an external source. EDA is expressed

in terms of skin conduction or resistance, which are (nonlinearly) inversely related. Elec-

trodermal activity can be further distinguished in tonic and phasic activity [48], while

Kramer [76] adds spontaneous or non-speci�c EDA to these two. Tonic EDA, the Elec-

trodermal Level (EDL) or Skin Conduction Level (SCL), is the average level of EDA or

baseline activity. Phasic EDA includes the Electrodermal Response (EDR), which is most

similar to the formerly common measure GSR (Galvanic Skin Resistance). EDR is the

result of an external stimulus. Response is fairly slow, a latency of 1.3 to 2.5 sec to the

occurrence of stimulation is to be expected [76]. EDR is expressed either as Skin Resis-

tance Response (SRR) or as Skin Conduction Response (SCR). Spontaneous EDA, EDA
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in response to unknown stimuli, has predominantly been used as an indicator of arousal

or emotion, and not as a measure of car driver's stress. Kramer [76] in his review refers

to several studies that show sensitivity of SCR to information processing. He concludes

that spontaneous EDA appears to be sensitive to general levels of arousal while SCRs

seem to index the allocation of an undi�erentiated form of processing resources. The

main problem with electrodermal activity measures are a global sensitivity, or as Heino et

al. [48] state "all behaviour (emotional as well as physical) that a�ects the sympathetic

nervous system can cause a change in EDA". EDA is usually measured on the palm of

the hand or on the sole of the foot where Sympathetic Nervous System (SNS)-controlled

eccrine sweat glands are most numerous [26, 76]. Activity of these glands is sensitive to

respiration, temperature, humidity, age, sex, time of day, season, arousal and emotions.

The measure is therefore not very selective.

2.3 Fatigue detection

Many countermeasures to driver fatigue have been proposed, such as the use of bright

light, ca�eine, or naps. However, these countermeasures rely on drivers' self-monitoring

of their level of drowsiness, and such subjective measures may be unreliable [122]. An

alternative related approach has been to develop countermeasures based on objective

driver-performance data. A number of technological countermeasure systems have been

designed to detect driver drowsiness [68, 72, 157]. There are three main approaches for

fatigue detection, based on the information exploited:

1. Physiological signals (ECG, EEG)

2. Physical appearance (eye blinking, yawning etc.)

3. Driving behavior (lane deviation)

Apart from studies focusing on any of the three approaches, there are methods which

used a combination of the above information. In this thesis we have concentrated on the

use of physiological signals and driver's physical appearance. In the following sections

we describe the most important works on fatigue detection based on physiological signals

and video monitoring of the driver.

2.3.1 Fatigue detection from physiological signals

R. Bittner et al.. [12] presented a �rst approach for detection of fatigue based on biosignals

acquired from driver (EEG, ECG, EOG) and video monitoring. They examined di�erent

features that might be correlated with fatigue, as the spectrum of the EEG, the PERCLOS

and fractal properties of HRV. They concluded that the former ones are more correlated

with instant fatigue levels of the driver, while the latter is most suitable for the detection

of the permanent state of the driver.
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Zengyong Li [85] in his work, aimed to estimate mental fatigue of a driver using the

HRV spectrum analysis. He used a simulator for data collection which produced situations

of high mental e�ort. In his experiments took part 8 healthy subjects and the duration

of each session was 90 minutes. The features from HRV indicated high correlation with

mental fatigue of the driver.

Qiang Ji et al. [117] proposed a probabilistic framework based on the Bayesian net-

works for modeling and real-time inferring human fatigue by integrating information from

various sensory data and certain relevant contextual information. In their approach they

used the existing literature for de�ning the variables of the model. Furthermore they

used a Dynamic Bayesian Network which encapsulates the time dependent development

of fatigue symptoms. The estimation is based on visual cues and behavioral variables.

In another approach [161], fatigue detection was based on heterogeneous information

sources such as subject speci�c information (�tness, sleep deprivation etc.), environmental

information (tra�c, road condition etc.), physiological signals (ECG, EEG) and video

monitoring (head movement, blink rate and facial expressions). In order to combine

all the abovementioned information they used the Dempster-Shafer theory and rules for

determining whether the driver is fatigued or not.

Shen et al. [131] developed an EEG-based mental-fatigue monitoring system using a

probabilistic-based support vector-machines (SVM) method. Ten subjects underwent 25-

h sleep deprivation experiments with EEG monitoring. EEG data were segmented into 3-s

long epochs and manually classi�ed into 5 mental-fatigue levels, based on subjects' perfor-

mance on an auditory vigilance task (AVT). Using probabilistic-based multi-class SVM

and con�dence estimates aggregation, an accuracy of 91.2% in discriminating mental-

fatigue in �ve levels. This work, in combination with similar studies demonstrated the

feasibility of an automatic EEG method for assessing and monitoring of mental fatigue.

Lal et al. [78] describe a EEG-based fatigue countermeasure algorithm and reported

its reliability. They employed changes in all major EEG bands during fatigue in order to

develop the algorithm for detecting di�erent levels of fatigue. In this study ten subjects

participated and using the EEG-based detector, the percentage of time the subjects were

detected to be in a fatigue state was signi�cantly di�erent than the alert phase (P<.01).

Summarizing the results of the existing literature, physiological signals are very promis-

ing indicators of mental-fatigue, a result also indicated by Crawford[23]. Cardiac related

signals such as ECG, respiration and BVP are good indicators of the circadian rhythm
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and therefore of the current alertness of the driver. EEG is a very good indicator of

mental-fatigue and mental activity. Also a increase in EEG's Theta activity was observed

during long monotonous tasks [52]. However, in real-world driving, it is rather di�cult

to perform real-time monitoring of driver's EEG activity, since this would require spe-

cial sensor equipment attached to the driver and would raise a number of safety related

issues concerning the obtrusive driving monitoring procedure. On the other hand ECG

and BVP could be acquired from the steering wheel [129] of the vehicle and respiration

could be acquired from sensors on the safety belt. In combination with video monitoring,

systems predicting fatigue and detecting drowsiness are feasible.

2.3.2 Fatigue detection from face and eye measures

We dedicate one section in fatigue detection, and more precisely drowsiness detection

from physical appearance measures, such as blinking, yawning, head movement etc. One

of the most important drowsiness indicators is the percentage of eye closure (PERCLOS).

This measures has a signi�cant correlation with the psychomotor vigilance task (PVT)

which varies from 0.67 to 0.7 [41]. In order to extract PERCLOS, a method for accurate

estimation of eye opening is needed. Accurate estimation of eye opening can be estimated

though EOG measurements. However this is an obtrusive method and cannot be ap-

plied on a vehicle context. Therefore, the most common approach is based on the video

monitoring of driver's face which is an unobtrusive and relatively low cost method. The

methods usually consist of two basic steps: i) the face detection and ii) the detection of

eyes. The face detection is used for tracking head movements which are used for detecting

driver's awareness and loss of attentions and the second for blink detection and PERCOS

estimation. Several methods are proposed in the literature to detect the face from sin-

gle images or sequences. These include knowledge based methods which encode human

knowledge about the facial features associations such as facial geometry[162]; template

based methods such as deformable models[51];appearance based methods which utilize

information based on higher order features of the face [132]. Rowley et al. [128] employed

a neural network to classify a region either as a face or non face using as features the pixel

intensities as well as spatial relationships between pixels. Waring and Liu [148] employed

an appearance based method utilising information from spectral histograms and classi�ed

into face or non-face regions using Support Vector Machines. One of the most commonly

employed face detector is the real time face detector proposed by Viola and Jones [145].

The face detector does not operate directly with image intensities but extracts a set of

features which are based on Haar functions. Fasel et al. [32] extended the work by Viola

and Jones to detect both the face and the eyes. A large number of studies extended

Fasel's work [77, 147, 80] using other features instead of Haar or applying the method on

video sequences. Template based methods are simple to implement but are usually prone

to failure when large variations in pose or scale exist [162].
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Anderson and McOwan [7] employed the Ratio Template Algorithm to locate and

track the face and Optical Flow via the multichannel gradient model to create the feature

vector. Deformable models are template methods that provide the mechanisms to partly

tackle the problem of variations in pose or scale. Kass et al. [65] used the Active Contour

Models or snakes. Snakes are initialized at the proximity of the structure and are �tted

onto nearby edges. Active Shape Models proposed by Cootes et al. [22] work similarly

with snakes but enforce global shape constraints on the deformable model.

Asteriadis et al. [8] presented a work for eye and mouth detection based on a distance

vector �elds [24] and distance transform [17]. The accuracy of the detection of the three

regions (two eyes and mouth) was 95.48% in images from XM2VTS database [98].

2.4 Stress Detection

Stress and fatigue are a�ecting the same regulation mechanism of the organism, therefore,

we need to search in similar places for stress evidence. As in the case of fatigue, literature

has focused mainly on physiological measures. Some approaches have used also physical

appearance measures but the relation of those measures with stress is ambiguous. This

can be explained since stress has many di�erent aspects and leads to di�erent behaviors.

However a measure identi�ed as rather indicative of stress is the pupil diameter[163, 64].

Even though e�ects of mental load on pupillary response were found, the largest changes

in pupil diameter occur as a result of other factors, e.g., a change in ambient illumination

and the near reex. These factors make the measure best suitable for laboratory situations

[75]. Another promising approach is based on biomarkers and two pioneering works in

this direction are presented.

2.4.1 Stress detection from physiological signals

Healey et al.. [43] used a driving task related data collection protocol. Each subject had

to perform a speci�c sequence of driving maneuvers-tasks (in total 15 including parking,

reversing and other). According to a questionnaire given to driver, for each task a di�culty

degree was assigned which also corresponded and the level of stress stimulation of each

task. From the physiological signals numerous features were extracted. Using feature

selection method and K-NN a 88.6% accuracy of four stress levels was achieved. The

selected features, mainly included heart rate and skin conductivity related features.

In another study, Healey et al.. [46] speci�ed an experimental protocol for data col-

lection. Each driver followed a pre-speci�ed route through �fteen di�erent events, from

which four stress level categories were created according to the results of the subjects

self report questionnaires. In total, 545 one-minute segments were classi�ed. A linear
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discriminant function was used to rank each feature individually based on recognition

performance and a sequential forward oating selection (SFFS) algorithm was used to

�nd an optimal set of features for recognizing driver stress. Moreover, in another work [5]

a slightly di�erent protocol was followed: Data from 24 drives of at least 50-min duration

were collected for analysis. The data were analyzed in two ways. In the �rst case they

used features from 5-min intervals of data during resting, highway and city driving condi-

tions to distinguish three levels of driver stress within multiple drivers and driving days.

The average accuracy was 97%. In the second case they compared continuous features,

calculated at 1-s intervals throughout the entire drive with a metric of observable stressors

created by independent coders from videotapes. The results showed that for most drivers

studied, skin conductivity and heart rate metrics are most closely correlated to driver

stress level.

Rani et al.. [120] presented a real time method for stress detection based on heart

rate variability using Fourier and Wavelet analysis. They used fuzzy logic methods for

determining the activation level of parasympathetic and sympathetic nervous systems.

They collected limited data to test their method and they pointed out challenges in stress

detection, such as stress stimulation and the daily and subject variability.

Lee et al.. [83] developed a PDA application of stress detection. The physiological

signal acquisition unit had four electrodes, one for PPG (for monitoring heart rate), one

for EDA and one for SKT (for measuring variations in electrodermal activity). From those

signals a number of features was extracted. Those include the mean value of EDA and

SKT as well as the LF/HF ratio extracted from the heart rate variability. The method

for data collections was based on the presentation of images and analogous vocal tones

(a method based "stroop color-naming task" [36]). The collected data from 80 healthy

subjects. The annotation of the data was performed manually be inspecting physiological

signals. Based on this annotation they trained three classi�ers: i) Multilayer perceptron

(MLP), ii) Generalized regression neural network (GRNN) and iii) adaptive network based

fuzzy inference network (ANFIS). They split the dataset in half for training and testing.

The obtained accuracy was 96.67%. Next they developed a system for acquisition and

preprocessing of physiological signals, feature extraction and stress detection on a PDA.

The main drawback of this work is the annotation process. If the annotation is based on

an indicator, i.e. looking at the increases of the EDA and categorizing large increases as

stress, then this feature alone could easily provide a very large accuracy.

Zhai et al.. [164] developed a similar system for stress detection using blood volume

pressure, skin temperature variation, electrodermal activity and pupil diameter 1. They

1The measure through the center of the adjustable opening in the iris of the eye, terminated at both
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used the same data collection protocol which included 6 healthy subjects. The experimen-

tal protocol was divided in three phases. In the �rst phase subjects were getting familiar

with the environment, in the second phase stress was elicited and in the third the subject

was relaxing. This procedure was repeated three times. The data in the second phase

were labeled as stress, whereas the data of the third phase was labeled as normal. In

total they collected 36 segments, 18 with stress and 18 normal. They used more features

than Rani et al.. [120]. However no method of feature selection or feature reduction was

considered. This could be necessary regarding the number of dimensions (10) and the

number of data (36). The classi�cation using SVM with di�erent kernels (linear, RBF

and sigmoid) using a leave one out method, gave an accuracy of 57.14% for the linear,

60% for RBF and 80% for the sigmoid kernel. Those di�erences are very large considering

only a change in the kernel of the classi�er.

In another study Zhai et al.. [163] using more subjects (32 healthy subjects) and the

same methodology had better results (90:1% accuracy). Pupil diameter was proven as

the most dominant feature, whereas other physiological features did not have a signi�cant

contribution to classi�cation performance. However, the normalization and the handling

of the inter and intra subject variations was not clear and may have lead to the small

value of those measures.

Liao et al. [86] estimated stress levels from evidences of di�erent modalities. The

evidences include physical appearance (facial expression, eye movements, and head move-

ments) extracted from video via visual sensors, physiological conditions collected from

an emotional mouse, behavioral data from user interaction activities with the computer,

and performance measures. They were based on a Dynamic Bayesian Network (DBN)

framework to model the user stress and these evidences. They described the computer

vision techniques used to extract the visual evidences, the DBN model for modeling stress

and the associated factors, and the active sensing strategy to collect the most informative

evidences for e�cient stress inference. In their experiments they show that the inferred

user stress level by their system is consistent with that predicted by psychological theories.

Liao et al.. [87] presented a general uni�ed decision-theoretic framework based on

Inuence Diagrams for simultaneously modeling user a�ect recognition and assistance.

A�ective state recognition is achieved through active probabilistic inference from the avail-

able multi-modality sensory data (physical appearance features, physiological measures,

user performance, and behavioral data). User assistance is automatically accomplished

through a decision-making process that balances the bene�ts of keeping the user in pro-

ductive a�ective states and the costs of performing user assistance. The validation of the

ends by its circumference.
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proposed framework was based on a simulation study. A signi�cant correlation of the es-

timated stress levels from the DBN model and the ground truth was presented. However

the model was trained each time with data from each subject on the same experimental

session and thus the generalization ability of the proposed method is questionable. They

also presented some initial results for fatigue estimation. However, the incorporation of

performance variables for the speci�c task, which are very correlated with the state of

the subject, puts under question the extracted results for both fatigue and stress esti-

mation. However is was apparent that both physiological and appearance features (hand

movement, blinking rate e.t.c.) were highly correlated with stress.

Wilson and Russell [155], used arti�cial neural networks and physiological signals

to continuously monitor, in real time, the functional state of 7 participants while they

performed the Multi-Attribute Task Battery with two levels of task di�culty. Six channels

of brain electrical activity and eye, heart rate and respiration measures were evaluated

on line. The accuracy of the classi�er was determined to test its utility as an on-line

measure of operator state. The mean classi�cation accuracies were 85%, 82%, and 86%

for the baseline, low task di�culty, and high task di�culty conditions, respectively. The

high levels of accuracy suggest that these procedures can be used to provide accurate

estimates of operator functional state that can be used to provide adaptive aiding. The

relative contribution of each of the 43 psychophysiological features was also determined.

Kim et al.. [70] indicated that long term patterns of heart rate variability (HRV)

features were decreased in subjects with higher self reporting stress scores. For mobile

applications, short term analysis of HRV features may be ideal since conventional heart-

beat recordings (3 5 min) might be inadequately long. In this study, short term analysis

has been performed for heartbeat data obtained at �ve di�erent time points from two

subject groups (15 under high and 18 under low mental stress). The reliability of short

term heartbeat data was demonstrated by detecting signi�cant di�erences in long term

patterns of HRV features between two groups. Fifteen to thirty second heartbeat measure-

ments were long enough to produce reliable long term patterns of HRV features. Thus,

short and intermittent recordings of heartbeats could be used to detect long term HRV

patterns and o�er a convenient method to monitor mental stress in mobile environments.

As we have noticed in mental fatigue detection, EEG was a very good indicator.

Considering that stress and intense workload, according to Grandjean (1979) scale, is

the opposite state of mental fatigue, EEG could be also expected to be a good indicator

of stress. The �rst two studies presented in this section, include both ECG and EEG

recordings. Hankins and Wilson [42] presented a study on mental workload during ight.

They used EEG, face monitoring and ECG which were collected during an during an actual
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ight scenario designed to provide tasks that required di�erent piloting skills imposing

di�erent mental workload. They found that heart rate was sensitive to the demands of

ight but not diagnostic with regard to determining the cause of the workload. Heart rates

increased during take o�s and landings and to an intermediate level during instrument

ight rules (IFR) segments. By showing sensitivity to only the visual demands of the

various segments of ight eye activity was more diagnostic. The theta band of the EEG

demonstrated increased power during those ight segments which required inight mental

calculations.

Dussault et al. [29] evaluated the e�ects of mental workload without actual physical

risk. They studied the cortical and cardiovascular changes, using ECG and EEG respec-

tively, that occurred during simulated ight. 12 pilots (8 novices and 4 experts) attended

a simulated ight composed of 10 sequences that induced several di�erent mental work-

load levels. Theta band activity was lower during the two simulated ight rest sequences

than during visual and instrument ight sequences. On the other hand, rest sequences

resulted in higher beta and gamma power than active segments. The mean heart rate

(HR) was not found signi�cantly di�erent during any simulated ight sequence, but HR

was lower for expert subjects than for novices. The subjective tests revealed no signi�cant

anxiety and high values for vigilance levels before and during ight, explaining the small

variations of HR.

From the above two studies we can conclude that EEG measures are more sensitive two

workload and are better discriminants of workload levels. However, heart rate measures

could be used in order to di�erentiate the no or low workload states from the intense

workload states or stress. Taking into consideration that ECG could be more easily

acquired in a vehicle context we consider that further studying of ECG and Heart rate

measures is necessary in order to build a reliable stress detector. EEG on the other hand

could be used as an objective workload metric, since self-assessment especially on workload

and stress annotation has some disadvantages, such as that it provides an additional

workload on the subject and in cases of intense workload the probability of misjudgment

is higher. Another approach that could be used as an objective workload metric is based

on biomarkers. There are limited works presented on workload estimation and biomarkers

but the results obtained are very promising. Those are presented in the next section.

2.4.2 Stress detection from biomarkers

Yamaguchi and Sakakima [160] used salivary amylase as a biomarker, an oculomotor

angle, a subjective evaluation and examined the acute, psychological e�ect human stress

of driving using a motor-vehicle driving simulator. 20 healthy female subjects in their
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early twenties were enrolled in this study. The time-course change of their salivary amylase

activity (sAMY) was analyzed before and during the driving. The results indicated that

the psychological e�ect of driving-induced stress was quickly quanti�ed using a biomarker

in saliva.

Nomura et al. [107] we used the cortisol as a biomarker of mental stress. 10 male

subjects were inscribed to conduct a simple, easy, and monotonous mental arithmetic

task for about an hour with intermissions, so as to emulate a mild mental workload. As a

result, salivary cortisol depicted an accumulative increase during mild mental workloads,

while no marked di�erence was obtained in the heart rate and its variability. It suggests

the slow and long-lasting properties in the stress-response of the cortisol unlike as in

autonomous nervous system indices, and therefore plausibly demonstrates the possible

candidacy of cortisol as a biomarker for a mild mental load.'

2.5 Contribution of this thesis

The majority of the reported works in literature, towards drivers' physiological state

assessment, are performed in a simulation environment. In a controlled and isolated sim-

ulation environment is easier to monitor a subject under a speci�c physiological state.

However the physiological reaction of the subjects is expected to have signi�cant di�er-

ences from real driving conditions. When a subject is asked to participate in a scienti�c

experiment, it is expected to be rather alerted, even in late fatigue stages. Our main e�ort

was to minimize this e�ect, monitoring drivers in repeated experiments in real driving con-

ditions, where the driver was alone in the vehicle, in order to have his usual behavior, and

ignore the fact that his is monitored, through a special equipped vehicle. Those repeated

experiments in real unrestricted driving conditions , allows to monitor the driver under

di�erent combination of physiological states, such as fatigue and stress. The possibility

of simultaneous presence of more than one physiological states, is another factor ignored

in the majority of related studies. The experiments in real driving conditions, gave us

the opportunity to monitor the physiological signals of the driver under speci�c stress-

ful driving events, and relate events with stress reaction, using a methodology presented

in Chapter 5. Furthermore, in this thesis, the driver's physiological state recognition is

performed using information that is or can be available in a real vehicle. This excludes

from this study, physiological signals such as EEG, as well as information about driver's

context, used in similar works. Another serious limitation of existing methodologies is

the necessity of a resting period, or a period where the driver is at a normal physiological

state. Physiological signals of this period, are considered as baseline, and are compared

to signals of the physiological state of interest. This approach cannot be applied on a

real driver physiological state recognition system. In order to overcome this limitation,

we present in Chapter 6 a methodology with promising results. The information about
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current driver status could be exploited by the advanced driver assistance systems in order

to adjust their warning strategies accordingly. In Chapter 7 we study a new generation

co-operative driver support system, able to monitor drivers' physiological state, commu-

nicate with infrastructure or other vehicles and infer driving conditions. This study is

performed in terms of safety gain, information handling and advanced decision making

for optimal warning.

38



Chapter 3

Data Collection

3.1 Introduction

3.2 Experiments in real driving conditions

3.3 Experiments in a simulation environment

3.1 Introduction

Collection of experimental data for di�erent driver states (stress and fatigue) requires a

protocol which ensures that driver experiences these states. This process can take place

either in real driving or simulation environment. Each approach has both advantages

and disadvantages, which was discussed in the previous Chapter. In this thesis we have

performed both types of experiments:

1. Experiments in real driving conditions.

2. Experiments using a simulator.

In the following sections each of the experimental phases are described in detail.

3.2 Experiments in real driving conditions

This was the earliest and longest phase of the experiments, which lasted more than one

year. We �rst describe the equipment used for the experiments in real driving conditions,

we proceed with the description of the data collection protocol and the �nal dataset

description.
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Biopac MP100 amplifier and 
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(a)

(b)

(c)

Figure 3.1: a) The sensors installation for the real driving experiments. b) A snapshot

from the camera monitoring drver's face. c) The SONY DCR -HC94E for road monitoring

and annotation.

3.2.1 Equipment

In this type of experiments, a custom vehicle was used for execution of experiments in

real driving conditions. The data collection was performed using o�-the-shelf equipment,
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Figure 3.2: The equipment used for the data collection.

which was set up in the car formulating a data acquisition system for driver monitoring

during real-world driving. The basic equipment for data acquisition is depicted in Fig.

3.2, in real driving conditions. The equipment includes:

1. Biopac MP-100 for physiological signal acquisition. The sensor placement is depicted

in Fig. 3.1(a).

2. A camera monitoring driver's face. We used a simple web-cam with frame size 320-

240 and 15fps. It is installed right behind the wheel and a snapshot taken with this

camera is given in Fig. 3.1(b).

3. A SONY DCR -HC94E camera monitoring road (Fig. 3.1(c)). This camera was

installed on co-drivers seat.

4. A GPS device with bluetooth connection.

5. An ELM327 adaptor for data acquisition from the vehicle's CAN-bus.

6. A microphone for driver's self-assessment recording.

7. A laptop for device synchronization and data storage.

For signal acquisition we selected the Biopac MP-100 system, since it is used in a number

of similar studies. A further description acquisition system and technical speci�cations

can be found in [10]. The following physiological signals were acquired:
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1. Electrocardiogram (ECG) through a g.ECG sensor which is placed on the subject's

chest.

2. Electrodermal Activity (EDA) through two Ag/Ag.Cl electrodermal activity sensors

attached on the subject's middle and index �ngers of the right hand.

3. Respiration signal through the contraction of the thorax, measured by a belt fas-

tened to subject's chest.

We should also notice that initially, we also acquired a EMG signal from driver's arm,

however it proved a rather obtrusive measurement and raised safety issues, forcing us to

remove it.

3.2.2 Data collection protocol

The data were collected during real driving conditions in Greek national roads. Two types

of routes were selected to work on di�erent stress and mainly fatigue levels:

• Ioannina - Arta (75 kms). This is a high speed provincial road (considered highway)

with one lane per direction, not barrier separated, yielding potential stress.

• Ioannina - Aridea (397 kms). This route is composed of 180 km of closed highway

(with minimum two lanes per direction, barrier separated) and 217 km of rural

road (one lane, not barrier separated with curves). This second route was selected

for combining both curved narrow road and monotonous non-congested motorway,

which was considered ideal for yielding both stress and fatigue conditions to the

driver.

The map in Fig. 5.28 indicates the routes driven during the conducted experiments.

In the beginning of every experimental procedure the ECG, EDA and respiration

sensors were attached to the driver and the two cameras were calibrated to monitor the

driver face and the road scenery respectively. From the laptop PC the acquisition software

was initiated and the recording of signals and videos (driver, road) started simultaneously.

After 60 min of driving the recording procedure was stopped and signals and videos were

stored for processing in batch mode. In the end of each session the driver made a shelf-

assessment of his state (in a three level scale for fatigue and in a two scale for stress) to

indicate the actual psycho-physiological condition.

In addition for stress annotation, intermediate on-route self-reports were given by the

driver in cases when he experienced short-term stress events due to situations/events

occurring on the road. These short-term stress events a�ected only temporarily his state

and they were reported vocally by the driver. The vocal report was used to avoid subject's

distraction from the driving task and it was recorded by a speech recognition system. To

annotate this dataset (driving event and driver stress), both video recording and self

annotation of the driver was used.
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Figure 3.3: The equipment used for the data collection.

Driving took place in various hours of the day, so that recordings were collected along

di�erent phases of the day cycle. The experiments had an average duration of 60 minutes.

The route no.1 (Ioannina - Aridea) was divided into subsequent one-hour-experiments

which were conducted in di�erent roadway parts (motorway/ rural congested road) and

covered the whole distance of 397 kms. The self- annotation was again performed both

during driving and at the end of each 1-hour session. A signi�cant number of experiments

were conducted at 6 am and 6 pm of the same day after few sleeping hours, with the

drowsiness of the subject reaching high level. Others were conducted with bad weather

conditions (heavy rain, fog) and intense tra�c ow (high-speed vehicles, frequent braking,

overtaking) making the driver experience high levels of stress.

3.2.3 Dataset description

Eight subjects participated in the experiments performed in real driving conditions. The

majority of the data collected are from one subject. He performed more than 60 tours

during one-year-experiments. After some �rst testing sessions, he was rather familiar

with the equipment and allowed to be alone in the sessions. Thus the e�ect of monitoring

process on his physiological state was negligible. The subject participated in a large

number of sessions under di�erent tra�c and weather conditions.
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Table 3.1: Description of the dataset for real driving conditions.

Tour info Number of tours 37

Average Duration of Each Tour 50 min.

Condition States Number of Tours

Stress No 13

Yes 24

Fatigue Normal 9

Medium 15

High/Drowsiness 13

Environmental conditions No Rain 26

Rain 8

Heavy Rain 3

Normal Visibility 29

Medium Visibility (Late Evening) 6

Low Visibility (Fog/Night) 2

The dataset collected from the one year experiments is summarized in the Table 3.1,

where the total number of tours, average duration of each tour and number of road events

in all tours are indicated.

Figure 3.4(a) provides the average number of particular driving events per hour. We

observe that the most frequent event is the overtaking, which obviously has to do with

the driver's behavior, the type of the road and the tra�c conditions.

Figure 3.4(b) presents for each event, the percentage of instances annotated as a

stressful event. We observe that overtaking and hard braking are the events which are

mostly related with stressful situation in our dataset.

3.3 Experiments with a simulator

Although the initial setting of the algorithms was performed using the data gathered

from a single subject, a robust driver state recognition method should be able to apply

to subjects of di�erent age, sex, lifestyle or experience. However, the biosignals and facial

features, used as inputs for driver status monitoring, vary signi�cantly from subject to

subject, making the training of the system with multiple drivers mandatory. Considering

the di�culties in involving many subjects in the real-driving data collection procedure,

especially when fatigue is one state of interest, an additional phase of experiments was

introduced, monitoring subjects during driving in a simulated environment.

For this type of experiments a simulation environment was built to serve the execution

of experiments. Having as a baseline the simulator-based training used in similar research

works, our purpose was to built a rather simple simulator, that would allow us to monitor
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Figure 3.4: a) The number of speci�c event occurrences per hour b) The percentage of

each event instances that was annotated as stressful events.

the driver while performing the driving task under di�erent psycho-physiological condi-

tions (varying from very stressful to normal and to high drowsiness states). Additionally,

the simulator could serve the monitoring of driving behavior parameters (steering, brak-

ing, lateral position) and the extraction of useful features, such as reaction time, reversal

rate, which could not be measured during real-world driving with the custom car.
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Figure 3.5: a) The number of instances of di�erent fatigue levels and b) stress levels, for

every hour of day.

3.3.1 Equipment

In the laboratory driving experiments, the Logitech realistic force feedback wheel was

used allowing the controlling of:

• Force Feedback: supporting direct guidance of one's way
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Figure 3.6: The simulation environment.

• Gas and Brake Pedals: getting instant response and feedback with carpet-grip foot

pedals

• Shifting: using paddle shifters or the manual knob for sequential precision

• Six Programmable Buttons

The force feedback wheel set is illustrated in the �gure below.

A 3D driving simulation environment was developed (Fig. 3.6) using the Microsoft

XNA framework, which is based on the Directx3d. The world of this environment consists

of a roadway with a single lane, a vehicle moving in a constant speed on the road and

virtual obstacles. The software of the virtual driving world ran on a PC Pentium III

workstation.

3.3.2 Signal Acquisition

The physiological signals monitored in the laboratory experiments are similar to the ones

measured during real-world experiments (ECG, EDA and respiration). The same o�-

the-shelf equipment (Biopack MP-100) described in section3.2.1, is used in this type

of experiments. The equipment was now set up in the laboratory formulating a data

acquisition system for driver monitoring during simulated driving. The signal acquisition

software ran on a second workstation (PC Pentium III) together with the video acquisition

software.
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3.3.3 Video Acquisition

In laboratory testing a single camera was used to take video recordings from drivers' faces.

The camera that equipped the custom car for the real driving experiments was also used

in the lab experiments. The camera was calibrated every time to focus on the subject's

face and the video acquisition software run on the PC Pentium III that served also for

signal acquisition.

3.3.4 Software synchronization

To run the simulation experiments, the three separate software parts: i) the virtual driving

world (simulator), ii) the acquisition of physiological signals from the Biopack device and

iii) the acquisition of video recordings of driver's face, should be synchronized. The basic

coordinator of the whole process was the signal acquisition which writes the data �le

in a speci�c folder. The other two applications (video acquisition and simulator) run a

�le watcher monitoring the same folder. The start of the signal acquisition triggers also

the start of the other two applications. The small delay introduced by the time the �le

watchers need for triggering, is negligible, considering the synchronization requirements

of the applications.

3.3.5 Data collection protocol

In the beginning of every experimental procedure the subject completed a questionnaire

composed by an expert psycho-physiologist from well-established results regarding stress

scaling [40] and fatigue scaling [47]. Apart from pro�ling information (age, sex, experience,

frequency of exercise, etc), the subject was asked to answer questions about his/her

psychological status of the resent period. The questions were focalized on estimation

of subjects' stress and fatigue levels and were used as an additional annotation measure

for experienced states to allow for further evaluation by experts in the �eld. The last part

of the questionnaire urged the subject to make a self-assessment of his/her current status

using the same scales for stress and fatigue used also in real experiments.

After completing the questionnaire, the subjects attached the biosensors (ECG, EDA

and respiration measurements) and the camera was calibrated for face monitoring. From

the PC-II the signal acquisition software was initiated and the recording of bio-signals

and face-video started simultaneously with the simulator running in the PC-I.

Every experiment was of 15 minutes duration. The subject was asked to focus on the

driving task, i.e. keep the vehicle within the road lane and avoid crashes with pedestrians

that appeared unexpectedly on the road, by pressing the brake pedal and stopping the ve-

hicle. From this primary task, measurements of and reaction times and lane keeping were

monitored. In addition to the primary driving task, a secondary-task request has been

used following the well-established PDT (Peripheral Detection Task) technique [55]. Dur-

ing driving sessions apart from pedestrians, other objects (animals) randomly appeared
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Table 3.2: The description of the dataset in the simulation environment.

Subject # Sex Age # of Sessions
Stress Fatigue

0 1 2 3 0 1 2 3

1 Female 32 7 0 5 2 0 1 4 0 2

2 Male 25 19 2 9 2 6 3 4 1 11

3 Male 28 17 6 4 3 4 3 3 3 8

4 Female 28 14 2 9 2 1 3 2 2 7

5 Male 26 17 7 2 5 3 7 5 1 4

6 Male 25 10 2 2 5 1 1 0 6 3

7 Male 26 14 2 6 3 3 2 3 2 7

8 Male 29 12 7 2 2 1 2 2 2 6

9 Male 28 11 2 2 4 3 1 1 9 0

outside the roadway (among trees). Once the objects perceived, the subject should re-

spond by pressing one of the control buttons of the steering wheel and the respective

reaction time was measured as well.

At the end of the experiment the signals and videos were stored in the subject's data

folder. The same folder kept also the simulation measurement �les (primary reaction

time, lane keeping, and secondary reaction time).

The same experiment was repeated 3 times along the day with the same subject: the

�rst session early in the morning when a reduced alertness and thus slow reaction times

were expected, the second at midday with the subjects typically fully alerted and the last

one late in the evening/night when fatigue is present.

3.3.6 Dataset description

Fifteen subjects participated in the experiments around the simulator and a total of

114 sessions were conducted. The Table 3.2 below summarizes the annotated dataset

gathered from 9 out of 15 subjects participating in the lab experiments. In Fig. 3.7(a)

the distribution of the subject's age is provided, whereas in Fig. 3.7(b) the distribution

of the sleep hours before a session is also provided. The sleep hours are a very important

information, which is highly correlated with alertness and subject's fatigue.
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Figure 3.7: a) The distribution of the subject's age is provided, and b) the distribution

of the sleep hours before a session.
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Chapter 4

Driver state detection

4.1 Introduction

4.2 Materials and Methods

4.3 Dataset

4.4 Results

4.5 Driving performance

4.6 Discussion

4.1 Introduction

Real-life car driving requires accurate and fast decisions by the driver, given only incom-

plete information in real time. A large number of fatalities occurring during car driving

could be avoided if behaviors such as driver inattention, stress, fatigue and drowsiness

were detected and appropriate countermeasures were produced. The determination of the

driver status in a vehicle is an active topic for the scienti�c community. However, the

detection of stress and fatigue level in drivers is a complex task, which requires expertise

in biosignal processing, computer vision, human factors, etc. The estimation of fatigue is

well-studied in the literature. The majority of relative works is based on in-lab experi-

ments, mainly focusing on face monitoring and blink detection to calculate eye activation

[142], while the vehicular experiments serve for indirect fatigue recognition through its

impact on driving issues (speed maintenance, steering control). These methods, however,

are suitable for the recognition of rather late stages of the fatigue (drowsiness) when the

e�ects on driver's face are quite noticeable and performance change has already become
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critical. In the road environment, even earlier fatigue stages can a�ect driving perfor-

mance. This is because even lower fatigue levels still cause declines in physiological vigi-

lance/arousal, slow sensorimotor functions (i.e. slower perception and reaction times) and

information processing impairments, which in turn diminish driver's ability to respond

to unexpected and emergency situations [94]. Therefore, the impact of fatigue on the

driver's performance should not be estimated using only driving measures, but additional

parameters, associated with the driving performance, are needed (such as perceptual,

motor and cognitive skills) [154]. According to Crawford [23], physiological measures are

the most appropriate indicators of driver fatigue. This has been con�rmed by numerous

studies, which followed similar approaches for driver fatigue estimation, making use of

biosignals obtained from the driver [5]-[8].

Bittner et al. [12] presented an approach for the detection of fatigue based on biosig-

nals acquired from the driver electroencephalogram (EEG), electrocardiogram (ECG),

electrooculogram (EOG) and video monitoring. They examined di�erent features that

might be correlated with fatigue, such as the spectrum of the EEG, the percentage of

eye closure (PERCLOS) and the fractal properties of heart rate variability (HRV). They

concluded that the �rst two are more correlated with instant fatigue levels of the driver,

while the last is most suitable for the detection of the permanent state of the driver.

Li [85] addressed the estimation of driver's mental fatigue using HRV spectrum analysis

using a simulator for data collection. The features obtained from HRV indicated high

correlation with the mental fatigue of the driver. Yang et al. [161] used heterogeneous

information sources to detect driver's fatigue. The information sources included �tness,

sleep deprivation, environmental information (tra�c, road condition, etc), physiological

signals (ECG, EEG) and video monitoring parameters (head movement, blink rate and

facial expressions). In order to combine all the above-mentioned information they used

the Dempster-Shafer theory and rules for determining whether the driver is in fatigue

state or not. Ji et al. [117] proposed a probabilistic framework for modelling and real-

time inferencing of human fatigue by integrating data from various sources and certain

relevant contextual information. They used a Dynamic Bayesian Network which encap-

sulates the time dependent development of fatigue symptoms. The estimation is based

on visual cues and behavioural variables. As research in the �eld progresses, a variety of

physiological signals has been used for fatigue detection. The most informative measures

in terms of fatigue recognition are those extracted from the EEG signal, which have been

used for the quanti�cation of task speci�c performance changes [9]-[17]. However, the idea

of near future vehicles, capable of acquiring drivers' EEG, is quite optimistic. Indicators

coming from measurements taken in a less obtrusive manner should be exploited in a real

life system.

Physiological measurements are also good indicators of the driver's stress. Several

works in the literature focus on driver stress recognition based on biosignal processing.

ECG, electromyogram (EMG), respiration, skin conductivity, blood pressure and body

temperature are the most common signals collected from the driver in order to estimate
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the workload and the levels of stress he/she experiences. Healey et al. [43] presented a

real time method for data collection and analysis in real driving conditions to detect the

driver stress status. According to them, there is a strong correlation between driver status

and selected physiological signals (EMG, ECG, skin conductivity and respiration e�ort).

In another study, Healey et al. [46] speci�ed an experimental protocol for data collection.

Four stress level categories were created according to the results of the subjects self report

questionnaires. A linear discriminant function was used to rank each feature individually

based on the recognition performance and a sequential forward oating selection (SFFS)

algorithm was used to �nd an optimal set of features to recognize driver stress. Healey

et al. [45], proposed a slightly di�erent protocol, while the results showed that for most

drivers, the skin conductivity and the heart rate are most closely correlated to driver

stress level. Zhai et al. [163] developed a system for stress detection using blood volume

pressure, skin temperature variation, electrodermal activity and pupil diameter1. Rani et

al. [120] presented a real time method for driver's stress detection based on the heart rate

variability using Fourier and Wavelet analysis. Liao et al. [86] presented a probabilistic

model for driver's stress detection based on probabilistic inference using features extracted

from multiple sensors.

The well-established literature in stress and fatigue detection problems has revealed a

number of features, highly correlated to the one or the other state. However, according to

our knowledge, all studies focus only on one speci�c driver a�ective state (either fatigue

or stress), although in practice they both inuence the physiology of the driver and hence

his physiological responses. Putting such systems in practice could make the estimation

of drivers state less e�ective compared to experimental settings, as in real driving simul-

taneous presence of both fatigue and stress could occur making discrimination of di�erent

possible states more di�cult.

Having this in mind, we developed a driver status recognition methodology for simul-

taneous stress and fatigue detection. Our methodology employs features coming from

(i) a set of driver's biosignal recordings (ECG, electrodermal activity, respiration), ii)

video recordings from driver's face, iii) environmental conditions (weather, visibility and

tra�c). In our work we select the features with higher contribution to the classi�cation

of the states under investigation. Furthermore, we evaluate the contribution of di�erent

groups of features (biosignals, video and environmental features), in order to investigate

which group is more associated to a speci�c driver's state (fatigue and stress). Using

the selected features, we examine the performance of four di�erent classi�ers (namely the

SVMs, the Decision Trees, the Naive Bayes and General Bayesian classi�er) on the driver

state recognition accuracy. The proposed methodology allows for simultaneous estima-

tion of stress and fatigue levels using the minimum set of physiological signals in the less

obtrusive manner. Applying our methodology, changes in driver's state are estimated at

an early stage before they critically a�ect driving performance.

1The measure through the center of the adjustable opening in the iris of the eye, terminated at both

ends by its circumference.
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Having developed a sound methodology for driver's state estimation we also study

whether the estimated changes of driver's state a�ect driving performance. To perform

this study, we have developed a driving simulation environment, which allows us to moni-

tor a set of driving performance measures (steering, braking, lane keeping, reaction time)

and examine their association with the subject's physiological state. A series of laboratory

experiments are conducted around the driver simulator. As drivers are not easily stressed

when using a simulator, our study focuses only on the association of the estimated fatigue

and the deterioration of driving performance.

In the following sections we �rst describe the proposed methodology (Section 4.2).

The dataset obtained in real driving conditions is then presented (Section 4.3). In section

4.4 the obtained results are presented. In section 4.5 we shortly present our study of

fatigue impact on driving performance. A discussion on the methodology and the results

follows (Section 4.6).

4.2 Methodology

The methodology consists of three main steps (depicted in Fig. 4.1):

(I). Preprocessing and feature extraction which is decomposed in three streams: (I-

a) signal acquisition, preprocessing and feature extraction, (I-b) video acquisition

processing and feature extraction and (I-c) environment information extraction.

(II). Feature selection.

(III). Classi�cation.

These steps are described in details in the following paragraphs.

4.2.1 Step I-a: Signal acquisition/pre-processing and feature ex-

traction

The physiological signals which are reported in the literature as the most signi�cant in-

dicators of subjects' fatigue and stress, are: blood pressure, EEG, EOG, ECG, heart rate

variability, skin conductivity and respiration [163, 141, 66]. However, in order to set up

a real time system for driver stress and fatigue monitoring in real driving conditions, the

sensors for the physiological signal acquisition should be minimally obtrusive. Taking

this into consideration, the recorded physiological signals in our work are limited to the

following signals: (i) Electrocardiogram (ECG) through a g.ECG sensor which is placed

on the subject's chest, (ii) Electrodermal Activity (EDA) through two Ag/Ag.Cl electro-

dermal activity sensors attached on the subject's middle and index �ngers of the right

hand and (iii) the respiration rate using a g.RESP Piezoelectric Respiration Sensor which
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Figure 4.1: The steps of the methodology for driver stress and fatigue classi�cation.

is placed around the subject's thorax. The Biopac MP-100 system is used for signal ac-

quisition. The ECG signal is acquired at sampling frequency 300Hz while the EDA and

the respiration signal at 50 Hz. The resolution is set to 12-bit for all signals.

ECG signal

The Biopac system, has an option of acquiring only the R-waves of ECG signals, which

are more robust to noise2. This option is used in the real driving conditions, since the

noise from the subject's movement introduces high noise in the ECG signal. In order

to obtain useful indicators of the subject's states under investigation (fatigue and stress)

we �rst perform some necessary preprocessing steps on the raw signals. The features

are extracted in time windows of 5 minutes, that is a reasonable compromise between

the need of su�cient sample size in order to have reliable statistic properties and the

need of small window to capture the changes in the psycho-physiology of the driver [26].

In order to extract the RRV signal from the ECG, an accurate estimation of R peaks is

needed. Initially, a lowpass ButterWorth Filter is applied to the ECG signal to remove the

baseline wonder. Then the R peaks are detected, using the procedure described in [119].

Furthermore, since the errors in the RR interval estimation and in RRV extraction can

have serious impact in the spectrum estimation and thus in the features calculated from

the spectrum, we also visually correct the initial R estimation of the algorithm through

2The output signal is a positive peak only when a R-wave is detected. This function is useful for

heart rate calculations when a well-de�ned peak is desired as it tends to remove any components of the

waveform that might be mistaken for peaks.
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a speci�cally built application. After ECG preprocessing and R peak detection, the R-R

intervals are estimated as the time di�erences between successive R peaks. Those R-R

intervals constitute the RR variability signal (RRV). The next step is the interpolation of

the RRV series in 4 Hz samples and downsampling to 1 Hz. This is an important step if

ordinary spectrum estimation methods are to be applied (FFT, AR)3. After interpolation

the low frequency (0.01 Hz) trend of the signal is removed using a ButterWorth �lter.

The FFT transform H(f), of the signal (calculated at 1024 samples) is extracted and the

spectrum of the signal is obtained as P (f) = |H(f)H(f)∗|. The following features are

calculated from the spectrum:

• The ratio of the very low frequency (VLF) [0.01-0.05 Hz] energy to the total signal

energy.

• The ratio of the low frequency (LF) [0.05-0.2 Hz] energy to the total signal energy

minus the VLF energy.

• The ratio of the high frequency (HF) [0.2-0.4 Hz] energy to the total signal energy

minus the VLF energy.

• The ratio of the LF to the HF components.

We also calculate the Spectrum Entropy (SE) of the signal,

p(f) =
P (f)∑
f ′ P (f ′)

; (4.1)

SE =
∑
f

p(f) log p(f): (4.2)

The SE can be considered as a measure of the deterministic behavior of the RRV. The

Detrended Fluctuation Analysis (DFA) [113, 14, 30] and Lyapunov exponent analysis

[116] are applied on our 5 min intervals of the RRV recordings.

EDA signal

The EDA signal is downsampled to 1 Hz. A smoothing �lter is applied, since in many cases

noise is evident in the signal; then the low frequency 0.01 Hz of the signal is removed which

is considered as the skin conductance level (SCL). The �rst absolute di�erence (FAD) of

the remaining signal is calculated, giving a measure of the skin conductance response

(SCR):

FAD =
∑
i

|yi+1 − yi|: (4.3)

3FFT: Fast Fourier Transform, AR: AutoRegressive spectrum estimation methods.
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Respiration signal

The respiration signals have high signal to noise ratio and only in cases with subject's

sudden movements, noise exists. The signal is downsampled to 10 Hz and the wonder

is removed. The power spectrum of the signal, using FFT transform, is extracted. A

smoothing of the power spectrum follows, and the maximum energy frequency between

0.1 Hz and 1.5 Hz is selected as the dominant respiration frequency (DRF). Furthermore,

we extract another feature which is the ratio of the heart rate to the respiration rate.

As respiration is a main modulator of the cardiac function, the hypothesis is that for

normal/relaxed conditions the ratio of heart to respiration rate is constant and changes

are observed only in abnormal conditions, such as stress and fatigue. Given the mean

RR intervals and the dominant respiration frequency the ratio of the heart rate to the

respiration rate is calculated as:

HeartRate

RespirationRate
=

60=(MeanRR)

60 ·D:R:F:

=
1

(MeanRR)(D:R:F:)
: (4.4)

4.2.2 Step I-b:Video acquisition/processing and feature extraction

The video of the face of the driver is processed following the approach described in [145,

32]. The �rst step is the detection of the face and the second is the detection of eyes. The

information of interest is: (i) the movement of the head, which could be an indicator for

both stress and fatigue and (ii) the mean level of eye opening as an indicator of fatigue.

We also calculate an estimation of PERCLOS, considering eye closure when the con�dence

of eye presence is less than zero. As a measure of head movement, the standard deviation

of the face position in the video frame is used, and as a measure of eye opening we use the

con�dence of eye detection (provided in [145]). If the eyes are wide open this con�dence

is high, while for near close eyes it is quite low. As video is not available for all sessions

(e.g. due to low quality recordings) the sessions without video recordings, can be treated

as missing values. The K -NN algorithm is used for replacing the missing data in the

combined data for video and physiological features for all sessions. K is set to 3 and the

weighted Euclidean distance is employed.

4.2.3 Step I-c: Environment information extraction

In our methodology we introduce driving environmental information. For this purpose,

a forward looking camera for road monitoring is employed. From road monitoring video,

useful information about driving environment conditions during each session is manually

extract. This information concerns weather, road visibility and tra�c conditions. Bad

weather and low visibility are reported as important stress factors [20]. Another important

stress factor is tra�c density [151, 50]. Using the video recordings of the road scenery,

we manually extract a metric of the tra�c load of the road during the 5 min interval. All

57



Table 4.1: The features used in this study and the code name assigned to each feature.
Source Feature Code

Physiological Mean RR F1

Signals Std of detrended RR F2

Proportion of RRV energy on very low frequency band (VLF) F3

Proportion of RRV energy on low frequency band (LF) F4

Proportion of RRV energy on high frequency band (HF) F5

LF/HF F6

Mean EDA level F7

First absolute di�erences F8

Mean Respiration Rate F9

RRV Detrended Fluctuation Analysis (DFA) F10

Respiration Spectrum Entropy F11

RRV Lyapunov Mean exponent F12

RRV Lyapunov Max exponent F13

HR (bpm)/Resp. Rate (bpm) F14

Face Video Mean Eye Activation V1

Std of Eye Activation V2

Std of Head Position V3

PERCLOS V4

Environment Weather conditions S1

Visibility S2

Tra�c conditions S3

environmental variables are categorized in three states (good/bad/very bad weather, very

low/low/good visibility and low/medium/high tra�c density).

4.2.4 Step II: Feature selection

The majority of the features extracted in Step I are the most common features used in

similar studies. However, a classi�er using all those features would lack robustness. For

this reason we employ feature selection. Such an approach is a prerequisite in cases where

the ratio of data to features is low. Furthermore, introducing redundant features or fea-

tures highly correlated can deteriorate the classi�cation performance. Therefore, to build

a robust classi�er for stress and fatigue detection, we have to evaluate the contribution of

each feature as an indicator of these states. We used four measures for ranking features

with respect to their discrimination power for the problems under investigation: i) Relief

[134], ii) Information Gain, iii) Information Gain Ratio and iv) the di�erence in the area

under curve (AUC) of a classi�er based on the speci�c feature and a random classi�er

(DAUC). We follow with a more detailed description of the four measures.
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Input: m training vectors on n attribute and class label for each vector.

Output: w = {w1; · · · ;wn}
Set all weights to zero w := 0

for all data point x do

Find nearest hit sample NH and nearest miss sample NM.

for j = 1 · · ·n do
wj = wj + dist(x(j); NM (j) − dist(x(j)); NH(j))

Algorithm 1: Relief

Relief

The Relief algorithm [134] iteratively estimates the feature weights according to their

ability to discriminate between neighboring data points. In each iteration, for a random

sample x, two nearest neighbors of x are found. The �rst one belongs to the same class

with x, which is referred as the nearest hit (NH ), whereas the second one to a di�erent

class, which is referred as the nearest miss (NM ). The goal of the Relief algorithm, outlined

in Algorithm 1, is to rank features according to their minimum nearest hit average distance

and maximum nearest miss average distance.

Information Gain and Information Gain Ratio

We should �rst introduce the entropy of a discrete random variable X with K discrete

states, denoted as H(X):

H(X) = −
K∑
i=1

P (X = xi) logP (X = xi); (4.5)

where P (X = xi) the probability of the i-th state. The conditional entropy of a variable

Y , conditioned on variable X is de�ned as

H(Y |X) = −
K∑
i=1

P (X = xi) logP (Y |X = xi); (4.6)

where P (Y |X) is the conditional distribution of Y given X. Now given a variable C the

information gain (IG) of the variable X with respect to C is de�ned as

IG(C|X) = H(C)−H(C|X): (4.7)

This is a measure of how informative is a variable X about the distribution of the variable

C, which is the problem's class in our case. The information gain ratio (IGR) is a variant

of the information ratio, de�ned as:

IGR(C|X) = H(C)−H(C|X)=H(X): (4.8)

In order to apply the above measures in our data, we discretize our data in ten bins with

equal width.
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Di�erence of area under curve (DAUC)

The DAUC is the di�erence of are under curve of a classi�er based on a speci�c feature

and a random classi�er. The output of the classi�er based on a speci�c feature C(x), for

a binary problem with two possible outcomes C1 and C2, is de�ned as:

C(x) =

{
C1; x ≤ t

C2; x > t
; (4.9)

where t is a threshold. The ROC of this classi�er is extracted, modifying the value of

t. The area under curve of an optimal classi�er is 1. Extracting the area under curve

of a random classi�er which is 0.5, the DAUC of the optimal classi�er is 0.5. Thus,

features with DAUC near 0.5 are considered to be optimal. In order to select the optimal

feature set for more than one classi�cation problems, the average DAUC of each feature

is calculated. Then features are sorted according to their average DAUC, obtaining a

feature ranking (see Section 4.4).

Based on the abovementioned measures, we obtain a weight wij of each feature i, and j

corresponds to the measure used for the feature ranking. We then normalize the weights:

w′ij =
wij∑
k wkj

; (4.10)

and the �nal weight of each feature Wi is the average of the normalized weights:

Wi =
∑
j

w′ij: (4.11)

Finally we rank the features according to their weight Wi. The �nal number of the

features incorporated in the classi�cation process, was determined after a test and trial

experimental procedure, in order to obtain the best accuracy in both fatigue and stress

classi�cation.

4.2.5 Step III: Classi�cation

The third step of our methodology is classi�cation. The performance of four di�erent

classi�ers is examined. In this section we briey describe the classi�ers used for fatigue

and stress classi�cation.

Support vector machines (SVM): Each instance in the training set contains one "target

value" (class labels) and several "attributes". The goal of the SVM is to produce a model

which predicts the target value of data instances in the testing set in which only the

attributes are given. Let a training set of instance-label pairs be (xi; yi), where xi ∈ R is

the training vector, belonging to one of the classes generating the data, N is the number

of the extracted features in the training set and yi indicates the class of xi. The support
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vector machine requires the solution of the following optimization problem:

min
w;b;�

(
1

2
wTw + c

N∑
i=1

�i); (4.12)

subject to:

yi(w
T�(xi) + b) ≥ 1− �i; (4.13)

�i ≥ 0; (4.14)

where b is the bias term, w is a vector perpendicular to the hyperplane separating the

classes, � is the factor of classi�cation error and c > 0 is the penalty parameter of the

error term. The training vectors xi are mapped into a higher dimensional space F by the

function � : Rn → F . SVM �nds a separating hyperplane with the maximal geometric

margin and minimal empirical risk Remp in the higher dimensional space. Remp is de�ned

as:

Remp =
1

2N

N∑
i=1

|yi − f(xi; a)|; (4.15)

where f is the decision function de�ned as:

f(x) =
N∑
i=1

yiaiK(xi; x) + b; (4.16)

where K(xi; xj) = �(xi)
T�(xj) is the kernel function, ai are weighting factors and b is the

bias term. In our case the kernel is a radial basis function (RBF) which is de�ned as:

K(xi; xj) = exp(−‖xi − xj‖2);  > 0; (4.17)

where  = 1
2�2 is the standard deviation. The RBF kernel, which is used in our exper-

iments, non-linearly maps samples into a higher dimensional space, thus, it can handle

the case when the relation between class labels and attributes is nonlinear. In our case

 = 1 and c = 10. In the case of more than two classes classi�cation, the one-against-all

strategy is followed.

Decision Trees : To construct the decision tree we use the C4.5 inductive algorithm

[118]. The construction of the tree is based on a greedy approach. At each step there will

be some number of candidate regions in input space that can be split, corresponding to

the addition of a pair of leaf nodes to the existing tree, which initially is empty. In our

problem, the features are continuous valued. Therefore, they can be incorporated into

the decision tree by partitioning them into a set of discrete intervals. For each continuous

feature x, a new Boolean feature is created:

Xt =

{
1; x ≤ t

0; otherwise:
(4.18)

The selection of the threshold t is conducted through a process of generation of a set of

candidate thresholds which produce a high information gain (see section 4.2.4). Those
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candidate thresholds are evaluated and the one that produces the maximum information

gain is �nally chosen. The algorithm of [118] has the advantage of solving the over-�tting

problem by using a post pruning method.

Naive Bayes Classi�er : The Naive Bayes classi�er is based on the Bayes Theorem and

the assumption of independence among variables. Despite the fact that the independence

assumption is considered as poor in general, this classi�er works well even in complex

situations. Let again a set of instance-label pairs (xi; yi) where xi ∈ R and yi ∈ Y the

class producing xi. The probability model for a classi�er is abstractly a conditional model:

p(y|X) = p(y|x1; ::::; xN): (4.19)

Applying the Bayes' Theorem:

p(y|x1; ::::; xN) =
p(y)p(x1; ::::; xN |y)

p(x1; ::::; xN)
: (4.20)

The denominator of the fraction is e�ectively constant. Thus, in practice we are only

interested in the numerator of that fraction, which is equivalent to the joint probability

model:

p(y; x1; ::::; xN): (4.21)

Using the conditional independence assumptions we can write the joint probability as:

p(y; x1; ::::; xN) = p(y)
N∏
i=1

p(xi|y): (4.22)

Then, under the aforementioned independence assumptions, the conditional distribution

can be expressed as:

p(y|x1; ::::; xn) =
1

Z
p(y)

N∏
i=1

p(xi|y); (4.23)

where Z is a scaling factor. This is a more manageable form, requiring (C − 1) + NRC

parameters where R is the number of parameters for the p(xi) model and C is the number

of classes.

General Bayesian Classi�er : This classi�er is based on the same philosophy as the

Naive Bayes, without the hypothesis of feature independence. For example, in cases

of continuous features following a Gaussian distribution, in the Naive bayes case the

covariance matrix is diagonal while in the General Bayes classi�er the covariance is a full

positive de�nite matrix.

4.3 Dataset

The dataset collection was performend driving conditions, which helps to recognize and

understand the true physiology of the driving task, and measure the subject's reactions

to common driving conditions, such as bad weather and tra�c congestion. The subject
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ECG sensors

EDA sensors

Biopac MP100 amplifier and 
acquisition System 

PC for data 
collection and 

storage

Thorax sensor

Figure 4.2: The acquisition system for real driving conditions.

under investigation is a 28 years old, healthy male, with two years of driving experience.

Next, the experimental settings and protocols for the data collection is described.

The equipment that was used in order to acquire the needed information included: (i)

a Biopac MP-100 for signal acquisition of the driver (ECG, EDA and Respiration). This

equipment was installed on the back seat of the vehicle and the sensors were attached to

the driver as depicted in Fig. 4.2. (ii) A camera monitoring the road is used only for

annotation reasons, (iii) a camera monitoring driver's face. Before the begining of the

annotated sessions, the subject conducted a number of long lasting sessions in order to

familiarize with the equipment. The duration of the data collection in real conditions

was approximately 18 months and a su�cient number of driving events under di�erent

conditions was encountered. The total number of tours (37 experiments), average duration

of each tour and encountered conditions in all tours are shown in Table 5.1. Sessions are

covering the whole day duration (07.00 - 24.00) so as to capture di�erent fatigue levels

(Fig. 4.3). The driver annotation was performed at the end of each session, by self

annotating his state. A three scale of fatigue levels (normal, low fatigue, high fatigue) and

a two scale for stress levels (normal, stress) are used, following a human factors expert's

suggestion.

4.4 Results

The �rst step of our methodology is the preprocessing and feature extraction described

in sections 4.2.1 and 4.2.2. The features extracted, are summarized in Table 4.1. The

next step in our methodology is feature selection. In section 4.2.4 the DAUC measure, is

described for a two class classi�cation problem. For stress classi�cation the application of

the described method is straightforward since two classes exist. For fatigue classi�cation,
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Table 4.2: Description of the dataset for real driving conditions.

Tour info Number of tours 37

Average Duration of Each Tour 50 min.

Condition States Number of Tours

Stress No 13

Yes 24

Fatigue Normal 9

Medium 15

High/Drowsiness 13

Environmental conditions No Rain 26

Rain 8

Heavy Rain 3

Normal Visibility 29

Medium Visibility (Late Evening) 6

Low Visibility (Fog/Night) 2

which is a three class classi�cation problem, the problem is decomposed in four two-

class subproblems (normal vs low fatigue, normal vs high fatigue and low fatigue vs high

fatigue). The DAUC of each feature for all abovementioned classi�cation problems is

given in Fig. 4.4(a). Sorting the features according to their average DAUC we obtain a

ranking of the features, depicted in Fig. 4.4(a).

The average ranking of the four measure described in Section 4.2.4, is depicted in Fig.

4.4(b). The physiological features with higher average ranking are mean RR (F1), std

of RR (F2), LF/HF ratio (F6), mean EDA level (F7), First absolute di�erences of EDA

(F8), mean respiration rate (F9) and HR (bpm)/Resp. Rate (bpm) (F14). From the

video features, std of eye activation (V2) and PERCLOS (V4) are better indicators for

fatigue, whereas std of head positions (V3) is a better indicator of stress. Finally from the

environmental conditions, the weather conditions (S1) seem to be the most important. In

Table 4.3 we present the correlation among physiological and video features. Correlation

analysis shows that the indicators F1-F2, F1-F6, F1-F9 and F7-F8 are rather correlated.

Finally, all these features were kept, as removal of any of them did not increase the

performance of the selected classi�ers; instead it tended to decrease the accuracy.

The third step of our methodology is classi�cation. The classi�ers tested are described

in section 4.2.5. To provide unbiased results we followed two procedures. The steps of

the �rst one are:

• 50 balanced datasets from the original one were extracted. Let K the number of

samples for the class containing the fewer samples. K random samples are selected

from all other classes and are combined in one dataset having which includes K×C
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Figure 4.3: The distribution of the sessions during the day.

samples, where C is the number of classes.

• For each of the 50 datasets we perform strati�ed 10-cross validation using the clas-

si�ers described in section 4.2.5 and we obtain the confusion matrix.

• The mean of each entry of the confusion matrix is calculated.

In the second procedure, we perform a leave one session out method, each time keeping

one session for testing and the rest for training. The use of two di�erent classi�cation

procedures, will allow to investigate possible bias in the presented results.

The measures used to evaluate the performance of the di�erent classi�ers are the

following:

• Confusion Matrix: A C ×C matrix, where C is the number of classes. The element

cij corresponds to the instances of the class i which are classi�ed as class j. The

diagonal elements cii are the correct classi�ed instances.

• Sensitivity per class: The fraction of correctly classi�ed instances of a class to the

total number of instances belonging to that class.

• Speci�city per class: The fraction of the correctly classi�ed instances for a class to

the total number of instances classi�ed as the speci�c class.

• Overall accuracy: The fraction of the total number of correctly classi�ed instances

to the total number of instances
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Figure 4.4: (a) The DAUC of physiological and video features for normal vs high fatigue,

normal vs low fatigue, low fatigue vs high fatigue and normal vs stress, as well as the

average DAUC for all problems. (b) The average feature ranking with the four ranking

measures for the problems of fatigue and stress classi�cation.
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In Tables 4.4 and 4.5, we present the results for fatigue and stress classi�cation using

three sets of features: (i) only physiological features, (ii) physiological and video features

and (iii) physiological, video and environmental features. In these tables the sensitivity

and speci�city per class, as well as the total accuracy for all classi�ers and feature sets are

given. For the two-class stress problem the information provided is su�cient to evaluate

the performance of the classi�cation. However for the three-class fatigue problem a better

insight is given through the confusion matrix of the classi�cation. From Tables 4.4 and 4.5

we observe that SVM had the best performance in all feature sets for classi�cation of both

states, whereas Naive Bayes classi�er had the worst (up to 12% lower accuracy compared

to SVM in some cases). In Table 4.4 we observe that the highest accuracy for fatigue

classi�cation was obtained using the full feature set (88% with SVM). When limited

feature sets are employed the di�erence is rather small (85% with physiological features

and 87% with physiological and video features, both obtained using SVM). In Table 4.8

detailed classi�cation results (containing also the confusion matrix) are given using the

full set of features. It can be noticed that the main source of misclassi�cation is in the low

fatigue class. From Table 4.5 we observe that for stress classi�cation the incorporation of

additional features, in contrast to fatigue detection, signi�cantly increased the obtained

accuracy. The 78% accuracy obtained by physiological features climbs to 86% using

physiological, video and environment features.

In Tables 4.6 and 4.7 we present the results obtained using the second classi�cation

procedure, where one session was kept for test and the rest for training. In these results

we use the full set of selected features (physiological, video and environmental features).

We observe that there is no signi�cant di�erence in the obtained accuracies compared

to Tables 4.5 and 4.4 where the �rst classi�cation procedure was used. This is a strong

indication that the results presented here, are not biased from the classi�cation procedure

followed.

In our analysis we also study the contribution of each sensor to the classi�cation

results. As already described the features used in our experiments come from physiological

signals, video monitoring of driver's face and environmental information. As features are

extracted from signals obtained from di�erent sensors, features can be grouped into �ve

groups each of them related to a speci�c sensor of the experimental setting. Such an

analysis can give a signi�cant insight for the importance of each sensor when building a

system for driver state monitoring. Physiological features are grouped in features coming

from RRV, features coming from EDA and features coming from respiration. The other

two groups are the features from video and environmental features, respectively. We then

evaluate the contribution of each group of features in the classi�cation performance, with

the following two procedures: (i) we perform the classi�cation with the whole feature set,

removing each time a group of features belonging to a speci�c sensor and we measure the

decrement in accuracy. (ii) We perform classi�cation using only features coming from a

speci�c sensor. In Figs. 6.9(a) and 6.9(b) we present the results with the two procedures.

The conclusions from both procedures are identical. For fatigue classi�cation, the most
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Figure 4.5: (a) The percentage of accuracy reduction after removing groups of features

from the original feature set and (b) the accuracy obtained using only features from the

speci�c sensor. RRV denotes features that are extracted from the RRV signal, EDA fea-

tures that are extracted from the EDA signal, RESP features that are extracted from

respiration, VIDEO features from video processing and Environment for features indicat-

ing environmental conditions.
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Table 4.4: Results for the fatigue classi�cation problem using three feature sets. For each

classi�er, the sensitivity (Sens.) and the speci�city (Spec.) per class are given as well as

the total accuracy (Acc.).

Normal Low Fatigue High Fatigue

Sens. Spec. Sens. Spec. Sens. Spec. Acc.

Physiological SVM 0.87 0.82 0.71 0.81 0.96 0.90 0.85

features Decision Trees 0.76 0.76 0.73 0.72 0.94 0.95 0.81

Naive Bayes 0.81 0.74 0.49 0.67 0.92 0.79 0.74

Bayes Classi�er 0.88 0.74 0.50 0.74 0.94 0.83 0.77

Sens. Spec. Sens. Spec. Sens. Spec. Acc.

Physiological SVM 0.85 0.85 0.76 0.82 0.99 0.92 0.87

+Video Decision Trees 0.74 0.74 0.70 0.70 0.94 0.95 0.79

features Naive Bayes 0.70 0.83 0.63 0.64 0.92 0.78 0.75

Bayes Classi�er 0.79 0.79 0.64 0.70 0.92 0.85 0.78

Sens. Spec. Sens. Spec. Sens. Spec. Acc.

Physiological SVM 0.89 0.87 0.79 0.84 0.96 0.92 0.88

+Video Decision Trees 0.74 0.74 0.71 0.70 0.94 0.95 0.80

+Environmental Naive Bayes 0.70 0.86 0.65 0.64 0.92 0.79 0.76

features Bayes Classi�er 0.76 0.83 0.73 0.71 0.93 0.88 0.81

signi�cant sensor is the ECG, whereas in stress classi�cation no sensor appears to be

dominant. Thus, a reliable fatigue detection system, could be solely based on an ECG

sensor. On the other hand, for a stress detection system, the fusion of more information

sources seems inevitable.

4.5 Physiological state and driving performance

Our proposed methodology showed good performance even in the detection of early stages

of fatigue (low fatigue state). In order to investigate whether these early fatigue stages are

worth recognizing, we performed a study to examine the impact of driver's fatigue levels on

driving performance. The goal of our study was to verify that the detected fatigue levels

are associated with the deterioration of driving performance. A simulation environment

was developed to measure driving performance in terms of subject's sensorimotor functions

(i.e. perception and reaction times). The simulation driving world was based on the

Microsoft XNA framework as it is shown in Fig. 4.6. The vehicle is controlled by the

Logitech's Momo racing wheel. The subject was asked to focus on the driving task, i.e.

keep the vehicle within the road lane and avoid crashes with pedestrians which appeared

unexpectedly on the road, by pressing the brake pedal and stopping the vehicle. From

this primary task, measurements of steering control and reaction times are monitored.

In addition to the primary driving task, a secondary-task request is used following the

well-established PDT (Peripheral Detection Task) technique [55]. During the experiments
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Table 4.5: Results for the stress classi�cation problem using three feature sets. For each

classi�er, the sensitivity (Sens.) and the speci�city (Spec.) per class are given as well as

the total accuracy (Acc.).

Normal Stress

Sens. Spec. Sens. Spec. Acc.

Physiological SVM 0.79 0.78 0.78 0.79 0.78

features Decision Trees 0.78 0.76 0.75 0.77 0.76

Naive Bayes 0.79 0.63 0.54 0.72 0.66

Bayes Classi�er 0.85 0.63 0.49 0.77 0.67

Sens. Spec. Sens. Spec. Acc.

Physiological SVM 0.80 0.90 0.91 0.82 0.86

+Video Decision Trees 0.80 0.81 0.81 0.80 0.81

features Naive Bayes 0.82 0.71 0.66 0.79 0.74

Bayes Classi�er 0.85 0.71 0.65 0.82 0.75

Sens. Spec. Sens. Spec. Acc.

Physiological SVM 0.88 0.85 0.84 0.88 0.86

+Video Decision Trees 0.82 0.81 0.80 0.81 0.81

+Environmental Naive Bayes 0.85 0.76 0.74 0.83 0.79

features Bayes Classi�er 0.86 0.76 0.73 0.83 0.79

apart from pedestrians, other objects (animals) randomly appeared outside the roadway.

Once the objects perceived, the subject respond by pressing one of the control buttons of

the steering wheel, and the respective reaction time is measured.

The physiological signals monitored in the laboratory experiments are similar to the

ones measured during real-world experiments (ECG, EDA and respiration). The same

o�-the-shelf equipment (Biopac MP-100) is used in this type of experiments. In the

laboratory testing, a single camera is used to take video recordings from the driver's

face. The same annotation method based on self-reporting is followed. Furthermore, the

subject was asked to report the time he got awake and the hours of sleep. The total

number of sessions gathered is 24 and each session duration is 12 minutes. From those

sessions, in 12 the subject was in normal state, 7 in low fatigue and 6 in high fatigue.

Each session is split in two 5 minute intervals (�rst and last minute are excluded).

4.5.1 Fatigue and driving performance measures

Some useful measures for driving performance are extracted, based on the task involved

in the experimental protocol. The �rst category of measures involves the reaction time

of the driver both on primary and secondary tasks. The reaction time is a good measure

of subject's alertness. In order to evaluate the reaction time, the time passed from the

moment that the object appeared on the screen until the subject presses the brake pedal

(for the primary task) or the button (for the secondary task) is measured. The association

of the fatigue levels with driving performance, is evaluated using the following measures:
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Table 4.6: Results for the stress classi�cation problem using three feature sets. For each

classi�er, the sensitivity (Sens.) and the speci�city (Spec.) per class are given as well as

the total accuracy (Acc.).

Normal Stress

Sens. Spec. Sens. Spec. Acc.

SVM 0.78 0.90 0.96 0.90 0.90

Decision Trees 0.84 0.87 0.94 0.92 0.90

Naive Bayes 0.77 0.78 0.89 0.89 0.85

Bayes 0.80 0.79 0.89 0.90 0.86

Table 4.7: Results for the stress classi�cation problem using three feature sets. For each

classi�er, the sensitivity (Sens.) and the speci�city (Spec.) per class are given as well as

the total accuracy (Acc.).

Normal Low Fatigue High Fatigue

Sens. Spec. Sens. Spec. Sens. Spec. Acc.

SVM 0.73 0.92 0.87 0.70 0.92 0.95 0.86

Decision Trees 0.72 0.90 0.89 0.72 0.93 0.96 0.86

Naive Bayes 0.62 0.78 0.72 0.58 0.89 0.91 0.77

Bayes 0.59 0.75 0.72 0.58 0.89 0.92 0.77

mean and standard deviation of reaction time on primary task, mean and standard de-

viation of reaction time in secondary task and standard deviation of the vehicle position

from the center of the lane.

In Table 4.9, the mean±standard deviation of the driving performance measures, for

normal, low and high fatigue states are given, as those are self reported by the subject.

The P value using the hypothesis that driving performance is not better in the normal

state is also given. When the subject is in low fatigue state, a signi�cant decrease in

driving performance is observed, expressed in average reaction times for both primary

and secondary tasks. In the high fatigue state all performance measures are signi�cantly

worse, as expected. Our analysis veri�es that changes in driver's state that are detected

by our methodology do correspond to driving performance changes.

4.5.2 Prediction of driving performance

During the experiments we also gathered the physiological signals described before, and

we extracted the same feature set, summarized in Table 4.1. In Table 4.10 we present

the correlation of the physiological features with the driving performance measures. We

also present the correlation of the physiological measures with the hours of sleep and

hours of awake, as well as the correlation between driving performance measures. We
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Table 4.8: Confusion Matrix, Sensitivity (Sens.) and speci�city (Spec.) for each class for

the classi�cation of normal (N), low fatigue (LF) and high fatigue (HF) classes for the

four classi�ers and use of physiological, video and environment features.

SVM Decision Tree

N LF HF N LF HF.

N 89.12 12.82 0.08 N 74.14 25.12 1.60

LF 10.88 78.90 3.86 LF 25.76 70.54 4.56

HF 0.00 8.28 96.06 HF 0.74 0.71 93.84

Acc. 0.88 Acc. 0.80

Class Sens. Spec. Class Sens. Spec.

N 0.89 0.87 N 0.74 0.74

LF 0.79 0.84 F 0.71 0.70

HF 0.96 0.92 L.F 0.94 0.95

Naive Bayes Bayes

N LF HF N L.F HF

N 69.54 11.40 0.00 N 75.84 15.06 0.00

LF 28.84 65.12 8.04 LF 23.24 72.86 7.20

HF 1.62 23.48 91.96 HF 0.92 12.08 92.80

Acc. 0.76 Acc. 0.81

Class Sens. Spec. Class Sens. Spec.

N 0.70 0.86 N 0.76 0.83

LF 0.65 0.64 L.F. 0.73 0.71

HF 0.92 0.79 H.F. 0.94 0.81

Table 4.9: The mean ± std of driving performance measures for normal, low and high

fatigue states. The fourth and sixth columns are the P values using the hypothesis that

performance measures are signi�cantly better (i.e. lower mean and std of reaction times)

in normal state (N.), compared to low (L.F) and high (H.F.) fatigue states, respectively.

Reaction Time N. (N=22) L.F. (N=14) P-value H.F. (N=12) P-value

Primary Task mean RT 0.90±0.15 1.03±0.18 0.0353 1.19±0.24 0.0002

Secondary Task mean RT 0.52±0.05 0.72±0.23 0.0005 0.79±0.10 0.0000

Primary Task std RT 0.12±0.07 0.15±0.11 0.3047 0.32±0.17 0.0000

Secondary Task std RT 0.12±0.06 0.24±0.16 0.0019 0.25±0.07 0.0000

Std of Position 0.62±0.11 0.70±0.14 0.0575 0.78±0.10 0.0003

observe signi�cant correlations between physiological features and driving performance

measures. This outcome indicates the potential of predicting driver's reaction time based

on physiological features. To test this hypothesis we used two common regression models:

i) stepwise linear �t and ii) neural networks. For each model two predictors are tested:

the �rst based on the time of experiment, hours of sleep and hours of awake and the

second on physiological features. In lack of su�cient amount of data, the probability of
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Figure 4.6: The developed simulation environment.

over�tting is high. In order to overcome this problem, the following procedure is adopted:

1. Consider a dataset D.

2. For each session i of the dataset, let Di the two samples of the speci�c session. Di

is considered as the testing dataset and the rest D′ = D \ i as the training dataset.

3. From the training dataset D′ produce a larger dataset D′′ (2000 samples) sampling

according to the mean and covariance of the original training set.

4. Train the prediction model using D′′.

5. Estimate the value of Di samples based on the trained model.

For the neural networks, after experiments we concluded to a 5-5-1 architecture (with

the physiological feature set the �ve features F1, F2, F4, F6 and F14 since EDA features

did not had signi�cant correlation with reaction time), while for the neural network using

alertness features, a 3-3-1 architecture is used. In Fig. 5.7 the output of all predictors is

given as well as the actual reaction time of the subject for each session. For each session

the actual and estimated reaction times are the average of the two 5-minute samples of

the session. In Table 4.11 the correlation between actual time and predictions is given,

as well as the mean squared error (MSE) of the prediction for each method. All four

predictors (based on physiological or alertness features) are statistical better than the

mean-value predictor. The neural network with the physiological featurws as input has

the smaller mean squared error.
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Table 4.10: The correlation of physiological features with the driving performance mea-

sures and subject's hours of sleep and hours been awake for the dataset collected in the

simulation environment.

P1 P2 P3 P4 P5 T1 T2

F1 0.70 0.71 0.48 0.62 0.53 -0.47 0.75

F2 0.72 0.54 0.66 0.50 0.38 -0.38 0.38

F3 -0.12 -0.20 -0.27 -0.29 0.14 0.17 -0.38

F4 -0.64 -0.49 -0.39 -0.50 -0.38 0.35 -0.64

F5 0.36 0.50 0.21 0.46 0.50 -0.22 0.54

F6 -0.42 -0.43 -0.19 -0.41 -0.40 0.25 -0.53

F7 -0.04 0.08 0.01 0.00 0.13 -0.10 0.09

F8 0.19 0.20 0.09 0.07 0.07 -0.06 0.36

F9 0.03 0.07 0.18 0.10 -0.28 0.20 0.20

F10 -0.39 -0.39 -0.15 -0.31 -0.41 0.34 -0.40

F11 -0.05 -0.05 0.10 -0.05 0.06 -0.16 -0.18

F12 0.20 0.20 0.12 0.19 0.17 0.15 0.26

F13 -0.13 -0.17 -0.01 -0.24 0.02 0.21 -0.24

F14 -0.63 -0.68 -0.54 -0.62 -0.28 0.30 -0.81

P1 -0.61 0.73

P2 -0.60 0.76

P3 -0.52 0.60

P4 -0.65 0.71

P5 -0.60 0.46

4.6 Discussion

In this work we presented a methodology for simultaneous fatigue and stress detection

in realistic driving conditions. Our methodology follows three steps for the identi�cation

of driver's state: (i) preprocessing and feature extraction, (ii) feature selection and (iii)

classi�cation. The information used in our methodology comes from physiological signals,

video monitoring of the driver's face and environmental conditions. A large number of fea-

tures was initially extracted. Features are evaluated with respect to their discrimination

power of fatigue and stress states. The best indicators of fatigue and stress are selected.

Four classi�ers are used in order to evaluate the accuracy of the proposed methodology

using three di�erent feature sets: (i) physiological features, (ii) physiological and video

features, (iii) physiological, video and environmental features. Furthermore, the contri-

bution of each sensor on both stress and fatigue classi�cation is evaluated. Finally, we

demonstrated, using a simulation environment, that detection of even earlier stages of fa-

tigue, is of high importance, since a signi�cant deterioration in performance is observed.

Finally, a detailed study indicated that the achieved through our methodology detection

of even earlier stages of fatigue, is of high importance, since a signi�cant deterioration in

performance is observed.

Performing real-time monitoring of driver's physiological activity is still quite di�cult,
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Table 4.11: The correlation between reaction time predictors. T-S and T-NN are for

predictors based on time features (hours been awake, hours of sleep and time of the

experiment) using stepwise linear �t and Neural networks respectively. P-S and P-NN

are for predictors based on physiological features (RRV, respiration, EDA) using stepwise

linear �t and Neural networks respectively. RT is the actual reaction time, MSE is the

mean square error of the predictors. Mean RT is a predictor with constant output value,

the mean reaction time of the driver, which is used as a basis predictor. In the last column

the last column the P-value of the MSE of other predictors against the basis predictor is

given.

Fit T-NN P-S P-NN RT MSE P

T-S 1.00 0.55 0.58 0.69 1.56E-02 4.77E-02

T-NN - 0.52 0.56 0.68 1.60E-02 5.33E-02

P-S - - 0.92 0.70 1.52E-02 3.10E-02

P-NN - - - 0.77 1.21E-02 3.84E-02

Mean RT 2.88E-02

since this requires special sensor equipment attached to the driver, which in a real-car

application would raise a number of safety related issues concerning the obtrusive driver

monitoring procedure. Some research projects [129] addressed the implementation of the

unobtrusive driver monitoring paradigm, by collecting biosignals from sensors embedded

on the steering wheel or adjusted on the driver's seat. Although many approaches on af-

fective state recognition (either stress or fatigue) have presented promising results in the

�eld of biomedical and/or other special applications, still they are not considered suitable

for an automotive application. In our work, from the large group of biosignals used in

similar studies, we have chosen to exploit only a limited set of them (ECG, EDA, respi-

ration) having in mind that the unobtrusive monitoring of the selected biosignals could

be feasible in professional or even commercial vehicles of the near future. Apart from

biosignals our approach incorporates information from driver's face video as well as the

driving environment, we achieved comparable results. However, direct comparison with

other methods is not feasible mainly for two reasons. First because other methods focus

on the estimation of a single psycho-physiological state and secondly because most rele-

vant studies were performed on a simulation environment. In our approach we followed a

quite di�erent experimental protocol allowing us to address i) the simultaneous estimation

of driver's stress and fatigue levels and ii) the driver monitoring on real-life conditions.

Furthermore, we demonstrated, using a simulation environment, that detection of even

earlier stages of fatigue, is of high importance, since a signi�cant deterioration in per-

formance is observed. Performing real-time monitoring of driver's physiological activity

is still quite di�cult, since this requires special sensor equipment attached to the driver,

which in a real-car application would raise a number of safety related issues concerning
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Figure 4.7: The actual reaction time for each session, and the estimated reaction time us-

ing di�erent predictors based on di�erent feature set (physiological features and alertness

features) and estimation method (stepwise linear �t and neural networks).

the obtrusive driver monitoring procedure. Some research projects [129] addressed the

implementation of the unobtrusive driver monitoring paradigm, by collecting biosignals

from sensors embedded on the steering wheel or adjusted on the driver's seat. Although

many approaches on a�ective state recognition (either stress or fatigue) have presented

promising results in the �eld of biomedical and/or other special applications, still they are

not considered suitable for an automotive application. In our work, from the large group

of biosignals used in similar studies, we have chosen to exploit only a limited set of them

(ECG, EDA, respiration) having in mind that the unobtrusive monitoring of the selected

biosignals could be feasible in professional or even commercial vehicles of the near future.

Concerning the performance of the employed classi�ers, SVM is the one presenting

the best results in all classi�cation problems, followed by Decision trees and Bayesian

classi�er. Naive Bayes had the worst accuracy. The reason for this, as depicted in Table

4.3, is that the assumption of feature independence does not hold, thus making the Naive

Bayes classi�er weak for all classi�cation problems examined.

Classi�cation using physiological features shows very good performance (the highest

accuracy, 85%, is obtained using the SVM classi�er). The incorporation of additional

features merely improves the initial results. In contrast, removing RRV related features,

a 15.5% decrease in accuracy is observed (Fig. 6.9). Using the SVM classi�er and phys-

iological and video features a 99% accuracy in high fatigue classi�cation is achieved.

Considering, that this state is more related to driving performance and accident provoca-

tion than the others, we consider that the success in its accurate detection is crucial. We

also notice that the main source of misclassi�cation is between the low fatigue class and

the other two classes (normal and high fatigue). This is expected since the discrimination
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of fatigue in discrete levels is quite abstract, given that fatigue is commonly considered

as a continuous variable. The discrimination of fatigue in classes might cause errors due

to annotation errors from the subject who could misjudge his state. This problem is

enhanced considering the long duration of the experiments and thus the probability of

variation of the fatigue criteria as those are de�ned by the subject. Stress classi�cation

was expected to be more di�cult, since no features, proved to su�ciently discriminate

stress levels. Using only physiological signals, a 78% accuracy is obtained with the SVM

classi�er. The incorporation of additional information, increases signi�cantly the accu-

racy of all classi�ers. Furthermore, we observe in Fig. 6.9 that no group of variables

has a very good discrimination power, thus concluding that a reliable system for stress

detection must be based on the fusion of several information sources. Direct comparison

of the obtained results using our methodology with existing ones in the literature, is not

feasible mainly for two reasons. First because other methods focus merely on the estima-

tion of a single psycho-physiological state and secondly because most relevant studies were

performed on a simulation environment. In our approach we followed a quite di�erent

experimental protocol allowing us to address i) the simultaneous estimation of driver's

stress and fatigue levels and ii) the driver monitoring on real-life conditions.

An important step in our methodology is feature selection, since a large number of

features can be extracted from the information sources used. In Fig. 4.4(a) we observe

that the mean RR (F1) and the std of RR (F2) are very good discriminators for fatigue

levels, while more complex RRV features (DFA and Lyapunov exponents) lack discrimi-

nation power. However, those features are used more in medical applications, extracted

from long recordings, and are related to problematic heart function [99, 140]. For within

individual variations, simple RRV characteristics have proved to be rather informative

[46]. Respiration rate which is highly correlated with heart rate, as well as EDA features

are also good indicators of fatigue. From video features, std of eye activation (V2) and

PERCLOS (V4) are the best fatigue indicators, especially in discriminating high fatigue.

The relation of PERCLOS with late stages of fatigue is well established in the litera-

ture. Regarding stress, mean RR (F1), LF/HF ratio (F6) and the ratio of heart rate to

respiration rate (F14) are the best indicators among the physiological features, but still

their discrimination power is not so high. A possible explanation for this, may be the low

impact of stress on the physiological signals compared to that of circadian rhythm. From

video features, the standard deviation of head movement (V3) was the best stress indi-

cator. Still, since the head movement is a behavioural parameter, the correlation of this

feature with stress is expected to vary signi�cantly between individuals. Environmental

conditions were expected to be rather correlated with stress levels. From the examined

driving environment variables, only weather conditions did have a contribution to stress

classi�cation.

An important aspect of this work was the association of driving performance with early

fatigue stages. In a series of simulation experiments we demonstrated that driving perfor-

mance decreased statistically under low fatigues states. We cannot claim with certainty
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that this decrease could potentially increase the probability of an accident. However, this

performance decrease is important information that modern driving assistance systems

should take into account, and adapt their decision functions and behavior accordingly.

A further step in this direction is the prediction of driver's reaction times, based on fea-

tures extracted from physiological signals. Model based on neural networks could predict

driver's reaction time based on physiological signals. A very appealing feature of neural

networks is the ability for online learning. For example in a special equipped vehicle,

capable of monitoring both physiological signals and reaction times in speci�c conditions,

could learn the mapping from physiological signals to reaction time, for each individual

driver, and use this mapping for predicting driver's performance.

It should be noted that in this work a single subject is monitored during ordinary

work days, without any restrictions related to sleep hours or external stimuli. The driver

experiences a number of di�erent conditions, both from the physiological aspect as well as

from the environmental point of view. We therefore consider that this study truly depicts

the actual physiological status of the particular subject during driving. Extension of our

study to several subjects as well as development of automated methods for the adaptation

to each driver's physiology are in our future work plans.
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Chapter 5

Real time Driver's Stress Event

Detection

5.1 Introduction

5.2 Materials and Methods

5.3 Dataset

5.4 Results

5.5 Discussion

5.1 Introduction

According to the American Highway Tra�c Safety Administration, high stress inuences

adversely drivers' reaction in critical conditions, thus, it is one of the most important

reasons for car accidents along with fatigue, intoxication and aggressive driving [139].

Stress, according to [1], is "the total assessable inuence impinging upon a human being

from external sources and a�ecting it mentally". Recent �ndings have shown that stress is

not only tightly intertwined neurologically with the mechanisms responsible for cognition,

but also plays a vital role in decision making, problem solving and adaptation to unpre-

dictable environments, such as driving [88]. Driving in real tra�c conditions is a complex

task, since fast decisions need to be taken given limited information. The driving task

poses di�ering demands on the driver. Following a road requires primarily lateral control,

following a preceding car additionally requires longitudinal control actions, whereas more

complex maneuvers, such as overtaking, require higher cognitive and control e�ort as well

as driving skills. Speci�c events occurring during the driving task can incorporate some

kind of safety risk for the driver. For example in the task of following a preceding car, the
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sudden reduction of the speed of the preceding car, urges the follower for a hard brak-

ing; an overtaking may become life-threatening if a vehicle from the opposite direction

appears. De�ning them as driving events, such events usually increase the stress levels of

the driver. The level of increase depends on the individual's perception of life-threatening

situations and its duration may be temporary or even long-term, a�ecting the driver's

physiological state and behavior thereafter.

Therefore, we can de�ne stress events as the physiological reactions of the driver to

the driving events. It has been noticed that when subjects experience stress events, they

have speci�c reactions, mapped to their physiological signals, like an increase in heart

rate and skin conductivity. Thus, the detection of stress events is possible, through the

monitoring of driver's physiological reactions to driving events. This allows for measuring

the driving events' impact on drivers' psychophysiological state and driving behavior.

These measurements can be used by adaptive systems in various ways to help drivers cope

with their stress. Automatic management of non-critical in-vehicle information systems

such as radio, cell phones and on-board navigation aids according to the level of stress

are practical application of the abovementioned adaptive systems [19]. For example,

when a stress state is detected, the system could undertake speci�c actions to minimize

additional causes of workload increase, such as blocking incoming calls from the mobile

phone, or postponing non critical navigation information. Furthermore, the knowledge of

the possible causes of driver's stress may be useful information for the next generation

of navigation systems. For example, if a hard braking caused an increase of stress level,

this information could be exploited by a collision warning system to adjust its strategy

accordingly. Thus, not only detection of stress events, but also their association with

speci�c driving events is rather important.

A limited number of approaches has been presented during the last years for driver

stress monitoring: Healey and Picard [46] speci�ed an experimental protocol for data

collection which was initially described in [44]. Each driver followed a pre-speci�ed route

containing 15 di�erent events, from which four stress level categories were created ac-

cording to the results of the subjects self report questionnaires. In total, 545 one-minute

segments were classi�ed. A linear discriminant function was used to rank each feature

individually based on recognition performance and a sequential forward oating selection

(SFFS) algorithm was used to �nd an optimal set of features for recognizing driver stress.

Skin conductance variation and mean heart rate was among the selected features. In an-

other study, Healey and Picard [45] presented a method for data collection and analysis

in real driving conditions for the detection of driver stress state. Data from 24 drives of

at least 50-min duration were collected for analysis. The data were analyzed in two ways.

In the �rst case they used features from 5-min intervals of data during rest, highway and

city driving conditions in order to distinguish three levels of driver stress for multiple

drivers and during several days. In the second case they compared continuous features,

calculated at 1-second intervals throughout the entire drive with a metric of observable

stressors created by independent coders from videotapes. The results showed that skin
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conductivity and heart rate metrics are most closely correlated to driver stress level. Next

we shortly describe approaches reported in literature, aiming on stress detection, but not

related to the driving task. In the following approaches the experiments were performed in

a laboratory setting, where it is relatively easy to detect stress, since the sources and the

number of stimulations are restricted and the increase of sympathetic activity is related to

a speci�c stimulation. However, in non-restricted environments, such as the driving one,

the frequency and the sources of stimulations vary signi�cantly, making more di�cult the

monitoring and consequently stress event detection.

Zhai et al. [163] developed a system for stress detection using blood volume pressure,

skin temperature variation, electrodermal activity and pupil diameter1. Data were col-

lected from 32 healthy subjects demonstrating signi�cant correlation between stress and

the above mentioned physiological signals; the classi�cation of stress was performed using

a Support Vector Machine (SVM). Rani et al. [120] presented a real time method for

stress detection based on heart rate variability using Fourier and Wavelet analysis. Liao

et al. [86] presented a probabilistic model for stress detection based on inuence dia-

grams. Stress detection was based on probabilistic inference from features extracted from

multiple sensors. These feature include physiological measures, physical appearance and

performance measures. The main outcome of this work is that the Bayesian framework

is suitable for information fusion and provision of a reliable stress metric.

All the above �ndings indicate that physiological signals can be exploited in order

to provide a metric of driver stress in the car of the near future and to perform real

time driver stress monitoring. Stress monitoring could serve the management of the non

critical in-vehicle information systems and could also provide a continuous measure of

the way that road and tra�c conditions a�ect drivers. However, a number of limitations

deteriorate the applicability of the reported approaches in real life driving conditions. The

�rst one lies on the processing of the physiological signals. In all previously described

works the methods used for signal processing can hardly be used in real time systems

since they do not cope with the real time estimation of the signal baseline. The most

common approach used in literature is normalization, using an initial phase where the

driver is supposed to be relaxed [45], in order to estimate the baseline of the signals. In

our work the physiological features are extracted in real-time, and the estimation of the

baseline of each feature is also estimated in real-time. This estimation involves the online

adaptation of the parameters of the stress detection model, thus commonly used classi�ers

such as SVM or decision trees cannot be applied. Instead, BNs are employed here since

there are robust methods for online BN parameter adaptation. Another shortcoming of

the works reported in literature, is that they have been evaluated either on simulation

environments, or in restricted real-world environments. In this work instead, the dataset is

collected in real unconstrained driving conditions. This increases the driver's stimulations

and makes characterization much harder. Another important contribution of this work is

1The measure through the center of the adjustable opening in the iris of the eye, terminated at both

ends by its circumference.
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Figure 5.1: The three basic steps of our methodology.

the incorporation of the cause-e�ect relationship. The e�ect is the driver's stress event

and the cause in our case is the driving event. We propose a mechanism for building

a driving history of the driver for speci�c tours based on information from GPS2 and

the vehicle's CAN-bus3 and then extract features which can be used in order to detect

overtake and hard braking events, which consequently may cause a stress event. This

information is incorporated into the model to improve the detection of stress events and

to provide reasoning for the cause of such events. The reasoning ability is an additional

reason for choosing BN for detecting stress events. In the following sections, we �rst

describe the proposed methodology; next, the description of the data collection follows;

then, we present the results of the proposed methodology and the discussion.

5.2 Materials and Methods

The proposed methodology consists of three basic steps (Fig. 5.1):

• Biosignal acquisition, preprocessing and feature extraction.

2Global Positioning System (GPS).
3Controller-area network (CAN) is a vehicle bus standard designed to allow microcontrollers and

devices to communicate with each other within a vehicle without a host computer.
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• Driving environment assessment.

• Incorporation of information in a BN and stress detection.

The method proposed initially performs a real time processing of the physiological signals.

In our approach we exploit ECG, EDA and respiration. Features from those signals are

extracted using 10 second windows. A variation of the Kalman smoother is applied to

estimate the trend of the heart rate variability (HRV) signal which is extracted from the

ECG. From the EDA a normalized measure of the di�erences of the skin conductivity

is extracted and from respiration the entropy of the spectrum is calculated. Moreover,

information for current driving environment is extracted, using GPS and the vehicle's

CAN-bus data, as well as the driving behavior history. All this information is then

incorporated into a BN for stress detection. Di�erent BN models are employed.

5.2.1 Biosignal acquisition, preprocessing and feature extraction

For data acquisition we use the Biopac MP-100 system. The ECG signal is acquired

at 300Hz sampling frequency, whereas the EDA and the Respiration signal are acquired

using 50 Hz sampling rate. The resolution is set to 12-bit for all signals.

ECG

The most common measure related with stress events and increased mental load is the

increase in the heart rate. The heart rate over a period of time is extracted from the HRV.

We �rst extract from the ECG the R-R variability signal (RRV) from which the HRV is

calculated as HRV = 60=RRV . In order to extract the RRV signal from the ECG, the

R peaks are detected, using the procedure described in [119]. The R-R intervals are esti-

mated as the time di�erences between successive R peaks. Those R-R intervals constitute

the RRV signal. The RRV signal (as well as HRV signal) has two main components: i)

a baseline component of low frequency which has some sudden variations due to stress

events and ii) a periodic component including parasympathetic and the sympathetic ac-

tivities. The latter can be modeled by an autoregressive process (AR) of order P [143].

Thus the R-R interval at time i denoted as rri is given as:

rri =
P∑
k=1

aki rri−k + bi + �; (5.1)

where b and a are the baseline of the signal and the AR coe�cients, respectively, whereas

� is the Gaussian distributed noise. The baseline b is the variable which is a�ected by the

stress events and used for stress detection, whereas the AR coe�cients which correspond

to periodic RRV variation are not exploited in our methodology. The i index denotes that

those variables are time varying:

bi = bi−1 + �b; (5.2)

aki = aki−1 + �a; (5.3)
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where �b and �a are Gaussian distributed noise. The state space form of the above is:

xi = xi−1 + R; (5.4)

yi = Hixi + Q; (5.5)

where xi = [a1; a2; :::; aP ; bi], yi = rri, R is the process noise, Q is the observation noise

and the matrix Hi = diag[rri−1; rri−2; :::; rri−P ; 1]. In order to estimate xi we can use the

ordinary Kalman �lter equations [149] for each new sample yi. These equations are:

xi = xi−1; (5.6)

Vi = Ṽi−1 + R; (5.7)

S = HiViH
T
i + Q; (5.8)

K = ViH
T
i S
−1; (5.9)

x̃i = xi + K(yi −Hixi); (5.10)

Ṽi = (I −KHi)Vi (5.11)

where K is the Kalman Gain matrix, and x̃i and Ṽi are the Kalman �lter estimations of

hidden state and error covariance matrix, respectively, at time step i. In order to have

a better estimation of the hidden states of the model, the Kalman smoother could be

applied. The Kalman smoother makes use of the collected statistics from all the time

series and updates the estimation of the Kalman �lter for the hidden states, using a

backward recursion. Thus, it can be considered as an o�ine estimation method. The

Kalman smoother update equations are:

x̂i = x̃i + V ∗i (x̂i − x̃i+1); (5.12)

V̂i = Vi − V ∗t (V̂i+1 − Ṽi+1)V
∗T; (5.13)

V ∗i = ṼiṼ
−1
i+1; (5.14)

where x̂i and V̂i are the Kalman smoother estimations of hidden state and error covariance

matrix at time step i, respectively. In our method we use windows of speci�c length for

the calculation of the features from the physiological signals. Since, we are interested in

having a good estimation of the hidden states included in the speci�c window, given the

information at that time, we apply the Kalman smoother for each new window only on

the past observations contained in the window. We call this procedure Window Kalman

smoother and it can be considered as a partially applied Kalman smoother. With this

procedure the estimation is expected to be better than Kalman �ltering and worse than

a Kalman smoother which uses all data. In our experiments we use an AR(6) process.

The initial estimation of the AR coe�cients and observation noise R, as well as the initial

estimation of the baseline can be extracted using an initial segment of the signal. We

used the �rst �ve minutes of the signal for all the initializations. The remaining step is to

de�ne the process noise Q. We consider a diagonal Q and after experiments the elements

corresponding to AR coe�cients are set to 10−8, whereas the element corresponding to

baseline is set to 10−6.
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From the Kalman �lter the parameter of interest is the baseline parameter b. This

parameter varies with time, and this variation as already described is caused by two

factors: a very slow variation, and a more rapid variation due to stress events. The

average baseline value bi is calculated over a speci�c window. This new feature, denoted

as Bk, where k is the window indicator, inherits the varying behavior of bi and is also

dominated by two components, the very slow varying and the stress related. Since the

�rst component is very slow varying we assume that Bk follows a Gaussian distribution

N(�k; �0), whereas in cases of external stimulations a rapid increase is expected:

Bk =

{
N(�k; �1); No stress

N(�k + �; �2); Stress;
(5.15)

where � is the average increase of the heart rate in stress events. The �k is also time-

varying. The estimation of �k is performed in the BN context (described in Section 5.2.3),

decomposed from the Kalman �lter and the estimation of bi.

Electrodermal activity

The EDA signal is originally downsampled at 1 Hz. A smoothing �lter is then applied,

since in many cases noise is evident in the signal. The signal of EDA is composed by

two main components. A slow varying one, i.e. the skin conductance level (SCL) and

one related with sudden increase in mental load, the skin conductance response (SCR).

A common measure of these rapid increases is the �rst absolute di�erence (FAD):

FAD =
1

N − 1

N−1∑
i=1

|si+1 − si|; (5.16)

where si in this case is the EDA at time i. A drawback of this feature is that is highly de-

pendent on the SCL. A common practice is to use a normalization method after observing

all the data, such a min-max normalization:

s′i =
si −min

k
sk

max
k
sk −min

k
sk
; (5.17)

or the standardization method:

s′i =
si − �s
�2
s

(5.18)

where �s, �s are the mean and standard deviation of the time series, respectively. The

above methods can only be applied in o�ine processing. One other approach in order

to eliminate the impact of the SCL on the SCR is to divide the FAD measure with the

current SCL level. The advantage of this approach is that it can be easily applied on real

time estimation. The transformation applied with this method to the FAD measure is

1=SCLl which is a non-linear function of SCLl and SCLl = (1=N)
∑N

i si. This function

reduces the FAD when SCLl is large (1=SCLl < 1) and magni�es it when SCLl is small
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(1=SCLl > 1). We consider the use of a logistic function of SCLl which has a similar

behavior. This logistic function is given as:

g(SCLl) =
1

1 + exp(−� · (SCLl − �))
; (5.19)

and the transformed FAD (nFAD) is given as nFAD = FAD · g(SCLl).

The parameters � and � are optimized in order to obtain the higher correlation with

a stress metric derived from the annotation (described in Section 5.3).

Respiration

The respiration is initially downsampled at 10 Hz and the mean of the signal is removed.

Then a fast fourier transform is applied and the power spectrum of the signal is calculated.

The extracted feature is the entropy of the resulting spectrum (RE),

p(f) =
P (f)∑
f ′ P (f ′)

; (5.20)

RE =
∑
f

p(f) log p(f); (5.21)

where P (f) is the spectrum energy at frequency f . In a normal behavior the respiration of

the subject should follow an almost periodic pattern, thus we expect to have a dominant

peak in the spectrum and low spectrum entropy. Instead, in stress events the respiration

usually freezes for a small period and then we have an increased respiration frequency,

leading to a more complex spectrum with higher entropy.

Similar to the HRV case, for the RE we use a model as that of Eq. (5.15):

REk =

{
N(�k; �1); No stress

N(�k + �; �2) Stress;
(5.22)

where �k is slow time varying and � is the average increase of respiration entropy in stress

events.

It should be noted that there is a delay between the occurrence of a stress event and

the result on the physiological signals. This delay is di�erent for each physiological signal.

Thus, since we extract features in a constant window it is very likely to have information

loss due to this time o�set. From the three signals in our study we found that EDA has

2-5 seconds delay, whereas the delay of HRV and respiration is negligible, compared to the

window length. In our approach we align EDA with HRV, using cross-correlation analysis.

From cross-correlation analysis we detect the o�set having the largest correlation and then

delay EDA by that o�set. It should be noted that this approach does not a�ect the online

application of the method; during a burn-in phase or even online, we can calculate the

cross-correlation and the o�set of the two signals.
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5.2.2 Driving environment assessment

Apart from the processing of physiological signals, in our methodology we also incorporate

an approach for modeling driving expected behavior and detecting common events based

on GPS information (latitude, longitude, speed and heading) and vehicle information from

CAN-bus (engine's rounds per minute-RPM, throttle).

The approach proposed here is based on building a driver's pro�le for each tour. This

pro�le contains information about the typical behavior of the driver for each part of the

tour, in terms of average speed, acceleration, throttle, etc. More speci�cally, for each tour

a number of control points is assigned and for each control point a number of statistics

are calculated. In order to calculate these statistics, the basic assumption is that we have

a signi�cant number of samples around each control point. This assumption is rather

reasonable, since the majority of driver's repeat speci�c tours each day with only small

variations. Thus, any GPS system could gather necessary information about the most

often routes.

The reasoning for building a pro�le of each session is that under similar conditions the

driver has an expected behavior, in terms of speed, braking before turns, etc. Variations

on the expected behavior could be strongly related to speci�c driving events. For example,

a braking which was more intense than normal could be considered by the driver as a

hard braking, or speeds lower than expected followed by unexpected acceleration could

infer a possible overtake. Of course, those events could be more reliably detected with

more sophisticated hardware such as camera or radars, but the goal of this method is to

build an event detector which works without special equipment and to demonstrate the

added value of such a system in driver's stress estimation.

Next, we describe in detail the driving event detection. From the database of the GPS

positions we need to derive a small subset of positions which describe the tour. We use

the fuzzy K-means algorithm [56]. The number of initial centers, denoted as Ci, is 200

for a tour of about 60 kilometers which originally had about 3000 samples for each tour.

Then using the membership function for each sample we estimate a number of statistics

per point. The approach is similar for any measure of interest m. The average of the

measure m for each control point i denoted as Mi is calculated as

Mi =

∑
j wijmj∑
j wij

(5.23)

where wij is the weighted distance of control point i from the sample j.

The measures for each control point i calculated with the aforementioned way include:

• Average Speed (AMSi).

• Average Deceleration (ADi).

• Average Magnitude in Heading Changes (AMHCi). The di�erences of the heading

direction are calculated. Since, we are not interested in the direction of the change

we take the square of those di�erences (magnitude).
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• Average Throttle (ATi). The average throttle is expressed in percentage, acquired

from the CAN-bus.

• Average RPM (ARPMi). The average RPM of the engine acquired also from the

CAN-bus.

• Average Overtaking (AOi). For each sample in the dataset we have a variable

denoting the frequency of overtaking events at a speci�c point. This estimation is

used as prior estimation of overtaking events. This is quite useful since in rural

roads there are speci�c parts of the road where overtaking is considered safe. The

points where an overtake occurs are extracted from the annotation of the dataset.

Using the above information and the current readings from the GPS and CAN-bus we

extract a number of features. The �rst set of features is the weighted average of the

measures AMSi; ADi; ATi; AMHCi, and ARPMi, where the weights refer to the distance

of the current position from each control point i. These can also be considered as the

expected values of speed, deceleration, heading change, throttle and RPM, respectively.

The second set of extracted features includes the average of the current readings (i.e.

speed, deceleration, heading change, throttle and RPM) in a speci�c window, as well as

the average di�erence of these readings with their expected values. Finally, we also use as

feature the presence of a preceding vehicle. This info is manually extracted from the video

annotation. Using the features described above we �rst examine how good indicators

these features are for overtaking and braking detection. We consider a classi�er using

only one feature at a time and we calculate the area under curve (AUC) of that classi�er.

The N features having the largest AUC are considered as the best candidate set. N

is experimentally chosen so as to get the best classi�cation results. The features with

the highest ranking for discriminating overtake events are the presence of a preceding

vehicle (C1), the frequency of overtakes on the speci�c location (C2), the current throttle

(C3), the current RPM (C4) and the di�erence between current and average RPM (C5).

For hard braking detection the best feature set consists of the current deceleration (C6)

and the di�erence of current deceleration and the average deceleration on the speci�c

location (C7). In order to detect driving events (overtaking and hard braking) we use

the Naive Bayes classi�er, which can be easily merged with the BN for stress detection

(described in the next section), which also yields satisfactory results for the problem under

consideration.

5.2.3 Bayesian Networks for stress detection

BNs are widely used for knowledge representation and reasoning under uncertainty in

intelligent systems [112]. The structure of a BN is a directed acyclic graph. Its nodes

correspond to random variables of interest while the directed arcs represent direct causal or

inuential relation between nodes. The uncertainty of the interdependence of the variables

is represented locally by the conditional probability table P (Xi|PaXi
) associated with each
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nodeXi, given its parents PaXi
. The graphical structure of a BN allows the representation

of interdependency between variables, which together with an independence assumption,

lead to the joint probability distribution of X = {X1; X2; · · · ; XD}, one of the most

important features of BNs. The joint probability distribution can be factored out as a

product of the conditional distributions in the network:

Pr(X) =
D∑
i=1

Pr(Xi|Pa(Xi)); (5.24)

where D is the number of variables.

Many well known models (Kalman Filters, AR models, Naive Bayes classi�er) can

be represented as graphical models and BNs. BNs have also been used for classi�cation

problems. If we assume that the class is represented as random variable in the model

(Class), then in order to get a classi�cation output we need to estimate the probability:

P (Class|X = E); (5.25)

where X is the variable set that is used in the model and E are the values of the variables

for the speci�c instance. In the general case this probability is estimated using inference

algorithms for BNs [79].

In our study we examine three models for driver's stress detection. The �rst model

(BN1) includes only physiological features. This model is depicted in Fig. 5.2. The

variables of our model are the Driver's stress class variable and the feature variables

extracted from the physiological signals. Driver's stress is a discrete variable following

a multinomial distribution with two states (normal and stress). Feature variables are

continuous variables following a conditional Gaussian distribution, since they have always

a discrete parent (the Driver's stress variable) and potentially other Gaussian variables

(other feature variables).

In the second model (BN2) we extend the �rst model (BN1) which uses only physio-

logical information by adding a new variable corresponding to the driving events, named

Driving Event. This is due to the fact that stress events that we are studying are directly

related to speci�c driving events. The information of the occurrence of a driving event,

should improve the performance of stress event detection. The Driving Event variable

has three states: (i) overtaking, (ii) hard braking, (iii) other, where other includes both

no-event or events of other types with very low frequency. Then a direct arc from Driving

Event to Driver's stress is added. The BN2 model is shown in Fig. 5.3. The value of

the Driving Event is extracted from the video annotation of the sessions. Thus, we may

consider this variable as the output of an advanced driving detector with a 100% accuracy

and it is expected to have the best results.

As such a driving detector is not available in practice, in the third model we are using

the driving event detection described in Section 5.2.2. There are two possible approaches.

The simplest one is to initially detect the events and then provide the outcome as input to

the abovementioned model (in the Driving Event variable). This implies a one directional
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corresponds to the heart rate, nFAD corresponds to the normalized �rst di�erences of

the EDA signal and RE to respiration entropy.

relation between stress and events. We followed a more complex approach, to merge the

event and stress detection models in one, which allows for a bidirectional relation between

stress and event detection. For example when there is no evidence of stress in physiological

signals, then the probability of overtaking is lower. The merge of the driving event and

stress event detection implies the merge of the BN2 model with the two Naive Bayes

classi�ers for detecting overtaking and hard braking. Since both Naive Bayes classi�er

and BNs are based on Bayesian theory and graphical models, this merging is feasible.

The outline of the merging procedure and the resulting model, namely BN3, are depicted

in Fig. 5.4.

In our experiments we �rst train the BN models in an o�ine (batch) mode using the

training set and then we evaluate them online on the test set. The o�ine learning of

the parameters of the model is based on the maximum likelihood (ML) estimation. The

learning of the BN parameters is described in [106]. The parameter adaptation in online

mode is necessary, since as already described, both the conditional distributions of feature

B and RE extracted from HRV and respiration are time varying (the �k parameter in

Eqs. (5.15) and (5.22)). The conditional Gaussians which are used as the distribution of

continuous variables with discrete parents, after the propagation of evidence collapse to
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�rst di�erences of the EDA signal and RE to respiration entropy.

mixture of Gaussians. Thus, we could use the same parameter adaptation techniques as

those used in the mixture of Gaussian models. A K-component mixture Gaussian model

is described as:

P (x) =
K∑
k=1

�kN(x;�k; �k); (5.26)

where �k, �k and �k are the mean, the standard deviation and the prior probability of the

k component, respectively. The probability that an evidence x comes from the component

k is given as:

pk(x) =
�k ·N(x;�k; �k)∑
j �k ·N(x;�j; �j)

: (5.27)

The standard online update equations for a mixture Gaussian model are of the form:

�Tk = (1− � · pk(x))�T−1
k + � · pk(x) · x; (5.28)

(�Tk )2 = (1− � · pk(x))(�T−1
k )2 + � · pk(x) · (x− �Tk )2; (5.29)

where � is the learning rate, T the current and T − 1 the previous estimation of a param-

eter. We followed the approach of [82] where the learning rate is not constant but it is
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Figure 5.4: The merging procedure of the two Naive Bayes models for overtake and hard

braking detection with BN2 model for stress detection, resulting in the BN3 model. B

corresponds to the heart rate, nFAD corresponds to the normalized �rst di�erences of

the EDA signal, RE to respiration entropy and C1 − C7 to the seven features selected

for overtake and hard braking detection.

given by the following equations:

ck = ck + pk(x); (5.30)

�k = pk(x) · (1− �

ck
+ �): (5.31)

In Eqs. (5.28) and (5.29), � · pk(x) is replaced with the �k of Eq. (5.31).

Applying the above update rules in the update of the �k which is described in the

Appendix, we obtain the following online update equation:

�Tk = (1− �k)�
T−1
k + �k[

p1(xk)xk=�
2
1 + p2(xk)(xk − �)=�2

2

p1(xk)=�2
1 + p2(xk)=�2

2

]; (5.32)

since �1, �2 and � are considered �xed.
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Table 5.1: Description of the dataset. In the �rst four columns we give the dataset

description per subject. In the last two columns the frequency of an event per hour of

driving is given (statistics for Subject 1).

Subject Subject 2 Subject 3 Subject 4 Event Frequency

Number of tours 25 1 1 1 Overtake 13.7

Average Duration 55 min. 52 min. 55 min. 54 min. Hard Braking 2.4

No Stress Events 5926 392 232 361 Cross road 2.4

Low Stress Events 301 11 12 1 Unexpected 1.6

Medium Stress Events 159 3 7 10

High Stress Events 20 1 0 0

5.3 Dataset

The experiments were performed in real driving conditions, at a speci�c route and the

duration of each session was approximately 50 minutes. The equipment that was used

in order to acquire the needed information included: i) a Biopac MP-100 for signal ac-

quisition of the driver (ECG, EDA and Respiration). This equipment was installed on

the back seat of the vehicle and the sensors were attached to the driver. ii) A camera

monitoring the road that was used only for annotation reasons, iii) The vehicle's CAN-bus

which provided car data (Speed, RPM and Throttle).

Four subjects participated in the experiments: three male and one female. The ma-

jority of the data is coming from Subject 1 who is considered as the train and validation

subject, while the rest of the subjects are used as test data. The above strategy is based

on the fact that the physiology of a stress event is similar to all humans and only the pos-

sible causes and the magnitude of changes on physiological signals are expected to change

from subject to subject. The dataset description per subject is given in Table 5.1. For

Subject 1, a number of useful statistics can be extracted, related to the number of events

per session (Table 5.1) and the probability of each stress level given a driving event (Fig.

5.5). We observe that for Subject 1 our dataset includes a large number of events with

di�erent stress levels. We should here notice that events annotated as high stress events

are usually life threatening and such events are very rarely monitored in the literature,

due to safety reasons. We should also notice that due to unpredictable malfunctions, for

very few sessions the GPS and/or CAN-bus information is not available. The annotation

of the events and the stress caused is performed by a microphone and a voice recognition

software based on Microsoft speech API. The vocabulary of the program was restricted

to the most often events, and other events were categorized as "unknown". The stress

level was discriminated into four categories: i) no stress, ii) low stress, iii) medium stress

and iv) high stress. The driver was instructed to �rst say the type of the event and next,

with a small pause, the stress level caused, for example "turn low", "overtake medium",

"brake high". Non-annotated instances were also classi�ed as no stress level. From the

self-annotation of stress level, we extract a continuous stress metric. The annotated stress
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according to driver's annotation.

events are assigned at speci�c time segments, producing a signal s(t) where

s(t) =


0; if no stress reported at time t

1; if low stress reported at time t

2; if medium stress reported at time t

3; if high stress reported at time t:

(5.33)

However, the produced signal does not take into account the impact of the stress event on

neighboring time segments. To extend the e�ect of stress event to adjacent segments, we

take the convolution of the s(t) signal with a hamming window of length 3. The convolved

signal is considered as the stress metric.

In the experiments for stress event detection we aggregate the four stress levels into

two classes, the no-stress class and the stress class. More speci�cally, the stress class

contains both medium and high stress events which constitute stressful events. Moreover,

as indicated in Table 5.1 the number of high stress events is quite low and therefore,

the high stress cannot constitute a separate class. Thus, it is merged with the medium

stress class, which has a signi�cant number of events. Low stress events are considered

as unlabeled data, since in cases when drivers were not con�dent about their stress level,
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Table 5.2: The mean and standard deviation of the correlation on all RRV signals of the

Kalman �lter, the Kalman smoother and the proposed Window Kalman smoother, with

the Butterworth �lter considered as ground truth in estimating the RRV baseline. For

the Window Kalman smoother, the smoothing window is 10 seconds.

Correlation (mean/std)

Kalman �lter 0.82/0.078

Kalman smoother 0.94/0.066

Window Kalman smoother 0.86/0.070

Table 5.3: The correlation of the proposed and di�erent EDA normalization methods with

the stress metric derived from the annotated dataset.

Method Correlation with stress metric

No normalization 0.134

Standardization 0.245

Min-max 0.216

1=SCLl 0.227

Proposed 0.263

tended to use the low stress class, so as to provide a mild estimation. This was also

con�rmed by the inspection of the impact of those events on the physiological signals of

the subjects.

5.4 Results

We �rst present results on the methods used for physiological signal preprocessing and

feature extraction. In this section we also test the adaptation procedure described in

Section 5.2.3. Next we present the results obtained regarding the driving environment

assessment and �nally the stress event detection is evaluated using the three examined

BN models.

5.4.1 Physiological signal preprocessing and feature extraction

Initially, we estimate the HRV trend extracted from the ECG using the Window Kalman

smoother for real-time trend estimation. The window used for the Window Kalman

smoother is 10 seconds. In Table 5.2 we compare the Window Kalman smoother with

i) the Kalman Filter and ii) the Kalman smoother, in terms of their correlation with a

Butterworth �lter with cuto� frequency at 0.05Hz (the RRV sampling frequency is 1 Hz)

which is considered to provide the ground truth for HRV trend. The Kalman smoother

has the highest correlation with the Butterworth �lter, but as described in Section 5.2.1
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Figure 5.6: The adaptation of the model in the signal Y. Mean is the mean of the �rst

mixture Gaussian component and Delta the o�set of the second component.

it cannot be applied for real time estimation. Therefore, we employ the Window Kalman

smoother which is a windowed version of Kalman smoother (applicable in real time) and

as we can see in Table 5.2 has a slightly worse performance than the Kalman smoother

but superior to the Kalman �lter.

Next, we evaluate the proposed normalization method of the EDA. We perform a

leave one out method, each time holding one session for test and the other for training

of the logistic function's parameters � and �. In Table 5.3 we present the correlation of

the normalized feature nFAD with the stress metric; for comparison purposes we also

provide the respective correlation of the other methods described in Section 5.2.1. Table

5.3 con�rms the suitability of our approach based on the logistic function, since it has

higher correlation with the stress metric compared to the other methods.

In Section 5.2.3 we described the method for online learning of the distribution pa-

rameters of the B and RE variables extracted from the HRV and the respiration signal,

respectively. For testing we employ a time series model with similar behavior as that of

a typical HRV signal. The employed model is the following:

Yk =

{
(1000− k)=20 +N(0; 2); pk < 0:8

(1000− k)=20 +N(10; 2); pk > 0:8
; k = {1; 2; ; 1000}; (5.34)
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where pk is a random number in [0,1]. We test the adaptation of the model described

in Eq. (5.15) using the online update of �k described in Eq. (5.32) and � described in

Appendix. The standard deviations �1 and �2 are considered known and initially �k = 100

and � = 20. The learning rate � in Eq. (5.31) is set to 0.1. In Fig. 5.6 we present the

adaptation process of the mean �k and �. We observe that the adaptation is achieved

relatively fast and the variations from the actual value are small.

5.4.2 Driving Environment assessment

In this stage we use the information of driving history and the current readings from

GPS and CAN-bus to detect critical events, i.e. overtaking and hard braking. In Fig.

5.7 we provide some of the measures extracted from driving history, described in Section

5.2.2. The measures presented are the average speed, the average throttle and the av-

erage overtake of each control point of the tour. We observe that points with increased

probability of overtaking have also high average throttle and speed. The driver usually

attempts overtaking only when high speed can be achieved (open road ahead) while safety

conditions are met.

Next we present the results of the overtake detection. The total number of overtake
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Table 5.4: Confusion Matrix, Sensitivity and Speci�city for each class and total accuracy

for the classi�cation of hard braking (H.B) and overtaking (Ovt) events using the Naive

Bayes Classi�er.
Hard Braking Overtaking

Confusion Matrix (mean/std) Confusion Matrix (mean/std)

Non H. B. H. B. Non Ovt Ovt

Classi�ed as Non H. B. 34.61/2.73 13.58 Classi�ed as Non Ovt 121.94/18.21 24.06

Classi�ed as H. B. 5.39 26.42/5.77 Classi�ed as Ovt 28.07 125.95/1.25

Sensitivity 0.87 0.66 Sensitivity 0.81 0.84

Speci�city 0.72 0.83 Speci�city 0.84 0.82

Overall Accuracy 0.76 Overall Accuracy 0.83

events in the dataset is 150 which corresponds to the 5% of the dataset leading to a

signi�cant class imbalance. To this end we take all the overtake samples and select

randomly equal number of none overtake samples. Then we join the two sample sets in

a new balanced dataset and we perform ten-fold cross validation using the Naive Bayes

classi�er. In order to obtain more reliable results we perform the above procedure 200

times. In Table 5.4 we provide the confusion matrix and compute sensitivity, speci�city

and the total accuracy for the average of the 200 ten-fold cross validations. The obtained

accuracy is 83% and which is rather high, especially considering that no sophisticated

hardware was used for monitoring the driving environment.

A similar procedure is also followed for hard braking detection. The annotated hard

braking events constitute the 0:7% of the total dataset. Thus, we performed the procedure

described for overtake detection 500 times instead of 200. The results are also given in

Table 5.4. The obtained accuracy is 76% which is statistically higher than a random

guess.

5.4.3 Bayesian Network models and stress detection

The last step of our methodology incorporates all previously reported information into the

BN models. The evaluation is performed in online mode using a leave one out method.

For Subject 1, we keep one session for testing at a time and we train the BN parameters

o�ine, using the remaining sessions. For the other subjects (test subjects), the model is

trained using all the sessions of Subject 1.

The �rst model, BN1, includes only physiological features. The results of this model

for all four subjects are given in Table 5.5. The accuracy of stress event detection is 88%

for Subject 1 and for the validation subjects 92%, 89% and 84% respectively. Hence, no

statistical di�erence between the accuracy on the train subjects and validation subjects

is observed. This is a strong indication of good generalization performance, considering

also that the validation was performed on data of subjects not used in the training. We

observe though, that for stress detection we have low speci�city for all subjects. The

reason of this, is that the impact of stress events on the physiological signals is similar to
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Table 5.5: Confusion Matrix, Sensitivity and Speci�city for each class and total accuracy

for the classi�cation of Stress events for the four subjects in our study using the BN1

model.
Subject 1 Subject 2

Confusion Matrix Confusion Matrix

Non S S Non S S

Classi�ed as Non S. 5232 45 Classi�ed as Non S. 362 0

Classi�ed as S. 694 134 Classi�ed as S. 30 4

Sensitivity 0.88 0.75 Sensitivity 0.92 1.00

Speci�city 0.99 0.16 Speci�city 1.00 0.12

Overall Accuracy 0.88 Overall Accuracy 0.92

Subject 3 Subject 4

Confusion Matrix Confusion Matrix

Non S S Non S S

Classi�ed as Non S. 205 0 Classi�ed as Non S. 307 1

Classi�ed as S. 27 7 Classi�ed as S. 59 9

Sensitivity 0.88 1.00 Sensitivity 0.84 0.90

Speci�city 1.00 0.21 Speci�city 1.00 0.13

Overall Accuracy 0.89 Overall Accuracy 0.84

that of increased workload, i.e. increase in heart rate and EDA. The di�erence lies in the

magnitude of this increase, which in stress events is expected higher. However, the larger

increase, considering also the e�ect of noise in RRV estimation and the possible errors in

self annotation does not seem su�cient to discriminate the two states. A feasible solution

is the incorporation of additional information such as the possible causes of a stress event,

in order to reduce the false positives, which is performed in the next models.

In the second BN model (BN2) we have incorporated the driving event information.

In this case the information of the driving event is extracted manually from the video

of the road scenery. This equals to capturing driving events with an optimal detector.

In order to test stress detection accuracy, also with non-optimal detectors, we arti�cially

introduce errors in the driving event detection. The information inserted in the Driving

Event variable is given according to the following rule

P (DrivingEvent) =


1 if there is an obstacle and p < T1

or there is no obstacle and p > T2

0 if there is an obstacle and p > T1

or there is no obstacle and p < T2

; (5.35)

where p is a random number and T1 and T2 are the speci�city and sensitivity of the event

detection system, respectively. We consider three such systems with T1 = {0:9; 0:8; 0:7}
and T2 = {0:99; 0:9; 0:8}. Then we compare the sensitivity and speci�city of stress

event detection using i) only the driving event detection, assuming that every time an

event occurs we also have a stress event and ii) driving event detection and physiological

features (BN2). The results of both models are presented in Fig. 5.8. The sensitivity of

the stress event detection is always higher for the model using both driving events and
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physiological features compared to the model using only driving events. Furthermore, it

is not inuenced by the deterioration of the driving event detection accuracy. On the

other hand, the speci�city of both models is a�ected by the accuracy of the driving event

detection but the e�ect on the speci�city for the BN2 model becomes negligible.

In the third model (BN3) the driving event detection is based on features extracted

from the driving environment. Having collected a signi�cant number of sessions from

Subject 1, we were able to build a driving history model for this subject and incorporate

it to the enhanced model (BN3). The evaluation of the enhanced model is therefore

performed only on the speci�c subject. Using Bayesian inference, we extracted both the

probability of driver's stress event and the occurrence of a driving event. In Table 5.6 we

present the detection accuracy of driving and stress events. Comparing the results of BN3

and BN1 models in Tables 5.6 and 5.4, respectively, we observe a signi�cant increase in

stress event detection accuracy (95% compared to 88%). The main reason of this increase

in accuracy is the signi�cant reduction of the false detected stress events using the driving

event information.
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Table 5.6: Confusion Matrix, Sensitivity and Speci�city for each class and total accuracy

for the classi�cation of Stress Events (Stress), Overtaking (Ovt) and Hard Braking (H.B.)

events using the BN3 model.
Driving Event

Confusion Matrix

None . Ovt H.B.

Classi�ed as None 2564 75 24

Classi�ed as Ovt 69 78 0

Classi�ed as H.B 62 0 13

Sensitivity 0.95 0.51 0.35

Speci�city 0.96 0.53 0.17

Overall Accuracy 0.92

Stress

Confusion Matrix

Non S S

Classi�ed as Non S. 2578 36

Classi�ed as S 111 36

Sensitivity 0.96 0.50

Speci�city 0.99 0.24

Overall Accuracy 0.95

In Section 5.2.3 we claimed that the incorporation of driving event and driver's stress

event detection in the same model could yield to a better detection performance of both

driving and stress events. As presented earlier the obtained results con�rm this for the

stress event detection problem. As far as the driving events are concerned, Table 5.7

presents the driving event detection results for a three class problem (overtake, hard

braking and none) using the Naive Bayes Classi�er (as a benchmark) and the same training

and testing procedure. Comparing Tables 5.7 and 5.6 we observe that BN3 signi�cantly

reduces the false positives of the driving event detection and increases the accuracy (92%

compared to 65%). This can be explained since the probability of a driving event is lower

in the absence of a physiological reaction.

5.5 Discussion

A methodology for driver stress estimation based on physiological signals (ECG, EDA

and respiration) and driving behavior was presented. The RRV signal was modeled as a

time varying AR model and using a variation of Kalman smoother we estimate the trend

of the signal in real time. The information used is the trend of the signal since for stress

detection we are interested in the baseline of the signal and not in the periodic variations.

From the EDA the �rst absolute di�erence were used as a measure of skin conductance

response. In order to improve this feature as stress indicator we employed a normalization

method than can be applied in real time and reduce signi�cantly the e�ect of the skin

conductance level on the magnitude of the di�erences. Window analysis was then applied,
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Table 5.7: Confusion Matrix, Sensitivity and Speci�city for each class and total accuracy

for the classi�cation of Driving Events as a three class problem using a Naive Bayes

classi�er.
Driving Event

Confusion Matrix (mean/std)

None Ovt H.B.

Classi�ed as None 1719 22 9

Classi�ed as Ovt 441 120 2

Classi�ed as H.B 535 11 26

Sensitivity 0.64 0.78 0.70

Speci�city 0.98 0.21 0.05

Overall Accuracy 0.65

for feature extraction. Additionally we employed a method for building a driving history

and exploited this information to improve the driver's stress event detection.

In order to fuse all the above information we employed the Bayesian framework. We

examined three BN models, one with only physiological features, one incorporating driv-

ing events which are extracted based on annotation of video monitoring and a last one

where the driving events are detected using information from the GPS and the CAN-bus

of the vehicle. All models are tested in a dataset gathered in real driving conditions.

We used one subject for training and testing, which performed a large number of experi-

ments and four other for validation purposes. The accuracy of the BN model using only

physiological features, was in average for all subjects approximately 88%. The results ob-

tained on the validation subjects, reveal the good generalization behavior of the proposed

method. This �rst model has a signi�cant number of false positives since in particular

segments an increased heart rate and/or skin conductance is observed without drivers

actually experiencing an increased stress. These segments may be considered as moments

of increased workload. In our work focusing on the detection of stress events, this may be

considered as a drawback. However, for a system aiming at detecting increased workload,

the solely usage of physiological signals could be su�cient.

The other two models include also driving event information. From Table 5.1 and

Fig. 5.5 we observe that the event with the higher frequency is overtaking, as the driving

context is a rural road. Furthermore, we observe that overtaking along with hard braking

have the higher probability of medium and high stress events. This is expected since

overtaking is the most frequent, and risk involved event and hard braking, on the other

hand, is usually caused by driver's inattention or sudden events occurring on road, and

thus it is always related to high crash risk. This is also the reason, focusing on the

detection of these two events in our work.

With the second model (BN2) we examined how driving event detection could im-

prove the stress events detection accuracy, reducing false positives. This was veri�ed in

the third model (BN3) where we used the driving environment information from GPS

measurements and CAN-bus data in order to detect driving events. Introducing the driv-
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ing event detection into the same model employed for the stress event detection, both the

accuracy of driving and stress event detection are improved. This model is highly corre-

lated with the driver's perception of stress and a 92% accuracy in stress event detection

is achieved.

Most of the related works reported in the literature make use of data collected in

simulation environments. However, subjects' responses to driving events occurring in

a safe environment (simulation) are quite di�erent from those in real conditions. For

this reason, we have constructed a dataset with real drivers' reactions (stress events) to

actual driving events. Since we are referring to real-world experiments, there is always

the di�culty in controlling the driver's state because it highly depends on the prevailing

driving environment. Moreover, driver's self annotation during real time presents practical

di�culties (i.e. discrimination between low and medium stress level). These shortcomings

of the annotation procedure are inherited in the increased number of false positives and

for some cases of medium or low stress events there was no evidence of increase in heart

rate and/or skin conductivity. In many cases drivers seem to over or under estimate their

stress level. Thus, we suggest that for similar studies, apart from driver's self annotation,

more reliable stress metrics should be used, based for example on electroencephalogram

(EEG) or biomarkers [160]. In other cases, since driving events are accompanied by

intense driver's movements, signi�cant movement noise is introduced in the ECG. This

noise a�ects the RR estimation and the value of the features extracted. On the other

hand, in cases of very low SCL level the increase in EDA activity was not evident, apart

from very intense events. Thus, for monitoring drivers physiological signals on real driving

conditions, the choice of the sensors and sensor placement is crucial.

A major advantage of the proposed approach is that it can be applied in real time

and does not need an initial relaxation phase for estimating signals baseline. Moreover,

using the online adaptation of the model parameters, we obtain a good generalization

performance. Furthermore, we discriminate the increase workload from stress events,

based mainly on detecting both the cause, which is usually a driving event and the e�ect

which is a stress event accompanied by an impact on physiological signals. Therefore,

the proposed method can be e�ectively used to detect driver's stress events which can be

further exploited by advanced driving support systems.

Appendix

We consider a mixture model of the population X

xi ∼

{
N(xi;�1; �1); if xi comes from the C1 component

N(xi; �1 + �; �2); if xi comes from the C2 component
: (5.36)

The mixing probability of each component is de�ned as �1 and �2. The ML estimation

of the parameters of the model is based on the EM method. The EM estimation of the
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ML parameters of the model, is based on the maximization of the following function:

L =
∑
i

[
wi1[c1 + log �−2

1 + (xi − �1)
2=�2

1]

+ wi2[c2 + log �−2
2 + (xi − �1 − �)2=�2

2]
]
; (5.37)

where c1 and c2 are constants and

wi1 =

∑
i �1N(xi;�1; �1)∑

i[�1N(xi;�1; �1) + �2N(xi;�1 + �; �2)]
; (5.38)

wi2 =

∑
i �2N(xi;�1 + �; �2)∑

i[�1N(xi;�1; �1) + �2N(xi;�1 + �; �2)]
: (5.39)

The calculation of wi1 and wi2 is the E-step of the EM algorithm. In the M-step we �nd

�1 and � which maximize Eq. (5.37). Regarding only the terms involving �1, Eq. (5.37)

can be written as:

L = C +
∑
i

wi1(xi − �1)
2=�2

1

+
∑
i

wi2(xi − �1 − �)2=�2
2; (5.40)

where C summarizes all other terms. Taking the derivative with respect to �1, we obtain:

#L

#�1

= 2[−
∑
i

wi1xi=�
2
1 +

∑
i

wi1�1=�
2
1

−
∑
i

wi2xi�
2
2 +

∑
i

wi2�2=�
2
2

+
∑
i

wi2�=�
2
2]: (5.41)

Setting to zero and solving with respect to �1 we obtain:

�1 =
(
∑

iwi1xi=�
2
1 +

∑
iwi2xi=�

2
2)−

∑
iwi2�=�

2
2

(
∑

iwi1=�2
1 +

∑
iwi2=�2

2)
: (5.42)

We follow the same procedure for �. Taking the derivative of Eq. (5.37) with respect to

� we obtain:

#L

#�
= −

∑
i

wi2xi=�
2
2 +

∑
i

wi2�1=�
2
2

+�(
∑
i

wi2=�
2
2): (5.43)

Setting also to zero and solving with respect to � we obtain:

� =

∑
iwi2xi=�

2
2 −

∑
iwi2�1=�

2
2

(
∑

iwi2=�2
2)

: (5.44)
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system on new drivers

6.1 Introduction

6.2 Background on the Geometric Transformation of a Gaussian Mixture model

6.3 EM approach

6.4 EM with multiple starts

6.5 Global and Local Transformation

6.6 Results

6.7 Application to new driver adaptation

6.8 Discussion

6.8 Appendix

6.1 Introduction

Mixture models are well studied in the literature and applications exist in several do-

mains, such as density estimation [11], clustering [5, 37], classi�cation [97], image reg-

istration [34, 61], regression [4, 15], etc. The most widely used mixture model is the

Gaussian mixture model (GMM). There are two main problems in the application of

mixture models. The �rst is the estimation of model parameters. Parameter estimation

is based on the maximum likelihood (ML) or maximum a posteriori (MAP) estimation

of the parameters using the expectation-maximization algorithm (EM) [27, 33, 123] or
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the variational extensions of the EM (VEM) [54, 133]. The second is the choice of the

number of components, of the mixture model. There are some cases where the number of

components is known a priori, (e.g. classi�cation problems), however in the majority of

cases this number is unknown (e.g. image clustering and segmentation). There have been

several heuristic methods for an unsupervised estimation of the number of components

[90, 146, 21, 13, 111].

In this work we address a di�erent problem. We assume that the number of compo-

nents as well as the model parameters are already estimated in an initial training dataset.

Then this initial model is applied on a new dataset which is a transformation of the orig-

inal one and there is a one-to-one mapping between the components of the initial dataset

and the components of the new one. This problem is encountered in many domains, such

as model adaptation [28], image registration [34] and tracking [158]. One may consider

to simply retrain the model using the new dataset, but without any restrictions or con-

straints, this could lead to a violation of the one-to-one mapping. A commonly used

approach is the application of constraints on the new parameters, such as the assumption

that the new population is a geometric transformation of the original one. In Fig. 6.1

we present an example of this transformation. This assumption imposes that the new

GMM parameters are also geometric transformations of the original ones. Usually, (as it

is shown in Fig. 6.1) the geometric transformation consists of a rotation and a scaling

matrix (matrix A in Fig. 6.1 is the product of a rotation and a scaling matrix), and

a translation vector b. Digalakis et. al [28, 130] treated this problem under the addi-

tional constraint that the transformation matrix A as well as the covariance matrices are

diagonal. Use of a diagonal transformation matrix implies only scaling only across the

dimensions of the population. Moss and Hancock [102] addressed also this constrained

transformation problem. However, they were limited to the image registration problem,

thus in 2D dimensional mixture models, and they treated the M-step for all transformation

parameters, as an optimization problem.

In this work we treat the general D-dimensional problem, with non-diagonal rotation

and covariance matrices, and the transformation parameters are identi�ed employing the

EM algorithm. The EM algorithm consists of two basic steps: i) the expectation step

and ii) the maximization step, which are derived for the problem under investigation. An

optimization method is applied only for the rotation angles in the maximization step. We

also consider the special case of spherical covariance matrices. As already described, the

method is based on the EM algorithm introduced by Dempster et. al [27]. EM gained

great attention the last two decades mainly due to its simplicity, the natural handling

of the probabilistic constraints and the certain convergence to a local minimum. Redner

and Walker [121] criticized the EM as a �rst-degree rather "slow" algorithm, compared to

Newton and quasi-Newton methods. However, the performance of the EM algorithm has

proven to depend on the overlap of the mixture of Gaussian, and in the cases of minimum

overlap the convergence rate becomes super-linear [159]. In this work, we apply the

�ndings of [159] in the problem under consideration and we also propose an initialization
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Figure 6.1: Example of a geometric transformation of a population.

method for a multiple start EM algorithm, which increases the probability of the correct

solution identi�cation.

The assumption of a unique transformation applied on all mixture components, may

hold for a large number of problems. However, it could be of great interest to allow each

component to have an individual transformation. For better understanding, the unique

transformation could be applied to the estimation of a camera motion capturing a still

scenery. However if some objects are also moving, then in order to estimate both motions

we need to consider transformations to individual components.

In what follows, in Section 6.2 the problem is de�ned and in Section 6.3 we derive

the expectation and maximization steps of the EM algorithm for both full and spheri-

cal covariance cases. In Section 6.3.4 we study the likelihood function, considering the

overlapping of the initial GMM components and we propose a global minimum criterion.

In the experiments performed in Section 6.6 the algorithm's behavior and the correct

solution identi�cation as a function of the mixture overlapping are examined. In Section

6.5 we examine the case of both global and local transformation, using a MAP EM ap-

proach. Finally, the results and the proposed methodology are discussed in Section 6.8.A

summary of the notations used hereby is given in Table 6.1.

6.2 Background on the Geometric Transformation of a Gaussian

Mixture model

Suppose an initial sample X0 of a D-dimensional space RD , whose distribution is ap-

proximated as a GMM with L components. Any probability density can be accurately

approximated with a mixture of Gaussians having a proper number of components [84].
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The density of sample X0 is expressed as:

P (X0) =
∏
x∈X0

L∑
i

piN(x|µi;Σi); (6.1)

where pi, µi and Σi are the prior, the mean and covariance matrix of the i-th mixture

component, respectively. Furthermore it holds that
∑L

i pi = 1. The problem examined

which is examined here is the geometric transformation of a GMM. We consider a new

sample X with n samples, which is produced according to:

X0 A(·)+b
=⇒ X; (6.2)

where A(·) is the rotation and scaling function and b is the translation. The distribution

of the new sample X, under the transformation A(·) + b is:

P (X) =
∏
x∈X

∑
i

piN(x|Aµi + b; ATΣiA): (6.3)

The matrix A is the product of a number of elementary transformation matrices:

A = S[
P∏
i=1

Ri]: (6.4)

S is a diagonal scaling matrix, and the coe�cients si;i scales the mixture components

across dimension i and Ri is an elementary rotation matrix with angle denoted as �i.

In this work we consider a slightly di�erent transformation, where scaling is only

applied on the covariance matrices and not in the mean of the Gaussian distributions.

Thus, we do not shrink or enlarge the whole distribution space but rather the range of

each component. The GMM described the new population is thus written as:

P (X) =
∏
x∈X

∑
i

piN(x|Aµi + b; ATSΣiSA); (6.5)

and

A = [
P∏
i=1

Ri]: (6.6)

However for all the derivations following, the extension to the case of (6.3) is trivial. The

parameters describing the original GMM model are:

M = {{p1;µ1;vec[Σ1]}; {p2;µ2;vec[Σ2]}; :::;
{pL;µL;vec[ΣL]}} : (6.7)

and the transformation parameters are:

� = {{�1; · · · ; �P}; {s1; · · · ; sD}; (6.8)

{b1; · · · ; bD}} : (6.9)

There is no closed solution for the maximum likelihood estimation of the transformation

parameters�. The main tool for solving similar problems is the expectation-maximization

(EM) algorithm [27]. The application of the EM in the speci�c problem, is described in

the next section.
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Table 6.1: Symbols used in this work and their meaning.

Symbols Meaning

x;y; b Vectors

A;R Matrices

X Variable set

P (X) Probability distribution

�(X) Prior probability distribution

L Log-likelihood

e(M∗) Overlapping of a GMM model

n Population samples

D Problem's dimension

L Number of GMM components

N Gaussian Distribution

µ Mean of Gaussian

Σ Covariance of Gaussian

vec[·] Vectorize matrix

tr(·) Trace of matrix

E[·] Expectation operator

6.3 EM approach

The EM algorithm as denoted by his name consists of two step: i) the expectation step

and ii) the maximization step. The goal of the EM algorithm is to maximize at each step

k the expected log-likelihood of the complete data with respect to model's parameters:

�k = arg max
�

E[log p(X;Ω|�;M)|X;�k−1]; (6.10)

where �k−1 is the previous estimation of parameters, M is the initial model considered

and Ω denotes the collection of the corresponding unobserved mixture indices.

The expected log-likelihood, can be written as:

L(�k|�k−1;M) = E[log p(X;Ω|�;M)|X;�k−1]

=
∑
x∈X

∑
i

p(!i|x;�k−1)p(x|!i;�k−1)

+
∑
x∈X

∑
i

p(!i|x;�k−1)p(!i) (6.11)

=
∑
x∈X

∑
i

p(!i|x;�k−1)

[
−1

2
log |Σ′i|

− 1

2
(x− �′i)

T (Σ′i)
−1(x− �′i)

]
(6.12)

+
∑
x∈X

∑
i

p(!i|x;�k−1)p(!i|�k−1); (6.13)
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where �i
′ = A�i + b and Σ′i = ATSΣiSA. The term (6.13) does not depend on the

transformation parameters � and thus not need to be included in further derivations.

The �rst term (6.12), denoted as J, following [28] can be written as:

J =
∑
i

�i(X)
[
2 log |A|

+ yTS−1Σ−1
i S−1y

+ tr
[
AS−1Σ−1

i S−1AT Σ̂i[X]
]]
; (6.14)

where y = (ATEi[X]− µi − ATb) and �i(X) is:

�i(X) =
∑
x∈X

hi(x); (6.15)

where

hi(x) ≡ p(!i|x;Θk−1)

=
piP (x|µ′i;Σ′i)∑L
j=1 pjP (x|µ′j;Σ′j)

(6.16)

Ei[X] and Σ̂i[X] are the su�cient statistics which are de�ned in Section 6.3.1 and calcu-

lated in the E-step of the EM algorithm.

In this section we present the derivation of the E and M steps of the EM based

algorithm for the estimation of the parameter vector �. Using an initial guess for �,

�0, the algorithm repeats the E and M steps until the convergence criteria are met. A

more sophisticated method for parameter initialization is described in Section 6.4. The

termination criterion used is:

‖Θk −Θk−1‖ < �; (6.17)

where �k is the parameter vector at step k. Next the derivation of E-step and M-step is

described in more detail. We consider two cases for the M-step: i) a general case where

the covariance matrices are full positive de�nite matrices and ii) the spherical covariance

case.

6.3.1 E-step

In the E-step we estimate the expected su�cient statistics of the data, given the current

estimation of the parameter vector �k−1 [28]:

Ej[X] =

∑n
i=1 xiP (xi|Aµj + b; (SA)TΣjSA)∑n

i=1

∑L
k=1 P (xi|Aµk + b; (SA)TΣkSA)

; (6.18)

Ej[XX
T ] =

∑n
i=1 xix

T
i P (xi|Aµj + b; (SA)TΣjSA)∑n

i=1

∑
k P (xi|Aµk + b; (SA)TΣkSA)

; (6.19)

Σ̂i[X] = Ej[XX
T ]− Ej[X]Ej[X]T : (6.20)
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6.3.2 M-step under the general case

The update equations for all the transformation parameters (translation vector, scale vec-

tor and rotation angles) are employed in theM-step. We do not update the mixture model

membership probabilities pi, assuming that the new sample comes from the transformed

components with the same proportion.

Translation vector

Taking the derivative of Eq. () with respect to the translation vector b and setting the

derivative to zero we obtain the following update equation:

b = C−1D; (6.21)

where C and D are de�ned as:

C =

[∑
i

�i(X)Σ−1
i S−1AT

]
; (6.22)

D =

[∑
i

�i(X)Σ−1
i S−1AT (Ei[X]− Aµi)

]
: (6.23)

Scale vector

Taking the derivative of Eq. () with respect to the scale sj and setting the derivative to

zero, we obtain:

as2j + bsj + c = 0; (6.24)

where a, b and c are de�ned as:

a = 1;

b =
∑
i

�i(X)

n

{
xTijyij + tr(ATS1jΣiS

2jAΣ̂i[X])
}
;

c =
∑
i

�i(X)

n

{
xTijxij + tr(ATS2jΣiS

2jAΣ̂i[X])
}
:

In the above equations xij and yij are de�ned as:

xij = LiS
1j
[
AT (Ei[X]− b)− µi

]
; (6.25)

yij = LiS
2j
[
AT (Ei[X]− b)− µi

]
; (6.26)

where Li is derived from the Cholesky decomposition of the covariance matrix Σ−1
i :

Σ−1
i = LT

i Li: (6.27)
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S1 and S2 are diagonal matrices, de�ned as:

S1k
ij =


0; if i = j = k

si; if i = j 6= k

0; otherwise

; (6.28)

S2k
ij =

{
1; if i = j = k

0; otherwise
: (6.29)

It can be shown that |c| >> |b| and c < 0 and thus b2 − 4c > 0, whereas:

s2j =
b±
√
b2 − 4c

2
; (6.30)

has one positive and one negative solution. We always select the positive one.

Rotation angles

The derivation of the angle update formula is more complicated. For simplicity J is split

as the sum of two terms:

J =
∑
i

�i(X)[Jai + Jbi ]; (6.31)

where Jai and Jbi are de�ned as:

Jai = FTS−1S−1
i S−1F; (6.32)

Jbi = tr(AS−1Σ−1
i S−1AΣ̂i[X]); (6.33)

where F in Eq. (6.32) is de�ned as:

F = (A−1Ei[X]− µi − A−1b)T: (6.34)

We consider the matrix A to be a product of elementary transformations (see Eq. (6.4)):

A = R1R2 · · ·Rj · · ·RD−1; (6.35)

and Rj is:

R
(D×D)
j = j



j

1 · · · 0 0 · · · 0
...

. . .
...

... . . . 0

0 · · · cos(�j) sin(�j) · · · 0

0 · · · − sin(�j) cos(�j) · · · 0
... . . .

...
...

. . .
...

0 · · · 0 0 · · · 1


; (6.36)

where �j the rotation angle. The results following, can be extended to more generic

forms of Rj, as we will see in the experiments for the estimation of a 3D geometric
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transformation, where the number of angles exceed the problems dimensionality (P >

n − 1). However, at the moment we follow this de�nition for simplicity. Either case, Rj

can be decomposed as:

Rj = (Ij cos(�j) + Jj sin(�j) + Kj); (6.37)

where Ij, Jj and Kj are matrices de�ned in Appendix 6.8. The partial derivative of J

with respect to �j is given as (see Appendix 6.8):

@J

@�j
=

∑
i

�i(x)
[
[(xTijxij − yTijyij)

+ tr(Ac
jΣ
−1
i Ac

jΣ̂i[X])

− tr(As
jΣ
−1
i As

jΣ̂i[X])] sin(2�j)

+ 2[xTijyij + tr(As
jS
−1
i Ac

jΣ̂i[X])] cos(2�j)

+ 2[xTij(zij +wi)] sin(�j)

− 2[yTij(zij +wi)] cos(�j)
]
: (6.38)

The vectors xij;yij; zij and wi are de�ned as:

xij = LT
i A

c
j(Ei[X]− b); (6.39)

yij = LT
i A

s
j(Ei[X]− b); (6.40)

zij = LT
i A

k
j (Ei[X]− b); (6.41)

wi = LT
i µi; (6.42)

where Li is the Cholesky decomposition of the covariance matrix Σ−1
i . The matrices Ac

j,

As
j , and Ak

j are de�ned as:

Ac
j = RT

D−1 · · · ITj · · ·RT
2 R

T
1 S
−1; (6.43)

As
j = RT

D−1 · · · JTj · · ·RT
2 R

T
1 S
−1; (6.44)

Ak
j = RT

D−1 · · ·KT
j · · ·RT

2 R
T
1 S
−1: (6.45)

Setting Eq. (6.38) to zero we obtain an equation of the following form:

a cos(2�) + b sin(2�) + c cos(�) + d sin(�) = 0; (6.46)

where

a =
∑
i

�i(x)
[
(xTijxij − yTijyij)

+ tr(Ac
jΣ
−1
i Ac

jΣ̂i[X])

− tr(As
jΣ
−1
i As

jΣ̂i[X])
]
;

b = 2
∑
i

�i(X)[xTijyij + tr(As
jΣ
−1
i Ac

jΣ̂i[X])];

c = 2
∑
i

�i(X)[xTij(zij +wi)] sin(�j);

d = −2
∑
i

�i(X)[yTij(zij +wi)] cos(�j):
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In order to solve Eq. (6.46) for �, we use a non-linear optimization method (Levenberg-

Marquardt).

6.3.3 M-step under the spherical covariance case

We consider the special case where spherical covariances Σi = �2I and spherical scaling

S = sI are employed. We derive the update equations for scale vector and rotation angles

(the derivation of the translation vector is the same).

Scale vector

The parameter s∗ is given as:

s∗ =

√√√√∑i �i(X)
[
tr(Σ̂i[X])=(D�2) + zTz=�i

]
D

; (6.47)

where z = [AT (Σ̂i[X]− b)− µi].

Rotation Angles

From the de�nition of the matrices Ji and Ii (see Appendix 6.8) we obtain the following

identities:

tr(Ac
jS
−1
i Ac

jΣ̂i[X]) = tr(As
jS
−1
i As

jΣ̂i[X]); (6.48)

tr(AsS
−1
i AcΣ̂i[X]) = 0; (6.49)

xTijxij = yTijyij; (6.50)

xTijyij = 0: (6.51)

Incorporating Eqs. (6.48)-(6.51) into Eq. (6.38) we obtain:

@J

@�i
= 2[xTij(zij +wi)] sin(�j)

− 2[yTij(zij +wi)] cos(�j)]: (6.52)

Setting to zero and solving with respect to �j, we obtain a solution �∗i which is given as:

�∗i = −atan(
yTij(zij +wi)

xTij(zij +wi)
); (6.53)

where xij;yij; zij and wij are de�ned in Equations (6.87), (6.88), (6.89) and (6.90),

respectively.
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6.3.4 Local maxima

Since EM can be considered as a local optimization method, the existence of many local

maxima could have a serious e�ect on the method performance. In the case of a unique

maximum the algorithm is guaranteed to convergence to this maximum. Thus, it is of

great interest to study the shape of the likelihood function, given the parameters of the

problem.

One of the factors inuencing the number of local maxima of the log-likelihood func-

tion, is the sparsity of the mixture components. This is veri�ed theoretically in [89, 91].

The more dense the distribution, the larger the number of local maxima in the search of

the optimal transformation parameters which �t the data.

We follow the measure of the Gaussian overlap introduced in [89]. We de�ne ij(x)

as:

ij(x) = (�ij − hi(x))hj(x) for i; j = {1; :::; L}; (6.54)

where �ij is the Kronecker function and hi(x) is de�ned in Eq. (6.16). The overlap

measure of two mixture components is de�ned as:

eij(M
∗) =

∫
Rd

|ij(x)|P (x|M∗)dx for i; j = {1; :::; L}; (6.55)

whereM is the GMMmodel considered and eij(M
∗) ≤ 1 since |ij(x)| ≤ 1. The maximum

overlapping e(M∗), is de�ned as:

e(M∗) = max
ij

eij(M
∗): (6.56)

More details can be found in [89]. Next we prove that e(M∗) is invariant under the

transformation A(·) + b.

Lemma 6.1. The measure of Gaussian overlapping e(M∗) is invariant under the trans-

formation Ax + b, where A is the product of rotation and scaling matrices.

Proof. Since the measure of overlap e(M∗) is governed by the overlapping of di�erent

components, we examine only the cases eij(M
∗), where i 6= j . Under the transformation

x′ = Ax+b and the new parameter vectorM∗′ , P(x′|Aµ∗i + b; AΣiA
T ) can be written as:

P(x′|Aµ∗i + b; AΣiA
T ) = N(Ax+ b|Aµ∗i + b; AΣiA

T )

= (|2�|−d=2|Σi|−1|S|−1)

· exp
[
−(Ax+ b− (Aµ∗i + b))T

A−TΣ−1
i A−1

(Ax+ b− (Aµ∗i + b))]

= |2�|−d=2|Σi|−1|S|−1

· exp−(x− µ∗i )TΣ−1
i (x− µ∗i )

2�2
i |S|2

= |S|−1P(x|µ∗i ;Σi): (6.57)
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For i 6= j, de�ning Pi ≡ P (Ax+b|Aµ∗i + b; ATΣ∗iA) and using the property that |R| = 1,

and the variable transformation x′ = Ax+ b we obtain:

eij(M
∗′) =

∫
Rd

h′i(x
′)h′j(x

′)P (x′|M∗′)dx′ (6.58)

=

∫
Rd

�∗i �
∗
jPiPj∑L

k=1 �
∗
kPk
|SR|dx:

Given that RTR = I, we obtain:

eij(M
∗′) =

∫
Rd

�∗i �
∗
jP (x|µ∗i ;Σ∗i )P (x|µ∗j ;Σ∗j)
|S|
∑L

k=1 �
∗
kP (x|µ∗k;Σ∗k)

|S|dx (6.59)

= eij(M
∗):

In [89] is proved that if the initial guess of the parameters lies in the neighbor of the

correct solution N(M∗) then, given su�cient samples, the EM converges to the correct

solution. The range of N(M∗) has been shown to be related to eij(M
∗). Since this in

invariant under the transformation Ax+b, it is also expected that the range ofN(M∗) will

be also invariant under the same transformation. This is very important, since studying

the initial model, we could infer the range of the transformation parameters, where the

model converges to the true solution and we could therefore construct an optimal grid on

the parameter space to obtain the correct solution. Here, we use a more naive approach,

which is described in the next section.

6.4 EM with multiple starts

For a D dimensional problem we consider P rotation angles. For a 2D dimensional

problem, P = 1, whereas for a 3D dimensional problem P = 3. Thus we have a <P

angle space �. However considering only the space [−�; �] for each angle the angle space

is a hypercube. We produce a grid of this hypercube splitting the range of each angle

in K equal distant intervals. Thus we have KP possible initializations for the rotation

angles. The optimal value of K depends on the problem complexity. The larger the K

the higher the probability of identifying the global maximum, and of course the higher

the computational cost.

We then consider scale parameters initialization. A large value is initially assigned to

scale parameters. The rationale for this choice, is that the new sample should be covered

by all initial mixtures, thus no mixture is favored to cover a di�erent chunk of the sample.

Furthermore, from the numerical stability point of view, if we assume that the new

model is far out of the initial's model region, then the estimation of likelihood of the new

data, given the initial model, can create numerical problems.

The method proposed is summarized in Algorithm 6. The algorithm is named msEM

(EM with multiple starts). Starting from di�erent initializations as those are produced by
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Produce a grid of the rotation angle space �

for all �0 ∈ � do

k = 0

Jmax = −∞
while ‖�k −�k−1‖ < � do

Calculate expected statistics in E-step

Update transformation �k parameters in M-step

k = k + 1

M∗ = Θk(M0)

if J(M∗) > Jmin then

Jmax = J(M∗)

�opt: = �k

Algorithm 2: msEM

the grid of the transformation parameter space, we perform the EM steps until convergence

in the tranformation parameters. From all solutions ΘEM we keep the optimal one �opt:,

the solution that was closer to the expected log-likelihood of the transformed model and

scaled according to SEM .

6.5 Global and Local Transformation

The assumption of a unique transformation for all mixture model components, may hold

for some problems, but in many others could be a very strict constraint. In order to add

more exibility in the model, we could allow each component to have an individual (local)

transformation as well. We will consider the 2-D case, but the following results are easily

extendable to the more general case. We start from the de�nition of the both global and

local transformation in rotation, scaling and translation. The new rotation matrix R(GL)
j

for a 2-D case can be written as:

R
(GL)
j =

(
cos(� + �j) − sin(� + �j)

sin(� + �j) cos(� + �j)

)
; (6.60)

where � the rotation applied to all components and �j the rotation applied to the speci�c

j− th component. Obviously Rj can be also express as the product of a local and a global

rotation:

R
(GL)
j = R(G) ·R(L)

j (6.61)

R(G) =

(
cos(�) − sin(�)

sin(�) cos(�)

)

R
(L)
j =

(
cos(�j) − sin(�j)

sin(�j) cos(�j)

)
:
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For the translation vector we can write:

b
(GL)
j = b(G) + b

(L)
j (6.62)

and for scaling

S
(GL)
j =

(
s
(G)
1 · s(L)

1 j 0

0 s
(G)
2 · s(L)

2j

)
: (6.63)

The basic assumption of those local transformation are that are in magnitude smaller

than the global ones. Thus in order to apply this constrained in their estimation we

choose to apply a prior distribution on those parameters. Thus we assume that:

�
(L)
j ∝ N(0; �2

�); (6.64)

s
(L)
kj ∝ N(0; �2

s); (6.65)

b ∝ N(0; �2
bI): (6.66)

The new set of transformation parameters and the incorporation of the prior on the dis-

tribution of local transformations, leads to an MAP EM estimation and the optimization

of the new auxiliary log-likelihood function:

J =
∑
i

�i(X)
[
2 log |A(GL)

i |

+ yT (S
(GL)
i )−1Σ−1

i (S
(GL)
i )−1y

+ tr
[
A

(GL)
i (S

(GL)
i )−1Σ−1

i (S
(GL)
i )−1(A

(GL)
i )T Σ̂i[X]

]]
− log c1 +

P∑
j=1

��(�
(L)
ij )2

− log c2 +
n∑
j=1

�s(s
(L)
ij )2

− log c3 + �bb
Tb; (6.67)

with respect to both local and global transformation parameters. The c1, c2 and c3
are terms not involving transformation parameters, P is the number of angles in the

transformation, D the problem's dimension, �� = 1=(2�2
�), �s = 1=(2�2

s) and �s = �2
b.

Furthermore, y = [(A
(GL)
i )TEi[X] − µi − (A

(GL)
i )Tb]. The expectation Ei[X], as well as

Ei[XX
T ] calculated in the E-step, are now de�ned as:

Ej[X] =

∑n
i=1 xiP (xi|A(GL)

i µj + b;ΓT
i ΣjΓi)∑n

i=1

∑L
k=1 P (xi|A(GL)

i µk + b;ΓT
i ΣkΓi)

; (6.68)

Ej[XX
T ] =

∑n
i=1 xix

T
i P (xi|A(GL)

i µj + b;ΓT
i ΣjΓi)∑n

i=1

∑L
k=1 P (xi|A(GL)

i µk + b;ΓT
i ΣkΓi)

; (6.69)

Γi ≡ S
(GL)
i A

(GL)
i : (6.70)
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The update equation of the global transformation parameters, taking place in the M-

step, is similar to those presented in Section 6.3.2. The only changes are the de�nition of

the matrices Ac
j, A

s
j , and Ak

j de�ned in Eqs. (6.71),(6.71) and (6.71), respectively:

Ac
ji = (R

(GL)
P;i )T · · · ITj (R

(L)
j;i )T · · · (R(GL)

1;i )T (S
(GL)
i )−1;

As
ji = (R

(GL)
P;i )T · · · JTj (R

(L)
j;i )T · · · (R(GL)

1;i )T (S
(GL)
i )−1;

Ak
ji = (R

(GL)
P;i )T · · ·KT

j (R
(L)
j;i )T · · · (R(GL)

1;i )T (S
(GL)
i )−1;

where j refers to the j-th rotation angle, whereas i to the i-th component.

Furthermore in all equations presented for the global transformation we should re-

place the transformation parameters with the new ones containing both global and local

transformations. We proceed with the update equations of the local transformations.

Translation vector

Taking the derivative of the log-likelihood (6.67) with respect to the translation vector

bL and setting the derivative to zero we obtain the following update equation:

bLi = (Ci + �′�I)−1Di; (6.71)

where �′bI) = 1=(�2
b), and Ci, Di are de�ned as:

Ci =
[
Σ−1
i Γ−1

i

]
; (6.72)

Di =
[
Σ−1
i Γ−1

i (Ei[X]− A
(GL)
i µi − b(G))

]
; (6.73)

where Γi de�ned in Eq. (6.70).

Taking the derivative of the log-likelihood with respect to the scale s(L)
ij of the i-th

component at j-th dimension and setting the derivative to zero, we obtain:

(s
(L)
ij )2 + (b + �s)s

(L)
ij + c− �s = 0; (6.74)

where a, b and c are de�ned as:

a = 1; (6.75)

b = yTijyij + tr[(A
(GL)
i )TS1j

i ΣjS
2j
i A

(GL)
i Σ̂i[X]]; (6.76)

c = xTijxij + tr[(A
(GL)
i )TS2j

i ΣjS
2j
i A

(GL)
i Σ̂i[X]: (6.77)

In the above equations xij and yij are de�ned as:

xij = LiS
1j
[
(A

(GL)
i )T (Ei[X]− bGLi )− µi

]
; (6.78)

yij = LiS
2j
[
(A

(GL)
i )T (Ei[X]− bGLi )− µi

]
; (6.79)
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The matrices S1 and S2 are de�ned as:

(S1k
p )ij =

{
sGLkp ; if i = j 6= k

0; otherwise
; (6.80)

(S2k
p )ij =

{
sGkp; if i = j = k

0; otherwise
: (6.81)

Similarly to Eq. (6.24), Eq. (6.74) has two possible solutions for s(L)
ij : one negative and

one positive. We again select the positive one.

Rotation angles

In a similar derivation as that of Section 6.3.2 we obtain an equation of the following

form:

a cos(2�
(L)
ij ) + b sin(2�

(L)
ij ) + c cos(�

(L)
ij )

+ d sin(�
(L)
ij ) + �′�(�

(L)
ij ) = 0; (6.82)

where �′� = 1=(�2
�) and

a =
[
(xTijxij − yTijyij)

+ tr(Ac
jΣ
−1
i Ac

jΣ̂i[X])

− tr(As
jΣ
−1
i As

jΣ̂i[X])
]
; (6.83)

b = 2[xTijyij + tr(As
jS
−1
i Ac

jΣ̂i[X])]; (6.84)

c = 2[xTij(zij +wi)] sin(�j); (6.85)

d = −2[yTij(zij +wi)] cos(�j): (6.86)

The vectors xij;yij; zij and wi are de�ned as:

xij = LT
i A

c
j(Ei[X]− bGLi ); (6.87)

yij = LT
i A

s
j(Ei[X]− bGLi ); (6.88)

zij = LT
i A

k
j (Ei[X]− bGLi ); (6.89)

wi = LT
i µi; (6.90)

The non-linear Eq. 6.82 is also solved using the Levemberg-Marquardt method. The

MAP-EM algorithm estimating both global and local transformations is given in Algo-

rithm 3.

Prior distribution on local transformation parameters

The variance in the prior distribution of the transformation parameters is the parameter

governing the freedom given on those parameters. If we use a vary large variation then

the model diverges from the initial assumption of a geometric transformation of an initial
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while ‖�k −�k−1‖ < � do

E-step: Calculate expected statistics.

M-step:

Update all global rotations �(G)
i using the solution of Eq. (6.46).

Update all global scale coe�cients s(G)
i using Eq. (6.30).

Update all local rotations �(L)
ij using the solution of Eq. (6.82).

Update all local scale coe�cients s(L)
ij using the positive solution of Eq.(6.74).

Update global translation b(G) using Eq. (6.21).

Update local translations b(L)
i using Eq. ().

k = k + 1

Algorithm 3: Global/Local MAP-EM

population. Each component will probably converge to the closest component of the new

population. On the other hand, using a very small initial variance, we restrict the model

and we are in-fact neglicting local transformation parameters. A desired behavior would

be, if initially we restrict the local transformation parameters and progressively, while the

global transformation converges to the actual solution, loose the constraints and allow the

adaption of the local parameters as well. This behavior can be achieved using a iteration

varying � de�ned as:

�k = �0 exp(−k) + �′0: (6.91)

The parameters �0, �
′
0 and  for each prior distribution are experimentally chosen. The 

parameter in a large degree de�nes the behavior of the algorithm, outlined in Algorithm

3. If  is large then the constraints are quickly dropped and this algorithm is equivalent

with an algorithm where at each iteration we seek for both local and global transformation

parameters without constraints. On the other hand if  is very small and we also have

implied large constraints �0 the algorithm initially �ts the global transformation, and

after a large number of iterations starts to �t the local ones.

6.6 Results

We performed a series of experiments in order to investigate the estimation of the trans-

formation parameters, using the EM approach and the multiple-start EM for the global

transformation cases, as well as experiments for the MAP-EM approach for estimating

both local and global transformations.
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Figure 6.2: (a) The log-likelihood of the estimated model and the log-likelihood of the

actual one and (b)the rotation error, vs the number of iterations, for a 2D problem with

three components.

6.6.1 EM approach

A 2D problem is initially studied with three mixture components. The parameters of the

initial mixture component are:

�1 =

[
0

0

]
; �2 =

[
2

2

]
; �2 =

[
5

0

]

and

�1 = �2 = �3 =

[
1 −0:2

−0:2 1

]
:

The transformation parameters �∗, which transformation is applied to the initial mixture

model, are:

{�∗} =



� = 60◦

�1 = 10

�2 = 10

s1 = 1:5

s2 = 1:5


:

In Fig. 6.2(a) we present the log-likelihood of the estimated model for each iteration

step. For comparison we also provide the log-likelihood of the target model. We ob-

serve a fast convergence for the speci�c case, with an expected monotonically increase in

the estimated model's log-likelihood. The fast convergence to the correct model is also

demonstrated by the rotation angle error depicted in Fig. 6.2(b).
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Next we examine a 3D case and a GMMwith �ve components. The original component

means are randomly sampled as:

�i ∈ [0; 40] and ‖�i − �j‖ > 15 for i; j ∈ {1:::L}; i 6= j;

And the covariance of all components was:

�i =

[
1 −0:3

−0:3 1

]
: for i ∈ {1:::L}

We must notice here that the rotation matrix A used in this case was:

A = Rx(�x) ·Ry(�y) ·Rz(�z); (6.92)

Rx(�x) =

 1 0 0

0 cos�x − sin�x
0 sin�x cos�x

 ;

Ry(�y) =

 cos�y 0 − sin�y
0 1 0

sin�y 0 cos�y

 ;

Rz(�z) =

 cos�z − sin�z 0

sin�z cos�z 0

0 0 1

 :

In the examined case �x = �y = �z = �=4, the scale coe�cients were all set to 2 and

translation vector b uniformed sampled at [0; 50].

In Figs. (6.3(a)), (6.3(b)) we present the log-likelihood of the estimated model and

the rotation error for the three angles in Eq. (6.92). The method also proved to correctly

converge to the actual transformation parameters. We observe that the convergence is

slower compared to the 2D case, which is due to higher problem's complexity and mixture

component overlapping.

In order to test the robustness of the algorithm with respect to the distance of the

initial guess and actual value of the parameters, we examine a 2D and a more complex

5D case.

(i) 2D case: The varying parameters in the �rst experiment are the number of compo-

nents and the rotation angle (a unique parameter in 2D case). Each mixture component

is equally sampled with 500 samples (�i = 1
L
; for i = 1; · · ·L). The covariance of the com-

ponents are spherical and �xed to Σi = I; for i = {1; :::L}. The mean of the components

is randomly selected according to:

�i ∈ [0; 100] and ‖�i − �j‖ > 20 for i; j ∈ {1:::L}; i 6= j: (6.93)

The translation and scale vectors are also randomly selected: the �rst in the range

[−10; 10] and the second in the range [1; 3]. In Fig. 6.4(a) we present the rotation error
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Figure 6.3: (a) The log-likelihood of the estimated model and the log-likelihood of the

actual one and (b)the rotation error, vs the number of iterations, for a 3D problem with

�ve components.

|�EM − �∗| as a function of true rotation angle �∗. �EM is the estimation of the rotation

angle.

(ii) 5D case: A similar series of experiments is conducted for a 5D problem. The

varying parameters are again the number of components and the rotation angles (all

angles have the same value). We should notice that the rotation matrix adopted for the

5D case is of the form described in Eq. (6.36) and thus we have four rotation angles.

The covariance of the components is spherical and �xed to Σi = I; for i = {1; :::L}. The
mean of the components are randomly selected according to:

�i ∈ [0; 100] and ‖�i − �j‖ > 20 for i; j ∈ {1:::L}; i 6= j:

The translation and scale vectors are also randomly selected, the �rst in the range [−10; 10]

and the second in the range [1; 3]. In Fig. 6.4(b) the rotation error |�EM−�∗| as a function
of true rotation angle �∗ is presented. �EM is the estimation of the rotation angle.

6.6.2 Multiple start EM approach

A number of experiments are conducted using the msEM. We examine 2D, 3D and 4D

problems, since for higher dimensionality problems the possible number of initializations

becomes very large. We examine the e�ect of the overlapping of the initial mixture model

in the performance of the algorithm, as well as the K parameter of the EM-algorithm.

The number of the components is equal to the dimension of the problem in all cases. We

expect that with higher K and less overlapping between the mixture components, the

algorithm must perform better. The overlapping between the components is split in 5

ranges according to the min and max distance between components L1 ≤ ‖�i − �j‖] ≤
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Figure 6.4: (a) The estimated rotation error for a 2D case as a function of the mean

component distance and the rotation angle of the new mixture model, and (b) the esti-

mated rotation error for a 5D case as a function of the mean component distance and the

rotation angle of the new mixture model.

L2 for i; j = {1; :::L}; i 6= j, where L1 ∈ {0:5; 1; 2; 3; 5} and L2 ∈ {1; 1:5; 3; 5; 10} In Fig.

6.5 we show that overlapping e(M) is a function of the distance between components

(with �xed covariance matrices). For each case (dimension, number of initialization and

initial distance between components) we run 100 cases with an initial rotation angles

2�=5, translation vectors uniform sampled in the space [0; 10] and scales uniform sampled

in the space [1; 3]. The average rotation, translation and scale errors, as well as the

average likelihood are given in Table 6.2. Furthermore, in Fig. 6.6 we show graphically

the rotation error and the translation error, in order to provide a better overview of the

method behavior as a function of the problem's dimensionality, overlapping and number of

initializations. We observe that the rotation error is increased with higher dimensionality

and overlapping. Increasing the number of initializations the error is reduced, which

is explained, since with more trials starting from di�erent locations, the probability of

�nding the global minimum, i.e. the correct solution, is higher. A similar behavior is

observed in the translation error. The only di�erence is that translation error is increased

with less overlapping, i.e. larger distance between components. The larger the distance

between components, the larger the expected translation error in case of wrong solution

identi�cation.

6.6.3 MAP-EM approach for global and local transformation

We next examine the convergence of the MAP-EM method for estimating both global

and local transformations, for a 2D case.

We test the impact of the parameter  on the correct solution identi�cation. In this
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example we only allow local rotations, in order to have a more restricted problem. For

the local rotations, �k = 50e−·k +1 and  ∈ [0:01; 0:02; 0:05; 0:07; 1; 5]. We have 20 initial

components with randomly distributed means according to:

�i ∈ [0; 80] and ‖�i − �j‖ > 15 for i; j ∈ {1:::L}; i 6= j:

and identity covariance matrices for all components. In Fig. 6.7(a) we present the mean

squared error of the estimation of the new components. We observe that for this example

and for  < 1, the error is relatively small and the estimated components, correspond

to the true ones. For  > 1 the model converges to false components. Furthermore, in

Fig. 6.7(b) we demonstrate the average error in the estimation of both local and global

rotations at each iteration, for  < 1. We observe a similar behavior, however for larger

 faster convergence was achieved, as expected.
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Table 6.2: (a) The rotation error (R), (b) the scaling error (S), (c) the translation error

(T) and (d) di�erence of the estimated log-likelihood from the actual models.

L1 = 0:5; L2 = 0:8 L1 = 1; L2 = 1:5 L1 = 2; L2 = 2:5
R S T L R S T L R S T L

2D/1 46.4 0.81 1.68 -8502 43.34 0.74 2.41 -8233 45.32 0.8 3.77 -8625

2D/2 28.94 0.54 0.97 -81874 21.78 0.39 1.13 -8394 12.94 0.23 1.49 -8638

3D/1 105.78 1.25 2.04 -18575 107.52 1.17 2.71 -18789 107.64 1.14 6 -19276

3D/2 52.78 0.68 1.55 -18440 50.58 0.7 2.18 -18590 47.83 0.65 3.71 -19397

3D/4 25.21 0.34 0.79 -18264 19.05 0.23 0.74 -18376 8.46 0.12 0.88 -19615

4D/1 108.91 1.33 3.19 -32499 109.7 1.3 5.26 -32912 114.58 1.28 9.59 -34441

4D/2 38.05 0.42 1.26 -32547 42.66 0.55 2.35 -32838 54.7 0.58 5.35 -33654

4D/3 8.33 0.09 0.5 -32584 4.86 0.07 0.47 -32623 8.22 0.11 1.17 -33948

L1 = 3; L2 = 4 L1 = 5; L2 = 10
R S T L R S T L

2D/1 28.18 0.59 4.41 -9133 1.36 0.08 2.17 -9720

2D/2 6.88 0.13 0.95 -8912 0.3 0.04 0.13 -9534

3D/1 93.96 1.09 9.03 -20732 54.68 2.24 19.94 -24330

3D/2 28.49 0.33 3.9 -20362 4.39 0.1 2.27 -21725

3D/3 6.92 0.1 1.16 -20340 1.29 0.05 0.77 -21654

4D/1 111.82 1.38 14.63 -36394 80.2 3.36 30.62 -44601

4D/2 35.97 0.52 6.68 -35687 16.18 0.47 9.81 -38659

4D/3 8.71 0.12 2.01 -35610 3.39 0.07 2.82 -37974
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Figure 6.6: (a) The estimated rotation error, and (b) the estimated translation error for

100 runs of di�erent dimension problems with di�erent initial distance between mean of

the components. In the legend notation aD=b, a denotes the problem's dimension and b

the number of angle space splits.
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Figure 6.7: (a) The mean squared error on the estimation of the component means as a

function of the . (b) The rotation angle error for each iteration step for di�erent .
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6.7 Application to new driver adaptation

The problem as de�ned before and the methodology presented may be applied on a

variety of applications, such as image and point set registration, tracking etc. However

the problem related with this thesis is the adaptation of an initial model, designed to

discriminate driver states, to new drivers. We can use the following two approaches:

1. Use a GMM model for classi�cation, where each component is assigned for each

driver state of interest.

2. Use an arbitrary classi�er, trained on the original feature space F ∈ RD, where

D the number of features. We approximate the feature space density as a GMM

model with arbitrary number of components. In order to estimate the number of

components and the parameters we could use the approach presented in [21]. We

assume that the new feature space (e.g. the physiological features of the new driver)

is a space F′ and there is a mapping function f from the original feature space F to

F′:

F
f(·)→ F′: (6.94)

We assume that f consists of global and local transformations described in the

previous sections. Using the described methodology we could estimate those trans-

formation parameters and then apply inverse mapping to the original feature space.

This approach is described in detail, in section 6.7.2.

For both approaches, the training of the initial classi�cation model (either the GMM

model or the arbitrary classi�er) is based on supervised learning, where for every sample

we are also aware of the target class, whereas the adaptation procedure is based on

unsupervised learning, where the target class of each sample is not available. In the

following sections, we demonstrate the two approaches, the �rst using real drivers data

and the second one on both real and arti�cial data.

6.7.1 Application on real data

In this section we demonstrate the application of the described methodology where we

assume a GMM based classi�er. We used the simulation dataset, where one subject was

used for training whereas a second subject was used for testing. We are restricted to

two only subjects since those two subjects had su�cient data, for both states (fatigue

and normal) in order to apply the method. In the examined case the low fatigue and

high fatigue are merged in one class (fatigue), due to limited data from the high fatigue

class. The physiological features used, are the mean heart rate and the std of RR intervals,

extracted at 5 minute intervals. Those features proved to be very indicative of fatigue state

(see Chapter 4), and the restriction to a 2D feature space allows an easier visualization

of the GMM models.

In Figs. 6.8(a), 6.8(b) we present the distribution of the features for the the two

subjects. The GMM model has two components, the �rst describing the feature space
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for the normal state (C1) and the second one describing the feature space for the fatigue

state (C2). The GMM parameters are estimated using the following equations:

�1 =
1

|x ∈ C1|
∑
x∈C1

x; (6.95)

Σ1 =
1

|x ∈ C1|
∑
x∈C1

(x− �1)(x− �1)
T; (6.96)

�2 =
1

|x ∈ C2|
∑
x∈C2

x; (6.97)

Σ2 =
1

|x ∈ C2|
∑
x∈C2

(x− �2)(x− �2)
T; (6.98)

where �1, �2 the mean of the �rst and second component, respectively, whereas Σ1, Σ2

the covariance of the �rst and second component, respectively. x ∈ C1 and x ∈ C2 are

the samples belonging to normal and fatigue classes respectively, whereas |x ∈ C1| and
|x ∈ C2| the number of samples belonging to each class respectively. In order to assign a

new sample x to a speci�c class we use the following Bayesian criterion:

C(x) =

{
C1; p(x|C1)p(C1) > p(x|C2)p(C2)

C2; otherwise
; (6.99)

where p(x|C1) = N(�1;Σ1), p(x|C2) = N(�2;Σ2), and p(C1), p(C2) the prior probabilities

of each state, extracted from the annotated data.

In the two approaches examined, the GMM model is �tted to the data of the �rst

subject and then this initial model is adapted to the second subject's data, using: i) the

global transformation approach, ii) global and local transformations approach. The results

of the adaptation are depicted in Figs. 6.8(c) and 6.8(d), respectively. In Table 6.3 we

present the classi�cation results (confusion matrix, sensitivity, speci�city and accuracy)

for both approaches. For comparison reasons, we also present the results of �tting the

GMM on the data of the second subject using the labeled data and the Eqs. 6.95-

6.98, which can be considered as the training error of a supervised method. We observe

that the global and local transformation approach gives slightly better results than the

global transformation approach. The error of 17% achieved with the global and local

transformation approach is relatively small, considering it as the generalization error, and

taking into account that the training error was 12%. This justi�es the assumption that

at least for speci�c features, the feature space between di�erent subjects can be described

under the geometric transformation assumption, and furthermore this method can achieve

very good generalization results.

6.7.2 Use of an arbitrary classi�er and GMM for density estima-

tion

In this section we describe the second approach, where an arbitrary classi�er is built

upon a original dataset, and a GMM model with L components is used to model the
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Figure 6.8: (a) The feature space of the �rst subject and the �tted Gaussian components

using labeled data. (b)-(c)-(d) The feature space of the second subject with (b) the �tted

Gaussian components using labeled data, (c) the GMM model of the �rst subject adapted

based on global transformation and (d) the GMM model of the �rst subject adapted based

on both global and local transformations

density of the original dataset. The basic idea of this approach is that instead of trying

to adapt the parameters of a classi�er on a new data, which in some cases could be very

complicated, we could map the data to the classi�er's parameters. A common technique

in this direction is the normalization of the data, either using the min-max normalization

or the standardization of the data. However those approaches do not use any prior

information about the data distribution and they cannot handle changes occurring in

speci�c regions of the feature space. Our approach could overcome these limitations.

We �rst demonstrate the above method in an arti�cial dataset. This dataset consists

of a 2D GMM with three components. Each component corresponds to di�erent class.
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Table 6.3: The classi�cation results for: (GMM ) learn a GMM using the class labels of

the second subject, (G. Trans.) �t a GMM on the data of the �rst subject and adapt on

the second subject's data using the global transformation approach and (G.L. Trans.) �t

a GMM on the data of the �rst subject and adapt on the second subject's data using the

global and local transformations approach.

GMM G. Trans. G.L. Trans.

Normal Fatigue Normal Fatigue Normal Fatigue

Classi�ed as Normal 20 22 22 39 22 36

Classi�ed as Fatigue 2 165 0 148 0 151

Sensitivity 0.91 0.88 1 0.79 1 0.81

Speci�city 0.48 0.99 0.36 1 0.38 1

Accuracy 89% 81% 83%

The mean and covariance of each component are properly selected in order to give a well

seperated classi�cation problem. For each component we produce 300 samples. Then we

produce a new dataset transforming the original dataset:

x′ij = A
(GL)
j xij + b

(GL)
j ; (6.100)

where xij the i-th sample coming from the j-component.

A
(GL)
1 =

(
0:39 −0:92

0:92 0:39

)
(6.101)

A
(GL)
2 =

(
0:68 −0:73

0:73 0:68

)
(6.102)

A
(GL)
3 =

(
0:63 −0:78

0:78 0:63

)
(6.103)

b
(GL)
1 =

(
1:88

1:51

)
(6.104)

b
(GL)
2 =

(
1:56

2:27

)
(6.105)

b
(GL)
3 =

(
1:87

2:12

)
(6.106)

After estimating A
(GL)
j and b(GL)

j we can map the X′ in the original space X using

the following:

x′′i =

∑L
j=1 p(xi|Cj)((A

(GL)
j )−1(xi − b(GL)

j ))∑L
j=1 p(xi|Cj)

(6.107)
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Figure 6.9: In the above �gure, we present the original population X, the transformed

population X′ and the mapped to the original space population X′′ using (a) global

transformation (b) global and local transformations.

Table 6.4: The classi�cation results for the arti�cial dataset, using inverse mapping with

global transformation and using both global and local transformations.

G. trans. G.L. trans.

C1 C2 C3 C1 C2 C3

Classi�ed as C1 0 4 0 299 0 0

Classi�ed as C2 0 296 1 0 300 0

Classi�ed as C3 300 0 299 1 0 300

Sensitivity 0 0.99 1 1 1 1

Speci�city 0 1 0.5 1 1 1

Accuracy 66% 100%

The mean squared error of the mapping of X′′ to the original population using global

transformation is 21:19 (Fig. 6.9(a)), whereas using both global and local transformations

is 0:04 (Fig. 6.9(b)). This is also depicted in the classi�cation performance. Using a Naive

Bayes model trained in the original population, the classi�cation error on the dataset

produced by the inverse mapping using the global transformation was 33:89%, whereas

using both global and local transformations, the error was 0:1%. The results are presented

in detail in Table 6.4.

We also applied the above methodology on the previous problem with the real driver's

data. We again used the same data described in the previous section. We present the

results of four di�erent approaches, for comparison purposes:

A1 10-cross validation on the data of the �rst subject, using the SVM classi�er.

A2 (a) Train an SVM with the original data of the �rst subject. (b) Fit a GMM model
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with two components to the data of the �rst subject. (c) Fit the GMM model of the

�rst subject to the data of the second subject using only the global transformation

approach. (d) Apply the inverse mapping using Eq. 6.107. (e) Test using the new

mapped data.

A3 (a) Train an SVM with the original data of the �rst subject. (b) Fit a GMM model

with two components on the data of the �rst subject. (c) Fit the GMM model of

the �rst subject to the data of the second subject using the approach with both

global and local transformations. (d) Apply the inverse mapping using Eq. 6.107.

(e) Test using the new mapped data.

A4 (a) Normalize the data of the �rst subject. (b) Train an SVM classi�er using the

normalized data of the �rst subject. (c) Normalize the data of the second subject.

(d) Test using the normalized data of the second subject. For normalization we

used the min-max approach for each feature:

x′ =
x− xmin

xmax − xmin
; (6.108)

where xmin and xmax, the minimum and maximum value of the feature, respectively.

In all cases we use radial basis function (RBF) kernel for the SVM. In order to �t a

GMM model on the original data density, we need to estimate the number of mixture

components as well as each component's parameters. We use the method presented in

[21], which gives very good results (the estimated number of components was two).

In Table 6.5 we present the confusion matrix, speci�city and accuracy per class, as

well as the accuracy of the classi�er. We observe that the approach using both local and

global transformations outperforms dramatically the approach using the simple min-max

normalization. Moreover, compared to the global transformation approach, although it

has lower accuracy, the error is better balanced between the two classes. Furthermore,

compared to the approach presented in the previous section, the SVM gives better results

for the global and local transformation approach. The advantage of the use of a more

complicated classi�er compared to GMM, is expected to be greater in more complex

problems, with more features.

6.8 Discussion

In this work we initially addressed the problem of estimating the parameters of a GMM

from a sample, which is a geometric transformation of an original, considered known,

GMM. The method proposed here is based on the EM framework. We considered both

cases of full positive de�nite and spherical covariance matrices. The main di�erence from

other similar approaches presented in the literature is �rst that no restrictions are assumed

on the covariance matrix and second that we examined a rather generic transformation

matrix, which is a product of elementary rotation and scaling matrices. We examined the
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Table 6.5: The classi�cation results of the four approaches (A1, A2, A3 and A4) for

evaluating the performance of di�erent mapping methods of the data of new drivers, to

the original space where the classi�er is trained.

A1 A2

Normal Fatigue Normal Fatigue

Classi�ed as Normal 137 60 13 10

Classi�ed as Fatigue 17 134 9 177

Sensitivity 0.89 0.84 0.59 0.95

Speci�city 0.7 0.95 0.57 0.95

Accuracy 85% 91%
A3 A4

Normal Fatigue Normal Fatigue

Classi�ed as Normal 20 26 22 69

Classi�ed as Fatigue 2 161 0 118

Sensitivity 0.91 0.86 1 0.63

Speci�city 0.43 0.99 0.24 1

Accuracy 87% 67%

case of a 3D problem with a full 3D rotation matrix and demonstrated that the estimation

of such transformations is feasible with our approach. Next we performed experiments in

order to indicate the method's behavior regarding to the dimensionality of the problem,

the initial model's and transformation's complexity. Intuitively, the larger the complexity

of the problem, the larger the number of the local maxima of the log-likelihood function.

Consequently, the larger the complexity of the problem, the smaller the probability that

the algorithm converges to the actual solution. In the 2D case, the number of components

did not have a signi�cant e�ect on the rotation error and the correct solution identi�cation.

This can be explained in the sense that the problem is quite well-posed, the number of

parameters is quite limited (5 parameters) and the number of local maxima is expected

to be rather low. The main parameter a�ecting the correct solution identi�cation is the

rotation angle. The algorithm starting from an initial guess of zero rotation, identi�ed

the correct solution in cases where the true rotation angle was smaller than �=2. For

larger angles, the algorithm identi�ed the symmetric one. However these two solutions

have the same log-likelihood if the covariance matrices are spherical. For 2D problems,

such as image registration, this method is expected to give very good results. In higher

dimensional problems the number of components has a more signi�cant e�ect. From

the 5D case experiments, we observed that in problems with fewer components than

the problem's dimension, we have a larger error in the rotation angles. Moreover, the

number of cases that the algorithm did not correctly identify the true solution is higher.

We observe that the range where the algorithm gives very good results is in the range of

0−�=4 degrees, compared to 0−�=2 degrees of the 2D case. This is expected, considering

the higher number of local maxima in a more complex problem with larger number of
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parameters. This problem was tackled using the msEM.

Using the msEM algorithm (the respective results are summarized in Table 6.2), we

observe that even in cases with high mixture overlapping and large rotation angle, the

algorithm can identify the correct solution with relatively small error. In 2D cases for

K = 2 we obtain very good results, which indicate that this value of K is su�cient for

2D problems. In higher-dimension problems, the higher K gives better results, but with

inevitable impact on computational cost.

Then we presented an approach for estimating both global and local transformations.

This approach could be suitable for example in image registration or tracking where both

camera and objects in the scene are moving. Our approach is based on MAP-EM esti-

mation method with progressive relaxing of the constraints on the local transformations.

Initial experiments indicated the impact of the relaxing rate on the correct solution esti-

mation.

In the last section we described two di�erent approaches, using the proposed method-

ology, for the unsupervised adaptation of a classi�er to a new sample. The �rst method

adapts the parameters of the classi�ers (a GMM model) to the new sample, whereas the

second adapts the data to the classi�er's parameters, through inverse mapping to the orig-

inal data space, used for training the classi�er. Both methods were evaluated in terms

of the adaptation of a classi�er for normal and fatigue states discrimination, trained on

a speci�c subject and adapted to a second one. The data of both subjects were acquired

during our simulation experiments. Both methods had similar results, however the use of

the second one could be more bene�cial in more complex problems. Although our �rst

results are quite promising, more experiments, are required in order to investigate the ad-

vantages and disadvantages of each approach as well as to evaluate the proposed method

for the adaptation of a driver physiological state recognition system to new drivers.

Appendix A: Solution of @J
@�j

= 0 with respect to �j.

We introduce the following matrices:

I
(n×n)
j = j



j

0 · · · 0 0 · · · 0
...

. . .
...

... . . . 0

0 · · · 1 0 · · · 0

0 · · · 0 1 · · · 0
... . . .

...
...

. . .
...

0 · · · 0 0 · · · 0


; (6.109)
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J
(n×n)
j = j



j

0 · · · 0 0 · · · 0
...

. . .
...

... . . . 0

0 · · · 0 1 · · · 0

0 · · · −1 0 · · · 0
... . . .

...
...

. . .
...

0 · · · 0 0 · · · 0


; (6.110)

K
(n×n)
j = j



j

1 · · · 0 0 · · · 0
...

. . .
...

... . . . 0

0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0
... . . .

...
...

. . .
...

0 · · · 0 0 · · · 1


: (6.111)

We split Eq. () as the sum of two terms:

J =
∑
i

�i(X)[Jai + Jbi ]; (6.112)

where J bi and Jai are given by Eqs. (6.32) and (6.33), respectively. Jai can be written in

an expanded form as:

Jai = xTijxij cos(�j)
2 + yTijyij sin(�j)

2

+ 2xTijyij cos(�j) sin(�j)

+ 2xTij(zij +wi) cos(�j)

+ 2yTij(zij +wi) sin(�j); (6.113)

where xij, yij, zij and wij are de�ned in Eqs. (6.87), (6.88), (6.89) and (6.90), respec-

tively. Taking the derivative of Jai with respect to �j we obtain:

@Jai
@�j

= 2[(xTijxij − yTijyij)] cos(�j) sin(�j)

+ 2xTijyij sin(�j)
2 − 2xTijyij cos(�j)

2

+ 2xTij(zij +wi) sin(�j)

− 2yTij(zij +wi) cos(�j)

= (xTijxij − yTijyij)] sin(2�j)

+ 2xTijyij cos(2�j) + 2xTij(zij +wi) sin(�j)

− 2yTij(zij +wi) cos(�j): (6.114)
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The term Jbi can be written in expanded form as:

Jbi = tr(AS−1
i AΣ̂ij[X])

= tr(Ac
jS
−1
i Ac

jΣ̂ij[X]) cos(�j)
2

+ tr(As
jS
−1
i As

jΣ̂ij[X]) sin(�j)
2

+ 2tr(As
jS
−1
i Ac

jΣ̂ij[X]) cos(�j) sin(�j)

+ 2tr(Ac
jS
−1
i Ak

j Σ̂ij[X]) cos(�j)

+ 2tr(As
jS
−1
i Ak

j Σ̂ij[X]) sin(�j): (6.115)

Then we consider the derivative of Jbi with respect to �j:

@Jbi
@�j

= (tr(Ac
jS
−1
i Ac

jΣ̂ij[X]) sin(2�j)

− tr(As
jS
−1
i As

jΣ̂ij[X]) sin(2�j)

+ 2tr(As
jS
−1
i Ac

jΣ̂ij[X]) cos(2�j)

+ 2tr(Ac
jS
−1
i Ak

j Σ̂ij[X]) sin(�j)

− 2tr(As
jS
−1
i Ak

j Σ̂ij[X]) cos(�j): (6.116)

The last two terms containing the Ak
j matrix, which is de�ned by Eq. (6.71), give zero in

the diagonal, thus we obtain:

@Jb

@�j
= (tr(Ac

jS
−1
i Ac

jΣ̂ij[X]) sin(2�j)

− tr(As
jS
−1
i As

jΣ̂ij[X]) sin(2�j)

+ 2tr(As
jS
−1
i Ac

jΣ̂ij[X]) cos(2�j): (6.117)

Replacing Eqs. (6.114) and (6.117) in Eq. (6.113) we �nally obtain:

@J

@�i
=

∑
i

ni[[(x
T
ijxij − yTijyij) + tr(Ac

jS
−1
i Ac

jΣ̂ij[X])

− tr(As
jS
−1
i As

jΣ̂ij[X])] sin(2�j)

+ 2[xTijyij + tr(As
jS
−1
i Ac

jΣ̂ij[X])] cos(2�j)

+ 2[xTij(zij +wi)] sin(�j)

− 2[yTij(zij +wi)] cos(�j): (6.118)

Setting Eq. (6.118) to zero an equation of the following form is obtained:

a cos(2�) + b sin(2�) + c cos(�) + d sin(�) = 0; (6.119)

where a; b; c and d are de�ned in Eqs. (6.83), (6.84), (6.85) and (6.86), respectively.
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Appendix B: Estimation of the Rotation Angles in the case of Spher-

ical Covariance matrices.

From the de�nition of the matrices Ji and Ii in Eqs. (6.110) and (6.109), respectively, we

obtain the following properties:

ITi Ii = Ii (6.120)

JTi Ji = Ii (6.121)

ITi Ji = Ji (6.122)

JTi Ii = JTi (6.123)

First we show that:

tr(Ac
jS
−1
i Ac

jΣ̂i[X])− tr(As
jS
−1
i As

jΣ̂i[X]) = 0; (6.124)

whereAc
j, A

s
j , Σi and Σ̂i[X] are de�ned in Section 6.2. The �rst term, tr((Ac

j)
TS−1

i Ac
jΣ̂i[X]),

in the case of spherical covariance (Σi = �2
i I) can be written as:

tr((Ac
j)
TΣ−1

i Ac
jΣ̂i[X]) =

n

�2
i

tr((Ac
j)
TAc

jΣ̂i[X]); (6.125)

where n is the dimension of the matrix Σi. For (Ac
j)
TAc

j we observe that:

(Ac
j)
TAc

j = RT
n−1 · · · ITj · · ·RT

1 R1 · · · Ii · · ·Rn−1

= RT
n−1 · · · Ij · · ·Rn−1; (6.126)

and de�ning

Ap
j ∼ RT

n−1 · · · Ij · · ·Rn−1; (6.127)

we can replace (Ac
j)
TAc

j with Ap
j in Eq.(6.125), obtaining:

tr((Ac
j)
TS−1

i Ac
jΣ̂i[X]) =

n

�2
i

tr((Ap
j)
T Σ̂i[X]): (6.128)

For tr(As
jΣ
−1
i As

jΣ̂i[X]) we have:

tr((As
j)
TΣ−1

i As
jΣ̂i[X]) =

n

�2
i

tr((As
j)
TAs

jΣ̂i[X]): (6.129)

For (As
j)
TAs

j we have:

(As
j)
TAs

j = RT
n−1 · · · JTj · · ·RT

1 R1 · · · Jj · · ·Rn−1

= RT
n−1 · · · Ij · · ·Rn−1 = Ap

j : (6.130)

Replacing (As
j)
TAs

j with Ap
j in Eq. (6.129) we obtain:

tr((As
j)
TΣ−1

i As
jΣ̂i[X]) =

n

�2
i

tr(Ap
j Σ̂i[X]); (6.131)
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which is the same as tr((Ac
j)
TS−1

i Ac
jΣ̂i[X]) and Eq. (6.124) is proved.

Furthermore tr(As
jΣ
−1
i Ac

jΣ̂i[X]) is zero since:

tr((As
j)
TS−1

i (Ac
j)Σ̂i[X]) =

n

�2
i

tr((As
j)
TAc

jΣ̂i[X]); (6.132)

and

(As
j)
TAc

j = RT
n−1 · · · JTj · · ·RT

1 R1 · · · Ij · · ·Rn−1

= RT
n−1 · · · JTj Ij · · ·Rn−1

= RT
n−1 · · · JTj · · ·Rn−1: (6.133)

Since JTj has only zeros in the diagonal the trace in Eq. (6.132) equals zero:

tr((As
j)
TΣ−1

i (Ac
j)Σ̂i[X]) = ∅: (6.134)

Finally based on the derivations (6.126), (6.130) and (6.133) it is straightforward to show

that xTijxij equals y
T
ijyij and x

T
ijyij = 0. For xTijxij we have:
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Similarly for yTijyij we have:

yTijyij = (Ei[X]−B)TAc
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T
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We observe that indeed xTijxij equals y
T
ijyij. Finally, for x

T
ijyij we have:
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yT Jiy=0
= 0: (6.137)

According to the above, and incorporating Eqs. (6.128), (6.131) and (6.134) into Eq.

(6.38) we obtain:

@J

@�i
= 2[xTij(zij +wi)] sin(�j)

− 2[yTij(zij +wi)] cos(�j)]: (6.138)

Setting Eq. (6.138) to zero and solving with respect to �, we obtain a solution �∗i :

�∗i = −atan(
yTij(zij +wi)

xTij(zij +wi)
); (6.139)
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where xij, yij, zij and wij are de�ned in Eqs. (6.87), (6.88), (6.89) and (6.90), respec-

tively.

143



Chapter 7

Advanced Driver Support and driver

physiological state

7.1 Introduction

7.2 A simulation study on co-operative driving systems

7.3 Information handling in a Highway Environment

7.4 Dynamic Bayesian Networks for Decision Making

7.1 Introduction

During the last decades, the development of driver assistance systems is of growing im-

portance as these systems are expected to improve road safety and tra�c e�ciency. The

Advanced Driver Assistance Systems (ADAS) partly support or take over the driver's

tasks. ADAS can be de�ned as in-vehicle system that has a direct supporting interaction

with the driver or the driver task. The way of support may vary from informative to

controlling [58, 74]. ADAS operates from inside the car, but may be connected to ex-

ternal sources. Several ADAS, such as Adaptive Cruise Control (ACC), Lane Departure

Warning (LDW) and Intelligent Speed Assistance (ISA) are already popular among car

manufacturers. ADAS is part of a technology called Intelligent Transportation Systems

(ITS). ITS incorporates intelligence in both roadways and vehicles in order to improve

the tra�c ow. Co-operative road-vehicle systems and vehicle-vehicle systems are also

emerging worldwide. Intelligent vehicles and roads are the future standard and special-

ized research addresses the identi�cation of their impact as well as their adaptation to

the real user needs for safer and e�cient transportation services. Currently, ADAS are

designed to support drivers in maintaining safety thresholds or ensuring compliance with
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V2V, V2I Communication

Information Handling

Decision making

Figure 7.1: The basic building blocks of a next generation ADAS system.

formal driving rules, such as maintaining safe time headways in car-following situation or

adhering to speed limits [71, 114].

The next generation of ADAS systems is going to adverse more information and apply

di�erent strategies in order to cope with changing environments and user's needs. A

signi�cant factor refers to changes in driver's performance and ability to continue the

driving task. Since the most important variable inuencing driver's performance is the

driver's physiological state, this information would be certainly exploited by future ADAS

systems. In this Chapter we study the extension of ADAS systems in three directions:

• Cooperative driving that exploits V2V ad V2I communication for extended percep-

tion of the driving environment.

• Enhanced situation assessment based on the advanced information fusion and ex-

traction of valuable noti�cation messages.

• Extension of the classic rule based warning strategies with advanced probabilistic

decision making, incorporating environment information, as well as the driver's

state.

In Fig. 7.1 we present the building blocks of a next generation ADAS system, which

are studied in this Chapter. In Section 7.2 we present a simulation study, on the potential

improvement of driving safety using V2V and V2I communication. In this �rst study a

naive schema for information fusion is used. In Section 7.3 we present a more intelligent

method for incorporation and handling information from low con�dence sensors (other

vehicles) as well as from sensors with high con�dence (road infrastructure). Finally in

Section 7.4 a decision making method based on Dynamic Bayesian Networks is presented

for deciding whether to notify the driver about a potential hazard as well as how intrusive

the warning should be.
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Event 1 Event 2 . . . Event K

Filtering Matching

Event manager

Ego Vehicle Event Detector Communication Module

Event Handler

Static/Non static
events

Decision  making

Alert Generation
Instant events

Figure 7.2: The basic components of a co-operative driver support system.

7.2 A simulation study on co-operative driving systems

One main advantage of co-operative vehicles, which are able to communicate with other

vehicles or infrastructure, is the extension of driver's perception and eventually the re-

duction of accident risk. In order to test this hypothesis we consider a co-operative driver

support system with an architecture presented in Fig. 7.2. In this section we will examine

the following basic modules of this system:

• Communication module,

• Ego-vehicle event detector,

• Event Handler module.

• Event Manager module,

The decision maker and the alert manager (shown in Fig. 7.2), responsible for driver

noti�cation, are considered void components for the purposes of this �rst study, and are

examined in next sections.

7.2.1 Ego-vehicle event detector

The Ego-Vehicle Event detector is the in-vehicle embedded platform, responsible to rec-

ognize events and conditions in the local environment using on board sensors (e.g. tra�c
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conditions, narrow road, lane invasion, static or slow moving obstacles, etc.). The ego-

vehicle can then act as a scouter by communicating the detected events to other vehi-

cles and the road infrastructure. To thin end the ego-vehicle detected events feed the

Communication Module for broadcasting and also pass to the Event Handler for further

processing.

7.2.2 Communication module

The communication between vehicles (V2V) and infrastructure and vehicles (I2V and

V2I) is biderectional and the exchange of messages among them is achieved through the

communication module. We discriminate two kind of vehicles: i) co-operative vehicles

(i-vehicles) which have communication ability and ii) common vehicles without communi-

cation ability. Each i-vehicle produces a number of messages related to potential hazards

either detected by the ego-vehicle or received as messages by other i-vehicles or the road

infrastructure. In this work we do not focus on communication details and only the

average delay (as a function of distance and relative speed) is considered.

7.2.3 Event Handler

Incoming messages arriving from Communication Module and ego-vehicle feed the Event

Handler (the classi�cation of events, as well as the source of information, are shown in

Table 7.1). Three types of events are considered:

• Static events: Those are the events reported from infrastructure or other vehicles,

which are located to a �xed position on the highway. Those events are not removed

from the Event List until the vehicle reaches their location.

• Non-static events (such as slow moving vehicles, slowing down tra�c etc.): Those

are events reported from other vehicles or road infrastructure, but their presence is

not guaranteed by the time that the ego-vehicle reaches their reported location.

• Instant Events: Those are critical events either detected from Ego-Vehicle Detector

(i.e. lane invasion) or received from other vehicles (i.e. sudden braking) occurring

in short distance from the ego-vehicle.

The �rst two categories refer to events on the highway which are potential obstacles for

the ego-vehicle. That is, if the vehicle approaches the event with a speed over a safe limit,

this event becomes threat for the driver. Let the obstacle speed (or the safe speed limit)

be u0 and the ego-vehicle speed ue. The risk measure is considered as the braking e�ort

required in order to reach obstacle's speed, multiplied by a constant, de�ned as:

r = c
u2
r

2d
; (7.1)

where r is the risk, ur = u0 − ue the relative speed between ego-vehicle and the obstacle,

d the distance between ego-vehicle and the obstacle and c is a constant depending on the
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Table 7.1: Event Classi�cation
Event Event Category Source

Road works Static I2V

Accident Static I2V

Road Narrow Static V2V/I2V

Road condition Static V2V/I2V

Tra�c Non-Static V2V/I2V

Fixed or Slow Moving Non-static/Instant V2V/I2V/

Vehicle Ego-vehicle detector

Sudden brake of Instant V2V

foregoing Vehicle

Lane invasion Instant Ego-vehicle detector

IS −MERGED = FALSE

if FilterPass(E) == FALSE then

for each E ′ ∈ A do

if Merge(E;E ′) == FALSE then

IS −MERGED = TRUE

if !IS −MERGED then

AddInList(E)

Algorithm 4: Handling new Event Procedures

vehicle and the weather conditions. This constant is common for all events. The last

category of events requires an instant warning; thus they are directly forwarded to the

Alert generator without processing by the Event Manager.

7.2.4 Event Manager

The Event Manager is responsible to keep a list of incoming events and sort them according

to their risk. Each node of the list corresponds to a particular event which in turn consists

of the variables: (i) distance (d) which is the distance between the event and the ego-

vehicle, (ii) relative speed (ur) which is the relative speed between ego-vehicle and an

obstacle, (iii) category (c) and iv) type (t). An example of category is Static/Non-Static

and for type is road works, road narrowing etc. When a new event is received by the

Communication Module and the Event Manager, undertakes the following tasks; initially

the Event �ltering procedure removes irrelevant to ego-vehicle events, while the relevant

ones (Filter Pass) are directed to the matching procedure. During this procedure the

incoming events are compared to existing events (nodes in the list) and are merged with

nodes referring to the same event (Merge). If no merge occurs, the incoming event is

added as a new node in the list. The overall procedure is outlined in Algorithm 4. The

Filter Pass and Merge procedures are described below:
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Filter Pass

This is the function within Event �ltering which determines whether the incoming event

is worth reported in terms of relevance to the ego-vehicle. This function reduces compu-

tational cost by avoiding irrelevant information.

The criteria to consider an event as non-worth reporting are:

1. The events whose reported position is either backward or in opposite highway di-

rection from the ego-vehicle. Hence, such events are not considered forthcoming

hazards.

2. For the non-static events we consider the possibility of being no longer valid when

ego-vehicle approaches their reported location. To handle this case, an expire hori-

zon is assigned to non-static events, according to the relative speed and distance.

texpire =
ur
s

+ T0; (7.2)

where T0 is a constant indicating a time margin used to assure the event expiration.

When time-to-live of the message in the Event List becomes equal to texpire, then

the message is discarded.

Merge

In this simulation environment a simple method for handling events is adopted. The

need of such a mechanism rises from the fact that the same information may arrive from

di�erent sources. Thus we need a mechanism to derive which messages refer to the same

event. More formally, Merge is a function of the matching procedure which removes

multiple nodes from the Event List referring to the same event. For instance, suppose a

vehicle detecting a narrow road in some distance ahead. If the same event is already a

node in the Event List (provided by another source through the communication module)

we can merge or ignore the message coming from the Ego-Vehicle Event Detector.

Another important feature of the Merge function is its ability to provide high level

information from individual messages. Consider for example the scenario of a queue of

K vehicles in some distance ahead from the ego-vehicle detector. Each i-vehicle in the

queue recognizes a slow moving vehicle in front and broadcasts a message. Therefore, a

number of messages with overlapping information is received. This scenario reveals the

necessity of an aggregation mechanism which combines single incoming messages about

slow moving objects and generates high level information such as heavy tra�c. The usual

information coming from other vehicles is about obstacles (slow moving vehicles or �xed

objects). Moreover the ego-vehicle is able to detect other vehicles in the vicinity (near

lanes) and monitor their relative speed. Using the above information the Merge function

can infer tra�c situation using di�erent approaches such as rules or probabilistic inference.

In this work a simple rule-based approach is considered, following the principles below:

• All highway lanes are occupied by detected vehicles.
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for each E ′ ∈ A do

if Expired(E ′) then

Delete(E ′)

else

Update Position and Risk of E'

Re-sort List(E ′)

Algorithm 5: Update list

• The relative speed between ego-vehicle and other vehicles approaches zero.

• The ego-vehicle speed is below a threshold (typical 15 m/s).

If all the above conditions are satis�ed then tra�c jam event is inferred. Another level

of merging information is the reasoning about speci�c non-static events. For example

merging tra�c jam (non-static event) with road works (static event) in near location,

tra�c jam is due to road works is concluded. Thus, the driver could be noti�ed through

a single message containing high-level information instead of two separate messages. In

Section 7.3 a more advanced method of information fusion is described.

Prioritization

The Prioritization function is responsible for storing the new event in the list (Add Node)

keeping the priority order. This involves the re-estimation of all events' risk according to

Eq. (7.1). The Event List is then re-sorted in descending order. The highest risk event

(top entry) is then forwarded to the decision making (see Section 7.4), which decides

whether and in which way to notify the driver.

Update list

A periodic update of the Event List is performed to ensure that contained events are

still relevant according to the ego-vehicle current position (outlined in Algorithm 5). The

Expired routine determines when the nodes of the Event List are no longer valid and

the Delete routine removes them. The events are considered non-valid when the criteria

described in section 7.2.4 are met. Those are summarized below:

1. If the event type is static and the distance is smaller than zero, Ed < 0.

2. If the obstacle type is non static and tw > texpire where tw is the time-to-live of the

message in the Event List.

If the event is not deleted, we update the distance of the event Ed = Ed − Eur and the

risk is calculated again. After all events' risks are updated the list is re-sorted.
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Broadcasting handler

For e�cient scouting functionality, a continuous broadcasting of the forthcoming events

(nodes in the Event List) is necessary due to communication range limitations (max 500

meters for V2V). If detected events are broadcasted only once, the currently out of range

vehicles will not be updated for potential hazards. Hence, all nodes in the Event List have

to pass to the communication module for broadcasting. Using no reduction strategy the

total number of messages is (N−1)2. To confront with bandwidth limitations, we apply a

simple reduction strategy: If the position information of an incoming event (message from

Communication module) is close to ego-position with respect to communication range,

we consider that other vehicles within the range of the ego-vehicle are already aware of

the event and thus, this particular message is not broadcasted.

7.2.5 Simulation Environment

In order to test the outcomes of the co-operative driving, we developed an environment

[31, 69] for a macroscopic simulation of the tra�c behavior on a highway road. The

simulation environment has been developed in C#. A brief description of the environment

is given below.

Vehicle Behaviour Model

To model the vehicle behavior in a highway environment we used the Intelligent Driving

Model (IDM) [144]. The following equations describe the model:

d�

dt
= a[1− (

�

�0

)� − (
s∗

s
)2] (7.3)

s∗ = s0 + (�T +
�∆�

2
√
ab

); (7.4)

where, �0 is the desired speed of the vehicle, s
∗ is the desired dynamical distance between

two vehicles, s the actual gap, T is the safety time headway when following other vehi-

cles, a is the acceleration in everyday tra�c, b is the "comfortable" braking deceleration

everyday tra�c, s0 is the minimum bumper-to-bumper distance to the front vehicle, �

is the acceleration exponent and ∆u is the relative speed. To produce a more realistic

model we have expanded the IDM to allow lane changing, obstacle and potential hazard

detection:

• Lane Change: Vehicles are allowed to change lanes if they are following a vehicle

with speed lower than the desired. In a Ê lane highway each lane has a low and

an upper speed limit. Each vehicle aims to reach the appropriate lane according to

desired speed u0.

• Obstacle detection: In each time instance, vehicles detect obstacles ahead in a range

R. If an obstacle is detected at distance d, the actual gap s in equation (7.3) is set

to d. Otherwise s is set to a maximum value indicating that no obstacle exists.
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• Potential hazard detection: Vehicles detect obstacles in their current and adjacent

(±1) lanes. We characterize an obstacle as potential hazard if the speed of the

obstacle is lower than a prede�ned threshold. If all adjacent lanes are occupied

by slow moving obstacles then we assume tra�c congestion. Furthermore, if ego-

vehicle is slow moving, it's status is directly forwarded to the communication module

described above.

Communications Simulation

The communication characteristics considered in the simulation, are the following:

• The communication ranges of V2V, V2I and I2V.

• The latency as a function of distance and type of communication (V2V, V2I and

I2V).

Vehicles produce three types of messages: i) obstacle detected by ego-vehicle (slow mov-

ing vehicles or �xed obstacles), ii) tra�c detected by ego-vehicle when many slow moving

vehicles are present in adjacent lanes and iii) events reported by other vehicles. These

messages are broadcasted to road infrastructure and neighboring vehicles. Whenever ve-

hicles come into the range of an i-vehicle or a road infrastructure base station a new

session is initialized and messages are received within dT (latency time). The message

delivery fails if the source and target distance exceeds the communication range. i) obsta-

cle detected by ego-vehicle (slow moving vehicles or �xed obstacles), ii) tra�c detected by

ego-vehicle when many slow moving vehicles are present in adjacent lanes and iii) events

reported by other vehicles. These messages are broadcasted to road infrastructure and

neighboring vehicles. Whenever vehicles come into the range of an i-vehicle or a road

infrastructure base station a new session is initialized and messages are received within

dT (latency time). The message delivery fails if the source and target distance exceeds

the communication range.

7.2.6 Simulation Results

We used the simulation environment to relate communication characteristics (range, la-

tency) with driving risk (braking e�ort gain) as well as to demonstrate the way that

information received from di�erent sources (nearby i-vehicles or road infrastructure) is

merged. The latency of the communication is constant, i.e. if the broadcasting duration

set to T , the communication delay is dT , the actual broadcasting duration is T + dT .

Initially we provide results, concerning the range and broadcasting frequency of commu-

nication and their impact on risk reduction. We consider 10 i-vehicles moving on the

highway and a slow moving vehicle being in some distance ahead. Moreover, we suppose

that all vehicles are moving in the same lane and lane changes are not allowed. The

distance between i-vehicles is initially set to 1.5 km. For comparison purposes, we in-

troduce for each i-vehicle a corresponding Zombie vehicle (conventional vehicle without
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Figure 7.3: The risk according to the range of communication for di�erent update intervals

(Slow moving vehicle speed = 20m=s).

communication ability). Each Zombie vehicle has the same initial position, speed and

IDM parameters (as described in Eq. (7.3)) with its corresponding i-vehicle. To illustrate

the performance (in terms of mean breaking e�ort) we consider two cases; In the �rst

case, the speed of the slow moving vehicle is set to 10 m/s and in the second 20 m/s. In

both cases, all other vehicles have an initial speed of 35 m/s. Visibility (the maximum

distance where an obstacle or a foregoing vehicle is detected) is set to 200 m.

In Figs. 7.3,7.4 we provide the mean braking e�ort of the Zombie vehicles and i-

vehicles with broadcasting duration 5, 15, 30 and 60 secs for both cases of slow moving

vehicle speed. We observe that the braking e�ort in the �rst case is very high (a safe

value for normal conditions is 0.2 [53]) while in the second case the safety requirement is

achieved with a communication range of 600 m and broadcasting duration smaller than

15 sec. From the above scenario we conclude that for the second case is almost impossible

to ensure safety with only V2V communication. Then we examine the case of I2V and

V2I communication. The great bene�t is that the communication range for this case is

almost unlimited, because when a infrastructure station receives a message from a vehicle

it can broadcast it to all other stations using a LAN. In Fig. 7.5, we provide the braking

e�ort of the i-vehicles with and without infrastructure communication and for Zombie

vehicles for comparison. We observe a signi�cant reduction in braking e�ort. Moreover,

in this case we can achieve the safety margin of 0.2 braking e�ort even in the extreme

case of an obstacle with speed of 10 m/s.

Next we provide qualitative results for the function of the Event manager, using screen-
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Figure 7.6: Ego-vehicle receives through the road infrastructure messages reported by

i-vehicles with id numbers 7, 8 and 9.

Figure 7.7: When three vehicles are very close they are considered as a queue. Ego-vehicle

receives road infrastructure messages reporting an obstacle and a queue of vehicles.

shots from the simulation of the slow moving vehicle scenario. In this simulation V2I

communication is allowed and information fusion is performed and broadcasted. The

simulation illustrates a mini-map of the highway, where the vehicles are shown as ellipses

with an id number assigned, while road infrastructure base stations are indicated as el-

lipses above the highway. In the bottom of the screenshot we provide a log display where

the Event List of the ego-vehicle (id 0) is indicated. Early in the simulation when no

queue is formed yet, two obstacle messages are reported to the road infrastructure. The

�rst comes from i-vehicle with id 8 which also merged the message from the slow moving

vehicle (id 9) and the other from the i-vehicles with id number 7 (Figure 7.6). The road

infrastructure broadcasts this information, which in turn is received by the ego-vehicle.

Later when the queue has been formed (from vehicles 7,8,9), the broadcasted messages

from individual vehicles are merged (into vehicle 7) inferring a queue situation (Figure

7.7) forwarded through infrastructure to ego-vehicle.

Furthermore, we developed a second, more complicated scenario, in order to demon-

strate the merging process when many events are present. We assume road works taking

place in two out of the four lanes of the highway. Furthermore, near the road works

event we deploy a large number of vehicles with di�erent speed in order to create a tra�c

congestion. In this case, the ego-vehicle receives a large number of messages about slow

moving vehicles along with a message from road infrastructure reporting road works in the

same area. The Event Manager of the ego-vehicle merges the aforementioned messages

producing a high level message, hense "Tra�c due to Road Works". A screenshot of this

complex scenario simulation is illustrated in Fig. 7.8. Also, the log display demonstrating

the Event List of the ego-vehicle sorted by the estimated events' risk is provided.

We tested in a simulation environment an ADAS system exploiting V2V and V2I

communication and a signi�cant reduction in the braking e�ort (risk) was observed for

co-operative vehicles in relation to vehicles without communication capabilities. In this
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Figure 7.8: A more complicated scenario. The Event List of the ego-vehicle contains a

number of messages sorted by their risk.

�rst approach, we used a rather simplistic information handling method, based on rules.

In the following section we present a more advanced information handling method, based

on Bayesian network inference.

7.3 Advanced Information Handling

Using V2V and V2I communication for driving environment assessment, there is a variety

of information sources with di�erent reliability level. Co-operative vehicles, may broadcast

information coming from other sources or from the in-vehicle sensors. This information

may be of low credibility, due to sensor limitations, or may be rather low level (for example

detect road works as an obstacle). In order to handle this information and furthermore,

extract high level information, we propose the use of Bayesian networks instead of the rule

based method previously presented. The information is exchanged between vehicles (V2V)

and infrastructure (V2I) in the form of messages. Those messages contain information

about the type of the event as well as geographical information (GI), i.e. the longitude and

latitude of the event. Events detected from the ego-vehicle are considered to have a GI

similar to the ego-vehicle, while events coming from other sources (V2V, I2V) have their

own GI. In order to handle those events more e�ciently we split the horizon of our vehicle

in virtual circles which we call geographic areas (GAs). This approach allows to handle

groups of events and provide reasoning about possible causes of events or to extract more

important and usable information. This reasoning is based mainly on expert knowledge

(as reported in the literature) but it can easily extended to incorporate information from

statistical data obtained by road management systems.

We consider the GA as a circle with radius R. Considering the ranges of the radar and

the V2V communication, we assume R to have an approximate value of 150m. This is the

maximum sensing range achieved by the i-vehicle .The ego-vehicle position determines

the center of the �rst GA, while sequential tangent GAs are virtually created to cover a

distance of about 1.5 km. This is regarded as the maximum safety distance, above which

no warning message is considered necessary. This representation can be interpreted as

follows: The 1st GA is the area where the ego-vehicle resides, and thus it constitutes the
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Figure 7.9: Geo-referenced events representation using virtual GAs.

local environment of the ego-vehicle. In the local GA the driving context information

resides such as tra�c, road narrow and local weather, detected by the ego-vehicle. This

information is not part of the noti�cations issued to the driver, since he/she is assumed

to be already aware of.

Considering that the direct V2V communication range is approximately 450-500m,

we could interpret the second GA as the sphere where direct V2V communication is en-

abled, given the communication range of the antenna installed in the vehicle. However

the vehicle-originated messages can be propagated also via the RI infrastructure com-

munication channels (indirect V2V). The discrimination between direct and indirect V2V

communication is useful in the sense that not all V2V messages involve the same con�dent

level with respect to the ego-vehicle. For instance the vehicle-originated messages about

detected obstacles (produced from slow moving cars) or collision warning (produced from

safety distance violations) are only relevant to the ego-vehicle when sent through direct

V2V communication (close distance to the ego-vehicle) otherwise there is high probabil-

ity that they would have become obsolete (non-valid) by the time the ego-vehicle reaches

their reported position.

All other forthcoming events either vehicle-originated (both direct and indirect) or

infrastructure-originated which are reported at a distance D < 1:5km from the ego-

vehicle reside to one of the rest GAs according to their exact geo-position. Although we

have de�ned the 1.5 km distance as the maximum distance for noti�cations generation,

some I2V messages contain information that could a�ect driver's trip plans. For example

if there is a road closure/ tra�c jam etc. the driver may select to change his route. Such

information is considered valuable for the driver to know well in advance, hence those

types of I2V messages hold the lowest priority and should provided to the driver in the

form of informative messages.

The forthcoming events are stored into a list (event list E) and their geographic position

is checked periodically; when an event resides in a GA, its start and end position is
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Figure 7.10: The graphical model of the relation between driving environment variables.

represented in the corresponding virtual circle and the event is removed from the list.

There may be also a case, when a reported event lies in two or more successive GAs

(event 2 in Figure 7.9). Consider for example "Road Works" covering 0.5 km distance.

This event enters two successive GAs, so that in the end it covers the actual geo-area (from

start to end position). The entering of an event into a GA is called geo-referenced event

representation. During the geo-referenced representation the merging of similar events

(with same Event IDs) is also possible within a GA. This allows for e�cient handling of

redundant information either from multiple messages sent by the same source (RI, same

vehicle) or from di�erent sources (di�erent vehicles). Considering the case where the same

message for "road works" is reported by many other co-operative vehicles. This is merged

within the corresponding geo-area and is presented only once to the driver.

7.3.1 Inference of new information

Our approach is based on the assumption that the messages coming from di�erent in-

formation sources (other vehicles, infrastructure) contain information which may provide

evidence about the presence of another event. Thus they could lead either to the re�ne-

ment of the perceived situation or to the extraction of new valuable information. This

consideration allows for the exploitation of events interrelationships in order to:

i) extract new valuable information from the available data

ii) increase con�dence of information coming from low-con�dent sources

iii) generate compact noti�cations from accumulated geo-related information

For instance, the presence of Road Works in a geo-area leads to Narrow Road event,

which in turn reduces the expected average vehicle speeds in the particular geo-area. The

decrease in vehicle speeds constitutes a possible symptom of tra�c congestion in the area.

Moreover the correlations between individual events could be exploited to increase

credibility of low-con�dence information. In general terms, the events reported from the
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infrastructure are credited with high con�dence while the V2V messages are considered

low-con�dent information sources. During the geo-reference event representation every

forthcoming event reported by V2V/I2V, which lies within the range of a GA it enters

the GA with a con�dence value assigned. Given the information existing in a GA, we use

the model of Figure 7.3.1 in order to make inferences that increase the credibility of low-

con�dent information. For instance, the vehicle-originated messages reporting obstacles

(slow moving cars), together with the car velocity data enclosed in these messages, can be

fused with statistical tra�c ow data in particular days and time of day and/or weather

data to reveal information about the average vehicle speed in a geo-area or infer "heavy

tra�c".

Finally using the same model it is possible to avoid the generation of individual noti�-

cations of di�erent events in the same geo-area but produce instead compact noti�cation

messages that enclose all the available information lying in the area. For example in Figure

7.9 assuming that Event 3 refers to "accident" and Event 2 refers to "tra�c queue" then

the extracted noti�cation message for the geo-area E is "Tra�c queue due to Accident".

The two events although seem individual, they are combined in a single consolidated mes-

sage revealing also their inter-dependencies. The methodology for performing information

fusion is described in the next section.

7.3.2 Fusion of low-con�dent information sources

In this chapter we describe how the information coming from di�erent sources lying in

the same geo-area (GA) is used in order to increase con�dence of the information lying

within a GA range.

In general terms, the events reported from the infrastructure are credited with high

con�dence while the V2V messages are considered low-con�dent information sources. In

order to deal with both redundant and missing information we developed a methodology

based on Bayesian networks.

Bayesian Networks, are widely used for knowledge representation and reasoning un-

der uncertainty in intelligent systems [112]. The structure of a BN is a directed acyclic

graph (DAG). Its nodes correspond to random variables of interest while the directed

arcs represent direct causal or inuential relation between nodes. The uncertainty of the

interdependence of the variables is represented locally by the conditional probability table

(CPT) P (Xi|PaXi
) associated with each node Xi, given its parents PaXi

. The graphical

structure of BN allows the representation of interdependency between variables, which

together with an independence assumption leads to the joint probability distribution of

X = {X1; X2; · · · ; Xn}, one of the most important features of BN. The joint probabil-
ity distribution can be factored out as a product of the conditional distributions in the

network:

Pr(X) =
n∏
i=1

P (Xi|PaXi
); (7.5)

where n the number of variables. Causality and inference are two of the main properties
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Table 7.2: The conditional distribution table of accident, road works and weather.

Accident Probability Road Works Probability Weather Probability

No 0.95 No 0.95 Good 0.8

Yes 0.05 Yes 0.05 Bad 0.15

Very bad 0.05

Table 7.3: The conditional distribution table of Tra�c.

Road Narrow

Road Works Accident No Yes

No No 0.9 0.1

Yes No 0 1

No Yes 0.1 0.9

Yes Yes 0 1

of Bayesian theory, which make those models appealing for our purpose. In our approach,

we designed a model that encapsulates the causalities between di�erent events, based on

common sense, and expert knowledge. The initial BN model has the structure presented

in Fig. 7.3.1. After de�ning the structure the next step is to de�ne the parameters of the

model. In the following tables we give the probability tables of each of the variable.

7.3.3 Evidence in the model

As described earlier every forthcoming event reported by V2V/I2V, which lies within the

range of a GA it enters the GA with a con�dence value assigned. In principle, the events

reported by other cars have lower con�dence than those reported from the infrastructure.

Given the information existing in a GA, we can use the model described here in order to

make inferences that increase the credibility of low-con�dent information.

The information in classical Bayesian network theory is called evidence and the goal

of the inference is to estimate the posterior probability of the variables given the evidence

E and the model M

P (X|E;M) =
∑
i

P (Xi|PaXi
; E) (7.6)

whereXi the variables of the environment incorporated in the model and PaXi
the parents

of the variables Xi as denoted by the structure of the model.

To perform inference in Bayesian networks there are two large families of algorithms in

the literature: the exact inference algorithms and the approximate inference algorithms.

Both families have their pros and the cons. In our case, given a small model with discrete

only variables we selected to use the Junction tree inference algorithm [79] developed in

160



Table 7.4: The conditional distribution table of Vehicle speeds.

Vehicles Speeds

Weather Road Narrow Road Closure Low Medium High

Good No No 0.1 0.2 0.7

Bad No No 0.2 0.4 0.4

Very Bad No No 0.3 0.4 0.3

Good Yes No 0.2 0.5 0.3

Bad Yes No 0.3 0.5 0.2

Very Bad Yes No 0.4 0.4 0.2

Good No Yes 0.2 0.3 0.5

Bad No Yes 0.3 0.4 0.3

Very Bad No Yes 0.4 0.4 0.2

Good Yes Yes 0.2 0.4 0.4

Bad Yes Yes 0.3 0.5 0.2

Very Bad Yes Yes 0.5 0.4 0.1

Table 7.5: The conditional distribution table of Tra�c.

Tra�c

Vehicle Speeds No Tra�c Tra�c Queue

Low 0.05 0.15 0.85

Medium 0.2 0.7 0.1

High 0.7 0.25 0.05
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Figure 7.11: The con�dence on Tra�c evidence, given the number of i-vehicles reporting

Tra�c. Total number of senders: a) 5 and b) 20.

C++. In the following we describe the main steps followed in our approach, while a more

detailed description of the algorithm is included in the Appendix.

In the following we examine the evidence for each one of the variables: i) Tra�c, ii)

Road Narrow iii) Low Speeds and iv) Weather for the cases when only V2V communication

is present (the I2V information is inserted as hard evidence in the model).

Tra�c evidence

For the Tra�c event, which we expect to be reported by all the senders in the a�ected

area, we apply the following formula

P (E) =
NR

N + K
(7.7)

where NR are the senders reported the same event, N the sum of the senders of the

area and K a constant that reduces the reliability of the senders' information.

Fig. 7.11(a) and Fig. 7.11(b) illustrates the con�dence of the tra�c event with respect

to the number of the incoming V2V messages reporting tra�c in the same area.

Road narrow evidence

The road narrow event reported from vehicles actually refers to the narrowing of the

ego-lane. It is therefore expected that not all i-vehicles will recognize and broadcast this

type of event. For instance in a highway with L the number of lanes, the probability of

a vehicle moving in the narrowing lane is 1=L. Thus, the probability we assign to a road
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Figure 7.12: The con�dence on road narrow evidence, given the number of i-vehicles

reporting road narrow. Total number of senders: a) 5 and b) 20.

narrow event reported by V2V messages is given by the following formula:

P (E = RoadWorks) =
NR

NR + N ′

L
+ K

(7.8)

=
NR

NR + N−NR

L
+ K

(7.9)

=
NR

L−1
L
NR + N=L

+
K

(7.10)

where N ′ are the co-operative vehicles that did not send a road narrow message.

In Figs. 7.12(a) and 7.12(b) we illustrate the con�dence of road narrow event with

respect to the number of the incoming V2V messages reporting road narrow in the same

area.

Low Speeds Evidence

Suppose we have N incoming V2V messages. Each one of them incorporates a �eld

regarding the sender's speed, ui. In case the messages refer to obstacles (assuming slow

moving vehicles) the information about the obstacle's speed (at least, an estimation) is

also included. Taking all this into consideration we could say that we have a collection

of N speed samples for the speci�c region (here N is the number of senders as well as the

obstacles reported). In order to have a more precise estimation of the actual average speed,

given that we have few samples (number of i-vehicles) we incorporate to our estimation a

prior estimation of the average speed, based on speeds observed in the past.

In road management systems resides a large database of observed average speeds in

the past. Those speeds are dependent mainly on the road section, on the hour of the day
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Figure 7.13: A sample histogram (not real data) of a road section.

(Rush hours) and the day of the week. Given this information we equip our model with

histograms of average speeds and time, referring to di�erent road sections and di�erent

days of week.

We need an estimation of the average speed (AS) of a speci�c geo-area. In order to

reduce the e�ect of possible few samples we add K "virtual" senders with speed calcu-

lated from the speci�c bin of the histogram database, and the average speed is estimated

according to the following equation

AS =

∑i=N
i=1 ui + K · AS ′(position; time;DayOfWeek)

N + K
(7.11)

The K de�nes how are we going to rely on the statistics. If K is large (relative to the N)

then we always estimate the average speed from the statistics (the histograms stored).

If K is small (relative to the N) then we ignore the statistics and rely only on the i-

vehicles. A good compromise is to set at each time K = N in order to rely equal on

both information sources. AS ' is a look up function which relates the current information

of geographic area (position, time and Day of Week) with a speci�c bin in the stored

histograms and return the expected average speed. In Fig. 7.3.3 we give an idea of how

those histograms seems. This does not refer to real data, but it is a common pattern,

presenting two main rush hours (morning and afternoon) with low speeds. Such statistic

data could to be exploited in order to have an estimation of expected average speed.

After calculating the average speed, we use a softmax function in order to get the
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probability of the Vehicle speeds (V.S) state:

P (V:S: = Verylow = as) = ã + (1− ã)
e�1·(as−�1)∑

i∈[1;2;3] e
�i·(as−�i)

(7.12)

P (V:S: = Medium|AS = as) = ã + (1− ã)
e�2·(as−�2)∑

i∈[1;2;3] e
�i·(as−�i)

(7.13)

P (V:S: = High|AS = as) = ã + (1− ã)
e�3·(as−�3)∑

i∈[1;2;3] e
�i·(as−�i)

(7.14)

(7.15)

where ã is a constant that modi�es the credibility we give to our estimation of the

average speed (AS).

Weather Evidence

The major source of information about weather conditions is the Road Infrastructure.

There are several types of weather conditions typically reported by road infrastructure

but in our model we grouped those values in three categories (Good, Bad and Very Bad

weather conditions).

7.3.4 Information value

Taking advantage of the reasoning abilities of Bayesian Networks and the causalities

denoted in the BN model of Fig. 7.3.1. We proceed with the extraction of the usable

information for the driver, which de�nes the content of a potential noti�cation message.

The content of noti�cation messages derive from the information existing within the

GAs. As already mentioned, the GA A represents the ego-vehicle surroundings and the

information lying there constitutes the driving context. The rest of the GAs cover the area

where a possible noti�cation message could be extracted. In order to decide whether the

information (event) lying into a GA generates a noti�cation message we have to consider

the following:

1. The validity of the information.

2. The information gain.

3. The current driving context

In the following we describe the approach followed to manage the three issues above

mentioned.

1) The validity of information is estimated from the posterior probability of each vari-

able X given the evidence E and the P (X|E) . Invalid information can be derived

from vehicle-originated messages which are propagated via the RI infrastructure
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Table 7.6: Information Ranking.

Event Source of Info Priority Order

Critical obstacle ahead Ego-vehicle 1

Lane invasion Ego-vehicle 2

Slow down tra�c V2V 7

Slow moving car V2V 11

Road narrow V2V 10

Safety dist. violation V2V 4

Weather conditions I2V 8

Road closure I2V 9

Accident I2V 3

Road works I2V 5

Tra�c Queue I2V 6

communication channels (indirect V2V). For instance the vehicle-originated mes-

sages about moving obstacles (slow cars) or collision warnings are only relevant to

the ego-vehicle when sent through direct V2V communication (close distance to

the ego-vehicle) otherwise there is high probability that they would have become

obsolete (non-valid) by the time the ego-vehicle reaches their reported position.

2) The Information Gain (IG) is a parameter introduced to express how worthy the

information is for the driver. It is a qualitative measure of the usefulness of the

information, derived from a questionnaire to a number of drivers. Table 7.6 de-

picts the priority order of speci�c events (1 indicates highest priority) according

to their criticality. From Table 7.6 we extract the Information Gain after a rating

normalization.

3) Concerning the current driving context this is actually the information lying in

the surrounding of the ego-vehicle (GA: A). Our goal is to avoid the generation

of noti�cations about events the driver is already aware of. Take for instance a

tra�c congestion event recognized by the in-vehicle sensing system; this resides in

the ego-vehicle's GA. Consider also a tra�c congestion event reported by I2V which

is expanded in the next 3 GAs (A, B, C). Apparently there is no need to provide

a noti�cation about forthcoming tra�c congestion since the driver experiences it

already. To tackle this issue we de�ne the Temporal Information Gain (TIG) as

the Information Gain of a variable given the current driving context. When the

con�guration of a variable in the driving context is the same with the evidence of

that variable in the GA, the Temporal Information Gain is equal to zero otherwise

it is equal to the Information Gain.
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To address all three aforementioned considerations in a similar way, for a con�guration j of

a variable Xi we estimate the Expected Temporal Information Gain (ETIG) as following:

ETIGj
i = P (Xi = xji ) · TIG

j
i (7.16)

This parameter de�nes the worth-reporting information and allows the management of

priorities in the sense that the information assigned with high ETIG (over a threshold

value) is included in the noti�cation message.

The procedure is the following:

Step1 : Every time an event enters a GA, its corresponding information gain is assigned

to it.

Step2 : Given the current driving context and the evidence for each model variable derived

from the information fusion we estimate the ETIG for all model variables of the total

number of GAs.

Step3 : All the variables within a GA with ETIG >= Th (Th=threshold) are combined

and generate a compact noti�cation message.

Step4 : The extracted noti�cation message passes to the Decision Making, which deter-

mines when the message will be provided to the driver.

7.3.5 Experiments and results

In this section we test the inference capability of the BN model. Suppose we have K

incoming messages about potential obstacles. Combining those events with the statistical

data available we have an estimation of the average speeds (AS) on a speci�c GA. We

then examine two cases:

• 1st case: no other evidence (i.e. no message from RI) is available

• 2nd case: two additional messages are received from RI, one reporting an Accident

and the other reporting Heavy Rain (interpreted as bad weather).

In the �rst case the only information is the Average speed which mainly a�ects the

probability of Tra�c variable. Figure 7.14 illustrates the probability (a) and the Expected

Information Gain (b) of the Tra�c variable (No Tra�c, Tra�c and Queue) in relation to

our estimation of AS. As Tra�c we imply the "slow down tra�c" while as queue the tra�c

congestion forming a queue of vehicles. The straight lines in both diagrams correspond

to the probability of Tra�c variable, without the information of AS.

Fig. 7.14 illustrates the probability (a) and the Estimated Information Gain (b) of the

Tra�c variable (No Tra�c, Tra�c and Queue) in relation to our estimation of AS given

also the other evidence about accident and bad weather. Again the straight lines refer to

the probability of Tra�c variable, without the information of AS.
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Figure 7.14: The probability of Tra�c states (a) and their Expected Information Gain

(b) with the Average Speed (AS) when there is no other evidence ( = 0:8).
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Figure 7.15: The probability of Tra�c states (a) and their Expected Information Gain

(b) with the Average Speed (AS) when there is evidence of Accident and Bad Weather

( = 0:8).

We notice that in the second case the probability of Queue and Tra�c (i.e. slow down

tra�c) is increased and the probability of No-Tra�c does not grow as rapidly as in the

�rst case with the Average Reported speed. The Average Reported speed however is

considered as a non accurate metric, thus it does not necessarily correspond to the real

speeds occurring on the road. This is enforced by the constant ã. Setting ã = 1, we treat

the Average Reported speed as the only reliable indicator of the expected speed on the

road.
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Figure 7.16: (a) A long-range view of the tra�c simulation and (b) a snapshot of the

visual interface of the information handling.

In order to test the information handling in more complicated scenarios, we extended

the simulator developed in section 7.2. The basic modi�cation lies on the information

handling that is performed according to the method described above instead of the initially

developed rule based method.

Figures 7.16(a) and 7.16(b) constitute a time instance of an experiment execution

that demonstrates the whole functionality of the information handling. In more detail,

the incoming messages stored in the list refer to Obstacles detected by other cars and

to Road Works event sent by the RI. The probabilities of all model variables within a

geo-area are computed according to the evidence of speci�c events. Here the Road Works

probability is 1 (high con�dence) and the probability of slow tra�c is increased with the

number of incoming Obstacles messages in a geo-area. Then the Estimated Temporal

Information Gains determine the valuable pieces of information given the current driving

context (1st left circle). In the illustrated example the worth-reporting events are the

Road Works and the Slow tra�c which, given their interdependency, are combined in a

single message "Slow tra�c due to road works" (Fig. 7.16(a) ).

7.4 Advanced Decision Making

In this section we present a methodology for advanced decision making based on Dynamic

Bayesian networks. The goal is to provide the driver with tailored messages about critical

forthcoming events. The types of messages vary according to a number of parameters like

the severity of a given event (which is interpreted by the braking e�ort required by the

driver until he reaches the safety limit), the driver state (stress and fatigue levels), the

local weather and tra�c conditions, etc. A sophisticated decision making is necessary to
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ensure that the driver is aware of forthcoming events well in advance so he has enough

time to react while at the same time the alerting system is as less distractive or irritat-

ing as possible. The possible actions of the Decision Maker are: no noti�cation, text

Message with information, light vocal message and intense vocal message. The decision

making is based on the idea of Inuence diagrams [60] and dynamic Bayesian networks.

Dynamic Bayesian Networks (DBN) [106], are temporal extensions of the Bayesian Net-

works. When constructing a DBN for modelling changes over time, we include all variables

X = {X1; X2; ; Xn}, at each time slice. If the current time step is represented by t, the

previous time step by t− 1, and the next step by t + 1.

While in Bayesian Networks we have a unique structure G, denoting dependencies

among variables, in DBNs we have two structures, the �rst one G0, de�nes dependencies

among variables on the same time slice, and the second one variables Gtrans, de�nes time

dependencies among variables in successive time slices. To construct a DBN model, the

same basic steps must be followed, as those for constructing a simple Bayesian Network:

1. De�ne which variables are inserted in the model.

2. De�ne the structure of G0 and Gtrans.

3. De�ne the parameters of the variables involved in the model.

After completion of these three steps, one could modify both structure and parameters

using experimental data and existing training algorithms.

DBNs, like simple static Bayesian Networks can be used to estimate the expected

con�guration of all or some of the variables, maybe given some evidence (information

about the state of some variables). However in DBNs, those variables may lie on a future

time slice, and represent a future con�guration of the environment.

In order to have a Decision making model we need to add on the existing DBN model,

two additional types of variables:

• The Decision Node (which decision to make)

• The Utility Nodes (negative costs on speci�c con�gurations of the model)

The Decision Node is usually a multinomial random variable, where the number of

con�gurations is equal to the number of decisions we are able to make. The Utility Nodes

are usually children of discrete variables and they consist of a table where we assign a

cost for each possible con�guration of the parent variables. However in our case, we have

both discrete variables, so one can consider the utility nodes, as utility functions on some

or all of the variables:

If Xi is continuous

R(Xi) = f(Xi); if Xi continuous; (7.17)
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and if Xi is discrete the utility function is given as:

R(Xi) =


w0; if Xi = xi0
w1; if Xi = xi1

...

wk; if Xi = xik

: (7.18)

where xij the jth con�guration of variable Xi and wj the utility assigned to that con-

�guration. Of course Xi can be one or more variables that are involved in the function

R.

In the following sections we describe the variables inserted in the model, the structure

and the parameters of the model, as well as the sampling technique used to estimate

the risk function in future time slices. Finally, we examine the behavior of the decision

making model, in prede�ned scenarios, using a simulation environment.

7.4.1 Variables of the model

First of all the variables of our decision making model are de�ned. A description of those

is given in the following table. The variables are categorized into discrete and continuous.

Next we describe how we threat the two di�erent categories.

Discrete Variables

In the case of a discrete variable with only discrete parents its distribution follows a

multinomial distribution:

P (X = xi|PaXds = xdsj ) = �ij; (7.19)

where xi is the ith con�guration of X, PaXds the set of discrete parents of the X, xdsj
the jth con�guration of the parents and �ij the probability (

∑
j �ij = 1). In the case of a

discrete variable with both continuous and discrete parents its distribution is a softmax

distribution

P (X = xi|PaXc = xc; PaXds = xdsj ) ∼ eaij(xi−bijx
c)∑

j e
aij(xi−bijxc)

; (7.20)

where PaXc the set of continuous parents of X.

From the above equation it holds that:∑
i

P (X = xi|PaXc = xc; PaXds = xdsj ) = 1; (7.21)

for each con�guration xdsj of the discrete parents of X.
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Continuous Variables

We model continuous variables as general conditional Gaussian distributions: If the vari-

able X has no parents or only continuous parents:

X ∼ N(f(PaXC ; Ät); �∆t2) (7.22)

If the variable X has discrete parents with K possible con�guration then the variable

is distributed according to the following table:

X ∼


(N(f1(Pa(X

C); Ät); ó1Ät
2)if Pa(X

ds) = xd1
...

N(fk(Pa(X
C); Ät); óKÄt

2)if Pa(X
ds) = xdK)

(7.23)

where PaXC are the continuous parents of X and PaXds the discrete parent of X and Ät

the time interval between two successive time slices.

Model Structure De�nition

Having de�ned which variables are used in our model, we then describe the structure of

the model considering the inter- and intra- dependencies of our variables. The structure

of G0 is given in Fig. 7.17(a) and of Gtrans in Fig. 7.17(b). We briey describe hereby

the reasoning of our structure: We �rst examine the intra-dependencies of the model

(the dependencies in the same time-slice). In the �rst time slice, the speed of the vehicle

depends only on the tra�c conditions. The probability of the driver being distracted

is related to the driver state and to the tra�c conditions, since it is more likely to be

distracted when there are a lot of stimulations around. The probability of driver seeing the

obstacle, depends on the driver's state and the distance from the obstacle. The parameter

of visibility is incorporated in the See's distribution parameters.

The Acknowledgment depends on the Decision we make (e.g. generate noti�cation),

if the driver is distracted or not, as well as on the driver's state.

The Memory variable, can be considered as a history variable, and contains the in-

formation about whether the driver has been noti�ed with any message in the past.

Obviously this variable depends only on the Decision variable.

In the following we examine the time-dependencies between the variables. For instance:

• If the driver sees the obstacle in the previous time slice then it also sees it in the

next time slice.

• If the driver is aware (acknowledged) of the obstacle in time slice, then he will be

aware also in the next time slice.

• If the driver reacts to the potential hazard in the previous time slice then it also

Reacts in the next time slice.

• The reaction time increases when the driver is aware of the obstacle.
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(a) (b)

Figure 7.17: (a) The structure of G0 and (b) the structure of Gtrans.

7.4.2 Variable Distributions

In Section 7.4.1 we gave an overview of the variables that are inserted in the model. For

each of them we have to de�ne the parameters of their distribution function, for both the

G0 and Gtrans. Here we give some insight about the most important ones.

Decision

The Decision is treated as a random discrete variable. We have four possible decisions

(Table 7.8) and obviously the discrete variable corresponding to the Decision shall have

four states. We always estimate the expectations given the Decision in the �rst time slice

D0. In the �rst time slice all actions (Decision states) have the same probability. For the

next time slices we give a large probability to the No-Message action and small to the

other, in order to take the "optimal" decision, without let the model depend on future

actions.

Speed

We have two di�erent functions for the speed change. The �rst one is the free model when

the driver does not react to the potential hazard:

ff = Vt−1; (7.24)

and the second one is the model according to which driver decelerates when acknowledged

about the hazard:
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Table 7.7: The parameters of speed distribution of Gtrans.

React See Tra�c f amax V0

No No No ff - -

No No Yes ff - -

No Yes No fv ìf · g Obstacles Speed

No Yes Yes fv ìf · g Obstacles Speed

Yes No No fv (ìf · g)=c 20 m/s

Yes No Yes fv (ìf · g)=c 12 m/sec

Yes Yes No fv ìf · g Obstacles Speed

Yes Yes Yes fv ìfg Obstacles Speed

fV = Vt−1 − amax ·Ät · e−b(a−amax=2); (7.25)

where

a = min(0;
(Vt−1 − V0)

2

2 · St−1

(7.26)

The amax and V0 are the only values that change according to discrete parents con�g-

uration.

In Table 7.7 we the amax and V0 according to di�erent con�gurations of discrete par-

ents.

Where ìf is the friction constant which depends on the weather conditions, g the

gravity speed and c a constant (c > 1) which implies that the driver tend to decelerate

more softly when not seeing the obstacle.

Distance

As far as the distance variable is concerned, the prediction of the distance in the future

time slices is signi�cantly important. The function of distance is obviously:

fs = S(t− 1)− V(t− 1) ∗Ät (7.27)

React

The react function is a softmax CPD used to model the cumulative distribution of the

log-normal distribution of the Reaction Time of the driver. The React variable has a

continuous parent (the Time to React) and three discrete parents:

• React (t− 1): If the driver is supposed to react in the previous time slice, then with

high probability he will also react on the current time slice

• Driver State: The average reaction time increases when the driver is fatigue.

• Tra�c: The average reaction time increases when there is tra�c.
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For each con�guration of the above mentioned we have di�erent expected reaction time

distribution and we �tted the softmax function on the cumulative distribution of that

distribution. In Fig. 7.18 we illustrate the cumulative distribution of the Log normal

distribution (mean 1.2 with standard deviation 0.2 ) and the corresponding softmax func-

tion.

Time to React (RTt)

If the driver is acknowledged about the obstacle, or "sees" the obstacle, then we consider

that there is a time interval until the driver do react (we observe some speed reduction).

If the driver Sees or is Aware of the obstacle, the function of time to react is considered

as:

fRT = RT(t− 1) + Ät; (7.28)

otherwise

fRT = 0: (7.29)

Acknowledge

The Acknowledge variable describes the probability of the driver being aware of the po-

tential Hazard. The basic rules used to derive the probability table are: i) the driver

cannot be acknowledged if we give a Text Message and he is distracted, ii) there is a

smaller probability for the driver to be acknowledged when he is tired (fatigue) and the

noti�cation is a Text Message and iii) moreover the driver tends to forget (slowly) the

information, so the probability of acknowledged at (t+ 1), given that he is acknowledged

in (t) is less than 1.

Memory

Memory variable is used as the history of the past decision we made. It has two states (No

Message Given/Message Given). When a Decision for a message is taken, the Memory

takes the state Message Given. For the next time slice the Memory variable has the

same state as in the previous time slice, so if at some point we decide to give a message,

thereafter the Memory variable will always have the Message Given state, otherwise it

will always have the No Message Given state.

Utility Functions

Having de�ned the parameters of the model, we need also to de�ne the cost functions

according to which the decisions are made. We have two basic categories for utility

functions: safety related system acceptance related In the following we briey describe

the utilities functions for each of the two categories.
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Figure 7.18: The cumulative distribution of the Log normal distribution (mean 1.2 with

standard deviation 0.2 ) and the corresponding softmax function.

Table 7.8: The variables of the DBN model.

Variable Description Type Notation

Decision No Message/ Discrete D

Text Message/

Voice Message/

Intense Voice Message

Memory A variable indicating if Discrete M

we provided message on the past

Driver State If the driver is in fatigue or stress state Discrete Ds

in fatigue or stress state

Weather Good/Bad/Very Bad Discrete W

Tra�c Tra�c condition Discrete T

Distracted An estimation if the driver Discrete Da

is distracted or not

Acknowledged An estimation if the driver Discrete Ack

is aware of the hazard

See If the driver sees the obstacle Discrete See

Acknowledged or See A combination of the two variables Discrete AcqOrSee

React If the driver reacts to the potential Hazard Discrete R

Reaction Time Time passed from the time driver Continuous Rt

has been acknowledged about the hazard

Speed Speed of the Vehicle Continuous V

Distance Distance from the Hazard Continuous S

Time of Day Day/Night Discrete Day
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7.4.3 Safety Related Utility Functions

Reaction Time

The �rst function used to meet safety requirements is a function of the reaction time of

the driver according to the estimated speed and distance in di�erent time slices

Bt =
St − (Vt−V0)2

2�f ·g

Vt
(7.30)

Rt =
C

1 + ea(Bt−b)
(7.31)

(7.32)

C is a multiplicative factor, that depends on the context. In our �rst approach this factor

depends on weather conditions. However almost all the other variables (e.g. driver state)

are also involved in this utility function, since they contribute in the estimation of speed

in next time slices.

Driver State

A utility is assigned to voice messages when the driver state is stress. This utility is

magni�ed in tra�c conditions and very high speeds (where a nervous reaction could

cause accident). This should lead to strategies where Voice messages are produced earlier

in order to avoid possible invocation of intense voice messages.

A utility is also assigned to intense voice messages when the driver state is fatigue.

This is to ensure that the driver is alerted about the forthcoming event.

Driver Distraction

When the speeds are high or an obstacle is close, the Text Message has an additional cost,

because it can distract the driver.

7.4.4 System acceptance Utilities

Message Repetition

In order to avoid unnecessary messages to the driver we assign negative utilities (cost) to

the Text Message (-100), Voice Message (-200) and Intense Voice Message (-300).

Information Provision

We also assign a very large utility to the state of Memory variable corresponding to

"message provided". This enforces the system to produce at least one message, since it

is not acceptable to hide information from the driver.
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for all j = 1 · · ·M where M the number of samples do

for all d = 1 · · ·D where D the number of possible decisions do

V 0 = E0; d

wj = 1

Get the i variable in the elimination order El.

if the variable X0
i is Evidence then

wj = wj · P 0(X0
i = Ei|PaX0

i
∈ V 0

j )

else

Sample theX0
i variable (according toX

0
i 's distribution) given the sampled values

of its parents:

x0
ij ∼ P 0(X0

i ; PaX0
i
∈ V 0

j )

V 0
j = V 0

j ∪ x0
ij

for all t = 1 · · ·K where K the number of time slices do

V t = Et

Get the i variable in the elimination order El.

if the variable X0
i is Evidence then

wj = wj · P t(X t
i = Ei|PaXt

i
∈ V t

j ; PaXt−1
i
∈ V t−1

j )

else

Sample the X0
i variable (according to X0

i 's distribution) given the sampled

values of its parents:

x0
ij ∼ P 0(X0

i ; PaX0
i
∈ V 0

j )

V 0
j = V 0

j ∪ x0
ij

Algorithm 6: Sampling(El:Elimination order of G0,E:Evidence)

7.4.5 Utility estimation for each possible action

The next step is the estimation of the expected utility of each decision. This is not trivial

in case of both discrete and continuous variables, so we use approximate inference instead,

based on sampling.

After applying the sampling procedure we get a set of samples for each time slice.

Using those samples we can estimate the expectation of the utility function according to

the following equation:

E[R(X t
i )|D = d] =

∑
j where dj=d

wjR(xtij)∑
j where dj=d

wj
(7.33)

E[R(X t
i )] =

∑
j wjR(xtij)∑

j wj
(7.34)

In a similar way we can estimate the variance of our variables:
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V ar[R(X t
i )|D = d] = E[R(X t

i )|D = d]− E[R(X t
i )|D = d] · E[R(X t

i )|D = d](7.35)

=

∑
j where dj=d

wjR(xtij)
2∑

j where dj=d
wj

(7.36)

−E[R(X t
i )|D = d] · E[R(X t

i )|D = d] (7.37)

V ar[R(X t
i )] =

∑
j wjR(xtij)

2∑
j wj

− E[X t
i ] · E[X t

i ] (7.38)

We should notice one potential drawback of the above-mentioned algorithm. In many

cases when the evidence is very unlikely the wj's could be very small, or even zero and

our estimation of E[X t
i ] is far from accurate. This could be magni�ed if we had evidence

in far time slices. However in our case, due to the nature of evidence and the model design,

this is not the case and we are always able to take a fair estimation of the E[X t
i |D = d].

Moreover, there is an additional advantage of our solution. The approximate inference

algorithms are in many cases also called any-time inference algorithms. The reason is that

at any time you can stop the procedure and use the samples that are already produced

for at least a poor estimation.

The total utility of any decision is a sum over all the di�erent utility functions.

Rt
d =

∑
j

Rt
jd =

∑
j

E[Rj(X
t
j)|D = d] (7.39)

where X t
j the variables involved in the utility function Rj in time slice t.

The average utility of a decision d over P time slices is given as

Rd =
1

P

t=P∑
t=1

Rt
d (7.40)

The action d that the system does is the one with the higher Rd.

7.4.6 Driver warning simulator

In order to test the decision making mechanism and the driver warning we extended the

simulator used for the fatigue study presented in Section (3). The simulation environment

(Fig. 7.19) supports a short-range view of the ego-vehicle and its surroundings. The

simulator contains the following parts:

1. A 3d environment

2. The ego-car sensor emulators

3. An HMI emulator.

In the following we describe the development of the 3 main parts of the simulator.
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Figure 7.19: The simulation environment

The 3D environment

For the development of a realistic 3d environment we used the Microsoft XNA framework,

which is based on the Directx3d and provides many higher level utilities for a developer

of 3d engines. The world on this environment consists of:

• A highway Road (with four lanes)

• Surrounding Environment (sky, trees, grass, sun)

• Other vehicles (eventually some of those, will be other vehicles)

• Potential Obstacles (e.g. road works)

The user has control over the ego-vehicle. The camera follows that vehicle, and for

vehicle controlling we use the Logitech Steering Wheel, which includes:

• Steering wheel: used to steer the vehicle.

• Gear: each gear has a maximum and minimum speed, as well as di�erent maximum

acceleration. The change of gear is manual.

• Acceleration and brake pedals: used to accelerate and decelerate the vehicle.

• Buttons on the steering wheel: used to emulate other functions (activating right

and left indicators)

Furthermore since we have a vehicle controlled by the user (steering angle, acceleration),

we needed a vehicle dynamics model to simulate the behavior of the vehicle, according to

the input of the driver. Those dynamics are described in detail in [35, 101]. For the other
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Figure 7.20: The utility of each decision as a function of the distance from the obstacle.

We also demonstrate the time instances where the system makes a decision di�erent from

no message.

vehicles in the environment we used the IDM model [144]. This model calculates the

acceleration and deceleration of vehicles on a single lane in order to keep a safety distance

between them. In order to produce a more realistic environment we added a simple lane

change behavior to those vehicles as described in Section 7.2.

Ego-Vehicle Sensor Emulators

The sensors emulated are: i) a radar sensor for detection of preceding vehicles (distance

and speed) and ii) a video sensor for lane detection and lateral vehicle position estimation.

Can-Bus/Radar Sensor Emulators

Those two sensors are more easily emulated. The basic information of the can-bus (speed,

left/right indicator etc) are extracted from the simulation context.

GPS Emulation

The GPS information (latitude, longitude, speed and heading) are extracted from the

simulation context. Our road is straight, and starts from a speci�c latitude and longitude

position with a speci�c angle. All vehicles have the same heading. The current position

of a vehicle is extracted from the position on the road (distance traveled) and the starting

position. This holds also for the ego-vehicle.

Using the information of the above sensors we detect events in the proximity of the

vehicle, whereas a list of various long range messages, corresponding to infrastructure

or other vehicles, is stored in a database and provided to the vehicle at speci�c time

instances. In Figs. 7.20(a) and 7.20(b) we present the behavior of the decision making
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for two scenarios. In both cases we have received a message of an obstacle ahead and we

instructed the driver to keep a constant speed near 35 m/sec as approaching the virtual

obstacle, and to decelerate once arriving at a speci�c distance from it. In the �rst scenario

the driver state is considered normal, whereas the weather is considered good. We observe

that the system produces two messages: one text message and one regular voice message.

In the second scenario, the driver is considered in fatigue state and the weather rainy.

We observe that the system instead of a regular voice message produces an intense voice

message.

7.5 Discussion

We have presented three studies on individual parts of an advanced cooperative driving

system. A cooperative driving system is an advanced driver assistance system (ADAS)

that exploits wireless communications (vehicle -to- vehicle communication and road infras-

tructure -to- vehicle communication) with the scope to extend driver's perception through

the information coming from the external environment and to develop more accurate pre-

crash warning systems. In the �rst study we focused on the communication requirements

(range, latency, broadcasting frequency) of a driving cooperative system that need to be

met, in order to achieve a safety gain. An enhanced situation assessment was also achieved

through the merging of di�erent information sources and the evaluation of individual risks,

which was tested through a long-range simulation environment, specially built for testing

purposes. In the second study an intelligent information handling mechanism was devel-

oped. It is designed to perform information fusion and reasoning and to extract high-level

worth-reporting information for the driver. For the information fusion we followed an ap-

proach based on geo-reference representation of the ego-vehicle and forthcoming events

while for the inference on the road situation and the de�nition of the noti�cation content,

we developed a methodology based on Bayesian networks. The proposed methodology

supports the management of low-con�dent or missing information sources (e.g. absence of

road infrastructure), as well as the generation of consolidated messages about geo-related

events (e.g. Tra�c due to Road Works, Accident caused Road Closure, etc). The validity

and prioritization of forthcoming events are also tackled through the Information Gain,

a parameter introduced as a measurable indicator of noti�cation importance, given the

current driving context. The outcome of the advanced information handler is the gener-

ation of enhanced noti�cation messages. These enhanced noti�cations are further used

by a decision making mechanism [124] in order to provide the driver with an optimal

warning strategy about forthcoming hazards. This is described in the third study of this

chapter. The decision making is based on sampling of Dynamic Bayesian networks for

driving risk evaluation and decides upon the best warning strategy, taking into account

both environmental conditions and driver's state. The decision mechanism was evaluated

on a user interactive simulation environment. The conducted experiments showed that

the information of the driver psycho-physiological state if incorporated into the pre-crash
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warning systems, can evolve further this technology by increasing the safety margins with

the provision of alerts tailored to the current driver status.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

8.2 Future work

8.1 Conclusions

We presented a study on the detection of driver's fatigue and stress levels. Our estimation

of fatigue levels is feasible using only physiological signals (ECG, Respiration, EDA) with a

86% accuracy on three fatigue levels. Stress detection, based only on physiological signals

proved a more di�cult problem. By incorporating more information into the system,

such as video features or environmental factors, wthe accuracy in fatigue and stress levels

estimation is increased (87.5% accuracy on three fatigue levels and 85% accuracy on two

stress levels).

The main di�erence from similar works, is that drivers were monitored during ordi-

nary work days, without restriction on sleep hours or external stimulations, for a long

period of time. Thus, we consider that this study truly depicts the actual physiological

status of the particular subject during driving, and the obtained results correspond to

near optimum performance of a real (personalized) driver status monitoring system. In

a simulation environment it was veri�ed that both low and high fatigue states lead to

driving performance impairment. Furthermore the relation of physiological signals and

driving performance was studied. Our results indicate that using only drivers' physiologi-

cal measurements, a prediction of reaction time is possible. This implies that an in-vehicle

system capable of monitoring driver's physiological signals, could be trained to predict

the reaction times of the driver prior to events and adjust accordingly the safety margins

of a driver assistance system.

The physiological state of stress is strongly associated with driving conditions and

the presence of speci�c increased-risk driving events. Towards this direction, we pro-

posed a methodology, applicable in real-time, for assessing drivers' stress events based
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on physiological signals' monitoring (ECG, EDA and respiration) and a driving history

which is built upon information from GPS and CAN-bus. The information extracted is

incorporated into a BN model for stress event detection. The proposed methodology was

evaluated in real driving conditions and demonstrated good generalization performance,

mainly due to the online parameter estimation. The proposed methodology, associating

driver's stress events with speci�c driving events, could exploit Bayesian Framework's rea-

soning ability and answer to queries of the type "is the driver stressed when overtaking?".

Such queries reveal valuable information about driving behavior which can be exploited

by the new generation of advanced driver assistance systems.

A very important issue in physiological state recognition systems, is the adaptation to

new subjects-drivers. We presented an approach based on the estimation of the param-

eters of a geometric transformation applied on a Gaussian mixture model. The method

proposed here is based on the EM framework. We considered both the cases of full positive

de�nite and spherical covariance matrices. The original approach gives very good results,

when the distance of the initial guess and the actual transformation parameters is rela-

tively small. This is a restriction inherited from EM behavior, since it can be considered

as a local optimization method. To overcome this problem, we extended the original EM

approach to a multiple start one. The multiple-start EM had signi�cant higher probability

of �nding the correct solution. Finally we extended the initial transformation model, al-

lowing each component having an individual-local transformation, under the assumption

that local transformations are smaller in magnitude than the global one. This assumption

is incorporated in the EM framework using prior distribution on the local transformation

parameters, leading to a MAP-EM approach. Finally we demonstrated how the described

method can be applied for the adaptation of a driver state recognition system to new

drivers, with very promising initial results.

Information about driver's physiological state is valuable for modern driver support

systems, since they could adapt their strategies accordingly, increasing driving safety. In

the last Chapter we perform a study on the basic functionalities of a new generation driver

support system, which is able to assess driver's state, as well as the driving environment

through in-vehicle sensors and communication with other vehicles and road infrastruc-

ture. We initially conducted a series of experiments in a macroscopic tra�c simulator

to investigate the safety gain from such systems and derive some minimum requirements

in communication characteristics in order to maximize this gain. An emerging need for

those systems is the advanced information fusion, since there is incoming information

from di�erent sources with low con�dence and credibility (other vehicles) as well from

high con�dence sources (road infrastructure). We propose a solution based on Bayesian

networks, which is suitable for both information fusion and evidence explanation. Us-

ing the proposed solution we could extract the messages which are more informative for

the driver. Furthermore, we investigate the use of Dynamic Bayesian networks for opti-

mal warning strategy selection, replacing the simplistic non-adaptive rule based methods

employed by the state-of-the-art alerting mechanisms.
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8.2 Future Work

In the recognition of driver's physiological state, there are several future directions. The

�rst one is to search for physiological signal characteristics that could discriminate better

di�erent fatigue and stress levels. We could also use more information, such as facial

expressions, or to investigate new sensors such as thermal imaging. Next we should test

the adaptation methodology proposed in a large set of drivers.

Concerning stress event detection, the discrimination of stress events in a larger scale

could be very bene�cial, since events including higher risk are more probably to lead to

changes in the physiological state and driving behavior. In order to distinguish stress

event in a larger scale, we need a more precise annotation method, a better physiological

signal acquisition equipment, neglecting noise due to drivers movements, and probably

incorporate additional information, such as facial expressions and head movements. An-

other possible extension of the proposed methodology is the prediction and evaluation,

in terms of the risk involved, of speci�c driver actions, i.e. overtaking. We observed that

prior to such an event there is an activation of the nervous system, related to the decision

making process. Using the evidence of this activation and the driving behavior of the

driver we could estimate driver's intension for overtaking. Having also a better assess-

ment of the driving environment we could evaluate the risk of such a decision and either

warn the driver or simply evaluate his driving behavior (aggressive, passive etc.). Re-

garding the proposed method for estimating the geometric transformation on a Gaussian

Mixture mode, we should study more comprehensively the convergence criteria of this

method. Concerning the global and local transformations estimation, we progressively

relax the constraints imposed on local transformation parameters. However, there could

more advanced methods for constraints adaptation, for example relaxing and tightening

according to the increase in the log-likelihood function. Finally, the proposed method, is

quite generic and can be easily applied to other problems, such as image and point set

registration.

Finally for the system proposed for advanced driver support systems, the information

fusion and the decision making should be reshaped using data collected from an improved

and even more realistic simulation environment, which will truly reveal drivers' responses

to the outputs of a warning system.
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