Ecatouxevuévn Awyetoion Aedouévwv: Movtéha,
Ahyopluol xon LuoTAUATY

H AIAAKTOPIKH AIATPIBH

UTOBAAAETAL TNV
optobetloa and v ['evinr) Xuverevon Ewdinfc Lovleonc

tou Tunuatoc [Tinpogopinfc ECetaotiny Emtpont

ATO TOV

Kwvotavtivo Xtegovion

WG UEPOC TWV YTOYPEWMOEWY Yia TN Afbn Tou

ATAAKTOPIKOY AHIAQMATOY. >THN ITAHPO®OPIKH

AexéuPploc 2009

Tewels XupBouieuvtixny Enttpony

Baothetog Anuaxédnovrog, Enixovpoc Kabnyntic tou Turuatoc [Iinpogopixrc tou
[Taveriotnuiov Iwavvivoy.

Moavéing Kovunapdxng, Avaminpwthc Kadnyntic tov Tuquatoc IIAnpogopuxic xou
Trhemxowvwvidy tou EOvixol xar Kanodiotplaxol Iavemiotnuiou AGnvdy.

Evayyehio [Iitoupd, Avarinedtea Kabnyftela Tou Turuatoc ITinpogopixtic tou Ilo-
vemotnulou Ioavivey (enBiétovoa).

Entapeirc E€etaotixy Enttpony

Mavayidtne Baouieddne, Enixovpoc Kabnyntic tou Tuduatoc IIknpogopixrc tou
[Maveriotnuiov Twavvivoy.

Baothetog Anuoaxénovrog, Enixovpoc Kabnyntic tou Turuatoc IIinpogopixrc tou
[Maveriotnuiov Twavvivoy.

Moavoine Kovunoapdxng, Avaninpwtic Kabnyntic tou Turuatog ITinpogopuxic xou
Trhemxovovidy Tou Efvixod xou Kanodiotplaxot [laveniotnuiou AGnvoy.

[wdvvne Mavwhénourog, Kabnyntic Tou Turuatoc [IAnpogopixrc tou Apiototeheiov
[avemiotnuiov Oecoalovixrg.

Yravpog Nuwohonourog, Kalnyntic tou Turuatog IIinpogopixtic tou Havemotnuiov
[wavvivoy.

Evayyeilo [Titovpd, Avarinedteia Kabnyrteta tou Turuatoc ITinpogopixtic tou Ia-
vemotnulou Ioavivey (enBiérovoa).

Baotine Xptotogidng, Kabnyntic tou Turuatoc Entotiune Yrohoyiotdhy tou Tave-
motnuiov Kertne.

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and gratitude to my advisor Prof. Evaggelia
Pitoura for the valuable guidance, advice and encouragement she has offered while su-
pervising my dissertation. Collaborating with her has been a pleasant and memorable
experience. Many thanks also to both my advisor and Prof. Ioannis Fudos for their
actions for the funding of my research through the program PENED 2003 of the Greek
General Secretariat of Research and Technology.

Furthermore, I am grateful to Prof. Panos Vassiliadis for his useful comments and
suggestions during my studies at the University of loannina. I am also greatly indebted
to the members of my supervising committee Prof. Vassilios Dimakopoulos and Prof.
Manolis Koubarakis and also, Prof. Vassilis Christophides, Prof. Yannis Manolopoulos
and Prof. Stavros Nikolopoulos for their helpful comments and insightful remarks.

I would also like to thank Dr. Georgia Koutrika for our great collaboration during
the last year. With Georgia Koutrika, we have worked together on classifying the various
approaches that deal with preferences in databases. Moreover, I would like to thank all the
people of the DMOD Laboratory who over the course of this research provided me with
helpful feedback and turned my time there into a joyful experience. Special thanks to my
office-mate and friend Marina Drosou. With Marina Drosou, we have worked together
on personalizing keyword search and publish/subscribe delivery. Finally, I would like
to thank my parents and my friends for their continuous support and understanding
throughout all the years of my studies.

This thesis is part of the 03ED591 research project, implemented within the framework
of the “Reinforcement Programme of Human Research Manpower” (PENED) and co-
financed by National and Community Funds (20% from the Greek Ministry of Development-
General Secretariat of Research and Technology and 80% from E.U.-European Social
Fund).

TABLE OF CONTENTS

1

2

Introduction
1.1 Thesis Contributions o e,
1.2 Thesis Outline o

Related Work on Preferences in Database Systems

2.1 Preference Representation
2.1.1 Preference Formulation
2.1.2 Preference Granularity
2.1.3 Context
2.1.4 Preference Aspectso
2.1.5 A Summary of Preference Representations

2.2 Preference Composition Lo
2.2.1 Combining Preferences for Tuples
2.2.2 Combining Preferences of Different Granularity
2.2.3 A Summary of Preference Composition

2.3 Preferential Query Processing oL
2.3.1 Expanding Database Queries.
2.3.2 Employing Preference Operators.
2.3.3 Pre-computing Rankings L.
2.3.4 Top-k Query Processing,

2.4 Preference Learning

2.5 SUMMATY ot e

Adding Context to Preferences

3.1 Contextual Preferences
3.1.1 Context Model
3.1.2 Context Descriptors
3.1.3 Contextual Preference Model

3.2 Context Resolution
3.2.1 Contextual Queries
3.2.2 The Cover Relation
3.2.3 Context State Similarity
3.2.4 Scores based on Predicate Subsumption.

17
20
23
25
25
28
33
34
35
36
44
ol
o4
26
29

3.3 Data Structures and Algorithms 0.

3.3.1 Preference Graph
3.3.2 Profile Tree
3.3.3 Multi-State Context Resolution
3.3.4 Discussion e
3.4 Usability Evaluation o
3.4.1 Profile Specification Lo
3.4.2 Qualityof Results o
3.5 Performance Evaluation of Context Resolution
3.5.1 Storage
3.5.2 Context Resolution
3.6 SUMMATY

Fast Contextual Preference Scoring of Database Tuples

4.1 Contextual Preference Ranking
4.1.1 Contextual Preference Model
4.1.2 Problem Formulation

4.2 Finding Representative Context States
4.2.1 Similarity between Context States
4.2.2 Contextual Clustering

4.3 Predicate Clustering

4.4 Other Issues
4.4.1 Online Phase
4.4.2 Handling Updates

4.5 Evaluation Lo
4.5.1 Context and Preference Similarity
4.5.2 Contextual and Predicate Clustering

4.6 SUMMATY

Personalized Keyword Search through Preferences

5.1 Preferential Keyword Model
5.1.1 Preliminaries
5.1.2 Keyword Preference Model
5.1.3 Extending Dominance
5.1.4 Processing Dominance,

5.2 Top-k Personalized Results
5.2.1 Result Goodnesso
5.2.2 Top-k Result Selection

5.3 Query Processing
5.3.1 Backgroundo
5.3.2 Processing Preferential Queries
5.3.3 Top-k Query Processing

i

5.4 Extensions 125

5.4.1 Relaxing Context 125
5.4.2 Multi-Keyword Choices, 127
5.4.3 Profile Generationo 127

5.5 Evaluation 128
5.5.1 Performance Evaluation 129
5.5.2 Usability Evaluation 135

5.6 SUMMATY 137
6 Preference-Aware Publish/Subscribe Delivery 138
6.1 Publish/Subscribe Preliminaries 140
6.2 Preference Model 141
6.2.1 Preferential Subscriptions 141
6.2.2 Computing Event Ranks 143

6.3 Event Diversity 144
6.3.1 Diversity-Aware Matching 144
6.3.2 Diverse Top-k Preference Ranking 146

6.4 Delivery Modes 147
6.4.1 Periodic Delivery o 148
6.4.2 Sliding-Window Delivery 149
6.4.3 History-based Filtering 151

6.5 The Event-Notification Service, 151
6.5.1 Event Matching oo 151
6.5.2 Event Delivery 153

6.6 Evaluation 155
6.6.1 System Description oo 155
6.6.2 Experiments 155

6.7 Related Work on Ranking in Publish/Subscribe Systems and Diversity . . 160
6.8 Summary 162
7 Conclusions 163
7.1 Summary of Contributions o0 L 163
7.2 Future Research Directions oL, 165
7.2.1 Short Term Plans 165
7.2.2 Long Term Plans, 166

il

LLIST OF FIGURES

2.1
2.2
2.3
24

2.5
2.6
2.7
2.8
2.9
2.10

3.1

3.2
3.3

3.4

3.5

3.6

4.1
4.2
4.3

Movie database schema. 8
Movie database instance example.o 9
Examples of preference graphs. 11
Tuples t;; are related through the weak order >pg. All tuples within each

dotted oval are indifferent to each other and form an equivalence class.

These equivalence classes rj are totally ordered by >=*. 16
Examples of substitutable and strongly indifferent tuples. 16
Personalization graph. oo 19
Example instance relationship preferences. 19
A taxonomy of preference representations. 26
Example of prioritized and pareto composition. 29
Query lattice example. Lo o 43

Hierarchy schema and concept hierarchy of accompanying_people, weather,

time_period, location and mood. 64
Movie database instance example. L. 66
(a) A set of context states and an instance of (b) a preference graph and
(c) aprofile tree. 74
Size using (a) the real profiles and synthetic profiles with (b) uniform, (c)
zipf with a=1.5 and (d) combined data distribution. 86

Cell accesses to find related preferences to queries using sequential scan, the
profile tree, the enhanced profile tree and the preference graph for (a) the
real profiles and the synthetic ones in (b) exact match and (¢) non exact
match and (d) for the top-down, bottom-up and the heuristic approach
when the preference graph isused. 87
Cell accesses to find preferences related to queries using the query tree for
synthetic profiles for (a) exact match and (b) non exact match and (c) for

the real profiles. 88
Hierarchy schema and concept hierarchy of time_of life and gender. 92
Distance of rankings as a function of distance between users. 105

Distance between context states within the produced clusters for the con-
textual clustering approach, for (a) real and (b) synthetic data sets. 106

v

4.4 Distance between context states within the produced clusters for the pred-

icate clustering approach, for (a) real and (b) synthetic data sets. 106
4.5 Result quality for different number of produced clusters (a) for synthetic

data sets for the contextual clustering approach and (b) for real data sets

for both approaches. 107
4.6 Result quality for different number of produced clusters, for the predicate

clustering approach when (a) query states exist in the profile or (b) do not

CXISE. . . . 107
5.1 Movie database instance. 111
5.2 The graph of choices Gp,, i, v coppotay « + @ @ = oo e 115
5.3 Context lattice of preferences. 127
5.4 Movie and TPC-H database schemas. 129

5.5 TPC-H dataset: Total time for (a) a fixed profile and (c¢) a fixed query and

total number of join operations for (b) a fixed profile and (d) a fixed query. 131
5.6 Movie dataset: Total time for (a) a fixed profile and (c) a fixed query and

total number of join operations for (b) a fixed profile and (d) a fixed query. 132

5.7 Movie dataset: Set diversity of first-level results. 133
5.8 (a) Average dominance, (b) average relevance and (c) coverage. 134
5.9 Number of joining trees of tuples for (a) s = 3 and (b) s = 4 and time
overhead for (¢) s=3and (d) s=4. 136
6.1 (a) Event and (b) subscription examples. 141
6.2 Qualitative preference example. 141
6.3 Extracting preference ranks. 0oL 142
6.4 Quantitative preferences examples. 143
6.5 Computing top-4 diverse events. 144
6.6 Periodic top-2 events for Addison (7" = 30 min, 0 =0.5). 149
6.7 Sliding-window top-2 events for Addison (w =4, 0 =0.5). 150
6.8 History-based top-2 events for Addison (w =4,0=0.5). 151
6.9 Preferential subscription graph example. 152
6.10 Total number of delivered events (0 = 1.0 - no diversity). 157
6.11 Average rank of delivered events (0 = 1.0 - no diversity). 158
6.12 Average rank of delivered events (0 = 0.0 - no ranking). 158
6.13 Average rank of delivered events (0 =0.5). 159
6.14 Average diversity - random scenario. 160
6.15 Average freshness of delivered events (0 =0.5). 161

LLIST OF TABLES

2.1

2.2

2.3

2.4
2.5
2.6

2.7
2.8

2.9

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2

5.1
5.2
5.3

6.1
6.2

Preference representation approaches w.r.t. context and preference formu-
lation. L e e e 21
Preference representation approaches w.r.t. preference formulation, granu-

larity and context.o 27
Preference representation approaches w.r.t. preference aspects (T=tuple,

C=relation, A=attribute, R=relationship). 27
Preference composition w.r.t. tuple ranking and attitude. 35
Preference composition w.r.t. granularity. 35
A taxonomy of approaches that use preferences for expanding database

QUETIES. . . o o o o e e e e e e 44
A taxonomy of approaches employing preference operators. o1
A taxonomy of pre-computing rankings approaches w.r.t. preference for-

mulation and context. o 55
A taxonomy of top-k query processing techniques. 56
Points-of-Interest Example: Profile Specification 82
Movie Example: Profile Specification 82
Points-of-Interest Example: Quality of results 83
Movie Example: Overall Quality of Results 84
Movie Example: Quality of Results per User 84
Input Parameters for Synthetic Profiles 84
Overall predicate representation matrix BM for friends 100
Overall predicate representation matrix BM for alone 101
TPC-H dataset: Varying keyword selectivity. 130
Brute-force vs. Heuristic diversification.. 133
Usability Evaluation. 137
Diversity Heuristic vs Brute-force performance. 156
PrefSIENA matching overhead. 161

vi

LIST OF ALGORITHMS

© 00 ~J O Ot = W N

e R T = e e e T
0 ~ O O = W NN —~= O

Preference Selection Algorithm 41
Block Nested Loop (BNL) 46
Winnow for Weak Orders (WWO) 47
Sort-Filter-Skyline (SFS) 48
Evaluating the Best Operator 50
Greedy Algorithm 52
Furthest Algorithm 53
PG_Resolution Algorithm 75
PT_Resolution Algorithm 7
EnhancedPT_Resolution Algorithm 79
QueryCR Algorithm 80
d-mazx Algorithm 98
Multiple Level Winnow Algorithm 116
Baseline JTS Algorithm 122
Sharing JTS Algorithm o 124
Top-k JTTs Algorithm 126
Diverse Events Algorithm 146
History-Based Filtering Event Delivery 154

vil

IIEPIAHUH

Kovotavtivog Ytegavidnc.

PhD, Tufua IIknpogopuxrc, Iavemotiuio Iwavvivey. Aexéufelog, 2009.

Tithoc AwatpBric: E€atouixevuévn Atayeipion Aedouévwy: Movtéla, Alydplbuot xon Yu-
oTHUATA.

EmufAérnovoa: Evayyello Iitoupd.

Abyw Tou peYdlou oL cuVEYDS aLEAVOUEVOL HYXOU dedoUévwy Tou elval oruepa SLabé-
ollog Yo x80e yproty, dnulovpyeltal 1 avdyxn TOU EVIOTLOUOU TV TLO OHUAVTIXOY dedo-
uévewyv yio tov (o, Ta ovotAuata e€atoulxeuong GTOYEYOUY GTNY AVTLUETOTLOT AUTOY TOU
TeoPAAuaToC. XpnoLLOTOLGVTIS TEOTIUNOELS EMLTRENOUY GTOUC YPNOTES VA EXPEECGOLY TO
eVOLAPEPOV TOUC OE GUYXEXpLUEVA dedouéva. Avtixeluevo authc e dwatpPric elvar: (i) 1
AVATTUEN EVHS ONOXANPWUEVOU LOVTENOU TROTLUACEWY XAl (i1) 1) EVOWUATOOY) TROTLUACEWY
oe ovothuato Slayelplong dedouévmy.

Apyd, eotidlovue 6NV €xPpaot) evOg LOVTELOU TROTLUHCE®Y GLUPEALOUEVOL TEpLBaA-
Aovtoc. Mia mpotiunomn cuugealduevou meptBdlhovtog elval ula TpoTiunoT eEUTAOUTIOUEYT
ue TAnpogopla GYETLXY UE TS oLVOTXES 1) To ouuppalduevo TepBdihoy XdTw and To omolo
auth oyvet. Movtehonololue to cuugealduevo meplBdilov w¢ éva alvoho and Yvopl-
OUATA TOU UTopovy vo Talpvouy TLéS and SapopeTixd eninedo tepapytoc. Mio mpotiunon
ouugpalbuevou mepBdihovtog oplletan we uia tpidda (C, P, §), énou: (i) to C exppdlet
oLV XES OTLC TLUES TWV YVWRLOUETWY Tou ouupealbuevou teptBdhhovrog, (i) to P exppd-
Zet ouvBhixeS OTIC TLWES TY YVLPLOUETWY Tou oyfuatos ulac Bdong dedouévmy xat () to
S exppdlel éva Babud evdiagépovtog. H epunvela ulog tétolag mpotiunong elvar 6T, Yo
T ouvhixec mou xabopllovton and 1o C, avatifetal oTic TAELBEC TOU GTLYULOTUTOU TN
Bdong dedouévwy, Tou avorololy T uviYxeg Tou P, o Balbudg evdlagépovtog S.

Aobelone ulag epdtnong, 1o TEOBANUA elval 0 EVTOTIOUOS TV TEOTWUNCEDY EXELVWY
ToL T0 GLUPEALOUEVO TEPLBIANOY TOUC Elval TLO OYETIXS UE TO GLUPEALOUEVO TEPUZEAAOY
e epwdtnone. Lo v enlivon tou mpofAfuatoc autol, opllovue xaTIAANAES UETELXES
anbéotaonc. o va emtaydvouue tn Stadixaoio evioniouol TwV GYETXOY TROTIUNOERY,
Tpotelvouue douéc xat alyopifuoug Tou exueTahhedovTal TNV Lepapyxr QUoT TOV TLUGY
Tou ouugealduevou TepBdilovtoc. ‘Eyovtac evtonicel Tic oyeTixéc Ue pla epdtnon mpo-
TWNAOELS, TIC YPNOULOTOLOVUE Yo TN Sla3dbulor TV anoTEAEOUATWY TNG.

[v amodotxy SlaPdbuton Twv arnotehecudTwy Ulag epdTNoNC, TEoTElVvoLUE Ul TEo-
oéyyLon 1 onola Baciletar otov Tpolnoloyioud Pabudy evdlagépovtog yia T TAELESES TNS

viil

Bdone dedouévmv. Axohoubdvtac uto axpala tepintwon, Oa unopoloaue vo tpotitohoyi-
couue Yo xdbe mhelddo dhoug Toug Babuolc evdagépovtog, Yo xdlbe mbavy xatdoTaon
ovugealouevou meplBdihovtoc. Emedr) 1o mAfloc Twv SLopopeTixdV xaTaoTdcEWY elval
ToAY ueYdho, utohoyilovue Babuoic evBLaEépovTog UOVO YLOL CUYXEXPLUEVOUS AVTLTPOGEM-
TOUC TV XATAOTIcEWY ouugalouevou mepiBdilovtoc. [Tov xafoploud twv aviirpo-
oY ouuealduevou TepBdilovtog npotelvouue dUo uebddous. Kau otig ddo uebddouc,
apytxd ouadoTOLOUUE TS OUOLEC TEOTIUNOELS Xul ENELTA TEOGOLOPILOVUE TOV AVTLTPOCKTO
e ouddac. Xtnv mpdtr meplnttwor, Oewpolue wg duoleg T TEOTIUHOELS Tou exppdlo-
yTaL Yiot 6uolo ouugealouevo TepBAANOY, eVK 0Tr SeUTERT), AUTES TOU 08NYOUY GE GUOLOUC
Babuoig evdlagépovtog yia Tic TAeWddes Tng Bdone dedouévwy, dnhadh Tic TEOTWACELS UE
ouowa P xar S. Auty) 1 uébodog Baoiletar o ulo véa amewxdvion TwV TPOTLUHCE®Y TOU Y-
owwornotel éva mivaxa duaduxdy dnelwy to uéyebog tou onolou eluptdtol and TNy embuunty
axplBela e daPdbutong Twv atotereoudtov. H npdtn uéhodoc unopel va egopuooctel t600
O€ TOLOTIXEC OO XAl TOCOTIXES TPOTLUNAOELS, EVE 1) deVTepY), eNEWdY) yenotuonotel To Babud
EVOLAPEPOVTOS TWV TPOTIUACEWY, UTOPEL VoL eQapuUoaTeEl UOVO GE TOGOTIXES TEOTLUNOELS.

Y1 ouvéyela, eZetdlouue TOC oL TEOTWACELS UTopolv va yenotuorownboly oe SVo
ONUAVTLXES EQUOUOYES TNS SLayelplone BedoUEVWY. LUYXEXPUUEVA, UEAETAUE TNV EQUEUOYT
Toug oe avalntioels Ue Bdon hZetc-xhewdid xat oe cuoThuATa Exdoong/cuvdpourc.

H avalritnon ue Bdon Aé€eic-xheldid elvol moA) dnuo@uhic yiatl emtpénel oTouS Yer-
OTES VAL EXPPACOVY TIC EPOTATELS TOUS Ywplc Vol YVwpellouy Tn dour Ty dedouévmy 1 xdmoLla
YAOOoU epwTACEWY. 21N St auTy, TpoTelvouue TN YproN TEOTWUACEWY YLo TNV UTO-
othplln avalitnong ue Bdon héelc-xAeldid, étol Hote StagopeTtixol yprRoteg vo haudvouy
SLapopeTind amotehéouata Ue Bdor To Tpocwmixd Toug evdlagépovta. Lo) SwaBdbuion
TV onoTEAECUdTWY Ulag epdtnong A€Zng-»xAediol, cuvdudlovue tnv didtaly Toug, 6Twg
TEOXUTTEL UG TLC TPOTLUNCELS TOU YPNOTY), UE TN OLVAQELE Toug Ue TNV epdTnoT. H ouvd-
pewa xafopiletor and Ty andoTacT TOV AEEOV-XAEBLOVY, OTWS TPOXUTTEL and XATIAANAES
OUYEVOOELS, 0TO ToPOY oTLYULoTUTo NS Bdone dedouévoy. Tlépa and Tic mpotiufoelg xat
TN OUVAQELA, TPOTELVOUUE TOV UTOAOYLOUS TV k ATOTEAECUAT®Y TOU EMSELXVIOUY XATOLY
SLALPOPETIXOTNTA XaL XAAUTTOLY TOAAES TEOTIUNACELS, Amd Ta amoTeEAéoUATA TTou elval Lo
ouvapn xol Tpotuntéa. [Tov anodotind utohoyloud Twy anoteleoUdTwY ulag epdhTN-
ong AZng-»xAhedov, mpotelvouue Tov alyopliuo Arauoipaouol-AroteAéouaroc, o omolog,
Baowlbuevoc oto 6Tl ta anoteréouata ulag epdtnong oyetilovtal ue to anoteAéouata
EPWTACEWY UTERGUVOAOU, ATOPEVYEL ETAVAANTTLXOUEC UTOAOYLOUOUC.

[a va edéyEouue To TAR00C TwV YEYOVHTWY Tou haufdvel évag yprotng oe éva cUoTnua
éxdoong/ouvdpoutic, mpotelvouue éva unyavioud dBdulong oy Yeyovotwy avdioyo Ue
T0 OG0 onuavTxd elval autd vy to yehotn. [va SwfBafuicovue ta yeyovota Poot-
{OuaoTE GTLC TROTIUNGELS TOU EYEL EXPRAOEL O YPNOTNS OVAUECO GTLS GUVBPOUES Tou: éva
yeyovog mou tatpldlel ue ulo ouvdpour udniic TpotepatdTnTaC, Bewpeltal onuUAVTIXGTERO
amd €vo YeYovog mou touptdlel e ulo ouvdpout| yaunidtepnc tpotepatdtnrog. ‘Etol, évac
Yenotne avtl va hauPBdvel 6ha T YEYovoTa mou Tanpltdlouy Ue TS auVSROUES Tou, Aoufdvel
uévo ta k mo evdogépovta. Emedn n dnuootievorn yeyovdtwy elval cuveyrc, eetdlovue

X

SLLPOPETIXES TOMTIXES ATOGTOANAC YEVOVOT®Y, AVANOYA UE TO EVPOC TWY YEYOVOT®Y ATd TO
omolo emhéyovtol Ta xopugala k yeyovota. Emedt| évag ypriotng ocuyvd embuuel va Aoud-
VEL YEYOVOTO TOU ETULOELXVUOUY XATOLA BLAPORETIXOTNTA, AXOUN XAl oV AUTY OEV ATOTEAOVY
yeyovoto tne uPnhdtepnc mpotiunctc tou, Tpotelvouue évay aiydpluo utohoylouol Ty
k yeyovotwv o omolog haufBdvel unodn, extodc and To T6GO onuavTixd elvol, xal T dago-

PETIXOTNTE TOUC amd To uTdAoLTa LPMAG Sofabulcuéva yeyovota.

ABSTRACT

Kostas Stefanidis.

PhD, Computer Science Department, University of Ioannina, Greece. December, 2009.
Title of Dissertation: Personalized Data Management: Models, Algorithms and Systems.
Supervisor: Evaggelia Pitoura.

Today, there is a large amount of information available for every user. Locating
the most valuable or important information can prove an overwhelming task due to the
huge volume of accessible data. Personalization systems aim at tackling this problem
by utilizing preferences to allow users to express their interest on specific pieces of data.
The goal of this thesis is the study of preferences in data management systems. To this
end, we first introduce a context-dependent model for preferences and appropriate data
structures and algorithms for managing contextual preferences. Then, we explore the
integration of preferences to achieve personalized ranked retrieval (i) in keyword search
in database systems and (iz) in publish/subscribe data delivery.

We define contextual preferences as preferences annotated with specifications regard-
ing the context under which they hold. We propose modeling context as a set of multidi-
mensional context parameters that take values from hierarchical domains. A contextual
preference is defined as a triple (C, P, S), where: (i) C expresses conditions on the values
of the context parameters, (i7) P expresses conditions on the values of the attributes of
the database schema and (iii) S expresses a degree of interest. The meaning of such a
contextual preference is that, under all circumstances specified by C, all database tuples
that satisfy the conditions of P are assigned the indicated degree of interest S.

Given the context that a query is associated with, the problem is to identify those
preferences that are applicable to the context that is the most relevant to the context of
the query. This problem, called context resolution problem, can be distinguished between:
(7) the identification of all candidate contexts that encompass the query context and
(1) the selection of the most appropriate contexts among these candidates. The first sub-
problem is resolved through the notion of cover partial order between contexts that relates
contexts expressed at different levels of abstraction. To resolve the second sub-problem,
we employ distance metrics that capture similarity between contexts.

We introduce algorithms for context resolution that build upon two data structures,
namely the preference graph and the profile tree, that index preferences based on their
associated context. The preference graph explores the cover partial order of contexts to

xi

organize them in some form of a lattice. A top-down traversal of the graph supports an
incremental specialization of a given context, whereas a bottom-up traversal incremental
relaxation. The profile tree offers a space-efficient representation of contexts by taking
advantage of the co-occurrence of context values in preferences. It supports exact matches
of contexts very efficiently through a single root-to-leaf traversal.

To efficiently assign scores to database tuples using contextual preferences, we intro-
duce a method based on pre-computing tuple scores. At one extreme, we could compute
all different scores for each tuple for all potential contexts. However, since the number
of contexts grows rapidly with the number of context parameters, we pre-compute scores
for representative contexts. We propose two complementary approaches to defining rep-
resentative contexts. The first approach clusters together similar contexts and selects
the resulting cluster descriptions as representative contexts. Context similarity exploits
the hierarchical nature of the domain of the context parameters. The other approach
groups together preferences that would result in similar scores for all database tuples.
This method takes advantage of the quantitative nature of preferences to group together
those preferences that have similar predicates and scores. The method is based on a novel
representation of preferences through a predicate bitmap table whose size depends on the
desired precision for the resulting scoring.

Next, we study how preferences can be explored to achieve personalization in keyword
search and in publish/subscribe systems. Keyword search is very popular, because it al-
lows users to express their information needs without either being aware of the underlying
structure of the data or using a query language. In this thesis, we propose personalizing
keyword search in relational database systems. Since keyword search is often best-effort,
given a budget k£ on the number of results, we combine the order of results as indicated by
the user preferences with their relevance to the query. Besides preferences and relevance,
we consider the set of the k results as a whole and seek to increase the overall importance
of this set to the users. Our goal is to select the k results that both cover different prefer-
ences and exhibit small overlap among the relevant and preferred results. We introduce
a Sharing-Results keyword query processing algorithm, that exploits the fact that the
results of a keyword query are related with the results of its superset queries, to avoid
redundant computations. We also propose an algorithm that works in conjunction with
the Sharing-Results algorithm to compute the top-k representative results.

To control the rate of notifications received by the users in a publish /subscribe system,
we propose extending subscriptions to allow users to express the fact that some events
are more important to them than others. In particular, we introduce preferential sub-
seriptions by formulating preferences among subscriptions. Events are ranked, so that,
an event that matches a highly preferred subscription is ranked higher than an event
that matches a subscription with a lower preference. We propose a top-k variation of the
publish /subscribe paradigm in which users receive only the matching events having the &
highest ranks instead of receiving all events matching their subscriptions. Since the top-k
events are often very similar to each other, we adjust the top-k computation to take also

xii

into account the diversity of the delivered events. Finally, since the generation of events
is continuous, we study a number of delivering policies that determine the range of events
over which the top-k computation is performed.

xiil

CHAPTER 1

INTRODUCTION

1.1 Thesis Contributions

1.2 Thesis Outline

Preferences guide human decision making from early childhood (e.g. “which ice cream
flavor do you prefer?”) up to complex professional and organizational decisions (e.g.
“which investment funds to choose?”). Preferences have traditionally been studied in
philosophy, psychology and economics and applied to decision making problems. For
instance, in philosophy, they are used to reason about values, desires and duties ([56]). In
mathematical decision theory, preferences (or utilities) model economic behavior ([50]).
The notion of preferences has in recent years drawn new attention from researchers in
other fields, such as artificial intelligence, where they capture agent goals ([21, 38, 124]),
and databases, where they capture soft criteria for database queries. Explicit preference
modeling provides a declarative way for choosing among alternatives, whether these are
solutions of problems to solve, answers of database queries, decisions of a computational
agent, plans of a robot and so on.

In databases, interest in preferences was triggered by observing the limitations of the
Boolean database answer model, where query criteria are considered as hard or mandatory
by default and a non-empty answer is returned only if it satisfies all the query criteria. In
this context, a user can face either of two problems: (i) the empty-answer problem, when
the conditions are too restrictive or the data cannot exactly match the query or (ii) the
too-many-answers problem, where too many results match the query. It is hard for users
to cope with these problems especially when accessing databases on the web, where the
schema and contents of the database are not known and users are unlikely to be familiar
with a structured query language in order to formulate more accurate queries.

Incorporating soft query criteria or preferences in a query can help cope with these
problems. The empty-answer problem can be tackled by relaxing some of the hard con-
straints in the query, i.e. considering them as soft or as user wishes (e.g. [74]) or even

by replacing them by other constraints that capture user preferences related to the given
query context and returning results that are ranked according to how well they match
the modified query. The too-many-answers problem can be tackled by strengthening the
query with additional user preferences to rank and possibly refine the returned results
(e.g. [82]).

The ever-increasing amounts of information that are available to a growing number of
users complicates the too-many-answers problem and makes the need for personalization
crucial. Instead of overwhelming users with all available data, a personalized query reports
only the relevant to the users information according to their interests. Preferences can be
used as a means to address this challenge. The goal of this thesis is the study of preferences
in data management systems. To this end, we first introduce a context-dependent model
for preferences and appropriate data structures and algorithms for managing contextual
preferences. Then, we explore the integration of preferences to achieve personalized ranked
retrieval (i) in keyword search in database systems and (i) in publish/subscribe data
delivery.

1.1 Thesis Contributions

The technical contributions of this thesis are along two axes. The first axis is centered
on modeling issues. We propose a context-dependent model for preferences and focus on
managing contextual preferences. We also address the problem of scoring database tuples
using contextual preferences and provide a solution based on pre-computing representa-
tive rankings. The second axis is centered on integrating preferences in data management
systems. In particular, we propose personalized keyword search in relational database
systems and personalized delivery in publish/subscribe systems through user-defined pref-
erences. As a side contribution of this thesis, we also consider an extensive survey of the
use of preferences in databases.
Next, we summarize the contributions of this thesis.

A Survey on Preferences in Databases: Although several approaches that deal
with preferences in databases have been proposed, a systematic study of these works is
missing. In this thesis, we review the state of the art of these approaches and seek to
understand the nature, representation and use of preferences from a database perspective.
We classify approaches based on certain criteria. In particular, we present and compare
existing approaches to preference representation followed by mechanisms for preference
composition. Then, we study preferential query processing methods and, subsequently,
we discuss preference learning approaches.
The results of this study are given in Chapter 2 and also appear in [108].

A Context-dependent Preference Model: We propose enhancing preferences with
context-related information, since users may often have different preferences under differ-

ent circumstances. The novelty of this approach is that context is modeled using a set
of multidimensional context parameters that take values from hierarchical domains. A
contextual preference is defined as a triple (C, P, S), where: (i) C' expresses conditions
on the values of the context parameters, (ii) P expresses conditions on the values of the
attributes of the database schema and (7ii) S expresses a degree of interest. The meaning
of such a contextual preference is that, under all circumstances specified by C, all database
tuples that satisfy the conditions of P are assigned the indicated degree of interest S.

We also formulate the problem of context resolution as the problem of selecting ap-
propriate preferences for personalizing a query based on context. We distinguish context
resolution between: (i) the identification of all preferences with context that encompass
the query context and (ii) the selection of the most appropriate preferences among these
candidates. The first subproblem is resolved through the notion of cover partial order be-
tween contexts that relates contexts expressed at different levels of abstraction. To resolve
the second subproblem, we consider appropriate distance metrics that capture similarity
between contexts.

We introduce algorithms for context resolution that build upon two data structures,
namely the preference graph and the profile tree. The preference graph explores the cover
partial order of contexts to organize them in some form of lattice. A top-down traversal of
the graph supports an incremental specialization of a given context, whereas a bottom-up
traversal incremental relaxation. The profile tree offers a space-efficient representation
of contexts by taking advantage of the co-occurrence of context values in preferences. It
supports exact matches of contexts very efficiently through a single root-to-leaf traversal.

Finally, we evaluate our approach in terms of both usability and performance. Our
usability experiments consider the overhead imposed to the users for specifying context-
dependent preferences versus the quality of the personalization achieved. Our performance
experiments focus on our context resolution algorithms that employ the proposed data
structures to index preferences for improving response and storage overheads.

The proposed contextual preference model and the problem of context resolution are
presented in Chapter 3 and also in [113, 111].

Scoring Database Tuples based on Contextual Preferences: We introduce a suite
of techniques for quickly providing users with data of interest using our contextual pref-
erences. In particular, we propose performing pre-processing steps to construct represen-
tative rankings of database tuples. To form such rankings, we create groups of similar
preferences and produce a ranking for each group, considering as similar the preferences
with similar contexts. To group preferences with similar contexts, we consider a contex-
tual clustering method that exploits the hierarchical nature of context parameters. Our
method can be applied to both quantitative and qualitative preferences. We also consider
a complementary method for grouping preferences based on identifying those preferences
that result in similar scores for all database tuples. This method takes advantage of the
quantitative nature of preferences and groups together contextual preferences that have

similar predicates and scores. The method is based on a novel representation of prefer-
ences through a predicate bitmap table whose size depends on the desired precision for
the resulting scoring. We present a number of experiments on both synthetic and real
data sets.

The problem of contextual scoring database tuples is the subject of Chapter 4 and it
has also been presented in [109, 110].

Personalized Keyword Search in Relational Database Systems: We propose
personalizing keyword search through context-dependent preferences and provide a formal
model for integrating preferential ranking with database keyword search. To the best of
our knowledge, employing preferences to personalize keyword search is novel in this thesis.

Preferences express a user choice that holds under a specific context, where both
context and choice are specified through keywords. We rank the results of a keyword
query in an order compatible with the order expressed in the user choices for the query
context. Furthermore, we combine the order of results as indicated by the user preferences
with their relevance to the query. Besides preferences and relevance, given a constraint
k on the number of results, we consider the set of the k results as a whole and seek to
increase the overall value of this set to the users. Specifically, we aim at selecting the k
most representative among the relevant and preferred results, i.e. these results that both
cover different preferences and have different content.

We propose a number of algorithms for computing the top-k results. For generating
results that follow the preference order, we rely on applying the winnow operator [32] on
various levels to retrieve the most preferable choices at each level. Then, we introduce a
sharing-results keyword query processing algorithm, that exploits the fact that the results
of a keyword query are related with the results of its superset queries, to avoid redundant
computations. Finally, we propose an algorithm that works in conjunction with the
multi-level winnow and the sharing-results algorithm to compute the top-k representative
results.

We evaluate both the efficiency and effectiveness of our approach. Our performance
results show that the sharing-results algorithm significantly improves the execution time
over the baseline. Furthermore, the overall overhead for preference expansion and di-
versification is reasonable. Our usability results indicate that users receive results more
interesting to them when preferences are used.

The problem of personalizing keyword search is described in Chapter 5 and also in
[106].

Preferential Publish /Subscribe: In a publish/subscribe system, users describe their
interests through subscriptions and are notified whenever a published event matches any
of their subscriptions. To control the rate of notifications received by the subscribers, we
propose extending subscriptions to allow users to express the fact that some events are
more important or relevant to them than others. To indicate priorities among subscrip-

tions, we introduce preferential subscriptions. Events are ranked so that an event that

4

matches a highly preferred subscription is ranked higher than an event that matches a
subscription with a lower preference.

Based on preferential subscriptions, we introduce a top-k variation of the publish/
subscribe paradigm in which users receive only the matching events having the k highest
ranks as opposed to all events matching their subscriptions. However, the top-k events
are often very similar to each other. Besides pure accuracy achieved by matching the
criteria set by the users, diversification, i.e. recommending items that differ from each
other, has been shown to increase user satisfaction [136]. To this end, we adjust the top-k
computation to take also into account the diversity of the delivered events. Since the
generation of events is continuous, we also introduce a number of delivering policies for
forwarding events.

As a proof-of-concept, we have implemented a prototype, termed PrefSIENA [5]. Pref-
SIENA extends SIENA [6], a popular publish /subscribe middleware system, with preferen-
tial subscriptions, delivering policies and diversity towards achieving top-k event delivery.
We present a number of experimental results to assess the number of events delivered by
PrefSIENA with respect to the original SIENA system, as well as, their rank and diversity.
We also report on the overheads of supporting diversity-aware top-k delivery.

The problem of personalizing delivery in publish/subscribe systems is described in
Chapter 6 and it has also been presented in [40, 41].

1.2 Thesis Outline

The rest of this thesis is structured as follows. In Chapter 2, we provide a framework
for studying various approaches that deal with preferences in databases. We organize our
study around the following axes: (i) preference representation, (iz) preference composi-
tion, (iii) preferential query processing and (iv) preference learning. In Chapter 3, we
introduce a model for contextual preferences. We also formulate the context resolution
problem as the problem of identifying the preferences with context that encompass the
query context and selecting the most appropriate among them. In Chapter 4, we study the
problem of scoring database tuples based on contextual preferences and provide a solution
based on pre-computing representative rankings. In Chapter 5, we focus on personalizing
keyword search. The proposed model exploits user preferences in ranking keyword results.
In Chapter 6, we introduce a top-k variation of the publish/subscribe paradigm in which
users receive only the k£ most interesting events as opposed to all events matching their
subscriptions. Finally, Chapter 7 provides an overview of the results of this thesis and
highlights open research challenges.

CHAPTER 2

RELATED WORK ON PREFERENCES IN
DATABASE SYSTEMS

2.1 Preference Representation

2.2 Preference Composition

2.3 Preferential Query Processing
2.4 Preference Learning

2.5 Summary

In this chapter, we provide a framework for studying various approaches that deal
with preferences in databases. We seek to understand the nature, representation and
use of preferences from a database perspective. We consider ways in which the general
notion of preference may be interpreted in a database system and we classify and evaluate
approaches based on certain criteria. We identify the following main axes and organize
our study around them:

Preference Representation: Preferences naturally come into different flavors and peo-
ple may have a mix of different preferences, such as likes and dislikes, context-dependent
and context-free, generic and specific and so forth. Capturing all possible preference types
is a challenge. Different approaches to preference modeling focus on different aspects of
preferences. Nevertheless, two main philosophies to preference modeling can be distin-
guished on the basis of how preferences are formulated: qualitative approaches, where
preferences are expressed by comparing tuples (“I like westerns better than dramas”)
(e.g. [31]) and quantitative ones, where a preference for a specific tuple is expressed as
a degree of interest in this tuple (“my interest in westerns is 0.8 and in dramas 0.4”)
(e.g. [11]). We categorize preference representation approaches based on the following
dimensions:

1. Formulation. Preferences are formulated in a qualitative or quantitative way;

2. Granularity. Preferences can be expressed at different levels, i.e. for tuples, relations,
relationships and attributes;

3. Context. Preferences can be context-free or hold under specific conditions, i.e. con-
textual preferences;

4. Aspects. Preferences may vary based on their intensity, elasticity, complexity and
other aspects.

Preference Composition: Given a set of preferences for a set of objects in our domain,
different composition methods or mechanisms to combine preferences can be applied to
infer, combine or override preferences and finally, derive a ranking for the objects on the
basis of how they match these preferences. We group preference composition mechanisms
into the following categories:

1. Qualitative composition. These mechanisms combine preferences expressed for a set
of tuples and order the tuples relatively to each other, i.e. in a qualitative way;

2. Quantitative composition. These mechanisms combine preferences expressed as
scores over a set of tuples and assign final scores to these tuples that are ordered in
a quantitative way;

3. Heterogeneous composition. These mechanisms are used to combine preferences of
different granularity, for example, preferences for relationships between tuples with
preferences for tuple attributes.

Preferential Query Processing: Preferential query processing methods exploit pref-
erences to provide users with customized answers by changing the order and possibly
the size of results (in the latter case, reporting only a portion of them, typically the top
ranked ones). Several methods have been proposed by the database community focusing
on integrating preferences into query processing. In this chapter, we present related work
organized into the following topics:

1. Ezpanding database queries. These methods expand regular database queries with
preferences by appropriately rewriting queries to incorporate preferences usually
by adding selection conditions to the original query. In doing so, there are three
fundamental steps: (i) determine which preferences are related to a specific query,
(i) identify how many and which of the related preferences should be integrated into
the query and (iii) rewrite the original query to integrate the selected preferences
and thus enable preferential query answering.

2. Employing preference operators. These methods employ special database operators
to express preferences. There are two fundamental approaches to handling such

movie
’M‘ title‘ year‘ director‘ genre‘ Ianguage‘ duration‘

actor
aid ‘name‘ date_of birth ‘

Figure 2.1: Movie database schema.

preference-related operators. One approach is to implement the operators inside
the database engine. This involves developing appropriate evaluation methods as
well as new query optimization algorithms. The other approach is to translate
any preference operators in a query into existing relational algebra operators. This
involves appropriately rewriting the original query so as to attain a cost-efficient
query plan.

We shall also discuss methods for improving the performance of preferential query
processing, for instance, by performing pre-processing steps off-line to construct rankings
of database tuples based on preferences with the purpose of reducing the on-line query
processing time.

Finally, since top-k processing is often an important component of preferential query
processing, we shall also present a short taxonomy of related work and put work in this
area in the context of preferential query processing.

Preference Learning: Learning and predicting preferences in an automatic way has
attracted much research attention (e.g. [70, 35, 58]). Approaches to preference learning
can be classified along various dimensions, such as: (i) the model learned, where there is a
distinction between learning pairwise orderings of items (i.e. qualitative preferences) and
learning a utility function (i.e. quantitative preferences), (ii) the input information type,
where, in analogy to supervised and unsupervised learning, the learning algorithm may or
may not use as input positive and/or negative examples, and (4ii) the input classification
dimension, where the learners may or may not use feedback from the users, which is
usually in the sort of relevance judgment.

As a running example, we consider a simple database that maintains information about
movies. Our movie database consists of three relations: movie, play, actor. Figure 2.1
depicts the schema of the movie database. We shall also use the instances of the relations
that are shown in Figure 2.2.

The focus of this chapter is mainly on the representation, composition and use of
preferences in databases and it is organized as follows. We present and compare existing
approaches to preference representation (Section 2.1) followed by mechanisms for pref-
erence composition (Section 2.2). Subsequently, we study preference query processing
methods (Section 2.3). Finally, we discuss preference learning approaches (Section 2.4).

mid title year director genre | language | duration
t1 mi Casablanca 1942 Curtiz drama, english 102
ta | mo Psycho 1960 | Hitchcock | horror english 109
t3 | m3 | Schindler’s List | 1993 | Spielberg | drama english 195

(a) movie relation

‘ mid ‘ aid ‘ ‘ aid ‘ name date_of _birth
mi a1 a1 H. Bogart 25-Dec-1899
m1 a2 a2 I. Bergman 29-Aug-1915
mo as as A. Perkins 4-Apr-1932
ms a4 a4 L. Neeson 7-Jun-1952

(b) play relation (c) actor relation

Figure 2.2: Movie database instance example.

2.1 Preference Representation

In this section, we study and compare preference representation approaches based on the
following dimensions: how preferences are formulated (formulation - Section 2.1.1), at
what level they are expressed (granularity - Section 2.1.2), under which conditions they
hold (context - Section 2.1.3) and what they express (aspects - Section 2.1.4).

2.1.1 Preference Formulation

Preferences can be expressed in a qualitative or a quantitative way. In the qualitative
approach, the preferences between database tuples in the answer to a query are specified
directly, typically using binary preference relations. Such relations provide an abstract,
generic way to talk about a variety of concepts like priority, importance, relevance, time-
liness, reliability etc. Preference relations can be defined using logical formulas [32] or
special preference constructors [74] (which can be expressed using logical formulas). In
the quantitative approach, preferences are expressed as numerical scores associated with
database tuples. Scores can be assigned through preference functions (e.g. [11]) or as
degrees of interest (e.g. [82, 113]) that map records (or record types) to scores. In general,
a tuple ¢; is preferred to a tuple ¢;, if and only if, its score is higher than the score of ¢;.

In the following, we shall use R(Ai,...,Ay) to denote a relational schema with d
attributes A;, 1 < i < d, where each attribute A; takes values from a domain dom(A;).
Let A={A;, Ay, ..., Ag} be the attribute set of R and dom(A) = dom(A;) x---xdom(Ay)
be its value domain. We use ¢ to denote a tuple (u1, us, ..., ug) € dom(A) of R and r to
denote an instance (i.e. tuple set) of R. Let B C A be a subset of the attribute set, ¢[B]
stands for the projection of ¢ on B. Finally, P denotes a preference.

Qualitative Preferences

In the qualitative approach, preferences are defined as binary relations between the tuples
of the relational schema. Given a set S, a binary relation B over S is a subset of the
Cartesian product S x S. For a pair (a,b) which belongs to B, we use the notation a B
b, whereas, for a pair (a,b) that does not belong to B, we use the notation —(a B b).

A preference relation is defined as follows.

Definition 2.1. Let R(Ay,..., A4) be a relational schema and dom(A4;) be the domain
of attribute A;, 1 < i < d. A preference relation >pg over R is a subset of (dom(A;) x
<o xdom(Ag)) x (dom(Ay) x -+ x dom(Ay)).

The interpretation of a preference relation ¢; ~pg t; between two tuples ¢; and t; of
R is that t; is preferred over t; under >pr. We shall also say that ¢; is better than t; or
that ¢; dominates t; under >pp.

Next, we list several typical properties of binary relations that are useful in classifying
preference relations. A binary relation B over a set S is called:

e reflexive, if, Va € S, a B a,

e irreflexive, if, Va € S, = (a B a),

e symmetric, if, Va,b € S, a Bb= b B a,

e asymmetric, if, Va,b € S, a B b = —(b B a),

e antisymmetric, if, Va,b € S, (a BOAbB a) = a =1b,
e transitive, if, Va,b,c € S, (a BbANbBc) = a B¢,

e negatively transitive (intransitive), if, Va,b,c € S, (=(a B b) A =(b B ¢)) = —(a B

c),
e connective (strongly complete or total), if, Va,b € S, (a Bb) V (b B a) V (a = b).

Note that the above properties are not independent. For instance, asymmetry implies
irreflexivity, irreflexivity and transitivity imply asymmetry. In terms of a preference
relation over a relational schema R, there is a subtle point regarding the set S over which
the conditions of each property are tested. Typically, we should consider as S the set
of all tuples t = (uq, ug, ..., ug), u; € dom(A;) of R(Ay, Ay, ... Ag). This way, a
preference relation >pp over R is asymmetric, if, V¢;,¢; in any r of R, t; =pp t; = —(¢;
>~pr t;). However, in the presence of integrity constraints, we could apply the conditions
only amongst tuples that all belong to a wvalid instance r of R, that is, to an instance r of
R that does not violate any integrity constraints. Finally, one can consider a single (e.g.
the current) instance of the database and test whether the tuples in the instance satisfy
the conditions of the corresponding property.

Based on the subset of properties that hold for a preference relation =pgr, =pg is
characterized as follows:

10

(a) Total order (b) Weak order (c) Strict partial order

Figure 2.3: Examples of preference graphs.

A binary relation is a preorder or quasi order, if it is reflexive and transitive. If in
addition, it is antisymmetric then it is a partial order.

A binary relation is a strict partial order (or irreflezive partial order), if it is irreflex-
ive, asymmetric and transitive. A preference relation >-pp over a relational schema

R is usually a strict partial order.

A binary relation is a total order, if it is a strict partial order and it is also connective.
If a preference relation >=pp is a total order, any pair of tuples in any instance r of
R is mutually comparable under > pg.

e A binary relation is a weak order, if it is a negatively transitive strict partial order.

A preference relation among the tuples of an instance r of R can be represented through
a directed graph, that we shall call preference graph. In the preference graph, there is
one node for each tuple ¢ in r and there is a directed edge from the node representing
tuple ¢; to the node representing tuple ¢;, if and only if, ¢; >pg t;. Some properties of the
preference relation have a counterpart graph property.

If the preference relation is transitive, it is common to represent the transitive reduc-
tion of the relation. In particular, there is an edge from ¢; to ¢;, if and only if, t; >pr ?;
and 7 ik, such that, ¢; =pg tx and ¢, >=pg t;. The graph for a partially ordered set is also
known as the Hasse diagram. In the following, we assume that preference relations are
transitive and use the preference graph of their transitive reduction to represent them,
unless stated otherwise. Examples of preference graphs for different types of preference
relations are depicted in Figure 2.3. For instance, Figure 2.3a represents a preference
relation among a set of tuples ¢;, 1 <7 < n, such that, t; = ¢;,,,1 < j <n-—1

Besides the explicit listing of preference relations among tuples, a convenient way to
express preferences between tuples is by using logical formulas to express the constraints
that the two tuples must satisfy, so that, one is preferred over the other [32, 51].

Definition 2.2. Given a database instance r and two tuples ¢;, t; € r, tuple ¢; is preferred
over tuple ¢; based on a preference formula PF(t;,t;), t; >=pp t;, if and only if, PF(t;, ;)
holds.

11

Preference formulas allow us to express choices between a large number of tuples in a
single preference specification and in this respect, they can be considered set-oriented.

Example 1: Consider the relation movie provided in Figure 2.1 and its instance shown
in Figure 2.2a. A user, say Addison, prefers a movie ¢ from a movie ¢/, if and only
if, they are both of the same genre and ¢ is longer than ¢ (preference P;). Preference
P, can be expressed as follows. Given two tuples t;, t; € r, t; =p, t;, if and only if,
tilgenre] = tj[genre] A ti[duration] > tj[duration]. Consequently, t5 is preferred over t;
under P; in the given relation instance.

Based on the form of the formula PF', [32] makes a distinction between intrinsic and
extrinsic preferences. Intrinsic preferences are specified based solely on the values of the
two database tuples ¢; and ¢; that are being compared. FEutrinsic preferences involve
conditions that cannot be tested using only the values of the two tuples, such as, for
example, the existence of other tuples in r, join conditions with tuples in other relations
or comparisons of aggregate values. Using intrinsic preferences decouples the complexity
of determining the preference order from the size of the database, since this involves only
the two tuples being compared. It also makes the order insensitive to database updates.

In most cases, intrinsic preference formulas are restricted to first order quantifier-free
formulas expressed in a disjunction of conjunctions normal form (DNF) of simple equality
or rational-order constraints among the values of the two tuples. Specifically, a preference
formula PF is a DNF of predicate conditions, PF = (Cond;, A ... A Cond;,) V ... V
(Condy, A ... A Condy,), where each predicate condition C'ond,, has the form:

(Z) tl[Av] 91, tj[Av] or
(ii) ti[Ay] 0, co,

where t;, t; € r, k€ {i,j}, A, € A, co € dom(A,) and 0, € {=,#, <,>,<,>}if A, isa
numerical attribute and 0, € {=, #} otherwise.

Example 2: Assume now that Addison prefers a drama movie that was recently produced
or a horror movie with long duration (preference P,). Preference P, can be expressed as
follows. Given two tuples t;, t; € r, t; >=p, t;, if and only if, (t;,[genre] = t;[genre] A
tilgenre] = ‘drama’ A t;[year] > tjlyear]) V (t;[genre] = t;[genre] A t;[genre] = ‘horror’
A ti[duration] > t;[duration]). In the given movie instance (Figure 2.2a), tuple 5 is
preferred over t; under Ps.

A formal language for formulating preference relations is proposed in [74]. The lan-
guage has a number of base preference constructors, such as POS, NEG and AROUND,
that are distinguished between numerical and non-numerical ones based on the domain
type they are applicable to. For instance, P is a POS(B, POS-set) preference if: V t;,
t; € r, t; =p tj, if and only if, ¢;[B] € POS-set A tj|B] ¢ POS-set, where POS-set C
dom(B). This means that a desired value of B is one that belongs to a finite set POS-set
of favorite values. For example, given the movie instance of Figure 2.2a and preference

12

POS({director},{Curtiz}), the most preferred tuple is the movie Casablanca. Similarly,
a NEG preference defines that a desired value is one that does not belong to a finite set
NEG-set C dom(B) of dislikes. Preference constructors can be expressed using logical
formulas.

Quantitative Preferences

In the quantitative approach, preferences are specified using functions that associate a
numerical score with each database tuple. The score expresses the importance or degree
of interest in the tuple.

Definition 2.3. Given an attribute set A, a function fp : dom(A) — R is a preference
function that maps tuples to a score.

In general, ¢; is preferred over t;, that is, #; =p t; for a preference function fp, if and
only if, fp(t;) > fp(t;). There are also approaches that consider the lowest scoring items
as the highest ranked ones (e.g. [54]).

Example 3: Given a scoring function fp,(¢;) = 0.001 X t;[duration] (preference Pj), the
tuples t1, t5 and t3 of the movie instance in Figure 2.2a have interest scores 0.102, 0.109
and 0.195 respectively. Therefore, t3 is preferred over ¢, which in turn is preferred over
tq.

Generally, preference functions can operate on numerical and categorical attributes. A
convenient way to describe preferences irrespective of the attribute domain is by specifying
constraints that tuples must satisfy and assigning a preference score in these constraints.
In particular, preferences can be expressed as scores (or degrees of interest) to selection
conditions (e.g. [82, 113]). Preference scores belong to a predefined numerical domain.
Usually, the score domain is in the range of real values between [0, 1], but any other
integer or real range could be used.

Definition 2.4. Let R(Aj, Ao, ..., Ay) be a relational schema and dom(A;) be the domain
of attribute A;, 1 <i < d. A preference P on R is a pair (Condition, Score), where

1. Condition is of the form A; 0, a;, N A;,0i,ai, N ... N A; 0 a;, and specifies a con-
junction of simple selection conditions ¢;, on the values a;; € dom(AZ-].) of attributes
Aij, 1< ij < d, of R and

2. Score belongs to a predefined numerical domain.

The meaning of such a preference is that all tuples from R that satisfy Condition
are assigned the indicated interest Score. 6 € {=,<,>, <, >, #} for numerical database
attributes, while § € {=,#} for the categorical ones. Therefore, for a preference P, a
tuple ¢; is preferred to a tuple ¢;, that is, t; >p t;, if and only if, Score;, > Score;, .

Example 4: The preference (movie.genre =‘drama’, 0.9) shows a high interest in dramas
(preference Py), while the preference (movie.year > 1990, 0.8) shows interest in recent
movies (preference Ps).

13

Analogously to qualitative preferences, quantitative preferences can be distinguished
between intrinsic and extrinsic ones. Definition 4 describes intrinsic quantitative prefer-
ences, i.e. a preference score is assigned to a set of tuples based solely on the values of the
tuple. In Section 2.1.2, we will see examples of extrinsic quantitative preferences based on
conditions that cannot be tested using only the tuples for which a preference is expressed.

Equally Preferable and Incomparable Tuples

In an ideal world, preferences should exist for every object in a domain of interest. How-
ever, user preferences are typically incomplete. One can distinguish three cases related
to preferences: equal preference, incompleteness and incomparability. Equal preference
refers to two tuples being equally preferred. Incomparability represents that two tuples
cannot in some fundamental sense be compared with each other and it is likely to arise
when tuples combine together multiple features or when tuples are essentially very differ-
ent (for example, a car and a bicycle). Incompleteness, on the other hand, represents a gap
in our knowledge of user preferences. In general, it is not always possible to differentiate
among the three.

Let us first look into specific types of a preference relation. In general, a preference
relation > pp over a relational schema R induces an indifference relation ~ppg, such that,
Vt;, tj € r, t; ~pg tj, if and only if, (=(t; =pr t;) A =(t; =pr t;)). Note that for a
quantitative preference with scoring function fp, t; ~; t; & fp(t;) = fp(t;). If =prisa
total order, then the indifference relation ~pp reduces to equality: V t;, t; € r, t; ~pgr t;
< t; = t;. In this case, there is no gap in our knowledge. If ~ppr is a weak order, then
indifference is an equivalence relation. A binary relation is an equivalence relation if it is
reflexive, symmetric and transitive. Let r/ ~pg be the set of equivalence classes defined
over each instance r by ~pg. This set is totally ordered by >=*, where =* is defined as: V
r, o €1/ ~pr, 1 C 1,10 C 1,1 =" 1o, if and only if, ¢; >pg t; for some t; € ry and ¢;
€ ry. An example is shown in Fig. 2.4. In this case, all indifferent tuples in a class are in
a sense equivalent to each other or equally preferred.

However, if the preference relation > pg is neither a total nor a weak order, the indif-
ference relation ~pp may not be transitive, thus it may not be an equivalence relation.
To see this, consider the graph shown in Fig. 2.3c. The tuple to is indifferent to o1, t9;
is indifferent to ¢33, but too is preferred over t33. In this case, the indifference relation
induced by the preference relation fails to capture the distinction between two tuples
being incomparable versus being equally preferred. For example, the preference “I like
drama and horror movies the same” should be interpreted differently from the preference
“I cannot compare drama movies to horror movies”. Next, we discuss how to make this
distinction explicit for general types of a preference relation.

When >pp is a strict partial order, [75] propose to partition the indifference relation
~pp into two parts: (i) a substitutable part and (i7) an alternative part. The substitutable
part ~ppg includes the tuples that can substitute each other in any preference expression
and intuitively corresponds to tuples being equally preferred. Formally, the substitutable

14

relation ~pp is defined as: V ¢;, t; € r, t; ~pg t;, if and only if, (i) t; ~pr t; = t; ~pr
tj, (i) (3 tx € r, such that, ty >pgr t;) = tx >pr t;, (1) (3 tx € r, such that, t; >pg
tx) = t; =pr t, and (i) if we interchange ¢; and ¢; in (i) and (717), they still hold. The
substitutable relation is reflexive, symmetric and transitive. Two indifferent tuples that
are not substitutable are called alternatives. Alternatives tuples cannot substitute each
other in preference expressions.

Example 6: In Fig. 2.3c, t3; can substitute ¢35, and t33 can substitute ¢34, whereas to;
and toy are alternative tuples. As another example, consider the preference graph of
Fig. 2.5, representing a strict partial order among six tuples. Here, tuples ¢1; and ¢;5 are
substitutable with each other and so are to; with ¢55, while for example, t;; and ¢y are
alternatives. Note that when >pgr is a weak order, all tuples indifferent to each other
(i.e., all tuples in the same equivalence class) are substitutable. For instance, tuples to1,
tog, ..., tor, in Fig. 2.3b, are substitutable.

To differentiate between equally preferable and incomparable tuples, we could instead
define a strong indifference relation [50], such that, t; ~pg t;, if and only if, V ¢, € r, t;
~pr ty & tj ~pr t;. For example, t;1, 12 and to;, f92, in Fig. 2.5, are strongly indifferent.
Tuples related through strong indifference correspond to substitutable or equally preferred
ones. Strong indifference ~pp is an equivalence relation for any type of preference relation
~pr. Let / =pg be the set of equivalence classes defined over each instance r by ~pg.
Note that in this case, order >=* defined over this set r/ ~pr of equivalence classes is not
a total order.

An alternative way to differentiate between equally preferable and incomparable tuples
is, instead of defining a preference order > pg, to define another binary relation =~ pp over
R, such that, for two tuples ¢; and ¢;, ¢; = ¢; means that ¢; is at least as good as or at
least as preferable as ¢; (e.g., [51]). The “at least as preferable” relation 77 is normally
a preorder (i.e., reflexive and transitive). The binary relation - pr induces a preference
relation >pp over R, such that, V t;, t; € r, t; =pr t;, if and only if, (¢, Zpr t; A —(¢;
~pr t;)). Note that this corresponds to the asymmetric part of 2Z. From the symmetric
part of 77, we get an incomparability relation ||pg as follows: ¥V ¢;, t; € r, t; ||pg t;, if and
only if, (=(t; Zpr t;) A ~(t; Zprr ti)). We also get an equally preferable relation ~pp as
follows: V t;, t; € v, t; ~pg t;, if and only if, ((¢; Zpr t;) N (t; Zrr ti)).

If —pr is a preorder, >pg is a strict partial order. In addition, the equally preferable
relation ~pp is transitive and thus, forms an equivalence relation. If Z~—pg is a preorder
that is also antisymmetric, that is, if 7~ pp is a partial order, then ~pp is equality. Finally,
if 7—pg is a preorder that is also connective, >ppg is a weak order and ||pg is empty, that
is, all tuples are comparable.

Qualitative vs. Quantitative Preferences

Qualitative preferences are described in a relative way through explicit tuple comparisons,
while quantitative preferences are expressed in an absolute way directly on the desired
tuples. In terms of expressive power, the qualitative specification of preferences is more

15

Figure 2.4: Tuples ty; are related through the weak order >pg. All tuples within each
dotted oval are indifferent to each other and form an equivalence class. These equivalence
classes r; are totally ordered by >*.

Figure 2.5: Examples of substitutable and strongly indifferent tuples.

general than the quantitative one, since not all preference relations can be expressed by
scoring functions or through degrees of interest in conditions.

For example, take preference P; in Example 1: Addison prefers one movie tuple to
another, if and only if, their genres are the same and the duration of the first is longer.
Then in the example movie instance, t3 is preferred over ¢; and ¢, cannot be compared
with any of them. This preference cannot be expressed quantitatively, i.e., there is no
scoring function that captures the previous preference. For the purpose of contradiction,
assume that there is such a scoring function. Then, since there is no preference defined
between any of the tuples 1, t3 and t,, the score of ¢ should be equal to the scores of t;
and t3. But this implies that the scores of #; and ¢35 are the same, which is not possible
since t3 is preferred over ¢;. Note that >p, is not a weak order. As another example,
assume that Addison prefers to see recent movies over older ones, if the difference in the
year of their production is at least two years, expressed by preference Ps: V t;, t; € r, ;
>p, tj, if and only if, ¢;[year] > t;[year| + 2. Similarly, Ps cannot be expressed using a
scoring function.

It has been shown that when the set over which the preference relation is defined
is countable, a necessary and sufficient condition for a scoring function fp, such that,
ti =p t; < fp(t;) > fp(t;) to exist, is that >p is a weak order [50]. It is easy to see
that if >p can be captured by a scoring function fp, then it is a weak order. To prove
sufficiency, assume that =p is a weak order. Then, the induced indifference relation ~p
is an equivalence relation. The trick for defining fp is to assign scores to each tuple so

16

that (¢) tuples that belong to the same equivalence class get the same score and (i) for
two tuples ¢; and ¢; that belong to two different equivalence classes r; and ry respectively,
fp(ti) > fp(t;), if and only if, r; >* rs.

Since using fp implies that the produced preference relation is a weak order, we cannot
find for preference relations that are not weak orders, a function fp, such that, ¢; =p ¢;
& fp(ti) > fp(tj). A less strict condition exists to preserve >p one way that is: ¢; >p
t; = fp(ti) > fp(t;). For the example preference P;, we could for example define fp as,
fr(ti) =3, fp(t2) =2 and fp(ts) = 1.

In particular, it has been shown that, when the set over which the preference relation
is defined is countable, a necessary and sufficient condition for a scoring function fp, such
that, t; =p t; = fp(t;) > fp(t;) and t; =p t; & fp(t;) = fp(t;) to exist, is that >p is
acyclic [50]. Relation >=p is acyclic if we never have t; >=p ty =p ... =p t, >=p t1, for
finite m. The idea here is to use the equivalence classes induced by strong indifference for
assigning scores. In this case, the order =* among the equivalence classes is not a total
order.

However, qualitative preferences return the most preferred tuples without distinguish-
ing how much better one tuple is compared to another. For example, they cannot distin-
guish preferences, such as “I like comedies very much” vs. “I like dramas a little” and
they cannot capture different feelings, such as dislike in dramas.

2.1.2 Preference Granularity

Irrespective of their (qualitative or quantitative) formulation, preferences may be ex-
pressed at different levels of granularity.

Tuple preferences are expressed directly over database tuples. Typically, they are
formulated over the tuples of a single relation based on the attributes of this relation [32,
74, 113]. In the previous subsection, we examined several examples of tuple preferences.

[81] allows preferences for tuples in a relation R to be formulated based on values of
attributes in different relations that join to R. In essence, Definition 2.4 can be generalized
as follows: a preference P on a relation R is a pair (Condition, Score), where Condition
is a conjunction of atomic selections involving a set of attributes B in the database
and atomic joins transitively connecting these attributes to R. This is an example of a
definition of an extrinsic quantitative preferences.

Example 7: Consider the database schema in Figure 2.1. A preference for movies can
be specified using attributes of movies, such as the year of a movie, but also attributes
that are implicitly associated with movies and are stored in other relations, such as the
names of the actors starring in a movie. For instance, a preference for movies with Julia
Roberts could be stated as follows (preference Pr):
movie : (movie.mid = play.mid and play.aid = actor.aid

and actor.name = ‘Julia Roberts’, 0.8).

Set preferences are expressed based not only on the individual tuple properties, but

17

also on the properties of a group of tuples as a whole. Typically, a set preference can be
expressed on the desired quantity of certain objects in a set. For example, Addison wants
to watch three movies one of which has to be a comedy. Or she may want to see three
movies of the same director.

[135] represents set preferences in a qualitative way. For describing sets of tuples, the
concept of set profile is employed. A set profile is defined as a collection of features that
is mapped to a tuple. These features are generated with an aggregate query with min,
mazx, sum, count, avg. Then, a set preference is reduced to a tuple preference over set
profiles of the same cardinality.

Attribute preferences are expressed on attributes and set priorities between the at-
tributes of tuples.

Attribute preferences have different interpretations over the result of a database query
in different approaches [51, 92]. For example, they can be used to set priorities among
tuple preferences that are expressed over the values in the corresponding attributes (e.g.

[51]).

Example 8: Addison prefers the director Steven Spielberg to David Lynch (preference Py)
and adventures to dramas (preference P,), but she considers the director more important
than the movie genre. This attribute preference can be expressed as Py > P,.

Alternatively, attribute preferences can express priorities among the attributes to be
displayed in the result of a query. For instance, quantitative attribute preferences, called
7w — preferences, are discussed in the framework of [92]. A 7 — preference is expressed
by assigning an interest score to relation attributes.

Example 9: Assume Addison is interested only in the title, genre and language of a
movie. Then, she may express the following preferences:

P, = ({title, genre, language}, 1),

P, = ({year, director, duration}, 0.2).

Relationship preferences are expressed on a relationship between two types of objects
(called generic) or two particular objects (called instance). A generic relationship pref-
erence shows interest in a particular type of relationship. For example, one may consider
significant the relationship “a director has directed movies”. On the other hand, one may
think that the relationship “Julia Roberts acted in Ocean’s Twelve” is not important.
This is an instance relationship preference.

A framework that supports both tuple and relationship preferences for different rela-
tions of a database schema is presented in [82]. User preferences are stored as degrees
of interest in atomic query elements that can be individual selection or join conditions
(called selection and join preferences respectively). Join preferences show a user interest
in tuples from a relation R that join to tuples in different relations for which preferences
do exist.

Example 10: Addison likes actress Julia Roberts and expresses a selection preference:

18

L midf o, Sy

. ; 0 gas

IE movies actor date_of_birth
genre

0.8 (J. Roberts)

Figure 2.6: Personalization graph.

0.9
(Casablanca)«———in—— H.Bogart)
0.2 .
(Schindler’s List ~«¢—————in———— L.Neeson)

Figure 2.7: Example instance relationship preferences.

actor : (actor.name =‘Julia Roberts’, 0.8). Moreover, she has preferences expressed
over the joins between the relations of the database schema (Figure 2.1). In particular,
she considers the actor of a movie very important and hence she has the following join
preferences: movie : (movie.mid = play.mid,1) and play : (play.aid = actor.aid, 1).
These join preferences essentially connect movies to their actors and show that movie
preferences are also shaped by preferences for their actors.

In order to map simple preferences for tuples and relationships over a database, [82]
introduced the concept of a personalization graph G(V, E), a directed graph that is an
extension of the database schema graph. The nodes in V' are (i) relation nodes, one for
each relation of the schema, (ii) attribute nodes, one for each attribute of each relation
of the schema and (iii) value nodes, one for each value for which a user expresses a pref-
erence. Edges in E are selection edges, representing a possible selection condition from
an attribute to a value node, and join edges, representing a join between relations. Tuple
preferences map to selection edges. Join edges capture generic relationship preferences.
Figure 2.6 illustrates a personalization graph that captures the preferences given in Ex-
ample 10. A personalization graph could also capture attribute and relation preferences,
expressed in a similar way as preferences in [82], i.e. as degrees of interest. Figure 2.6
illustrates example preferences for the relations and attributes in our movie database in
different color.

In the same philosophy as above, one could imagine an instance-based personalization
graph, like the one depicted in Figure 2.7, where nodes correspond to tuples and edges
correspond to relationships between tuples.

Relation preferences are expressed on a type or class of objects. For example, “I am
interested in directors, but not in producers”.

To the best of our knowledge, relation preferences are not found in the literature so
far. However, it is noteworthy that the granularity at which preferences can be expressed
is determined to a great extent by the database schema. Hence, it is possible to express
the same preference at different granularities in different schemas for the same data. For

19

example, consider that instead of the movie relation depicted in Figure 2.1, we have the
following relations:

movie(mid, title, year, language, duration, did),

director(did, name), genre(mid, genre)

Then, the preference for the director over the genre expressed as an attribute preference
in Example 8, would be instead formulated as a relationship preference.

2.1.3 Context

Context is a general term used to capture any information that can be used to charac-
terize the situations of an entity [39]. Changing the behavior of an application taking
into account the current user context has been extensively studied in the context-aware
computing community, where different definitions of context have been proposed (e.g.
(23, 103]). A generic definition is the following [39]:

“Context is any information that can be used to characterize the situation of an entity.
An entity is a person, place or object that is considered relevant to the interaction between
a user and an application, including the user and applications themselves.”

It is noteworthy that under this general definition user preferences can be also consid-
ered part of the user context because they characterize the situation of a user and are used
to adapt a system’s answers to user queries. Here, we study how the context determines
when and how user preferences should be considered and we will consequently see how
it becomes part of preferences formulation. With these observations in mind, we present
here our own definition of context:

Definition 2.5. Context is any external information that can be used to characterize the
situation of a user or any internal information that can be used to characterize the data
per se.

Preferences may hold unconditionally, under all circumstances. These are called
context-free preferences. The examples we studied in the previous subsections are such.
There are also preferences that hold under specific circumstances or in a particular con-
text. In the general form, a contextual preference consists of two parts: a context part
and a preference part. Formally:

Definition 2.6. A contextual preference C'P is a pair (C, P), where C defines the context
and P defines the preference.

The context part specifies the conditions under which the preference part holds. Based
on our definition of context, the context can be dictated by our data or it can be ephemeral,
volatile and external to the database. On the basis of this distinction, contextual pref-
erences fall into two categories: internal contertual preferences and external contextual
preferences. For example, an internal contextual preference could be that for animations
the year of release should be after 2000. On the other hand, a preference for thrillers after

20

Table 2.1: Preference representation approaches w.r.t. context and preference formula-
tion.

Formulation
Qualitative Quantitative
Internal [10, 32] ——
Context
External [60] [112, 113, 92, 119, 120]

midnight is an external contextual preference and, in particular, it is a time-dependent
one.

Contextual preference models have been introduced following both the qualitative
[10, 60, 32] and the quantitative [112, 113, 92| approach for describing the preference
part. Furthermore, knowledge-based contextual preferences have been proposed [119].
Table 2.1 presents a taxonomy of contextual preference models with regards to context
and preference formulation.

In the following subsections, we will focus on the context part of these preference

representations.

Internal Contextual Preferences

In an internal contextual preference (C, P), the context part C is modeled using key-value
pairs, or tuples, and includes attributes that are part of the database schema (e.g. [10]).
Formally:

Definition 2.7. Given an instance r of a relation schema R(Aj, Ao, ..., Ay), an internal
context C is Nje(Aj = a;), L C{1,...,d} and a; € dom(A;).

[10] defines contextual qualitative preferences to rank database tuples. The preference
part is called choice. Given an instance r of a relation schema R(A;, As, ..., Ag), an
internal contextual preference C'P is of the form {A; = a;, = A; = a;, | C}, where q;,,
a;i, € dom(4;) and C is Nje(A; = a;), | C{1,...,d} and a; € dom(A;). The meaning of
such a contextual preference is the following: all tuples ¢ € r, such that, t[4;] = a;, and
t{A;] = aj, Vj € [, are preferred to tuples ¢ € r for which t'[4;] = a;, and t'[A;] = a;,
Vjel.

Example 11: Consider the following internal contextual preference: {director = ‘Spielberg’
- director = ‘Curtiz’ | genre = ‘drama’}. Then, tuple t3 of the movie instance shown in
Figure 2.2a is preferred to tuple ¢; in the context of dramas, while the preference {director
= ‘Curtiz’ > director = ‘Spielberg’ | genre = ‘drama’ A language = ‘English’} defines
that ¢, is preferred to t3 in the context of English dramas.

Similarly, [32] proposes the concept of conditional preferences, that is, preferences that
depend on the presence of specific attribute values. The proposed model permits disjunc-
tions of such preferences. For instance, consider that Addison prefers movies directed

21

by Hitchcock if they are horrors and movies directed by Curtiz if they are dramas, in
the sense that, any Hitchcock movie is preferred over any Curtiz movie for horrors, while
the opposite holds for dramas. This preference can be expressed as follows. Given two
tuples ¢;, t; € r, t; =p t;, if and only if, (t;[genre] = t;[genre] A ti[genre] = ‘drama’ A
ti[director] = ‘Hitchcock’ A tj[director] = ‘Curtiz’) V (t;[genre] = tj[genre] A t;[genre]
= ‘horror’ A t;|director] = ‘Curtiz’ A tj[director] = ‘Hitchcock’).

External Contextual Preferences

In an external contextual preference (C, P), the context part C is described as a situation
outside the database (e.g. [112, 113, 60, 119, 92]). Common types of external context
include the computing context (e.g. network connectivity, nearby resources), the user
context (e.g. profile, location), the physical context (e.g. noise levels, temperature) and
time [30]. [18] reviews recent evolutions of context modeling.

To model external context, we use a finite set of special-purpose attributes, called
context parameters. Formally:

Definition 2.8. Given a set of context parameters Cy, ..., C},, with domains dom(C),
..., dom(C,,) respectively, an external context C is a n-tuple of the form (¢1, ..., ¢,), where
¢; € dom(C;).

In our work [112, 113], we express external contextual preferences in a quantitative
way, where context parameters take values from hierarchical domains. The model used in
[112] for defining preferences includes only a single context parameter. Interest scores of
preferences involving more than one parameter are computed by a simple weighted sum of
the scores of the preferences expressed with single parameters. This approach is extended
in [113], where contextual preferences involve more than one context parameter and may
hold for a set of external contexts. More details about our context model are given in
Chapter 3. Contextual preferences of the same form and with a similar context model are
also defined in [92].

Example 12: Assume the context parameters accompanying_people and time_period and
also that Addison enjoys seeing comedies when accompanied with friends during holidays
or weekends. Such a contextual preference assigns a high interest score to comedies under
the external contexts (friends, holidays) and (friends, weekends).

External contexts, termed situations, are also discussed in [60]. Each context has
an identifier cid and consists of one timestamp, one location and other influences, such
as physical state, current emotion, weather conditions or accompanying people. External
contexts are uniquely linked through an N:M relationship with preferences expressed using
the qualitative approach introduced in [74]. Therefore, an external contextual preference
can be considered as a tuple (cid, pid), expressing that the qualitative preference pid holds
in the context cid.

Finally, a knowledge-based contextual preference model is proposed in [119]. In this
approach, a variant of description logics is explored to model user preferences. Contextual

22

preferences, called preference rules, have again the form (C, P), where both context and
preference are description logics concept expressions. To rank the answers of a query,
preference rules are enhanced with numerical scores [120]. The approach results in an
explanatory scoring method for documents, which is related to traditional, non context-

aware, information retrieval.

2.1.4 Preference Aspects

Preferences naturally come into different flavors and can express different opinions and
desires. For example, a preference may express like (e.g. “I like going to movies”) or
dislike (e.g. “I do not like long movies”). It may capture a general rule (e.g. “I like all
comedies”) or a finer-grained taste (e.g. “I like comedies released after 2000 by American
directors”) and so forth.

In what follows, we consider a set of preference-related concepts and we describe
several types of preferences with the purpose of further understanding the expressivity of
existing preference modeling works. Of course, we do not aim at delving into philosophical
questions of what preferences may express.

Intensity shows the degree of desire expressed in a preference. Synonym concepts
are priority, significance and importance. Intensity answers the question of “how strong a
preference is”. Preferences can be loosely characterized as strong, weak or moderate. As we
have discussed back in Section 2.1.1, quantitative approaches capture intensity in the score
or degree of interest attached to a preference. For example, the preference (movie.genre =
‘drama’,0.9) is a strong preference compared to (movie.genre = ‘animation’,0.3), which
can be considered a weak preference. On the other hand, qualitative approaches can show
intensity only in an abstract way by the virtue of comparison.

Necessity corresponds to the satisfaction of a preference and answers to the question
“should the preference be met”. A preference may be hard or mandatory if it must be
absolutely satisfied. Note that the conditions in a query are considered by default hard in
the traditional boolean database query model. Moreover, a user may also have preferences
that are hard constraints. For example, the preference “If I am with friends, I do not
want to see a drama movie” is a hard constraint. Soft or optional preferences are desired
and may be satisfied. For instance, a preference for director W. Allen is optional, since
this director may not be the only criterion for selecting a movie. Necessity may be related
to the intensity of a preference. For example, in [82], necessity is captured through the
intensity of a preference, as a degree of interest equal to 1 shows mandatory preference
whereas values less than 1 show optional preferences. In the general case, necessity may
not be expressed through a preference’s intensity. For example, a veto holds over and
blocks other preferences that may be conflicting with it. In [11], a veto for a particular
value is captured by the symbol g.

Feeling answers to the question “how one feels about something”. Preferences may be
positive, i.e. expressing like, negative, expressing dislike or indifferent if they convey no

23

particular taste. Quantitative approaches can capture more easily negative preferences in
the score. For example, a degree of interest in the range [-1, 0) shows dislike [80], while
a degree equal to 0 indicates indifference. Indifference is also explicitly captured in [11]
with the symbol L. Since qualitative approaches are based on comparisons, comparisons
cannot explicitly distinguish between something that is less desired vs. something not
liked.

Positive and negative preferences can also be captured through the preference construc-
tors proposed in [74]. Examples of such constructors are the POS and NEG preferences
described in Section 2.1.1.

Complexity describes the degree of detail expressed in a preference and answers to
the question “how specific a preference is”. A preference may be generic or simple if
it refers to a single relationship or attribute of the objects of interest. For example,
a qualitative preference that compares a pair of entities based on a single attribute is
a simple preference. A compound preference jointly expresses a combination of simple
preferences to be concurrently met. For example, a preference for “comedies directed by
Woody Allen after 2000” is a compound preference expressing a very specific interest in
a subclass of comedies [32, 81].

Attitude indicates whether a preference is associated with the existence (presence
preference) or absence of certain values or relationships (absence preference). For instance,
a preference for a movie being a comedy is a presence preference whereas a preference for
movies without violence is an absence one. The model described in [80] allows capturing
both presence and absence preferences associated with different degrees of interest (i.e. of
different intensities). Also, a veto expresses a prohibition on the presence of a specific set
of values in the elements of the answer to a query [11, 32]. In our terminology, a veto is
a hard absence preference.

FElasticity indicates how strict a preference is. An exact preference is either satisfied
exactly or not at all. Given the mutual independence of categorical values, preferences for
categorical values are typically considered exact. For instance, a preference for adventures
is an exact one if no way is provided in order to specify which “adventure-like” movies
would be also acceptable. FElastic preferences may be satisfied as closely as possible and
are usually associated with numerical values. For example, a preference for the duration
of a movie is more naturally expressed as an elastic one, such as “I like movies around 2h”.
One could imagine using a similarity function to capture elastic preferences on categorical
values as well.

Qualitative approaches capture exact preferences (e.g. [32]). On the other hand, scor-
ing or preference functions express elastic preferences for numeric data [11]. [74] captures
elastic preferences for numerical attributes using special order and distance operators. For
example, the AROUN D(B, z) preference constructor denotes that the desired tuples have
value z for B. If this is infeasible, the tuples with values with the smallest distance from z
are the preferable ones. For instance, under the preference AROU N D({duration}, 180),
the most preferable movie in the database in Figure 3.2 is Schindler’s List, since it has

24

the closest duration to the desired one.

[80] captures elastic preferences in the form of the degree of interest. If the degree is a
constant value, like in (movie.genre = ‘animation’,0.3), then it expresses a preference for
the exact value specified. The degree of interest can also be a function over the domain
of an attribute values and, in this case, it captures an elastic preference not for a single
value but over a range of values of varying intensity.

2.1.5 A Summary of Preference Representations

To synopsize, preference representation approaches can be categorized based on the fol-
lowing dimensions: how preferences are formulated (formulation), at what level they are
expressed (granularity), under which conditions they hold (context) and what they ex-
press (aspects). Preferences can be expressed in a qualitative or in a quantitative way
over tuples, relations, attributes or relationships. Context-free preferences hold under all
possible contexts whereas contextual preferences can hold in a specific context that can
be internal or external to the database. Finally, preferences can be characterized based
on various aspects, such as intensity, feeling and complexity. Figure 2.8 summarizes the
various options in each dimension.

Table 2.2 compares different approaches for preference representation based on the
formulation, granularity and context dimensions. Table 2.3 drills down to preference
types and compares approaches based on what preference aspects are captured at each
granularity. [84] opened the road to preference modeling in databases, but they did not
specify a formal definition of the proposed language. We observe that most works have
focused on tuple preferences, while preferences at the level of relation have not been
considered yet. For example, we could define how books in general are preferred by a user
compared to movies. A second observation is that current representation approaches are
pure qualitative or quantitative. Only [74] covers preferences that could be formulated in
a mixed way. For example, one could imagine a scenario where we have two users, one’s
preferences are captured in a qualitative way and the other’s in a quantitative way. The
objective is to return results that capture both users’ preferences.

2.2 Preference Composition

Given a set of preferences, there are different composition methods or mechanisms to
combine preferences and determine the ultimate ranking of a set of affected tuples. In
this section, we distinguish such methods based on two criteria: user attitude and tuple
ranking. Let us assume that we have two preferences P, and P, . Then, we distinguish
between the following attitudes:

o Qverriding attitude: Preference P, overriding P, means that P, is applicable only
if P, does not apply;

25

Quantitative

/\

Qualitative

Attribute

Relationship

Relation

Formulation
Tuple
Preference

Granularity
Representation z
Context

\

Contextual

Context-free

Necessity
Intensity
Feeling

Aspects

Complexity

Attitude

AN VAN

ANNMNNA AA

Elasticity

Sets

Individual

Internal

External

Soft

Hard

Strong

Weak

Negative

Indifferent

Positive

Compound

Simple

Absence

Presence

Elastic

Exact

Figure 2.8: A taxonomy of preference representations.

26

Table 2.2: Preference representation approaches w.r.t. preference formulation, granularity
and context.

Formulation Granularity Context

e | = &

s | 3 t | 5| E |5)| 5%

s | & g | & | = | = S | E |4
(84] v v v
[135] v sets v
[31, 32] v v v v
[74] v v v v
[11] v v v
(82, 80] v e v v
[10] v v v
[112, 113] v v v v
[60] v v v
[119, 120] v v v
[51] v e v v
[92] v e v v

Table 2.3: Preference representation approaches w.r.t. preference aspects (T=tuple,
C=relation, A=attribute, R=relationship).

Aspects

Intensity Necessity Feeling Complexity Attitude Elasticity

@ Bl < @ Y S S @ N 8, S) B
[84] T T — T T — — T T T — T —
[31, 32], T T - T T — T T T T T T —
[135]
[74] T T — T T T — T T T T T T
[11] T T - T T — T T T T T T T
(82, 80, 81] T T TR | TR T T T TR | TR T T T T
[10] T T — T T — — T T T — T —
[112, 113] T T - T T — — T T T T T —
[60] T T - T T T — T T T T T T
[119, 120] T T T T — — T T T T T —
[51] TA | TA A T TA — TA T T TA TA | —
[92] TA | TA A TA TA — — TA | TA TA T TA | —

27

e Dominant attitude: The most or least important preference determines the tuple

ranking;

o Combinatory attitude: Both P, and P, contribute to the tuple ranking.

Preference composition may order a pair of tuples in a qualitative or in a quantita-
tive way. Qualitative composition mechanisms order the tuples relatively to each other,
whereas quantitative composition mechanisms combine preferences expressed as scores
over a set of tuples and assign final scores to the tuples, which are thus ordered in a
quantitative way.

We present different ways of combining preferences over tuples (Section 2.2.1). Apart
from mechanisms for composing tuple preferences, there are also composition mechanisms
for preferences of different granularity, for example, preferences for tuples with preferences
for attributes. Hence, we also discuss cases of heterogeneous composition (Section 2.2.2).

2.2.1 Combining Preferences for Tuples

As we discussed in Section 2.1.1, qualitative preference representation approaches are
more general than quantitative ones, in the sense that we cannot in general find a scoring
function fp, such that t; =p t; < fp(t;) > fp(t;). On the other hand, for each fp, there
is a preference relation >p, such that fp(t;) > fp(t;) = t; >p t;. Based on this observa-
tion, every composition mechanism defined over preference relations can be also applied to
preferences defined using functions (or degrees of interest) and leads to a qualitative tuple
ranking. Consequently, in what follows, we describe different composition mechanisms for
preference relations (prioritized composition, lexicographical, pareto, intersection, union,
difference and transitive closure), which are also applicable to numerical preferences (al-
though in our discussion, we will mention only preference relations for brevity). We also
describe numerical (i.e. quantitative) composition that can be applied to quantitative
preferences (and qualitative mapped to quantitative ones). Without loss of generality, in
the following, we assume composition of two preferences P, and P,; generalizing to n > 2
preferences is straightforward.

In general, composition can be distinguished between (i) composition of preference
relations over the same schema R, in which case the composed preference relation is
defined over R, and (4i) composition of preference relations over different schemas R and
R, in which case the composed preference relation is defined over the Cartesian product
R x R

Qualitative Composition

Prioritized Preference Composition. Given the preferences P, and P, in a priori-
tized preference P,&P,, P, is considered more important than P,. Formally:

28

Figure 2.9: Example of prioritized and pareto composition.

Definition 2.9. Let P, and P, be two preference relations defined over the same relational
schema R. The prioritized preference composition relation >~p, ¢ p, is defined over R, such
that, V t;, t; of R, t; =p,ep, t;, if and only if, (t; =p, t;) V (t; ~p, t; At; =p, 1)).

The intuitive meaning of prioritized composition is: use preference P, only if P, is not
applicable. An example is shown in Figure 2.9, where the preference graph in Figure 2.9¢c
represents the preference resulting from the prioritized composition of the preferences P,
and P, represented by the preference graphs shown in Figure 2.9a and Fig 2.9b respec-
tively. Using logical formulas, we consider the following example.

Example 13: Addison prefers drama movies over horror movies (preference Ps) and long
movies over short ones (preference Py). Preference Py can be defined using logical formulas
as: t; >p, tj, if and only if, ¢;[genre] = ‘drama’ A tj[genre] = ‘horror’. Similarly, Py
can be expressed as: t; >p, t;, if and only if, ¢;|duration] > t;[dura- tion]. Then, the
prioritized preference Ps& Py can be defined as: ¢; >=pp, t;, if and only if, (¢;[genre] =
‘drama’ A tj[genre] = ‘horror’) V (ti[genre| # ‘drama’ A t;[duration] > t;[duration])
V (tjlgenre] # ‘horror’ A t;lduration] > t;lduration]). Now, for the movie relation of
Figure 2.2a, under P& Py, t3 is preferred over t; which in turn is preferred over 5.

Prioritized composition may also be applied among preferences defined over different
relational schemas. In this case, prioritized composition is called lexicographical composi-

tion. Formally:

Definition 2.10. Let P, and P, be two preference relations defined over the relational
schemas R and R’ with attribute domains dom(A) and dom(A’) respectively. The lexi-
cographical preference composition relation >p ¢ p, defined over the Cartesian product R
x R is a subset of dom(A) x dom(A’), such that (t;,t}) =pep, (t),1;), if and only if,

(ti =p, tj) V (ti ~p, tj A t; =p, t;), where t;, t; are tuples of R and #;, ¢/ tuples of R'.

It has been shown that total and weak orders are preserved by prioritized and lexico-
graphical composition, whereas, strict partial order is not [32]. Prioritized composition
is easily extended for the “at least as preferable” relation ~~pg. In particular, for lexico-
graphical composition [51]:

(4) (ti i) =poep, (1), if and only if, (¢ >pm ti) V (ti =p, t; ANt =p, t7), (i) (L, 1)
~p,&p, (tj,1;), if and only if, t; ~p, t; At} ~=p, t; and (i) (t;,t}) ||p.ep, (t;,1;) otherwise.

29

For P, and P, described with the help of query conditions over the same relation R,
i.e. of the form R : (¢, d,) and R : (g,, d,) respectively, where g, g, are conditions and d,,
d, are scores (Definition 4), syntactic preference overriding can be defined based on the
structure of ¢, ¢, [81, 92]. We can view a preference P, as a possible conjunctive query,
which selects tuples from R that satisfy ¢,. Intuitively, a tuple preference defines a class
of entities with some particular features. If P, explicitly refers to a subclass of the entities
that P, refers to, whenever they both apply, the more specific one, i.e. the one defining
the subclass, overrides the more generic one. Building on the idea of conjunctive query
containment and containment mappings [13, 29|, preference overriding can be defined as
follows [81]:

Definition 2.11. Given two preferences R : (¢;,d,) and R : (g,,d,), P, is overridden by
P,, if each atomic condition in g, is mapped to an atomic condition in g, with the same
relations and attributes.

Then, preference P, is called generic and preference P, is called specific. [92] addi-
tionally requires that preference P, is more related to the current query than P,.

Example 14: Addison’s preference for comedies can be expressed as (movie.genre =
‘comedy’, 0.9). In addition, Addison does not like comedies directed by Ben Stiller ex-
pressed as movie : (movie.genre = ‘comedy’ and movie.director = ‘BenStiller’, -0.9).
The latter preference is more specific than the first one as it refers to a subclass of the
comedies. Hence, when both preferences apply, the more specific preference overrides the
preference for comedies.

Pareto Preference Composition. In pareto composition, preferences are considered
equally important.

Definition 2.12. Let P, and P, be two preference relations defined over the same rela-
tional schema R. The pareto preference composition relation >p, op, is defined over R,
such that, V t;, t; of R, t; =p,ep, tj, if and only if, (t; =p, t; A =(t; =p, ti)) V (t; =p,
ti A(t; =p, 1))

Note that for two tuples ¢; and t5 and a preference relation P, —(t; »p to) = (t2 >p t1
V ty ~p t3). Intuitively, under pareto composition, a tuple is better than (or dominates)
another if it is at least as good (i.e. not worse) under one preference and strictly better
under the other. For instance, given the preference graphs of two preferences P,, P,
(Figure 2.9a, 2.9b), Figure 2.9d depicts the preference graph of P, ® P,. As another
example, consider the following.

Example 15: Assume the preferences Py and Py defined above. The pareto preference
P3 ® Py can be defined as: ¢; >pep, tj, if and only if, (t;[genre] = ‘drama’ A t;[genre]
= ‘horror’ A t;[duration] > t;[duration]) V (t;[duration] > t;[duration] A t;[genre] #
‘drama’) V (tjlduration] > t;[duration] A tj[genre] = ‘drama’ A t;j[genre] # ‘horror’).

30

Now, for the movie relation of Figure 2.2a, under Py ® Py, t3 is preferred over ¢; and ty, 1,

are incomparable.

Pareto composition is also applicable to relations defined over different schemas. This
is called multidimensional pareto composition.

Definition 2.13. Let P, and P, be two preference relations defined over the relational
schemas R and R’ with attribute domains dom(A) and dom(A’) respectively. The mul-
tidimensional pareto preference relation >p,gp, defined over the Cartesian product R
x R'is a subset of dom(A) x dom(A’), such that (;,t;) =p,ep, (t,t;), if and only if,
(ti =p, tj A(t) =p, 1)) V (t; =p, t; A=(tj =p, t;)), where t;, t; are tuples of R and ;, #
tuples of R'.

Pareto composition does not preserve the weak, total or strict partial orders [32].
Pareto composition is also easily extended for the “at least as preferable” relation 7~pg
[51]:

(i) (ti,t}) =poop, (t,1)), if and only if, (t; =p, t; A) Zp,) V (8 =p, t) A ti Zp, 1),
(id) (ti,t;) ~p,ep, (tj,t};), if and only if, (t; ~p, t; At ~p, t;) and (m) (ti, 1) |lp.op,
(tj,1;) otherwise.

ZNPy

Pair-wise Comparisons Preference Composition. In the context of rankings ag-
gregation, in 1785, [36] outlines a generic method designed to simulate pair-wise elections
in a voting system. Given two elements, or objects, the first one precedes the second one
if it precedes it in the majority of rankings.

In a similar way, we can say that, given a set of preferences, a tuple ¢; is preferred
over a tuple ¢;, if and only if, ¢; is preferred over ¢; for the majority of the preferences.
Formally:

Definition 2.14. Let Sp be a set of preference relations defined over the same rela-
tional schema R. Sp is divided into two sets Sp, and Sp,, such that Sp, (| Sp, = 0 and
Sp,USp, = Sp. Given two tuples ¢;, t; of R, such that ¢; >p, t;, VP, € Sp,, and
=(t; =p, tj), VP, € Sp,, the pair-wise comparisons preference composition relation >,
is defined over R, such that t; >, t;, if and only if, |Sp,| > |Sp,|.

Other similar methods can also be found in voting theory. For example, given a set of
rankings, a very simple approach considers only the first tuple of the individual rankings
to construct the aggregate one; tuples are ordered according to the number of times that
each one appears in the first position of the rankings. This solution seems to be not
fair, since it ignores all the non first positions of a tuple. To overcome this problem,
[19] introduces a method in which the position of a tuple in the aggregate ranking is
determined by the sum of its positions in the initial rankings.

Set-Oriented Preference Composition. The following ways of combining prefer-
ences are only applicable to preferences defined over the same relational schema. They

31

correspond to the intersection, set difference and union of preference relations. Recall
that preference relations are defined as binary relations, i.e. as sets.

Given the relations P, and P, the intersection preference relation - p, ¢p, corresponds
to =p, N =p,. More precisely:

Definition 2.15. Let P, and P, be two preference relations defined over the same rela-
tional schema R. The intersection preference relation ~p, ¢p, is defined over R, such that,
Y t;, t; of R, t; P, #P, tj, if and only if, ¢; —p, tj N t; =P, t;.

Example 16: The intersection preference Ps4F, can be expressed as: t; >p,¢p, tj, if
and only if, (¢;[genre] = ‘drama’ A t;[genre] = ‘horror’) A (t;[duration] > t;[duration]).
Therefore, under P4 Py, t3 is preferred over ts.

The difference preference relation =p,_p, corresponds to set difference ~p, — >p,,
while the union preference relation >p, ,p, corresponds to union >=p, U =p,. Thus, for-
mally:

Definition 2.16. Let P, and P, be two preference relations defined over the same rela-
tional schema R. The difference preference relation »p, _p, is defined over R, such that,
v t;, tj of R, t; ~P,—P, tj, if and only if, ¢; =P, tj N —\(ti =P, tj).

Definition 2.17. Let P, and P, be two preference relations defined over the same rela-
tional schema R. The union preference relation »p, p, is defined over R, such that, V #;,
tj of R, t; > P,+P, tj, if and only if, ¢; ~-p, tj Vi =P, tj.

Strict partial order is preserved by intersection but not by set difference or union.
None of the set-oriented composition operators preserve either the weak or the total order
(32].

Transitive Closure. The transitive closure of a preference relation is defined as follows
(32].

Definition 2.18. Let >pgr be a preference relation defined over a relational schema R
and ;, t; be two tuples of R. The transitive closure of ~pg is a preference relation > pp-
over R defined as: t; >pg- t;, if and only if, ¢; =% t;, n > 0, where:

(Z) t; P})R ti =1t »prtj and

(i4) t; =pt t; = 3ty, such that t; =pp t) Aty =%p t;.

An important point is that, when preference relations are defined using formulas,
the transitive closure is not defined as the closure of a finite relation as is the case of a
database instance. [102] introduces a constraint language for expressing the preference
formulas PFs that allows comparison and a limited form of arithmetic. They prove that
the transitive closure computation of a partial order preference relation expressed using
their language terminates. They also provide estimations for the size of the transitive

closure for pareto, prioritized and intersection composition.

32

Quantitative Composition

Numerical preference composition can only be applied to quantitative preferences.

Definition 2.19. Given two preferences P,, P, over R defined through preference func-
tions fp,, fp, respectively and a combining function F' : R x R — R, V #;, #; in R,

ti =rankp(Po,p,) by, if and only if, F'(fp,(t;), fp,(t:)) > F(fr,(t;), fp,(t;)).

To assign importance to preferences, a weighted function can be used.

Example 18: Assume preference P; with scoring function fp,(t;) = 0.001 X t;[duration)]
and preference Py with scoring function fp,(¢;) = 0.0001 x ¢;[year]. The numerical
preference rankp(Ps, Pyg) with combining function F'(fp,(t;), fp,(t:)) = 0.1 X fp,(t;) +
0.9 X fp,,(t;) assigns weight 0.1 to Py and weight 0.9 to Pjo. Under this preference, tuples
t1, tg, t3 get the scores 0.185, 0.187, 0.199 respectively and so, t3 is preferred over ¢, which

in turn is preferred over ¢;.

Other types of combining functions, besides the weighted one, are the “min” and the
“max” functions. If preferences are defined through conditions, then conjunctive and
disjunctive preferences can be constructed by combining the corresponding conditions
through the boolean operators and and or respectively. The interest score of a complex
preference is computed as a function of the scores of the participating preferences.

[80] defines three classes of combining (or ranking) functions: (i) inflationary, where
the preference in a tuple that satisfies multiple preferences together increases with the
number of these preferences; (ii) dominant, where the most important preference domi-
nates; and (iii) reserved, where the preference in a tuple is between the highest and the
lowest, degrees of interest among the preferences satisfied.

Analogously to prioritized and pareto composition, numerical composition may be
applied to preferences defined over different schemas (e.g. [62, 67]).

Definition 2.20. Given two preferences P,, P, defined over R, R’ through preference
functions fp,, fp, respectively and a combining function F': RxR — R, (¢;,t]) =rankp(P.,p,)
(tj, 1), if and only if, F(fp,(t:), fp,(t)) > F(fp.(t;), fp,(t})), where t;, t; are tuples of R

and t, ¢’ are tuples of I'.

2.2.2 Combining Preferences of Different Granularity

The mechanisms presented in the previous section compose preferences for tuples. In this
section, we study approaches for combining preferences of different granularity.

In the multi-relational preference model of [80, 82], user preferences are expressed at
the tuple and relationship level. One can compose implicit preferences, i.e. preferences
that can be implied by the known ones. Implicit preferences can be derived from com-
poseable preferences. Two preferences P, and P, are composeable, if and only if: (i) P,
is a join preference of the form R, : (gs,d,) connecting R, to a relation R,, and (i) P,
is a join or selection preference on R, i.e. R, : (qy,d,).

33

Definition 2.21. An implicit preference R : (q,d) is defined from the composeable
preferences P, and P,, as follows:

e R=R,,
e ¢ is the conjunction of the conditions ¢, ¢, and

e d is a function of the degrees of interest of the base preferences, i.e. d = f(d,,d,).

d is a non-increasing function, such as the product and the minimum of the base
degrees of interest d, d,, on the ground that it cannot exceed the degrees of interest of
its supporting preferences.

Example 19: Addison likes actress Julia Roberts and expresses a selection preference:
actor : (actor.name = ‘Julia Roberts’, 0.8). Moreover, she has preferences expressed
over the joins between the relations of the database schema (Figure 2.1). In particular, she
considers the actor of a movie very important and hence she has the following join pref-
erences: movie : (movie.mid = play.mid, 1) and play : (play.aid = actor.aid,1). Then,
we can define an implicit preference for movies with Julia Roberts (taking the product of
the degrees of interest), as follows:

movie : (movie.mid = play.mid and play.aid = actor.aid and actor.name = ‘Julia Roberts’,

0.8).

[51] defines preferences at tuple and attribute level. In a qualitative form, priorities are
expressed among (7) values of specific attributes and (ii) attributes themselves. Attribute
preferences can be used to express priorities among tuple preferences. This is illustrated
in the following example.

Example 20: Consider the movie instance of Figure 2.2a and the preferences: (i) Hitch-
cock is preferred to Curtiz or Spielberg (preference Pp), (ii) horror movies are preferred
to drama movies (preference Pg) and (iii) the director of a movie is as important as its
genre (preference Ppg). To combine the preferences Pp and Pg, the proposed model takes
the pareto preference composition Pp ® Pg, since, as expressed in the third preference,
Pp and Pg are equally important. Therefore, with regards to Pp ® Pg, t5 is preferred to
t; and t3 and t;, t3 are incomparable.

2.2.3 A Summary of Preference Composition

Given a set of tuple preferences, there are different composition mechanisms. In general,
composition may reflect different user attitudes towards resolving preference conflicts and
may order a pair of tuples in a qualitative or in a quantitative way. Table 2.4 summarizes
composition mechanisms for tuple preferences based on user attitude and tuple ranking.

As we have discussed earlier in this section for preference composition, every composi-
tion mechanism defined over preference relations can be also applied to preferences defined
using functions (or degrees of interest) leading to a qualitative tuple ranking. Interest-
ingly, most approaches follow a pure qualitative or quantitative approach for preference

34

Table 2.4: Preference composition w.r.t. tuple ranking and attitude.

Attitude
Overriding Dominant Combinatory
o prioritized, pareto, multidimensional pareto, pair-wise
. Qualitative ——
Tuple Ranking lexicographical comparisons, intersection, difference, union
Quantitative syntactic overriding maz, min avg, weighted average, ...

Table 2.5: Preference composition w.r.t. granularity.

Tuple Relation | Attribute | Relationship

[11, 119, 120, 31, 32, 60, 74, 82]
Tuple —— [51] [82, 80, 81]
[80, 81, 84, 10, 112, 113, 92, 135]

Relation —_— - ——

Attribute [51][92] ——

Relationship (82, 80, 81]

representation and composition. For example, if one approach represents preferences us-
ing scoring functions then it also combines preferences using scoring functions. It would
be however interesting to see the intermingle of methods for representation and composi-
tion. Only [74] enriches its qualitative model with quantitative preference representation
and composition mechanisms.

Apart from mechanisms for composing tuple preferences, there are also composition
mechanisms for preferences of different granularity, for example, for composing preferences
for tuples with preferences for attributes. Table 2.5 summarizes composition approaches
based on the combination of preferences of different granularity. We observe that most ap-
proaches deal with tuple-to-tuple preference composition, whereas there are combinations
that have not been touched at all. For example, one could have a preference overriding
mechanism that considers a relation preference in the lack of specific preferences for its
tuples.

2.3 Preferential Query Processing

Preferential query processing methods employ preferences to provide users with cus-
tomized answers by changing the order and possibly the size of results. Several methods
have been proposed by the database community focusing on integrating preferences into
query processing. Next, we present such methods organized into the following topics.

e FExpanding database queries. These methods deal with preferential query processing
through the process of expanding regular database queries with preferences, for

35

example, by adding selection conditions that express user preferences on attribute
values.

e Employing preference operators. These methods integrate preferences into query
processing by augmenting database queries with special preference algebra opera-
tors. These special operators may be implemented as separate relational operators.
Alternatively, the operator translation may be achieved through the process of query

re-writing.

We also discuss methods for improving the performance of preferential query pro-
cessing, for instance, by performing pre-processing steps off-line to construct rankings
of database tuples based on preferences with the purpose of reducing the on-line query
processing time.

Finally, there are special-purpose algorithms for generating the top-k results ranked
according to some (combining) preference function. Since top-k processing is an important
component of preferential query processing, we also present a short taxonomy of related
work.

In the rest of this section, we study and compare preferential query processing tech-
niques that expand database queries (Section 2.3.1), employ special preference operators
(Section 2.3.2), pre-compute rankings (Section 2.3.3) and perform top-k computation
(Section 2.3.4).

2.3.1 Expanding Database Queries

A number of approaches use the set of preferences that is provided for a particular user to
expand regular database queries and rank the query results according to these preferences.
In doing so, there are three fundamental steps:

e Preference relatedness. Determining which preferences are related and hence, appli-
cable to a query. Different definitions are possible based on how the relationship of
a preference with a query is understood.

e Preference filtering. Identifying which of the related preferences should be integrated
into the query. These could be the most important ones based on their preference
score, the most related based on some relatedness metric or all of them.

e Preference integration. Integrating the selected preferences into the original query
to enable preferential query answering.
Preference relatedness

From a set of preferences known for a user at query time, all of them may be considered
related to the query and applied on the query results (e.g. [51]) or only a subset (e.g. [80]),
determined on the basis of the relationship of a preference with the query. To understand

36

the different ways in which such a relationship can be defined, let us consider a preference
(C, P) and a query (Cg, Q). P is defined for the context C, which (based on our discussion
in Section 2.1.3) can be internal, external (or both), or null if the preference is context-
free (in which case, we would simply write P). Similarly, the user query has two parts:
an internal part, Q, formulated over the database, and an external part, Cg, which is
described by the same set of parameters, such as the time of the query, that are used for
the external part of C. Cg may be null if no external context is specified.

Definition 2.22. A preference (C, P) is related to a query (Cg, @) if: (i) the external
part of the context C matches the external query context Cqp and the internal part of
the context C matches the internal query context @, and (i7) the preference part P is
applicable to (a subset of) @’s results.

In what follows, we elaborate each part of the definition separately.

Context Matching. Independently of the type (internal or external) of context, context
matching can be defined with the help of a metric measuring the distance, similarity or
difference of two contexts. Therefore, although the context matching methods described in
the sequel have been discussed in the literature for a single type of context (either internal
or external) and that is the way we are presenting them below, they are applicable to
both types.

One approach is to represent both contexts as vectors and measure their similarity. [10]
considers a preference (C, P), where C is internal context, and a conjunctive query @ over
a relation R = {A;,..., A4} (no external context is specified) and take the vector repre-
sentations of C and @) as follows. Consider the set D of all distinct < attribute, values >
pairs appearing in a relation R with size equal to N. We refer to the i-th element of
D by D[i]. A vector representation of a context C =A;eg(A4; = a;), | C {1,...,d} and
a;j € dom(A;), is a binary vector V¢ of size N. The i-th element of the vector corresponds
to D[i]. If D[i] appears among the conjunctions of C, then V¢[i|=1; otherwise it is 0.
Analogously, the vector representation of a conjunctive query is a binary vector Vg, of size
N. If D[i] is one of the query conjuncts, then Vy[i] = 1; otherwise it is 0. The similarity
between C and () can be defined using their vector representations Vi and Vi, as follows:

. Ve- Vo

sim(C, Q) = cos(Ve, Vo) VellVal

If the context parameters take values from hierarchical domains (e.g. the hierarchies
in Figure 3.1), then we can compare contexts expressed at different levels of abstraction.
For this purpose, we can exploit the notion of cover partial order between contexts [113].
For instance, the notion of coverage allows relating a context in which the parameter
time_period is instantiated to a specific occasion (e.g. Christmas) with a context in which
the same parameter is expressed with a more general period (e.g. holidays). Using the
cover partial order between contexts, we can relate the external context of a preference (C,
P) to the context Cq of a query, if C is more general than Cq, that is, if the context values

37

specified in C are equal to or more general than the ones specified in Cg. In addition, we
can measure the distance between the contexts C and Cg in the hierarchy. [113] defines the
hierarchical distance between two contexts, C = (¢1,¢2, ..., ¢,) and Cg = (C?, CQQ, o9,
both defined with the help of a set of hierarchical parameters C', ... C,, as:

diStH(C, CQ) = Z dH(sza Lg?z)a
i=1

where L,, (resp. L) is the hierarchy level of value ¢; (resp. ¢?) of parameter C; and
dp(Lg,;, LY) is equal to the number of edges that connect L,, and LY in Cy’s hierarchy.

To locate the contextual preferences with the closest context to the query context,
that is, the preferences whose context is defined in the most detailed hierarchy levels
among the preferences whose context is more general from the context of the query,
an algorithm that is built upon a data structure, called profile tree, is employed. The
profile tree offers a space-efficient representation of contexts by taking advantage of the
co-occurrence of context values in preferences. Details about the hierarchical distance
between two contexts, the profile tree and the algorithm for locating the relevant to a
query preferences are given in Chapter 3.

A similar metric, which computes the relevance indez for a preference CP = (C, P),
is used in [92]:
diSt(CQ, Croot) — dlSt(C, CQ)

diSt(CQv Croot) ’

where dist(Cg, Croot) represents the highest possible distance of the query context with

relevance(CP) =

regards to any other context for which a preference exists. Preferences whose context is
the query context, have the maximum relevance index, that is 1, while preferences whose
context is the most general one based on the available hierarchies have the minimum
relevance, that is 0.

Generalizing the discussion above, we can relate a context C to a context C’' (which
could be the external or internal query context), if C is relaxing zero or more parameters
of C’ in any of the following ways: a context parameter may be relaxed upwards by
replacing its value by a more general one, downwards by replacing its value by a set of
more specific ones or sideways by replacing its value by sibling values in the hierarchy.
Given all these possible relaxations, appropriate distance metrics that exploit the number
of relaxed parameters and the associated depth of such relaxations can be employed to
measure how well the context C matches the context C’ [114].

Given a function for context matching, it is possible to rank preferences based on their
relatedness score (computed with the help of this function), which captures how well or
closely a preference context matches a query context.

Preference Applicability. Context matching helps distinguish between preferences

that are valid in the context of a query and preferences that are out of context. It does
not guarantee that a preference can be combined with the query and yield an interesting,

38

non-empty output. This is a largely ignored issue by existing work in preference modeling
and applications. We consider the following cases of preference applicability:

Instance applicability. In general, a preference P is instantly applicable to a query @
if), combined conjunctively with P, is executed over the current database instance
and its result set is not empty. For example, consider a query about recent movies and a
preference for movies directed by Steven Spielberg. This preference is instantly applicable
only if the database contains the recent entries of the specified director.

Semantic applicability. To decide whether a preference is semantically applicable to a
query, additional knowledge, outside the database, is needed. Consider as an example
a query about comedies. Then, a preference for movies directed by Woody Allen is
applicable since this director has directed comedies. On the other hand, a preference for
Andrei Tarkovsky is not semantically applicable to the same query, and, if conjunctively
combined with it, no results will be returned. It is noteworthy that when a preference
P is instantly applicable to a query @, then P is also semantically applicable to). The
reverse does not apply. As an example, consider a query about recent movies (@) and a
preference for movies directed by Quentin Tarantino (P). P is semantically applicable to
@, because we could have the knowledge that Quentin Tarantino has recently directed a
movie, but, assuming that our database is not immediately updated, P is not instantly
applicable to Q.

Syntactic applicability. The decision about when a preference P is syntactically applicable
to a query @ is determined with respect to their structure, i.e., the relations, attributes
and attribute values P and () contain. In the context-free preference model of [82], a
preference P for the tuples of a relation R is applicable (and thus related) to a query
Q, if R is referenced in @), and P is expressed over a multi-value attribute in). For
example, if a query returns movies starring Julia Roberts, then a preference for the actor
Ben Stiller is syntactically applicable, since a movie has many actors. On the other hand,
assume a query about movies after 2000. Then, a preference for movies before 1990 is
conflicting. This is a looser definition than the one above, since the set of semantically
applicable preferences for a query is a superset of the syntactically applicable ones. Its
advantage is that it enables faster identification of related preferences by comparing their
structure with the structure of the query instead of possibly enumerating and comparing
result sets.

Example 21: Consider the time_period context hierarchy of Fig. ??. Addison wants to
see an English speaking horror movie at Christmas. This could be a query like:
(time_period = ‘Christmas’,

SELECT title FROM movie WHERE genre = ‘horror’ AND language = ‘English’).
Addison’s preferences are:
(CPy) (All, genre = ‘adventure’)
(CPy) (time_period = ‘Holidays', language = ‘Greek’)
(CPs) (time_period = ‘Holidays', director = ‘Hitchcock')

39

Of these three preferences, the last two are more closely related to the query since the
distance of the preference context in the time_period hierarchy is the smallest. It is easy
to see that (C'P,) is not applicable to the query based on the syntactic characteristics
of both the query and the preference: the latter is for Greek speaking movies, while the
former for English speaking ones. (CP3) is syntactically applicable. Furthermore, it is
instantly and semantically applicable, since there exist English speaking horror movies in
our database.

Preference filtering

All preferences related to a query may be used for ranking and selecting the tuples returned
by the query. Alternatively, we can rank preferences using either their preference score
(showing their intensity as we have discussed in Section 2.1 for quantitative preferences)
or their relatedness score (capturing the degree to which a preference is related to a
query based on some context matching function). Subsequently, we can select the top
preferences based on their intensity or their relatedness to the query for modifying the
query results.

Filtering based on Preference Score. We consider approaches that deal with quan-
titative preferences. User preferences that are related to a given query can be ordered
in decreasing preference score and the top K preferences are selected for expanding the
query.

[82] proposes an algorithm for extracting the top K related selection preferences at
query time from a set of preferences U (called the user profile). These preferences include
preferences stored explicitly in the user profile but also implicit ones that can be derived
through preference composition (Section 2.2.2). The Preference Selection Algorithm (Al-
gorithm 1) takes as input a query @, a set of preferences U and an interest criterion C'I,
and generates the set P of top K related preferences derived from U. Various types of
interest criteria C'I can be applied to determine K. For example, preferences with degrees
of interest greater than a threshold value or at most « preferences should be output.

The algorithm starts from the preferences that are stored in the user profile and are
related to the query and iteratively considers additional preferences that are composeable
with those already known. QP is the set of preferences related to the query in order of
decreasing degree of interest. The set Py of selection preferences related to the query is
also kept ordered. Initially, QP contains all related preferences explicitly stored in the
profile. The authors use the term “not conflicting” for preferences that are syntactically
applicable. At each round, the algorithm picks from ()P the candidate preference P with
the highest degree of interest, which is processed based on its type:

e A selection preference is added in Py if it satisfies the interest criterion.

e A join preference is used to compose other preferences. The algorithm considers all
stored preferences that are composeable with it to infer implicit preferences that

40

Preference Selection Algorithm
Input: A query @, a set of preferences U, an interest criterion C'I.

Output: A set of preferences Py.

1: Begin

2: P ={}, QP ={};

3: for all preferences P; € U related to () do
4: if (P; is conflicting with @) then

5: discard P;;
6: else
T QP — P;;
8: while QP not empty do
9: get head P from QP;
10: if (P is selection) then
11: if (CI(Px U{P}) = true) then
12: P «— P;
13: else
14: stop;
15: if (P is join) then
16: if (CI(Px U{P}) = true) then
17: for all preferences P; € U composable with P do
18: if (CI(Pxg U{P A P;}) = false) then
19: exit for;
20: if = ((P; joins to relation R € P or R € ()) or (P A P; is conflicting with ())) then
21: QP — PAP;
22: else
23: stop;
24: End

Algorithm 1: Preference Selection Algorithm

can be applied to the query. These are inserted into QP unless pruning takes place.
This occurs under the following circumstances: (i) the new preference expands to
a relation already existent in P or to a relation belonging to the query (), in which
case a cycle is generated; (i7) it is conflicting with the query @; (éii) it does not
satisfy the interest criterion.

The algorithm stops when no other preferences that satisfy the interest criterion can
be derived from the profile and returns the top-K related preferences from Py . The mono-
tonicity property of the implicit preference scores guarantees that any unseen preferences
cannot have higher score.

[83] views the problem of preference filtering as an optimization problem with con-
straints. The problem parameters are the desired degree of interest in the query tuples,
the desired number of tuples to be returned and the execution cost. Preference filtering
is modeled as a state space search problem and a number of algorithms are proposed that

41

find the optimal subset of related preferences that matches the problem constraints.

Filtering based on Preference Relatedness. As we have discussed in the previous
subsection, it is possible to define a function for comparing and matching contexts, and
for relating a preference to a query. For example, contexts can be matched using the
cosine similarity [10]. If the context parameters take values from hierarchical domains,
then we can use distance metrics that combine the number of parameters in which the
contexts differ and the level at which such differences occur in the context hierarchies
[114]. Given a context matching function, it is possible to rank preferences based on their
relatedness, i.e. based on how well their context match the query context, and select the
most related preferences, i.e. whose context is the closest or the most similar to the query
context (e.g. [113, 114, 92]).

Preference Integration through Query Rewriting

Preferences expressed with the help of query conditions (e.g. [82, 51]) can be naturally
integrated into a query. Query rewriting approaches leverage the power of SQL to return
results that satisfy the user preferences for a given query and rank them accordingly.

Given a regular database query) and a set of user preferences U, [82] uses the top
K user preferences (in order of preference) that are related to the query to modify it (a
process termed query personalization) and generate personalized results that satisfy at
least L of the K preferences. The parameters K and L provide a quantitative way to
describe the desired answer. Parameter K determines the desired extent of personaliza-
tion. It also provides a way to control the cost of query personalization, as the fewer the
preferences integrated into a query, the more efficient that query typically is. Parameter
L captures the minimum number of user criteria (i.e. preferences) that an answer should
meet, thereby offering a degree of flexibility to personalizing a query answer.

Two different query re-writing mechanisms are proposed. The first one composes a
single query that defines a conjunction of the initial query qualification with the disjunc-
tion of all possible conjunctions of the L conditions from the K preferences. In the second
mechanism, K queries are formulated, each one augmenting the initial query with one of
the K preferences. The partial results are grouped and each tuple that appears at least
L times is output. In both cases, the query execution returns a ranked list of results
according to the preferences they satisfy.

[51] proposes the concept of constructing blocks, or groups, of equivalent queries, each
block consisting of a set of queries that generate equally preferable results. More precisely,
given a query and a set of related preferences defined among values of specific attributes
and attributes themselves, a query lattice is constructed. Taking into account only the
values specified in preferences, the query lattice has one node for each combination of
values of different attributes. For example, for the preferences: (¢) Hitchcock is preferred
over Curtiz or Spielberg, (i7) horror movies are preferred over drama movies and (i)
the director of a movie is as important as its genre, the query lattice of Figure 2.10 is

42

Hitchcock, horror query block 1

Hitchcock, drama Curtiz, horror Spielberg, horror query block 2

Curtiz, drama Spielberg, drama query block 3

Figure 2.10: Query lattice example.

constructed. Each node in the lattice corresponds to a query. Queries are executed in
an order that reflects their position in the lattice. All queries that belong to a specific
query block are considered to be equivalent. To produce ranked results according to the
user preferences, the queries of each group are successively executed starting from the
queries of the top block and going down the lattice. Coming back to our example, and
for the instance shown in Figure 3.2, t5 is the result of the query of the first block, the
queries of the second block return no results and the third block returns the tuples ¢; and
t3. Consequently, the Lattice-based Algorithm takes as input a relation R and a set of
preferences defined over R and progressively reports a sequence of blocks of tuples of R,
ensuring that each block contains tuples preferred over the tuples in the following blocks.

Summary of Expanding Queries Methods

Table 2.6 summarizes approaches that expand regular database queries with preferences
using three axes: preference relatedness, filtering and integration. We observe that only a
handful of approaches care about preference relatedness. Most existing approaches, whose
characteristics are summarized in subsequent sections, assume all preferences known at
query time as related and focus on other aspects of preferential query processing, such as
the efficient execution of preference queries.

Although existing approaches on contextual preferences have focused on either internal
or external context, real preferences may be defined for contexts that have both an internal
and an external part. In this case, one could use a combining function that aggregates the
partial relatedness scores to a single score that captures how well the internal and external
parts of the preference’s context match the query context. Preference applicability, i.e.
when a preference can be combined with a query, is studied in [80, 81, 82] and [119].
[119] deals with query expansion based on external contextual preferences where both
contexts and preferences are defined through description logic concept expressions. In
this approach, contextual preferences are considered relevant to a query if their contexts
are same to or more general than the query context and their preferences contain concepts
which can be mapped to certain relations of the query. Then, the preference parts of such
contextual preferences are used to augment the query with additional conditions.

Preference filtering can be performed either based on the preference score or based on
the relatedness score, which shows how specific is a preference in a given query context.
It is also possible to combine the preference and relatedness scores to compute preferences

43

Table 2.6: A taxonomy of approaches that use preferences for expanding database queries.

Preference Relatedness Preference Filtering Preference Integration
= 0
& g 3 @
k= =) = L
g £ 5 g < g |8
3] = I =)
=] < < 19p] o=t z.‘) &
L = © o @ =i —
8 o] 5} 5] e =
o5 | 2 5 | 3 =
= 4] = = = N o
SN I B £ | 3 N
= =) 8 qﬁ 8 o =
<] o A ol = ©)
[10] internal v
[113, 114] external v v
[92] external v v
(80, 81, 82, 83] v v v
[51] v v
[119] external v v v

for the tuples returned by the query (and the attributes to be projected in these tuples).
[92] provides examples of such combining functions, although they have not been used in

practice.

2.3.2 Employing Preference Operators

Preferences can be embedded into query languages through a basic preference operator
that selects from its input the set of the most preferred tuples. This operator is called
winnow in [32], Best in [117] and preference selection operator in [74].

There are two fundamentals approaches to handle the preference-related operators:

e Operator implementation. These are special evaluation and optimization algorithmic

techniques that implement the operators inside the database engine.

e Operator translation. Preference operators are translated into other, existing rela-

tional algebra operators.

Defining Preference Operators

The winnow operator is a basic preference operator for picking from an instance r the set
of the most preferred tuples under a given preference relation P [32]. Formally:

Definition 2.23. Given an instance r of a relational schema R and a preference relation
P over R, the winnow operator wp(r) is defined as: wp(r) = {t; € r | #t; € r, such that
tj =p ti}.

A database tuple ¢; belongs to the winnow if it is not “killed” or “dominated” by
another tuple ¢;, that is, if no other tuple ¢; in r is preferred over ¢;. Clearly, winnow can

44

be used to select tuples for more than one relation by applying it to the result of queries
defined over more than one relation.

From the definition, winp(r) C r. It has been shown [32], that for every finite,
nonempty instance r of R, if >p is a strict partial order, then winp(r) is nonempty.

For any two tuples ; and ¢; of r that belong to winp(r), it holds that #; ~ ¢;, that
is, they are indifferent. When the preference relation >p is a total order, the winnow
wp(r) includes just one tuple, whereas when the preference relation >p is a weak order,
the tuples in winp(r) are the tuples that belong to the top equivalence class of r defined
by ~.

Partial antimonotonicity also holds when >p is a strict partial order: V rq, ro of R, 1
C ry = wp(ry) 2 wp(re) N ry [32].

A special case of winnow is called skyline. Generally, the skyline operator picks the
tuples of a database relation that are not dominated by any other tuple in the same
relation. A tuple dominates another tuple if it is as good or better with regard to a set
of preferences and better in at least one preference. This is exactly the notion of pareto
composition in an arbitrary number of preferences. Clearly, skylines can be expressed
using winnow.

Skylines in multidimensional Euclidean spaces are first introduced in [20]. The domi-
nance relationship is > or <. The attributes of a relation are partitioned into DIFF, MAX
and MIN attributes. Only tuples with identical values of all DIFF attributes are compara-
ble; among those, MAX attribute values are maximized and MIN values are minimized.

Recently, several approaches redefine the typical skyline dominance definition. [27]
defines the k-dominant skyline: a tuple ¢; k-dominates another tuple ¢; if there are k
dimensions, or preferences, in which ¢; is better than or equal to ¢;, and ¢; is better in
at least one of these & dimensions. [87] proposes the k-representative skyline that selects
k tuples, such that, the number of tuples that are dominated by at least one of these
k tuples is maximized, while [126] introduces the e-skyline that computes the set of all
tuples that are not e-dominated by any other tuple. Given a set of preferences, a tuple
e-dominates another tuple if it is as good, better or slightly worse (up to €) with regard
to all preferences and better in at least one preference.

Both winnow and skyline operators select the most preferred tuples from a given input
set. Ranking the whole input can be achieved through the process of multiple applications
of such operators. We present formally the iterated winnow operator as defined in [32].

Definition 2.24. Given an instance r of a relational schema R and a preference relation
P over R, the iterated winnow operator, win’(r), of level i, i > 0, is defined as follows:
e winlp(r) = wp(r)
i+1

o win's(r) = wp(r - Ui_jwink(r))

Tuples retrieved earlier are of higher interest to the users. All tuples in any win (1) are
indiferrent to each other. The concept of iterated winnow operator, called Best operator,
is independently defined in [118].

45

Implementing Preference Operators

The winnow operator can be handled by providing implementations within the query en-
gine. A number of interesting research problems regarding the semantic optimization of
relational queries that include winnow operators are introduced. For semantic optimiza-
tion, a set of algebraic rules that characterize the interaction of winnow with the standard
relational operators, such as commutativity, are provided in [32]. These rules can be used
to optimize a query, for example by pushing selections and projections down the query
tree. Further optimizations in the presence of integrity constraints, such as eliminating
redundant applications of winnow, can be found in [33]. Such properties are achieved by
relativizing the properties of the given preference relations to the sets of instances that
satisfy the integrity constraints of the particular database schema.

Block Nested Loop (BNL)
Input: A database instance r, a preference P.

Output: wp(r).
Variables: a window W, a temporary table T.

1: Begin

2: 1’ =r;

3: while v’ # () do

4: for every tuple t; € r’ do

d: if (Eltj € W, such that, t; ~p t;) then

6: ignore t;;

7: else if (Vt; € W, such that, ¢; >p t;) then

8: remove all ¢; from W;

9: insert t; into W;
10: else if (t; is indifferent to all tuples in W) then
11: if (there is room in W) then
12: insert t; into W;
13: else
14: insert t; into T';
15: return the tuples from W that were inserted in W when T was empty;
16: 1’ =T;
17: empty T;
18: End

Algorithm 2: Block Nested Loop (BNL)

The naive way to compute the winnow of an instance r is to apply a basic nested-loop
(NL) method that compares each tuple in r with every other tuple. The NL method
works for every type of preference relation >p but requires scanning the whole r for each
tuple.

A more efficient implementation is provided by the block-nested-loop (BNL) algorithm
(Algorithm 2) proposed in [20] in the context of skyline queries. BNL maintains a window
W of indifferent tuples. These correspond to the best tuples found so far. Since the size

46

Winnow for Weak Orders (WWO)
Input: A database instance r, a preference P.

Output: wp(r).
Begin

top = the first tuple of r;
winp(r) = {top};
for every subsequent tuple ¢t € r do
if (top =p t) then
ignore t;
else if (¢ >p top) then
top = t;
wp(r) = {t};
else if (¢ and top are indifferent) then
11: wp(r) =wp(r) U {t};
12: return wp(r);
13: End

H
e

Algorithm 3: Winnow for Weak Orders (WWO)

of the window may not be enough for keeping all such tuples, the algorithm also uses a
temporary table T to store any overflow tuples. Initially, the input is the instance r and
W and T are empty. At each iteration, all tuples in the input are read. When a tuple ¢
is read from the input, ¢ is compared with all tuples in . Three cases can occur: (i) t
is dominated by a tuple in W, in which case ¢ is discarded, (ii) ¢ dominates one or more
of the tuples in W, in which case these tuples are discarded and ¢ is inserted into W, or
(74i) t is indifferent with all tuples in W, in which case if there is room in W, t is inserted
into W, otherwise ¢ is stored in the temporary table 7" to be processed further in the next
iteration. At the end of each iteration, all tuples added to W when T was empty are
output. The next iteration uses the temporary table 7" as input.

BNL works correctly only when the preference relation >p is at least a strict partial
order, since the algorithm uses transitivity. To see this, say that an input tuple ¢; is
dominated by a tuple ¢; in W, thus ¢; is discarded (case (a)). Next, a tuple ¢ arrives that
is dominated by ¢;, but not by ¢; in W. The algorithm may output ¢; incorrectly.

When >p is a weak order, the winnow for weak orders (WWO) algorithm (Algorithm
3) [33] takes advantage of the fact that all tuples in the winnow belong to a single equiv-
alence class. Thus, an input tuple ¢: (7) is dominated by all tuples in W, in which case
t is discarded, (77) dominates all of them, in which case the whole W is discarded and
replaced by ¢, or (i) is indifferent to all of them, in which case it is added to W. In all
cases, a single comparison of ¢ with just one tuple in W (tuple top) suffices. At the end
of the first iteration, W will contain only tuples in the winnow.

The Sort-Filter-Skyline (SFS) algorithm (Algorithm 4) proposed in [34] for computing
skylines, adds a preprocessing step to BNL that sorts all tuples in r, so that, if a tuple ¢;
~p tj, then t; precedes ¢; in the produced order. This correspond to the order produced

47

Sort-Filter-Skyline (SFS)
Input: A database instance r, a preference P.

Output: wp(r).
Variables: a window W, a temporary table T.

1: Begin

2: Topologically sort r based on P;

31 =r;

4: while v’ # () do

5. for every tuple t; € r’ do

6: if (3t; € W, such that, ¢; ~p t;) then
T ignore t;;

8: else if (¢; is indifferent to all tuples in W) then
9: if (there is room in W) then
10: insert ¢; into W;
11: else
12: insert t; into T';
13: return the tuples from W;
14: empty W;
15 ' =T;
16: empty T
17: End

Algorithm 4: Sort-Filter-Skyline (SFS)

by a topological sort of the preference graph of r. By processing the tuples following this
order, it is ensured that when a tuple is inserted into the window W, it belongs to the
winnow, thus it can be output immediately. For SFS to work, >p must be at least a strict
partial order.

Several other approaches have been proposed for computing skylines. For example,
[115] introduces the first progressive algorithm that returns skylines without scanning
the whole dataset. Later, [79] proposes another progressive algorithm based on the near-
est neighbor search method, while [98] introduces a branch-and-bound algorithm where
datasets are indexed by an R-tree. [130, 100, 116] work on skyline computation in sub-
spaces. The detailed presentation of these approaches is beyond the scope of this survey.

Concerning now the iterated winnow operator, a straightforward implementation of
it can be achieved by applying one of the algorithms (i.e. the NL, BNL, WOW or SFS)
previously described, multiple times. The first application would be on instance r to
produce winlp(r) and the subsequent applications on (r - Ui_ wink(r))), to produce
win's™ (r).

A more efficient implementation of winnow and ranking is proposed in [117, 118].
The evaluating best operator algorithm (Algorithm 5) is a variation of BNL, where the
repetition for computing win’y'(r) does not start from scratch each time, but instead,
from those tuples that were found to be directly dominated by a tuple in winb(r). In

48

Algorithm 5, we use the notation 3% (r) to refer to win’(r), and DL for the set of tuples
dominated by t. The algorithm builds a special data structure, called S-tree, over the
tuples of r.

The iterated winnow operator can also be implemented by topologically sorting the
preference graph of r (e.g. [41, 51]).

Translating Preference Operators

Apart from the preference operators that are implemented through evaluation and op-
timization algorithms, there are operators that can be expressed using other relational
algebra operators.

In this context, [74] defines preference queries with regards to two new relational op-
erators: (i) the preference selection operator and (ii) the grouped preference selection
operator. The preference selection operator, denoted o[P](r), corresponds to the winnow
operator wp(r) [32]. The grouped preference selection operator applies preference selec-
tion within groups. Given a subset B of the attribute set of R, tuples in r are partitioned
into groups of tuples having the same values in the grouping attributes in B. The grouped
preference selection operator o[P group by B](r) selects the dominating tuples in each
group. Formally:

Definition 2.25. Given an instance r of a relational schema R and a preference relation
P over R, the grouped preference selection operator o[P group by B](r) is defined as:
o[P group by B)(r) = {t; € r | #t; € r, such that, t; =p t; A t;[B] = t;[B]}, where B is a
subset of the attribute set of R.

Preference queries expressed using such operators are translated into standard SQL
queries. [77] describes an implementation of the framework introduced in [74], using
a language called Preference SQL. In particular, Preference SQL is an extension of SQL
that covers all base preference constructors of [74]. Preferences are syntactically expressed
inside an SQL query using the keyword PREFERRING. For example, the query:

SELECT * FROM movies
PREFERRING duration BETWEEN [170, 200];

returns movies with duration inside the interval [170, 200]. If such movies do not exist,
the movies with duration closer to the interval limits are considered better. Concerning
the movie instance of Figure 2.2a, the movie 3 is the most preferable one. To execute such
queries, an optimizer on top of SQL that translates Preference SQL into standard SQL is
implemented. To improve the response time of preference queries, optimization techniques
have been proposed in [55]. The preferences defined in [74] can also be evaluated on XML
databases using the query language Preference XPATH [76].

49

Evaluating the Best Operator

Input: A database instance r, a preference P.
Output: A S-tree.

1: Begin
2: ctr = 1;
3: while all tuples in r are returned do
4: if (¢tr == 1) then
5: r'=r;
6 else
7 for every t; € BS" 1 do
8 r’ = UiDE;
9: while 7’ # () do
10: top = the first tuple of r’;
11: for every tuple t € v’ do
12: if (top is indifferent to ¢) then
13: insert t into a set U of unresolved tuples;
14: else if (top >p t) then
15: insert ¢ into a set Di’p which contains the tuples dominated by top based on P;
16: if (t belongs to another set DY) then
17: remove t from Dg;
18: else if (¢t >p top) then
19: insert top into DY which contains the tuples dominated by ¢ based on P;
20: if (top belongs to another Di) then
21: remove top from Di;
22: top = t;
23: for every tuple t € U that is not compared yet with top do
24: if top >p t then
25: insert ¢ into D7,
26: remove t from U;
27: insert top into BT,
28: r' =U;
29: empty U;
30: return BT
31: ctr++;

32: End

Algorithm 5: Evaluating the Best Operator

50

Table 2.7: A taxonomy of approaches employing preference operators.

Implementation Level
FEvaluation Techniques Operator Translation
Query winnow, skyline [32, 20, 27, 87] preference selection, grouped preference selection
Best Answers
Model (33, 126, 34, 115, 79, 98, 100, 116] (74, 77]
Ranking iterated winnow [32, 117, 118, 41, 51] ——

Summary of Employing Preference Operators

To synopsize, Table 2.7 presents a taxonomy of approaches employing preference operators
with regards to: (i) the query model, specifying if the answer includes only the best results
or the whole ranked result set and (i7) the way that operators are implemented, specifying
if evaluation techniques are employed or operators are translated into others.

Although many of the existing approaches have focused on a query model that reports
the best answers, these approaches can be naturally extended in order to rank the whole
result set by applying multiple times their selected processing method. As a final note,
consider that the winnow operator can be handled by re-writing each preference query, i.e.
a relational query containing at least one winnow operator, to exclude the appearances
of winnow. This is possible, since it has been shown that winnow can be expressed using
standard relational algebra operators [32]. It was also shown that winnow can be used to
simulate set difference.

2.3.3 Pre-computing Rankings

Many times, the time complexity for computing personalized query answers is unac-
ceptable for query-time operations on large databases. Motivated by this fact, recently,
there are approaches proposing some pre-processing performed offline with the purpose
of making online processing of queries fast. In a nutshell, such approaches employ user
preferences to construct offline representative rankings of database tuples and then, at
query time, select the relevant to the query rankings and use them to report results. The
main focus of this section is on the processing steps performed offline, since the online
phase is usually straightforward.

We organize existing approaches to answering preference queries based on materialized
rankings according to the particular kind of preferences they use into:

e Context-based approaches, where preferences hold under specific conditions (e.g.
[10, 110]).

o (Context-free approaches, where preferences hold unconditionally, i.e. under all cir-
cumstances (e.g. [64]).

51

Greedy Algorithm
Input: A set of m rankings T}, = {71,...,Tm }.

Output: A set of [representative rankings T7.
: Begin

1
2: Representatives = Tpy,;

3: for (i =m;i>1;i--) do

4 p = ar gmin;e Representatives ZreTm d(t, Representatives — {r;}) —

> e, A(T, Representatives);

ot

Representatives = Representatives — {p};

(=2}

: T} < Representatives;
7: End

Algorithm 6: Greedy Algorithm

Context-based Approaches

[10] and [110] propose pre-computing representative rankings of database tuples based
on contextual preferences that follow either the qualitative [10] or the quantitative [110]
model. [10] considers internal contextual preferences, while [110] considers external con-
textual preferences. Next, we present how the representative rankings are constructed in
both approaches.

Given a set of contextual preferences, [10] produces a set of rankings. Initially, a
ranking for each set of preferences with the same context is constructed. Instead of
maintaining rankings for all different contexts, since the number of contexts that appear in
preferences can be large, a method for selecting a small subset of representative rankings
is proposed. To find representative rankings several algorithms can be applied. These
algorithms exploit ideas such as: (i) remove at each step a ranking that is the most similar
to the remaining ones (Algorithm 6) or (i7) begin with an arbitrary ranking and at each
step pick the ranking which is furthest from the already selected ones (Algorithm 7).

More specifically, given the set of all rankings 7, the Greedy Algorithm for finding
representative rankings (Algorithm 6) removes in each iteration the ranking which when
removed, causes the least increase in the total cost, where the cost for a set of rankings
Ti, Ty € Ty, is equal to Y p
set of rankings 7; is defined as d(7,1}) = min,er;d(7, p), while the distance between two

d(r,T;). The distance between a single ranking 7 and a

rankings may be computed using either the Spearman footrule or the Kendall tau [73]
distance.

In a top-down approach, the Furthest Algorithm (Algorithm 7) starts by selecting
randomly a ranking and at each step picks from the unselected rankings the one which
is furthest from the already selected rankings. The algorithm continues up to collect the
desirable number of representative rankings, while the remaining rankings are assigned to
their closest representative.

[128] adopts the contextual preference model proposed in [10] and, based on a machine
learning approach, induce a contextual total ranking that has as training data set a partial

52

Furthest Algorithm
Input: A set of m rankings T},.

Output: A set of [representative rankings 77.
Begin
T, = 0;
Select randomly a ranking 7 € Tiy;
T, =T u{rk
T =Tn —{7};
for (i=2;i<1+1;i++) do
r = argmacyer, d(r', T));
T, =TU{r}h
T =Tm — {7}
for every 7 € T);, do

—
N = O

Assign 7 to its closest ranking in Tj;
: End

Algorithm 7: Furthest Algorithm

ranking in a quantitative form.

A different approach for pre-computing representative rankings is introduced in [110].
The details of this work are given in Chapter 4. In a nutshell, [110], instead of creating
a ranking for each different context and then maintaining a number of them, creates
groups of similar preferences and produces a ranking for each group. Two different ways
of defining similarity among contextual preferences are proposed. The first one considers
as similar the preferences that have either the same or similar contexts, while the second
one groups preferences that result in similar scores for all database tuples, i.e. preferences
that have similar predicates and scores.

In both [10] and [110], when a user submits a query, the query will be matched against
the representative contexts. Taking into account the similar to the query representative
rankings, the query results are computed.

Context-free Approaches

In a context-free scenario, there are approaches for computing the result of a preference
query based on a set of materialized rankings maintained independently of specific con-
ditions or circumstances. Usually, such approaches employ materialized preference views,
that is, relational views ordered according to a preference, or scoring, function, to compute
preferential query results.

The PREFER system provides ranked answers to preference queries based on a number
of pre-computed and materialized views [62, 64]. Given a relational schema R(Aq, ..., Aq),
a view v ranks the tuples of R with regard to a scoring function F; defined as a weighted
sum using a vector of weights (wq,...,wy). During the online phase, for each query @
that is also expressed via a weight vector, the view that best matches () is selected. The
view selection problem is formulated as the problem of identifying the view that needs

53

the least number of tuples to be fetched for computing the query answer.

Having selecting the appropriate view, PREFER returns in a pipelined way, the &
tuples that maximize the query preference function. In particular, the employed algorithm
computes the smallest prefix of the view to find the most preferred tuple for the query.
Then, it computes a second prefix to find the most preferred tuple after the previous
one and so forth, until the k£ most preferred tuples are retrieved. The key concept of
this algorithm is the computation of a watermark value which calibrates the stopping
condition in each iteration of the algorithm. Such a watermark value determines how
deep in the ranked materialized view we should go to locate the top tuple of a query. The
first watermark for a view v is the maximum value Tvl,Q, such that, Vt € R, F,(t) < Tvl,Q

= Fy(t) < Fy(tl), where ¢ is the tuple in v with the highest score. Respectively, at the

2

second iteration of the algorithm, the tuple ¢Z,

which is the tuple with the next higher
score, replaces the tuple ¢, in the process of watermark computation and so on.

Another view-based technique that also maintains ordered views based on preference
functions is proposed in [37]. This work utilizes the given set of views to produce query
answers, using a linear programming algorithm. [127] focuses on the reduction of the
maintenance cost of the materialized top-k views, considering occurrences of deletions

and updates.

Summary of Pre-Computing Rankings

Table 2.8 presents a taxonomy of the approaches that deal with preferential query process-
ing through pre-computing and materializing rankings. We categorize such approaches
with regards to two main axes: (i) preference formulation, i.e. qualitative or quantitative,
and (4i) context, i.e. context-based or context-free.

The proposed context-based approaches use either internal qualitative contextual pref-
erences [10] or external quantitative contextual preferences [110]. The main focus of both
approaches is on constructing a set of representative rankings of tuples. However, these
approaches are built upon a different perspective. While [10] creates initially a rank-
ing for each different context and then, maintain some of them (the most representative
ones), [110] clusters first preferences according to their similarity and then, produce a
ranking for each cluster. Context-free approaches use materialized views to maintain the
pre-computed rankings (e.g. [64, 37]). Most approaches that fall into this category aim
at locating the k results that maximize (or minimize) a combining preference function in

a pipelined manner.

2.3.4 Top-k Query Processing

Typically, a top-k query aims at providing only the top k& most important results to
the users. A common way to identify the £ most important results is scoring all tuples
based on a scoring function, possibly defined as an aggregation of a set of functions over
different attributes, and reporting the & tuples with the highest scores. Although there is

54

Table 2.8: A taxonomy of pre-computing rankings approaches w.r.t. preference formula-

tion and context.

Context
Context-based Context-free
Qualitative [10] ——
Formulation
Quantitative [110, 128] (62, 64, 37, 127]

a large amount of research that addresses top-k processing techniques, we consider that
the details of such techniques are out of the scope of this survey, since in most cases, they
are not directly related to user preferences. Thus, below, we provide only an overview
of the main approaches.A survey of top-k processing techniques in relational databases is
presented in [66].

In general, methods for compounding a set of rankings to form an aggregate one, con-
sider that each tuple in each ranking is associated with an interest score that determines
its position within the ranking. Then, to construct a total ranking, instead of following
the naive approach of computing the aggregate score of each tuple and ranking the tuples
based on these scores, several more efficient algorithms have been proposed.

A fundamental algorithm, called F'A algorithm, for retrieving the top-k tuples of a
relational schema R is proposed in [49]. This algorithm considers two types of available
tuple accesses: the sorted access and the random access. Sorted access enables tuple
retrieval in a descending order of their scores, while random access enables retrieving
the score of a specific tuple in one access. Next, we present the main steps of the F'A
algorithm.

e First, do sorted access to each ranking until there is a set of k tuples, such that each
of these tuples has been seen in each of the rankings.

e Then, for each tuple that has been seen, do random accesses to retrieve the missing

scores.
e Compute the aggregate score of each tuple that has been seen.

e Finally, rank the tuples based on their aggregate scores and select the top-£ ones.

F A is correct when the aggregate tuple scores are obtained by combining their indi-
vidual scores using a monotone function. This is also holds for the T'A algorithm [49]. T A
ensures further that its stopping condition always occurs at least as early as the stopping
condition of F'A. The main steps of the T'A algorithm are the following:

e First, do sorted access to each ranking. For each tuple seen, do random accesses to
the other rankings to retrieve the missing tuple scores.

%)

Table 2.9: A taxonomy of top-k query processing techniques.

Implementation Level

Application Level Within Engine
Top-k Tuples (48, 49, 97, 52, 53] ——
Query Model Top-k Join Tuples [96] (65, 67]
Top-k Groups of Tuples —— [85]

e Then, compute the aggregate score of each tuple that has been seen. Rank the
tuples based on their aggregate scores and select the top-£ ones.

e Stop to do sorted accesses when the aggregate scores of the k£ tuples are at least
equal to a threshold value that is defined as the aggregate score of the scores of the
last tuples seen in each ranking.

[97] and [52] independently propose algorithms equivalent to the T'A algorithm. Sev-
eral TA modifications with regards to the access type that can be applied have been
introduced (e.g. [49, 53]). For example, the NRA algorithm is appropriate when random
accesses are expensive or impossible and so, only sorted accesses are employed, while
the C'A algorithm is appropriate when random accesses are expensive relative to sorted
accesses [49].

All the above approaches focus on constructing an aggregate ranking by combining a
set of rankings that contain the same set of tuples. Clearly, in this case, the produced
ranking consists of the same tuple set. Apart from such approaches, there are algorithms
(e.g. [96, 65, 67]) for aggregating rankings that contain different sets of tuples. In this
category of algorithms, tuples of different rankings are joined together with respect to
specific join conditions. The produced ranking here, consists of a set of joined tuples, each
one with an aggregate score computed from the scores of the participating tuples. Instead
of working on individual tuples, [85] proposes a method that reports the k groups of tuples
with the largest interest scores, where scores are computed using a group aggregation
function (e.g. sum).

In Table 2.9, we taxonomy top-k query processing techniques with respect to two main
axes: (i) the query model and (ii) the implementation level. Query model defines the kind
of results returned by the top-k computation, that is, single tuples (e.g. [48, 97]), joined
tuples (e.g. [96, 65]) or groups of tuples (e.g. [85]), while the implementation level defines
the level of integration with database systems, that is, at application level outside the
database engine (e.g. [49, 97, 52]) or within the query engine (e.g. [65, 67]).

2.4 Preference Learning

Learning and predicting preferences in an automatic way has attracted much current at-
tention in the areas of machine leaning, knowledge discovery and artificial intelligence.

56

Although the primary focus of this survey is on representation, composition and appli-
cation of preferences in databases, we present a short overview of some representative
approaches to preference learning, since this is an interesting and active related area of
research with potential applications in data management.

Approaches to preference learning can be classified along various dimensions. De-
pending on the model learned, we may distinguish between learning pairwise orderings of
items (i.e., qualitative preferences) and learning a utility function (i.e., quantitative pref-
erences). Depending on the type of information provided as input, the learning algorithm
may or may not use as input positive and/or negative examples, in analogy to supervised
and unsupervised learning. Along the input classification dimension, we may also have
learners that use or do not use feedback from the users, which is usually in the sort of
relevance judgment. Yet another distinction is on whether the input data is in the form
of pairwise preferences, that is, the input is an order relation, or the input data is a set
of items for which some knowledge about the associated preference degree is available.
Another dimension for differentiating preference learning is based on the data mining task
they use (such as associative rule mining, clustering or classification) as well as the type
of method used for the specific task (such as an SVM or an a-priori method). Finally, the
application also determines the preference learning process, since it affects both the form
of input data (for example, clickthrough data or user ratings) as well as the desired use
of the learned preferences (for example, personalized search results or recommendations).

Most methods for preference learning utilize information of the past user interactions
in the form of a history or log of transactions. [70] utilizes as input data logs of the form
of user clickthrough data, namely the query-logs of a search engine along with the log
of links that the user actually clicked on from those in the presented ranked list. The
fact that a user clicked on a link /; and did not click on a link /; ranked higher in the
list than [;, is interpreted as a user preference of /; over [;. Using clikthrough data as
training data, the goal is to learn a ranking function that, for each query ¢, produces an
order of links based on their relevance to ¢q. This is achieved by selecting the function
that produces the order having the minimal distance from the orders inferred from the
clickthrough data, analogous to classification by minimizing training errors. A support
vector machine (SVM) algorithm is used.

User logs are also used as input in [59], but in the form of relational instances. Since
there is no explicit ranking information in the log of relations, to detect preferences, the
frequencies of the different attribute values, i.e., their number of entries, in the log relation
are used. Then, z is preferred over y, if and only if, freq(x) > freq(y). Preferences
between values of individual attributes are used to infer positive and negative preferences,
numerical preferences and complex preferences [74]. An important assumption, especially
for learning negative preferences or dislikes, is the close word assumption indicating that
a user knows all possible values of an attribute. Otherwise, the fact that a value x does
not appear in the log could be interpreted as either a dislike of or lack of knowledge of
x. [68] extends this work to address the problem of contextual user preferences mining.

S7

The problem of learning negative preferences from the log is addressed by a statistical
approach for modeling user preferences in [71]. The main idea is to also consider the
popularity of a specific item in the overall dataset, called accessibility of the item. The
frequency with which each specific user has selected the item is called selection probability.
Then, the preference is determined by the selection probability divided by the accessibility.

The general problem of learning a preference relation in the form of partial order given
a set of examples is discussed in [125] and [69]. In the problem formulation defined in
[125], there is a general partial order R and each user u refines it by defining an order
R, such that, R, O R. The problem is: given a point p, find for which R, p is a skyline.
[69] studies the following problem: given two set of items, a set of superior examples and
a set of inferior examples, find a strict partial order, such that, every item is dominated
by at least one item in the set of superior examples and it is not dominated by any other
item in the the set of inferior examples.

The approach proposed in [35] is an example of employing user feedback to improve
preference learning. They consider the problem of learning how to rank items given the
feedback that an item should be ranked higher than another. For a set of items Z, the
employed preference function Pref(iy,is), Pref: ZxZ — [0, 1], returns a value indicating
which item, i; or s, is ranked higher. The learning phase of such a function takes place
in a sequence of rounds. At each round, items are ranked with respect to Pref. Then,
the learner receives feedback from the environment. The feedback is assumed to be an
arbitrary set of rules of the form “i; should be preferred to iy”. Given that Pref is
a linear combination of n primitive functions, i.e., Pref(iy, iz) = Z?:j w;Fj(iq,12), at
each round the weights w; are updated with regards to the loss of a function F' with
respect to the user feedback, where [oss is the normalized sum of disagreements between
function and feedback. The learned function Pref is used to rank new items. For a
new set Z', Pref(iy,i2) is evaluated on all pairs iy,io € Z’. Since the result pairwise
preference judgments may produce more than one rankings, the ranking that maximizes
the agreements with the learned preference function is selected.

Moreover, applying machine learning techniques for learning ranking functions has
recently attracted much attention in the research literature (e.g., [25, 132, 131]).

From a different perspective, recommendation systems exploit logs of the form of
ratings of items provided by users in the past for providing users with items of potential
interest [9]. Formally, let U be the set of all users and Z be the set of all possible items to
be recommended. A utility function F, similar to the preference function (Definition 3),
measures the usefulness of an item ¢ to a user u, 7: U x I — R, where R is a totally
ordered set representing the rating of the user for the item. Since the utility function is
usually not defined on the whole i/ x Z space, the central problem is how to automatically
predict the ratings for items that the user has not previously rated. There are two
general approaches. In content-based recommendations (e.g., [99, 95]), the user will be
recommended items similar to the ones they have rated high in the past. Similarity
between items depends on the type of items. In general, in the case of relational instances,

58

one can view them as vectors and use an appropriately defined similarity function. In
collaborative recommendations (e.g., [78, 22]), a user u will be recommended items that
users similar to v have rated highly. In this case, each user is considered as a vector in

the dimensions of items.

2.5 Summary

Synopsizing, the focus of this review is mainly on the representation, composition and
use of preferences in databases. Although there is a large number of algorithms for the
implementation of preference queries, especially for top-k and skyline queries, we aim at
providing only an overview of the main approaches for different types of such queries.
Finally, we refer to preference learning approaches.

A version of this chapter appears as a survey article in [108].

59

CHAPTER 3

ADDING CONTEXT TO PREFERENCES

3.1 Contextual Preferences

3.2 Context Resolution

3.3 Data Structures and Algorithms

3.4 Usability Evaluation

3.5 Performance Evaluation of Context Resolution

3.6 Summary

Personalized information delivery aims at addressing the explosion of the amount of
data currently available to an increasingly wider spectrum of users. Instead of overwhelm-
ing the users with all available data, personalization systems provide users with only the
data that is of interest to them. Preferences have been used as a means to address this
challenge. To this end, a variety of preference models have been proposed most of which
follow either a qualitative or a quantitative approach. For instance, using a qualitative
model, users may explicitly state that they prefer visiting archaeological sites than science
museums, while in a quantitative approach, a preference in archaeological sites may be
expressed by assigning high scores to such places.

However, most often users have different preferences under different circumstances.
For instance, the current weather conditions may influence the place one wants to visit.
For example, when it rains, a museum may be preferred over an open-air archaeological
site. Context is a general term used to capture any information that can be used to
characterize the situations of an entity [39, 16]. Common types of context include the
computing context (e.g. network connectivity, nearby resources), the user context (e.g.
profile, location), the physical context (e.g. noise levels, temperature) and time [30, 18].

In this chapter, we propose enhancing preferences with context-related information.
We use context to indicate any attribute that is not part of the database schema. Context

60

is modeled using a set of multidimensional context parameters. A specific context state
or situation corresponds to an assignment of values to context parameters. By allowing
context parameters to take values from hierarchical domains, different levels of abstrac-
tion for the captured context data are introduced. For instance, the context parameter
location may take values from a city, country or continent domain. Users employ con-
text descriptors to express their preferences on specific database instances for a variety of
context states expressed with varying levels of detail.

Each query is also associated with one or more context states. The context state of a
query may, for example, be the current state at the time of its submission. Furthermore,
a query may be explicitly enhanced with context descriptors to allow exploratory queries
about hypothetical context states. A central problem is identifying those preferences that
are applicable to the context states that are most relevant to the states of a query. We
call this problem context resolution. Context resolution is divided into two subproblems:
(a) the identification of all candidate context states that encompass the query states
and (b) the selection of the most appropriate states among these candidates. The first
subproblem is resolved through the notion of the cover partial order between states that
relates context states expressed at different levels of abstraction. For instance, the notion
of coverage allows relating a context state in which location is expressed at the level of
a country and a context state in which location is expressed at the level of a continent.
To resolve the second subproblem, we consider appropriate distance metrics that capture
similarity between context states.

We introduce algorithms for context resolution that build upon two data structures,
namely the preference graph and the profile tree, that index preferences based on their
associated context states. The preference graph explores the cover partial order of context
states to organize them in some form of a lattice. A top-down traversal of the graph
supports an incremental specialization of a given context state, whereas a bottom-up
traversal an incremental relaxation. The profile tree offers a space-efficient representation
of context states by taking advantage of the co-occurrence of context values in preferences.
It supports exact matches of context states very efficiently through a single root-to-leaf
traversal.

Our focus is on managing context for preferences, i.e. expressing, storing and indexing
contextual preferences. In general, preferences may be collected using various ways. Pref-
erences may be provided explicitly by the users or constructed automatically, for instance,
based on the past behavior of the same or similar users. Such methods for the automatic
construction of preferences have been the focus of much current research (e.g. [94]). A
practical way to create profiles that we have used in our experiments is to assemble a
number of default profiles and then ask the users to update them appropriately.

We have evaluated our approach along two perspectives: usability and performance.
Our wusability experiments consider the overhead imposed to the users for specifying
context-dependent preferences versus the quality of the personalization thus achieved.
We used two databases of different sizes. The sizes of the database have two important

61

implications for usability. First, they affect the number of preferences. Then, and most

importantly, they require different methods for evaluating the quality of results. Our

performance experiments focus on our context resolution algorithms that employ the pro-

posed data structures to index preferences for improving response and storage overheads.
In a nutshell, in this chapter, we

e propose a model for annotating preferences with contextual information; our multi-
dimensional model of context allows expressing contextual preferences at various
levels of detail,

e formulate the problem of context resolution, as the problem of selecting appropriate
preferences for personalizing a query based on context,

e present data structures and algorithms for implementing context resolution and
e evaluate our approach in terms of both usability and performance.

The rest of this chapter is structured as follows. In Section 3.1, we present our context
and preference model, while in Section 3.2, we formulate the context resolution problem.
In Section 3.3, we introduce data structures used to index contextual preferences and
algorithms for context resolution and finally, Sections 3.4 and 3.5 present our usability
and performance evaluation results, respectively.

3.1 Contextual Preferences

We propose annotating preferences with specifications regarding the context states under
which they hold. We present first, our model for specifying context states and then,
introduce contextual preferences, e.g. preferences annotated with context information.
In the rest of this chapter, we explain all our definitions with examples that refer to
one of the following two databases.
Movie Database. We consider a simple database that maintains information about
movies. The database schema consists of a single database relation: Movies (mid, ti-
tle, year, director, genre, language, duration). We consider three context parameters as
relevant: accompanying_people, mood and time_period. Users express preferences about
movies that depend on the values of these context parameters. For instance, users may
give a high preference score to movies of the genre cartoons when accompanied by their
children and a lower preference score when accompanied by their friends.
Points of Interest Database. The database schema consists of a single database rela-
tion with schema: Points_of_Interest (pid, name, type, location, open-air, hours_of_operation,
admission_cost). In this example, we consider context parameters location, weather and
accompanying_people. For instance, a point of interest of type zoo may be a more prefer-
able place to visit than a brewery when accompanied by family and an open-air place like

Acropolis a better place to visit than a non open-air museum when weather is good.

62

3.1.1 Context Model

We model context using a finite set of special-purpose attributes, called context parameters
(C;). For a given application X, we define its context environment CEx as a set of n
context parameters {Cy,Cs, ..., C,}. For instance, the context environment of our movie
example is {accompanying_people, mood, time_period}, while the context environment of
the points of interest example is {location, weather, accompanying people}.

To allow more flexibility in defining preferences, we model context parameters as mul-
tidimensional attributes. The dimensions of each parameter are organized in a hierarchy
schema. We denote the hierarchy schema of a parameter with m dimensions or levels as
L = (Ly,...,Ly). Ly is called the lowest or most detailed level of the hierarchy schema
and L,, the top one. We define a total order among the levels of each hierarchy schema
L such that L; < ... < L,, and use the notation L; < L; between two levels to mean
L; < Ljor L; = L;. Regarding our running examples, Figure 3.1 depicts the hierarchy
schema of accompanying_people, weather, time_period, location and mood. For instance,
location has four levels: city (L), country (Ls), continent (L3) and the top level ALL
(La)-

Each level L; of a parameter C; is associated with a domain of values that we denote
by domy,(C;). As usual, a domain is an infinitely countable set of values. We require that,
for all parameters, the top level L,, has a single value All, i.e. dom; _(C;) = {All}. For
a context parameter C;, dom(C;) = UL, domy,(C;). A concept hierarchy is an instance
of a hierarchy schema. Similar to [44], a concept hierarchy of a context parameter C;
with m levels is represented by a tree with m levels with nodes at each level 7, 1 < j <
m, representing values in domp,(C;). The root node (i.e. level m) represents the value
All. The relationship between the values at the different levels of a concept hierarchy
is achieved through the use of a family of ancestor functions cmcff 121, 1 < j < k <

L
m. The functions ancy’™,

1 < 7 < m, assign each value of the domain of L; to a value
of the domain of L;,;. An edge from a node at level L; to a node at level L;,; in the
concept hierarchy represents that the latter is the ancestor of the former. Given three

levels L, Lk and L;, 1 < j <k <[< m, the function ancél is equal to the composition

J+1

ancé o cmcL Finally, the function desc;;™, 1 < j < m, is the inverse of ancL]+1 that

is, desc ”1() = {z € domy,(C}) | cmcL”l() =v}.

Figure 3.1 depicts the concept hierarchies of our five example context parameters.
Such concept hierarchies may be constructed using for example, the WordNet [93] or
other ontologies. In our example, a value of country is Greece, two cities are Athens and
Thessaloniki and ancﬁ(Athens) = Greece.

A context state corresponds to an assignment of values from their domains to context
parameters. In particular, a context state cs is a n-tuple of the form (cy,co,...,c,),
where ¢; € dom(C;). For instance, a context state in our movie example may be (fmends
good, holidays) or (friends, All, summer_holidays). The set of all possible context states
called world CW, is the Cartesian product of the domains of the context parameters:
CW = dom(Cy) x dom(C3) x -+ x dom(C,,).

63

accompanying_people time_period

ALL All \ ALL All \
relationship friends family alone date interval workini_days weeke}bcﬂé&
Iccasion M TuW Th F Sa Su summer Christmas Easter Valentine’s
holidays day
location mood weather
ALL All ALL / ATl\ ALL All
continent Europe ... emotion good indifferent bad characterization /g‘o/‘c%d\ /t:ad
country Greece ... conditions mild warm hot freezing cold

city Athens Thessaloniki ...

Figure 3.1: Hierarchy schema and concept hierarchy of accompanying_people, weather,
time_period, location and mood.

3.1.2 Context Descriptors

Users express conditions regarding the values of a context parameter through context
descriptors. Specifically, a single attribute context descriptor is a specification that a user
can make for a particular context parameter.

Definition 3.1 (Single attribute context descriptor). A single attribute context descriptor
cod(C;) of a context parameter C; is an expression of the form C; € {vy,...,v,}, where
v € dom(C;), 1 < k < m.

For example, for the context parameter time_period, a single attribute context de-
scriptor can be time_period € {Christmas} or time_period € {Christmas, Easter, sum-
mer_holidays}. Given a single attribute context descriptor cod(C;) of a context parameter
C; with C; € {vy,..., v}, its context is a finite set of values, denoted Context(cod(C;))
={v1,. ., Un}-

A user can specify context states through multi-attribute context descriptors that
combine single attribute ones.

Definition 3.2 (Multi-attribute context descriptor). A multi-attribute context descriptor
cod is a formula cod(C;,) A cod(Cy,) A ... A cod(Cj,), where each C;,, 1 < j <k, is a
context parameter and there is at most one single attribute context descriptor per context
parameter Cj. .

Given a set of context parameters C1,...,C,, a multi-attribute context descriptor
specifies a set of context states. These states are computed by taking the Cartesian
product of the contexts of all the single attribute context descriptors that appear in the
descriptor. When the multi-attribute context descriptor does not contain descriptors for
all context parameters, we assume that the absent context parameters have irrelevant val-
ues. In particular, if a context parameter C; is missing from a multi-attribute descriptor,
we assume the implicit condition C; € {All} to be part of the descriptor. Formally:

64

Definition 3.3 (Context of a multi-attribute context descriptor). Assume a set of con-

text parameters C,...,C, and a multi-attribute context descriptor cod = cod(C;,) A

- ANeod(Cy), 1 < k < n. Without loss of generality, we assume that the parameters

without a context descriptor are the last n — k ones. The context states of a multi-

attribute context descriptor, called Context(cod), are defined as: Context(cod(C;,)) %
. x Context(cod(Cy,)) x {All} x ... x {All}.

Suppose for instance, for the movie example, the multi-attribute context descriptor
(accompanying-people € {friends, family} A time_period € {summer_holidays}). This
descriptor defines the following two context states: (friends, All, summer_holidays) and
(family, All, summer_holidays).

3.1.3 Contextual Preference Model

Contextual preferences have two parts: one specifies the preference and the other one the
context states under which the preference holds. For specifying these context states, we
use context descriptors as introduced in the previous section.

Regarding preference specification, there are in general, two different approaches: a
quantitative and a qualitative one. In the quantitative approach (e.g. [11]), preferences
are expressed indirectly by using scoring functions that associate a numeric score with
each tuple of the query answer. In the qualitative approach (e.g. [32, 74]), preferences
between tuples in the query answer are specified directly, typically using binary preference
relations. Our context model can be used for extending both quantitative and qualitative
approaches. Here, we use a simple quantitative preference model to demonstrate the basic
issues underlying contextualization.

In particular, users express their preference for specific database instances by providing
a numeric score which is a real number between 0 and 1. This score expresses their degree
of interest. Value 1 indicates extreme interest, while value 0 indicates no interest. Interest
is expressed for specific values of non context attributes of a database relation, for instance,
for the various attributes (e.g. genre, language) of our movie database relation. This is
similar to the general quantitative framework of [11]. Thus, formally:

Definition 3.4 (Contextual Preference). Given a database schema R(A;, A, ..., Aq), a

contextual preference p on R is a triple (cod, Pred, score), where
1. cod is a multi-attribute context descriptor,

2. Pred is a predicate of the form A; 0, a;, N A;, 0, a;, N ... N A; 0;, a;, that specifies
conditions f;; on the values a;; € dom(A;;) of attributes A;;, 1 <i; < d, of R and

3. score is a real number between 0 and 1.
The meaning of such a contextual preference is that in the set of context states specified
by cod, all database tuples (instances) that satisfy the predicate Pred are assigned the
indicated interest score. In our running examples, we assume that § € {=, <, >, <, > #}

65

‘ mid‘ title ‘ year ‘ director ‘ genre ‘ language | duration

t Casablanca 1942 Curtiz Drama | English 102
to Psycho 1960 | Hitchcock | Horror | English 109
t3 | Schindler’s List | 1993 | Spielberg | Drama | English 195

Figure 3.2: Movie database instance example.

for the numerical database attributes and 6 € {=, #} for the remaining ones. For instance,
assume the movie relation of Figure 3.2 of our movie database example. A user can express
the fact that when in a bad mood, alone at a weekend or during a holiday, he prefers
horror movies with interest score 0.8 by specifying the preference: ((accompanying-people
€ {alone} N mood € {bad} A time_period € {weekend, holidays}), genre = horror, 0.8).

By using multi-attribute context descriptors, users can express preferences that depend
on more than one context parameter, for instance, on Valentine’s day, one may like to
watch romance movies when on a date, but not when out with friends. Furthermore,
hierarchies allow the specification of preferences at various levels of detail. For instance,
one can specify preferences at the country, city or both levels.

In the following, we call profile P the set of all contextual preferences that hold for
an application. The context Context(P) of a profile P is the union of the contexts of all
context descriptors that appear in P, that is, Context(P) = U;Context(cod;), for each
(cod;, Pred;, score;) € P.

3.2 Context Resolution

In this section, we focus on determining which of the contextual preferences to use for
personalizing a query. We call this problem context resolution.

3.2.1 Contextual Queries

We consider queries augmented with information regarding context. We call such queries
contextual queries. Formally:

Definition 3.5 (Contextual Query). A contextual query C'Q is a query enhanced with a
multi-attribute context descriptor cod®%.

The context descriptor may be postulated by the application or be explicitly provided
by the users as part of their queries. Typically, in the first case, the context implicitly
associated with a contextual query corresponds to the current context, that is, the context
surrounding the user at the time of the submission of the query. To capture the current
context, context-aware applications use various devices, such as temperature sensors or
GPS-enabled devices for location. Methods for capturing context are beyond the scope
of this work.

66

Besides this implicit context, we also envision queries that are explicitly augmented
with multi-attribute context descriptors by the users issuing them. For example, such
descriptors may correspond to exploratory queries of the form: what is a good film to
watch with my family this Christmas or what are the interesting points not to be missed
when I visit Athens with my friends next summer.

The context associated with a query may correspond to a single context state, where
each context parameter takes a specific value from its most detailed domain. However, in
some cases, it may be only possible to specify the current context using rough values, for
example, when the context values are provided by sensor devices with limited accuracy.
In such cases, a context parameter may take a single value from a higher level of the
hierarchy or even more than one value.

Now, given a contextual query, the issue is which preferences from the profile should
be used to personalize the query. In this work, we focus on context related issues, that
is, on selecting those contextual preferences from the profile whose context states match
best the context states specified in the query. We call this problem context resolution.
Once the appropriate preferences are selected, the query can be extended to take them
into account, as in the case of non-contextual preferences (e.g. [83, 77]).

Context resolution is studied in two steps: (a) identifying all candidate context states
in the profile that encompass the query states and (b) selecting the most appropriate
states among these candidates. The first subproblem is resolved through the notion of
the cover partial order between states that relates context states expressed at different
hierarchy levels. To handle the second subproblem, we propose two distance metrics that
capture similarity between context states to allow choosing among the candidate states
those that are most similar to the query ones.

3.2.2 The Cover Relation

Let us first consider a simple example related to the movie database. Assume a contex-
tual query CQ enhanced with the context descriptor cod®? = (accompanying_people €
{friends} N mood € {good} A time_period € {summer_holidays}). If a preference with
exactly the same context descriptor exists in the profile P, context resolution is straight-
forward and this preference is selected. Assume now, that this is not the case. Instead,
profile P consists of three preferences: p; = ((accompanying_people € {friends} N mood
€ {good} A time_period € {holidays}), Pred;, score;) and py = ((accompanying_people
€ {friends} N mood € {good} A time_period € {All}), Preds, scorey) and ps = ((accom-
panying-people € {friends} N mood € {good} A time_period € { Working_days}), Preds,
scorez). Intuitively, in the absence of an exact match, we would like to use those pref-
erences in P whose context descriptor is more general than the query descriptor, in the
sense that its context “covers” that of the query:

Definition 3.6 (Covering context state). A context state cs' = (cf,c3,...,ck) € CW
covers a context state cs®> = (¢2,¢3,...,c2) € CW,ifand only if, V&, 1 < k < n, ¢t =

1 L2 , .
or ¢ = ancy’ (c;) for some levels L; < L;.

67

In the example above, the context states of p; and py cover that of ¢, whereas those
of p3 do not. It can be shown that the cover relationship impose a partial order among
context states.

Theorem 3.1. The cover relationship among context states is a partial order relationship.

Proof. We must show that the cover relationship is (i) reflexive (i.e. cs covers cs), (ii)
antisymmetric (if cs' covers ¢s? and ¢s? covers cs!, then cs' = ¢s?) and (iii) transitive (if

cst covers cs® and es? covers ¢s®, then cs' covers ¢s?).
(i) Reflexivity is straightforward.

(ii) Assume for the purpose of contradiction that the antisymmetric property does not
hold. In this case, there is a certain parameter Cy for which ¢; = cmcéj (¢) and

= ancﬁ (ct). But this cannot happen due to the total order of levels in a hierarchy.

(iii) Assume that cs' covers c¢s? (1) and ¢s? covers ¢s® (2). From (1), Vk, 1 <k < n, ¢t
=ciorc = ancéj(cﬁ), L; < L; (3). Respectively, from (2),Vk, 1 <k <n, ¢ =}
or c; = ancéj(ci), L; < L; (4). Therefore, from (3), (4), we get that, Vk, 1 < k < mn,

1 _ .3 1 Li (.3 _) : 1 3
¢, = ¢, or ¢ = ancy’(c;), Ly < Ly, that is, es* covers cs’.

Going back to our example, although the context states of both p; and p, cover those
of the query C'Q), p; is more closely related to the descriptor of the query and it is the one
that should be used. Next, we formalize this notion of the most specific or exact covering
state.

Definition 3.7 (Exact covering state). Let P be a profile and cs® a context state. We
say that a context state cs?> € Context(P) is an exact cover for ¢s' in P, if and only if:

(i) es? covers cs' and

(ii) A es® € Context(P), cs® # cs?, such that, cs? covers es® and cs® covers cs.

Note that there may be more than one exact cover. For example, consider again
the previous query context descriptor cod“? and assume now that P includes a fourth
preference, py = ((accompanying_people € {friends} N mood € {All} N time_period €
{summer_holidays}), Predy, score,). The states of both p; and py in P satisfy the first
condition of Def. 3.7, but none of them covers the other.

We can now provide a formal definition for context resolution:

Definition 3.8 (Context Resolution). Given a profile P and a contextual query CQ,
context resolution refers to identifying a set RS C Context(P) of context states such that
(a) for each context state cs? € Context(cod®?), there exists at least one context state
csP in RS such that cs? is an exact cover of ¢s? in P and (b) ¢s? belongs to RS only if
there is a cs? € Context(cod“?) for which cs? is an exact cover in P.

68

Having identified these states, we use the contextual preferences associated with the
corresponding descriptors for personalizing the query.

Two additional issues need to be addressed. One is what happens if for some context
state in the context of the query, there is no context state in profile P that covers it. We
assume that there is always a default preference with an empty context descriptor, that is,
a context descriptor that corresponds to the context state (All, All,..., All). The other
issue is what happens when a context state of the query has more than one exact covering
state in P. The definition above just specifies that at least one of them needs to be used.
There are many approaches to resolving this issue. One is to let the user decide. In this
case, all exact covering preferences are presented to the users and they decide which ones
to use. In the next section, we provide a systematic way to choose which of the profile
states that are exact covering states of a query state to use by defining distances among
context states.

3.2.3 Context State Similarity

To select the most appropriate among a number of exact covering states, we introduce a
similarity (or distance) metric between context states. The motivation is to choose the
most specific among the candidate states, that is, the states defined in detailed hierarchy
levels. We define first the level of a state as follows.

Definition 3.9 (Levels of a state). Given a context state c¢s = (¢q, ¢, ..., ¢y,), the hi-
erarchy levels that correspond to this state are levels(cs) = [Lj,, Lj,, ..., Lj,] such that

Jiy g2y ="
¢i € domy,;. (Cy),i=1,...,n.

The distance between two levels is defined as their path distance in their hierarchy
schema. Formally:

Definition 3.10 (Level distance). Given two levels L; and L; of a hierarchy schema L,
the level distance disty(L;, L;) is equal to the number of edges that connect L; and L; in
L.

Having defined the distance between two levels, we can now define the level-based
distance between two states.

Definition 3.11 (Hierarchy state distance). Given two states cs' = (¢, ¢}, ..., cl) and
cs? = (c2,c3,...,c%), the hierarchy state distance disty(cs', cs?) is defined as:

disty(cs',es?) = >0 disty (L}, L7).

For example, the hierarchy state distance of context states cs' = (friends, good, sum-
mer_holidays) and cs* = (friends, good, holidays) is equal to: disty(cs',cs®) = 1.

We show next, that the hierarchy state distance produces an ordering of states that is
compatible with the cover partial order in the sense expressed by the following property.

69

1

Property 3.1. Assume a state cs' = (ci,ck, ..., ct). For any two different states cs* =

(2, c3,...,c2) and cs® = (c},¢3,...,C3), cs® # cs®, such that cs* covers cs' and cs® covers
1

cst, if ¢s® covers cs?, then disty(cs', es®) > disty(cs', cs?).

Proof. Let level(cs') = [L1, L3, ..., L], level(cs®) = [L3,L3,...,L2] and level(cs®) =
[L3,L3,...,L3]. From Def. 3.6, since cs? covers cs' and the fact that the level of any
ancestor of ¢; is larger than the level of ¢;, it holds L? = L}, Vi, 1 <4 < n (1). Similarly,
since cs® covers cs!, it holds L3 = L}, Vi, 1 <4 < n (2) and, since cs® covers cs?, it holds
L3 = L2, Vi, 1 <i<n(3). From (1), (2) and (3), we get L? = L? = L}, Vi, 1 <i<n
(4). Since cs* # cs®, for at least one j, 1 < j < n, it holds L? = L3 (5). Thus, from (4),
(5) and Def. 3.11, it holds that disty(cs', cs®) > distg(cst, es®). 1

Property 3.1 states that between two covering states, the exact covering state is the
one with the smallest hierarchy distance.

However, in some cases, the context state with the minimum hierarchy distance is not
unique. For instance, assume that we want to select the most similar context states to cs?
= (friends, good, summer_holidays) between the states cs* = (friends, good, holidays) and
cs3 = (friends, All, summer_holidays). For these states, disty(cs', cs?) = distg(cs', cs®)
= 1. To resolve such ties, again we choose those states that are more specific but now in
terms of the values of the detailed (lowest) level of the hierarchy that they include. The
motivation is that context values that have few detailed values as descendants are more
specific than those that have more such values. Thus, we consider the set of descendants
of each value of a state. For two values of two states corresponding to the same context
parameter, we measure the fraction of the intersection of their corresponding lowest level
value sets over the union of these two sets and consider as a better match, the “smallest”
state in terms of cardinality. Formally, this is expressed through the Jaccard distance of
two values ¢; and ¢y of the same hierarchy schema L defined as follows:

Definition 3.12 (Jaccard distance). The Jaccard distance of two values ¢; and ¢y be-
longing to levels L; and L; of the same hierarchy schema L that has as lowest level the
level Ly, is defined as:

|desc§i1 (c1)N descii (e2)]

. T .
|descLl1 (e1)U descL]1 (e2)]

diStJ(Cl, CQ) =1-

It is easy to show that values at higher levels in the hierarchy have larger Jaccard
distances than their descendants at lower levels, as the following property states:

Property 3.2. Assume three values ¢y, ¢, c3 defined at different levels, say Lo, L3, Ly,
with Ly < Ls < Ly, of the same hierarchy having L, as the most detailed level such that

¢z = ancyi(cs) = ancy!(ci) and c3 = ancy®(c1). Then, dist;(cy,c3) > dists(cy, c2).

Proof. By definition,

. \desci2 (e1)N desc§3 (e2)]
disty(ci,c2) =1 — L L 1
J(by 2) \descii (er)U descé? (e2)] ()

and

70

B \descii(cl)ﬂdescé‘;(c;g)\ (2)
\descif (e1)U descé‘l1 (e3)])
In both fractions, the numerator reduces to descﬁf(cl), clearly due to the transitivity

diStJ(Cl, Cg) =1

property of the ancestor functions. The denominator of the first fraction is descfi’(@),
whereas the denominator of the second fraction is descy*(cs) 2 descy?(cy), again due to
the transitivity property of the ancestor function (i.e. all descendants of ¢, at the detailed
level are also descendants of c3). Therefore dist;(c1,c3) > disty(cq,c2). ¥

The Jaccard state distance between two states is defined as:

Definition 3.13 (Jaccard state distance). Given two states cs' = (c¢f,cl, ..., c}) and

’n
cs? = (c2,c3,...,c%), the Jaccard state distance dist(cs', cs?) is defined as:
disty(cst,es?) = >0 dist,(cf,).

1771

For example, the Jaccard distance of context states cs' = (friends, good, summer_holidays)
and cs* = (friends, good, holidays) is equal to: dist;(cs',cs?) = 3/4. Now, returning to
our previous example for cs' = (friends, good, summer_holidays) and the two candidates
states, cs® = (friends, good, holidays) and cs® = (friends, All, summer_holidays), with
the same hierarchy state distance, it holds that dist;(cs!,cs?) = 3/4 and dist;(cs', cs®)
= 2/3. Therefore, the most similar state to cs® is state cs®.

It is easy to prove a property similar to Property 3.1, that is:

Property 3.3. Assume a state cs' = (ci,ch, ..., ct). For any two different states cs* =
(2, c3,...,c%) and cs® = (c3,c5,...,c3), es® # ¢s3, that both cover cs', that is, cs* covers

cs' and cs® covers cs', if ¢s® covers cs?, then distj(cs', cs®) > disty(cst, cs?).

Proof. Let level(cs') = [L1, L3, ... L], level(cs?) = [L3,L3,...,L2] and level(cs®) =
[L3,L3,...,L2]. From the proof of Property 3.1, we have that L? = L? = L}, Vi, 1 <
< n. From Def. 3.12,V ¢}, ¢Z, ¢, 1 < i < n, we get that dist;(c},c}) > dist;(cl,c?) (1),

because that fraction becomes smaller as the context values belong to higher hierarchy
levels. From (1) and Def. 3.13, we get that dist;(cs', cs®) > distj(cs?, cs?).

To summarize, when there are more than one exact covering context state in the
profile, we select the one that has the smallest hierarchy state distance from the query
state. If more than one such state exists, we order them using their Jaccard state distance
from the query state.

3.2.4 Scores based on Predicate Subsumption

The result of context resolution is the set of context states ¢s’ in the profile P that are
the most similar to the query context. Next, the preferences (cod;, Pred;, score;) € P
such that cs’ € Context(cod;) are selected and applied to produce a score for the results
of the query.

In general, more than one of the selected preferences may be applicable to a specific
database tuple ¢ in the result r. In other words, a tuple ¢ may satisfy the predicate part

71

of more than one of the selected preferences. We shall use the notation Pred|t] to denote
that tuple ¢ satisfies predicate Pred. Let us consider first the special case in which the
selected predicates are related by subsumption. Given two predicates Pred; and Pred,,
we say that Pred; subsumes Preds, if and only if, V ¢ € r, Pred,[t] = Preds[t]. In this
case, we say that Predy is more specific than Pred,. When a tuple t satisfies predicates
that one subsumes the other, to compute a score for ¢, we consider only the preferences
with the most specific predicates because these are considered as used by the users to
specialize or refine the more general ones. In all other cases, we use the preference with
the highest score, considering preferences to be indicators of positive interest.

Definition 3.14 (Tuple Score). Let P be a profile, ¢s a context state and ¢ € r a tu-
ple. Let P’ C P be the set of preferences p;, = (cod;, Pred;, score;) such that c¢s €
Context(cod;), Pred;[t] holds and B p; = (cod;, Pred;, score;) € P’ such that cs €
Context(cod;), Pred;[t] holds and Pred; subsumes Pred;. The score of ¢ in cs is:

score(t,cs) = max,. cp Score;.
) ;P)

For example, assume the movie relation of Figure 3.2 and a profile with the follow-
ing simple preferences: p; = ((accompanying_people € {friends}), genre = horror, 0.8),
p2 = ((accompanying_people € {friends}), director = Hitscock, 0.7), p3 = ((accompany-
ing_people € {alone}), genre = drama, 0.9), py = ((accompanying people € {alone}),
(genre = drama N director = Spielberg), 0.5). In the context state (friends, All, All),
tuple t, satisfies the predicates of both preferences p; and ps. Similarly, in context state
(alone, All, All), tuple t3 satisfies the predicates of both preferences ps and p,. In the first
case, none of the two predicates subsumes the other and the score for ¢, is the maximum
of the two scores, namely 0.8. Under context state (alone, All, All), the predicate of p,
subsumes the predicate of p3 and so, t3 has score 0.5. The motivation is that the user has
assigned to drama movies in general, score 0.9 and to drama movies directed by Spielberg
in particular, score 0.5. Tuple ¢35 belongs to the second category and thus, it is assigned
the corresponding score.

Definition 3.14 specifies how to compute the score of a tuple under a specific context
state. However, the result of context resolution for a query C'()Q may include more than
one context state.

Definition 3.15 (Aggregate Tuple Score). Let P be a profile, C'S C Context(P) be
a set of context states and ¢ € r a tuple. The score of t in CS is: score(t,CS) =

mazxesecsscore(t, cs).
It is straightforward (by Definition 3.15) that:

Property 3.4. Let cs be a context state and C'S a set of context states. If cs € CS, then
for any t € r, score(t, CS) > score(t, cs).

This means that the score of a tuple computed using a set of context states is no less
than the score of the tuple computed using any of the context states belonging to this
set.

72

Other ways of aggregating scores besides choosing the highest score are possible. Our
goal is not to miss any highly preferred tuple in any of the matching context states, thus,
high scores overwrite lower ones. Of course, one can argue for other interpretations; our
context resolution procedure and the related algorithms are still applicable.

3.3 Data Structures and Algorithms

Given a profile P and a contextual query CQ with descriptor cod®?, our goal is to
determine which of the contextual preferences in P to use for personalizing C'Q). To this
end, we need to locate the appropriate states in Context(P) based on their similarity to
the query context Context(cod®?). One way to achieve this is by sequentially scanning
all context states of all preferences and retrieving those with the smallest distances from
each query state. To improve response time and storage overheads, we consider indexing
the preferences in P based on the context states in Context(P).

3.3.1 Preference Graph

We introduce a graph representation of preferences that exploits the cover relation between
context states to organize user preferences. Specifically, the preference graph of profile P
is a directed acyclic graph in which there is one node v; for each context state cs; €
Contert(P) and an edge from v; to v;, if and only if, cs; is an exact cover for ¢s;. In
addition, each node v; in the graph is associated with the set of predicates and the related
interest scores of all preferences that include in their context descriptor the state c¢s;. This
is called the score set of the state. Formally, the score set of a context state cs is the set
W.s = {(Pred;, score;) | (cod;, Pred;, score;) € P and ¢s € Context(cod;)}. Thus:

Definition 3.16 (Preference Graph). Given a profile P, the preference graph PGp =
(Vp, Ep) of P is a directed acyclic graph, where for each context state cs; € Context(P),
there exists a node v;, v; € Vp, of the form (cs;, Wes,), where W, is the score set of cs;.
Given two nodes v;, v; € Vp, an edge (v;, v;) € Ep, if and only if, cs; is an exact cover of

CS]'.

For example, for the movie database and the profile with context states as shown in
Figure 3.3(a), the preference graph depicted in Figure 3.3(b) is constructed.

Note that the preference graph is acyclic, because the cover relationship among context
states induces a partial order among them (Theorem 3.1). Note also that, given a set of
n context parameters C, Cs, ... C, with hy, hs, ..., h, hierarchy levels, the maximum
path length between any two nodes in the graph, i.e. the maximum number of edges that
connect them, is equal to hy + ho + ...+ h, — (n + 1).

Context Resolution. Given a contextual query C'Q with context descriptor cod®?, for
each context state cs € Context(cod®?), we search the preference graph for states that
match it. Specifically, we traverse the preference graph top-down starting from the nodes

73

a) Context States with Score Sets

(
est: ((
csg: ((family, good, summer holidays), Wes,)

csz: ((friends, All, holidays), Wes,)

csq: ((family, All, holidays), Wes,)

css: ((family, All, All), Wes,)
cse: ((All, All, holidays), Wes,)

friends, good, summer holidays), W,)

(b) Preference Graph (c) Profile Tree
((All, All, All), WesD) accompanying people
(Al All, holidays), Wese)) (((family, All, All), Wess) [good [Al | [goud | AT | mood
(((f”ends All, holidays), W°53)j ((ramity, A, hotigeys), wes) ol oidays | | BT holldays All| |holidays AII tlmepenod

G(fnends good, summer holidays), Wcsl] [(famuly good, summer holidays), Wcsz é é é @ é é @

Figure 3.3: (a) A set of context states and an instance of (b) a preference graph and (c)

a profile tree.

with no incoming edges and following their outgoing edges. Search at a node stops when
there no outgoing edges or if the state of the node does not cover the query state cs, thus
some search paths are pruned.

Specifically, the PG_Resolution Algorithm (Algorithm 8) returns results of the form
(Wes,, distance) that correspond to nodes v; whose context state cs; is an exact cover of
the query context state cs. The returned distance values refer to the distances between
cs and the states cs; of the preferences of the returned predicates. The correctness of the
algorithm is based on the following observation.

Property 3.5. A state cs, of a node v is an exact cover of cs, if and only if, cs, covers
cs and (i) v is a leaf node or (ii) v is an internal node and none of its children covers cs.

This holds, because in both cases there is no other state that is covered by c¢s, and
covers cs, since if there were one, v should have an outgoing edge to the corresponding
node.

If there are more than one exact cover, we select the one with the minimum distance,
i.e. the one that differs the least from the query state based on the hierarchy state
distance and, in case of ties, the Jaccard state distance. If again there are ties, all states
are considered as relevant.

The PG_Resolution Algorithm follows a top-down strategy by traversing the graph
starting from the nodes with the most general context states and moving towards the
nodes with the most specific ones. We can also follow a bottom-up approach and traverse
the graph starting from the nodes with the most specific context states up to the nodes
with the most general ones. In this case, at each search path, search stops when the first

74

PG_Resolution Algorithm
Input: A preference graph PGp of a profile P, the searching context state cs.

Output: A ResultSet of the form (W, distance) characterizing a node whose context state exact

covers the searching context state.

1: Begin

2: ResultSet = ();

3: tmpVp = 0;

4: for all nodes v; € Vp do

5: if v; has no incoming edges then

6: tmpVp = tmpVp U{v; };

7: while tmpVp not empty do

8 for all v; € tmpVp do

9: if ¢s; covers ¢s then
10: if v; has no outgoing edges then
11: ResultSet = ResultSet U {(Wes,, dist(cs;, cs))};
12: else
13: if Yv;s. t. (v, vj) € Ep, csj does not cover cs then
14: ResultSet = ResultSet U {(Wes,, dist(cs;, cs))};
15: else
16: for all v, s. t. (v;, vy) € Ep and v, unmarked do
17: tmpVp = tmpVp U {v,};
18: mark vy;
19: tmpVp = tmpVp — {v; };
20: End

Algorithm 8: PG _Resolution Algorithm

node that covers the query state is met. In general, the bottom-up traversal visits more
nodes than the top-down one, since the number of nodes at the lower levels of the graph
tends to be much larger than that of the nodes higher up.

Intuitively, the bottom-up traversal is expected to outperform the top-down one only
for query states with specific context values, that is, for query states with context values
that belong to the lower levels of their corresponding hierarchies. To take advantage of
this simple observation, we use the following heuristic for selecting the appropriate type
of traversal.

We associate with each query state cs a level score [s equal to the average value of
the hierarchy levels of the context values in ¢s. Similarly, we compute a level score [p for
the preference graph as follows. Let n be the number of nodes in the graph and [s; the
level score of the context state of node n;, then, Ip = (3°7_, Is;)/n. We expect that if a
query state c¢s has level score greater (resp. smaller) than the level score of the graph, the
matching state of ¢s will appear higher (resp. lower) in the graph and so, the top-down
(resp. bottom-up) approach is selected.

I6)

3.3.2 Profile Tree

The profile tree explores the repetition of context values in context states by using a prefix-
based approach for storing the context states in Context(P) of the profile P. Each context
state cs in Clontext(P) corresponds to a single root-to-leaf path in the tree. Assume that
the context environment C'Ey has n context parameters {Cy,Cs,...,C,}. The profile
tree for P has n+1 levels. Each one of the first n levels corresponds to one of the context
parameters and the last one is the level of the leaf nodes. For simplicity, assume that
context parameter C; is mapped to level i of the tree. At level C1, there is a single root
node. Each non-leaf node at level k& (1 < k < n) contains cells of the form [key, pointer],
where key corresponds to some value of the parameter C) that appeared in some state
cs in Context(P). No two cells within the same node contain the same key value. The
pointer of each cell of the nodes at level k, (1 < k < n), points to the node at the next
lower level (level k + 1) containing all the distinct values of the next context parameter
(parameter Cjy1) that appeared in the same context state c¢s with key. The pointers of
cells of the nodes at level n point to leaf nodes. Each leaf node contains the score set W,
of the state cs that corresponds to the path leading to it.

For example, regarding the movie database, the profile tree for the context states of
Figure 3.3(a) is depicted in Figure 3.3(c).

The size of the tree depends on which context parameter is assigned to each level. Let
m;, 1 < i < n, be the cardinality of the domain of parameter C;, then the maximum
number of cells is my x (1 4+ mg x (1 +...(1 +m,))). The above number is as small
as possible when m; < my < --- < m,, thus, in general, it is better to place context
parameters with domains with higher cardinalities lower in the profile tree.

Context Resolution. We describe next how the profile tree is used for context reso-
lution. Given a contextual query C'QQ with a context descriptor cod®?, for each query
context state cs = (¢, ¢y, ..., c,) € Context(cod®?), we search the profile tree for a state
that matches it. If there is a state that exactly matches it, that is a state (c1, ¢, ..., ¢,),
then, the associated preference is returned to the user. Note that this state is easily lo-
cated by a single depth-first-search traversal of the profile tree. Starting from the root of
the tree (level 1), at each level i, we follow the pointer associated with key = ¢;. If such
a state does not exist, we search for a state cs’ that best covers c¢s. If more than one such
state exists, we select the one with the smallest distance using the hierarchy distance and,
in case of ties, the Jaccard distance.

Given a profile tree whose root node is Rp, the PT_Resolution Algorithm (Algorithm
9) descends the profile tree starting from the root node in a breadth first manner. It
maintains all paths whose context state is either the same or covers the query context
state. Each candidate path counts the distance from the query path. At first we invoke
PT _Resolution(Rp,{c1,¢a,...,¢,},0). At the end of the execution of this call, we sort all
the results on the basis of their distances and select the one with the minimum distance,
i.e. the one that differs the least from the searched path based on the two distances.

Clearly the last step can be easily replaced by a simple runtime check that keeps the

76

PT_Resolution Algorithm

Input: A node Rp of the profile tree, the query context state cs = (c1,¢2,...,¢,), the current

distance of each candidate path.
Output: A ResultSet of the form (W, distance) characterizing a candidate path whose context

state is either the same or covers cs.

1: Begin

2: if Rp is a non leaf node then

3: forallz € Rp such that x = ¢; or x = ancﬁj(ci) do

4: PT _Resolution(z — child, {¢j+1,...,cn}, dist(z,¢;) + distance);
5: else if Rp is a leaf node containing the score set W, then

6: ResultSet = ResultSet U {(Wes, ,distance)};

7: End

Algorithm 9: PT _Resolution Algorithm

current closest leaf if its distance is smaller than the one currently tested. In particu-
lar, to reduce the number of candidate paths maintained, we could prune those under
construction paths for which there is at least another sub-path that has smaller dis-
tance to the searched one, independently of the rest of the values of the path. Assume

a query context state cs = (c1,...,¢;, Cix1,-.-,Cn). Assume further, that at level i of
the tree, we have two candidate sub-paths with values sp' = (spi,...,sp!) and sp? =
(sp?,...,sp?). If for the distances between the states cs' = (spi,...,sp;, Civ1,---,Cn)

and cs? = (sp?,...,sp?, All,..., All) and the query state cs holds that dist(cs',cs) >
dist(cs?, cs), then we can safely prune sub-path sp'. This is because even if, for the rest
of the values of sp', we could find in the tree values equal to that of the query (best case
scenario), its distance from the query state would still be greater than that of sp? even
if we could not find anything better than All for the remaining values of sp? (worst case
scenario).

We show that the algorithm is correct, i.e. if applied to all context states specified by
the context descriptor of the query, it leads to the desired set of states according to Def.
3.7. For each state, the algorithm returns a state that is the most similar to the query one,
that is, the one with the smallest distance. By Property 3.1, for the hierarchy distance,
and Property 3.3, for the Jaccard distance, it is clear that the state with the smallest
distance is the one that exactly covers the query state. Also, the set of context states that
are returned, specify a context descriptor. This descriptor covers the descriptor of the
query, because each state is expressed by another similar one. Furthermore, the textually
described variant can give the exact covering descriptor because for each state we select
the exact covering state.

The profile tree is very efficient in the case we are looking only for exact matches of
the query state ¢s = (¢1,¢a,...,¢,). In this case, context resolution requires just a simple
root-to-leaf traversal. At each level 7, we search for the cell having as key the value ¢; and
descend to the next level, following the corresponding pointer. Thus, we visit as many

77

nodes as the height of the profile tree. Note that a sequential scan or a preference graph
traversal may require visiting all states in Context(P). For the general case of looking
for exact covering states, assume that context parameter C; has h; hierarchy levels and
val(C;) distinct values in the profile. Then, the number of cells that are visited for each
query state is val(Cy) +val(Cy) X hy +val(C3) X hg X hy + -+ -+ val(Cp) X hy—1 X -+ - X hy.
Again, for a sequential scan or when the preference graph is used, we may need to check
all states.

To speed up context resolution, we exploit the hierarchical nature of context parame-
ters, by adding cross edges, named hierarchical pointers, among context values that belong
to a specific node. In particular, we link each value with its first ancestor that exists in
the node, that is, the value that belongs to the first upper level of the corresponding
hierarchy. For instance, for the profile tree of Figure 3.3(c), we add cross edges from good
to All at level mood and edges from holidays to All at level time period. Also, the values
within each node are sorted according to the hierarchy level to which they belong.

Formally, in the resulting enhanced profile tree with n context parameters, each non-
leaf node at level k£ maintains cells of the form [key, label, pointer, hpointer|, where key
and pointer are defined as in the profile tree and label denotes the level key belongs
to. The hpointer field points to a value key’ that belongs to the same node with key
key’

(key) and there is no key” such that key’ = anci’“ey/,(key”)

L
such that key’ = anc
Lkey key”

and key” = anci:zzﬁ(kzey). If there is no such key’ value, then hpointer points to null.
The EnhancedPT_Resolution Algorithm (Algorithm 10) uses the enhanced profile tree to
retrieve the most similar preferences to a contextual query C'(). Here, instead of searching
for the more general values of each context value, we just follow the hierarchical pointers

of the tree to locate them.

3.3.3 Multi-State Context Resolution

Let cod®? be the context descriptor of a query and Q¢ = Context(cod®?) be the set of
context states derived from it. In the previous section, we have used the profile tree and
the preference graph to check for each individual ¢s in Q. Here, we propose algorithms
that tests for all context states in Q)¢.

When the profile tree is used, the context states in Q¢ are represented by a data
structure similar to the profile tree, that we call query tree, so that, there is exactly one
path in the tree for each cs € Q¢. Again, there is one level in the query tree for each
context parameter. The QueryCR Algorithm (Algorithm 11) uses both the profile tree
and the query tree. In a breadth first manner, the algorithm searches for pairs of nodes
that belong to the same level. Each pair consists of a node of the query tree and a node
of the profile tree. Initially, there is one pair of nodes, (Rg, Rp, 0) (level i = 1). For each
value of the query node Rg that is equal to a value of the profile node Rp or belongs to a
lower hierarchy level, we create a new pair of nodes (Rg — child, Rp — child, distance).
These nodes refer to the next level (i + 1). After having checked all values of all pairs at
a specific level, we examine the pairs of nodes created for the immediately next level and

78

EnhancedPT_Resolution Algorithm
Input: A node Rp of the enhanced profile tree, the query context state cs = (¢1,ca,...,¢p), the

current distance of each candidate path.
Output: A ResultSet of the form (W, distance).

1: Begin

2: if Rp is a non leaf node then

3: Find the first z € Rp such that x = ¢; or ¢ = cmcg (¢i);

4: EnhancedPT_Resolution(x — child,{c;41,...,cn},
dist(x, ¢;) +distance);

5 y = & — hpointer;

6: whiley!= NULL do

7 EnhancedPT _Resolution(y — child,{cj+1,...,¢cn},
dist(y, c;) + distance);

8: y =y — hpointer;

9: else if Rp is a leaf node containing the score set W, then
10: ResultSet = ResultSet U {(W,s,, distance)};
11: End

Algorithm 10: EnhancedPT _Resolution Algorithm

so on. At level n + 1, we retrieve from the profile tree, for each query state, the score
set of the path with the most similar state to the query one. Observe that the QueryCR
Algorithm tests for all query states within a single pass of the profile tree.

We follow a similar approach for the preference graph. In particular, the query context
states are represented by a graph G, named query graph, similar to the preference graph,
i.e. there is a node v in G for each context state cs € ()¢ and an edge from a node v to
a node u, if and only if, the state of v is an exact cover of the state of u.

First, we perform a topological sort of the nodes in the query graph G¢ as follows.
We start by placing all nodes of G that have no incoming edges in a set, say S;. Then,
we proceed by deleting the nodes in S; and their outgoing edges from Gg and placing the
nodes that have no incoming edges in the query graph that results after these deletions
in another set, say Ss. This procedure is repeated, until there are no remaining nodes in
the query graph. Assume that m sets S;, 1 < i < m, are thus produced. We process the
query states using this order. Our approach is based on the following observation. Let a
node z with state cs, be returned as an exact match of a node in S;, 1 < ¢ < m. None of
the predecessors of z in the preference graph can be an exact cover of any node in S;.;.
However, context states of nodes that have incoming edges from such predecessors (i.e.
belong to a different sub-graph) may be exact covers of the states of nodes in S;;;. To
take advantage of this, we start with the set S; and search the preference graph to find
nodes whose state exactly covers any context state in S7. Let z be any such node returned
for S;. Then, we remove from the preference graph the incoming edges of z. For finding
nodes that exactly cover the states in set Sy, we begin the search process from all nodes
with no incoming edges in the updated preference graph. This procedure is repeated for

79

QueryCR Algorithm

Input: The profile tree with root node Rp and n context parameters, the query tree with root

node Rg, the current distance of each candidate path.
Output: A ResultSet of the form (W, distance) characterizing paths whose context states are
the same or similar to the states of the query tree.

SN, SN’ sets of pairs of nodes, each pair related with a distance value.
Initially: SN = {(Rg,Rp,0)}, SN =0
1: Begin

2: for level i =1 to n do
3: for each pair sn € SN with sn = (q_node, p_node, distance) do

4: Vr € q_node

5: Yy € p_node

6: ifr=yor(y= ancé: (x)) then

T if ¢ <n then

8: SN’ = SN'U{(x — child,y — child, distance + dist(x,y))};
9: else if i = n then
10: W =y — child;
11: ResultSet = ResultSet U {(W, distance)};
122 SN =SN';
13: SN’ =0
14: End

Algorithm 11: QueryCR Algorithm

all sets up to S,,.

3.3.4 Discussion

To summarize, we have proposed two data structures for indexing contextual preferences:
the preference graph and the profile tree. The preference graph organizes the context
states of a profile by exploring the cover relation among them. A top-down traversal of
the graph can be used for an incremental specialization of a given context state, whereas a
bottom-up traversal for its incremental relaxation. The profile tree offers a space-efficient
representation of context states by taking advantage of the co-occurrence of context values
in a profile. It supports exact matches of context states very efficiently through a single
root-to-leaf traversal.

Context resolution using either the preference graph or the profile tree returns predi-
cate expressions. These expressions are used to determine the tuples of the query result
in the underlying database relation and annotate them with the appropriate scores. It is
straightforward, and practically orthogonal to our problem, to perform all the produced
expressions as selections of the relational algebra over the underlying relation and rank
the results by their score computed based on Definition 3.15.

80

3.4 Usability Evaluation

The goal of our usability study is to justify the use of contextual preferences. In particular,
the objective is to show that for a reasonable effort of specifying contextual preferences,
users get more satisfying results than when there are no preferences or when preferences
are non-contextual.

We used two databases of different sizes: (a) a points of interest database and (b) a
movie database. The points of interest database consists of nearly 1 000 real points of
interest of the two largest cities in Greece, namely Athens and Thessaloniki. The context
parameters are accompanying_people, time and location. For the movie database, our
data comes from the Stanford Movie Database [7] with information about 11500 films.
The context parameters are accompanying_people, mood and time_period. The sizes of the
datasets have two important implications for usability. First, they affect the size of the
profile, i.e. the number of preferences. Then, and most importantly, they require different
methods for evaluating the quality of results. While for the small dataset, we can ask
users to manually provide the best results, for the large dataset, we need to use other
metrics [24].

We conducted an empirical evaluation of our approach with 10 human subjects. Dif-
ferent users were used for each of the two datasets. For all users, it was the first time
that they used the system. For each database, to ease the specification of contextual
and non-contextual preferences, we created a number of default profiles based on (a) age
(below 30, between 30-50, above 50), (b) sex (male or female) and (c) taste (broadly
categorized as mainstream or out-of-the-beaten track). We created both contextual and
non-contextual profiles. Based on the above three characteristics, one of the 12 available
non-contextual profiles and one of the 12 available contextual profiles were assigned to
each user. Users were allowed to modify the default profiles assigned to them by adding,
deleting or updating preferences. We evaluated our approach along two lines: ease of
profile specification and quality of results.

3.4.1 Profile Specification

With regards to profile specification, we count the number of modifications (insertions,
deletions, updates) of preferences of the default profile that was originally assigned to the
users, for both the non-contextual and contextual profiles. In addition, we report how long
(in minutes), it takes users to specify /modify their profile (again, for both cases). Since
for all users this was their first experience with the system, the reported time includes
the time it took the user to get accustomed with the system. The results are reported
in Table 3.1 for points of interest and Table 3.2 for movies. For the points of interest
database, each of the default non-contextual profile has about 100 preferences, while each
default contextual one nearly 650 preferences, while for the movie database, the sizes are
120 and 1 100 respectively.

The general impression is that predefined profiles save time in specifying user pref-

81

erences. Furthermore, having default profiles makes it easier for someone to understand
the main idea behind the system, since the preferences in the profile act as examples.
With regards to time, there is deviation among the time users spent on specifying pro-
files: some users were more meticulous than others, spending more time in adjusting the
profiles assigned to them. As expected, the specification of contextual profiles is more
time-consuming than the specification of non-contextual ones, since such profiles have a
larger number of preferences. The size of the database also affects the complexity of pro-
file specification basically by increasing the number of preferences and thus, the required
modifications.

Table 3.1: Points-of-Interest Example: Profile Specification

Userl User2 User3 User4 Userb User6 User7 User8 User9 UserlO

Non Contextual Profile
Num of updates 15 14 8 11 15 16 19 12 10 10

Update time (mins) 13 8 5 6 6 9 16 7 9 8
Contextual Profile

Num of updates 22 31 12 28 24 32 38 13 18 25

Update time (mins) 30 45 20 30 30 40 45 15 20 25

Table 3.2: Movie Example: Profile Specification

Userl User2 User3 User4 Userb User6 User7 User8 User9 UserlO

Non Contextual Profile

Num of updates 37 14 29 10 22 31 29 15 17 12

Update time (mins) 18 7 14 6 9 19 16 6 8 8
Contextual Profile

Num of updates 67 49 52 91 37 72 69 41 46 37

Update time (mins) 32 28 28 55 17 44 36 22 27 46

3.4.2 Quality of Results

We compare the results of contextual queries, i.e. queries enhanced with a context de-
scriptor, when executing them: (i) without using any of the preferences, (ii) using the
non-contextual preferences and (iii) using the contextual preferences. In the case of con-
textual preferences, we also consider using (a) only exact matching context states, (b)
only one, the most similar, context state (top-1) and (c) the three most similar context
states (top-3). For similarity, we use the hierarchy distance function and to resolve ties
the Jaccard distance.

Since the points of interest database has a small number of tuples, we asked the users
to rank the results of each contextual query manually. Then, we compare the ranking
specified by the users with what was recommended by the system, for the above five
cases. For each case, we consider the best 20 results, i.e. the 20 points of interest that
were ranked higher. When there are ties in the ranking, we consider all results with the

82

same score. We report the percentage of the results returned that belong to the results
given by the user. As shown in Table 3.3, this percentage is generally high. Surprisingly,
sometimes users do not conform even to their own preferences as shown by the results
for exact match queries. In this case, although the context state of the preferences used
was an exact match of the context state in the query, still some users ranked their results
differently than the system. In such cases, traceability helps a lot, since users can track
back which preferences were used to attain the results and either modify the preferences
or reconsider their ranking. Note that users that customized their profile by making more
modifications got more satisfactory results than those that spent less time during profile
specification. Furthermore, for non exact match queries, using the most similar state
(top-1) to answer a query provides only slightly better results than using the top-3 most
similar states.

For the movie database, due to the large number of tuples, it was not possible for the
users to manually rank all of them. Instead, users were asked to evaluate the quality of
the 20 higher ranked movies in the result. For characterizing the quality of the results,
users marked each of the 20 movies with 1 or 0 indicating whether they considered that
the movie should belong to the best 20 ones or not, respectively. The number of 1s
corresponds to the precision of the top-20 movies, or precision(20), i.e. how many of the
20 movies are relevant. Furthermore, users were asked to give a specific numerical interest
score between 1 and 10 to each of the 20 movies. This score is in the range [1, 5], if the
previous indicator is 0 and in the range [6, 10], if the indicator is 1. We report the number
of movies that were rated high (interest score > 7). Finally, users were asked to provide
an overall score in the range [1, 10] to indicate their degree of satisfaction of the overall
result set. Table 3.4 summarizes the quality measures attained for the movie database.
The detailed per user scores are depicted in Table 3.5.

Our results again, show that using contextual preferences improve quality considerably.
When compared to the points of interest database, precision is lower. One reason for that
is the following. In the movie example, the users were not aware of the whole dataset;
they were just presented with the 20 movies in the result. Thus, they “left room” in their
choices for better results that could be lying in the dataset that was not presented to
them.

Table 3.3: Points-of-Interest Example: Quality of results

Userl User2 User3 User4 Userb User6 User7 User8 User9 Userl0

No Preferences 10% 0% 0% 0% 0% 10% 5% 0% 0% 5%
Non-Contextual Preferences 10% 10% 0% 5% 5% 10% 15% 5% 5% 5%
Contextual Preferences
Exact Match 100% 90% 90% 95% 90% 100% 100% 85% 100% 100%
Non Exact Match
Top-1 state 100% 95% 90% 85% 90% 100% 100% 85% 90% 100%
Top-3 states 95% 90% 85% 95% 95% 90% 100% 75% 85% 95%

83

Table 3.4: Movie

Example: Overall Quality of Results

Precision(20) | Score > 7 | Average Overall Score
No Preferences 26.5% 11% 2.7
Non-Contextual Preferences 40% 19% 4
Contextual Preferences
Exact Match 80% 71.5% 8.2
Non Exact Match
Top-1 state 2% 58% 7.4
Top-3 states 69% 53% 7

Table 3.5: Movie Example: Quality of Results per User

Userl User2 User3 User4 Userb User6 User7 User8 User9 Userl0
Num of 1 5 4 7 7 4 6 4 7 3 6
No Preferences Num of > 7 2 0 2 3 3 2 2 4 3 1
Overall Score 3 3 3 2 4 3 3 3 2 1
Non-Contextual Num of 1 4 6 8 12 12 12 7 6 8 5
Preferences Num of > 7 0 1 5 4 6 7 4 3 5 3
Overall Score 2 3 4 6 6 6 4 3 4 2
Contextual: Num of 1 15 17 15 13 17 14 17 17 18 17
Exact Match Num of > 7 14 14 15 12 13 14 15 15 17 14
Overall Score 8 9 8 8 7 8 8 8 9 9
Contextual:

Non Exact Match
Num of 1 15 17 13 11 13 13 14 17 17 14
Top-1 state Num of > 7 10 14 12 9 8 12 13 12 15 11
Overall Score 6 9 7 7 6 8 8 8 8 7
Num of 1 13 15 12 11 13 12 14 17 17 14
Top-3 states Num of > 7 9 13 11 10 9 11 11 14 10
Overall Score 6 8 7 7 6 6 7 8 8 7

3.5 Performance Evaluation of Context Resolution

To evaluate the performance of context resolution, we run a set of experiments using both

real and synthetic profiles. As real profiles, we use the ones specified by the users in our

usability study for the movie and points of interest databases. Table 3.6 summarizes the

parameters used for the creation of the synthetic profiles. We consider: (a) the storage

efficiency of the profile tree and the preference graph and (b) the complexity of context

resolution when we use the proposed algorithms.

Table 3.6: Input Parameters for Synthetic Profiles

Parameter Value
Number of contextual preferences 500 - 10 000
Number of context parameters 3

Data distributions

Cardinality of context domains

Hierarchy levels

Uniform, zipf

50 - 1 000

4

84

3.5.1 Storage

In this set of experiments, we evaluate the space (in number of cells) required to store
context states using the profile tree and the preference graph as opposed to storing them
sequentially (no index). With regards to the profile tree, this depends on the mapping
of context parameters to the levels of the tree. Also, since the profile tree (resp. the
preference graph) takes advantage of the co-occurrences of context values (resp. context
states) in the profile, their size depends on the distribution of context values in the profile.

Real data sets. We built the profile tree and the preference graph for the profiles
of both the movie and the points of interest datasets. In the case of the profile tree,
we created profile trees for all possible mappings of context parameters to levels of the
trees. For the movie database, let A stand for accompanying_people, M for mood and
T for time_period. We call order1 the mapping in which A is assigned to the first level
of the tree, M to the second and T to the third one, denoted as (A, M, T'). Similarly,
order2 is (A, T, M), order3 is (M, A, T), orderd is (M, T, A), order5 is (T, A, M)
and order6 is (T, M, A). Accordingly, for the points of interest database, let A stand
for accompanying_people, T for time and L for location. Then, orderl is order (A, T,
L), order2 is (A, L, T), order3 is (T, A, L), orderd is (T, L, A), orderbis (L, A, T)
and order6 is (L, T, A). As shown in Figure 3.4(a), the preference graph requires 82%
and 34% less space than storing preferences sequentially for the movie and the points of
interest database respectively, since in the preference graph each distinct context state is
stored only once. For the profile tree, the orders that result in trees with smallest sizes
are, as expected, the ones that map the context parameters with large domains to levels
lower in the tree (orderl and order3 for both databases). All trees occupy less space than
storing preferences sequentially. The smallest profile tree representation occupies about
86% and 60% less space than a sequential representation for the movie and the points of
interest database, respectively.

Synthetic data sets. We also consider the size of the proposed data structures as
a function of the size of the profile, i.e. number of user preferences, and respectively,
number of context states. We consider domains for the context parameters with different
cardinalities, so that the mappings of context parameters to tree levels create trees with
varying sizes. In particular, we use a domain with 50 values, a domain with 100 values
and a domain with 1 000 values. We create profiles with 500, 1 000, 5 000 and 10 000
context states. To create context states, context values are drawn from their corresponding
domain with two different distributions, uniformly or with a zipf data distribution with
a = 1.5. As with the real profiles, we create profile trees for all 6 different mappings. Let
orderl be the order (50, 100, 1 000) that maps the parameter whose domain has 50 values
to the first level, the parameter with 100 values to the second one and the parameter with
1 000 values to the third one. Similarly, let order2 be (50, 1 000, 100), order3 (100, 50,
1 000), orderd (100, 1 000, 50), order5 (1 000, 50, 100) and order6 (1 000, 100, 50).
The mapping of parameters with large domains lower in the tree results in smaller trees
(Figures 3.4(b), (c)). For the zipf distribution (Figure 3.4(c)), the total number of cells

85

W
S

T T
Movies —— order 1
Points of Interest ------ order 2

N
a
)
a
]
IS
BXO»DOX¥e+7]

N

S
>
]
5
2.
9

Number of cells

1500

=
o
T

Number of cells (in thousands)
=
@
¥

noindex graph orderl order2 order3 order4 order5 order6 0 2 4 6 8 10
Number of context states (in thousands)

(a) (b)

w
S
o
IS

T
order 1 ——
order 2 -->¢--
order3 ---%-- |

order 1
order 2
order 3
I order4

.
Y}

N
@
BPXO»IX @+

graph
| noindex

N
15}
=
1S
T

©

o
15}
T

Number of cells (in thousands)
=
]
®

Number of cells (in thousands)

1 1 1 1 1 1 I I I I
0 2 4 6 8 10 0 0.5 1 15 2 25 3 35
Number of context states (in thousands) Parameter a

() (d)

Figure 3.4: Size using (a) the real profiles and synthetic profiles with (b) uniform, (c) zipf
with a=1.5 and (d) combined data distribution.

is smaller than that for the uniform distribution (Figure 3.4(b)), because “hot” values
appear more frequently in preferences, i.e. more context values are the same. Concerning
the preference graph, when context values are selected uniformly (Figure 3.4(b)), the size
of the graph is almost equal to the size of sequential storage, since most of the produced
context states are distinct. For the zipf data distribution, the graph occupies 40% less
space than storing context states sequentially. Finally, the profile tree requires nearly
23% and 38% less space than the preference graph for the uniform and the zipf data
distribution, respectively.

As a final note, observe that the actual size of the profile tree depends on the frequency
of the values of the context parameters in the profile. Thus, even if a parameter has a
large domain, if only a small number of its values appears in the profile, it should be
mapped to a high level as shown next. In this experiment, the profile has 5 000 context
states and the context parameters have domains with 50, 100 and 200 values. The values
of the parameters with domains with 50 and 100 values are selected using a uniform data
distribution and the values of the parameter with 200 values using a zipf data distribution
with various values for the parameter a, varying from 0 (corresponding to the uniform
distribution) to 3.5 (corresponding to a very high skew). Orderl is (50, 100, 200), order2
is (50,200,100) and order3 is (200,50,100) (Figure 3.4(d)). Thus, an analysis of the
actual distribution of values in the profile should be made for deciding the appropriate

86

1800

T T T T T — T T T T T T 7000 T T

Points of Interest sequential —+—

Movies ------ profile tree —->--

1600 i T 6000 enhanced tree 8- |
preference graph —8—

1400
5000
1200

1000 | 4000

Number of cells
Number of cells

800 - 3000

600 -
2000
400
. 1000 |-
N 0]
N TN ‘mmﬂ‘w:w o . ‘ .
s pr enh s pr enh s prenh g s prenh g 0 1000 2000 3000 4000 5000 6000 7000 8000
Exact and non-exact match Number of states in profile

(a) (b)

200

7000

T T T T

sequential —+— top-down —+—

profile tree --3¢-- 10000 |- bottom-up --3¢--

6000 enhanced tree & | heuristic ---%--
preference graph —8—

5000 B 8000 |-

4000 - 6000 |-

3000

Number of cells
Number of cells

4000 -
2000 | - X

2000 | i
1000 | T

ot

0 =t i I 1 1 0% 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000
Number of states in profile Number of states in profile

() (d)

Figure 3.5: Cell accesses to find related preferences to queries using sequential scan, the
profile tree, the enhanced profile tree and the preference graph for (a) the real profiles and
the synthetic ones in (b) exact match and (¢) non exact match and (d) for the top-down,
bottom-up and the heuristic approach when the preference graph is used.

mapping, as opposed to looking only at the domain sizes.

3.5.2 Context Resolution

In this set of experiments, we study the complexity of context resolution (in term of cell
accesses) using the profile tree, the preference graph and their enhancements. We use
both the real profiles and synthetic profiles of different sizes. Synthetic profiles have three
context parameters, each with a domain of 100 values. The values of two of them are
drawn from their corresponding domain using a zipf data distribution with ¢ = 1.5, while
the values of the third one are selected using a uniform data distribution. This parameter
is mapped to the lower level of the tree. Context parameters have hierarchies with four
levels, where 75% of the context values are considered to be values at the most detailed
level of the hierarchies and the rest 25% are assigned to the other three levels. The results
reported are averaged over 50 randomly generated queries.

First, we compare the number of cell accesses during context resolution when (i)
scanning all preferences sequentially, (ii) using the profile tree, (iii) using the enhanced
profile tree and (iv) using the preference graph with a top-down traversal (Figure 3.5).

87

5000

T T T T T T T T

20 query states in parallel —— 20 query states in parallel —+—
4500 | 20 single query states ---- i 14000 | 20 single query states ----
50 query states in parallel ---%-- 50 query states in parallel ---%--

50 single query states & 50 single query states &

4000 - E 12000 =
3500
10000 [
3000

8000
2500

Number of cells
Number of cells

2000 | o 6000 |- : R g

ol e 3 4000 -
,,,,,,, B R |
1000 | /e B

-

* e settas
e 2000 (27
500 [/ B 4

by 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 [0.5 1 15 2 25 3
Number of states in profile Distance

(a) (b)

3500

T T T
Points of Interest
ovies —-----

3000 ™

2500

2000

Number of cells
=
@
S
3

1000

il

1 1 1 il
20 20 parallel 20 20 parallel 20 20 parallel 20 20 parallel
Exact and non-exact match

(c)

Figure 3.6: Cell accesses to find preferences related to queries using the query tree for
synthetic profiles for (a) exact match and (b) non exact match and (c) for the real profiles.

The results for the real profiles are depicted in Figure 3.5(a), where with s we denote
sequential scan, with pr the profile tree, with enh the enhanced profile tree and with g
the preference graph, while the results of synthetic profiles are shown in Figures 3.5(b),
(c). In the case of sequential scan, for exact matches, the profile is scanned until the
matching state is found, while for non exact matches, we need to scan the whole profile.
With the profile tree, exact match queries are resolved by a simple root-to-leaf traversal,
while non exact matches need to consider multiple candidate paths. For non exact match
queries, the enhanced tree reduces the number of cell accesses at about 30% with regards
to the profile tree. When the preference graph is used, the number of cells accesses is
the same for exact and non exact matches. Although the preference graph requires much
more cells accesses than the profile tree, in turn, the preference graph requires 68% less
accesses than when the preferences are sequentially scanned. Finally, in Figure 3.5(d), we
count the cells accesses when the preference graph is used and the top-down, bottom-up
and the heuristic approach is followed. The heuristic approach reduces the number of
cells accesses at about 18% with regards to the top-down approach.

We also compare the performance (i.e. number of cell accesses) of searching for match-
ing states for each state of the query one at a time versus matching all query states in
parallel using the QueryCR Algorithm (Algorithm 11). We used both the real profiles and
synthetic profiles with 5 000 context states. Figure 3.6(a) depicts our results for exact

88

match queries using the synthetic profile and query descriptors with 20 and 50 states.
Searching for all states in one pass results in savings at around 40% on average. We also
consider the number of cell accesses when we search not only for exact matches, but also
for more general context states. Figure 3.6(b) shows the number of cell accesses taking
into consideration the distance between a returned state and a searched one when we
search for 20 and 50 states. Here, we save on average at around 60%. The results for the
real profiles are shown in Figure 11(c). We run this experiment for exact match queries
and for queries in which we search for states with distance up to 2, with query descriptors
consisting of 20 context states. Using Algorithm 11, we save on average 40%.

3.6 Summary

The focus of this chapter is on annotating database preferences with contextual informa-
tion. Context is modeled using a set of multidimensional context parameters. Context
parameters take values from hierarchical domains, thus, allowing different levels of ab-
straction for the captured context data. A context state corresponds to an assignment
of values to each of the context parameters from its corresponding domain. Database
preferences are augmented with context descriptors that specify the context states under
which a preference holds. Similarly, each query is related with a set of context states.
Now, the problem is to identify those preferences whose context states as specified by their
context descriptors are the most similar to that of a given query. We call this problem
context resolution. To realize context resolution, we propose two data structures, namely
the preference graph and the profile tree, that allow for a compact representation of the
context-dependent preferences.

To evaluate the usefulness of our model, we have performed two usability studies.
Our studies showed that annotating preferences with context improves the quality of the
retrieved results considerably. The burden of having to specify contextual preferences
is reasonable and can be reduced by providing users with default preferences that they
can edit. We have also performed a set of experiments to evaluate the performance of
context resolution using both real and synthetic datasets. The proposed data structures
were shown to improve both the storage and the processing overheads. In general, the
profile tree is more space-efficient than the preference graph. It also clearly outperforms
the preference graph in the case of exact matches. The main advantage of the preference
graph is the possibility for an incremental refinement of a context state. In particular, at
each step of the resolution algorithm, we get a state that is closer to the query one. This
is not possible with the profile tree.

The results presented in this chapter also appear in [113, 111].

89

CHAPTER 4

FAST CONTEXTUAL PREFERENCE SCORINGC
OF DATABASE TUPLES

4.1 Contextual Preference Ranking

4.2 Finding Representative Context States
4.3 Predicate Clustering

4.4 Other Issues

4.5 Evaluation

4.6 Summary

In this chapter, we address the problem of efficient scoring database tuples based
on contextual quantitative preferences by performing preprocessing steps off-line, and
in particular, by pre-computing representative tuple scores. At one extreme, we could
compute all different scores for each tuple for all potential context states. Since, only a
few tuples may be of interest at each context state, we propose computing scores only for
relevant tuples (i.e. tuples for which there is sufficient interest). However, the number of
potential scores may be still large, since the number of context states grows rapidly with
the number of context parameters. For many applications, context includes a large number
of parameters with domains of varying sizes. For instance, in a pervasive environment, a
media player system for movies and television programs may suggest interesting programs
to users according to their current context that includes their age, sex, taste as well as
time, location, surrounding people, emotional state and the technical characteristics of
the targeted device for playing the program. Thus, we propose computing scores only for
representative context states. Our method for identifying context representatives exploits
the hierarchical nature of context parameters and can be applied to both quantitative and
qualitative preferences.

90

We also consider a complementary method for grouping preferences based on identi-
fying those preferences that result in similar scores for all database tuples. This method
takes advantage of the quantitative nature of preferences to group together contextual
preferences that have similar predicates and scores. The method is based on a novel rep-
resentation of preferences through a predicate bitmap table whose size depends on the
desired precision for the resulting scoring.

In summary, in this chapter, we make the following contributions:

e We propose a suite of techniques for quickly providing users with data of interest in
the case of contextual quantitative preferences.

e We consider a contextual clustering method that exploits the hierarchical nature of

context parameters.

e We introduce a method for grouping those preferences that produce similar scores for
all database tuples. The method is based on a bitmap representation with tunable

accuracy.

Finally, we present a number of experiments on both synthetic and real data sets.

The rest of this chapter is structured as follows. In Section 4.1, we introduce the prob-
lem of scoring database tuples based on contextual quantitative preferences. Section 4.2
proposes a method for finding representative context states by exploiting the hierarchi-
cal nature of context parameters, while Section 4.3 focuses on grouping preferences by
identifying those that result in similar scores. Section 4.4 discusses issues of handling the
produced scores. In Section 4.5, we present our evaluation results and finally, Section 4.6
concludes the chapter with a summary of our contributions.

4.1 Contextual Preference Ranking

In this section, we present our contextual preference model and introduce the problem
of scoring database tuples using contextual preferences. As a running example, we use
again the movie database with schema: Mouvies(mid, title, year, director, genre, language,
duration). Users express their preferences on movies. These preferences may for example
depend on who is accompanying the user or the user’s age or sex. For instance, cartoons
may be a reasonable choice when with family, while a romantic comedy may be preferable
when on a date.

4.1.1 Contextual Preference Model

To model context, we use a finite set of special-purpose attributes, called contexrt pa-
rameters. Here, we distinguish between two types of context parameters: simple and
composite ones. A simple context parameter involves a single context attribute C; with
domain dom(C;), while a composite context parameter C; consists of a set of single context

91

time_of_life gender

ALL ?II ALL All
period youth middle_age old_age sex male female

Figure 4.1: Hierarchy schema and concept hierarchy of time_of_life and gender.

attributes Cj,, Cj,, ..

and its domain, dom(C;) is equal to dom(Cj,) x dom(Cj,) ... x dom(C},). For a given

., €, with domains dom(C},), dom(C},), ..., dom(C},) respectively

application X, we define its context environment C'Ex as a set of n context parameters
{C1,Cs,...,Ch}.

In our movie example, we consider the simple context parameters accompanying_people,
time_period and mood. We also consider users to be part of context, so that the result
of each query depends on the user submitting it. Each user is modeled by the composite
context parameter user consisting of attributes id, time_of life and gender. Thus, our
context environment is the quadruple (user, accompanying_people, time_period, mood).

Similar to Chapter 3, context parameters take values for multidimensional domains.
Figure 3.1 depicts the hierarchy schema and concept hierarchy of accompanying_people,
time_period and mood, while Figure 4.1 depicts the hierarchy schema and concept hierar-
chy of time_of_life and gender.

Hierarchies support the specification of context values with various levels of detail.
For a context environment with n context attributes, a context state cs is a n—tuple of the
form (¢1, ¢, ..., ¢,), where ¢; € dom(C;). For example, a context state in our example
may be ((All, youth, male), friends, Th, good) or ((idl, middle_age, female), family,
holidays, good).

Users express their preference for sets of tuples specified using selection conditions
on some of the attributes of the tuples by rating them using a numerical score. The
score is a real number between 0 and 1 which expresses their degree of interest for the
specified tuples. Value 1 indicates extreme interest, while value 0 indicates no interest.
Preferences are annotated with context information to denote the context state under
which the preference holds. As in Chapter 3, the meaning of a contextual preference p =
(es, Pred, score) is that in context state cs, all database tuples ¢ for which Pred holds
are assigned the indicated score. For instance, a preference (((id1, youth, male), friends,
holidays, good), (genre = comedy), 0.9) denotes that user with id1 who is a young male,
when accompanied with friends during holidays and in good mood enjoys seeing movies
of genre comedy.

We recall that it is not necessary for a preference to depend on all context attributes.
This can be expressed by assigning the value All to the corresponding context attribute.
For instance, the preference (((All, youth, All)), All, holidays, All), (genre = comedy),
0.9) means that all young people like to see comedies during holidays independently of
the values of the other context parameters. For simplicity, in following, we shall skip All
values in the context part of the preference and for example, simply use ((youth, holidays),

92

(genre = comedy), 0.9) to express the preference above.

We call the set of contextual preferences that hold for an application, profile P. By
Context(P), we denote the set of context states cs that appear in at least one preference
in P. We assume that such profiles are available. In practice, preferences may be, for
example, given by users explicitly or may be deduced by say the previous behavior of the
same or similar users. A practical way to create P, considered in [113], is by assembling
a number of default profiles and allowing users to update them appropriately.

4.1.2 Problem Formulation

Each query submitted by a user is associated with one or more context states. Typically,
the context implicitly associated with a query corresponds to the current context, that
is, the context surrounding the user at query submission time. To capture the current
context, many context-aware applications use various devices for determining the values
of the relevant context parameters, such as temperature sensors or GPS-enabled devices
for location-related attributes. Besides such implicit context augmentation, queries may
be explicitly enhanced with context states for example for posing exploratory queries such
as what is a good movie to watch with my family this coming weekend.
Now given the query context states Context(q) of a query ¢, we would like

(1) to identify the set P, C P of preferences (cs, Pred, score) for which c¢s = cs,, for
some cs, € Context(q) and then,

(2) use them to compute a score for each tuple ¢ in the result of q.

The first problem is complicated by the fact that for some cs, in Context(q), there
may be no preference (cs, Pred, score) in the profile P, with ¢s = e¢s,, that is, ¢s, ¢
Contert(q). Note, that the set of all possible context states for a context environment with
n parameters is equal to |dom(C1)| x |dom(Cs)| x ... |dom(Cy)|. In practice, the profile
contains preferences only for a small number of such states. To address this, we use those
preferences in P that have the most similar context states. That is, for each query context
state csq, we use the preferences (cs, Pred, score) in P with mines ¢ contest(p)dists(cs, csq).
We defer the definition of distance distg between context states to Section 4.2. The score
of a tuple with regards to a set of context states is defined based on Definition 3.15.

Now, the second problem can be expressed as follows:

Problem Definition. Assume a database instance r, a profile P and a query ¢ with a
set of context states Context(q). Let CS C Context(P) be the set of context states cs
with the minimum dists(cs, cs,), ¢s, € Context(q), that is, the context states that are
the most similar to the context states of the query. The contextual scoring problem is to
rank all tuples ¢ in the result of ¢ based on the aggregate score score(t,C'S).

For computing the scores of all tuples in the result set, a solution that involves no
pre-computation is to first find the set of context states Context(q), compute the scores

93

of all tuples t in the result and then rank them based on these scores. Performance can
be improved by performing preprocessing steps off-line.

One approach would be to compute the scores of each tuple for each potential context
state. Assuming a large database and that only a few tuples are of interest at any given
context, computing a score for all database tuples for each context state will result in
both wasting resources and slow query responses. Since, the number of possible context
states grows rapidly with the number of context attributes, we could instead compute the
scores for all states that appear in the profile and then combine the scores of the most
similar ones on-line.

Since the number of context states that appear in a profile can still be large, we pro-
pose two approaches for finding representative scores to pre-compute. The first approach
constructs clusters of preferences, considering as similar those preferences that have ei-
ther the same or similar context states. The second one clusters preferences that lead to
similar scores for database tuples.

After constructing the clusters of preferences, we compute for each cluster, an interest
score for each database tuple using the preferences of this cluster. Furthermore, instead
of storing scores for all database tuples for each cluster, we just store the nonzero ones.
Then, for each query, we can search for the most similar to the query cluster and quickly
provide the best results, that is, the results with the largest scores.

In a nutshell, our solution framework for addressing the above problem consists of the

following components:
1. Having defined preferences that hold under different circumstances, we cluster them
according either to
(a) their context part, thus creating clusters of preferences applicable to similar
context states, or
(b) their non-context part, i.e. the predicate and score part, thus creating clusters

of preferences that produce similar scores.

2. Using the preferences of each cluster, we compute an interest score for each tuple
for the given cluster.

3. For a submitted query, we search for the most similar to the context of the query
clusters. Using the scores of tuples of the returned clusters, we quickly rank the
results based on the computed scores.

In the following two sections, we describe how we cluster preferences for the case of
context state similarity and the case of predicate similarity.

4.2 Finding Representative Context States

Instead of computing aggregate scores for all tuples for all potential context states, we
identify representative context states and pre-compute scores according to them. Com-

94

puting interest scores using only representative context states is based on the assumption
that preferences defined for similar context states would result in producing similar scores
for most tuples.

In the following, we first define the notion of similarity or, equivalently, distance
between context states. Then, we use a simple clustering algorithm that groups similar
context states and selects one context state per cluster as a representative state.

4.2.1 Similarity between Context States

Defining similarity between context states is a difficult problem, since context similarity is
in general application dependent. Here, we take a rather generic, syntactic approach that
exploits the hierarchical domains of each context parameter. First, we define similarity
for each of the context parameters.

A direct method to compute the distance between two values of a context parameter
is by relating their distance with the length of the minimum path that connects them in
their associated hierarchy. However, this method may not be accurate, when applied to
attributes with large domains and many hierarchy levels. This is because values in upper
levels of the hierarchy are intuitively less similar than values in lower levels connected with
paths of the same length. For instance, in our simple example of the time_period hierarchy,
when considering only the path length, values Tu and W have the same distance with
each other as value working_days has with Weekend. Moreover, the distance between
Tu and W is the same as T'u and All, whereas, T'u is intuitively more similar to W than
to All.

Following related research on defining semantic similarity between terms (e.g. [86]),
in defining the distance between two values of a context parameter, we take into account
both their path distance and the depth of the hierarchy levels that the two values belong
to. Let lca(cq, ¢2) be the lowest common ancestor of context values ¢; and ¢y. The path
and depth distance between two values are defined as follows.

Definition 4.1 (Path distance). The path distance distp(ci,c2) between two context
values ¢; € domy,(C;) and ¢y € domy, (C):

e is equal to 0, if ¢; = ¢o,

e is equal to 1, if ¢1, ¢y are values of the lowest hierarchy level and lca(cy, ¢3) is the
root value of their corresponding hierarchy, or

e is computed through the f, function (1 — e~**#), where @ > 0 is a constant and p
is the minimum path length connecting them in the associated hierarchy.

The f, function is a monotonically increasing function that increases as the path length
becomes larger. The above definition of path distance ensures also that the distance is

normalized in [0, 1].

95

Definition 4.2 (Depth distance). The depth distance distp(cy, cy) between two context
values ¢; € domy,(C;) and ¢y € domy, (C):

e is equal to 0, if ¢; = co,
e is equal to 1, if lca(cy, ¢y) is the root value of their corresponding hierarchy, or

e is computed through the f; function (1 —e#/7), where 3 > 0 is a constant and
is the minimum path length between the lca(cy, cz) value and the root value of the
corresponding hierarchy.

The f; function is a monotonically increasing function of the depth of the lowest
common ancestor. Again, the definition of depth distance ensures distances within the
range [0, 1]. Having defined the path and the depth distances between two context values,
we define next their overall distance.

Definition 4.3 (Value distance). The value distance between two context values ¢; and
co is computed as:
diStv(Cl, Cg) = diStp(Cl, CQ) X diStD(Cl, 02).

For example, the path distance between values summer and working_days is 1 —e™> ~
0.95, their depth distance is 1, and so, their value distance is 1 x 0.95 = 0.95. Whereas
values holidays and summer have value distance equal to (1 — e 1) x (1 — e ¥/1) ~
0.39. This means that the value summer is more closely related to holidays than to
working_days as expected. In both examples, we assume that o = g = 1.

Note that to compute the value distance disty,, we use the independent distp and distp
distances. This independence enables us to combine them in different ways by giving
different weights of interest. To do this, we may assign different values to the constants «,
B. In particular, for constant values greater than 1, the corresponding distance increases,
while values within the range (0, 1) result in smaller distances.

Having defined the distance between two context values, we can now define the distance
between two context states. To achieve this, we use a simple weighted sum, but other
methods of aggregation are also possible.

Definition 4.4 (State distance). Given two context states cs' = (cf,c,...,cl) and
cs? = (c2,c3,...,c%), the state distance is defined as:
distg(cst,es?) = D0 w; X disty (¢,),

where each w; is a context parameter specific weight.

The above weights are normalized, such that, Y " w; = 1. The weight assigned to
each context parameter is application dependent, since for some applications, some context
parameters may be more influential than others. Again, in this work, we take a generic
approach and assign weights to each context parameter according to the cardinality of
its domain. In particular, we assign larger weights to parameters with smaller domains,
considering a higher degree of similarity among values that belong to a large domain.

96

It is easy to show that the distance relationship between context states is reflexive
(distg(csy,cs1) = 0), and symmetric (dists(csy, cse) = distg(csa, cs1)). However, it does
not satisfy the triangle inequality (dists(csy,css) < dists(csy, cs3) + dists(css, css)),
because of the semantic way of defining distances among context values, as the following
example shows. Assume three context states csy, cso, css3 with a single context parameter,
say time_period, and in particular, cs; = (Sunday), csy = (summer), cs3 = (All).
Assuming further that a, § are equal to 1, distg(csy, cse) < distg(csy, cs3) + dists(css, ¢sz)
does not hold, because 1 < (1 —e™2) + (1 — e~?) does not hold.

4.2.2 Contextual Clustering

To group preferences with similar context states, we use a typical hierarchical agglomer-
ative clustering method that follows a bottom-up strategy. Initially, the d-maz algorithm
(Algorithm 12) places each context state in a cluster of its own. Then, at each step, it
merges the two clusters with the smallest distance. The distance between two clusters is
defined as the maximum distance between any two context states that belong to these
clusters. The algorithm terminates when the closest two clusters, i.e. the clusters with
the minimum distance, have distance greater than d., where d. is an input parameter.
Finally, for each produced cluster, we select as representative context state, the state in
the cluster that has the smallest total distance from all the states in its cluster. Formally:

Definition 4.5 (Representative context state). Let c¢l; be a cluster produced by the d-
max algorithm that consists of a set C'Sy, of m context states, cs;;. The representative
of cl; is the context state cs € C'S,, with the minimum Z;”Zl dists(cs, csi;) value.

Using the d-maz algorithm, any two context states csi, csy that belong to the same
cluster have distance distg(csy, css) < dy. Therefore, the following property holds.

Property 4.1. Given a cluster distance d., each cluster cl produced by the d-max algo-
rithm has context states, such that, any pair of context states csy, css € cl have distance
dists(csy, cse) < dy.

Proof. From step 2, of the d-maz algorithm, we merge the closest two clusters, if their dis-
tance is less or equal to d.;. This distance represents the maximum distance between a con-
text state cs; of the first cluster and a context state csy of the second one. Therefore, any
two context states csp, ¢sy that belong to the same cluster, have distance distg(csy, css)
< dg. ¥

After generating the clusters of preferences, we compute for each of them an aggregate
score for each tuple specified in any of its preferences (using the definition of the aggregate
tuple score). For each produced cluster cl;, we maintain a table, called scoring table,
cl;Scores(tuple_id, score), in which we store in decreasing order only the scores of tuples
that satisfy at least one of the predicates in the preferences of the cluster. That is, we do
not maintain scores for all tuples, but only for those having nonzero scores. Each time

97

d-max Algorithm
Input: A set of preferences with context states cs;, a distance value d,;.

Output: A set of clusters.
Begin

1. Create a cluster for each context state cs;.
2. Repeat.

2.1 If the minimum distance among any pair of clusters

is smaller than d,;.

2.1.1 Merge these two clusters.

2.2 Else, end loop.
3. Compute the representative context state of each produced cluster.
End

Algorithm 12: d-max Algorithm

a query is submitted, we search for the most similar cluster or clusters, that means, for
the clusters whose representative context state is the most similar to the query context.
Then, using the scoring table of the corresponding clusters, we can quickly retrieve the
tuples with the highest scores.

It is straightforward (by Definition 3) that:

Property 4.2. Let cs be a context state and C'S a set of context states. If cs € CS, then
for any t € r, score(t,CS) > score(t, cs).

This means that the score of a tuple computed using the representative context state
is no less than the score of the tuple computed using any of the context states belonging
to the cluster. In other words, if the context state that is the most similar to the query
context belongs to the cluster whose representative context state is the most similar to
the query, then the score that our approximation approach computes for a tuple cannot
be lower than the exact one. That is, we may overrate a tuple, but we never underrate it.

4.3 Predicate Clustering

Context-based clustering groups together similar context states. In this section, we con-
sider an alternative approach for clustering context states that aims at grouping together
context states that produce similar scores for most database tuples. To this end, we
introduce a bitmap representation for the preferences applicable to a context state cs.

Let P be the set of all predicates that appear in P and [be the number of all distinct
scores. We define the preference matrix B(cs) for a context state cs as an [x |P| two-
dimensional array, where B(cs)[i,j| = 1, if and only if, there is a preference that holds
under context cs and gives to tuples for which predicate j holds an interest score equal
to ¢. In particular:

98

Definition 4.6 (Preference matrix). A preference matrix B(cs) for a context state cs is a
bitmap [x |P| array, where |P| is the number of all distinct predicates and [the number
of all distinct scores in P, such that, B(cs)[i, j] = 1, if and only if, there is a preference
(cs,j,i) € P.

Clearly, if the matrices B(cs;) and B(csg) of two context states ¢s; and csy are the
same, then all database tuples have the same scores for the context states cs; and css.
Since these preference matrices can be very large, we define approximations of them as
follows.

Definition 4.7 (Predicate representation). A predicate representation of a context state
cs and score s, BV (cs, s), 0 < s < 1, is a binary vector of size |P|, such that, BV (cs, s)[j]
= BOR;>sB(cs)li, j], where BOR is the binary OR operation.

This means that if B(cs, s)[j] = 1, then the score of every tuple ¢ for which predicate
j is true has score in context state cs at least equal to s, that is:

Property 4.3. Let BV (cs, s) be the predicate representation for context state cs and score
s. If BV (es,s)[j] =1 = VY t € r, for which predicate j holds, score(t,cs) > s.

Proof. Assume that BV (cs, s)[j] = 1. From Definition 4.7, this means that, for some i, i
> s, B(cs)li,j] = 1. Thus, from Definition 4.6, a preference (cs, j,4) belongs to P, thus
from the definition of contextual preferences, for each tuple ¢ for which preference j holds,
score(t,cs) > i, which proves the property. &

Based on this property, the following properties relate the predicate representations
for two context states cs; and csy with the interest scores they assign to tuples.

Property 4.4. Let BV (cs1,s) and BV (csy,s) be the predicate representations of two
context states cs; and cso for score s.

(a) If¥ j, BV (cs1,s)[j] = 1 = BV(csa, s)[j] = 1, then the set of tuples that have score
larger than s in cso is a superset of the set of tuples that have score larger than s in

CSq.

(b) If ¥ j, BV (cs1,s)[j] =1 < BV(csa, s)[j] = 1, then the set of tuples with scores
larger or equal to s are the same in both context states.

Proof. Proof of (a): Let t be a tuple that has score larger than s in csy, score(t,csy) >
s. This means that there is at least one preference (csy, j, s') with " > s that belongs to
profile P, for which predicate j holds in . From Definition 4.7, this means that for this j,
BV (esy,s)[j] = 1. Thus, BV (esq, s)[j] = 1, and from Property 4.3, it holds score(t, css)
> S.

Proof of (b): This holds trivially from (a).

99

Table 4.1: Overall predicate representation matrix BM for friends

horror | Hitscock | Spielberg
0.8 1 0 0
0.7 1 1 0
0.6 1 1 0

The distance between two binary vectors depends on the number of bits they differ
at. In particular, let V7 and V5 be two binary vectors of size m, then dif f = >, |Vi(0)
- V4(i)|. For computing the distance between two binary vectors, we shall use the well
known Jaccard coefficient that ignores the negative matches, that is, the bits for which
both vectors have values equal to 0. Let pos be the number of bits that are equal to 1 for
both V] and V5.

Definition 4.8 (Vector distance). The distance of two vectors V; and V3 of size m is

equal to: disty(Vy,V3) = di;;i’;os if dif f + pos # 0 and 1 otherwise.

It is clear that given two context states, the number of bits that their predicate rep-
resentations differ at is an indication of the number of tuples that they rank differently.
Specifically, from Property 4.4(b), if for two context states cs; and csq, disty (BV (csy, s),
BV (csa,s)) = 0, then the set of tuples with score greater or equal to s associated with
each BV is the same.

Note that some predicates may hold for more tuples than others. If such information
regarding the selectivity of the predicates is available or can be estimated, then it is
possible to consider a weighted version of dif f as follows: > " w(i) [V1(i) - Va(i)|, where
each w(i) is set to be proportional to the selectivity of the predicate i.

Now, instead of storing bitmap representation vectors BV for all distinct interest
scores s;, we create an overall bitmap representation matrix BM with only b rows, one
for each score s, so, ..., Sp, With 0 < 51 < 59 < ... < 5, < 1. In particular:

Definition 4.9 (Overall predicate representation). An overall predicate representation
matrix BM for a context state c¢s and b scores s, Sg, ..., Sp, With 0 < 51 < 590 < ... <
sp < 1is a bitmap b x |P| array, where |P| is the number of predicates in P, such that,
BM(cs)li,j) = BV (es,s)ljl, 1 <i < b, 1< < [P,

Simple overall predicate representation matrices with b = 3 for the preferences: p; =
(friends, genre = horror, 0.8), ps = (friends, director = Hitscock, 0.7), ps = (alone, genre
= horror, 0.7) and py = (alone, director = Spielberg, 0.6), are depicted in Tables 4.1 and
4.2.

Next, we define the distance between two such predicate representation matrices:

Definition 4.10 (Overall representation distance). The distance between two overall
predicate representation b x |P| matrices BM (cs;) and BM (csq) of two context states

b . i i
csy and cso, is defined as: distpy (BM (csy), BM(csy)) = Zi:ldmv(BV(CSI’SZ)’BV(CSQ’SZ)).

100

Table 4.2: Overall predicate representation matrix BM for alone

horror | Hitscock | Spielberg
0.8 0 0 0
0.7 1 0 0
0.6 1 0 1

For instance, the distance between the matrices that are shown in Tables 4.1 and 4.2 is

equal to: %

= %. Note that the distance between overall representation matrices
takes values within the range [0, 1].
For the distance among any predicate representation matrices BM;, BM, and BMs,

the following properties hold:
1. distgy (BMy, BM;) = 0 (reflexivity);
2. diStBM(BMl,BMQ) = diStBM(BMQ,BMl) (symmetry),

3. distpy (BMy, BMy) < distgp (BM, BM3) + distgy (BMs, BM) (triangle inequal-
ity).

Thus, the overall representation distance is a metric.

We could also consider weighted versions where rows that correspond to higher scores
influence the overall distance more than rows that correspond to smaller scores. Also,
note that these matrices can still be very large, when the number of predicates is large.
One can consider reducing the number of columns by grouping together similar predicates
or by ignoring predicates with small selectivity. We leave this issue as future work.

Using distances among overall predicate matrices, we create clusters of preferences
that result in similar scorings of database tuples. To do this, we use the d-max algorithm.
Again, initially, each preference with a specific context state is placed in its own cluster. At
each step, we merge the two clusters with the smallest distance, computing the distance as
in Definition 4.10. The distance between two clusters is defined as the maximum distance
between any two overall predicate representation matrices of context states that belong
to these clusters. The algorithm terminates when the closest two clusters have distance
greater or equal to s., where s, is an input parameter.

Observe that we use the predicate matrices only to group similar preferences and not
for computing scores. After the clusters have been created, we compute for each cluster
an aggregate score for the tuples. As in our contextual clustering method, for each cluster
cl;, we maintain a scoring table cl;Scores(tuple_id, score), where we store in decreasing
order only the scores of tuples that satisfy at least one of the predicates in the preferences
of the cluster (and not the scores equal to 0). When a query is submitted, we search
for the most relevant cluster or clusters, that means, for the clusters that contain the

101

preference(s) with the same or the most similar context state (or states in the case of ties)
to the query context state.

From the way an aggregate tuple score is computed within a cluster, Property 4.2
holds. This means that, when using the predicate clustering approach, the score of a
tuple is no less than the score computed using any preference of the cluster. Therefore,
as with contextual clustering, we may overrate a tuple, but we never underrate it.

4.4 Other Issues

Since there is potentially one different score for each database tuple per context state, the
number of these scores and thus, database rankings can be very large. So far, we have
addressed the problem of reducing the number of precomputed database scores through
clustering. Next, we discuss further the issue of handling the interesting rankings after
they have been identified through our clustering algorithms. We also consider how to
maintain the rankings in the presence of profile and database updates.

4.4.1 Online Phase

Once the interesting clusters and thus rankings are identified, there are many alternative
ways to materialize them. Since, our focus is on determining the interesting rankings,
rather than on their efficient realization, we have adopted the following simple approach.
We assume that the produced scores for each interesting cluster are stored in special
tables, called scoring tables, with two attributes the tuple_id and the associated score.
There is one scoring table per interesting ranking, that is, per cluster. The scoring tables
are sorted by score.

When a contextual query ¢ is submitted, the scoring table that is associated with its
context cs, is used. In the case of contextual clustering, this is the table that corresponds
to the cluster whose representative context state cs is the most similar to cs,. In the case
of predicate clustering, we use the table corresponding to the cluster that contains either
csq or if cs, does not appear in the profile, the context state that is the most similar to
CSq.

Locating the appropriate scoring table can be achieved by maintaining an additional
directory table (Cy,Cy, ..., Cy, table_id), where C;, 1 < i < n, is a context attribute and
table_id is the scoring table associated with the respective context state. The selection
of the appropriate table can be made more efficient by deploying indexes on the context
attributes that appear in the profile P. Such a prefix-based data structure, termed profile
tree, was introduced in Chapter 3.

Moreover, the physical storage of the precomputed results can be improved. For
instance, we can avoid computing the scores for each tuple and storing them in the scoring
table. Instead, we could simply cluster preferences in the profile P and build appropriate
indexes on the database tuples based on the predicates that appear in the preferences

102

of each cluster. For example, for each cluster, we can just index the tuples that satisfy
predicates associated with high scores. In this case, again we first locate the appropriate
cluster based on the context query cs,. Then, we use the associated predicate indexes to
find the tuples with the highest scores.

When more than one cluster are used to compute the results of a query, we can use
a top — k algorithm (such as, FA, TA or their variations [47, 49, 52, 97]) to combine the
ordered lists maintained in the scoring tables cl;Scores of the related clusters.

Furthermore, we point out that in this paper, as in many search engines and similar
to [10], we rank tuples independently of the specific query. Ranking the results of ad-hoc
SQL queries in a context state cs, can be achieved by joining their results with the scoring
table applicable to the specific context state.

As a final note, consider that the two clustering approaches can be applied together.
For example, we can apply predicate clustering first. Then, we can apply contextual
clustering to group the clusters produced based on the similarity of their context states.

4.4.2 Handling Updates

Pre-computing results increases the efficiency of queries but introduces the overhead of
maintaining the results in the presence of updates. In this section, we discuss handling
insertions and deletions of contextual preferences and database tuples. An update is
considered as a delete followed by an insert.

When a database tuple is added (deleted), we just need to add (delete) its entries in
all scoring functions. Clustering is not affected.

In the case of profile updates, let us, first, consider the case of adding or deleting
a preference for a context state cs that already exists, that is, for a context state for
which other preferences are already in the profile. In the case of contextual clustering,
the clustering itself is not affected, since it is solely based on the context states. We just
need to update the scores in the scoring table of the cs cluster of all tuples affected. This
may be expensive, since in the absence of indexes, this may require scanning the whole
database. On the other hand, in the case of predicate clustering, adding a preference for
an existing context state cs may affect clustering. This happens when the addition of
the preference causes the distance of the predicate table for cs to exceed the threshold
distance s, from the other tables in its cluster. This means that ¢s must be moved to
another cluster. Again, we need to update the scores in the associated scoring table of
the previous and the new cluster of ¢s. The same holds for the deletion of a preference.

Let us now consider the addition of preferences for a new context state, ncs. In the
case of contextual clustering, this requires finding an appropriate cluster for ncs and
updating the associated scoring table. Analogously, in the case of predicate clustering,
the predicate table for ncs is computed and ncs enters the appropriate cluster based on
its predicate table. The scoring table of the cluster that received ncs must be updated in
both cases.

The above operations may be expensive. However, typically, updates, and especially

103

profile updates, are not as frequent as queries. Furthermore, one can consider batch vari-
ations, where updates are not applied immediately but say periodically or when their
number exceeds some threshold. In between, the users get results that may be less ac-
curate. In such cases, various optimizations are possible by aggregating the effects of a
number of updates and applying them collectively.

4.5 FEvaluation

Contextual clustering is based on the premise that preferences for similar context states
produce similar scores. We first run a related experiment to explore this. Then, we
evaluate both contextual and predicate clustering regarding the number of representative
rankings and the associated accuracy using both real and synthetic datasets.

4.5.1 Context and Preference Similarity

The goal of this experiment is to show that often preferences for similar context states
are also similar. Since there are no real large profile data sets defined using our contex-
tual preferences, we used a real dataset of movie ratings that includes 1000 users, 4000
movies and 150000 ratings [2]. Ratings are of the form (user_id, movie_id, rating_value),
with rating_value in the range [1,5]. For users, there is information available of the form
(user_id, sex, age, occupation) that we use as our context environment. We constructed
simple predicates that involve the genre of the movies by averaging the rates assigned
by each user to movies of each genre. We consider five values for the genre attribute
namely, comedy, action, thriller, horror and drama. Using the profile such constructed,
we show how preferences vary with context (i.e. user attributes). We compute the dis-
tance between two context states (users) using the distance between two context states
(Definition 4.4) with equal weights assigned to each of the four parameters user.id, sex,
age, and occupation. We compute the distance between two ratings using the overall
representation distance (Definition 4.10). The ratings of each user are represented with
an overall predicate representation 5 x 5 matrix, where there is one row for each rating (1
to 5) and one column for each movie genre. As shown in Figure 4.2, the distance between

ratings increases as the distance between users increases.

4.5.2 Contextual and Predicate Clustering

We run a set of experiments using both synthetic and real data sets to evaluate the
contextual and the predicate clustering approaches. In both cases, we use a variation of
the d-mazx clustering algorithm that uses as input the number of clusters instead of the
distance. This allows us to directly relate the number of clusters with the quality of the
rankings.

Concerning the synthetic data sets, we use a database with 100000 tuples. The

104

08

06

04

Distance between ratings

02

I I I I
0 0.2 0.4 0.6 0.8 1
Distance between users

Figure 4.2: Distance of rankings as a function of distance between users.

database schema consists of a single relation with 5 attributes. A synthetic profile con-
sists of 10000 contextual preferences, each involving 3 context attributes and 2 database
attributes. Context and non-context (attribute) values are selected using a zipf data dis-
tribution with a = 1.5 from context domains with 100 values and 4 hierarchy levels, and
respectively, from domains with 50 values. We consider two cases for producing synthetic
profiles. In the first case, there is no correlation between the context values and the other
part of the preferences. In the second case, we construct correlated profiles, that is, we
produce preferences for which similar context states have similar predicates and scores.

Regarding the real data sets, we use a real database with information about movies
from the Internet Movies Database (IMDB) [1]. In particular, we extract from IMDB
movies with language English, French, Greek, German, Spanish or Japanese. Our sub-
set consists of nearly 40000 movies. The database schema consists of a single relation:
Movies(mid, title, year, director, genre, language, duration). We run our prototype im-
plementation for 10 users. Each user was asked to express contextual preferences for
movies. To express such contextual preferences, users used the context parameters that
are depicted in Figure 3.1 (namely, accompanying_people, mood and time_period) and 1
attribute of the movies relation. Each user provided about 100 preferences. We use these
preferences to construct a real profile having nearly 1000 preferences.

We count the average distance within the produced clusters using the d-maz clustering
algorithm for different number of produced clusters (Ezperiment I). This is an indication
of the similarity of the preferences that belong to the same cluster. Then, we evaluate
the quality of the returned results for a query (Ezperiment IT).

Experiment I. In this set of experiments, we vary the maximum number of clusters
(i.e. rankings) and report the average distance between context states within each cluster
for the contextual clustering approach and the average overall representation distance
within each cluster for the predicate clustering approach.

Figure 4.3 reports the average distance among context states within the produced
clusters for the contextual clustering approach for the real preferences (Figure 4.3a) and
for the synthetic ones (correlated and non-correlated case) (Figure 4.3b). As expected,
the correlation between the contextual and the non contextual part of a preference does

105

1 T

T T T
With correlation —+—

T T T T
Contextual clustering —+—
Without correlation -->--

08 |- B 0.8 |- E

06 |- i

Distance within clusters
Distance within clusters

0 L L L L L L L L L 0 L L L L L L L L L
2 4 6 8 10 12 14 16 18 20 0 100 200 300 400 500 600 700 800 900 1000

Num of clusters Num of clusters

(a) (b)

Figure 4.3: Distance between context states within the produced clusters for the contex-
tual clustering approach, for (a) real and (b) synthetic data sets.

T T T T T T T T T T
Predicate clustering (4 rows) —+— With correlation (4 rows) —+—
Predicate clustering (5 rows) -->-- With correlation (5 rows) ----
Predicate clustering (5 rows with weights) ---%-- With correlation (5 rows with weights) ---%--
Without correlation (4 rows) &
08 | B 08 - Without correlation (5 rows) -~ -
Without correlation (5 rows with weights) ---0---

Distance within clusters
Distance within clusters

0 L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000

Num of clusters Num of clusters

(a) (b)

Figure 4.4: Distance between context states within the produced clusters for the predicate
clustering approach, for (a) real and (b) synthetic data sets.

not affect the distance between the context states, since contextual clustering just uses the
context part. For both the synthetic and the real data sets, the distance decreases with
the number of clusters. Note that when using real preferences, the number of rankings
(respectively clusters) is small because of the small cardinalities of context domains and
the high degree of similarity among user preferences.

Figure 4.4 depicts results for the predicate clustering approach for different values of
b, where b is the number of rows (scores) of the predicate matrix for the same real (Figure
4.4a) and synthetic (Figure 4.4b) profiles. We use matrices with 4 and 5 rows. In addition,
for the case of a 5 row matrix, we consider a weighted version for computing the similarity
between two matrices, where the 2 rows that refer to the two highest scores are assigned
larger weights. Again, we report the distance among context states within the produced
clusters for different numbers of clusters. In the case of predicate clustering, correlation
reduces the distance among context states within a cluster at around 10%. The above
distance is reduced further by using more accurate matrices, that is, matrices with more
rows. The weighted version achieves an additional reduction of around 5%.

106

1 1
= =
2 ol
S S
£ E
° 1]
S S
S S
]]
g 8 0.4
g L
Contextual clustering (query exists) —+—
Contextual clustering (query does not exist) ----
Predicate clustering (4 rows - query exists) ---%--
02 | B 0.2 | Predicate clustering (4 rows - query does not exist) &
With correlation (query does not exist) —+— Predicate clustering (5 rows - query exists) —--#-—
With correlation (query exists) ~--- Predicate clustering (5 rows - query does not exist) ---o---
Without correlation (query does not exist) ---%-- Predicate clustering (5 rows with weights - query exists) ---@--
))) | Without correlation (query exists) - | Predicate clustering (5 rows with weights - query does not exist) - 4- -~
0 0
0 100 200 300 400 500 600 700 800 900 1000 2 4 6 8 10 12 14 16 18 20
Num of clusters Num of clusters
(a) (b)

Figure 4.5: Result quality for different number of produced clusters (a) for synthetic data
sets for the contextual clustering approach and (b) for real data sets for both approaches.

Jaccard coefficient
Jaccard coefficient

With correlation (4 rows) —+— With correlation (4 rows) —+—

)
0.2 With correlation (5 rows) -->-- - 02 With correlation (5 rows) ----
With correlation (5 rows with weights) -~ -- With correlation (5 rows with weights) ---%--
Without correlation (4 rows) --& Without correlation (4 rows) --&
Without correlation (5 rows) -8 Without correlation (5 rows) -
))) Wl‘mout Cu‘lvelalion‘ [ruws‘with we‘lghts) —‘o— -))) Wi‘lhuut cu‘rrelauon‘ 5 rows‘wllh we‘ighls) —‘o— -
0 0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Num of clusters Num of clusters
(a) (b)

Figure 4.6: Result quality for different number of produced clusters, for the predicate
clustering approach when (a) query states exist in the profile or (b) do not exist.

Experiment II. In this set of experiments, we evaluate the quality of results. In par-
ticular, assume that Results(d-mazx) is the set of the top-k tuples (that is, the k tuples
having the largest scores) computed using the d-maz algorithm and Results(opt) is the
set of top-k tuples computed using the contextual preferences that are most similar to the

query without pre-computation. We compare these two sets using the Jaccard coefficient
defined as:

| Results(d—max)NResults(opt)|
|Results(d—max)UResults(opt)|

The Jaccard coefficient takes values between 0 and 1 and the higher its value, the more

similar the two top-k tuple sets. We report the results for & = 20. When there are ties in
the ranking, we consider all results with the same score.

For all cases, we consider two kinds of queries: queries whose context state is included
in the profile and queries whose context state is not in the profile, thus, a similar one is
used. In particular, Figure 4.5a depicts the results of the contextual clustering approach
(with and without correlation). When the query states do not exist in the profile, the
Jaccard coefficient increases on average by 5%. Figure 4.6 shows the results of the pred-

107

icate clustering approach, using predicate matrices with 4 rows, 5 rows and 5 rows with
weights, when query states exist in the profile (Figure 4.6a) or do not exist (Figure 4.6b),
for the same synthetic data set. The Jaccard coefficient increases at around 10 to 15%
for correlated preferences, and on average 5% when a query does not exist in the profile.
Clearly, in general, there is a trade-off between the number of produced rankings (i.e. the
number of produced clusters) and the quality of the interest scores. In general, the predi-
cate approach results in more accurate top-k rankings, however, the number of scores we
maintain for each tuple is larger.

Figure 4.5b shows the results when we use real data sets for both clustering approaches.
Using the real data sets, the Jaccard coefficient takes larger values because of the high
degree of similarity among user preferences. Again, if a query state does not exist in the
profile the results are better, in this case, at around 17%.

Finally, note that when we randomly select a set of preferences to compute the top-20
results, the Jaccard coefficient is nearly equal to zero.

4.6 Summary

In this chapter, we address the problem of finding interesting data items based on contex-
tual preferences that assign interest scores to pieces of data based on context. Given that
the database is large and only a few tuples are of interest at any given context, sorting the
whole database for each query and context will result in both wasting resources and slow
query responses. Thus, we introduced pre-processing steps that can be used to reduce
the on-line time for processing each query. In particular, instead of pre-computing scores
for all data items under all context states, we have exploited the hierarchical nature of
context attributes to identify representative context states. We have also presented a
complementary method for grouping contextual preferences according to the similarity
of the scores that they produce. This is achieved through a bitmap representation of
preferences. Finally, we evaluated our approach using both real and synthetic data sets
and presented experimental results showing the quality of the scores attained using our
methods.
The results presented in this chapter also appear in [109, 110].

108

CHAPTER 5

PERSONALIZED KEYWORD SEARCH
THROUGH PREFERENCES

5.1 Preferential Keyword Model
5.2 Top-k Personalized Results
5.3 Query Processing

5.4 Extensions

5.5 Evaluation

5.6 Summary

Keyword-based search is very popular, because it allows users to express their infor-
mation needs without either being aware of the underlying structure of the data or using
a query language. In relational databases, existing keyword search approaches exploit the
database schema (e.g. [63, 12]) or the given database instance (e.g. [17, 57, 72]) to retrieve
tuples relevant to the keywords of the query. For example, consider the movie database
instance shown in Figure 5.1. Then, the results of the keyword query @ = {thriller,
B. Pitt} are the thriller movies Twelve Monkeys and Seven both with B. Pitt.

Keyword search is intrinsically ambiguous. Given the abundance of available infor-
mation, exploring the contents of a database is a complex procedure that may return a
huge volume of data. Still, users would like to retrieve only a small piece of it, namely the
most relevant to their interests. Previous approaches for ranking the results of keyword
search include, among others, adapting IR-style relevance ranking strategies [61, 88, 90],
authority-based ranking [15] and automated ranking based on workload and data statistics
of query answers [28].

In this chapter, we propose personalizing database keyword search, so that, different
users receive different results based on their personal interests. To this end, the proposed

109

model exploits user preferences in ranking keyword results. In this respect, précis queries
([104]) are the most relevant. Précis are keyword queries whose answer is a synthesis
of results, containing tuples directly related to the given keywords and tuples implicitly
related to them. The database is modeled as a graph in which there is a node for each
relation and for each attribute of each relation of the database. Edges have weights that
express user preferences. The schema of a query output is determined using the database
graph. Each user specifies further degrees of interest and cardinality constraints. While
précis provides additional meaning to the results by adding structure, our goal is to use
preferences for ranking results.

In our model, preferences express a user choice that holds under a specific context,
where both context and choice are specified through keywords. For example, consider
the following two preferences: ({thriller}, G. Oldman > W. Allen) and ({comedy},
W. Allen = G. Oldman). The first preference denotes that in the context of thriller
movies, the user prefers G. Oldman over W. Allen, whereas the latter, that in the context
of comedies, the user prefers W. Allen over G. Oldman. Such preferences may be specified
in an ad-hoc manner when the user submits a query or they may be stored in a general
user profile. Preferences may also be created automatically based on explicit or implicit
user feedback (e.g. [35, 70]) or on the popularity of specific keyword combinations (e.g.
(58, 10]). For example, the first preference may be induced by the fact that the keywords
thriller and G. Oldman co-occur in the query log more often than the keywords thriller
and W. Allen.

Given a set of preferences, we would like to personalize a keyword query () by ranking
its results in an order compatible with the order expressed in the user choices for context
(). For example, in the results of the query Q@ = {thriller}, movies related to G. Oldman
should precede those related to W. Allen. To formalize this requirement, we consider
expansions of query () with the set of keywords appearing in the user choices for context Q).
For instance, for the query @ = {thriller}, we use the queries Q, = {thriller, G. Oldman}
and @y = {thriller, W. Allen}. We project the order induced by the user choices among
the results of these queries to produce an order among the results of the original query
Q.

Since keyword search is often best-effort, given a constraint £ on the number of results,
we would like to combine the order of results as indicated by the user preferences with
their relevance to the query. Besides preferences and relevance, we consider the set of the k
results as a whole and seek to increase the overall value of this set to the users. Specifically,
we aim at selecting the & most representative among the relevant and preferred results, i.e.
these results that both cover different preferences and have different content. In general,
result diversification, i.e. selecting items that differ from each other, has been shown to
increase user satisfaction [136, 129].

We propose a number of algorithms for computing the top-k results. For generating
results that follow the preference order, we rely on applying the winnow operator [32, 118|
on various levels to retrieve the most preferable choices at each level. Then, we introduce a

110

Movies

idm | title genre |year |director
» m1 | Dracula thriller | 1992 |F.F. Coppola
> m2 | Twelve Monkeys thriller {1996 |T. Gilliam
H» m3 | Seven thriller {1996 |D. Fincher
rt» m4 | Schindler’s List drama | 1993 |S. Spielberg
» ms5 | Picking up the Pieces | comedy | 2000 | A. Arau
Play Actors
idm | ida ida |name gender | dob
= m |a » a1 |G. Oldman male 1958
LI m2 |a2 7 a2 |B.Pitt male 1963
m3 | a2 / a3 |L. Neeson male 1952
m4 | a3 a4 |W.Allen male 1935
ms | a4 /

Figure 5.1: Movie database instance.

sharing-results keyword query processing algorithm, that exploits the fact that the results
of a keyword query are related with the results of its superset queries, to avoid redundant
computations. Finally, we propose an algorithm that works in conjunction with the
multi-level winnow and the sharing-results algorithm to compute the top-%£ representative
results.

In a nutshell, in this chapter, we

e propose personalizing keyword search through user preferences and provide a formal
model for integrating preferential ranking with database keyword search,

e combine multiple criteria for the quality of the results that include the relevance
and the degree of preference of each individual result as well as the coverage and
diversity of the set of results as a whole,

e present efficient algorithms for the computation of the top-k representative results.

We have evaluated both the efficiency and effectiveness of our approach. Our perfor-
mance results show that the sharing-results algorithm improves the execution time over
the baseline one by 90%. Furthermore, the overall overhead for preference expansion and
diversification is reasonable (around 30% in most cases). Our usability results indicate
that users receive results more interesting to them when preferences are used.

The rest of this chapter is organized as follows. In Section 5.1, we introduce our con-
textual keyword preference model. In Section 5.2, we explore the desired properties of
search results and define the top-k representative ones, while in Section 5.3, we propose
algorithms for preferential keyword query processing within relational databases. In Sec-
tion 5.4, we discuss a number of extensions, in Section 5.5, we present our evaluation
results and finally, Section 5.6 concludes the chapter.

111

5.1 Preferential Keyword Model

We start this section with a short introduction to keyword search in databases. Then, we
present our model of preferences and personalized keyword search.

5.1.1 Preliminaries

Most approaches to keyword search (e.g. [63, 12]) exploit the dependencies in the database
schema, for answering keyword queries. Consider a database R with n relations Ry, R, .. .,
R,. The schema graph Gp is a directed graph capturing the foreign key relationships in
the schema. Gp has one node for each relation R; and an edge R; — R;, if and only if,
R; has a set of foreign key attributes referring to I;’s primary key attributes. We refer
to the undirected version of the schema graph as Gy .

Let W be the potentially infinite set of all keywords. A keyword query () consists of
a set of keywords, i.e. Q C W. Typically, the result of a keyword query is defined with
regards to joining trees of tuples (JTTs), which are trees of tuples connected through
primary to foreign key dependencies [63, 12, 17].

Definition 5.1 (Joining Tree of Tuples (JTT)). Given an undirected schema graph G,
a joining tree of tuples (JTT) is a tree T of tuples, such that, for each pair of adjacent
tuples t;, t; in T, t; € R;, t; € R;, there is an edge (R;, R;) € Gy and it holds that
(t; M t;) € (R; XM Ry).

Total JTT: A JTT T is total for a keyword query @, if and only if, every keyword of
(2 is contained in at least one tuple of T'.

Minimal JTT: A JTT T that is total for a keyword query @ is also minimal for @, if
and only if, we cannot remove a tuple from 7" and get a total JTT for Q).

We can now define the result of a keyword query as follows:

Definition 5.2 (Query Result). Given a keyword query @, the result Res(Q) of @ is the
set of all JTTs that are both total and minimal for Q).

The size of a JTT is equal to the number of its tuples, i.e. the number of nodes in
the tree, which is one more than the number of joins. For example, for the database of
Figure 5.1, the result of the keyword query Q = {thriller, B. Pitt} consists of the JTTs:
(i) (mg, Twelve Monkeys, thriller, 1996, T. Gilliam) — (ma, as) — (ag, B. Pitt, male,
1963) and (ii) (mg, Seven, thriller, 1996, D. Fincher) — (ms, as) — (a2, B. Pitt, male,
1963), both of size equal to 3.

5.1.2 Keyword Preference Model

Keyword queries are very general and their result may include a large number of JTTs.
We propose personalizing such results by incorporating preferences.

112

Definition 5.3 (Contextual Keyword Preference). A contextual keyword preference cp
is a pair cp = (C, w; > w;), where C C W and w;, w; € W. We also write w; >¢ w.

The intuitive meaning of a contextual keyword preference, or simply preference, is
that, when all keywords in context C' are present, results involving keyword w; are pre-
ferred over those involving keyword w;. We refer to w; ¢ w; as the choice part of the
preference. For example, consider the preference c¢p = ({thriller, B. Pitt}, T. Gilliam >
D. Fincher). Preference cp indicates that, in the case of thrillers and B. Pitt, movies
related to T. Gilliam are preferred over those related to D. Fincher.

Note that we interpret context using AN D semantics. This means that a choice holds
only if all the keywords of the context part are present (both thriller and B. Pitt in our
example). OR semantics can be achieved by having two or more preferences with the
same choice part (for instance, in our example, one for thriller and one for B. Pitt).

We call the preferences for which the context part is empty, i.e. C = {}, context-
free keyword preferences. Context-free keyword preferences may be seen as preferences
that hold independently of context. For example, the preference ({}, thriller = drama)
indicates that thrillers are preferred over dramas unconditionally.

We call the set of all preferences defined by a user, user profile, or simply profile. Let
P be a profile, we use Pc to denote the set of preferences with context C' and W to
denote the set of keywords that appear in the choices of Pr. We call the keywords in W¢
choice keywords for C.

We provide next, the formal definition of dominance.

Definition 5.4 (Direct Preferential Domination). Given a keyword query () and a profile
P, let T;, T; be two JTTs that are total for (. We say that 7; directly dominates Tj
under Py, T; »p, Tj, if and only if, Jw; in T;, such that, ﬂwj in 7T; with w; >¢ w; and
w;, w; € Wa.

The motivation for this specific formulation of the definition of dominance is twofold.
First, we want to favor JTTs that include at least one choice keyword over those that do
not include any such keyword. Second, in the case of two JTTs that contain many choice
keywords, we want to favor the JTT that contains the most preferred one among them.
To clarify this, consider the following example. Assume the query @) = {w,}, the choice
keywords wy, wy, w3, wy and the preferences ({w,}, wi = wq), ({w,}, wa = ws), ({wy},
wyg > wy). Let T, T; be two JTTs in the result set of (), where T contains, among others,
the keywords w,, wi, ws and T5 the keywords w, and w,. Then, based on Definition 5.4,
although T) contains the keyword ws that is less preferable than w, contained in 75, T}
directly dominates 15, because T contains w; which is the most preferred keyword among
them.

In general, direct dominance > p, defines a preorder among the JTTs that contain all
keywords in Q. Note that it is possible that, for two JTTs Ty, Ty, both T >p, T> and
T5 »p, T1 hold. For instance, in the above example, assume 7 with w, and w; and T
with w, and ws. We consider such JTTs to be equally preferred. It is also possible that

113

neither Ty >p, T3 nor Ty »p, T1 holds. This is the case when none of the JTTs contain
any choice keywords. Such JTTs are incomparable; we discuss next how we can order
them.

5.1.3 Extending Dominance

Definition 5.4 can be used to order by dominance those JTTs in the query result that
contain choice keywords. For example, given the preference ({thriller}, F. F. Coppola -
T. Gilliam), for the query @ = {thriller}, the JTT T} = (my, Dracula, thriller, 1992, F.
F. Coppola) directly dominates the JTT Ty, = (ma, Twelve Monkeys, thriller, 1996, T.
Gilliam). However, we cannot order results that may contain choice keywords indirectly
through joins. For example, given the preference ({thriller}, G. Oldman - B. Pitt) and
the same query Q = {thriller}, now T; and T, do not contain any choice keywords and
thus are incomparable, whereas again T should be preferred over 75 since it is a thriller
movie related to G. Oldman, while T5 is related to B. Pitt.

We capture such indirect dominance through the notion of a JTT projection. Intu-
itively, a JTT T; indirectly dominates a JTT T}, if T; is the projection of some JTT that
directly dominates the JTTs whose projection is 7j.

Projected JTT: Assume a keyword query () and let T;, T; be two JTTs. T} is a
projected JTT of T; for (), if and only if, T} is a subtree of T; that is total and minimal
for @, that is, T; € Res(Q). The set of the projected JTTs of T; for @ is denoted by
projecto(T;).

For example, assume the query @ = {thriller}. The JTT (m,, Dracula, thriller, 1992,
F. F. Coppola) is a projected JTT of (mq, Dracula, thriller, 1992, F. F. Coppola) — (mq,
a1) — (a1, G. Oldman, male, 1958) for Q.

We can construct the projected JTTs of a JT'T T by appropriately removing nodes
from T as follows. A leaf node of T is called secondary with respect to @, if it contains a
keyword in () that is also contained in some other node of 7. All projected JTTs for T’
can be produced from 7" by removing secondary nodes one by one till none remains.

The following set is useful. It contains ezactly the minimal JTTs that include all
keywords in () and at least one keyword in Wy,.

Definition 5.5 (Preferential Query Result). Given a keyword query @) and a profile P,
the preferential query result PRes(@, P) is the set of all JTTs that are both total and
minimal for at least one of the queries Q J{w;}, w; € Wy.

Now, we can define indirect dominance as follows:

Definition 5.6 (Indirect Preferential Domination). Given a keyword query @) and a
profile P, let T;, T; be two JTTs total for (. We say that T; indirectly dominates T}
under Pg, T; =>p, T}, if there is a JTT T} € PRes(Q, P), such that, T; € projectq(T)
and there is no joining tree of tuples 77 € PRes(Q, P), such that, T; € projectq(7}) and
T} =p, T7.

)

114

[R. DeNiro j E A. Pacino j E R. Williams j higher level (1= 1)

/ A
[A. Garcia j E A. Hopkins j E R. Gere j lower level (1=2)

Figure 5.2: The graph of choices

GP{thriller,F. F.Coppola}”

Note that the indirect dominance relation is not a superset of direct dominance, that
is, T; =p, T; # T; =>p, T;. To see this, consider the case where T; contains a choice
keyword that precedes those in T but T; belongs to the project of a JTT that contains
an even more preferred keyword.

Our goal in defining indirect preferential dominance is to impose an ordering over the
results that will follow the preferences given by the users exactly. Thus, a result that is
even only “distantly” related to a choice keyword (i.e. through many joins) is preferred
over a result that is more closely related to a less preferred choice keyword. We shall
introduce issues of relevance and multi-criteria ranking later in the chapter.

5.1.4 Processing Dominance

Given a query (), we would like to generate its results in order of indirect dominance. To
achieve this, we use the fact that, in general, the trees in the result of Q| J{w;} directly
dominate the trees in the result of @ (J{w,}, for w; >¢ w;. This suggests that the order
for generating the results for a query @) should follow the order g among the choice
keywords in W¢. We describe next, how to organize the choice keywords to achieve this.

Let P be a profile, C a context and Py the related contextual preferences in P. We
organize the choice keywords in We using a directed graph Gp, for Pg, referred to as
graph of choices for Po. Gp, has one node for each keyword w; € W and an edge from
the node representing w; to the node representing wj, if and only if, it holds that w; ~¢ w;
and ﬂwr, such that, w; ¢ w, and w, >¢ w;. For example, consider the preferences for
C = {thriller, F. F. Coppola}: cpy = (C, R. DeNiro = A. Garcia), cpy = (C, A. Pacino
>~ A. Garcia), cps = (C, A. Pacino > A. Hopkins) and cpy = (C, R. Williams > R.
Gere). The graph of choices for this set of preferences is depicted in Figure 5.2.

To extract from Gp, the set of the most preferred keywords, we apply the multiple
level winnow operator [32, 118]. This operator retrieves the keywords appearing in Gp,.
in order of preference. Specifically, at level 1, winp,(1) = {w; € W | dw; € W,
w;j ¢ w;}. For subsequent applications at level [, I > 1, it holds, winp,(I) = {w; € W¢ |
Pw; € (We — U wing, (1)) with w; =¢ w;}.

In the following, we assume that the preference relation > defined over the keywords
in W is a strict partial order. This means that it is irreflexive, asymmetric and transitive.
Irreflexivity and asymmetry are intuitive, while transitivity allows users to define priorities
among keywords without the need of specifying relationships between all possible pairs.
Strict partial order ensures that there are no cycles in preferences, since that would violate

115

Multiple Level Winnow Algorithm
Input: A graph of choices Gp, = (Vi, Eq).

Output: The sets winp, (1) for the levels [.

1: Begin

2: winnow_result: empty list;

3:1=1;

4: while Vg not empty do

5: for all w; € Vg with no incoming edges in Eg do

6: winp, (1) = winp, (1) J{w;};

7 Add winp,(l) to winnow_result;

8: Vo =Va— winpc(l);

9: for all edges e = (w;, w;) with w; in winp,(l) do

10: Eqg = FEqg — e

11: 14+

12: return winnow_result;

13: End

Algorithm 13: Multiple Level Winnow Algorithm

irreflexivity.

Since the relation > is acyclic, this ordering of keywords corresponds to a topological
sort of Gp,. Therefore, we traverse the graph of choices Gp, in levels (Algorithm 13)
and at each level, we return the keywords of the nodes with no incoming edges. For
example, consider the graph of choices of Figure 5.2 for C' = {thriller, F. F. Coppola}.
Then, winp. (1) = {R. DeNiro, A. Pacino, R. Williams}, while winp,(2) = {A. Garcia,
A. Hopkins, R. Gere}.

It is useful to define the following: Let T be a JTT that belongs to PRes(Q, P). We
associate with 7" an order dorder(T,Q, P) that encapsulates its preference order with
regards to (and P and is equal to the minimum winnow level [over all choice keywords
w; € Wy that appear in T". Then:

Property 5.1. Let T;, T; be two JTTs, T;, T; € PRes(Q, P), such that, dorder(T;,Q, P)
< dorder(1},Q, P). Then, T; does not directly dominate T; under Py.

Proof. For the purpose of contradiction, assume that T} >=p, T;. Then, Jw; in T}, such
that, fw; in T} with w; =¢ w;, which means that dorder(T;,Q, P) > dorder (T}, Q, P),
which is a contradiction.

Thus, by executing the queries @ | J{w:}, ..., Q@ U{wn}, where {wy, ..., w,} are the
keywords retrieved by the multiple level winnow operator, in that order, we retrieve the
JTTs of PRes(Q@, P) in an order compatible with the direct dominance relation among
them. Given, for example, the query Q@ = {thriller, F. F. Coppola} and the preferences
cp1, €pa, cps and cpy, we report first the JTTs in the results of Q U {R. DeNiro}, Q U {A.
Pacino}, Q U {R. Williams} and then, those for Q U {A. Garcia}, Q U {A. Hopkins},
Q U {R. Gere}.

116

By taking the projection of these JTTs in that order, and removing duplicate ap-
pearances of the same trees, we take results in Res(Q) in the correct indirect dominance
order. Note that a projected result may appear twice as output since it may be related
indirectly, i.e. through joins, with more than one choice keyword.

To see that by projecting the JTTs, we get the results in Res(Q) ordered by indi-
rect dominance, let 7" be a JTT that belongs to Res(Q). We define the indirect or-
der of T, iorder(T,Q, P), to capture its indirect dominance with respect to @) as fol-
lows: iorder(T, @, P) is the minimum dorder(T’,Q, P) among all 7', such that, T" €
projecto(T") and oo if there is no such 7". It holds:

Theorem 5.1. Let T;, T} be two JTTs, T;, T; € Res(Q), such that, iorder(T;,Q, P) >
iorder(T;,Q, P). Then, T; does not indirectly dominate T; under Q.

Proof. Assume that T =>p, T;. Then 3T] € PRes(Q, P), such that, T; € projectq(1})
and #T] € PRes(Q, P), such that, T; € projectq(T}) with T} =p, T;. Since T; is a
subtree of T}, ~(T; =p, Tj) (1). Also, since iorder(T;,Q, P) > iorder(T},Q, P) and Tj
€ projectq(T}), T; cannot contain any keyword that is preferred over the keywords of T;.
Therefore, ~(T} =p, T;) (2). Since T} contains at least one choice keyword, (1) and (2)

cannot hold simultaneously, which is a contradiction.

Note here that there may be results in Res(Q) that we do not get by projection. Those
do not indirectly dominate any result but are indirectly dominated by those that we have
gotten by projection.

Theorem 5.2. Let S =, projecto(T,), VI, € PRes(Q, P), and T; be a JTT, such that,
T; € Res(Q)\S. Then, VT; € S, it holds that (i) T; =~p, T; and (ii) = (T; =~p, Tj).

Proof. Since T; ¢ S, there is no T}, T; € projectg(T}), such that, T/ contains a choice
keyword of Wy. However, for every T; € S there is at least one T]f, T; € projectQ(TJ{),
such that, T} contains at least a choice keyword of Wg. Therefore, according to Definition

5.6, both (i) and (ii) hold. ®

We can present to the user the projected result or the original JTT in PRes(Q, P),
which is not minimal but provides an explanation of why its projected tree in Res(Q)) was
ordered this way. For instance, for the query @ = {thriller}, the preference ({thriller},
G. Oldman = B. Pitt) and the database instance in Figure 5.1, we could either present
to the user as top result the JTT (mq, Dracula, thriller, 1992, F. F. Coppola) — (m1, a1)
— (ay, G. Oldman, male, 1958) that belongs to PRes(Q, P) or its projected JTT (my,
Dracula, thriller, 1992, F. F. Coppola) that belongs to Res(Q).

5.2 Top-k Personalized Results

In general, keyword search is best effort. For achieving useful results, dominance needs
to be combined with other criteria. We distinguish between two types of properties that

117

affect the goodness of the result: (i) properties that refer to each individual JTT in the
result and (ii) properties that refer to the result as a whole. The first type includes
preferential dominance and relevance, while the latter includes coverage of user interests
and diversity.

5.2.1 Result Goodness

Each individual JTT T total for a query () is characterized by its dominance with regards
to a profile, denoted iorder (7T, @, P). In addition, there has been a lot of work on ranking
JTTs based on their relevance to the query. A natural characterization of the relevance
of a JTT (e.g. [63, 12]) is its size: the smaller the size of the tree, the smaller the number
of the corresponding joins, thus the largest its relevance. The relevance of a JTT can
also be computed based on the importance of its tuples. For example, [17] assigns scores
to JTTs based on the prestige of their tuples, i.e. the number of their neighbors or the
strength of their relationships with other tuples, while [61] adapts IR-style document
relevance ranking. In the following, we do not restrict to a specific definition of relevance,
but instead just assume that each individual JTT T is also characterized by a degree of
relevance, denoted relevance(T, Q).

Apart from properties of each individual JTT, to ensure user satisfaction by per-
sonalized search, it is also important for the whole set of results to exhibit some desired
properties. In this work, we consider covering many user interests and avoiding redundant
information.

To understand coverage, consider the graph of choices in Figure 5.2. JTTs for the
query @@ ={thriller, F. F. Copolla} that include R. DeNiro and R. Williams have the
same degree of dominance and assume, for the purposes of this example, that they also
have the same relevance. Still, we would expect that a good result does not only include
JTTs (i.e. movies) that cover the preference on R. DeNiro but also JTTs that cover the
preference on R. Williams and perhaps other choices as well. To capture this requirement,
we define the coverage of a set S of JTTs with regards to a query () as the percentage of
choice keywords in Wy, that appear in S. Formally:

Definition 5.7 (Coverage). Given a query (), a profile P and a set S = {T},...,T,} of
JTTs that are total for (), the coverage of S for () and P is defined as:

\Ui_,(Wo N keywords(T;)) |
Wo ’

coverage(S,Q, P) =

where keywords(T;) is the set of keywords in 7;.

High coverage ensures that the user will find many interesting results among the
retrieved ones. However, many times, two JTTs may contain the same or very similar
information, even if they are computed for different choice keywords. To avoid such
redundant information, we opt to provide users with results that exhibit some diversity,
i.e. they do not contain overlapping information. For quantifying the overlap between

118

two JTTs, we use a Jaccard-based definition of distance, which measures dissimilarity
between the tuples that form these trees. Given two JTTs T;, T} consisting of the sets of
tuples A, B respectively, the distance between T; and T} is:

|AN B|

|AUB|’

We have considered other types of distances as well, but this is simple, relatively fast to

d(T;,Tj) =1 -

compute and provides a good indication of the overlapping content of the two trees.

To measure the overall diversity of a set of JTTs, we next define their set diversity
based on their distances from each other. A number of different definitions for set diversity
have been proposed in the context of recommender systems; here we model diversity as
the average distance of all pairs of elements in the set [133].

Definition 5.8 (Set Diversity). Given a set S of z JTTs, S = {T4,...,T.}, the set

diversity of S is:
S S AT T
rersity(s) = ll(;jiz)z(/Q J).

To summarize, a “good” result S for a query () includes JTTs that are preferred and

relevant, covers many choices and is diverse.

5.2.2 Top-k Result Selection

Given a restriction k£ on the size of the result, we would like to provide users with &
highly preferable and relevant results that also as a whole cover many of their choices and
exhibit low redundancy. To achieve this, we resort to the following algorithm that offers
us the flexibility of fine-tuning the importance of each of the criteria in selecting the top-k
results.

For a query), we use Ress(Q) to denote the set of JTTs with relevance greater
than a threshold s. Given a query @ and a profile P, let [be the maximum winnow
level. For 1 <r <[, let Z" = ijemeQ(r) Ress(Q U {w;}). Also, let Z"! = Res,(Q) \
UTeepRes(Q,P) projectg(T.). We want more preferred keywords, that is, the ones corre-
sponding to small winnow values, to contribute more trees to the top-k results than less
preferred ones. The number of trees offered by each level i is captured by F(i), where
F is a monotonically decreasing function with 3..71 F(i) = k. Each Z’ contributes F(7)
JTTs. For 1 <7 <[, the contributed JTTs are uniformly distributed among the keywords
of level ¢ to increase coverage.

Among the many possible combinations of k trees that satisfy the constraints imposed
by F, we choose the one with the most diverse results. Next, we define the top-k JTTs.

Definition 5.9 (Top-k JTTs). Given a keyword query @, a profile P, a relevance thresh-
old s and the sets of results {Z*,..., Z!, Z"1} with |ZY + ...+ |Z!| + |Z*Y] = m, the
top-k JTTs, k < m, is the set S* for which:
S* = argmax diversity(S),
sc Utz
|S|=k

119

such that, Z¢ contributes F (i) JTTs to S*, which, for 1 < ¢ < [, are uniformly distributed
among the keywords of winnow level ¢ and F is a monotonically decreasing function with

S F) =k

There are two basic tuning parameters: function F and threshold s. Dominance,
coverage and relevance depend on how quickly F decreases. A high decrease rate leads
to keywords from fewer winnow levels contributing to the final result. This means that
coverage will generally decrease. However, at the same time, the average dominance will
increase, since the returned results correspond to high winnow levels only. For example,
if a user is primarily interested in dominant results, we retrieve k£ JTTs corresponding
to keywords retrieved by winp, (1) by setting, for example, (1) = k, and F (i) = 0, for
i > 1. A low decrease rate of 7 means that less trees will be retrieved from each winnow
level, so we can retrieve the most relevant ones. Relevance is also calibrated through the
selection of the relevance threshold, s. If relevance is more important than dominance, a
large value for the relevance threshold in conjunction with an appropriate F will result in
retrieving the k JTTs that have the largest degrees of relevance, including those in Z*!
that do no have any relation with any choice keyword. Diversity is calibrated through s
that determines the number m of candidate trees out of which to select the k£ most diverse
ones.

5.3 Query Processing

In this section, we present our algorithms for processing personalized keyword queries.
Section 5.3.1 presents some background, while in Section 5.3.2, we first present a baseline
algorithm for processing keyword queries and then introduce an enhancement that reuses
computational steps to improve performance. In Section 5.3.3, we propose an algorithm
for computing top-k results.

5.3.1 Background

We use our movies example (Figure 5.1) to briefly describe basic ideas of existing key-
word query processing. For instance, consider the query @ = {thriller, B. Pitt}. The
corresponding result consists of the JTTs: (i) (mq, Twelve Monkeys, thriller, 1996, T.
Gilliam) — (mg, az) — (a2, B. Pitt, male, 1963) and (ii) (mg, Seven, thriller, 1996, D.
Fincher) — (mg, as) — (a2, B. Pitt, male, 1963). Each JTT corresponds to a tree at
schema level. For example, both of the above trees correspond to the schema level tree
Moviestthrillery — Play} — ActorstBFPi#} where each R consists of the tuples of R; that
contain all keywords of X and no other keyword of (). Such sets are called tuple sets and
the schema level trees joining trees of tuple sets (JTSs).

Several algorithms in the research literature aim at constructing such trees of tuple
sets for a query () as an intermediate step of the computation of the final results (e.g.
(63, 12]). In the following, we adopt the approach of [63], in which all JTSs with size up

120

to s are constructed (in this case, a JTT’s size determines its relevance). In particular,
given a query @, all possible tuple sets RX are computed, where RX = {t |t € R; A
Vw, € X, t contains w, A Vw, € Q\X, t does not contain w, }. After selecting a random
query keyword w,, all tuple sets R;* for which w, € X are located. These are the initial
JTSs with only one node. Then, these trees are expanded either by adding a tuple set
that contains at least another query keyword or a tuple set for which X = {} (free tuple
set). These trees can be further expanded. JTSs that contain all query keywords are

returned, while JTSs of the form R — R}} — RY, where an edge R; — R; exists in the

(]

schema graph, are pruned, since JTTs produced by them have more than one occurrence
of the same tuple for every instance of the database.

5.3.2 Processing Preferential Queries

In this section, we present algorithms for computing the preferential results of a query,
ranked in an order compatible with preferential dominance.

Baseline Approach

The Baseline JTS Algorithm (Algorithm 14) constructs in levels the set of JTSs for the
queries Q@ U {w;}, Yw; € winp,(l), starting with [= 1, i.e. the level with the most
preferred keywords. This way, all JTTs constructed for JTSs produced at level [are
retrieved before the JTTs of the trees of tuple sets produced at level [+1. Algorithm 14
terminates when all the JTSs for queries @ U {w;}, Vw; € Wp,, have been computed. (In
Algorithm 14, we use the notation keys(B) to refer to the query keywords contained in a
JTS B.)

Based on the completeness theorem of the algorithm introduced in [63] for computing
the JTSs, Theorem 5.3 proves the completeness of Algorithm 14.

Theorem 5.3 (Completeness). Fvery JTT of size s; that belongs to the preferential query
result of a keyword query Q) is produced by a JTS of size s; that is constructed by the
Baseline JTS Algorithm.

Proof. Given a query) and a profile P, the Baseline JT'S Algorithm constructs indepen-
dently the JTSs for each query Q U {w;}, Yw, € Wp, (lines 8-27). Since for each query
the algorithm returns the trees of tuple sets that are capable to construct every JTT that
belongs to the corresponding result, every JTT that belongs to PRes(Q, P) is produced
by the JTSs constructed by Algorithm 14 as well. 1

Result Sharing

Based on the observation that the JTSs for () may already contain in their tuple sets
the additional keyword w; of a query @); € K@, where K() contains the queries); =
Q U {w}, Yw, € Wp,, we employ such trees to construct those for @;. To do this, the

121

Baseline JTS Algorithm
Input: A query @), a profile P, a schema graph Gy and a size s.

Output: A list JTList of JTSs with size up to s for the queries @ (J{w;}, Vw; € Wp,.

1: Begin

2: Queue: queue of JTSs;

3: JT List: empty list;

4: [=1,

5: while unmarked keywords exist in Wp, do
6: Compute the set of keywords winp, (1);
7. for each w, € winp, (1) do

8: Mark w,;

9: Compute the tuple sets R for Q | J{w,};

10: Select a keyword w; € Q@ J{w.};

11: for each RZX, 1 <4 < n, such that, w, € X do

12: Insert RiX into Queue;

13: while Queue # () do

14: Remove the head B from Queue;

15: if B satisfies the pruning rule then

16: Ignore B;

17: else if keys(B) = QJ{w,} then

18: Insert B into JT List;

19: else

20: for each R, such that, there is an R}/ in B and R; is adjacent to R; in Gy do
21: if (X ={} OR X —keys(B) # () AND (size of B < s) then
22: Expand B to include RZX ;

23: Insert the updated B into Queue;

24: [4++;

25: return J7T List;

26: End

Algorithm 14: Baseline JTS Algorithm

Sharing JTS Algorithm (Algorithm 15) constructs first the JTSs for @ using a selected
keyword w, € @ based on the tuple sets R for @ (lines 3-5). Then, for each Q;, we
recompute its tuple sets by partitioning each R for @ into two tuple sets for @Q;: R
that contains the tuples with only the keywords X and Rfm{wt} that contains the tuples
with only the keywords X U {w;} (lines 11-13). Using the JTSs for) and the tuple sets
for @Q;, we produce all combinations of trees of tuple sets (lines 14-17) that will be used
next to construct the final JTSs for ;. For example, given the JTS for Q R} - R]-Y, we
produce the following JTSs for Q,: R - RY, R} - RY, RX - RYV“ and RV .
Rfu{wt}. Note that, such a JTS is constructed only if all of its tuples sets are non-empty.
The JTSs that contain all keywords of (); are returned. The rest of them are expanded

as in Algorithm 14 (lines 33-42).

122

Since for a query @, Algorithm 14 does not construct JTSs of the form Rl{w’“} - R}w’“},
the procedure described above does not construct for Q; JTSs of the form Rl{w’c . R;w’“wt}.
The same also holds for the JTSs that connect R;{w’“}, R}w’“’wt} via free tuple sets. To
overcome this, we construct all such trees from scratch (lines 18-32) and then expand
them as before (lines 33-42). Theorem 5.4 proves the completeness of Algorithm 15.

Theorem 5.4 (Completeness). Every JTT of size s; that belongs to the preferential query
result of a keyword query @ is produced by a JTS of size s; that is constructed by the
Sharing JTS Algorithm.

Proof. Let () be a query, P a profile and S the set of JTSs, such that, each JTT in
PRes(Q, P) can be produced by a JTS in S. S is divided into two sets S; and Sy, such
that, S; NSy =0 and S; USy, = S. S; consists of all JTSs containing both the tuple sets
Rl{wr}, R]{-w”wt} for a selected keyword w, € Q, Yw; € Wp,, and S, all the rest. With
respect to Algorithm 15, JTSs of Sy are constructed through the lines 3-5, 11-17 and
33-42, while JTSs of S; are constructed through the lines 18-42. Therefore, in any case,
every JTT in PRes(Q, P), can be produced by a JTS constructed by the Sharing JTS
Algorithm. 1

5.3.3 Top-k£ Query Processing

In the previous section, we introduced the Sharing JTS Algorithm that efficiently con-
structs all JTSs for a query). Next, we focus on how to retrieve the top-k results for @)
(see Definition 5.9). In general, we use the function F to determine the number of JTTs
each level contributes to the result, thus calibrating preferential dominance, while the
specific trees of the result are selected based on their relevance, coverage and diversity.

Relevance is tuned through the maximum size s of the JTSs constructed with regards
to Algorithms 14 and 15, while coverage is ensured by selecting trees from each level 7,
so that, as many keywords as possible are represented in the final result. Concerning
diversity, we have to identify the trees with the maximum pair-wise distances.

Given the set Z = |J; Z* of m relevant JTTs, our goal is to produce a new set S,
S C Z, with the k most diverse JTTs, k < m, such that, Z* contributes F(i) trees. The
problem of selecting the k items having the maximum average pair-wise distance out of m
items is similar to the p-dispersion-sum problem. This problem as well as other variations
of the general p-dispersion problem (i.e. select p out of m points, so that, the minimum
distance between any two pairs is maximized) have been studied in operations research
and are in general known to be NP-hard [43].

A brute-force method to locate the k& most diverse JTTs of Z = |J, Z*, |Z| = m, is
to first produce all (7;) possible combinations of trees and then pick the one with the
maximum set diversity out of those that satisfy the constraints of Definition 5.9. The
complexity of this process is exponential and therefore, the computational cost is too
high even for low values of m and k. A number of lower-complexity heuristics have been

123

Sharing JTS Algorithm

Input: A profile P, a set of queries K@ of the form Q; = QU {w;}, Yw; € Wp,, a schema graph

Gy and a size s.

Output: A list JTList of JTSs with size up to s for the queries in KQ.

®

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

Begin

Queuer, Q': queues of JTSs;

JT S, JTSList: empty lists;

Compute the tuple sets RZX with regards to Q;

Select a keyword w, € Q;

Construct and insert to JTS? the JTSs of Q; /* as steps 9-27 of the Baseline JTS Algorithm
*/

[=1;

: while unmarked keywords exist in Wp, do
9:
10:
11:
12:
13:
14:
15:

Compute the set of keywords winp, (1);
for each Q; € K@, such that, w; € winp, () do
Mark wy;
for each RZX , 1 <1 < n, computed for) do
Construct the tuple sets R* and R?U{wt} for Qy;
for each JTS in JT'S? do
Construct all combinations of trees of tuple sets by replacing the tuple sets of @) with
the relative tuple sets of Qy;
Insert those JTSs into Queues;
for each R;-{wr}, 1 <4 < n, computed for (); do
Insert Rl{wr} into Queues;
while Queues # 0 do
Remove the head B from Queues;
for each RiX, such that, there is an R}/ in B and R; is adjacent to R; in Gy do
if X = {w,,w;} AND size of B < s — 1 then
Expand B to include RZ-X ;
Insert the updated B into Queues;
else if X = {} AND size of B < s — 1 then
Expand B to include RZ-X ;
Insert the updated B into Queues;
while Queue; # 0 do
Remove the head B from Queues;
if T satisfies the pruning rule then
Ignore B;
else if keys(B) = Q J{w;} then
Insert B into JT1' List;
else
/* as steps 20-25 of the Baseline JTS Algorithm */
[4++;
return JTlist;
End

Algorithm 15: Sharing JTS Algorithm
124

proposed to locate subsets of elements (e.g. in [43]). In this work, we use the following
variation: we construct a diverse subset of JTTs based on the tree-set distance.

Definition 5.10 (Tree-Set Distance). Given a JTT T and a set of JTTs S = {T,...,T.},
the tree-set distance between 7" and S is:
dist(T,S) = min. d(T,T;).

Initially, we consider an empty set S. We first add to S the two furthest apart
elements of Z'. Then, we incrementally construct S by selecting trees of Z'\S based on
their tree-set distance from the trees already in S. In particular, we compute the distances
dist(T;,S), VT; € Z*\S and add to S the tree with the maximum corresponding distance.
When \wi%;)(lﬂ trees have been added to S for a keyword in winp, (1), we exclude JTTs
computed for that keyword from Z'. Then, we proceed by selecting trees from Z%\S until
another F(2) trees have been added to S and so on.

We can further reduce the number of performed operations based on the observation
that after the insertion of a tree 7" to S, the distances of all other trees that have not yet
entered the diverse results from S’, 8" = S U{T}, are affected only by the presence of T'.
This leads us to the following proposition:

Property 5.2. Given a JTT T; and two sets of JTTs S and S’, S' = S U{T;}, it holds
that:
dist(T;, §') = min{dist(T;, S),d(T;, Ty}

The above process is shown in Algorithm 16. Observe that, threshold-based top-k
algorithms (e.g. [49]) cannot be applied to construct diverse subsets of JTTs, since the
k — 1 most diverse trees of Z are not necessarily a subset of its k£ most diverse ones.

5.4 Extensions

In this section, we consider extending the preference model by relaxing its context part
and allowing more keywords in its choice part. We also discuss a simple approach for

deriving preferences.

5.4.1 Relaxing Context

For a profile P and a query (), the associated set of preferences Py may be empty, that
is, there may be no preferences for (). In this case, we can use for personalization those
preferences whose context is more general than @), i.e. their context is a subset of ().

Definition 5.11 (Relaxed Context). Given a query) and a profile P, aset C' C @ is a
relaxed context for () in P, if and only if, (i) 3 (C, choice) € P and (ii) $ (C’, choice’) €
P, such that, C' C Q and C C C".

125

Top-k JTTs Algorithm
Input: The sets of keywords winp, (1), ..., winp,(l) and the sets of JTTs ANNYANY A
Output: The set S of the top-k JTTs.

1: Begin

2: S =0;

3: fori=1;i<=1[;i++ do

4: for each j € winp, (i) do

5: counter(i,j) = %;

6: Find the trees T1,T» € Z' with the maximum distance;
7. S=5UTy;

8 S =SUTy;

9: fori=1;¢i<=1+1;:++ do

10: for j =0; 7 < F(i); j++ do

11: Find the tree T € Z*\S with the maximum dist(T, S);
12: S=SUT;

13: if ¢ <!+ 1 then

14: Find the keyword w that T" was computed for;

15: counter(i,w) = counter(i,w) — 1,

16: if counter(i,w) ==0 then

17: Remove from Z¢ all JTTs computed for w;

18: End

Algorithm 16: Top-k JTTs Algorithm

Given a profile P, the relazed preferential result of a query @ is the set of all JTTs
that are both total and minimal for at least one of the queries Q (J{w;}, w; € Wp,,, where
C is a relaxed context for (). That is, we do not relax the original query (), but instead,
we just use the choice keywords of a relaxed context for ().

To depict the subset relation among contexts, a lattice representation can be used.
Any context-free preference is placed on the top of the lattice. An example is shown in
Figure 5.3. For instance, given the preferences of Figure 5.3 and the query @ = {thriller,
F. F. Coppola, R. DeNiro}, since there is no preference with context equal to @, the
choice keywords of preference cpg, whose context is a relaxed context for (), will be used.
Note that the context of ¢p, is also more general than (), but it is not a relaxed context
for () because the context of ¢pg is more specific.

If there is no preference more specific to), we finally select the context-free prefer-
ences, if any. Finally, note that there may be more than one relaxed context for). For
instance, for the query @ = {thriller, S. Spielberg, L. Neeson}, both {thriller, S. Spiel-
berg} and {S. Spielberg, L. Neeson} are relaxed contexts. In this case, we can use either
of them. We could also use more than one relaxed context but this raises semantic issues
with regards to how to compose the associated orders between their choice keywords, if
they are conflicting, which is an issue beyond the scope of this work.

126

ep, = (1}, choice))
ep, = ({}, choice,)

{cp, = ({S. Spielberg}, choice,)j

T~

cps = ({drama, S. Spielberg}, choice;) [= ({thriller. S. Spielberg}. choi]
{ cp, = ({drama, S. Spielberg}, choice,) P, = (ithriller piclberg}, choice,)

\Epﬂ = ({S. Spielberg, L. Neeson}, choiceﬂa [cpg = ({thriller, F. F. Coppola}, choiceqﬂ

E:p“, = ({drama, S. Spielberg, L. Neeson}, choice@

cp, = ({thriller}, choice,)

Figure 5.3: Context lattice of preferences.

5.4.2 Multi-Keyword Choices

Our model of preferences supports choices between two keywords. One may think of more
complex preferences of the form (C, choice), where C' C W and choice = (w;, A ... A wy,)
= (W, Ao A wy), wy, w,, 1< <, 1 <z <y, € W, We shall refer to such
preferences as composite contextual keyword preferences. As an example, consider the
preference ccp = ({comedy, W. Allen}, (E. Norton A D. Barrymore) = (B. Crystal A\ D.
Moore)). The meaning of ccp is that in the case of comedy movies and W. Allen, those
movies that are related to both E. Norton and D. Barrymore are preferred over those
that are related to both B. Crystal and D. Moore. Choices can be constructed arbitrarily,
in the sense that each choice can have any number of keywords and different number of
keywords can be used for the left and the right part, i.e. it may hold that = # y.

Supporting composite preferences of this form is straightforward. In this case, the
preferential result of a query @ is the set of all JTTs that are both total and minimal
for at least one of the queries Q |JW;, where W; is now a set of keywords that appear in
one of the parts of a choice for (). The algorithms of Sections 5.3.2, 5.3.3 can be applied
without any modifications. However, to speed up query processing when preferences with
composite choices are used, we can further exploit the main idea of the Sharing JTS
Algorithm. In particular, consider a query () and two sets of keywords Wi, W5 that
appear in the choices of the relevant to () preferences. During the searching process, the
JTSs of @ |J W, and @ | W will be computed. Assuming that Wy (| Wy # {}, we could
first compute the JTSs of Q |J(W1 () W2) and then use them to find the JTSs of Q@ J W,
and Q| Ws, instead of computing them from scratch.

5.4.3 Profile Generation

User preferences can either be explicitly provided by the user or be automatically con-
structed based on the previous user interactions or other available information. Although
the focus here is on how to exploit already constructed profiles to personalize keyword
database search, we also discuss here a method for potentially inferring contextual key-
word preferences in the absence of user input.

127

Assume that we maintain a log H of the keyword queries submitted to the database.
To allow multiple occurrences of the same query @) in H, let us assume that each submitted
query is preceded in the log by a unique identifier, that is, H is a set of entries of the
form (id, Q) for each submitted query, where id is a unique identifier and @ the content
of the query, that is, its keywords. For instance, H ={(idy, {thriller, G. Oldman}), (ids,
{drama, S. Spielberg}), (ids, {drama, Q). Tarantino}), (ids, {drama, 1993, S. Spielberg})}
(ids, {comedy, W. Allen}), (idg, {drama, S. Spielberg})} is a log of six queries, where, for
example, the query {drama, S. Spielberg} was submitted twice.

Let W’ be a set of keywords, W/ C W. We use freq(W’) to denote the number of
queries in H in which W’ appears: freq(W') = |{(id,Q) € H, such that, W' C Q}|.
For instance, in the example H, freq({drama}) = 4. Our underlying assumption is that
high popularity of a set W’ of keywords, i.e. a large freq(WW’) value, implies a preference
on W’ which is an assumption commonly made by many preference learning algorithms
[58, 10]. More precisely, when a keyword w; appears together with a set of other keywords
W', ie. in the same query with them, more frequently than a keyword w; does, this is
considered as an indication that w; is preferred over w; in the context of W’'. Thus, we
create a contextual preference (W', w; > w;), for w;, w; ¢ W', if freq(W' | {w;}) —
freq(W' U {w;}) > minf x |H|, where minf < 1 is a positive constant that tunes the
strength of the preferences. For instance, for the example H and minf = 0.30, we infer
the contextual keyword preference ({drama}, S. Spielberg >~ Q. Tarantino).

Note that the above rule, for context-free preferences, i.e. for W’ = {}, gives us w;
— wj if freq({w;}) — freq({w;}) > minf x |H|, which simply gives priority to popular
keywords over less popular ones. Recall that through context relaxation, context-free
preferences will be applied when nothing more specific exists. This means that, for in-
stance, for a query whose keywords have not appear in any of the queries in H, we can
use such context-free preferences to personalize it.

5.5 Evaluation

To evaluate the efficiency and effectiveness of our approach, we conducted a number of
experiments, using both real and synthetic datasets: (i) the Movie database [7] (Fig-
ure 5.4a) and (ii) the TPC-H database [8] (Figure 5.4b). The Movie dataset consists
of nearly 11500 movies, 6800 actors, 3300 directors and 175 studios, while the relation
Play contains more than 45000 tuples. For the TPC-H database, to experiment with the
distribution of each keyword’s appearance, we do not use its actual dataset but rather
only its schema and we generate data using the following procedure (that was also used

in [63]). Each keyword appears in a relation R; of the database with a probability equal

log(size(R;))
z-log(y)

relation in the database. The lower the value of x, the higher the probability for a keyword

to , where size(R;) is the cardinality of R; and y is the cardinality of the largest

to appear in a relationship.
We run our performance experiments for (i) queries of a different size |g|, (ii) profiles

128

Movies Actors
‘ IDM ‘ TitIe‘Year‘ Director‘ Producer‘ Studio‘ Genre‘ Not&s‘ ‘ Actor ‘Gender‘ Type‘ Origin‘ Dob ‘

Play

i IDM Actor‘ Title‘ Genre‘ Rol(% Notes‘
i Directors Studios

‘ Director ‘ Dob‘ Origin‘ Notes ‘ ‘Name‘ Company‘ Country‘ Founder‘ Notes ‘

(a) Movie schema.

PART (P_) PARTSUPP (PS_) LINEITEM (L_) ORDERS (0_}
SF200,000 SF*200,000 SF*5,000,000 SF*1,500,000
PARTKEY = | paRTHEY —’> ORDERKEY |=&—| ORDERKEY
NAME | sUPPKEY [: PARTKEY CUSTKEY
MFGR AVAILGTY SUPPKEY ORDERSTATUS
BRAND SUPPLYCOST LINENUMBER TOTALPRICE
TYFE COMMENT QUANTITY ORDERDATE

= ORDER-
SZE EXTENDEDPRICH
CUSTOMER (C_) PRIORITY
CONTAINER SEXI0(1:-000 DISCOUNT o
CUSTKEY -
RETAILPRICE TAX SHIP.
SHIF-
NAME \
COMMENT RETURNFLAG PRICRITY
ADDRESS -
i LINESTATUS COMMENT
SUPFLIER (S_) NATIONKEY
SF*10.000 SHIPDATE
& . _ PHONE
SUPPKEY COMMITDATE
ACCTBAL
BEME RECEIPTDATE
MKTSEGMENT
ABORESS SHIFINSTRUCT
COMMENT
NATIONKEY SHIPMODE
PHONE NATION (N_} COMMENT
25
ACCTBAL
| NATIONKEY REGION [R_)
COMMENT s
NAME — | REsionkeY
REGIONKEY |~
NAME
COMMENT
COMMENT

(b) TPC-H schema (image from www.tpc.org).

Figure 5.4: Movie and TPC-H database schemas.

with a different number of preferences and thus, a different number of relevant choice
keywords |w|, (iii) various maximum sizes s for the computed JTTs and (iv) different
keyword selectivities. We use MySQL 5.0 to store our data. Our system is implemented
in JDK 1.5 and connects to the DBMS through JDBC. We use an Intel Pentium D 3.0GHz
PC with 1GB of RAM. The profiles and queries used in our experiments along with the
source code and datasets are available for download [4].

5.5.1 Performance Evaluation

In our performance evaluation study, we focus on (i) highlighting the efficiency of the
Sharing JTS Algorithm, (ii) demonstrating the effectiveness of the Top-k JTTs Algorithm
and (iii) assessing the overhead of query personalization as well as the reduction in the
result size achieved.

Sharing vs. Baseline JTS Algorithm

To illustrate the efficiency of the Sharing JTS Algorithm versus the Baseline alternative,
we measure the execution time and the total number of join operations performed during

129

Table 5.1: TPC-H dataset: Varying keyword selectivity.

Time (msec) Number of joins

* | ° [Baseline | Sharing | Baseline | Sharing
3| 108 2.38 73.7 14.59
104 688 5.31 451.45 87.65
5| 618.99 32.5 34025 | 666.12

3| 1219 2.5 87.44 17.29

8 | 4] s84.28 5.8 524.1 108.7
5| 701.20 38.19 | 3877.93 | 752.75

3| 14.81 2.74 107.68 22.08

6 | 4| 91.64 6.67 605.91 | 126.22
5| 805.91 50.34 | 4277.75 | 950.37

the phase of joining trees of tuple sets expansion.

Figures 5.5a, 5.5b report the execution time and total number of join operations, for
the TPC-H database, for |w| = 10 when |¢| and s vary, while Figures 5.5¢, 5.5d show
the values of the corresponding measures for |¢| = 3 and varying |w|, s. In all cases,
we consider that x = 10, which means that the probability of a keyword appearing in
the largest relation (LINEITEM) is 10%, while for the smallest relation (REGION),
this probability is around 1%. The Sharing JTS algorithm is more efficient, performing
only a small fraction of the join operations performed by the Baseline one, thus, also
requiring much less time. As s increases, the reduction becomes more evident, since the
larger this size is, the more the computational steps that are shared. For example, in
Figure 5.5a, when s = 5, the Sharing JTS Algorithm requires only 2.5%-10.5% of the
time required by the Baseline JTS Algorithm. Observe that, while the number of joins
for the Baseline JTS Algorithm increases along with |g|, it decreases for the Sharing JTS
Algorithm (Figure 5.5b). This happens because for a larger value of |q|, the trees of the
preferential result share larger common sub-trees, therefore the Sharing JTS Algorithm
performs fewer expansions.

To study the impact of keyword selectivity, we also run a set of experiments for
r =10,8,6 and s = 3,4,5 for constant values of |¢| and |w| (|¢| = 3 and |w| = 10). The
results are shown in Table 5.1. For lower values of x, i.e. higher keyword selectivity, both
the execution time and join operations increase for both algorithms, since more results
exist. In all cases though, the Sharing JTS Algorithm outperforms the Baseline one.
For example, for x = 8, the reduction in execution time is around 90%, while the join
operations are reduced by 80%.

Similar observations can be made for the Movie database. In this case, we manually
picked keywords with various selectivities, trying to construct queries and profiles that

lead to results of different sizes and relevance. The Sharing JTS Algorithm requires

130

2000 | Baseline m==m I 3500 r Baseline === _
Sharing Sharing —
3000
1500 | 2 2500 |
g 5
2 % 2000
< 1000 t g
£ £ 1500
- z
500 | 1000
H 500 |
:llél |3|4 5 s= 3|445 s|3|455 s|3|425 s|3|4 5 s= 3|445 s:|3|,41,55
ar= 4 Query s& _Query s&% ar=
(a) (b)
700 | Baseline === I 4000 [Baseline ==
Sharing _ Sharing
600 | 3500 |
3000
& 500 ¢ 2
o -3 2500
£ 400 - S
° g 2000
£ 300
= g 1500
z
200 ¢ 1000 |
100 500 |
o Lol H . H |l ol L LW . L
s=34, 5 s=3,4, 5 s=34, 5 5345 s=1 8 s=3,4, 5
w| =6 10 w| =12 6 w]|'="1 w]| =12
wl = l l Proflle slzé 1wl Wl = Wl Proflle s‘ I‘T

(c) (d)

Figure 5.5: TPC-H dataset: Total time for (a) a fixed profile and (c) a fixed query and
total number of join operations for (b) a fixed profile and (d) a fixed query.

around 10% of the time required by the Baseline JTS Algorithm, while the reduction of
join operations during the expansion phase depends on |¢| and varies from 90% to 50%.
The corresponding results are shown in Figure 5.6.

Top-k JTTs Algorithm

Our Top-k JTTs Algorithm combines four metrics in determining the top-%k results for
a query ¢, namely, preferential dominance, degree of relevance, coverage and diversity.
To compute the overall result, we use a number of heuristics that guide the order of
generation of the JTTs. We first evaluate the performance of our basic heuristics and
then show their effectiveness.

First, we evaluate the performance of our underlying diversification heuristic by com-
paring it against the brute-force algorithm both in terms of the quality of produced results
as well as the time. The complexity of all methods depends on the number m of candi-
date trees to choose from and on the required number k of trees to select. We experiment
with a number of different values for m and k. However, the exponential complexity of
the brute-force algorithm prevents us from using large values for these two parameters.
Therefore, we limit our study to m = 10,20,30 and k& = 4,8,12,16,20. In Table 5.2,

131

o 700
Baseline m=—= Baseline ===

600 [Sharing — 600 | Sharing

500 r 500 -

400 | 400 |

300 r 300 |

200 200 |

Oinm_ Ll H.H.N. H.H 07 B emH ! mH

Time (msec - in thousands)
Number of joins (in thousands)

s=3,4, 5 5345 s=34, 5 s=34, 5 s=3,4, 345 s=34, 5 s=34, 5
=2’ Clarzg CJgE4’ ClalEs a2’ TWEg CjEe THEs
Query si Query sizd
(a) (b)
r - = 250 -
90 [Baseline === Baseline ===
Sharing w Sharing
= 80 -
° S 200
S 70 ¢]
>
[} = o
3 60 . 2
£ = 150
£ 507 =
- 2
g 0 S 100t
E 307 °
[Q
£ 20} £ 50t
T 2
0 ol L L L L
4 s= 34 5 3 5 s=3,4, 5 s=34, 5 4,5 s=3,4, 5
=8 w|'= w|'="12 w| =6 |— | '='10 jwl'="12
“Profile size Profile s

(c) (d)

Figure 5.6: Movie dataset: Total time for (a) a fixed profile and (c) a fixed query and
total number of join operations for (b) a fixed profile and (d) a fixed query.

we show the results for the brute-force method and our heuristic. We observe that the
brute-force method consumes much more time than the heuristic, while the set diversity
of the produced results is similar (the difference is less than 1%). Applying our diversity
heuristic improves the set-diversity of results, even when choosing trees of tuples only
among those computed for the choice keywords of the same winnow level (Figure 5.7).
As discussed, we can tune the trade-off between dominance and relevance through the

function F. To demonstrate this, we use the function F(i) = k - 2(7 for various

1
values of L, where L is the lowest winnow level from which results ar((aZ retrieved. For
example, when L = 1, only results corresponding to the choice keywords of the first
winnow level are returned. We run the following experiments for |¢| = 1, |w| = 10 and
s = 4. In Figures 5.8a, 5.8b, we use a profile leading to five winnow levels. We also
consider a sixth level containing the query results when no preferences are used. We show
the average normalized dominance and relevance respectively, for L = 1,2,...,6. Given
a set S of JTTs, the average dominance is the mean dorder and iorder of the trees in
PRes(Q, P) and Res(Q) respectively, where for those JTTs in Res(Q) that are not the
projection of any JTT in PRes(Q, P), we use iorder = 6 (that is, the maximum winnow

level plus 1) as opposed to co. As L increases, the average dominance decreases because

132

No diversity —
Diversity

0.8

0.6

Set diversity

04 r

0.2 r

s:ia(‘ :szzcl) s=5 s:ﬁ ;52145 s=5 S:E :S:ZA('J s=5

Figure 5.7: Movie dataset: Set diversity of first-level results.

Table 5.2: Brute-force vs. Heuristic diversification.

m |k Brute-force Heuristic
Set diversity Time Set diversity | Time
10 4 0.98 33 0.97 7
8 0.92 38 0.92 11
4 0.99 623 0.97 16
- 8 0.94 71194 0.93 21
12 0.86 171315 0.86 30
16 0.81 11730 0.80 43
4 1.00 3190 0.99 21
0.98 3041457 0.98 30
30 | 12 0.96 105035021 0.95 43
16 0.94 300561487 0.93 61
20 0.91 104214544 0.90 79

less preferable choice keywords are also employed, while the average relevance increases,
since highly relevant JTTs from the lower levels enter the top-% results.

Coverage is also very important, especially in the case of skewed selectivity among
the choice keywords. For example, if the combination of the query keywords and some
top-level choice keyword is very popular, then, without coverage, the JTTs computed for
that choice keyword would dominate the result. Figure 5.8c shows the average coverage
for two profiles, when our coverage heuristic is employed or not, for L = 5. The first
profile (Pr. A) contains keywords with similar selectivities, while the second one (Pr. B)
contains keywords of different popularity, i.e. some keywords produce more results than
others. Coverage is greatly improved in both cases when the heuristic is applied, since
more keywords from all winnow levels contribute to the result. The improvement is more
evident for Pr. B, as expected.

In general, high coverage ensures that results reaching the users represent most of their

133

0.8

1
0.7
o A @
S o8f o J % 0.6 v
£ ¥ t4 0 z 0
E o7] , 8 X 2
=] N Y 0.5
o 06t 7 7 ¥ >
g 05 L=1 —<— E 04 | L=1 —<—
z L=2 X b3 L=2 X
0.4 L=3 —k— L=3 —%—
L=4 -] 03 L=4 1
03 r L=5 —— L=5 ——
L=6 L=6
0.2 - - v 0.2 v, -
5 10 15 20 5 10 15 20
k k
(a) (b)

% 06 no coverage - Pr. A —@—
g no coverage - Pr.B -0
> coverage - Pr. A ——
S8 o4t coverage - Pr. B X
02| ./0—0
oL ‘ ‘
5 10 15 20
k
(c)

Figure 5.8: (a) Average dominance, (b) average relevance and (c) coverage.

interests. However, this does not necessarily mean that those results are not similar with
each other. Next, to demonstrate how selecting results based on our diversity heuristic
can produce even more satisfying results, we execute a number of queries and present
here a characteristic example. For the query {drama} and a winnow level containing the
keywords Greek and Italian, four results should be selected according to F. For simplicity,
we use only the JTTs computed for the joining trees of tuple sets Movies{Promal —
Directorst@reekt and Movies{Preme} — Directorst!*eiian} When only coverage is applied,
the results are:

(i
(i
(iii
(iv
When diversity is also considered, the third of these results is replaced by (PvG02, Brides,

Tan21, Eternity and a Day, 1998, Th. Angelopoulos, Drama) — (Th. Angelopoulos, 1935, Greek)
FF50, Intervista, 1992, F. Fellini, Drama) — (F. Fellini, 1920, Italian)

) (
) (
) (Tanl2, Landscape in Fog, 1988, Th. Angelopoulos, Drama) — (Th. Angelopoulos, 1935, Greek)
) (

GTO01, Cinema Paradiso, 1989, G. Tornatore, Drama) — (G. Tornatore, 1955, Italian)

2004, P. Voulgaris, Drama) — (P. Voulgaris, 1940, Greek). Coverage remains the same, however,
with diversity, one more director can be found in the results.

134

Result Pruning and Time Overhead

Finally, we study the overall impact of query personalization in keyword search in terms
of the number of returned results and the corresponding time overhead. Both of these
measures depend on how frequently the relative to the query choice keywords appear
in the database. Therefore, we experiment with profiles with different selectivities. As
profile selectivity we define the normalized sum of the number of appearances of each
choice keyword in the database. We use profiles with |w| = 6, 8, 10, 12 and study a query
with |¢| = 2: (i) when no preferences are applied or a profile with (ii) small and (iii) large
selectivity is used.

In Figures 5.9a and 5.9b, we measure the total number of the constructed JTTs, i.e.
not just the top-k ones, for s = 3, 4 respectively. In general, query personalization results
in high pruning. For s = 3, the use of the profile with large selectivity prunes more than
85% of the initial results, while for the profile with small selectivity the pruning is more
than 95%. The respective percentages for s = 4 are 33% and 74%. In Figures 5.9¢ and
5.9d, we measure the time to generate the joining trees of tuple sets required to retrieve
the final results. When the profile with large selectivity is applied, the time overhead is
24% for s = 3 and 35% for s = 4 on average. For the profile with small selectivity, the
corresponding percentages are 22% and 32% on average.

5.5.2 Usability Evaluation

The goal of our usability study is to demonstrate the effectiveness of using preferences. In
particular, the objective is to show that for a reasonable effort of specifying preferences,
users get more satisfying results. To this end, we conducted an empirical evaluation of our
approach using the Movie dataset, with 10 computer science students with a moderate in-
terest in movies. Each of them provided a set of contextual keyword preferences including
context-free ones. On average, there were five preferences related to each of the queries
that were later submitted by each user. Users were asked to evaluate the quality of the
top-10 JTTs retrieved. For characterizing the quality, we use two measures: (i) precision
and (ii) degree of satisfaction. The first one captures the judgment of the users for each
individual result. In particular, users marked each result with 1 or 0, indicating whether
they considered that it should belong to the top-10 ones or not. The ratio of 1s corre-
sponds to the precision of the top-10 results, namely precision(10). The second measure
evaluates the perceived user satisfaction by the set of results as a whole. To assess this,
users were asked to provide an overall degree of satisfaction (dos) in the range [1, 10] to
indicate how interesting the overall result set seemed to them.

We compare the results of keyword queries when executing them: without using any
of the preferences and with using the related contextual keyword preferences, first based
only on dominance and relevance and then based on all four properties. Also, we consider
using only context-free preferences as well as a case in which there is no preference with
context equal to the query and so, relaxation is employed. We use F as in our perfor-

135

1200

1000

No preferences —S—
Small profile selectivity —=—
Large profile selectivity —<—

800

600

400

200

Num of joining trees of tuples

Num of joining trees of tuples

2500

No preferences —&—
Small profile selectivity —H—
Large profile selectivity —K—

2000

1000

1500 M

olB——H = —4] 0 ‘ ‘
lwl =6 lw| =8 lw| =10 w| =12 lw| =6 |w| =8 |w| =10 lw| =12
Profile size Profile size
(a) (b)
No preferences —&— No preferences —O—
55 Small profile selectivity —— 55 Small profile selectivity —H—

¥

Time (sec)
B
[6)]

IN

Large profile selectivity —>—

35

lw| =8 |w| =10
Profile size

()

lw| =12

Time (sec)

Large profile selectivity

lwl =8 w| =10
Profile size

(d)

lw| =12

Figure 5.9: Number of joining trees of tuples for (a) s = 3 and (b) s = 4 and time
overhead for (¢) s =3 and (d) s = 4.

mance experiments with L equal to the maximum winnow level for each user. Table 5.3
reports the average values of the quality measures (we omit the detailed per user scores
due to space limitations). Our results indicate that, when no preferences are employed,
both precision and dos are low. The use of context-free preferences improves both mea-
sures moderately, since such preferences capture only the generic interests of each user.
Applying contextual keyword preferences improves quality considerably, even when pref-
erences with relaxed context are employed. The most satisfying results are produced
when all properties are taken into account. This demonstrates how important set-centric
properties are when combined with dominance and relevance. Although our evaluation is
preliminary, we believe that the results attained so far are promising.

Concerning user behavior, in general, most of our users defined preferences that re-
sulted in short graphs of choices. Short graphs produce few winnow levels and con-
sequently, many ties among the results with respect to preferential dominance. Using
relevance, coverage and diversity led to resolving such ties. We also noticed that our
users were often positively biased for movies they have heard about. This can be seen as
an indication that exploiting previous queries to generate additional preferences based on
popularity (as explained in Section 5.3) can prove very useful.

136

Table 5.3: Usability Evaluation.

| precision(10) | dos |

No Preferences 0.09 1.9
Context-Free Keyword Preferences 0.21 2.7
Relaxed Context 0.87 7.4
Contextual Keyword Preferences

Dominance-Relevance 0.89 7.9
Dominance-Relevance-Coverage-Diversity 0.94 8.7

5.6 Summary

The simplicity of keyword-based queries makes them a very popular method for search-
ing. However, keyword-based search may return a large amount of matching data, often
loosely related to the actual user intent. In this chapter, we have proposed personalizing
keyword database search by employing preferences. By extending query-relevance ranking
with preferential ranking, users are expected to receive results that are more interesting
to them. To further increase the quality of results, we have also suggested selecting k
representative results that cover many user interests and exhibit small overlap. We have
presented algorithms that extend current schema-based approaches for keyword search
in relational databases to incorporate preference-based ranking and top-k representative
selection.
The results presented in this chapter also appear in [106].

137

CHAPTER 6

PREFERENCE-AWARE PUBLISH/SUBSCRIBE
DELIVERY

6.1 Publish/Subscribe Preliminaries

6.2 Preference Model

6.3 Event Diversity

6.4 Delivery Modes

6.5 The Event-Notification Service

6.6 Evaluation

6.7 Related Work on Ranking in Publish/Subscribe Systems and Diversity

6.8 Summary

With the explosion of the amount of information that is currently available on-line,
publish /subscribe systems offer an attractive alternative to searching by providing a proac-
tive model of information supply. In such systems, users express their interest in specific
pieces of data (or events) via subscriptions. Then, they are notified whenever some other
user generates (or publishes) an event that matches one of their subscriptions. Typi-
cally, all subscriptions are considered equally important and users are notified whenever
a published event matches any of their subscriptions.

However, getting notified about all matching events may lead to overwhelming the
users with huge amounts of notifications, thus hurting the acceptability of publish /subscribe
systems. To control the rate of notifications received by the subscribers, it would be use-
ful to allow them to rank the importance or relevance of events. Then, they would only
receive notifications for the most important or relevant among them. For example, take
a user Addison that generally likes drama movies but prefers drama movies directed by

138

T. Burton to drama movies directed by S. Spielberg. Ideally, Addison would like to re-
ceive notifications about S. Spielberg drama movies only if there are no, or not enough,
notifications about T. Burton drama movies.

In this chapter, we propose extending subscriptions to allow users express the fact that
some events are more important or relevant to them than others. To indicate priorities
among subscriptions, we introduce preferential subscriptions. We show how to formu-
late preferences among subscriptions using the qualitative and the quantitative approach.
Events are ranked so that an event that matches a highly preferred subscription is ranked
higher than an event that matches a subscription with a lower preference.

Based on preferential subscriptions, we introduce a top-k variation of the publish/
subscribe paradigm in which users receive only the matching events having the k highest
ranks as opposed to all events matching their subscriptions. Since the generation of events
is continuous, we also introduce a number of delivering policies that determine the range
of events over which the top-k computation is performed.

However, the top-k events are often very similar to each other. Besides pure accuracy
achieved by matching the criteria set by the users, diversification, i.e. recommending
items that differ from each other, has been shown to increase user satisfaction [136]. For
instance, our user Addison would probably like to receive information about different
drama movies by T. Burton as well as a couple of S. Spielberg’s drama movies once in a
while. To this end, we adjust the top-k£ computation to take also into account the diversity
of the delivered events. To achieve this, we consider both the importance of each event
as specified by the user preferences as well as its diversity from other top-ranked events.

In a nutshell, in this chapter, we

e propose personalizing publish/subscribe delivery through preferences among users
subscriptions,

e introduce a top-k variation of the publish/subscribe paradigm,

e adjust the top-k computation to take into consideration the diversity of the delivered
events and

e study a number of delivering policies for forwarding events.

We have implemented a prototype, termed PrefSIENA [5]. PrefSIENA extends SIENA
(6], a popular publish /subscribe middleware system, with preferential subscriptions, deliv-
ering policies and diversity towards achieving top-k event delivery. We present a number
of experimental results to assess the number of events delivered by PrefSIENA with re-
spect to the original SIENA system, as well as their rank and diversity. We also report
on the overheads of supporting diversity-aware top-k delivery.

The rest of the chapter is structured as follows. Section 6.1 presents publish/subscribe
preliminaries. Section 6.2 introduces preferential subscriptions and event ranks. In Sec-
tion 6.3, we focus on how to diversify the top-ranked events, while in Section 6.4, we
examine a number of different delivering policies for forwarding events. In Section 6.5,

139

we introduce an algorithm for computing the top-ranked events based on preferential
subscriptions and in Section 6.6, we present our evaluation results. Section 6.7 describes
related work and finally, Section 6.8 concludes the paper.

6.1 Publish/Subscribe Preliminaries

In general, a publish/subscribe system consists of three parts: (i) the publishers that
provide events to the system, (ii) the subscribers that enter subscriptions and consume
events and (iii) an event-notification service that stores the various subscriptions, matches
the incoming events against them and delivers the matching events to the appropriate
subscribers ([45]). Publishers can publish events at any time and these events will be
delivered to all interested subscribers at some point in the future.

We use a generic way to form events, similar to the one used in [26, 46]. In partic-
ular, events are sets of typed attributes. Each event consists of an arbitrary number of
attributes and each attribute has a type, a name and a value. Attribute types belong to
a predefined set of primitive types, such as “integer” or “string”. Attribute names are
character strings that take values according to their type. An example event about a

movie is shown in Figure 6.1a. Formally:

An event e is a set of typed attributes {a4,...,a,}, where each a;, 1 < i < p, is of the

form (a;.type a;.name = a;.value).

Subscriptions are used to specify the kind of events users are interested in. Each
subscription consists of a set of constraints on the values of specific attributes. Each
attribute constraint has a type, a name, a binary operator and a value. Types, names
and values have the same form as in events. Binary operators include common operators,
such as, =, #, <, > and substring. An example subscription is depicted in Figure 6.1b.
Formally:

A subscription s is a set of attribute constraints {by, ..., b,}, where each b;, 1 <i < g, is of
the form (b;.type b;.name 6, b;.value), O, € {=, <, >, <, >, #, substring, prefiz, suf fix}.

Intuitively, we can say that an event e matches a subscription s, or alternatively s
covers e, if and only if, every attribute constraint of s is satisfied by some attribute of e.

Formally:
Definition 6.1 (Cover Relation). Given an event e = {ay,...,a,} and a subscription
s = {by, ..., by}, s covers e (s > e), if and only if, V b; € s, 3 a; € e, such that,

a;.type = bj.type, azname = bj.name and ((a;.value) Oy, (bj.value)) holds, 1 < i < p,
l<j=gq

An event e is delivered to a user, if and only if, the user has submitted at least one
subscription s, such that s covers e. For example, the subscription of Figure 6.1b covers

140

string title = BigFish
string director = T Burton
time release_date = 13 Feb 2004
string genre = drama string director = T. Burton
integer oscars = 0 time release_date > 1 Jan 2003
(a) (b)

Figure 6.1: (a) Event and (b) subscription examples.

S. Spielberg

string director Burton S string director
drama

= T
string genre = drama string genre

Figure 6.2: Qualitative preference example.

the event of Figure 6.1a, and therefore, this event will be delivered to all users who have
submitted this subscription.

6.2 Preference Model

In this section, we first extend subscriptions to include preferences. Then, we examine
how to compute the importance of published events for the users.

6.2.1 Preferential Subscriptions

Our goal is for each subscriber, instead of receiving all matching events, to receive only
the most interesting among them. To achieve this, we allow users to express preferences
along with their subscriptions. In general, preferences can be expressed using either a
quantitative or a qualitative approach. Following a quantitative preference model, users
explicitly provide numeric scores to indicate their degree of interest (e.g. [11, 80, 113]).
Following a qualitative model, users employ binary relations to directly define preferences
between data items (e.g. [32, 51, 74]). We first use a qualitative preference model [32],
since this model is more general than the quantitative one and also closer to the user’s
intuition. Specifically:

Definition 6.2 (Preferential Subscription Model). Let S* be the set of subscriptions
of user X. Along with S*, X specifies a binary preference relation C* on S*, CX =
{(s; = s;) | si,s; € S}, where s; = s; denotes that X prefers s; over s; or considers s;

more interesting than s;.

An example is shown in Figure 6.2. Given CX, we would like to rank subscriptions
based on interest. To this end, we use the winnow operator [32]. The intuition is to
assign the highest rank to the most preferred subscriptions, that is, to those subscriptions
for which there is no other subscription in S* that is preferable over them. Formally,
winnow at level 1, win™ (1), is the set of subscriptions s; € SX for which, 3 sj € S*
with (s; = s;) € CX. An additional application of winnow, win®(2), returns the next

141

Preference Relation Graph Preference Ranks

S1 > S84 5 S, 5; S1,892,83: 1
S > 84 l /i i S4, 85,561 2/3
S9 > S5 S4 Ss S s7: 1/3
S3 > Sg l

S5 > S7 $;

Figure 6.3: Extracting preference ranks.

most preferred subscriptions, that is, s; € win™ (2), if and only if, # 5; € (S¥ —win* (1))
with (s; = s;) € C*. Generalizing, the winnow operator at level I, [> 1, returns a
set of subscriptions, win™ (l), consisting of the subscriptions s; € (S¥ — U/ win*(q))
such that V s; € win™ (1), #s; € (S* — U_ywin*(q)) with (s; > s;) € C*. Repeated
applications of winnow result in ranking all subscriptions in S¥.

The straightforward way to compute win is to iterate through all subscriptions in S¥X.
Instead, if the preference relation is acyclic, we can organize subscriptions in a directed
preference graph, where there is one node in the graph for each subscription in S* and
an edge from a node representing subscription s; to a node representing subscription s;, if
and only if, (s; = s;) € C*. Now, a topological sort of this graph can be used to compute
win. In the first iteration, we output all nodes with no incoming edges. These nodes
correspond to all subscriptions s; € win® (1), since for these, there is no s; € S* with
(s; > s;) € C*. In the next iteration of the algorithm, these nodes are removed from
the graph, along with their outgoing edges, and the nodes without incoming edges are
output. Clearly, these nodes correspond to all subscriptions s; € win* (2). The algorithm
stops when all nodes in the preference graph have been processed.

We associate a preference rank, prefrank with each subscription s; based on the
winnow level that the subscription belongs to. Since subscriptions retrieved earlier are of
higher interest to the users, subscriptions returned at level [of the winnow operator are
assigned a preference rank equal to G(I), where G is a strictly monotonically decreasing
function for which G(I) — [0,1]. Thus, for each user, we get pairs of subscriptions and
preference ranks.

Definition 6.3 (Preferential Subscription). A preferential subscription ps* of user X is
a pair of the form ps;* = (s;, prefrank;*), where s; is a subscription and prefrank;" is a
real number in [0, 1] that expresses the degree of interest of X for s;.

For instance, Figure 6.3 depicts the preference graph for an example preference relation
and the extracted preference ranks when G(I) = (D+1— (I —1))/(D + 1), where D is
the diameter of the preference graph. The cover relation (Definition 6.1) is extended to
preferential subscriptions as follows: Given an event e and a preferential subscription psi*
= (si, prefrankyX), psX > e, if and only if, s; > e.

Alternatively, instead of providing C*, users could explicitly provide an interest score
prefrank;® for each of their subscriptions. This would correspond to a quantitative ap-

142

string director = T. Burton

. - 0.8
string genre = drama
string director = S. Spielberg 0.6
string genre = drama)

Figure 6.4: Quantitative preferences examples.

proach. A higher preference rank indicates a more important subscription. Examples are
shown in Figure 6.4.

6.2.2 Computing Event Ranks

Let P be the set of preferential subscriptions of user X. We use these preferential
subscriptions to rank the published events and deliver to the user only the highest ranked
ones. We define the rank of an event to be a function F of the preference ranks of the
subscriptions that cover it.

Instead of using the preference ranks of all covering subscriptions, we use only the
preference ranks of the most specific ones. A subscription s is a most specific one if no
other subscription in P~ is covered by it, where:

Definition 6.4 (Cover between Subscriptions). Given two subscriptions s; and s;, s;
covers s;, if and only if, for each event e such that s; > e, it holds that s; > e.

For example, assume the event of Figure 6.1a and the preferential subscriptions ({genre
= drama}, 0.7) and ({genre = drama, director = T. Burton}, 0.9) by Addison and
({genre = drama}, 0.7) and ({genre = drama, director = T. Burton}, 0.5) by another
user Carson (for ease of presentation, we omit the type of each attribute). Both subscrip-
tions of each user cover the event. Between the two, for each user, the latter subscription
is more specific than the former one, in the sense that in the latter subscription the user
imposes an additional, more specific requirement to movies (Addison prefers T. Burton’s
dramas over the rest, while Carson thinks that T. Burton’s dramas are worse than other
dramas). Thus, intuitively, the preference rank of the latter subscription should superim-
pose that of the former one, whenever an event matches both of them.

The event rank is formally defined as follows:

Definition 6.5 (Event Rank). Given an event e, a user X, the set P~ of the user’s
preferential subscriptions and the set PX = {(sy,prefranky), ..., (sm,prefrankX)},
PX C P¥ | such that s;>e, 1 <17 <m, of the most specific subscriptions that cover e, the
event rank of e for X is equal to rank(e, X) =F(prefranks, ..., prefrank.), where F
is a monotonically increasing function.

User X prefers an event e; over the event e, if and only if, rank(e;, X) > rank(e;, X).
As the aggregation function F for computing the rank of an event, we may use the

143

Ranking of events: e (comedy),ea(drama), eg(drama), eq(drama), es(horror),eg(sci-fi)
Top-4 events based on their ranks: ej, ez, e3,€ey4

Diverse Top-4 events:

divrank(ei, X) divrank(es, X) divrank(es, X) divrank(eq, X) divrank(es, X) divrank(es, X)

=

e1,eq)
e1,€4,€5)
€1,€4,€5,€6)

0.8
0.8

0.4
0.4

0.4
0.4

IS
CECRSE

0.85

—~ e~

Figure 6.5: Computing top-4 diverse events.

maximum, mean, minimum or a weighted sum of the preference ranks of its covering
subscriptions.
Now, we can formally define preferential top-£ delivery:

Definition 6.6 (Preferential Top-k Delivery). Given a set M of n matching events for
a user X, deliver a subset L, L C M, with cardinality k, such that, rank(e;, X) >
rank(e;, X),V e; € L, e; € M\L.

6.3 Event Diversity

Many times, the events that eventually reach the user are very similar to each other.
However, it is often desirable that these events exhibit some diversity. In this section, we
examine how to reduce the similarity of the matching events forwarded to the users. First,
we introduce diversity-aware delivery and then describe how to integrate preferences and
diversity towards improving the information quality of the delivered events.

6.3.1 Diversity-Aware Matching

Instead of overwhelming users with matching events that are all very similar to each other,
we opt to select a representative set of events according to their diversity. To measure the
diversity of events, i.e. how different they are, we first define the distance between two
events. Without loss of generality, we assume that the events have the same number of
attributes. Otherwise, we can simply append a sufficient number of “dummy” attributes
to the event having the smaller number of attributes.

Definition 6.7 (Event Distance). Given two events e; = {a1, ..., a,} and e; = {a}, ..., a,},
the distance between e; and e, is defined as:

b w 0 otherwise

P Siw; 1 ifa;=d
d(el,eg)zl—Lw, where 5i:{ 0=

and each w; is an attribute specific weight, 1 <17 < p.

Based on the above definition, the distance of any two events decreases as the number
of their common attributes increases. Weights express the importance of an attribute for

144

a specific application or user. In lack of such application-dependent information, we can
assign equal weights to all attributes.

A number of different definitions of set diversity have been proposed in the context of
recommender systems; here we model diversity as the aggregate or, equivalently, average
distance of all pairs of events in the set [134]. We use the term “set” loosely to denote a
set with bag semantics or a multi-set, where the same event may appear more than once
in the set.

Definition 6.8 (Set Diversity). Given a set of m events L = {e1, ..., e, }, the set diversity

of L is: SIS e o)
din(L) = ==

Now, the diversity-aware delivery problem can be defined as follows:

Definition 6.9 (Diverse Top-k Delivery). Given a set M of n matching events, |M| = n,
deliver a subset L, L. C M, with cardinality %, such that,
. o
div(L) = L'g%ﬁ%\:k{dw(L)}

The problem of selecting the k items having the maximum average pair-wise distance
out of n items is similar to the p-dispersion-sum problem. This problem as well as other
variations of the general p-dispersion problem (i.e. select p out of n points so that the
minimum distance between any two pairs is maximized) have been extensively studied in
operations research and are in general known to be NP-hard [42, 43].

A brute-force method to identify the k£ most diverse events in M is to first produce
all (”) possible combinations of k events, and then pick the one with the maximum

k

set diversity. The complexity of this process in terms of the required event distance
! n-(n—1

k!~(;b—k)!' 2

even for relatively small values of n and k.

) and therefore, the computational cost is too high

computations is equal to

Instead, we use the following intuitive heuristic. We incrementally construct a diverse
subset of events by selecting at each step an event e that is furthest apart from the set of
events already selected. The distance of an event e from a set of events L = {e1,..., e}
is defined as:

dis(e, L) = min d(e, ¢;).

1<i<m

In particular, let M = {ey,...,e,} be the input set of n matching events and L be the
set we want to construct. Initially, L is empty. We first add to L the two furthest apart
elements of M. Then, we compute the distances dis(e;, L), Ye;, such that e; € M\ L and
add to L the event with the maximum corresponding distance. This process is repeated
until £ events have been added to L. With this method, the required number of event
distance operations are equal to %4—[2 n=2)+...+(k—1)-(n—k+1)]. We can
further reduce the number of performed operations based on the observation that after
the insertion of an event e to L, the distances of all other events that have not yet entered

the diverse events from L', L’ = L U {e}, are affected only by the presence of e.

145

Property 6.1. Given an event e and two sets L and L' = L U {e}, the distance of an

event €' from L' is:
dis(e', L") = min{dis(e’, L),d(¢',e)}.

Using Property 6.1, the required event distance operations are equal to w +2-

(n—2)+ (n—3)+...+ (n—k+1). Algorithm 17 summarizes the above procedure.

Diverse Events Algorithm
Input: A set M of matching events for user X.

Output: A subset L of k diverse events.

1: begin
2: L — 0;
find the events e1,eq € M s.t.
d(e1,e2) = max{d(e;,e;)|e;, e; € M,i # j};
L — LU{ey,es};
for all e; € M\L do
dis; < dis(e;, L);
find the event eyqq s.t. disggq = max{dis;|e; € M\L};
L — L U{eqda};
while |L| < k do
10: for all e; € M\L do
11: dis; < min{dis;, d(e;, €aqd)};
12: find the event eyqq 8.t. disgqq = max{dis;|e; € M\L};
13: L« LU{eqq};
14: return L;
15: end

w

Algorithm 17: Diverse Events Algorithm

6.3.2 Diverse Top-k Preference Ranking

We would like to combine both diversity and preference ranking when selecting which
events to forward, so that the delivered events are both highly preferred as well as diverse
with each other, i.e. we want to select k out of n events so that both the average of their
preference ranks and their diversity are as good as possible. To this end, we combine the
two measures to produce a combined ranking:

Definition 6.10 (Diversity-Aware Set Rank). Let X be a user. Given a set of m events

L = {ey,...,en}, the diversity-aware rank of L for X is

Yo rank(e;, X)
m

divrank(L,X) = o - + (1 —o0)-div(L).

where 0 € [0,1]. When 0 = 0 (resp. 0 = 1), events are chosen based only on diversity
(resp. preference rank).
Now the problem becomes:

146

Definition 6.11. (ToP-k PREFERRED DIVERSITY-AWARE
DELIVERY) Given a set M of n matching events for a user X, deliver a subset L, L C M,
with cardinality £, such that,

divrank(L, X) = L,grﬁﬁ%‘:k{divmnk(ﬂ, X))}

To locate the k events with the maximum divrank, we use Algorithm 17, where we
replace the d(eq, e5) and dis; functions with the corresponding divrank versions.

In the following example, we apply Algorithm 17 to six events ey, e . . ., eg. To simplify
our example, we assume that all events have only the attribute genre with value equal
to comedy, drama, drama, drama, horror, sci-fi and event ranks 0.9, 0.8, 0.8, 0.8, 0.7, 0.6
respectively for a given user X. The distance between two events with the same genre is
0, while the distance between two events with different genres is 1. Figure 6.5 shows the
trace of the heuristic applied on our example when £ =4 and o = 0.5. We resolve ties in
the case of events with the same divrank values by selecting the most recently published
events.

6.4 Delivery Modes

Publish/subscribe systems offer an asynchronous mode of communication between pub-
lishers and subscribers by decoupling event publication from event delivery. In general,
each event e is associated with a number of time instants:

1. The time e is published (tpub,)

2. The time e reaches the event-notification service (tserv,)
3. The time e is matched against subscriptions (tmatch,)
4. The time e is forwarded to the user (¢forw,) and

5. The time e is actually received by the user (trecuv,)

Since events are continuously published and matched, we need to define over which
sets of this stream of matching events we apply preference ranking and diversification. In
the following, we use tpub, as the time instant associated with each event, since this is the
time that characterizes best its freshness. However, note that, in general, events may reach
the event-notification service and be matched in an order different from their publication
order. Although out-of-order delivery does not invalidate our definitions, it may, however,
complicate their implementation. Note that, alternatively, one could replace tpub, with
tmatch, in all our definitions. This makes their implementation easier, but complicates
semantics especially in the case of a distributed notification service.

We consider three fundamental modes of forwarding events, namely: (i) periodic, (ii)
sliding-window and (iii) history-based filtering delivery. With periodic delivery, the top-k

147

events are computed over disjoint periods of length 7" and forwarded to the subscribers
once at the end of each period. With sliding-window delivery, the top-k events are com-
puted over sliding windows of length w, so that an event is forwarded, if and only if, it
belongs to the top-k events in the current window. Finally, history-based filtering contin-
uously forwards new events as they are matched, if and only if, they are better than the
top-k events recently delivered.

The lengths 7" and w can be defined either in time units (e.g. as “the top-10 events
matched per hour” and respectively, “the top-10 events matched in the last hour”) or in
number of events (e.g. as “the top-10 events per 100 matched ones” and respectively, “the
top-10 events among the 100 most recently matched ones”). For clarity, in the following,
we define 7" in terms of time units and w in terms of events, since this seems to fit better
with the corresponding delivery modes. Next, we describe the three delivery modes in
detail.

6.4.1 Periodic Delivery

Periodic delivery is appropriate for subscribers who wish to receive a list of important
events regularly, for example, every morning when they reach their office or once in an
hour. In this case, time is divided into disjoint periods of duration 7" and top-ranked
events are computed within each period. Whenever a period ends, the k£ highest ranked
matching events published within this period are forwarded to the users. To improve the
freshness of events, ties are resolved by choosing to forward the most recent among the
tied events. Formally:

Definition 6.12 (Periodic Top-k). Let X be a user and M be the set of matching events
published during a period starting at time instant ¢, i.e. an event e¢; € M, if and only
if, t < tpub,, < t+T. Let L be a subset of M with k events that has the maximum
divrank(L, X)) among all subsets of M with the same cardinality. If there are more than

one such subsets, let L' be one with the maximum) tpub,, among them. If again,

e, €L’
there are more such sets, we randomly select one of them, say Lp. An event e with

publication time tpub,, t < tpub, <t + T, is forwarded, if and only if, e € Lp.

The number of events forwarded using periodic delivery is fixed and depends only on
k and T. Thus, we achieve a constant event delivery rate of k- |¢/T'| events in every time
interval of duration c.

As an example, assume a single user, say Addison, who is interested in receiving
events about movies showing in theaters. Addison has defined the following preferential
subscriptions for movies: ({genre = comedy}, 0.9), ({genre = romance}, 0.9), ({genre
= drama}, 0.8), ({genre = horror}, 0.6). She has also expressed her interest in receiving
the top-2 events per period and that each period lasts 30 minutes. Assume further that
the movie theaters which use the service publish the events ey, es, ..., eg of Figure 6.6 in
that order, at the time shown on top of each event. Figure 6.6 also shows the events that
will be delivered to Addison for ¢ = 0.5. For the time period that begins at 20:00 and

148

ends at 20:30, the top-2 results are the events e; and e4 because comedies and romances
are ranked higher that drama movies and e; is older than e4, while from 20:30 to 21.00
the top-2 results are the events e; and eg because e5 and eg are older than e;.

¢, (20:00) €,(20:15) €,(20:22) €,(20:25) €,(20:40) €,(20:45) €,(20:50) €,(20:55)

title = The Big Parade title = The Apartment title = The Godfather title = Forrest Gump
genre = romance genre = comedy genre = drama genre = romance
showing time = 21:00 showing time = 21:10 showing time = 21:25 showing time = 21:10
L 1oL |
20:00 T 20:30 T 21:00

title = The Apartment
genre = comedy
showing time = 21:10

title = Vertigo
genre = horror
showing time = 21:45

title = Psycho
genre = horror
showing time = 21:50

title = Pulp Fiction
genre = drama
showing time = 21:25

title = Psycho
genre = horror
showing time = 21:50

title = Pulp Fiction
genre = drama
showing time = 21:25

title = Forrest Gump
genre = romance
showing time = 21:10

Figure 6.6: Periodic top-2 events for Addison (7" = 30 min, 0 = 0.5).

6.4.2 Sliding-Window Delivery

With periodic delivery, top-k computation starts anew at the beginning of each period.
In contrast, with sliding window, top-k£ computation starts anew, each time a new event is
published. In particular, we call window of length w an ordered list of w events, denoted
W = (e1,ea,...,6,) where e; precedes e;,; in the window, if and only if, no other event
was published between them, that is, 3 e, such that tpube, < tpub, < tpub,, . Let Wy be
the window that includes the first w events published. If W; = (e;,, €5, ...,€;:,), @ > f,
then W1, = (e4y,...,¢€;,,€), where e is the first event published after e;,. As a special
case, before the first w events are published, the corresponding w-1 windows include only
the events published so far and have length shorter than w. At the end of each window
W;, the k highest ranked matching events published within this window are forwarded to
the users. Formally:

Definition 6.13 (Sliding-Window Top-k). Let X be a user. Let WS, = {W,, | e € W,,,}
be the set of w windows an event e belongs to. For each window W,,, let W S,, be the
set of events in W,,,. Let Ly, be a subset of WS, with k events that has the maximum
divrank(Ly,,, X) among all subsets of W, with the same cardinality. If there are more

than one such subsets, let Ly, be one with the maximum } tpub,, among them.

eiGLg/Vm
If again, there are more than one such sets, we randomly select one of them. Event e is

forwarded, if and only if, e € Ly, for some W, € WS..

In our example, assume a window of length w = 4 and the published events of Fig-
ure 6.7. As shown in the figure, if Addison is again interested in the top-2 results with
o = 0.5, the first window W returns its single event, i.e. e;. The top-2 events of W, are
e1 and e, and since e; has already been sent to Addison, the only new result is e;. W3
contains no new results because dramas are less preferred than comedies and romances.
The top-2 events of W, are e; and ey, so e4 is sent to Addison and so on.

In contrast to periodic delivery, the delivery rate is not constant, but depends on the
relative order of the published events. When top-ranked events are computed based only
on user preferences (o = 1.0), we deliver at most one new event at each new window, as

shown next.

149

Property 6.2. When diversity is not used, between two consequent event-windows, at

most one new event enters the top-k results.

Proof. Assume a window W, and its following window W, both of length w, and the
two sets Ly,, Lw,,, with the top-k events for W, and Wy, respectively. Since W, and
W41 have (w — 1) common events, let W, = (e, ea,...,€,) and W1 = (es, €3, ...,
ew+1). When e, is published, e; leaves the window and one of the following holds:

e ¢y € Ly, then Ly, , = (Lw, — {e1}) U {¢'}, where € is either e, ; or € was
published in W, and €’ ¢ Ly, , or

o ¢1 ¢ Ly,, then Ly, = Ly, or Ly,,, = Lw,—{¢'})U{ews1}, where ¢’ was published
in W,.

In any case, at most one event enters the set Ly, .. &

However, when diversifying events, the top-k events over W, ; are not necessarily
related with the top-k over W,, since divranks are computed based not only on the
(fixed) user preferences but also on the distances among the various candidate events.
For example, a new highly preferable event may now disqualify more than one top-k
events because it is very similar to them. This observation leads us to the following
property:

Property 6.3. When diversity is used, between two consequent event-windows, more than
one new event can enter the top-k results.

Proof. To illustrate this, let eq,...,e5; be a series of events. e; is a comedy directed
by W. Allen with rank 0.9, e, is a thriller directed by T. Burton with rank 0.9, e3 is an
A. Hitscock’s thriller with rank 0.8, e, is a S. Spielberg’s drama with rank 0.85 and finally,
e5 is a Q. Tarantino’s drama with rank 0.9. Assume a window length w = 3, then W; =
(e1), Wy = (€1, ea), W3 = (eq, e, e3), Wy = (eq, €3, €4) and W5 = (e3, €4, €5). Let k = 2
and o = 0.5. W; will return ey, W5 will return ey, W3 will return no event, W, will return

es and Wy will return both e; and es5.

An event may remain in the window and be delivered after as many as w other more
recent events have been delivered. Thus, with sliding window, events may enter the top-k
list in an order different from their publication order (see for example e3 in Figure 6.7).

¢, (20:00) €,(20:15) €,(20:20) €,(20:25) €,(20:40) ¢,(20:45) ¢,(20:50) ¢,(20:55)

title = The Godfather
genre = drama
showing time = 21:25

title = Jaws
genre = horror
showing time = 20:55

title = The Big Parade
genre = romance
showing time = 21:00
1

title = The Apartment
genre = comedy
showing time = 21:10

title = Forrest Gump
genre = romance
showing time = 21:10

title = Vertigo
genre = horror
showing time = 21:45

title = Psycho
genre = horror
showing time = 21:50

title = Pulp Fiction
genre = drama
showing time = 21:25

ey

title = The Godfather
genre = drama
showing time = 21:25

title = The Big Parade
genre = romance
showing time = 21:00

title = The Apartment
genre = comedy
showing time = 21:10

title = Forrest Gump
genre = romance
showing time =21:10

title = Psycho
genre = horror
showing time = 21:50

title = Pulp Fiction
genre = drama
showing time = 21:25

(no results) (no results)

Figure 6.7: Sliding-window top-2 events for Addison (w =4, ¢ = 0.5).

150

6.4.3 History-based Filtering

Delivery using history-based filtering considers each new event as it arrives and decides
whether to deliver it or not, based on history, i.e. the last top-k events seen by the user.
To refresh the events delivered, we assume that an event can remain in the top-k list for

up to a window of w events.

Definition 6.14 (History-Based Top-k). Let X be a user. Let e be an event published at
time instant tpub., H be the set of the last top-k events delivered to the user and e’ be the
event published w events prior to e (the event that expires when e is published). Event
e is delivered, if and only if, one of the following holds: (i) ¢’ € H, or (ii) divrank((H —
{e;}) U{e}, X) > divrank(H, X) for some ¢; € H.

In our example, when Addison selects this policy, her top-2 events will be the ones
shown in Figure 6.8 (we again assume a window of length w = 4 and o = 0.5).

As with sliding-window, the total number of delivered events is not bounded by k.
However, since only newly published events can be delivered to the users, at most one
new event can enter the top-k results at each window, even with diversity.

¢, (20:00) €,(20:15) €,(20:20) €,(20225) €,(20:40) ¢,(20:45) €,(20:50) €,(20:55)

title = The Godfather

title = Jaws

title = Forrest Gump title = Vertigo

genre = horror

title = The Big Parade title = Psycho
genre = romance

showing time = 21:00

title = Pulp Fiction
dr:

genre = drama
showing time = 21:25

genre = horror
showing time = 21:50

genre = romance
showing time =21:10

title = Forrest Gump
genre = romance
showing time = 21:10

title = Psycho
genre = horror
showing time = 21:50

title = Pulp Fiction
genre = drama
showing time =21:25

title = The Big Parade
genre = romance
showing time = 21:00

title = The Apartment
genre = comedy
showing time = 21:10

title = Vertigo
genre = horror
showing time = 21:45

(no results) (no results)

Figure 6.8: History-based top-2 events for Addison (w = 4, o = 0.5).

6.5 The Event-Notification Service

In this section, we outline a method for matching events with subscriptions and computing
event ranks. To this end, we introduce a preferential subscription graph for organizing
our preferential subscriptions. We also show how to compute the top-k results for each
delivery policy.

6.5.1 Event Matching

To reduce the complexity of the matching process between events and subscriptions, we
organize the subscriptions using a graph similar to the filters poset data structure [26].
All subscriptions are organized in a directed acyclic graph, called preferential subscription
graph, or PSG, whose nodes correspond to preferential subscriptions and edges to cover
relations between them. Preferential subscriptions issued by different users which contain
the same subscription are grouped together in a single graph node.

151

cinema = ster type = drama

time > 21:
(Carson, 0.5) ime 00

\ (Carson, 0.7)

cinema = ster

type = drama cinema = odeon
time > 21:00 type = drama
(Carson, 0.9) tlme‘> 21:00
(Addison, 0.6) (Addison, 0.3)

Figure 6.9: Preferential subscription graph example.

In particular, let P be the set of all preferential subscriptions, i.e. the preferential
subscriptions defined by all users, and Pg be the set of all subscriptions in P. For each
subscription s; € Ps, we maintain a set of pairs, called PrefRank Set, of the form (X,
prefrankX), where X is a user and prefrank; is the preference rank of X for s;. A
subscription s; is associated with the pair (X, prefrank;"), if and only if, a preferential
subscription psX = (s;, prefrank:X) exists in P. For each s; € Ps, we define the PrefRank
Set as the set PR; = {(X, prefrankX) | (s;,prefrank}) € P}. Formally:

Definition 6.15. (PREFERENTIAL SUBSCRIPTION GRAPH). Let P be a set of preferential
subscriptions and Pgs the set of all subscriptions in P. A Preferential Subscription Graph
PSGp(Vp, Ep) is a directed acyclic graph, where for each different s; € Ps, there exists
a node v;, v; € Vp, of the form (s;, PR;), where PR; is the PrefRank Set of s;. Given two
nodes v;, v;, there exists an edge from v; to v;, (v;,v;) € Ep, if and only if, s; covers s;

and there is no node v} such that s; covers s} and s’ covers s;.

For example, Figure 6.9 depicts the PSG of the preferential subscriptions of two
users, Carson and Addison. Carson has specified subscription s; = {cinema = ster,
genre = drama, time > 21:00} with preference rank 0.9, sy = {genre = drama, time >
21:00} with 0.7 and s3 = {cinema = ster} with 0.5. Addison’s subscriptions are s; with
preference rank 0.6 and s4 = {cinema = odeon, genre = drama, time > 21:00} with 0.3.

When a new event e arrives to the event-notification service, we traverse the PSG to
locate all matching subscriptions in a breadth-first manner starting from the root nodes.
In some cases, it is not necessary to walk through all nodes of the graph. We may safely
ignore a node v with subscription s for which there is no other node v with subscription
s, such that s’ covers s and s’ » e. This means that whenever e does not match a
specific node of the PSG, its whole sub-tree can be ignored. This way, entire paths of
the graph can be pruned. For example, in Figure 6.9, if an incoming event is not covered
by {cinema = ster}, then it is certainly not covered by {cinema = ster, genre = drama
time > 21 : 00} and this subscription does not have to be checked against the event.

However, if the incoming event is covered by a node v of the PSG, we have to check
the event against other nodes in v’s sub-tree, to retrieve their preference rank, since it
is possible that some of these nodes may be more specific to the event than v. In our
example, for an event e = {cinema = ster, genre = drama, time = 21:30}, s3 is more

152

specific than s; for Carson. Therefore, even if s; > e, we have to continue traversing the
PSG (note that in a traditional publish/subscribe system that would not be necessary).
To avoid unnecessary traversals, we associate each entry of v’s PrefRank Set with a status
bit. This bit is set to 1, if the subscriber of the entry can also be found in some other
node v’ covered by v in the PSG and to 0 otherwise.

For each subscriber X associated with at least one subscription covering the event
e, we compute the rank of the event. In our current work, we assume that preference
ranks associated with subscriptions are indicators of positive interest, thus, we use as
the aggregation function F the maximum value of the preference ranks of the covering
subscriptions. Given that an event e is covered by m subscriptions si, so, ..., S, of user
X, rank(e, X) = max {prefranki, prefranks, ..., prefrank. }. After this matching
process, some information about the event (like the computed rank or the content) are
stored according to the delivery policy used, as described next.

6.5.2 Event Delivery

Typically, publish/subscribe systems are stateless, in that, they do not maintain any
information about previously delivered events. However, to provide users with the current
top-ranked matching events, depending on the delivery policy, we may need to maintain
some information about previously delivered events as well as buffer some published events
prior to their final delivery or dismissal.

Periodic and Sliding-Window Delivery In the case of periodic delivery, the server
needs to buffer all events that match at least one subscription in its PSG until the end
of the period in which they were published and their corresponding ranks. At the end
of the period, the top-k results for all users are computed using Algorithm 17, having as
input all the events matched during the period. Analogously, in sliding-window delivery,
we buffer the content and ranks of the w most recently published events, since an event
may be forwarded to a user at some point after its publication time. In this case, the
input set to Algorithm 17 is the set of events in the current window.

History-Based Filtering With history-based filtering, we need to maintain some in-
formation about previously sent top-ranked events. If we do not consider diversity, we
do not need to maintain the actual content of the matched events, it suffices to buffer
just the preference rank of the current top-k£ events. We also need to store an expiration
counter along with each buffered event rank to determine when the event expires and
disregard it. The counter is initialized to w and is decreased by one every time a new
event is published. An element is removed from the buffer, when its counter becomes 0.
A newly published matching event e is delivered, if and only if, (i) an event in the current
top-k expires when e arrives or (ii) e is better than the worst event in X's current top-k.
In this case, the worst event is disregarded and replaced by e.

153

History-Based Filtering Event Delivery
Input: A new event e, a buffer b of previously published matching events, a preferential sub-

scription graph PSG, a subscriber X and the number k of desired top-results (and possibly
a diversification factor o).
Output: Whether e should be forwarded to X or not.

1: begin

2: result «— false;

3: b—bU{e};

4: TOP;,;+ < the current top-k results;

5: TOP <« TOP;y,;;— the event that has just left the window (if any);
6: if |TOP| < k then

7 result = true;

8: else

9 if not diversify then

10: find the lowest rank rjy, in TOP;
11: if rank(e, X) > rip, then

12: result = true;

13: else

14: DIV Rinit = divrank(TO Py, X);
15: for all e; € TOP do

16: TOP; — {TOP —e;} U{e};

17: DIV R; = divrank(TOP;, X);
18: DIV Rpipa = max{DIV Ry,..., DIV Rirop|};
19: if DIV Rfinq > DIV Ry then
20: result = true;

21: TOP — {TOP — eyinu} U{e};
22: return result;

23: end

Algorithm 18: History-Based Filtering Event Delivery

If we consider diversity, we also need to store the content of the events in the buffer
for computing their distances with any new event. As before, if an event in the current
top-k expires when a new event e arrives, e is forwarded to X. Otherwise, we swap each
event e; in the buffer with the new event e to produce a number of k£ candidate sets.
Then, we compute the new diversity-aware set rank (divrank) for each candidate set.
If some of these new candidate sets have larger divrank than the current top-k results,
then we forward e to the user and insert e in the buffer in the place of the event e; that
corresponds to the candidate set with the maximum divrank. The process described
above is summarized in Algorithm 18.

154

6.6 Evaluation

To evaluate our approach, we have extended the SIENA event notification service [6], a
multi-threaded publish/subscribe system, to include preferential subscriptions with diver-
sity and ranked event delivery. We refer to our prototype as PrefSIENA. PrefSIENA is
available for download [5].

6.6.1 System Description

To evaluate the performance of our model, we use a real movie-dataset [3], which consists
of data derived from the Internet Movie Database (IMDB) [1]. The dataset contains
information about 58788 movies. For each movie, the following information is available:
title, year, budget, length, user rating (rating), MPAA rating (mpaa) and genre(s).

Publishers generate publications by randomly selecting mp movies and creating a new
event for each of them consisting of the title, year, length, rating, MPAA and genre(s)
of the movie. Publications are produced at a constant rate. Each subscriber generates
myg subscriptions, each of which is generated independently from the others. We select a
number of the available attributes to appear in a subscription based on a zipf distribution,
i.e. some attributes are more popular than others. The value of each attribute is also
generated using a zipf distribution, so that some values are more common. Preferences
are generated by associating preference ranks in [0, 1] with the generated subscriptions.
Those ranks have an average value around 0.5. In general, most specific publications get
higher ranks.

Event delivery is performed following either one of our three delivering policies, i.e.
the periodic, the sliding-window and the history-based filtering ones.

6.6.2 Experiments

We perform a number of different experiments. First, we evaluate the performance of our
diversity heuristic. Then, we evaluate the number and quality of the events delivered to
the users using PrefSIENA and SIENA. We also evaluate the overheads introduced by
ranking and diversifying.

Heuristic Performance

To evaluate the performance of our diversity heuristic, we compare it against the brute-
force method that finds optimal solutions. We compare these methods both in terms of the
quality of produced results as well as the required time to produce them. The complexity
of both methods depends on the number n of candidate events to choose from and on
the required number k of events. We experiment with a number of different values for n
and k. However, the high complexity of the brute-force algorithm prevents us from using
large values for these two parameters. Therefore, we limit our study to n = 10, 20, 30 and

155

Table 6.1: Diversity Heuristic vs Brute-force performance.

0 |l K Heuristic Brute-force
Diversity | Time | Diversity Time
10 4 0.873 16 0.917 41
8 0.846 26 0.851 42
4 0.905 29 0.917 384
20 8 0.850 32 0.866 43065
12 0.820 37 0.832 99608
16 0.811 58 0.814 6784
4 0.929 31 1.000 1987
8 0.881 38 0.923 1967339
30 | 12 0.870 46 0.889 51652649
16 0.859 57 0.874 162827625
20 0.846 69 0.857 50641750

k = 4,8,12,16,20. The results of our experiment are summarized in Table 6.1 (time is
measured in milliseconds).

The complexity of the brute-force method is so high that even with the relatively small
values of n = 30 and k£ = 8, the required time climbs up to 1967339 ms (=~ 0.5 hour).
Our heuristic required only 38 ms in this case. This reduction in time complexity comes
at the cost of decreased diversity of the results. However, this reduction is only marginal,
as the set diversity of the results produced by the heuristic is decreased by less than 1%
in all cases.

Number and quality of delivered events

One of the reasons that motivated ranked delivery was the need to reduce the large
amount of events delivered to users in a traditional publish/subscribe system. Therefore,
in this set of experiments, we first measure the total number of delivered events and then
evaluate their quality in terms of average rank and diversity.

Since the number and quality of events depend on the order of publications with regard
to their ranks, we consider a number of different event-scenarios. In particular, in the
“Best-First” scenario, the highest-ranked events are published first, while in the “Best-
Last” scenario, these events are published after the lower-ranked ones. In the “Burst”
scenario, we consider that there exist bursts of highly-ranked events at specific moments
in time and finally, in the “Random” scenario, high and low ranked events are interleaved.
For comparison, besides top-k delivery, we also consider the case in which all matching
events are delivered to the users, as in the case of a traditional publish/subscribe system.
All scenarios consist of 2000 events out of which 930 match the subscriptions.

NUMBER OF DELIVERED EVENTS. We measure the number of events delivered to a
specific subscriber using PrefSTENA as a function of the number £ of the top results the

156

1000 T T T 1000 T T T 1000

800

600

Number of events

Number of events

8 8 8

e T T T
o X
Hooom x
F¥om X

5 L L L

400

200 ///
.
T T .

Number of events

(a) Periodic delivery policy (b) Sliding-window delivery policy (c) History-based delivery policy

Figure 6.10: Total number of delivered events (o = 1.0 - no diversity).

subscriber is interested in. We first consider the case where events are selected based
solely on event ranks (i.e. 0 = 1.0). In Figure 6.10a, we show the number of delivered
events for the periodic delivery policy. For comparison reasons, we consider a constant
rate of publications and run this experiment for periods with 7" = 200 and T = 400
events. We see that the number of delivered events does not depend on the used scenario,
since at each period this number is bounded by k. Therefore, we achieve a constant rate
of event delivery. On average, the number of events delivered by PrefSIENA ranges from
2.2% to 21.5% of all matching events for the various values of k£ and T'.

In Figures 6.10b and 6.10c, we present the total number of delivered events for the
sliding-window and history-based filtering policies. We run the experiment for all of
the above scenarios and use window lengths of w = 200 and w = 400 events. We see
that when those policies are used, the number of delivered events depends not only on
k and w but also on the input. For the sliding-window policy, we observe that a larger
window size leads to the delivery of fewer events. The best pruning is achieved when the
“Random” scenario is used. This happens because in this case, there are always some
highly preferable events in the current window to filter out less preferable ones. The worse
pruning, as expected, is observed in the case of the “Best-Last” scenario, since in this case
every new event is better than the old ones and is thus forwarded to the user. In the case
of the history-based filtering, the “Best-Last” scenario also has the worse pruning while
the “Random” one achieves the greatest pruning. Once again, a larger window length
results in greater reduction of delivered events.

When diversity is also a factor for choosing which events to deliver, only the sliding-
window and history-based filtering policies are affected. In the periodic policy, while the
delivered events may actually be different than in the no-diversity case, their total number
remains the same. In the sliding-window case, the total number of delivered results is
slightly larger due to Property 6.3, while in the history-based case the number depends
on the input (we omit the relative figures).

QUALITY OF DELIVERED EVENTS. We also run a set of experiments to evaluate the
quality of the delivered events. We characterize quality based on two factors: (i) the
average rank of delivered events and (ii) their diversity.

Figure 6.11 depicts the average rank of all the delivered events for the various timing

157

policies and scenarios when o = 1.0 (no diversity case). Average rank is computed over all
events delivered in each delivery policy (as opposed to over the same number of top-ranked
events). Generally, we observe that the average rank depends on the input. The average
rank of all matching events is 0.46. In PrefSIENA, even though in the presence of many
high-ranked events some of them may fail to appear in the top-£ results, the average rank
is larger than that in all cases. When diversifying the events, there is a decrease of the
average rank, since diverse events may have lower ranks, as expected (Figures 6.12 and
6.13). The average rank of events decreases along with k, since for large values of £ more
events are delivered to the users. This decrease is more evident when diversity is used.

0.9

08T Ei

07k B

06 4 4

05 k. 3

Average rank of events
. (
Average rank of events

Average rank of events

04 g 04 4 04 A

03 . . . 03 1 . . 03 h . h
4 8 12 16 20 4 8 12 16 20 4
k 3
Best-First scenario, w=200 —+— Best-Last scenario, w=400 X Best-First scenario, w=200 —+— Best-Last scenario, w=400 %
Best-Last scenario, w=200 —%— Burst scenario, w=400 % Best-Last scenario, w=200 —x— Burst scenario, w=400 -~
Burst scenario, w=200 —¥— Random scenario, w=400 & Burst scenario, w=200 —%— Random scenario, w=400 -
Random scenario, w=200 —s— All matching events —&— Random scenario, w=200 —s— Al matching events —S—
Best-First scenario, w=400 -+ Best-First scenario, w=400 -+

Best-Last scenario, T=400 X
t Scenario, T=400 %
Random scenario, T=400 - &
All matching events —&—

(a) Periodic delivery policy (b) Sliding-window delivery policy (c) History-based delivery policy

Figure 6.11: Average rank of delivered events (o = 1.0 - no diversity).

T T
09 4 09+ g 09
08 4 08 g 08
ok 4 07 4 07 +
ek
- +
06 » + 06 |- . g 06 +
£ L x E .
05 &3 3 -3 05 05?2&/
04 4 04 * x 5 o4
03 | | | 03 | | | 03 | X x
16 20
3

4 8 12 16 20 4 8 12 16 20 4 8 12

Average rank of delivered events
"
-
Average rank of delivered events
Average rank of delivered events

Best-First scenario, w=200 —+— Best-Last scenario, w=400 X Best-First scenario, w=200 —+— Best-Last scenario, w=400 Best-First scenario, w=200 —+— Best-Last scenario, w=400
Best-Last scenario, w=200 —%— Burst scenario, w=400 - Best-Last scenario, W=200 —»— Burst scenario, w=400 - Best-Last scenario, w=200 —%— Burst scenario, w=400

Burst scenario, w=200 —%— Random scenario, w=400 - & Burst scenario, w=200 —%— Random scenario, w=400 & Burst scenari Random scenario, w=400
‘All matching events —&—

mxx

Random scenario, w=200 —s— ‘All matching events —&— Random scenario, w=200 —s— Al matching events —— Random scenari
Best-First scenario, w=400 -+ Best-First scenario, w=400 -+ Best-First scenari

(a) Periodic delivery policy (b) Sliding-window delivery policy (c) History-based delivery policy

Figure 6.12: Average rank of delivered events (o = 0.0 - no ranking).

In Figure 6.14, we measure the average diversity of the events that are forwarded to a
user for the “Random” scenario. Average diversity is computed over the events delivered
in each period or window. We run this experiment for different period and window lengths
using our diversification methods with ¢ = 1.0 (no diversity case), 0 = 0.5 and o = 0.0
(no ranking case). We see that the produced results do indeed exhibit a higher diversity
when they are chosen based not only on their ranks but also on their distance from each
other. This increase is larger for smaller values of k. Similar behavior can be observed
for the other scenarios as well. Due to space limitations, we omit the related figures.

158

09 |-

T T T
-
.
08 L . 4
* *
071

06

[y * + X

Average rank of delivered event
°
i
¥ . 4
*
Average rank of delivered event
°
&

0.4

Average rank of delivered events

03

(a) Periodic delivery policy (b) Sliding-window delivery policy (c) History-based delivery policy

Figure 6.13: Average rank of delivered events (o = 0.5).

Performance

Finally, we perform a number of experiments to evaluate the performance of PrefSIENA.
There are two sources of extra overhead for implementing ranked delivery of events. First,
to compute the importance of a new event, we have to locate all matching subscriptions,
while in traditional publish/subscribe systems it suffices to locate the most general one.
Second, there is also the overhead of maintaining state for previously forwarded events and
performing computations to decide whether a new event belongs in the diverse top-ranked
results or not.

The matching overhead depends on the relations among the various user subscriptions.
More specifically, the overhead is more evident when users issue many subscriptions that
cover each other, i.e. users refine their previously made subscriptions. To compute this
overhead, we perform the following experiment: we construct a number of profiles in
which a percentage ¢ of user subscriptions are covered by some other subscription. We
also construct a number of scenarios in which a percentage m of the published events match
the user subscriptions. In Table 6.2, we see the number of PSG nodes checked during the
execution of each scenario for each of the user profiles in SIENA and PrefSIENA, with
c = 0%, 10%, 30%, 50% and m = 0%, 10%, 20%.

To measure the time overhead introduced by the ranking and diversifying algorithms,
we measure the time between the publication and the delivery of each event (Figure 6.15).
In the periodic policy, the sequence of the published events influences the freshness of the
delivered ones. For example, if high-ranked events are published towards the end of a
period, they will reach the user earlier than if they are published at the beginning. As
expected, a larger period length results in larger delays between publication and delivery.
In the sliding-window delivery policy, a larger window length increases the average delivery
time. This happens (i) because an event remains in the window for longer and therefore,
it has more opportunities to enter the top-k results and (ii) because the complexities of
the ranking and diversifying algorithms depend on the window size. In the history-based
filtering delivery policy, the freshness of data does not depend much on the scenario, but
is rather more influenced by the size of the window.

159

1 1

09 - 09t 09 - 09 -
o=

o8l | o8l |

(R4 g o7 | [g2 o7f i

o6 | g o6r | 06 | 3 o6F |

05 05 -

Average set diversity per period

3 3
5 5
g g
5 5
g g |
1 2z 98 4 % osp |
S il
g EY
g g
< <

Average set diversity per period

o | ® |
4 B osf . 4 8§ osf
g g

04

04 0.4

0.4

k=4 k=12
T =200 T =400 w =200

(a) Periodic delivery policy (b) Sliding window delivery policy

1

oot]
08 |
07
o6l |

05k |

Average st diversity per period
Average set diversity per period

:
09 1’7
o8t |
0.7 1
o6l |
05)
0.4 g
k=4

(c) History-based delivery policy

0.4

k=12
w =200 w =400

=20

Figure 6.14: Average diversity - random scenario.

6.7 Related Work on Ranking in Publish/Subscribe Systems and
Diversity

Although there has been a lot of work on developing a variety of publish/subscribe
systems, there has been only little work on the integration of ranking issues into pub-
lish/subscribe. Recently, in [91], the problem of ranked publish/subscribe systems is also
considered. However, the problem is viewed in a different way. In a sense, the authors
consider the “reverse” or “dual” problem. Instead of locating the most relevant events
to each subscription, the authors aim at recovering the most relevant matching subscrip-
tions to a published event. Subscriptions are modeled as sets of interval ranges in some
dimensions and events as points that match all the intervals that they stab. Another work
that also deals with the problem of ranked publish/subscribe is [101]. In the proposed
model, a subscriber receives the £ most relevant events per subscription within a window
w which can be either time-based or event-based. For each user subscription, a queue
is maintained. This queue buffers those events that are relevant to the subscription and
have a high probability to enter the top-k result at some point in the future. The focus
is on efficiently maintaining this buffer queue. Here, we aim at specifying and computing
event ranks. [137] considers the case where only a subset of top-ranked publishers provide
notifications for a specific query. These publishers are ranked according to the similarity

160

Table 6.2: PrefSIENA matching overhead.

‘ m

| ¢ | SIENA | PrefSIENA |
0% | 10000 10000
10% | 9000 9000
0%
30% | 7000 7000
50% | 5000 5000
0% | 10000 10000
10% | 9000 9010
10
% 30% | 7000 7010
50% | 5000 5010
0% | 10000 10000
10% | 9000 9020
20
 30% | 7000 7020
50% | 5000 5010
§ o 11 ol S B B s SN
% 90000 [q g 90000 [* —= q % QOUOOVK_/“i i % N-

60000 L L X 60000 L L L 60000
4 4 4

Ran n
Al matching events —&—

(a) Periodic delivery policy (b) History-based delivery policy (c) Sliding window delivery policy

Figure 6.15: Average freshness of delivered events (o = 0.5).

of their past publications to the query. Similarity is computed via IR techniques. [123]
suggests using an extensive preference model to enhance expressiveness of subscription
matching, while [89] proposes an approximate matching mechanism so that relevant events
are delivered even if they do not match exactly the users’ subscriptions.

In terms of diversity, in [136], a method for topic diversification is proposed for recom-
mendations. The intra-list similarity metric is introduced to assess the topical diversity
of a given recommendation list. An algorithm that considers the candidate items’ scores
is provided for creating lists with small intra-list similarity. The notion of diversity is also
explored in [122]. Motivated by the fact that some database relation attributes are more
important to the user, a method is proposed where a recommendation list consisting of
database tuples is diversified by first varying the values of higher priority attributes before
varying the values of lower priority ones. In case the tuples are associated with scores, a
scored variation of diversity always picks tuples with higher scores first.

161

6.8 Summary

Our overall goal, in this chapter, has been to increase the quality of events received by the
users of publish/subscribe systems in terms of their importance or relevance and diversity.
Ranking events by importance is achieved by letting users express preferences along with
their subscriptions. Events that match more preferable subscriptions are ranked higher
than events that match less preferable ones. For ranking an event, we also take into
account how different the event is from the other top-ranked ones so that the overall
diversity among the event notifications is increased. We have examined a number of
policies with regards to the time range over which the top-k events are computed, namely
a periodic, a sliding-window and a history-based one.
The results presented in this chapter also appear in [40, 41].

162

CHAPTER 7

CONCLUSIONS

7.1 Summary of Contributions

7.2 Future Research Directions

The goal of this thesis was the study of preferences in data management systems. To
this end, we proposed a context-dependent model for preferences and appropriate data
structures and algorithms for managing contextual preferences. We also explored the
integration of preferences to achieve personalized keyword search in relational database
systems and personalized delivery in publish/subscribe systems. We conclude, in this
chapter, with a summary of our primary contributions (Section 7.1) and directions for
future research (Section 7.2).

7.1 Summary of Contributions

The technical contribution of this thesis was centered around two main axes. The first axis
focused on modeling issues. We introduced a model for contextual preferences and focused
on managing such preferences. We also addressed the problem of scoring database tuples
using our contextual preferences and provided a solution which was based on selecting
and pre-computing representative rankings. The second axis was centered on integrating
preferences in data management systems. We proposed personalized keyword search in re-
lational database systems and personalized delivery in publish/subscribe systems through
user-defined preferences.

As a side contribution of this thesis, we also consider an extensive survey of the
use of preferences in databases. We considered ways in which the general notion of
preference may be interpreted in a database system and we classified approaches based
on certain criteria. We identified the following main axes and organized our study around
them: (i) preference representation, (i) preference composition and (ii7) preferential
query processing. We also discussed preference learning approaches.

163

We proposed annotating database preferences with contextual information. Context
was modeled using a set of multidimensional context parameters that take values from
hierarchical domains, thus, allowing different levels of abstraction for the captured context
data. We also formulated the problem of context resolution, as the problem of selecting
appropriate preferences for personalizing database queries based on context. To realize
context resolution, we proposed two data structures, namely the preference graph and the
profile tree, that allow for a compact representation of the context-dependent preferences.

To evaluate the usefulness of our model, we performed usability studies. Our studies
showed that annotating preferences with context improves the quality of the retrieved
results considerably. The burden of having to specify contextual preferences is reasonable
and can be reduced by providing users with default preferences that they can edit. We
also performed a set of experiments to evaluate the performance of context resolution
using both real and synthetic datasets. The proposed data structures were shown to
improve both the storage and the processing overheads. In general, the profile tree is
more space-efficient than the preference graph. It also clearly outperforms the preference
graph in the case of exact matches. The main advantage of the preference graph is the
possibility for an incremental refinement of a context state. In particular, at each step
of the resolution algorithm, we get a state that is closer to the query one. This is not
possible with the profile tree.

To improve performance, we introduced a suite of techniques for quickly providing
users with data of interest based on contextual preferences. We proposed performing pre-
processing steps to construct representative rankings of database tuples. To form such
rankings, we focused on creating groups of similar preferences and producing a ranking
for each group, first by considering as similar the preferences that have similar contexts.
To group preferences with similar contexts, we considered a contextual clustering method
that exploits the hierarchical nature of context parameters. Our method can be applied
to both quantitative and qualitative preferences. We also presented a complementary
method for grouping preferences according to the similarity of the scores that they pro-
duce. This method takes advantage of the quantitative nature of preferences to group
together contextual preferences that have similar predicates and scores. The method is
based on a novel representation of preferences through a predicate bitmap table whose
size depends on the desired precision for the resulting scoring. We evaluated our approach
using both real and synthetic data sets and presented experimental results showing the
quality of the scores attained using our methods.

We also proposed personalizing keyword search through user preferences and provided
a formal model for integrating preferential ranking with database keyword search. By
extending query-relevance ranking with preferential ranking, users are expected to receive
results that are more interesting to them. To further increase the quality of results, we
suggested selecting k representative results that cover many user preferences and exhibit
small overlap. We presented algorithms that extend current schema-based approaches
for keyword search in relational databases to incorporate preference-based ranking and

164

top-k representative selection. We evaluated both the efficiency and effectiveness of our
approach. Our performance results showed that our sharing-results algorithm signifi-
cantly improves the execution time over the baseline algorithm. Furthermore, the overall
overhead for preference expansion and diversification is reasonable. Our usability results
indicated that users receive results more interesting to them when preferences are used.

Finally, we addressed the problem of increasing the quality of events received by the
users of publish/subscribe systems in terms of their importance and diversity. Ranking
events by importance is achieved by letting users express preferences along with their
subscriptions. Events that match more preferable subscriptions are ranked higher than
events that match less preferable ones. For ranking an event, we also took into account
how different the event is from the other top-ranked ones, so that, the overall diversity
among the event notifications is increased. We examined a number of policies with regards
to the time range over which the top-k events are computed, namely a periodic, a sliding-
window and a history-based one. We implemented a prototype, termed PrefSIENA [5].
PrefSIENA extends SIENA [6], a popular publish/subscribe middleware system, with
preferential subscriptions, delivering policies and diversity towards achieving top-k event
delivery. We presented a number of experimental results to assess the number of events
delivered by PrefSIENA with respect to the original SIENA system as well as their rank
and diversity. We also reported on the overheads of supporting diversity-aware top-k
delivery.

7.2 Future Research Directions

In this section, we provide directions for future research on issues that are still open and
are the subject of our ongoing and future work. We distinguish between short term plans
that consist mainly of extensions to our work and long term plans that highlight open
research challenges.

7.2.1 Short Term Plans

Context Relaxation: When dealing with the context resolution problem, we have
focused on relaxing the context of a query, so that, there are enough preferences whose
associated context match that of the query. In general, we have so far mainly considered
relaxing a hierarchical context value by using a more general one. However, apart from
upwards relazation, a context value may be relaxed downwards by replacing the value by
a set of more specific ones or sideways by replacing the value by sibling values in the
hierarchy. Given all these possible relaxation types, appropriate distance metrics that
exploit the number of relaxed context values of a context state and the associated depth
of such relaxations need to be defined. In this direction, and as a first step, in [114] we
employ measures to study how well a context state matches a relaxed one.

165

Novelty in Publish/Subscribe Delivery: Recent research in publish/subscribe sys-
tems has suggested that event matching should be best effort by associating some form of
ranking to the matching process. In our work, reported in this thesis, we have focused on
ranked-based publish/subscribe delivery based on preferences, where events are ranked
based on user interests, and diversity, where events are ranked so that users receive events
with different content. Recently, in [105], we present a first approach to another dimen-
sion of ranking, that of novelty. Our interpretation of novelty is that an event is novel if it
matches a subscription that has been rarely matched in the past. This form of novelty is
desirable for various reasons, such as making rare events visible and allowing expressing

an information need with various levels of detail.

Hierarchies in Contextual Keyword Preferences: An interesting direction in pref-
erential keyword search is extending keyword queries and preference specifications to
include keywords that take values from hierarchical domains along the lines of our previ-
ous work [113]. For instance, when the search for directors from Greece returns a small
number of results, one could extend the search to European directors. Similarly, when
there is no related preference for Greek directors, one could use preferences for directors

from other European countries.

Recommendations in Relational Databases: In general, recommendation methods
are categorized into: (i) content-based, that recommend items similar to those the user
has preferred in the past, (i) collaborative, that recommend items that similar users have
liked in the past and (iii) hybrid, that combine content-based and collaborative ones. Re-
cently, we have proposed extending relational database systems with a recommendation
functionality. In particular, motivated by the way recommenders work, we have consid-
ered, along with the results of each query, “recommending” to users additional results of
potential interest. We call such results “You May Also Like” or YMAL results. In [107],
we have provided a taxonomy of three fundamentally different approaches to computing
YMAL results. The first one, termed current-state, uses the results and the schema of
the current query and the database. The second one, termed history-based, is similar to
traditional recommendation systems. It uses the past history of user queries to suggest
tuples that are results of either similar past queries or results of queries posed by similar
users. The last one, termed external sources, considers using information from resources
external to the database, such as the web. In our current work, we mainly focus on the
current-state approach, since we believe that using the results of a query to recommend
other possibly interesting results is a challenging direction for recommendations.

7.2.2 Long Term Plans

Hybrid Preference Models: The preference models proposed so far by the research
community follow either the qualitative or the quantitative approach. Using qualitative

166

preferences, we cannot distinguish how much better a query answer is compared to an-
other. We could exploit ideas from both philosophies. For instance, we could express
preferences, such as thriller movies are preferred over dramas with score 0.7 and dramas
are preferred over comedies with score 0.5. Defining such hybrid preference models is
challenging. For example, given the preferences above, what is the relationship between
thriller and comedy movies? Furthermore, people naturally express their preferences in ei-
ther way (e.g., “I like comedies a lot” and “I like comedies more than dramas”). We could
also define a hybrid preference model that allows expressing both qualitative and quan-
titative preferences. Then, several interesting issues arise: How can we combine hybrid
preferences? How can we rank query results, using both a qualitative or a quantitative
approach?

Group or Social Preferences: The need for group or social preferences comes along
with a number of scenarios. For example, recommend the most preferred restaurants
or movies for friends taking into account the preferences of each individual. A natural
question is: How can individual preferences be aggregated into social preferences? How
is a social preference formally defined? In general, there are two fundamental ways to
create group rankings: (i) compute for each user a ranking of results based only on the
user’s preferences and merge these individual rankings to compute an overall ranking, i.e.,
a ranking for the group, and (ii) aggregate the preferences of all users into a single profile
that is subsequently used to provide an overall ranking. To deal with inconsistencies or
conflicts of interest, we need to define different aggregation policies, such as acceptance,
tolerance and disagreement. Ranking aggregation has been recently discussed in the
context of group recommendations [14].

Preferential Social Search: Usually, in social web systems, users share resources, such
as photos, research papers, answers to questions, blogs and other personal information.
Since such systems become extremely popular and thus, an important component of the
web, exploring new ways of searching the social graph is challenging. Building upon our
previous work, we envision a social system, where users are allowed to restrict their view of
the social graph based on the current context and related preferences. More specifically,
users will be able to query the social graph and be presented with a diversified sub-
graph relevant to their interests. As the time passes, results will be adapted to the user’s
new context. For instance, a query about friends’ news submitted on Monday morning
may begin returning information about various activities of the user’s colleagues. By the
evening of the same day, the same query may be presenting information about the user’s
friends and family. From a different perspective, social systems can be used for deducing
user preferences. By exploiting the amount of personal information currently available
over the social web, interesting knowledge about users can be elicited.

167

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

Internet Movies Database. Available at http://www.imdb.com/.
MovieLens 2003. Available at http://www.grouplens.org/data.
Movies dataset. Available at http://had.co.nz/data/movies.

PerK: Experimental Info (Source code and datasets). Available at http://www.cs.
uoi.gr/~kstef/PerK.

PrefSIENA. Available at http://www.cs.uoi.gr/~mdrosou/PrefSIENA.

SIENA. Available at http://serl.cs.colorado.edu/~serl/dot/siena.html.

Stanford Movies Dataset. Available at http://infolab.stanford.edu/pub/movies/.
TCP-H Dataset. Available at http://www.tcp.org.

G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. IEEE Trans.
Knowl. Data Eng., 17(6):734-749, 2005.

R. Agrawal, R. Rantzau, and E. Terzi. Context-sensitive ranking. In SIGMOD,
pages 383-394, 2006.

R. Agrawal and E. L. Wimmers. A framework for expressing and combining pref-
erences. In SIGMOD, pages 297-306, 2000.

S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A system for keyword-based
search over relational databases. In ICDFE, 2002.

A. Aho, Y. Sagiv, and J. D. Ullman. Equivalence of relational expressions. STAM
J. of Computing, 8(2):218-246, 1979.

S. Amer-Yahia, S. B. Roy, A. Chawla, G. Das, and C. Yu. Group recommendation:
Semantics and efficiency. PVLDB, 2(1):754-765, 2009.

A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objectrank: Authority-based
keyword search in databases. In VLDB, pages 564-575, 2004.

168

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[27]

28]

[29]

[30]

M. Bazire and P. Brézillon. Understanding context before using it. In CONTEXT,
pages 29-40, 2005.

G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword
searching and browsing in databases using banks. In ICDFE, 2002.

C. Bolchini, C. Curino, E. Quintarelli, F. A. Schreiber, and L. Tanca. A data-
oriented survey of context models. SIGMOD Rec., 36(4):19-26, 2007.

J.-C. Borda. Mémoire sur les élections au scrutin. Histoire de I’Académie Royale
des Sciences, 1781.

S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline operator. In ICDFE, pages
421-430, 2001.

C. Boutilier, R. I. Brafman, H. H. Hoos, and D. Poole. Reasoning with conditional
ceteris paribus preference statements. In Proc. of the Sym. on Uncertainty in Al,
pages 71-80, 1999.

J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algo-
rithms for collaborative filtering. In UAI pages 43-52, 1998.

P. Brown, J. Bovey, and X. Chen. Context-aware applications: From the laboratory
to the marketplace. IEEE Personal Communications, 4(5):58-64, 1997.

C. Buckley and E. M. Voorhees. Retrieval evaluation with incomplete information.
In SIGIR, pages 25-32, 2004.

C. J. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and
G. N. Hullender. Learning to rank using gradient descent. In ICML, pages 89-96,
2005.

A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a wide-
area event notification service. ACM Trans. on Computer Syst., 19:332-383, 2001.

C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang. Finding
k-dominant skylines in high dimensional space. In SIGMOD, pages 503-514, 2006.

S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilistic information
retrieval approach for ranking of database query results. ACM Trans. Database
Syst., 31(3):1134-1168, 2006.

C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. In ICDT,
pages 5670, 1997.

G. Chen and D. Kotz. A Survey of Context-Aware Mobile Computing Research.
Technical Report TR2000-381, Dartmouth College, Computer Science, November
2000.

169

[31] J. Chomicki. Querying with intrinsic preferences. In EDBT, pages 34-51, 2002.

[32] J. Chomicki. Preference formulas in relational queries. ACM Trans. Database Syst.,

28(4):427-466, 2003.

[33] J. Chomicki. Semantic optimization techniques for preference queries. Inf. Syst.,

32(5):670-684, 2007.

[34] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting. In ICDE,

pages 717-719, 2003.

[35] W. W. Cohen, R. E. Schapire, and Y. Singer. Learning to order things. J. Artif.

Intell. Res. (JAIR), 10:243-270, 1999.

136] J. A. N. Condorcet. Essai Sur L’ application De L’ analyse d La Probabilité Des

Décisions Rendues d La Pluralité Des Voiz. Kessinger Publishing, 1785.

[37] G. Das, D. Gunopulos, N. Koudas, and D. Tsirogiannis. Answering top-k queries

using views. In VLDB, pages 451-462, 2006.

[38] J. P. Delgrande, T. Schaub, and H. Tompits. A framework for compiling preferences

in logic programs. TPLP, 3(2):129-187, 2003.

[39] A. K. Dey. Understanding and using context. Personal Ubiquitous Comput., 5(1):4—

7, 2001.

[40] M. Drosou, E. Pitoura, and K. Stefanidis. Preferential publish/subscribe.
PersDB, pages 9-16, 2008.

[41] M. Drosou, K. Stefanidis, and E. Pitoura. Preference-aware publish/subscribe de-

livery with diversity. In DEBS, pages 1-12, 2009.

[42] E. Erkut. The discrete p-dispersion problem. European Journal of Operational

Research, 46(1):48 — 60, 1990.

[43] E. Erkut, Y. Ulkiisal, and O. Yenicerioglu. A comparison of p-dispersion heuristics.

Computers & OR, 21(10), 1994.

[44] M. Ester, J. Kohlhammer, and H.-P. Kriegel. The dc-tree: A fully dynamic index

structure for data warehouses. In ICDE, pages 379-388, 2000.

[45] P. T. Eugster, P. A. Felber, R. Guerraoui, and A. M. Kermarrec. The many faces

of publish/subscribe. ACM Comput. Surv., 35(2):114-131, 2003.

[46] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha. Fil-
tering algorithms and implementation for very fast publish/subscribe. In SIGMOD,

pages 115-126, 2001.

170

[47]

48]

[53]

[54]

[57]

[58]

R. Fagin. Combining fuzzy information from multiple systems. In PODS, pages
216-226, 1996.

R. Fagin. Combining fuzzy information from multiple systems. Journal of Computer
and System Sciences, 58(1):83-99, 1999.

R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.
In PODS, 2001.

P. C. Fishburn. Preference structures and their numerical representations. Theo-
retical Computer Science, 217(2):359-383, 1999.

P. Georgiadis, 1. Kapantaidakis, V. Christophides, E. M. Nguer, and N. Spyratos.
Efficient rewriting algorithms for preference queries. In ICDE, pages 1101-1110,
2008.

U. Giintzer, W.-T. Balke, and W. Kiessling. Optimizing multi-feature queries for
image databases. In VLDB, pages 419-428, 2000.

U. Giintzer, W.-T. Balke, and W. Kiessling. Towards efficient multi-feature queries
in heterogeneous environments. In ITCC, pages 622-628, 2001.

L. Guo, S. Amer-Yahia, R. Ramakrishnan, J. Shanmugasundaram, U. Srivastava,
and E. Vee. Efficient top-k processing over query-dependent functions. In VLDB,
pages 1044-1055, 2008.

B. Hafenrichter and W. Kiessling. Optimization of relational preference queries. In
ADC, pages 175-184, 2005.

S. O. Hansson. Preference logic. Handbook of Philosophical Logic (D. Gabbay, Fd.),
8, 2001.

H. He, H. Wang, J. Yang, and P. S. Yu. Blinks: ranked keyword searches on graphs.
In SIGMOD, pages 305-316, 2007.

S. Holland, M. Ester, and W. Kiessling. Preference mining: A novel approach on
mining user preferences for personalized applications. In PKDD, 2003.

S. Holland, M. Ester, and W. Kiessling. Preference mining: A novel approach on
mining user preferences for personalized applications. In PKDD, pages 204-216,
2003.

S. Holland and W. Kiessling. Situated preferences and preference repositories for
personalized database applications. In FR, pages 511-523, 2004.

V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient ir-style keyword search
over relational databases. In VLDB, 2003.

171

[62]

[63]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

V. Hristidis, N. Koudas, and Y. Papakonstantinou. Prefer: A system for the efficient
execution of multi-parametric ranked queries. In SIGMOD, pages 259-270, 2001.

V. Hristidis and Y. Papakonstantinou. Discover: Keyword search in relational
databases. In VLDB, 2002.

V. Hristidis and Y. Papakonstantinou. Algorithms and applications for answering
ranked queries using ranked views. VLDB J., 13(1):49-70, 2004.

I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting top-k join queries in
relational databases. VLDB J., 13(3):207-221, 2004.

I[. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing
techniques in relational database systems. ACM Comput. Surv., 40(4), 2008.

I[. F. Tlyas, R. Shah, W. G. Aref, J. S. Vitter, and A. K. Elmagarmid. Rank-aware
query optimization. In SIGMOD, pages 203-214, 2004.

E. Jembere, M. O. Adigun, and S. S. Xulu. Mining context-based user preferences
for m-services applications. In Web Intelligence, pages 757-763, 2007.

B. Jiang, J. Pei, X. Lin, D. W. Cheung, and J. Han. Mining preferences from
superior and inferior examples. In KDD, pages 390-398, 2008.

T. Joachims. Optimizing search engines using clickthrough data. In KDD, 2002.

S. Y. Jung, J.-H. Hong, and T.-S. Kim. A formal model for user preference. In
ICDM, pages 235242, 2002.

V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and H. Karambelkar.
Bidirectional expansion for keyword search on graph databases. In VLDB, pages
505-516, 2005.

M. G. Kendall. The treatment of ties in ranking problems. Biometrika, 33(3):239—
251, 1945.

W. Kiessling. Foundations of preferences in database systems. In VLDB, pages
311-322, 2002.

W. Kiessling. Preference queries with sv-semantics. In COMAD, pages 15-26, 2005.

W. Kiessling, B. Hafenrichter, S. Fischer, and S. Holland. Preference xpath: A query
language for e-commerce. In Wirtschaftsinformatik, 2001.

W. Kiessling and G. Kostler. Preference sql - design, implementation, experiences.
In VLDB, pages 990-1001, 2002.

172

78]

[81]

[82]

[83]

[84]

38

[89]

[91]

[92]

J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and
J. Riedl. Grouplens: Applying collaborative filtering to usenet news. Commun.
ACM, 40(3):77-87, 1997.

D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: an online algo-
rithm for skyline queries. In VLDB, pages 275-286, 2002.

G. Koutrika and Y. Ioannidis. Personalized queries under a generalized preference
model. In ICDFE, pages 841-852, 2005.

G. Koutrika and Y. Ioannidis. Answering queries based on preference hierarchies.
Technical Report 2008-6, Stanford InfoLab, 2008.

G. Koutrika and Y. E. Ioannidis. Personalization of queries in database systems. In
ICDE, pages 597—608, 2004.

G. Koutrika and Y. E. Ioannidis. Constrained optimalities in query personalization.
In SIGMOD, pages 73-84, 2005.

M. Lacroix and P. Lavency. Preferences; putting more knowledge into queries. In
VLDB, pages 217225, 1987.

C. Li, K. C.-C. Chang, and I. F. Ilyas. Supporting ad-hoc ranking aggregates. In
SIGMOD, pages 61-72, 2006.

Y. Li, Z. A. Bandar, and D. McLean. An approach for measuring semantic sim-

ilarity between words using multiple information sources. IEEE Transactions on
Knowledge and Data Engineering, 15(4):871-882, 2003.

X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars: The k most representative
skyline operator. In ICDE, pages 86-95, 2007.

F. Liu, C. T. Yu, W. Meng, and A. Chowdhury. Effective keyword search in rela-
tional databases. In SIGMOD, pages 563-574, 2006.

H. Liu and H.-A. Jacobsen. Modeling uncertainties in publish/subscribe systems.
In ICDE, pages 510-522, 2004.

Y. Luo, X. Lin, W. W. 0011, and X. Zhou. Spark: top-k keyword query in relational
databases. In SIGMOD, pages 115-126, 2007.

A. Machanavajjhala, E. Vee, M. N. Garofalakis, and J. Shanmugasundaram. Scal-
able ranked publish/subscribe. PVLDB, 1(1):451-462, 2008.

A. Miele, E. Quintarelli, and L. Tanca. A methodology for preference-based per-
sonalization of contextual data. In EDBT, pages 287-298, 2009.

173

93] G. A. Miller. Wordnet: a lexical database for english. Commun. ACM, 38(11):39-41,
1995.

[94] B. Mobasher, R. Cooley, and J. Srivastava. Automatic personalization based on
web usage mining. Commun. ACM, 43(8):142-151, 2000.

[95] R. J. Mooney and L. Roy. Content-based book recommending using learning for
text categorization. CoRR, ¢s.DL/9902011, 1999.

[96] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. S. Vitter. Supporting incre-
mental join queries on ranked inputs. In VLDB, pages 281-290, 2001.

[97] S. Nepal and M. V. Ramakrishna. Query processing issues in image (multimedia)
databases. In Proceedings of the 15th International Conference on Data Engineering,
pages 22-29, 1999.

(98] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive algorithm
for skyline queries. In SIGMOD, pages 467-478, 2003.

[99] M. J. Pazzani and D. Billsus. Learning and revising user profiles: The identification
of interesting web sites. Machine Learning, 27(3):313-331, 1997.

[100] J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the best views of skyline: A semantic
approach based on decisive subspaces. In VLDB, pages 253-264, 2005.

[101] K. Pripuzic, I. P. Zarko, and K. Aberer. Top-k/w publish /subscribe: finding k most
relevant publications in sliding time window w. In DEBS, pages 127-138, 2008.

[102] K. A. Ross, P. J. Stuckey, and A. Marian. Practical preference relations for large
data sets. In ICDE Workshops, pages 229-236, 2007.

[103] A. Schmidt, A. K. Aidoo, A. Takaluoma, U. Tuomela, K. Laerhoven, and
M. de Velde. Advanced interaction in context. In 1st Int’l Symposium on Handheld
and Ubiquitous Computing, pages 89—-101, 1999.

[104] A. Simitsis, G. Koutrika, and Y. E. Ioannidis. Précis: from unstructured keywords
as queries to structured databases as answers. VLDB J., 17(1):117-149, 2008.

[105] D. Souravlias, M. Drosou, K. Stefanidis, and E. Pitoura. On novelty pub-
lish/subscribe delivery. Submitted.

[106] K. Stefanidis, M. Drosou, and E. Pitoura. Perk: Personalized keyword search in
relational databases. Submitted.

[107] K. Stefanidis, M. Drosou, and E. Pitoura. You may also like results in relational
databases. In PersDB, pages 37—42, 2009.

174

[108] K. Stefanidis, G. Koutrika, and E. Pitoura. A survey on representation, compo-
sition and application of preferences in database systems. Submitted for journal

publication.

[109] K. Stefanidis and E. Pitoura. Approximate contextual preference scoring in digital
libraries. In PersDL, pages 60-64, 2007.

[110] K. Stefanidis and E. Pitoura. Fast contextual preference scoring of database tuples.
In EDBT, pages 344-355, 2008.

[111] K. Stefanidis, E. Pitoura, and P. Vassiliadis. Managing contextual preferences.
Submitted for journal publication.

[112] K. Stefanidis, E. Pitoura, and P. Vassiliadis. Modeling and storing context-aware
preferences. In ADBIS, pages 124-140, 2006.

[113] K. Stefanidis, E. Pitoura, and P. Vassiliadis. Adding context to preferences. In
ICDE, pages 846-855, 2007.

[114] K. Stefanidis, E. Pitoura, and P. Vassiliadis. On relaxing contextual preference
queries. In MDM, pages 289-293, 2007.

[115] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive skyline computation. In
VLDB, pages 301-310, 2001.

[116] Y. Tao, X. Xiao, and J. Pei. Subsky: Efficient computation of skylines in subspaces.
In ICDE, page 65, 2006.

[117] R. Torlone and P. Ciaccia. Finding the best when it’s a matter of preference. In
SEBD, pages 347-360, 2002.

[118] R. Torlone and P. Ciaccia. Management of user preferences in data intensive appli-
cations. In SEBD, 2003.

[119] A. H. van Bunningen, L. Feng, and P. M. G. Apers. A context-aware preference
model for database querying in an ambient intelligent environment. In DEXA, pages
33-43, 2006.

[120] A. H. van Bunningen, M. M. Fokkinga, P. M. G. Apers, and L. Feng. Ranking query
results using context-aware preferences. In ICDE Workshops, pages 269-276, 2007.

[121] P. Vassiliadis and S. Skiadopoulos. Modelling and optimisation issues for multidi-
mensional databases. In CAiSE, pages 482-497, 2000.

[122] E. Vee, U. Srivastava, J. Shanmugasundaram, P. Bhat, and S. Amer-Yahia. Efficient
computation of diverse query results. In ICDE, pages 228236, 2008.

175

[123] Q. Wang, W.-T. Balke, W. Kiessling, and A. Huhn. P-news: Deeply personalized
news dissemination for mpeg-7 based digital libraries. In FCDL, pages 256—268,
2004.

[124] M. P. Wellman and J. Doyle. Preferential semantics for goals. In Proc. of AAAIL
pages 698-703, 1991.

[125] R. C.-W. Wong, J. Pei, A. W.-C. Fu, and K. Wang. Mining favorable facets. In
KDD, pages 804813, 2007.

[126] T. Xia, D. Zhang, and Y. Tao. On skylining with flexible dominance relation. In
ICDE, pages 1397-1399, 2008.

[127] K. Yi, H. Yu, J. Yang, G. Xia, and Y. Chen. Efficient maintenance of materialized
top-k views. In ICDE, pages 189-200, 2003.

[128] G. You and S. Hwang. Search structures and algorithms for personalized ranking.
Information Sciences, 178(20):3925-3942, 2008.

[129] C. Yu, L. V. S. Lakshmanan, and S. Amer-Yahia. It takes variety to make a world:
diversification in recommender systems. In EDBT, 2009.

[130] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang. Efficient computation
of the skyline cube. In VLDB, pages 241-252, 2005.

[131] H. Zha, Z. Zheng, H. Fu, and G. Sun. Incorporating query difference for learning
retrieval functions in world wide web search. In CIKM, pages 307-316, 2006.

[132] C. Zhai and J. D. Lafferty. A risk minimization framework for information retrieval.
Information Processing and Management, 42(1):31-55, 2006.

[133] M. Zhang and N. Hurley. Avoiding monotony: improving the diversity of recom-
mendation lists. In RecSys, 2008.

[134] M. Zhang and N. Hurley. Avoiding monotony: improving the diversity of recom-
mendation lists. In RecSys, pages 123—-130, 2008.

[135] X. Zhang and J. Chomicki. Profiling sets for preference querying. In SEBD, pages
34-44, 2008.

[136] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommen-
dation lists through topic diversification. In WIWW, 2005.

[137] C. Zimmer, C. Tryfonopoulos, K. Berberich, M. Koubarakis, and G. Weikum. Node
behavior prediction for large-scale approximate information filtering. In LSDS-IR,
2007.

176

PUBLICATIONS

1. K. Stefanidis, E. Pitoura and P. Vassiliadis. Managing Contextual Preferences. Sub-
mitted for journal publication (2009).

2. K. Stefanidis, G. Koutrika and E. Pitoura. A Survey on Representation, Compo-
sition and Application of Preferences in Database Systems. Submitted for journal
publication (2009).

3. K. Stefanidis, M. Drosou and E. Pitoura. PerK: Personalized Keyword Search in
Relational Databases. 13th International Conference on FExtending Database Tech-
nology (EDBT 2010). To appear.

4. D. Souravlias, M. Drosou, K. Stefanidis and E. Pitoura. On Novelty Publish/Subscribe
Delivery. 4th International Workshop on Ranking in Databases (DBRank 2010), in
conjunction with the ICDE 2010 Conference. To appear.

5. K. Stefanidis, M. Drosou and E. Pitoura. “You May Also Like” Results in Rela-
tional Databases. In Proc. of the 3rd International Workshop on Personalized Ac-
cess, Profile Management and Context Awareness in Databases (PersDB 2009), in
conjunction with the VLDB 2009 Conference, August 28, 2009, Lyon, France.

6. M. Drosou, K. Stefanidis and E. Pitoura. Preference-Aware Publish/Subscribe De-
livery with Diversity. In Proc. of the 3rd International Conference on Distributed
FEvent-Based Systems (DEBS 2009), July 6-9, 2009, Nashville, TN, USA.

7. M. Drosou, E. Pitoura and K. Stefanidis. Preferential Publish/Subscribe. In Proc.
of the 2nd International Workshop on Personalized Access, Profile Management and
Context Awareness: Databases (PersDB 2008), in conjunction with the VLDB 2008
Conference, August 23, 2008, Auckland, New Zealand.

8. K. Stefanidis and E. Pitoura. Fast Contextual Preference Scoring of Database Tu-
ples. In Proc. of the 11th International Conference on Fxtending Database Technol-
ogy (EDBT 2008), March 25-30, 2008, Nantes, France.

9. K. Stefanidis, E. Pitoura and P. Vassiliadis. A Context-Aware Preference Database
System. International Journal of Pervasive Computing and Communications, vol. 3,
no. 4, pp. 439-460, 2007. Emerald Group Publishing Limited.

10

11.

12.

13.

14.

K. Stefanidis and E. Pitoura. Approximate Contextual Preference Scoring in Digital
Libraries. In Proc. of the 10th DELOS Thematic Workshop on Personalized Access,
Profile Management and Context Awareness in Digital Libraries (PersDL 2007), in
conjunction with the UM 2007 Conference, June 29-30, 2007, Corfu, Greece.

K. Stefanidis, E. Pitoura and P. Vassiliadis. On Relaxing Contextual Preference
Queries. In Proc. of the 2nd International Workshop on Managing Context Infor-
mation and Semantics in Mobile Environments (MCISME 2007), in conjunction
with the MDM 2007 Conference, May 7, 2007, Mannheim, Germany.

K. Stefanidis, E. Pitoura and P. Vassiliadis. Adding Context to Preferences. In Proc.
of the 23rd International Conference on Data Engineering (ICDE 2007), April 15-
20, 2007, Istanbul, Turkey.

K. Stefanidis, E. Pitoura and P. Vassiliadis. Modeling and Storing Context-Aware
Preferences. In Proc. of the 10th East-European Conference on Advances in Databases
and Information Systems (ADBIS 2006), September 3-7, 2006, Thessaloniki, Greece.

K. Stefanidis, E. Pitoura and P. Vassiliadis. On Supporting Context-Aware Prefer-
ences in Relational Database Systems. In Proc. of the 1st International Workshop
on Managing Context Information in Mobile and Pervasive Environments (MCMP
2005), in conjunction with the MDM 2005 Conference, May 9, 2005, Ayia Napa,
Cyprus.

178

SHORT CV

Kostas Stefanidis was born on July 16, 1979 in Thessaloniki, Greece. He received his MSc
and BSc Degrees from the Computer Science Department of the University of Ioannina
in Greece in 2005 and 2003 respectively, both under the supervision of Prof. Evaggelia
Pitoura. From 2002 until now, he is a member of the Distributed Data Management
Laboratory. His research focus is on personalization systems, with particular interest in
personalized search.

