
×áñáêôçñéóìüò ÍÝùí ÊëÜóåùí ÔÝëåéùí ÃñáöçìÜôùí êáé
Áëãüñéèìïé ×ñùìáôéóìïý êáé ÌÝãéóôùí Äéáäñïìþí

Ç ÄÉÄÁÊÔÏÑÉÊÇ ÄÉÁÔÑÉÂÇ

õðïâÜëëåôáé óôçí

ïñéóèåßóá áðü ôçí ÃåíéêÞ ÓõíÝëåõóç ÅéäéêÞò Óýíèåóçò

ôïõ ÔìÞìáôïò ÐëçñïöïñéêÞò ÅîåôáóôéêÞ ÅðéôñïðÞ

áðü ôçí

ÊõñéáêÞ Éùáííßäïõ

ùò ìÝñïò ôùí Õðï÷ñåþóåùí ãéá ôç ëÞøç ôïõ

ÄÉÄÁÊÔÏÑÉÊÏÕ ÄÉÐËÙÌÁÔÏÓ ÓÔÇÍ

ÐËÇÑÏÖÏÑÉÊÇ

ÄåêÝìâñéïò 2009

ÔñéìåëÞò ÓõìâïõëåõôéêÞ ÅðéôñïðÞ

• Óôáýñïò Ä. Íéêïëüðïõëïò, ÊáèçãçôÞò ôïõ ÔìÞìáôïò ÐëçñïöïñéêÞò ôïõ Ðáíåðéóôçìßïõ Éùáííßíùí
(åðéâëÝðùí)

• ×ñÞóôïò ÊáêëáìÜíçò, ÊáèçãçôÞò ôïõ ÔìÞìáôïò Ìç÷áíéêþí Ç/Õ & ÐëçñïöïñéêÞò ôïõ
Ðáíåðéóôçìßïõ Ðáôñþí

• Ëåùíßäáò Ðáëçüò, ÁíáðëçñùôÞò ÊáèçãçôÞò ôïõ ÔìÞìáôïò ÐëçñïöïñéêÞò ôïõ Ðáíåðéóôçìßïõ
Éùáííßíùí

ÅðôáìåëÞò ÅîåôáóôéêÞ ÅðéôñïðÞ

• Óôáýñïò Ä. Íéêïëüðïõëïò, ÊáèçãçôÞò ôïõ ÔìÞìáôïò ÐëçñïöïñéêÞò ôïõ Ðáíåðéóôçìßïõ Éùáííßíùí
(åðéâëÝðùí)

• ×ñÞóôïò ÊáêëáìÜíçò, ÊáèçãçôÞò ôïõ ÔìÞìáôïò Ìç÷áíéêþí Ç/Õ & ÐëçñïöïñéêÞò ôïõ
Ðáíåðéóôçìßïõ Ðáôñþí

• Ëåùíßäáò Ðáëçüò, ÁíáðëçñùôÞò ÊáèçãçôÞò ôïõ ÔìÞìáôïò ÐëçñïöïñéêÞò ôïõ Ðáíåðéóôçìßïõ
Éùáííßíùí

• ÅõóôÜèéïò ÆÜ÷ïò, ÊáèçãçôÞò ôçò Ó÷ïëÞò Çëåêôñïëüãùí Ìç÷áíéêþí êáé Ìç÷áíéêþí Õðïëïãéóôþí
ôïõ Åèíéêïý Ìåôóüâéïõ Ðïëõôå÷íåßïõ

• Âáóßëåéïò Æçóéìüðïõëïò, ÊáèçãçôÞò ôïõ ÔìÞìáôïò ÐëçñïöïñéêÞò & Ôçëåðéêïéíùíéþí ôïõ Åèíéêïý
êáé Êáðïäéóôñéáêïý Ðáíåðéóôçìßïõ Áèçíþí

• Óðõñßäùíáò ÊïíôïãéÜííçò, ËÝêôïñáò ôïõ ÔìÞìáôïò ÐëçñïöïñéêÞò ôïõ Ðáíåðéóôçìßïõ Éùáííßíùí

• ×ñÞóôïò Íïìéêüò, Åðßêïõñïò ÊáèçãçôÞò ôïõ ÔìÞìáôïò ÐëçñïöïñéêÞò ôïõ Ðáíåðéóôçìßïõ Éùáííßíùí

Åõ÷áñéóôßåò

Èá Þèåëá íá áðåõèýíù ôéò èåñìüôåñåò åõ÷áñéóôßåò ìïõ óôïí åðéâëÝðïíôá êáèçãçôÞ ìïõ ê. Óôáýñï Ä.
Íéêïëüðïõëï ãéá ôçí ðïëýôéìç âïÞèåéá êáé êáèïñéóôéêÞ óõìâïëÞ ôïõ óôçí ïëïêëÞñùóç ôçò äéäáêôïñéêÞò
ìïõ äéáôñéâÞò. Èá Þèåëá íá ôïõ åêöñÜóù ôçí åõãíùìïóýíç ìïõ, áöïý ÷Üñç óôçí åðéóôçìïíéêÞ ôïõ
ãíþóç, ôçí óõíå÷Þ êáèïäÞãçóç, êáé ôçí áìÝñéóôç õðïóôÞñéîÞ ôïõ, áõôÞ ç åñãáóßá ïëïêëçñþèçêå åðéôõ÷þò.
ÅðéðëÝïí, ôïí åõ÷áñéóôþ èåñìÜ ãéáôß ìå ôçí áõóôçñÞ, êáé ôáõôü÷ñïíá åíèïõóéþäç êáé óõíå÷Þ ðñïôñïðÞ
ôïõ ìïõ äßäáîå íá âáäßæù \óùóôÜ" óôá ìïíïðÜôéá ôïõ \üìïñöïõ" êüóìïõ ôçò áëãïñéèìéêÞò èåùñßáò
ãñáöçìÜôùí.

Èá Þèåëá íá åõ÷áñéóôÞóù ôïí ÊáèçãçôÞ ê. ×ñÞóôï ÊáêëáìÜíç êáé ôïí ÁíáðëçñùôÞ ÊáèçãçôÞ ê. Ëåùíßäá
Ðáëçü (ìÝëç ôçò ôñéìåëïýò óõìâïõëåõôéêÞò åðéôñïðÞò) ãéá ôçí âïÞèåéá, ôéò óõìâïõëÝò êáé ôïí ÷ñüíï ðïõ
ìïõ áöéÝñùóáí. Ïé óõìâïõëÝò ôïõò Þôáí êáèïñéóôéêÝò óå üëá ôá åñåõíçôéêÜ èÝìáôá ðïõ ìåëåôÞóáìå.
Åðßóçò, èá Þèåëá íá åõ÷áñéóôÞóù ôïõò êê. ÅõóôÜèéï ÆÜ÷ï, Âáóßëåéï Æçóéìüðïõëï, ×ñÞóôï Íïìéêü, êáé
Óðõñßäùíá ÊïíôïãéÜííç (ìÝëç ôçò åðôáìåëïýò åîåôáóôéêÞò åðéôñïðÞò) ãéá ôçí åðéóôçìïíéêÞ óõìâïëÞ ôïõò
óôçí åêðüíçóç ôçò äéáôñéâÞò ìïõ.

ÅðéðëÝïí, èá Þôáí ðáñÜëåéøç íá ìçí áíáöåñèþ óôçí õëéêïôå÷íéêÞ õðïäïìÞ, êáèþò êáé óôï öéëéêü êáé
åõ÷Üñéóôï ðåñéâÜëëïí, ðïõ ìïõ ðáñåß÷å ôï ÔìÞìá ÐëçñïöïñéêÞò ôïõ Ðáíåðéóôçìßïõ Éùáííßíùí êáôÜ ôç
äéÜñêåéá ôùí ìåôáðôõ÷éáêþí ìïõ óðïõäþí.

ÔÝëïò, èá Þèåëá íá åõ÷áñéóôÞóù èåñìÜ ôïõò ãïíåßò ìïõ, ïé ïðïßïé ìå ôçí áìÝñéóôç óõìðáñÜóôáóç êáé
çèéêÞ õðïóôÞñéîÞ ôïõò Ýêáíáí åöéêôÞ ôçí ïëïêëÞñùóç ôùí óðïõäþí ìïõ.

ÊõñéáêÞ Éùáííßäïõ

ÉùÜííéíá, ÄåêÝìâñéïò 2009

Ôï Ýñãï óõã÷ñçìáôïäïôåßôáé

• 80 % ôçò Äçìüóéáò ÄáðÜíçò áðü ôçí ÅõñùðáúêÞ ¸íùóç - Åõñùðáúêü Êïéíùôéêü Ôáìåßï

• 20 % ôçò Äçìüóéáò ÄáðÜíçò áðü ôï Åëëçíéêü Äçìüóéï - Õðïõñãåßï ÁíÜðôõîçò - ÃåíéêÞ Ãñáììáôåßá
¸ñåõíáò êáé Ôå÷íïëïãßáò

• êáé áðü ôïí Éäéùôéêü ÔïìÝá

óôï ðëáßóéï ôïõ ÌÝôñïõ 8.3 ôïõ Å.Ð. Áíôáãùíéóôçêüôçôá - Ã Êïéíïôéêü Ðëáßóéï ÓôÞñéîçò.

Contents

1 Introduction 1
1.1 Preliminaries . 1
1.2 Perfect Graphs . 2
1.3 Computability and Complexity . 4

1.3.1 Polynomial Transformations and NP-completeness 5
1.3.2 Polynomial Algorithms . 6

1.4 Coloring and Longest Path Problems . 7
1.4.1 Colinear Coloring and Colinear Graphs . 7
1.4.2 The Harmonious Coloring Problem . 8
1.4.3 The Longest Path Problem . 9

2 Colinear Coloring and Colinear Graphs 11
2.1 Introduction . 11
2.2 Colinear Coloring on Graphs . 13
2.3 An Algorithm for Colinear Coloring . 14
2.4 Graphs having the �-colinear and �-colinear Properties 16
2.5 Colinear and Linear Graphs . 18
2.6 Structural Properties . 19
2.7 Concluding Remarks . 30

3 The Harmonious Coloring Problem 31
3.1 Introduction . 31
3.2 Connected Interval and Permutation Graphs . 32
3.3 Split Graphs . 35
3.4 Harmonious Coloring on Colinear Graphs . 36
3.5 Harmonious Coloring on Split Strongly Chordal Graphs 40
3.6 Concluding Remarks . 42

4 The Longest Path Problem on Interval Graphs 43
4.1 Introduction . 43
4.2 Theoretical Framework . 44

4.2.1 Structural Properties of Interval Graphs . 44
4.2.2 Normal Paths . 45

4.3 Interval Graphs and the Longest Path Problem . 47
4.3.1 The interval graph H . 47
4.3.2 Finding a longest path on H . 48
4.3.3 Finding a longest path on G . 49

4.4 Correctness and Time Complexity . 50
4.4.1 Correctness of Algorithm LP on H . 50
4.4.2 Correctness of Algorithm LP Interval . 56

i

4.4.3 Time Complexity . 57
4.5 Concluding Remarks . 57

5 The Longest Path Problem on Cocomparability Graphs 59
5.1 Introduction . 59
5.2 Theoretical Framework . 60

5.2.1 Partial Orders and Cocomparability Graphs . 60
5.2.2 Normal Antipaths on Comparability Graphs . 63

5.3 The Algorithm . 66
5.4 Correctness and Time Complexity . 69

5.4.1 Correctness of Algorithm LP Cocomparability . 69
5.4.2 Time Complexity . 79

5.5 Concluding Remarks . 79

6 Conclusions and Further Research 81
6.1 Colinear and Linear Graphs . 81
6.2 The Harmonious Coloring Problem . 83
6.3 The Longest Path Problem . 83

ii

List of Figures

1.1 Illustrating a map of some classes of perfect graphs, including the classes of colinear and
linear graphs. 7

2.1 Illustrating a colinear coloring of the graphs 2K2, C4 and P4 with the least possible colors. 14
2.2 A graph G which is a split graph but it does not have the �-colinear property, since

�(G) = 4 and �(G) = 5. 18
2.3 Illustrating the graph P 6 which is not a colinear graph, since �(P 6) 6= �(P6). 19
2.4 Illustrating the inclusion relations among the classes of colinear graphs, linear graphs, and

other classes of perfect graphs. 20
2.5 Illustrating Case (A) and Case (B.a) . 24
2.6 Illustrating Cases (B.b) and (B.c) of the proof. 25

3.1 Illustrating the constructed connected interval and permutation graph G. 33
3.2 The complexity status of the harmonious coloring problem for some graph subclasses of

permutation and chordal graphs. A→ B indicates that class A contains class B. 36
3.3 Illustrating the complexity status of the harmonious coloring problem, and the inclusion

relations, for the classes of colinear graphs, linear graphs, and other subclasses of co-chordal
and chordal graphs. 37

3.4 A split graph G which is not a colinear graph, since �(G) = 4 and �(G) = 5. Also, G is
not an undirected path graph. 40

4.1 Illustrating an intersection model of an interval graph G. The path P =
(v2; v1; v6; v5; v4; v3), which is Hamiltonian for the graph G, is not a normal path. The
path P ′ = (v1; v2; v4; v3; v6; v5) is a normal path such that V (P ′) = V (P). 46

5.1 Illustrating a Hasse diagram of a cocomparability graph G, with layers H1;H2;H3;H4.
Note that � = (v1; v2; : : : ; v10) is a layered ordering for G. 61

5.2 Illustrating a Hasse diagram of a comparability graph G, an antipath P = (v3; v1; v5; v7)
of G which is not normal and a normal antipath P ′′ = (v1; v3; v2; v5; v7; v6) of G. 66

5.3 Illustrating a Hasse diagram of a comparability graph G and the induced subgraphs
G(v1; 2; 3) and G(v0; 1; 3) of G. 67

5.4 Illustrating a Hasse diagram of a comparability graph G and the induced subgraphs
G(v1; 2; 4) and G2

v9(v1; 2; 4) of G. 68
5.5 Illustrating a map of some classes of perfect graphs and the complexity status of the longest

path problem. 80

6.1 Illustrating forbidden subgraphs F1, F2, and F3 (in the order they appear from left to
right). Note that, in all three graphs, the set K is a clique, and I is an independent set. . 82

6.2 Illustrating the forbidden subgraphs F̃1, F̃2, and F̃3 (in the order they appear from left to
right). Note that, in all three graphs, the set K is a clique, and I is an independent set. . 83

iii

List of Algorithms

1 Algorithm Colinear Coloring . 15
2 Algorithm Strong Elimination Ordering . 22
3 Algorithm Harmonious Coloring . 41
4 Algorithm LP on H for �nding a longest binormal path of H. 49
5 Algorithm LP Interval for solving the longest path problem on an interval graph G. . . . 50
6 Algorithm LP Cocomparability for �nding a longest antipath of G. 70
7 The procedure process(). 71

v

Abstract

In this work we provide characterizations of two new classes of perfect graphs, namely colinear and linear
graphs. Moreover, we present polynomial-time algorithms or NP-completeness results for various types of
the coloring problem on graphs and polynomial-time algorithms for the longest path problem on perfect
graphs.

In particular, motivated by the de�nition of linear coloring on simplicial complexes, recently intro-
duced in the context of algebraic topology, we introduce the colinear coloring on graphs, and propose
a polynomial algorithm for colinearly coloring any graph G. Based on the colinear coloring, we de�ne
the �-colinear and �-colinear properties and characterize known graph classes in terms of these prop-
erties. In the sequence, we study those graphs which are characterized completely by the �-colinear or
�-colinear property, and conclude that these graphs form two new classes of perfect graphs, which we
call colinear and linear graphs. We provide characterizations for colinear and linear graphs and prove
structural properties. Moreover, we study the harmonious coloring problem on connected permutation
graphs and subclasses of co-chordal and chordal graphs, including colinear and interval graphs, and either
prove NP-completeness results or provide polynomial algorithms for solving the problem.

Furthermore, we study the longest path problem and we �rst show that it has a polynomial solution
on interval graphs, answering thus a question left open in [63]. Then we extend our results by proposing
a polynomial time algorithm for solving the longest path problem on cocomparability graphs, resolving
the open question for the status of the longest path problem on cocomparability graphs, and also on
permutation graphs. We next describe the problems that we study in this work.

Colinear Coloring and Colinear Graphs
Motivated by the de�nition of linear coloring on simplicial complexes, recently introduced in the context
of algebraic topology, and the framework through which it was studied, we introduce the colinear coloring
on graphs. The colinear coloring of a graph G is a vertex coloring such that two vertices can be assigned
the same color, if their corresponding clique sets are associated by the set inclusion relation (a clique set
of a vertex u is the set of all maximal cliques containing u); the colinear chromatic number �(G) of G
is the least integer k for which G admits a colinear coloring with k colors. We prove that for any graph
G, �(G) ≥ �(G), providing thus an upper bound for the chromatic number �(G) of G, and show that
any graph G can be colinearly colored in polynomial time by proposing a simple algorithm. Based on
the colinear coloring, we de�ne the �-colinear and �-colinear properties and characterize known graph
classes in terms of these properties.

Based on these results and the de�nition of perfect graphs (a graph G is perfect if and only if
�(GA) = !(GA), ∀A ⊆ V (G), where !(G) is the clique number of G [37]), we study those graphs which are
characterized completely by the �-colinear or the �-colinear property, and conclude that these graphs form
two new classes of perfect graphs, which we call colinear and linear graphs. A graph G is called colinear if
and only if �(GA) = �(GA), ∀A ⊆ V (G). A graph G is called linear if and only if �(GA) = �(GA), ∀A ⊆
V (G); note that �(G) is the stability number of G. We provide characterizations for colinear and linear
graphs and prove structural properties in terms of forbidden induced subgraphs. An interesting question
for future work would be to study structural and recognition properties of colinear and linear graphs
and see whether they can be characterized by a �nite set of forbidden induced subgraphs. Moreover, an

vii

obvious though interesting open question would be whether combinatorial and/or optimization problems
can be e�ciently solved on the classes of colinear and linear graphs.

This study lead to the following publications:

• K. Ioannidou and S.D. Nikolopoulos, Colinear coloring on graphs, 3rd Annual Workshop on Algo-
rithms and Computation (WALCOM'09), LNCS 5431 (2009) 117{128.

• K. Ioannidou and S.D. Nikolopoulos, Colinear coloring and colinear graphs, Technical Report TR-
2007-06, Department of Computer Science, University of Ioannina, 2007 (submitted to journal).

The Harmonious Coloring Problem
A harmonious coloring of a simple graph G is a proper vertex coloring such that each pair of colors
appears together on at most one edge. The harmonious chromatic number is the least integer k for which
G admits a harmonious coloring with k colors. Extending previous work on the NP-completeness of the
harmonious coloring problem when restricted to the class of disconnected graphs which are simultaneously
cographs and interval graphs [8], we prove that the problem is also NP-complete for connected interval
and permutation graphs. We also show that the harmonious coloring problem is NP-complete on split
graphs.

In the sequence we extend our results for the harmonious coloring problem on subclasses of chordal and
co-chordal graphs, by proving that the problem remains NP-complete for split undirected path graphs; we
also prove that the problem is NP-complete for colinear graphs by showing graph class inclusion relations.
Moreover, we provide a polynomial solution for the harmonious coloring problem for the class of split
strongly chordal graphs, the interest of which lies on the fact that the problem is NP-complete on both
split and strongly chordal graphs. In addition, polynomial solutions for the problem are only known for
the classes of threshold graphs and connected quasi-threshold graphs; note that, the harmonious coloring
problem is NP-complete on disconnected quasi-threshold graphs. Since linear graphs form a superclass
of both quasi-threshold graphs and split strongly chordal graphs, the harmonious coloring problem is
NP-complete on disconnected linear graphs, while it still remains open on connected linear graphs.

This work lead to the following publications:

• K. Asdre, K. Ioannidou, S.D. Nikolopoulos, The harmonious coloring problem is NP-complete for
interval and permutation graphs, Discrete Applied Math. 155 (2007) 2377{2382.

• K. Ioannidou and S.D. Nikolopoulos, Harmonious coloring on subclasses of colinear graphs, 4rd
Annual Workshop on Algorithms and Computation (WALCOM'10), accepted.

The Longest Path Problem
The longest path problem is the problem of �nding a path of maximum length in a graph. A well
studied problem in graph theory with numerous applications is the Hamiltonian path problem, i.e., the
problem of determining whether a graph is Hamiltonian; a graph is said to be Hamiltonian if it contains
a Hamiltonian path, that is, a simple path in which every vertex of the graph appears exactly once.
Even if a graph is not Hamiltonian, it makes sense in several applications to search for a longest path, or
equivalently, to �nd a maximum induced subgraph of the graph which is Hamiltonian. However, �nding
a longest path seems to be more di�cult than deciding whether or not a graph admits a Hamiltonian
path. The longest path problem is NP-hard on every class of graphs on which the Hamiltonian path
problem is NP-complete. In contrast to the Hamiltonian path problem, there are few known polynomial
time solutions for the longest path problem, and these restrict to trees and some small graph classes. We
show that the longest path problem on interval graphs has a polynomial solution, thus, answering the
question left open by Uehara and Uno in [63]. In particular, the proposed algorithm runs in O(n4) time,
where n is the number of vertices of the input graph, and bases on a dynamic programming approach.

viii

Moreover, we study the longest path problem on the class of cocomparability graphs, a well-known
class of perfect graphs which includes both interval and permutation graphs. Although the Hamiltonian
path problem on cocomparability graphs was proved to be polynomial almost two decades ago [23], the
complexity status of the longest path problem on cocomparability graphs has remained open until now;
actually, the complexity status of the longest path problem has been open even on the more special class
of permutation graphs. In this work, we present a polynomial-time algorithm for solving the longest
path problem on the class of cocomparability graphs. This result extends our polynomial solution of
the longest path problem on interval graphs, and resolves the open question for the complexity of the
problem on cocomparability graphs, and thus on permutation graphs.

This work lead to the following publications:

• K. Ioannidou, G.B. Mertzios, and S.D. Nikolopoulos, The longest path problem is polynomial on
interval graphs, 34th International Symposium on Mathematical Foundations of Computer Science
(MFCS'09), LNCS 5734 (2009) 403{414.

• K. Ioannidou and S.D. Nikolopoulos, The longest path problem is polynomial on cocomparability
graphs, Technical Report TR-2009-28, Department of Computer Science, University of Ioannina,
2009 (submitted to journal).

ix

ÅêôåôáìÝíç Ðåñßëçøç óôá ÅëëçíéêÜ

Óå áõôÞ ôçí åñãáóßá äßíïõìå ÷áñáêôçñéóìïýò ãéá äýï íÝåò êëÜóåéò ôÝëåéùí ãñáöçìÜôùí, ôéò ïðïßåò
ïíïìÜæïõìå colinear êáé linear ãñáöÞìáôá. ÅðéðëÝïí, ðáñïõóéÜæïõìå ðïëõùíõìéêïýò áëãïñßèìïõò Þ
áðïôåëÝóìáôá NP-ðëçñüôçôáò ãéá äéÜöïñá ðñïâëÞìáôá ÷ñùìáôéóìïý êáé ðïëõùíõìéêïýò áëãïñßèìïõò ãéá
ôï ðñüâëçìá ìÝãéóôùí äéáäñïìþí óå ôÝëåéá ãñáöÞìáôá.

ÓõãêåêñéìÝíá, ðáñáêéíïýìåíïé áðü ôçí Ýííïéá ôïõ linear ÷ñùìáôéóìïý óå simplicial complexes,
ðïõ ïñßóôçêå ðñüóöáôá óôá ðëáßóéá ôçò áëãåâñéêÞò ôïðïëïãßáò, ïñßæïõìå ôïí colinear ÷ñùìáôéóìü
ðÜíù óå ãñáöÞìáôá, êáé ðñïôåßíïõìå Ýíá ðïëõùíõìéêü áëãüñéèìï ðïõ ÷ñùìáôßæåé colinearly êÜèå
ãñÜöçìá G. Âáóéæüìåíïé óôïí colinear ÷ñùìáôéóìü, ïñßæïõìå ôéò �-colinear êáé �-colinear éäéüôçôåò
êáé ÷áñáêôçñßæïõìå ãíùóôÝò êëÜóåéò ãñáöçìÜôùí ùò ðñïò áõôÝò ôéò éäéüôçôåò. Óôç óõíÝ÷åéá, ìåëåôïýìå
åêåßíá ôá ãñáöÞìáôá ôá ïðïßá ÷áñáêôçñßæïíôáé ðëÞñùò áðï ôç �-colinear Þ ôçí �-colinear éäéüôçôá,
êáé óõìðåñáßíïõìå üôé áõôÜ ôá ãñáöÞìáôá óõíéóôïýí äýï íÝåò êëÜóåéò ôÝëåéùí ãñáöçìÜôùí, ôéò ïðïßåò
ïíïìÜæïõìå colinear êáé linear ãñáöÞìáôá. Ðñïôåßíïõìå ÷áñáêôçñéóìïýò ãéá ôá colinear êáé linear
ãñáöÞìáôá êáé áðïäåéêíýïõìå äïìéêÝò éäéüôçôåò. ÐÝñáí ôïýôïõ, ìåëåôïýìå ôï ðñüâëçìá áñìïíéêïý
÷ñùìáôéóìïý (harmonious coloring problem) ðÜíù óå óõíåêôéêÜ ìåôáèåôéêÜ ãñáöÞìáôá (permutation
graphs) êáé óå õðïêëÜóåéò ôùí ôñéãùíéêþí (chordal) êáé óõìðëçñùìáôéêþí ôñéãùíéêþí (co-chordal)
ãñáöçìÜôùí, óõìðåñéëáìâáíïìÝíùí ôùí colinear ãñáöçìÜôùí êáé ãñáöçìÜôùí äéáóôçìÜôùí (inter-
val graphs), êáé åßôå áðïäåéêíýïõìå áðïôåëÝóìáôá NP-ðëçñüôçôáò åßôå ðñïôåßíïõìå ðïëõùíõìéêïýò
áëãïñßèìïõò ãéá åðßëõóç ôïõ ðñïâëÞìáôïò.

ÅðéðëÝïí, ìåëåôïýìå ôï ðñüâëçìá ìÝãéóôùí äéáäñïìþí (longest path problem) êáé áñ÷éêÜ
áðïäåéêíýïõìå üôé åðéäÝ÷åôáé ðïëõùíõìéêÞ ëýóç óôçí êëÜóç ôùí ãñáöçìÜôùí äéáóôçìÜôùí, áðáíôþíôáò
Ýôóé Ýíá åñþôçìá ðïõ áöÝèçêå áíïéêôü óôo [63]. ¸ðåéôá åðåêôåßíïõìå ôá áðïôåëÝóìáôÜ ìáò
ðñïôåßíïíôáò ðïëõùíõìéêü áëãüñéèìï åðßëõóçò ôïõ ðñïâëÞìáôïò ìÝãéóôùí äéáäñïìþí óôá óõìðëçñùìáôéêÜ
ìåôáâáôéêÜ (cocomparability) ãñáöÞìáôá, åðéëýùíôáò Ýôóé ôï áíïéêôü åñþôçìá ãéá ôçí ðïëõðëïêüôçôá ôïõ
ðñïâëÞìáôïò ìÝãéóôùí äéáäñïìþí óôá óõìðëçñùìáôéêÜ ìåôáâáôéêÜ ãñáöÞìáôá, êáé åðßóçò óôá ìåôáèåôéêÜ
ãñáöÞìáôá. Óôç óõíÝ÷åéá ðåñéãñÜöïõìå ôá ðñïâëÞìáôá ðïõ ìåëåôïýìå óå áõôÞ ôçí åñãáóßá.

Colinear ×ñùìáôéóìüò êáé Colinear ÃñáöÞìáôá
Ðáñáêéíïýìåíïé áðü ôçí Ýííïéá ôïõ linear ÷ñùìáôéóìïý óå simplicial complexes, ðïõ ïñßóôçêå ðñüóöáôá
óôá ðëáßóéá ôçò áëãåâñéêÞò ôïðïëïãßáò, êáèþò êáé ôï èåùñçôéêü ðëáßóéï óôï ïðïßï ìåëåôÞèçêå, ïñßæïõìå
ôïí colinear ÷ñùìáôéóìü ðÜíù óå ãñáöÞìáôá. Ï colinear ÷ñùìáôéóìüò åíüò ãñáöÞìáôïò G åßíáé Ýíáò
÷ñùìáôéóìüò ôùí êüìâùí ôïõ G ôÝôïéïò þóôå óå äýï êüìâïõò ìðïñåß íá áíáôåèåß ôï ßäéï ÷ñþìá, åÜí ôá
áíôßóôïé÷á óýíïëá êëéêþí ôïõò ó÷åôßæïíôáé ìå ôç ó÷Ýóç ôïõ õðïóõíüëïõ (ôï óýíïëï êëéêþí åíüò êüìâïõ
u åßíáé ôï óýíïëï üëùí ôùí ìåßæïíùí êëéêþí ðïõ ðåñéÝ÷ïõí ôïí u). Ï colinear ÷ñùìáôéêüò áñéèìüò �(G)
ôïõ G åßíáé ï åëÜ÷éóôïò áêÝñáéïò áñéèìüò k ãéá ôïí ïðïßï ôï G åðéäÝ÷åôáé Ýíá colinear ÷ñùìáôéóìü ìå k
÷ñþìáôá. Áðïäåéêíýïõìå üôé ãéá êÜèå ãñÜöçìá G, �(G) ≥ �(G), äßíïíôáò Ýôóé Ýíá ðÜíù öñÜãìá ãéá ôï
÷ñùìáôéêü áñéèìü �(G) ôïõ G, êáé äåß÷íïõìå üôé êÜèå ãñÜöçìá G ìðïñåß íá ÷ñùìáôéóôåß colinearly óå
ðïëõùíõìéêü ÷ñüíï ðñïôåßíïíôáò Ýíá áðëü áëãüñéèìï. Âáóéæüìåíïé óôïí colinear ÷ñùìáôéóìü, ïñßæïõìå
ôéò �-colinear êáé �-colinear éäéüôçôåò êáé ÷áñáêôçñßæïõìå ãíùóôÝò êëÜóåéò ãñáöçìÜôùí ùò ðñïò áõôÝò
ôéò éäéüôçôåò.

Ðáñáêéíïýìåíïé áðü áõôÜ ôá áðïôåëÝóìáôá êáé áðü ôïí ïñéóìü ôùí ôÝëåéùí ãñáöçìÜôùí (Ýíá ãñÜöçìá

xi

G åßíáé ôÝëåéï åÜí êáé ìüíï åÜí �(GA) = !(GA), ∀A ⊆ V (G), üðïõ !(G) åßíáé ï áñéèìüò êëßêáò (clique
number) ôïõ G [37]), ìåëåôïýìå åêåßíá ôá ãñáöÞìáôá ôá ïðïßá ÷áñáêôçñßæïíôáé ðëÞñùò áðï ôç �-colinear
Þ ôçí �-colinear éäéüôçôá, êáé óõìðåñáßíïõìå üôé áõôÜ ôá ãñáöÞìáôá óõíéóôïýí äýï êáéíïýñéåò êëÜóåéò
ôÝëåéùí ãñáöçìÜôùí, ôéò ïðïßåò ïíïìÜæïõìå colinear êáé linear ãñáöÞìáôá. ¸íá ãñÜöçìá ïíïìÜæåôáé
colinear åÜí êáé ìüíï åÜí �(GA) = �(GA), ∀A ⊆ V (G). ¸íá ãñÜöçìá G ïíïìÜæåôáé linear åÜí êáé ìüíï
åÜí �(GA) = �(GA), ∀A ⊆ V (G). Óçìåéþíïõìå üôé �(G) åßíáé ï åõóôáèÞò áñéèìüò (stability number)
toy G. Ðñïôåßíïõìå ÷áñáêôçñéóìïýò ãéá ôá colinear êáé linear ãñáöÞìáôá êáé áðïäåéêíýïõìå äïìéêÝò
éäéüôçôåò ùò ðñïò áðáãïñåõìÝíá åðáãüìåíá ãñáöÞìáôá. ¸íá åíäéáöÝñïí åñþôçìá ãéá ìåëëïíôéêÞ Ýñåõíá
èá Þôáí ç ìåëÝôç äïìéêþí éäéïôÞôùí êáé éäéïôÞôùí áíáãíþñéóçò ôùí colinear êáé linear ãñáöçìÜôùí, êáèþò
êáé ôï åñþôçìá åÜí ìðïñïýí íá ÷áñáêôçñéóôïýí áðü Ýíá ðåðåñáóìÝíï óýíïëï áðáãïñåõìÝíùí åðáãüìåíùí
ãñáöçìÜôùí. Åðéðñüóèåôá, Ýíá ðñïöáíÝò áëëÜ åíäéáöÝñïí áíïéêôü åñþôçìá èá Þôáí åÜí óõíäõáóôéêÜ
ðñïâëÞìáôá Þ/êáé ðñïâëÞìáôá âåëôéóôïðïßçóçò ìðïñïýí íá åðéëõèïýí áðïôåëåóìáôéêÜ ðÜíù óôéò êëÜóåéò
ôùí colinear êáé linear ãñáöçìÜôùí.

ÁõôÞ ç ìåëÝôç ïäÞãçóå óôéò ðáñáêÜôù åñãáóßåò:

• K. Ioannidou and S.D. Nikolopoulos, Colinear coloring on graphs, 3rd Annual Workshop on Algo-
rithms and Computation (WALCOM'09), LNCS 5431 (2009) 117{128.

• K. Ioannidou and S.D. Nikolopoulos, Colinear coloring and colinear graphs, Technical Report TR-
2007-06, Department of Computer Science, University of Ioannina, 2007 (submitted to journal).

Ôï ðñüâëçìá Áñìïíéêïý ×ñùìáôéóìïý
Ï áñìïíéêüò ÷ñùìáôéóìüò åíüò áðëïý ãñáöÞìáôïò G åßíáé Ýíáò êáíïíéêüò ÷ñùìáôéóìüò ôùí êüìâùí ôïõ
ôÝôïéïò þóôå êÜèå æåýãïò ÷ñùìÜôùí åìöáíßæåôáé óå ôï ðïëý ìéá áêìÞ. Ï áñìïíéêüò ÷ñùìáôéêüò áñéèìüò
åßíáé ï åëÜ÷éóôïò áêÝñáéïò áñéèìüò k ãéá ôïí ïðïßï ôï ãñÜöçìá G åðéäÝ÷åôáé Ýíá áñìïíéêü ÷ñùìáôéóìü
ìå k ÷ñþìáôá. Åðåêôåßíïíôáò ðñïçãïýìåíá áðïôåëÝóìáôá NP-ðëçñüôçôáò ôïõ ðñïâëÞìáôïò áñìïíéêïý
÷ñùìáôéóìïý ðÜíù óôéò êëÜóåéò ôùí ìç-óõíåêôéêþí ãñáöçìÜôùí ðïõ åßíáé ôáõôü÷ñïíá óõìðëçñùìáôéêÜ
ðáñáãüìåíá ãñáöÞìáôá (cographs) êáé ãñáöÞìáôá äéáóôçìÜôùí [8], áðïäåéêíýïõìå üôé ôï ðñüâëçìá
ðáñáìÝíåé NP-ðëÞñåò ãéá óõíåêôéêÜ ãñáöÞìáôá äéáóôçìÜôùí êáé óõíåêôéêÜ ìåôáèåôéêÜ ãñáöÞìáôá.
ÅðéðëÝïí, äåß÷íïõìå üôé ôï ðñüâëçìá áñìïíéêïý ÷ñùìáôéóìïý åßíáé NP-ðëÞñåò êáé ãéá split ãñáöÞìáôá.

Óôç óõíÝ÷åéá åðåêôåßíïõìå ôá áðïôåëÝóìáôá ìáò ãéá ôï ðñüâëçìá áñìïíéêïý ÷ñùìáôéóìïý ðÜíù
óå õðïêëÜóåéò ôùí ôñéãùíéêþí êáé óõìðëçñùìáôéêþí ôñéãùíéêþí ãñáöçìÜôùí, áðïäåéêíýïíôáò üôé ôï
ðñüâëçìá ðáñáìÝíåé NP-ðëÞñåò ãéá split undirected path ãñáöÞìáôá. Äåß÷íïõìå åðßóçò üôé ôï ðñüâëçìá
åßíáé NP-ðëÞñåò ãéá colinear ãñáöÞìáôá áðïäåéêíýïíôáò üôé ôá split undirected path ãñáöÞìáôá åßíáé
õðïêëÜóç ôùí colinear ãñáöçìÜôùí. ÐÝñáí ôïýôïõ, äßíïõìå ìéá ðïëõùíõìéêÞ ëýóç ãéá ôï ðñüâëçìá
áñìïíéêïý ÷ñùìáôéóìïý ãéá ôçí êëÜóç ôùí split strongly chordal ãñáöçìÜôùí, ôï åíäéáöÝñïí ôçò ïðïßáò
Ýãêåéôáé óôï ãåãïíüò üôé ôï ðñüâëçìá åßíáé NP-ðëÞñåò ãéá split ãñáöÞìáôá, êáèþò êáé ãéá strongly chordal
ãñáöÞìáôá. Åðéðñüóèåôá, ðïëõùíõìéêÝò ëýóåéò ãéá ôï ðñüâëçìá åßíáé ãíùóôÝò ìüíï ãéá ôéò êëÜóåéò ôùí
threshold ãñáöçìÜôùí êáé ôùí óõíåêôéêþí quasi-threshold ãñáöçìÜôùí. Óçìåéþíïõìå üôé ôï ðñüâëçìá
áñìïíéêïý ÷ñùìáôéóìïý åßíáé NP-ðëÞñåò ãéá ìç-óõíåêôéêÜ quasi-threshold ãñáöÞìáôá. Åöüóïí ôá linear
ãñáöÞìáôá áðïôåëïýí õðåñêëÜóç ôùí quasi-threshold ãñáöçìÜôùí êáèþò êáé ôùí split strongly chordal
ãñáöçìÜôùí, ôï ðñüâëçìá áñìïíéêïý ÷ñùìáôéóìïý åßíáé NP-ðëÞñåò ãéá ìç-óõíåêôéêÜ linear ãñáöÞìáôá,
åíþ ðáñáìÝíåé áíïéêôü ãéá óõíåêôéêÜ linear ãñáöÞìáôá.

ÁõôÞ ç äïõëåéÜ ïäÞãçóå óôéò ðáñáêÜôù äçìïóéåýóåéò:

• K. Asdre, K. Ioannidou, S.D. Nikolopoulos, The harmonious coloring problem is NP-complete for
interval and permutation graphs, Discrete Applied Math. 155 (2007) 2377{2382.

• K. Ioannidou and S.D. Nikolopoulos, Harmonious coloring on subclasses of colinear graphs, 4rd
Annual Workshop on Algorithms and Computation (WALCOM'10), accepted.

xii

Ôï ðñüâëçìá ÌÝãéóôùí Äéáäñïìþí
Ôï ðñüâëçìá ìÝãéóôùí äéáäñïìþí åßíáé ôï ðñüâëçìá åýñåóçò åíüò ìïíïðáôéïý ìÝãéóôïõ ìÞêïõò óå Ýíá
ãñÜöçìá. ¸íá éäéáßôåñá ìåëåôçìÝíï ðñüâëçìá óôç èåùñßá ãñáöçìÜôùí ìå ðïëëÝò åöáñìïãÝò åßíáé ôï
ðñüâëçìá åýñåóçò Hamiltonian ìïíïðáôéïý, äçëáäÞ ôï ðñüâëçìá áðüöáóçò åÜí Ýíá ãñÜöçìá åßíáé Hamil-
tonian Þ ü÷é. ¸íá ãñÜöçìá åßíáé Hamiltonian åÜí ðåñéÝ÷åé Ýíá Hamiltonian ìïíïðÜôé, äçëáäÞ Ýíá
áðëü ìïíïðÜôé óôï ïðïßï êÜèå êüìâïò ôïõ ãñáöÞìáôïò åìöáíßæåôáé áêñéâþò ìéá öïñÜ. Áêüìá êáé áí
Ýíá ãñÜöçìá äåí åßíáé Hamiltonian, Ý÷åé íüçìá ãéá ðïëëÝò åöáñìïãÝò íá øÜîïõìå ãéá Ýíá ìÝãéóôï
ìïíïðÜôé, Þ éóïäýíáìá, íá âñïýìå Ýíá ìÝãéóôï åðáãüìåíï õðïãñÜöçìá ôïõ ãñáöÞìáôïò ðïõ åßíáé Hamilto-
nian. Åíôïýôïéò, ôï ðñüâëçìá åýñåóçò åíüò ìÝãéóôïõ ìïíïðáôéïý öáßíåôáé ðéï äýóêïëï áðü ôï ðñüâëçìá
áðüöáóçò åÜí Ýíá ãñÜöçìá Ý÷åé Hamiltonian ìïíïðÜôé Þ ü÷é. Ôï ðñüâëçìá ìåãßóôùí äéáäñïìþí åßíáé
NP-äýóêïëï óå êÜèå êëÜóç ãñáöçìÜôùí ãéá ôçí ïðïßá ôï ðñüâëçìá Ýõñåóçò Hamiltonian ìïíïðáôéïý
åßíáé NP-ðëÞñåò. Óå áíôßèåóç ìå ôï ðñüâëçìá Ýõñåóçò Hamiltonian ìïíïðáôéïý, õðÜñ÷ïõí ëßãïé ãíùóôïß
ðïëõùíõìéêïß áëãüñéèìïé ãéá ôï ðñüâëçìá ìÝãéóôùí äéáäñïìþí, êáé áõôïß ðåñéïñßæïíôáé óôá äÝíäñá (trees)
êáé óå ìéêñÝò êëÜóåéò ãñáöçìÜôùí. Áðïäåéêíýïõìå üôé ôï ðñüâëçìá ìåãßóôùí äéáäñïìþí åðéäÝ÷åôáé
ðïëõùíõìéêÞ ëýóç óôá ãñáöÞìáôá äéáóôçìÜôùí, áðáíôþíôáò Ýôóé óôï áíïéêôü åñþôçìá ðïõ ôÝèçêå áðü
ôïõò Uehara and Uno óôï [63]. ÓõãêåêñéìÝíá, ï ðñïôåéíüìåíïò áëãüñéèìïò Ý÷åé ðïëõðëïêüôçôá ÷ñüíïõ
O(n4), üðïõ n åßíáé ï áñéèìüò ôùí êüìâùí óôï äïèÝí ãñÜöçìá, êáé âáóßæåôáé óôçí ôå÷íéêÞ ôïõ äõíáìéêïý
ðñïãñáììáôéóìïý.

ÅðéðëÝïí, ìåëåôïýìå ôï ðñüâëçìá ìÝãéóôùí äéáäñïìþí óôç êëÜóç ôùí óõìðëçñùìáôéêþí ìåôáâáôéêþí
ãñáöçìÜôùí, ìéá ãíþóôç êëÜóç ôÝëåéùí ãñáöçìÜôùí ðïõ ðåñéÝ÷åé ôá ãñáöÞìáôá äéáóôçìÜôùí
êáèþò êáé ôá ìåôáèåôéêÜ ãñáöÞìáôá. Áí êáé ôï ðñüâëçìá åýñåóçò Hamiltonian ìïíïðáôéïý óå
óõìðëçñùìáôéêÜ ìåôáâáôéêÜ ãñáöÞìáôá áðïäåß÷èçêå üôé åßíáé ðïëõùíõìéêÞò ðïëõðëïêüôçôáò ó÷åäüí
ðñéí äýï äåêáåôßåò [23], ç ðïëõðëïêüôçôá ôïõ ðñïâëÞìáôïò ìÝãéóôùí äéáäñïìþí óôá óõìðëçñùìáôéêÜ
ìåôáâáôéêÜ ãñáöÞìáôá ðáñÝìåíå Üãíùóôç ìÝ÷ñé óÞìåñá. Êáôáêñßâåéáí, ç ðïëõðëïêüôçôá ôïõ ðñïâëÞìáôïò
ìÝãéóôùí äéáäñïìþí ðáñÝìåíå Üãíùóôç áêüìá êáé óôçí ðéï ìéêñÞ êëÜóç ôùí ìåôáèåôéêþí ãñáöçìÜôùí.
Óå áõôÞ ôç äïõëåéÜ, ðáñïõóéÜæïõìå Ýíá ðïëõùíõìéêü áëãüñéèìï åðßëõóçò ôïõ ðñïâëÞìáôïò ìÝãéóôùí
äéáäñïìþí óôç êëÜóç ôùí óõìðëçñùìáôéêþí ìåôáâáôéêþí ãñáöçìÜôùí. Áõôü ôï áðïôÝëåóìá åðåêôåßíåé
ôçí ðïëõùíõìéêÞ ëýóç ðïõ ðñïôåßíáìå ãéá ôï ðñüâëçìá ìÝãéóôùí äéáäñïìþí óôá ãñáöÞìáôá äéáóôçìÜôùí,
êáé áðáíôÜ ôï áíïéêôü åñþôçìá ãéá ôçí ðïëõðëïêüôçôá ôïõ ðñïâëÞìáôïò ìÝãéóôùí äéáäñïìþí óôá
óõìðëçñùìáôéêÜ ìåôáâáôéêÜ ãñáöÞìáôá, êáé óõíåðþò óôá ìåôáèåôéêÜ ãñáöÞìáôá.

ÁõôÞ ç äïõëåéÜ ïäÞãçóå óôçí ðáñáêÜôù äçìïóßåõóç:

• K. Ioannidou, G.B. Mertzios, and S.D. Nikolopoulos, The longest path problem is polynomial on
interval graphs, 34th International Symposium on Mathematical Foundations of Computer Science
(MFCS'09), LNCS 5734 (2009) 403{414.

• K. Ioannidou and S.D. Nikolopoulos, The longest path problem is polynomial on cocomparability
graphs, Technical Report TR-2009-28, Department of Computer Science, University of Ioannina,
2009 (submitted to journal).

xiii

Chapter 1

Introduction

1.1 Preliminaries

1.2 Perfect Graphs

1.3 Computability and Complexity

1.4 Coloring and Longest Path Problems

1.1 Preliminaries

We consider �nite undirected graphs with no loops or multiple edges. For a graph G, we denote its vertex
and edge set by V (G) and E(G), respectively. An edge is a pair of distinct vertices u; v ∈ V (G), and is
denoted by uv if G is an undirected graph and by −→uv if G is a directed graph. We say that the vertex u
is adjacent to the vertex v or, equivalently, the vertex u sees the vertex v, if there is an edge uv in G. If
uv =∈ E(G) then we say that the vertex u misses the vertex v or, equivalently, that vertices u and v are
antineighbors in G. For a set A ⊆ V (G) of vertices of the graph G, the subgraph of G induced by A is
denoted by GA or G[A]. Additionally, the cardinality of a set A is denoted by |A|. For a given vertex
ordering (v1; v2; : : : ; vn) of a graph G, the subgraph of G induced by the set of vertices {vi; vi+1; : : : ; vn}
is denoted by Gi.

The set N(v) = {u ∈ V (G) : uv ∈ E(G)} is called the neighborhood of the vertex v ∈ V (G) in G,
sometimes denoted by NG(v) for clarity reasons. The set N [v] = N(v)∪{v} is called the closed neighbor-
hood of the vertex v ∈ V (G). The complement G of a graph G has the same vertex set as G, and distinct
vertices u; v are adjacent in G if and only if they are not adjacent in G. Thus, by NG(v) we denote the
set of the antineighbors of the vertex v in the graph G. The degree of a vertex x in a graph G is the
number of edges incident on x, and is denoted by deg(x). A clique is a set of pairwise adjacent vertices
while a stable (or independent) set is a set of pairwise non-adjacent vertices.

A simple path (resp. simple antipath) of a graph G is a sequence of distinct vertices v1; v2; : : : ; vk such
that vivi+1 ∈ E(G) (resp. vivi+1 =∈ E(G)), for each i, 1 ≤ i ≤ k − 1, and is denoted by (v1; v2; : : : ; vk);
throughout the paper all paths (resp. antipaths) considered are simple. We denote by V (P) the set
of vertices in the path (resp. antipath) P . We de�ne the length of the path (resp. antipath) P to
be the number of vertices in P , i.e., |P | = |V (P)|; there are case where we consider the length of
a path P to be equal to the number of edges in P , and we explicitly clarify this in the relevant
chapter. We call right endpoint of a path (resp. antipath) P = (v1; v2; : : : ; vk) the last vertex vk of
P . Moreover, let P = (v1; v2; : : : ; vi−1; vi; vi+1; : : : ; vj ; vj+1; vj+2; : : : ; vk) and P0 = (vi; vi+1; : : : ; vj) be

1

two paths (resp. antipaths) of a graph. Sometimes, we shall denote the path (resp. antipath) P by
P = (v1; v2; : : : ; vi−1; P0; vj+1; vj+2; : : : ; vk). The distance d(v; u) from vertex v to vertex u is the mini-
mum length of a path from v to u; d(v; u) = ∞ if there is no path from v to u.

A sequence of vertices [v0; v1; : : : ; vk; v0] is called a cycle of length k + 1 if vi−1vi ∈ E(G) for i =
1; 2; : : : ; k and vkv0 ∈ E(G). A cycle [v0; v1; : : : ; vk; v0] is a simple cycle if vi 6= vj for i 6= j. A simple
cycle [v0; v1; : : : ; vk; v0] is chordless if vivj =∈ E(G) for every two non-successive vertices vi; vj in the cycle.
A hole of G is an induced subgraph of G which is a chordless cycle Cn if n ≥ 5; the complement of a hole
is an antihole.

A partial order will be denoted by P = (V;<P), where V is the �nite ground set of elements or vertices
and <P is an irreexive, antisymmetric, and transitive binary relation on V . Two elements a; b ∈ V are
comparable in P (denoted by a ∼P b) if a <P b or b <P a. Otherwise, they are said to be incomparable
(denoted by a ‖ b). An extension of a partial order P = (V;<P) is a partial order L = (V;<L) on the
same ground set that extends P , i.e., a <P b ⇒ a <L b, for all a; b ∈ V . The dual partial order P d of
P = (V;<P) is a partial order P d = (V;<Pd) such that for any two elements a; b ∈ V , a <Pd b if and
only if b <P a. A linear order is a partial order without incomparable elements. A linear extension of a
partial order P = (V;<P) is a linear order L = (V;<L) on the same ground set that extends P .

For more basic de�nitions in graph theory refer to [10, 37, 56].

1.2 Perfect Graphs

The greatest integer r for which a graph G contains an independent set of size r is called the independence
number or otherwise the stability number of G and is denoted by �(G). The clique cover number �(G)
of a graph G is the smallest number of complete subgraphs needed to cover the vertices of G. A proper
vertex coloring of a graph G is a coloring of its vertices such that no two adjacent vertices are assigned
the same color. The chromatic number �(G) of G is the smallest integer k for which G admits a proper
vertex coloring with k colors. The cardinality of the vertex set of the maximum clique in G is called the
clique number of G and is denoted by !(G).

Clearly, for the numbers !(G) and �(G) of an arbitrary graph G the inequality !(G) ≤ �(G) holds.
Also, since the intersection of a clique and a stable set of a graph G can be at most one vertex, it follows
that �(G) ≤ �(G), for any graph G. These two equalities are dual to one another since �(G) = !(G)
and �(G) = �(G).

A graph G is perfect if for every induced subgraph GA of G, the chromatic number of GA equals the
size of the largest clique of GA, i.e., �(GA) = !(GA), ∀A ⊆ V (G). The study of perfect graphs was
initiated by Claude Berge in 1961 [4]. The following three conditions are the perfection properties of a
graph G.

(P1) !(GA) = �(GA); ∀A ⊆ V (G)

(P2) �(GA) = �(GA); ∀A ⊆ V (G)

(P3) !(GA) · �(GA) ≥ |A|; ∀A ⊆ V (G)

A graph is called �-perfect if it satis�es (P1) and �-perfect if it satis�es (P2). Actually, it was
conjectured by Berge [4], and proven by Lovász [53] that for an undirected graph G the perfection
properties P1, P2 and P3 are equivalent. This has become known as the Perfect Graph Theorem [53].
Therefore, it is su�cient to show that a graph satis�es any (Pi) in order to conclude that it is perfect,
and a perfect graph will satisfy all properties (Pi).

A graph G is Berge if every hole and antihole of G has even length. In 1961 Berge [4] proposed two
celebrated conjectures about perfect graphs. Since the second implies the �rst, they were known as the
\weak" and \strong" perfect graph conjectures, respectively, although both are now theorems:

Theorem 1.1. The complement of every perfect graph is perfect.

2

Theorem 1.2. A graph is perfect if and only if it is Berge.

The �rst theorem was proved by Lovász [53] in 1972. The second theorem, which is known as the
Strong Perfect Graph Conjecture, received a great deal of attention over the past 40 years. In 2002, Maria
Chudnovsky and Paul Seymour, extending an earlier joint work with Neil Robertson and Robin Thomas,
announced that they had completed the proof of the Strong Perfect Graph Conjecture which became the
Strong Perfect Graph Theorem. The four joint authors published the 178-page paper in 2006 [16].

Therefore, holes and antiholes have been extensively studied in many di�erent contexts in algorithmic
graph theory and, thus, �nding a hole or an antihole in a graph e�ciently is an important graph-theoretic
problem, both on its own and as a step in many recognition algorithms. In 2004, Nikolopoulos and Palios
[60] proposed the fastest until today algorithm for the problem of �nding a hole or an antihole in a graph,
which runs in O(n+m2) time and requires O(nm) space, where n is the number of vertices and m is the
number of edges in the graph.

Classes of Perfect Graphs
In the case where an optimization problem is NP-complete on general graphs, it makes sense to look

for polynomial solutions of the problem in special graph classes. The subclasses of perfect graphs have
structural properties which allow us to �nd polynomial solutions for problems which are NP-complete
on arbitrary graphs, such as coloring and path problems. These problems �nd applications in many
�elds of di�erent sciences, from mathematics to philosophy [5, 40]. Throughout this work, several classes
of perfect graph are mentioned, which are studied either in order to derive properties for the two new
classes of graphs we de�ne, namely colinear and linear graphs, or to provide polynomial algorithms or NP-
completeness results for the coloring and longest path problems we study. Next, we give some de�nitions
for these graph classes.

A graph is called a chordal graph if it does not contain an induced subgraph isomorphic to a chordless
cycle of four or more vertices. Additionally, a graph G is chordal if and only if it admits a perfect
elimination ordering; a perfect elimination ordering of a graph G is an ordering (v1; v2; : : : ; vn) of its
vertices such that for every i, 1 ≤ i ≤ n, vi is a simplicial vertex in Gi, i.e., NGi [vi] is a clique in Gi. A
graph is called a co-chordal graph if it is the complement of a chordal graph [37].

A graph G is a split graph if there is a partition of the vertex set V (G) = K + I, where K induces
a clique in G and I induces an independent set. Split graphs are characterized as those graphs which
do not contain a graph which is isomorphic to a 2K2, a C4 or a C5 graph as an induced subgraph,
i.e., split graphs are characterized as (2K2; C4; C5)-free; note that, a 2K2 graph is a graph such that
V (2K2) = {v1; v2; v3; v4} and E(2K2) = {v1v2; v3v4}. Threshold graphs were introduced by Chv�atal and
Hammer [17] and characterized as (2K2; P4; C4)-free. Quasi-threshold graphs are characterized as the
(P4; C4)-free graphs and are also known in the literature as trivially perfect graphs [37, 59].

We next give de�nitions and characterizations of some graph classes, on which we study the coloring
and longest path problems and either provide polynomial algorithms or NP-completeness results; the
characterizations mentioned here are used for obtaining some of our results.

Comparability and Cocomparability graphs. The graph G, edges of which are exactly the compa-
rable pairs of a partial order P on V (G), is called the comparability graph of P , and is denoted by G(P).
The complement graph G, whose edges are the incomparable pairs of P , is called the cocomparability graph
of P , and is denoted by G(P). Alternatively, a graph G is a cocomparability graph if its complement
graph G has a transitive orientation, corresponding to the comparability relations of a partial order PG.
Note that a partial order P uniquely determines its comparability graph G(P) and its cocomparability
graph G(P), but the reverse is not true, i.e., a cocomparability graph G has as many partial orders PG
as is the number of the transitive orientations of G. Furthermore, the class of cocomparability graphs is
hereditary, that is, every induced subgraph of a cocomparability graph G is also a cocomparability graph.

The following representation of comparability graphs is used for obtaining some of our results. Let
G be a comparability graph, and let PG be a partial order which corresponds to G. The graph G can

3

be represented by a directed covering graph with layers H1;H2; : : : ; Hh, in which each vertex is on the
highest possible layer. That is, the maximal vertices of the partial order PG are on the highest layer Hh,
and for every vertex v on layer Hi−1 there exists a vertex u on layer Hi such that v <PG u; such a layered
representation of G (respectively PG) is a called the Hasse diagram of G (respectively PG).

Interval graphs. Interval graphs form an important and well-known class of perfect graphs [37], which
form a subclass of chordal graphs. A graph G is an interval graph if its vertices can be put in a one-to-one
correspondence with a family F of intervals on the real line such that two vertices are adjacent in G if
and only if the corresponding intervals intersect; F is called an intersection model for G [1].

Additionally, the class of interval graphs is hereditary, and also a graph G is an interval graph if and
only if it is a chordal graph and the graph G is a comparability graph [37]. Ramalingam and Rangan [61]
proposed the following numbering of the vertices of an interval graph, which we use for obtaining some
of our results: the vertices of any interval graph G can be numbered with integers 1; 2; : : : ; |V (G)| such
that if i < j < k and ik ∈ E(G), then jk ∈ E(G).

Permutation graphs. A graph G is a permutation graph if its vertices can be put in one to one
correspondence with a set of line segments between two parallel lines, such that two vertices are adjacent
if and only if their corresponding line segments intersect. Also, if G and G are comparability graphs,
then G is a permutation graph [37].

Strongly chordal graphs. Strongly chordal graphs form a known subclass of chordal graphs [10, 27]
and were �rst introduced by Farber [27]. A graph is strongly chordal i� it admits a strong elimination
ordering; a vertex ordering � = (v1; v2; : : : ; vn) is a strong elimination ordering of a graph G i� � is
a perfect elimination ordering and also has the property that for each i, j, k and `, if i < j, k < `,
vk; v` ∈ N [vi], and vk ∈ N [vj], then v` ∈ N [vj] [14, 27].

Also, the following characterization of strongly chordal graphs, due to Farber [27], appears useful
for obtaining some results in this work: strongly chordal graphs are characterized completely as those
chordal graphs which contain no k-sun as an induced subgraph. An incomplete k-sun Sk (k ≥ 3) is a
chordal graph on 2k vertices whose vertex set can be partitioned into two sets, U = {u1; u2; : : : ; uk} and
W = {w1; w2; : : : ; wk}, so that W is an independent set, and wi is adjacent to uj if and only if i = j or
i = j + 1 (mod k); the graph Sk (k ≥ 3) is a k-sun if U is a complete graph.

Undirected path graphs. Undirected path graphs form a subclass of chordal graphs. A chordal graph
is an undirected path graph if it is the vertex intersection graph of undirected paths in a tree [35, 57, 62]. In
particular, the following characterization of undirected path graphs given in [35, 57] is used for obtaining
our results; note that, C denotes the set of all maximal cliques of a graph G, and C(v) denotes the set
of all maximal cliques containing v. A graph G is an undirected path graph if and only if there exists a
tree T whose set of vertices is C, so that for every vertex v ∈ V (G), the subgraph T [C(v)] of T induced
by the vertex set C(v), is a path in T . Such a tree will be called characteristic tree of G.

1.3 Computability and Complexity

Let us �rst underline the di�erences between computability and computational complexity [37]. Com-
putability addresses itself mostly to questions of existence: Is there an algorithm which solves problem
Π? Proving that a problem is computable usually consists of demonstrating an actual algorithm which
will terminate with a correct answer for every input. The amount of resources (time and space) used in
the calculation, although �nite, is unlimited. On the contrary, computational complexity deals precisely
with the quantitative aspects of problem solving. It addresses the issue of what can be computed within
a practical or reasonable amount of time and space by measuring the resource requirements exactly or
by obtaining upper and lower bounds.

Algorithms are step-by-step procedures for solving problems. An algorithm is said to solve a problem
Π if it can be applied to any instance I of Π and is guaranteed always to produce a solution for that

4

instance I. The time complexity function for an algorithm expresses its time requirements by giving,
for each possible input length, the largest amount of time needed by the algorithm to solve a problem
instance of that size. A polynomial time algorithm is de�ned to be one whose time complexity function
is O(p(n)) for some polynomial function p, where n is the input length; an exponential time algorithm
is one whose time complexity function cannot be so bounded. The distinction between the two types of
algorithms is central to the notion of inherent intractability and to the theory of NP-completeness.

1.3.1 Polynomial Transformations and NP-completeness

A problem is called intractable if it is so hard that no polynomial time algorithm can possibly solve it. As
much work has been done for proving problems intractable, so much e�orts focus on learning more about
the ways in which various problems are interrelated with respect to their di�culty. The main technique
used for showing that two problems are related with respect to their di�culty is that of "reducing" one
to the other, by giving a constructive transformation that maps any instance of the �rst problem into an
equivalent instance of the second. Such a transformation provides the means for converting any algorithm
that solves the second problem into a corresponding algorithm for solving the �rst problem [33].

A reduction captures the informal notion of a problem being at least as di�cult as another problem.
For instance, if a problem Π1 can be solved using an algorithm for Π2, Π1 is no more di�cult than Π2,
and we say that Π1 reduces to Π2. The most commonly used reduction is a polynomial-time reduction;
this means that the reduction process takes polynomial time.

We say that a problem Π1 is polynomially transformable to another problem Π2 denoted Π1 4 Π2,
if there exists a polynomially computable function f mapping the instances of Π1 into the instances
of Π2 such that a solution to the instance f(I) of Π2, gives a solution to the instance I of Π1, for all
I. Intuitively this means that Π1 is no harder to solve than Π2 up to added polynomial term, for we
could solve Π1 by combining the transformation f with the best algorithm for solving Π2. Thus, if
Π1 4 Π2, then COMPLEXITY(Π1) ≤ COMPLEXITY(Π2) + POLYNOMIAL. If Π2 has a polynomial
time algorithm, then so does Π1; if every algorithm solving Π1 requires at least an exponential amount
of time, then the same is true for Π2.

The state of an algorithm consists of the current values of all variables and the location of the current
instruction to be executed. A deterministic algorithm is one for which each state upon execution of the
instruction uniquely determines at most one next state. Virtually all computers run deterministically. A
nondeterministic algorithm is one for which a state may determine many next states and which follows
up on each of the next states simultaneously. We may regard a nondeterministic algorithm as having the
capability of branching o� into many copies of itself, one for each next state. Thus, while a deterministic
algorithm must explore a set of alternatives one at a time, a nondeterministic algorithm examines all
alternatives at the same time.

The complexity class P is often seen as a mathematical abstraction modelling those computational
tasks that admit an e�cient algorithm. The complexity class NP, on the other hand, contains many
problems that people would like to solve e�ciently, but for which no e�cient algorithm is known. Strictly
speaking, a problem Π is in the class P if there exists a deterministic polynomial time algorithm which
solves Π. A problem Π is in the class NP if there exists a nondeterministic polynomial time algorithm
which solves Π; all the problems in this class have the property that their solutions can be checked
e�ciently. Since deterministic Turing machines are special nondeterministic Turing machines, it is easily
observed that each problem in P is also member of the class NP, i.e., P ⊆ NP.

A problem Π is NP-hard if any one of the following equivalent conditions holds:

(1) Π′ 4 Π for all Π′ ∈ NP;

(2) Π ∈ P ⇒ P=NP;

(3) the existence of a deterministic polynomial time algorithm for Π would imply the existence of a
polynomial time algorithm for every problem in NP.

5

A problem Π is NP-complete if it is both a member of NP and it is NP-hard. The NP-complete
problems are the most di�cult of those in NP. To prove that Π is NP-complete we show that Π ∈ NP
and some known NP-complete problem Π′ transforms to Π.

The foundations for the theory of NP-completeness were laid in a paper of Stephen Cook [19], presented
in 1971. He emphasized the signi�cance of \polynomial time reducibility", and he focused on the class
of NP of decision problems that can be solved in polynomial time by a nondeterministic computer. He
proved that one particular problem in NP, called the \satis�ability" problem, has the property that
every other problem in NP can be polynomially reduced to it. If the satis�ability can be solved with a
polynomial time algorithm, then so can every problem in NP, and if any problem in NP is intractable,
then the satis�ability problem also must be intractable. Subsequently, Karp [48] presented a collection of
results proving that indeed the decision versions of many well known combinatorial problems, including
the travelling salesman problem, are just as \hard" as the satis�ability problem. Since then a wide variety
of other problems have been proved equivalent in di�culty to these problems, and this equivalence class,
consisting of the \hardest" problems in NP, has been called the class of NP-complete problems.

Cook's original ideas have provided the means for combining many individual complexity questions
into the single question: Are the NP-complete problems intractable? The question of whether P equals
NP is one of the most important open questions in theoretical computer science because of the wide
implications of a solution.

1.3.2 Polynomial Algorithms

A way of classifying algorithms is by their design methodology or paradigm. There is a certain number
of techniques for the design and analysis of algorithms, such as brute-force or exhaustive search, divide
and conquer, dynamic programming, the greedy method, linear programming, reduction, search and
enumeration, and the probabilistic and heuristic paradigm etc. The algorithms presented in this work for
solving the optimization problems studied base mainly on dynamic programming, the greedy method, or
reduction.

Dynamic programming typically applies to optimization problems in which a set of choices must be
made in order to arrive at an optimal solution. When a problem shows optimal substructure, meaning the
optimal solution to a problem can be constructed from optimal solutions to subproblems, and overlapping
subproblems, meaning the same subproblems are used to solve many di�erent problem instances, a quicker
approach called dynamic programming avoids recomputing solutions that have already been computed.
The di�erence between dynamic programming and straightforward recursion is in caching or memoization
of recursive calls. When subproblems are independent and there is no repetition, memoization does not
help; hence dynamic programming is not a solution for all complex problems. By using memoization or
maintaining a table of subproblems already solved, dynamic programming transforms exponential time
algorithms into polynomial time algorithms.

Greedy algorithms are similar to a dynamic programming algorithms, since they apply to optimization
problems in which a set of choices must be made in order to arrive at an optimal solution. The di�erence
is that in a greedy algorithm solutions to the subproblems do not have to be known at each stage; instead
the idea of a greedy algorithm is to make each choice in a locally optimal manner. The greedy method
extends the solution with the best possible decision (not all feasible decisions) at an algorithmic stage
based on the current local optimum and the best decision (not all possible decisions) made in a previous
stage. It is not exhaustive, and and when it works, it will be the fastest method.

The technique of reduction involves solving a di�cult problem by transforming it into a better known
problem for which we have (hopefully) asymptotically optimal algorithms. The goal is to �nd a reducing
algorithm whose complexity is not dominated by the resulting reduced algorithm's.

6

perfect

quasi-parity

strict quasi-parity

cocomparability

strongly perfect

Meyniel

perfectly

contractile
bip*

perfectly

orderable
weakly

chordal

trapezoid

brittleP4-comparabilityalternately
orientable

preperfect

HHD-free Gallai parity

bipartitegood

co-chordal chordalbipolarizable chordal
bipartite

weak
bipolarizable

distance-hereditary

bipartite

distance-hereditary
convex

split

biconvex strongly

chordal
undirected

path

directed

path

ptolemaic

tree

2-threshold tolerance comparability

bounded
tolerance

proper

unit

tolerance

tolerance

Meyniel ∩
co-Meyniel

P4-sparsepermutation forest-
perfect

P4-reducible

cograph

bipartite

permutation

interval

matroidal

proper

interval
quasi-threshold

threshold

chordal
doubly

colinear linear

Figure 1.1: Illustrating a map of some classes of perfect graphs, including the classes of colinear and
linear graphs.

1.4 Coloring and Longest Path Problems

We next describe the problems this work is concerned with. These include providing characterizations
of two new classes of perfect graphs, namely colinear and linear graphs, and presenting polynomial-time
algorithms or NP-completeness results for coloring problems on graphs and polynomial-time algorithms
for the longest path problem on perfect graphs.

1.4.1 Colinear Coloring and Colinear Graphs

A colinear coloring of a graph G is a coloring of its vertices such that two vertices are assigned di�erent
colors, if their corresponding clique sets are not associated by the set inclusion relation; a clique set of a
vertex u is the set of all maximal cliques in G containing u. The colinear chromatic number �(G) of G
is the least integer k for which G admits a colinear coloring with k colors.

Motivated by the de�nition of linear coloring on simplicial complexes associated to graphs, �rst
introduced by Civan and Yal�cin [18] in the context of algebraic topology, we studied linear colorings on

7

simplicial complexes which can be represented by a graph. The outcome of this study was the de�nition
of the colinear coloring of a graph G; the colinear coloring of a graph G is a coloring of G such that
for any set of vertices taking the same color, the collection of their clique sets can be linearly ordered
by inclusion. Recently, Civan and Yal�cin [18] studied the linear coloring of the neighborhood complex
N (G) of a graph G and proved that the linear chromatic number of N (G) gives an upper bound for
the chromatic number �(G) of the graph G. This approach lies in a general framework met in algebraic
topology.

The interest to provide boundaries for the chromatic number �(G) of an arbitrary graph G through the
study of di�erent simplicial complexes associated to G, which is found in algebraic topology bibliography,
drove the motivation for de�ning the colinear coloring on the graph G and studying the relation between
the chromatic number �(G) and the colinear chromatic number �(G). We show that for any graph G,
�(G) is an upper bound for �(G). The interest of this result lies on the fact that we present a colinear
coloring algorithm that can be applied to any graph G and provides an upper bound �(G) for the
chromatic number of the graph G, i.e., �(G) ≤ �(G); in particular, it provides a proper vertex coloring
of G using �(G) colors. Additionally, recall that a known lower bound for the chromatic number of any
graph G is the clique number !(G) of G, i.e., �(G) ≥ !(G).

Motivated by these results and the de�nition of perfect graphs, for which �(GA) = !(GA) holds
∀A ⊆ V (G) [37], we study those graphs for which the equality �(G) = �(G) holds for every induced
subgraph and characterize known graph classes in terms of the �-colinear and the �-colinear properties.
A graph G has the �-colinear property if its chromatic number �(G) equals to the colinear chromatic
number �(G) of its complement graph G, and the equality holds for every induced subgraph of G, i.e.,
�(GA) = �(GA), ∀A ⊆ V (G); a graph G has the �-colinear property if its stability number �(G) equals
to its colinear chromatic number �(G), and the equality holds for every induced subgraph of G, i.e.,
�(GA) = �(GA), ∀A ⊆ V (G). We show that the class of threshold graphs is characterized by the
�-colinear property and the class of quasi-threshold graphs is characterized by the �-colinear property.

Moreover, it was interesting to study those graphs which are characterized completely by the �-
colinear or the �-colinear property. The outcome of this study was to conclude that these graphs form
two new classes of perfect graphs, which we call colinear and linear graphs, respectively. We also provide
characterizations for colinear and linear graphs and prove structural properties. More speci�cally, we
show that the class of colinear graphs is a subclass of co-chordal graphs, a superclass of threshold graphs,
and is distinguished from the class of split graphs. Additionally, we infer that linear graphs form a
subclass of chordal graphs and a superclass of quasi-threshold graphs. We also prove that any P6-free
chordal graph, which is not a linear graph, properly contains a k-sun as an induced subgraph. However,
the k-sun is not a forbidden induced subgraph for the class of linear graphs and, thus, linear graphs form
a superclass of the class of P6-free strongly chordal graphs. Figure 1.1 depicts a map of some classes of
perfect graphs, including the classes of colinear and linear graphs which we de�ne within this work.

1.4.2 The Harmonious Coloring Problem

A harmonious coloring of a simple graph G is a proper vertex coloring such that each pair of colors
appears together on at most one edge, while the harmonious chromatic number h(G) is the least integer
k for which G admits a harmonious coloring with k colors [13].

Harmonious coloring developed from the closely related concept of line-distinguishing coloring which
was introduced independently by Frank et al. [30] and by Hopcroft and Krishnamoorthy [45] who showed
that the harmonious coloring problem is NP-complete on general graphs. The complexity of the har-
monious coloring problem has been extensively studied on various classes of perfect graphs such as
cographs, interval graphs, bipartite graphs and trees [10, 37]. Bodlaender [8] provides a proof for the
NP-completeness of the harmonious coloring problem for disconnected cographs and disconnected inter-
val graphs. It is worth noting that the problem of determining the harmonious chromatic number of a
connected cograph is trivial, since in such a graph each vertex must receive a distinct color as it is at
distance at most 2 from all other vertices [13]. Bodlaender's results establish the NP-hardness of the

8

harmonious coloring problem when restricted to disconnected permutation graphs. Extending the above
results, in this work we show that the harmonious coloring problem remains NP-complete on connected
interval and permutation graphs. In addition, we show that the problem remains NP-complete for the
class of split graphs.

Additionally, the NP-completeness of the problem has been also proved for the classes of trees and
disconnected bipartite permutation graphs [25, 26], connected bipartite permutation graphs [2], and
disconnected quasi-threshold graphs [2]. Since the problem of determining the harmonious chromatic
number of a connected cograph is trivial, the harmonious coloring problem is polynomially solvable on
connected quasi-threshold graphs and threshold graphs.

Since we prove that the harmonious coloring problem is NP-complete on interval , we obtain that the
problem is also NP-complete on the classes of strongly chordal and undirected path graphs. Extending
our results for the harmonious coloring problem on interval graphs and split graphs, in this work we also
study the complexity status of the harmonious coloring problem on two subclasses of colinear graphs.
We �rst show that the harmonious coloring problem is NP-complete on split undirected path graphs and,
then, we show that the class of split undirected path graphs forms a subclass of colinear graphs; thus, we
obtain the NP-completeness of the harmonious coloring problem on colinear graphs as well.

Moreover, we provide a polynomial solution for the harmonious coloring problem on split strongly
chordal graphs, the interest of which lies on the fact that the problem is NP-complete on both split graphs
and strongly chordal graphs. However, the complexity status of the problem for the class of connected
linear graphs still remains an open question; note that the harmonious coloring problem is NP-complete
on disconnected linear graphs, since it is NP-complete on disconnected quasi-threshold graphs [2] and
quasi-threshold graphs form a subclass of linear graphs.

1.4.3 The Longest Path Problem

The longest path problem, i.e., the problem of �nding a path of maximum length in a graph, is a
generalization of the Hamiltonian path problem. The Hamiltonian path problem is the problem of
determining whether a graph is Hamiltonian; a graph is said to be Hamiltonian if it contains a Hamiltonian
path, that is, a simple path in which every vertex of the graph appears exactly once. The longest path
problem or, equivalently, the problem of �nding a maximum Hamiltonian induced subgraph of a graph, is
NP-complete on general graphs and, in fact, on every class of graphs that the Hamiltonian path problem
is NP-complete. However, it is interesting to study the longest path problem on classes of graphs where
the Hamiltonian path problem is polynomial, since even if a graph is not Hamiltonian, it makes sense in
several applications to search for a longest path of the graph. Although the Hamiltonian path problem
has received a great deal of attention the past two decades in looking for polynomial solutions for the
problem on special graph classes, only recently did the longest path problem start receiving attention in
this direction.

As we have mentioned, the longest path problem is NP-hard on every class of graphs on which the
Hamiltonian path problem is NP-complete. The Hamiltonian path problem is known to be NP-complete
in general graphs [33, 34], and remains NP-complete even when restricted to some small classes of graphs
such as split graphs [37], chordal bipartite graphs, split strongly chordal graphs [58], circle graphs [22],
planar graphs [34], and grid graphs [46]. However, it makes sense to investigate the tractability of
the longest path problem on the classes of graphs for which the Hamiltonian path problem admits
polynomial time solutions. Such classes include interval graphs [1], circular-arc graphs [24], convex
bipartite graphs [58], and co-comparability graphs [23]. Note that the problem of �nding a longest path
on proper interval graphs is easy, since all connected proper interval graphs have a Hamiltonian path
which can be computed in linear time [6]. On the contrary, not all interval graphs are Hamiltonian; in the
case where an interval graph has a Hamiltonian path, it can be computed in linear time [1, 15]. However,
in the case where an interval graph is not Hamiltonian, there is no known algorithm for �nding a longest
path on it.

9

In contrast to the Hamiltonian path problem, the known polynomial time solutions for the longest
path problem are rather recent, and restrict to smaller graph classes. Speci�cally, a linear time algorithm
for �nding a longest path in a tree was proposed by Dijkstra around 1960, a formal proof of which can
be found in [12]. Later, through a generalization of Dijkstra's algorithm for trees, Uehara and Uno [63]
solved the longest path problem for weighted trees and block graphs in linear time and space, and for
cacti in O(n2) time and space, where n and m denote the number of vertices and edges of the input
graph, respectively. More recently, polynomial algorithms have been proposed that solve the longest
path problem on bipartite permutation graphs in O(n) time and space [64], and on ptolemaic graphs in
O(n5) time and O(n2) space [65]. Furthermore, Uehara and Uno in [63] solved the longest path problem
on a subclass of interval graphs, namely interval biconvex graphs, in O(n3(m+ n logn)) time, and as a
corollary they showed that a longest path on threshold graphs can be found in O(n+m) time and space.
They left open the complexity of the longest path problem on interval graphs.

In this work, we resolve the open problem posed in [63] by showing that the longest path problem
admits a polynomial time solution on interval graphs. In particular, we propose an algorithm for solving
the longest path problem on interval graphs which runs in O(n4) time using a dynamic programming
approach. Thus, not only we answer the question left open by Uehara and Uno in [63], but also improve
the known time complexity of the problem on interval biconvex graphs, a subclass of interval graphs [63].

Moreover, we study the longest path problem on the class of cocomparability graphs, a well-known
class of perfect graphs which includes both interval and permutation graphs. Although the Hamilto-
nian path problem on cocomparability graphs has been proved to be polynomial [23], the status of the
longest path problem on cocomparability graphs is unknown, since no polynomial-time algorithm or
NP-completeness result exists; actually, the status of the longest path problem is unknown even on the
more special class of permutation graphs. In this work, we propose a polynomial-time algorithm for
solving the longest path problem on cocomparability graphs, which extends our polynomial solution of
the longest path problem on interval graphs, and resolves the open question for the status of the problem
on cocomparability graphs, and thus on permutation graphs.

10

Chapter 2

Colinear Coloring and Colinear
Graphs

2.1 Introduction

2.2 Colinear Coloring on Graphs

2.3 An Algorithm for Colinear Coloring

2.4 Graphs having the �-colinear and �-colinear Properties

2.5 Colinear and Linear Graphs

2.6 Structural Properties

2.7 Concluding Remarks

2.1 Introduction

A colinear coloring of a graph G is a coloring of its vertices such that two vertices are assigned di�erent
colors, if their corresponding clique sets are not associated by the set inclusion relation; a clique set of a
vertex u is the set of all maximal cliques in G containing u. The colinear chromatic number �(G) of G
is the least integer k for which G admits a colinear coloring with k colors.

Motivated by the de�nition of linear coloring on simplicial complexes associated to graphs, �rst
introduced by Civan and Yal�cin [18] in the context of algebraic topology, we studied linear colorings on
simplicial complexes which can be represented by a graph. In particular, we studied the linear coloring
problem on a simplicial complex, namely independence complex I(G) of a graph G. The independence
complex I(G) of a graph G can always be represented by a graph and, more speci�cally, is identical to
the complement graph G of the graph G; indeed, the facets of I(G) are exactly the maximal cliques of G.
The outcome of this study was the de�nition of the colinear coloring of a graph G; the colinear coloring
of a graph G is a coloring of G such that for any set of vertices taking the same color, the collection of
their clique sets can be linearly ordered by inclusion. Note that, the two de�nitions cannot always be
considered as identical since not in all cases a simplicial complex can be represented by a graph; such an
example is the neighborhood complex N (G) of a graph G. Recently, Civan and Yal�cin [18] studied the
linear coloring of the neighborhood complex N (G) of a graph G and proved that the linear chromatic

11

number of N (G) gives an upper bound for the chromatic number �(G) of the graph G. This approach
lies in a general framework met in algebraic topology.

In the context of algebraic topology, one can �nd much work done on providing boundaries for the
chromatic number of an arbitrary graph G, by examining the topology of the graph through di�erent
simplicial complexes associated to the graph. This domain was motivated by Kneser's conjecture, which
was posed in 1955, claiming that \if we split the n-subsets of a (2n+k)-element set into k+1 classes, one
of the classes will contain two disjoint n-subsets" [50]. Kneser's conjecture was �rst proved by Lov�asz in
1978, with a proof based on graph theory, by rephrasing the conjecture into \the chromatic number of
Kneser's graphKGn;k is k+2" [54]. Many more topological and combinatorial proofs followed, the interest
of which extends beyond the original conjecture [69]. Although Kneser's conjecture is concerned with the
chromatic numbers of certain graphs (Kneser graphs), the proof methods that are known provide lower
bounds for the chromatic number of any graph [55]. Thus, this initiated the application of topological
tools in studying graph theory problems and more particularly in graph coloring problems [21].

The interest to provide boundaries for the chromatic number �(G) of an arbitrary graph G through the
study of di�erent simplicial complexes associated to G, which is found in algebraic topology bibliography,
drove the motivation for de�ning the colinear coloring on the graph G and studying the relation between
the chromatic number �(G) and the colinear chromatic number �(G). We show that for any graph
G, �(G) is an upper bound for �(G). The interest of this result lies on the fact that we present a
colinear coloring algorithm that can be applied to any graph G and provides an upper bound �(G) for
the chromatic number of the graph G, i.e., �(G) ≤ �(G); in particular, it provides a proper vertex
coloring of G using �(G) colors. Additionally, recall that a known lower bound for the chromatic number
of any graph G is the clique number !(G) of G, i.e., �(G) ≥ !(G). Motivated by the de�nition of perfect
graphs, for which �(GA) = !(GA) holds ∀A ⊆ V (G), it was interesting to study those graphs for which
the equality �(G) = �(G) holds, and even more those graphs for which this equality holds for every
induced subgraph.

In this work, we �rst introduce the colinear coloring of a graph G and study the relation between
the colinear coloring of G and the proper vertex coloring of G. We prove that, for any graph G, a
colinear coloring of G is a proper vertex coloring of G and, thus, �(G) is an upper bound for �(G), i.e.,
�(G) ≤ �(G). We present a colinear coloring algorithm that can be applied to any graph G. Motivated
by these results and the Perfect Graph Theorem [37], we study those graphs for which the equality
�(G) = �(G) holds for every induced subgraph and characterize known graph classes in terms of the
�-colinear and the �-colinear properties. A graph G has the �-colinear property if its chromatic number
�(G) equals to the colinear chromatic number �(G) of its complement graph G, and the equality holds for
every induced subgraph of G, i.e., �(GA) = �(GA), ∀A ⊆ V (G); a graph G has the �-colinear property
if its stability number �(G) equals to its colinear chromatic number �(G), and the equality holds for
every induced subgraph of G, i.e., �(GA) = �(GA), ∀A ⊆ V (G). Note that the stability number �(G)
of a graph G is the greatest integer r for which G contains an independent set of size r. We show that
the class of threshold graphs is characterized by the �-colinear property and the class of quasi-threshold
graphs is characterized by the �-colinear property.

Moreover, it was interesting to study those graphs which are characterized completely by the �-
colinear or the �-colinear property. The outcome of this study was to conclude that these graphs form
two new classes of perfect graphs, which we call colinear and linear graphs, respectively. We also provide
characterizations for colinear and linear graphs and prove structural properties. More speci�cally, we
show that the class of colinear graphs is a subclass of co-chordal graphs, a superclass of threshold graphs,
and is distinguished from the class of split graphs. Additionally, we infer that linear graphs form a
subclass of chordal graphs and a superclass of quasi-threshold graphs. We also prove that any P6-free
chordal graph, which is not a linear graph, properly contains a k-sun as an induced subgraph. However,
the k-sun is not a forbidden induced subgraph for the class of linear graphs and, thus, linear graphs form
a superclass of the class of P6-free strongly chordal graphs.

The rest of this chapter is organized as follows. In Section 2.2 we de�ne the colinear coloring on graphs,

12

while in Section 2.3 we present a polynomial time algorithm for colinear coloring which can be applied to
any graph G and provides an upper bound for the chromatic number �(G) of the graph G. In Section 2.4
we de�ne the �-colinear and �-colinear properties and characterize known graph classes in terms of these
properties. Based on these results, in Section 2.5 we study the graphs which are characterized completely
by the �-colinear or �-colinear property and, thus, de�ne two new classes of perfect graphs, which we
call colinear and linear graphs. Characterizations and structural properties of linear graphs are proved
in Section 2.6. Some concluding remarks follow.

2.2 Colinear Coloring on Graphs

In this section we de�ne the colinear coloring of a graph G, and we prove some properties of such a
coloring. It is worth noting that these properties have been also proved for the linear coloring of the
neighborhood complex N (G) in [18].

De�nition 2.1. Let G be a graph and let v ∈ V (G). The clique set of a vertex v is the set of all maximal
cliques of G containing v and is denoted by CG(v).

De�nition 2.2. Let G be a graph and let k be an integer. A surjective map � : V (G) → {1; 2; : : : ; k}
is called a k-colinear coloring of G if the collection {CG(v) : �(v) = i} is linearly ordered by inclusion for
all i ∈ {1; 2; : : : ; k}, where CG(v) is the clique set of v, or, equivalently, for two vertices v; u ∈ V (G), if
�(v) = �(u) then either CG(v) ⊆ CG(u) or CG(v) ⊇ CG(u). The least integer k for which G is k-colinear
colorable is called the colinear chromatic number of G and is denoted by �(G).

Next, we study the colinear coloring on graphs and its association to the proper vertex coloring. In
particular, we show that for any graph G the colinear chromatic number of G is an upper bound for
�(G).

Proposition 2.1. Let G be a graph. If � : V (G) → {1; 2; : : : ; k} is a k-colinear coloring of G, then � is
a coloring of the graph G.

Proof. Let G be a graph and let � : V (G) → {1; 2; : : : ; k} be a k-colinear coloring of G. From De�ni-
tion 4.2, we have that for any two vertices v; u ∈ V (G), if �(v) = �(u) then either CG(v) ⊆ CG(u) or
CG(v) ⊇ CG(u) holds. Without loss of generality, assume that CG(v) ⊆ CG(u) holds. Consider a maxi-
mal clique C ∈ CG(v). Since CG(v) ⊆ CG(u), we have C ∈ CG(u). Thus, both u; v ∈ C and therefore
uv ∈ E(G) and uv =∈ E(G). Hence, any two vertices assigned the same color in a k-colinear coloring of
G are not neighbors in G. Concluding, any k-colinear coloring of G is a coloring of G.

It is therefore straightforward to conclude the following.

Corollary 2.1. For any graph G, �(G) ≥ �(G).

In Figure 2.1 we depict a colinear coloring of the well known graphs 2K2, C4 and P4, using the
least possible colors, and show the relation between the chromatic number �(G) of each graph G ∈
{2K2; C4; P4} and the colinear chromatic number �(G).

Proposition 2.2. Let G be a graph. A coloring � : V (G) → {1; 2; : : : ; k} of G is a k-colinear coloring
of G if and only if either NG[u] ⊆ NG[v] or NG[u] ⊇ NG[v] holds in G, for every u; v ∈ V (G) with
�(u) = �(v).

Proof. Let G be a graph and let � : V (G) → {1; 2; : : : ; k} be a k-colinear coloring of G. We will show that
either NG[u] ⊆ NG[v] or NG[u] ⊇ NG[v] holds in G for every u; v ∈ V (G) with �(u) = �(v). Consider
two vertices v; u ∈ V (G), such that �(u) = �(v). Since � is a colinear coloring of G, we have either
CG(u) ⊆ CG(v) or CG(u) ⊇ CG(v) holds. Without loss of generality, assume that CG(u) ⊆ CG(v). We will

13

1 2 1 2

1 2 4 3
1 1 2 2

2K2 C4 P4

λ(2K2) = 2 = χ(2K2) = χ(C4) λ(C4) = 4 6= 2 = χ(C4) = χ(2K2) λ(P4) = 2 = χ(P4) = χ(P4)

Figure 2.1: Illustrating a colinear coloring of the graphs 2K2, C4 and P4 with the least possible colors.

show that NG[u] ⊆ NG[v] holds in G. Assume the opposite. Thus, a vertex z ∈ V (G) exists, such that
z ∈ NG[u] and z =∈ NG[v] and, thus, zu ∈ E(G) and zv =∈ E(G). Now consider a maximal clique C in G
which contains z and u. Since zv =∈ E(G), it follows that v =∈ C. Thus, there exists a maximal clique C in
G such that C ∈ CG(u) and C =∈ CG(v), which is a contradiction to our assumption that CG(u) ⊆ CG(v).
Therefore, NG[u] ⊆ NG[v] holds in G.

Let G be a graph and let � : V (G) → {1; 2; : : : ; k} be a coloring of G. Assume now that either
NG[u] ⊆ NG[v] or NG[u] ⊇ NG[v] holds in G, for every u; v ∈ V (G) with �(u) = �(v). We will show that
the coloring � of G is a k-colinear coloring of G. Without loss of generality, assume that NG[u] ⊆ NG[v]
holds in G, and we will show that CG(u) ⊆ CG(v). Assume the opposite. Thus, a maximal clique C exists
in G, such that C ∈ CG(u) and C =∈ CG(v). Consider now a vertex z ∈ V (G) (z 6= v), such that z ∈ C
and zv =∈ E(G). Such a vertex exists since C is maximal in G and C =∈ CG(v). Thus, zv =∈ E(G) and
either zu ∈ E(G) or z = u, which is a contradiction to our assumption that NG[u] ⊆ NG[v].

2.3 An Algorithm for Colinear Coloring

In this section we present a polynomial time algorithm for colinear coloring which can be applied to any
graph G, and provides an upper bound for �(G). Although we have introduced colinear coloring through
De�nition 4.2, in our algorithm we exploit the property proved in Proposition 4.11, since the problem of
�nding all maximal cliques of a graph G is not polynomially solvable on general graphs. Before describing
our algorithm, we �rst construct a directed acyclic graph (DAG) DG of a graph G, which we call DAG
associated to the graph G, and we use it in the proposed algorithm.

The DAG DG associated to the graph G. Let G be a graph. We �rst compute the closed neigh-
borhood NG[v] of each vertex v of G and, then, we construct the following directed acyclic graph D,
which depicts all inclusion relations among the vertices' closed neighborhoods: V (D) = V (G) and
E(D) = {−→xy : x; y ∈ V (D) and NG[x] ⊆ NG[y]}, where −→xy is a directed edge from x to y. In the
case where the equality NG[x] = NG[y] holds, we choose to add one of the two edges so that the re-
sulting graph D is acyclic. To achieve this, we consider a partition of the vertex set V (G) into the
sets S1; S2; : : : ; S`, such that for any i ∈ {1; 2; : : : ; `} vertices x and y belong to a set Si if and only if
NG[x] = NG[y]. For vertices x and y belonging to the same set Si we add the edge −→xy if and only if
x < y. For vertices x and y belonging to di�erent sets Si and Sj respectively, we add the edge −→xy if and
only if NG[x] ⊂ NG[y]. It is easy to see that the resulting graph D is unique up to isomorphism.

Additionally, it is easy to see that D is a transitive directed acyclic graph. Indeed, by de�nition
D is constructed on a partially ordered set of elements (V (D);≤), such that for some x; y ∈ V (D),
x ≤ y ⇔ NG[x] ⊆ NG[y]. Throughout this work we refer to the constructed directed acyclic graph as the
DAG associated to the graph G and denote it by DG.

The proposed algorithm, namely Algorithm 1, computes a colinear coloring and the colinear chromatic
number of a graph G.

Correctness of the algorithm. Let G be a graph and let DG be the DAG associated to the graph
G, which is unique up to isomorphism. Consider the value �(v) for each vertex v ∈ V (DG) returned by
the algorithm and the size �(DG) of a minimum path cover of DG. We show that the surjective map

14

Algorithm Colinear Coloring

Input: a graph G.

Output: a colinear coloring and the colinear chromatic number of G.

(i) compute the closed neighborhood set of every vertex of G and, then, �nd the inclusion relations
among the neighborhood sets and construct the DAG DG associated to the graph G.

(ii) find a minimum path cover P(DG), and its size �(DG), of the transitive DAG DG (e.g. see [9, 44]).

(iii) assign a color �(v) to each vertex v ∈ V (DG), such that vertices belonging to the same path of
P(DG) are assigned the same color and vertices of di�erent paths are assigned di�erent colors; this
is a surjective map � : V (DG) → [�(DG)].

(iv) return the value �(v) for each vertex v ∈ V (DG) and the size �(DG) of the minimum path cover
of DG; � is a colinear coloring of G and �(DG) equals the colinear chromatic number �(G) of G.

Algorithm 1: Algorithm Colinear Coloring

� : V (DG) → [�(DG)] is a colinear coloring of the vertices of G, and prove that the size �(DG) of a
minimum path cover P(DG) of the DAG DG is equal to the colinear chromatic number �(G) of the graph
G.

Proposition 2.3. Let G be a graph and let DG be the DAG associated to the graph G. A colinear coloring
of the graph G can be obtained by assigning a particular color to all vertices of each path of a path cover
of the DAG DG. Moreover, the size �(DG) of a minimum path cover P(DG) of the DAG DG equals to
the colinear chromatic number �(G) of the graph G.

Proof. Let G be a graph, DG be the DAG associated to G, and let P(DG) be a minimum path cover of DG.
The size �(DG) of the DAG DG, equals to the minimum number of directed paths in DG needed to cover
the vertices of DG and, thus, the vertices of G. Now, consider a coloring � : V (DG) → {1; 2; : : : ; k} of the
vertices of DG, such that vertices belonging to the same path are assigned the same color and vertices of
di�erent paths are assigned di�erent colors. Therefore, we have �(DG) colors and �(DG) sets of vertices,
one for each color. For every set of vertices belonging to the same path, their corresponding closed
neighborhood sets can be linearly ordered by inclusion. Indeed, consider a path in DG with vertices
{v1; v2; : : : ; vm} and edges −−−→vivi+1 for i ∈ {1; 2; : : : ;m}. From the construction of DG, it holds that
∀i; j ∈ {1; 2; : : : ;m}, −−→vivj ∈ E(DG) ⇔ NG[vi] ⊆ NG[vj]. In other words, the corresponding neighborhood
sets of the vertices belonging to a path in DG are linearly ordered by inclusion. Thus, the coloring � of
the vertices of DG gives a colinear coloring of G.

This colinear coloring � is optimal, uses k = �(DG) colors, and gives the colinear chromatic number
�(G) of the graph G. Indeed, suppose that there exists a di�erent colinear coloring �′ : V (DG) → [k′]
of G using k′ colors, such that k′ < k. For every color given in �′, consider a set consisted of the
vertices assigned that color. It is true that for the vertices belonging to the same set, their neighborhood
sets are linearly ordered by inclusion. Therefore, these vertices can belong to the same path in DG.
Thus, each set of vertices in G corresponds to a path in DG and, additionally, all vertices of G (and
therefore of DG) are covered. This is a path cover of DG of size �′(DG) = k′ < k = �(DG), which is
a contradiction since P(DG) is a minimum path cover of DG. Therefore, we conclude that the colinear
coloring � : V (DG) → [�(DG)] is optimal and, hence, �(DG) = �(G).

Complexity of the algorithm. Let G be a graph, V (G) = n, E(G) = m, and let DG be the DAG
associated to the graph G. Step (i) of the algorithm, which includes the construction of the DAG DG,

15

takes O(nm) time. In particular, it takes O(nm) time to compute the closed neighborhood set of every
vertex of G, O(nm) time to �nd the inclusion relations among the neighborhood sets, and O(n+m) time
to construct the DAG DG. Note that, we only need to check pairs of vertices that are connected by an
edge in G. Step (ii) computes a minimum path cover in the transitive DAG DG; the problem is known
to be polynomially solvable, since it can be reduced to the maximum matching problem in a bipartite
graph formed from the transitive DAG [9]. The maximum matching problem in a bipartite graph takes
O((m + n)

√
n) time, due to an algorithm by Hopcroft and Karp [44]. Finally, both Steps (iii) and (iv)

can be executed in O(n) time. Therefore, the complexity of the algorithm is O(nm+ n
√
n).

2.4 Graphs having the �-colinear and �-colinear Properties

In Section 2.2 we showed that for any graph G, the colinear chromatic number �(G) of the graph G is
an upper bound for the chromatic number �(G) of G, i.e., �(G) ≤ �(G). Recall that a known lower
bound for the chromatic number of G is the clique number !(G) of G, i.e., �(G) ≥ !(G). Motivated by
the Perfect Graph Theorem [37], in this section we exploit our results on colinear coloring and we study
those graphs for which the equality �(G) = �(G) holds for every induced subgraph. The outcome of this
study was the de�nition of the following two graph properties and the characterization of known graph
classes in terms of these properties.

◦ �-colinear property. A graph G has the �-colinear property if for every induced subgraph GA
of the graph G, �(GA) = �(GA), A ⊆ V (G).

◦ �-colinear property. A graph G has the �-colinear property if for every induced subgraph GA
of a graph G, �(GA) = �(GA), A ⊆ V (G).

Next, we show that the class of threshold graphs is characterized by the �-colinear property and the class
of quasi-threshold graphs is characterized by the �-colinear property. We also show that any graph that
has the �-colinear property is perfect; actually, we show that any graph that has the �-colinear property
is a co-chordal graph. We �rst give some de�nitions and show some interesting results.

De�nition 2.3. An edge uv of a graph G is called actual if neither NG[u] ⊆ NG[v] nor NG[u] ⊇ NG[v].
The set of all actual edges of G will be denoted by E�(G).

De�nition 2.4. A graph G is called quasi-threshold if it has no induced subgraph isomorphic to a C4 or
a P4 or, equivalently, if it contains no actual edges.

More details on actual edges and characterizations of quasi-threshold graphs through a classi�ca-
tion of their edges can be found in [59]. The following result directly follows from De�nition 2.3 and
Proposition 4.11.

Proposition 2.4. Let � : V (G) → {1; 2; : : : ; k} be a k-colinear coloring of the graph G. If the edge
uv ∈ E(G) is an actual edge of G, then �(u) 6= �(v).

Based on De�nition 2.3, the �-colinear property, and Proposition 5.1, we prove the following result.

Proposition 2.5. Let G be a graph and let F be the graph such that V (F) = V (G) and E(F) =
E(G) ∪ E�(G). The graph G has the �-colinear property if �(GA) = !(FA), ∀A ⊆ V (G).

Proof. Let G be a graph and let F be a graph such that V (F) = V (G) and E(F) = E(G)∪E�(G), where
E�(G) is the set of all actual edges of G. By de�nition, G has the �-colinear property if �(GA) = �(GA),
∀A ⊆ V (G). It su�ces to show that �(GA) = !(FA), ∀A ⊆ V (G). From De�nition 4.2, it is easy to
see that two vertices which are not connected by an edge in GA belong necessarily to di�erent cliques
and, thus, they cannot receive the same color in a colinear coloring of GA. In other words, the vertices
which are connected by an edge in GA cannot take the same color in a colinear coloring of GA. Moreover,

16

from Proposition 2.4 vertices which are endpoints of actual edges in GA cannot take the same color in a
colinear coloring of GA.

Next, we construct the graph FA with vertex set V (FA) = V (GA) and edge set E(FA) = E(GA) ∪
E�(GA), where E�(GA) is the set of all actual edges of GA. Every two vertices in FA, which have to take
a di�erent color in a colinear coloring of GA are connected by an edge. Thus, the size of the maximum
clique in FA equals to the size of the maximum set of vertices which pairwise must take a di�erent color
in GA, i.e., !(FA) = �(GA) holds for all A ⊆ V (G). Concluding, G has the �-colinear property if
�(GA) = !(FA), ∀A ⊆ V (G).

Taking into consideration Proposition 2.5 and the structure of the edge set E(F) = E(G)∪E�(G) of
the graph F , it is easy to see that E(F) = E(G) if G has no actual edges. Actually, this will be true for
all induced subgraphs, since if G is a quasi-threshold graph then GA is also a quasi-threshold graph for
all A ⊆ V (G). Thus, �(GA) = !(FA), ∀A ⊆ V (G). Therefore, the following result holds.

Corollary 2.2. Let G be a graph. If G is quasi-threshold, then G has the �-colinear property.

Using Corollary 2.2 we can prove a more interesting result.

Proposition 2.6. Any threshold graph has the �-colinear property.

Proof. Let G be a threshold graph. It has been proved that an undirected graph G is a threshold graph
if and only if G and its complement G are quasi-threshold graphs [59]. From Corollary 2.2, if G is quasi-
threshold then G has the �-colinear property. Concluding, if G is threshold, then G is quasi-threshold
and thus G has the �-colinear property.

We note that the proof that any threshold graph G has the �-colinear property can be also obtained
by showing that any coloring of a threshold graph G is a colinear coloring of G by using Proposition 4.11,
Corollary 3.1, the fact that NG(u) = V (G) \NG[u], and the property that N(u) ⊆ N [v] or N(v) ⊆ N [u]
for any two vertices u; v of G. However, Proposition 2.5 and Corollary 2.2 actually give us a stronger
result, since the class of quasi-threshold graphs is a superclass of the class of threshold graphs.

The following result is even more interesting, since it shows that any graph that has the �-colinear
property is a perfect graph.

Proposition 2.7. Any graph that has the �-colinear property is a co-chordal graph.

Proof. Let G be a graph that has the �-colinear property. It has been shown that a co-chordal graph is
(2K2; antihole)-free [37]. To show that any graph G that has the �-colinear property is a co-chordal graph
we will show that if G has a 2K2 or an antihole as induced subgraph, then G is does not have the �-colinear
property. Since by de�nition a graph G has the �-colinear property if the equality �(GA) = �(GA) holds
for every induced subgraph GA of G, it su�ces to show that the graphs 2K2 and antihole do not have
the �-colinear property.

The graph 2K2 does not have the �-colinear property, since �(2K2) = 2 6= 4 = �(C4); see Figure 2.1.
Now, consider the graph G = Cn which is an antihole of size n ≥ 5. We will show that �(G) 6= �(G).
It follows that �(G) = �(Cn) = n ≥ 5, i.e., if the graph G = Cn is to be colored colinearly, every vertex
has to take a di�erent color. Indeed, assume that a colinear coloring � : V (G) → {1; 2; : : : ; k} of G = Cn
exists such that for some ui; uj ∈ V (G), i 6= j, 1 ≤ i; j ≤ n, �(ui) = �(uj). Since ui; uj are vertices of a
hole, their neighborhoods in G are N [ui] = {ui−1; ui; ui+1} and N [uj] = {uj−1; uj ; uj+1}, 2 ≤ i; j ≤ n−1.
For i = 1 or i = n, N [u1] = {un; u2} and N [un] = {un−1; u1}. Since �(ui) = �(uj), from Proposition 4.11
we obtain that one of the inclusion relations N [ui] ⊆ N [uj] or N [ui] ⊇ N [uj] must hold in G. Obviously
this is possible if and only if i = j, for n ≥ 5; this is a contradiction to the assumption that i 6= j.
Thus, no two vertices in a hole take the same color in a colinear coloring. Therefore, �(G) = n. It
su�ces to show that �(G) < n. It is easy to see that for the antihole Cn, deg(u) = n − 3, for every
vertex u ∈ V (G). Brook's theorem [11] states that for an arbitrary graph G and for all u ∈ V (G),

17

Figure 2.2: A graph G which is a split graph but it does not have the �-colinear property, since �(G) = 4
and �(G) = 5.

�(G) ≤ max{d(u) + 1} = (n− 3) + 1 = n− 2. Therefore, �(G) ≤ n− 2 < n = �(G). Thus the antihole
Cn does not have the �-colinear property.

We have showed that the graphs 2K2 and antihole do not have the �-colinear property. It follows
that any graph that has the �-colinear property is (2K2; antihole)-free and, thus, any graph that has the
�-colinear property is a co-chordal graph.

Since graphs having the �-colinear property are perfect, it follows that any graph G having the �-
colinear property satis�es �(GA) = !(GA) = �(GA), ∀A ⊆ V (G). Therefore, the following result holds.

Proposition 2.8. A graph G has the �-colinear property if and only if the graph G has the �-colinear
property.

From Corollary 2.2 and Proposition 2.8 we can obtain the following result.

Proposition 2.9. Any quasi-threshold graph has the �-colinear property.

In this section we de�ned the �-colinear and �-colinear properties and characterized known graph
classes in terms of these properties. Based on these results, we next study the graphs which are charac-
terized completely by the �-colinear or �-colinear property.

2.5 Colinear and Linear Graphs

In Section 2.4 we showed that any threshold graph has the �-colinear property and any quasi-threshold
graph has the �-colinear property. In this section we study the graphs that are characterized completely
by the �-colinear property or the �-colinear property. We call these graphs colinear and linear graphs
and as we next show they constitute two new classes of perfect graphs.

De�nition 2.5. A graph G is called colinear if and only if G has the �-colinear property, i.e., �(GA) =
�(GA), ∀A ⊆ V (G). A graph G is called linear if and only if G has the �-colinear property, i.e.,
�(GA) = �(GA), ∀A ⊆ V (G).

From Proposition 2.6 we know that any threshold graph is a colinear graph. However, not any
colinear graph is a threshold graph. Indeed, Chv�atal and Hammer [17] showed that threshold graphs are
(2K2; P4; C4)-free and, thus, the graphs P4 and C4 are colinear graphs but they are not threshold graphs
(see Figure 2.1). Therefore, we directly obtain the following result concerning the class of colinear graphs.

Proposition 2.10. Colinear graphs form a superclass of threshold graphs.

Moreover, from Proposition 2.7 we have that any colinear graph is a co-chordal graph. However, the
reverse is not always true. For example, the graph G in Figure 3.4 is a co-chordal graph but it is not a
colinear graph. Indeed, �(G) = 4 and �(G) = 5. It is easy to see that this graph is also a split graph.
Moreover, not any colinear graph is a split graph, since the graph C4 is colinear but it is not a split graph.
However, there exist split graphs which are also colinear graphs; an example is the graph C3. Recall that
a graph G is a split graph if there is a partition of the vertex set V (G) = K + I, where K induces a

18

1 3

2 3
1 1 2 3 4 4

1 2
P6 and λ(P6) = 4

P6 and χ(P6) = 3

Figure 2.3: Illustrating the graph P 6 which is not a colinear graph, since �(P 6) 6= �(P6).

clique in G and I induces an independent set; split graphs are characterized as (2K2; C4; C5)-free graphs.
Thus, the following result holds.

Proposition 2.11. Colinear graphs form a subclass of co-chordal graphs.

We have proved that colinear graphs do not contain a 2K2 or an antihole. Note that, since C5 = C5

and also the chordless cycle Cn is not 2K2-free for n ≥ 6, it is easy to see that colinear graphs are hole-
free. In addition, the graph P 6 is not a colinear graph (see Figure 2.3). Thus, we obtain the following
result.

Proposition 2.12. If a graph G is colinear, then G is a (2K2; antihole; P 6)-free graph.

From Proposition 2.9 we obtain that any quasi-threshold graph is a linear graph. Again, the reverse
is not always true; an example is the graph P4, which is a linear graph but not a quasi-threshold graph.
Therefore, the following result holds.

Proposition 2.13. Linear graphs form a superclass of quasi-threshold graphs.

From Propositions 2.12 and 2.8 we obtain that linear graphs are (C4; hole; P6)-free graphs. Therefore,
it follows that any linear graph is chordal. However, the reverse is not always true, i.e., not any chordal
graph is linear; an obvious example is the graph P6. Another interesting example is the complement G
of the graph illustrated in Figure 3.4, which is a chordal graph but not a linear graph. Indeed, �(G) = 4
and �(G) = 5. It is easy to see that this graph is also a split graph. Moreover, not any linear graph is
a split graph, since the graph 2K2 is linear but it is not a split graph. However, there exist split graphs
that are linear graphs; an example is the graph C3. Therefore, the following result holds.

Proposition 2.14. Linear graphs form a subclass of chordal graphs.

Proposition 2.14 implies that linear graphs are perfect graphs and, thus, it follows that any linear
graph satis�es �(GA) = !(GA) = �(GA), ∀A ⊆ V (G). Therefore, from Corollary 3.1 we obtain the
following characterization.

Proposition 2.15. Linear graphs are those graphs G for which the colinear chromatic number achieves
its theoretical lower bound in every induced subgraph of G.

From the results proved in this section, we conclude that colinear and linear graphs form two new
classes of perfect graphs. The inclusion relations among the classes of colinear graphs, linear graphs, and
other subclasses of co-chordal and chordal graphs are depicted in Figure 3.3.

In the next section we prove structural properties of linear graphs by studying the relation between
the class of strongly chordal graphs, which is a known subclass of chordal graphs [10, 27], and the class
of linear graphs.

2.6 Structural Properties

In this section we prove structural properties of linear graphs, by investigating the structure of their
forbidden induced subgraphs. In particular, we prove that any P6-free chordal graph which is not a

19

co-chordal chordalcolinear split strongly chordal linear
P6-free stronglychordalquasi-thresholdthreshold

Figure 2.4: Illustrating the inclusion relations among the classes of colinear graphs, linear graphs, and
other classes of perfect graphs.

linear graph properly contains a k-sun as an induced subgraph. Let us give the de�nitions of a k-sun and
an incomplete k-sun. An incomplete k-sun Sk (k ≥ 3) is a chordal graph on 2k vertices whose vertex
set can be partitioned into two sets, U = {u1; u2; : : : ; uk} and W = {w1; w2; : : : ; wk}, so that W is an
independent set, and wi is adjacent to uj if and only if i = j or i = j + 1 (mod k). A k-sun is an
incomplete k-sun Sk in which U is a complete graph.

The following de�nitions and results on strongly chordal graphs given in [14, 27], turn up to be useful
in proving structural properties of linear graphs.

De�nition 2.6. (Farber [27]) A vertex ordering � = (v1; v2; : : : ; vn) is a strong elimination ordering of
a graph G i� � is a perfect elimination ordering and also has the property that for each i, j, k and `, if
i < j, k < `, vk; v` ∈ N [vi], and vk ∈ N [vj], then v` ∈ N [vj]. A graph is strongly chordal i� it admits a
strong elimination ordering.

A vertex v of a graph G is called simple if {N [x] : x ∈ N [v]} is linearly ordered by inclusion. It has
been proved that a strong elimination ordering of a graph G is a vertex ordering (v1; v2; : : : ; vn) such that
for every i ∈ {1; 2; : : : ; n} the vertex vi is simple in Gi and also NGi [v`] ⊆ NGi [vk] whenever i ≤ ` ≤ k and
v`; vk ∈ NGi [vi] [14]; recall that for a given vertex ordering (v1; v2; : : : ; vn) of a graph G, we denote by Gi
the subgraph of G induced by the set of vertices {vi; vi+1; : : : ; vn}. Additionally, a graph G is strongly
chordal if and only if every induced subgraph of G has a simple vertex. Actually, if G is a non-trivial
strongly chordal graph, then G has at least two simple vertices [27].

The following characterization of strongly chordal graphs was proved by Farber [27].

Proposition 2.16. (Farber [27]) A chordal graph G is strongly chordal if and only if it contains no
induced k-sun.

We next prove the main result of this section. Let F be the family of all the minimal forbidden
induced subgraphs of the class of linear graphs, and let Fi be a member of F which is a P6-free chordal
graph. We show that Fi properly contains a k-sun (k ≥ 3) as an induced subgraph. It is easy to see that,
due to Proposition 3.2, it su�ces to show both that any P6-free strongly chordal graph is a linear graph,
and that the k-sun (k ≥ 3) is a linear graph.

The proof that a k-sun (k ≥ 3) is a linear graph is given in Lemma 2.3. In order to show that a
P6-free strongly chordal graph G is a linear graph, we will prove that �(GA) = �(GA), ∀A ⊆ V (G). The
proof is completed in the following four parts:

(I) we construct a strong elimination ordering � and a maximum independent set I of G with special
properties,

20

(II) we compute a vertex coloring � for the graph G using �(G) = |I| colors,

(III) we show that � is an optimal colinear coloring of G, and

(IV) we show that the equality �(GA) = �(GA) holds for every induced subgraph GA of G.

Next, we present our proof in detail. Throughout this section we denote by L the set of all the simple
vertices of G and by S the set of all the simplicial vertices of G; note that L ⊆ S since a simple vertex is
also a simplicial vertex.

Part (I): Construction of I and �. Let G be a P6-free strongly chordal graph, and let L be
the set of all the simple vertices in G. From De�nition 2.6, G admits a strong elimination ordering.
Using a modi�ed version of the algorithm given by Farber in [27] we construct a strong elimination
ordering � = (v1; v2; : : : ; vn) of the graph G having speci�c properties. Our algorithm also constructs
the maximum independent set I of G; since G is a chordal graph and � is a perfect elimination or-
dering, we can use a known algorithm (e.g. see [37]) to compute a maximum independent set of the
graph G. Throughout the algorithm, we denote by Gi the subgraph of G induced by the set of vertices
V (G)\{v1; v2; : : : ; vi−1}, where v1; v2; : : : ; vi−1 are the vertices which have already been added to the
ordering � during the construction. Moreover, we denote by I∗ the set of vertices which have not been
added to � yet and additionally do not have a neighbor already added to � which belongs to I.

Algorithm 2 is a modi�ed version of the algorithm given by Farber [27] for constructing a strong
elimination ordering � and a maximum independent set I of G. Our algorithm in each iteration of Steps
3{5 adds to the ordering � all the vertices which are simple in Gi, while Farber's algorithm selects only
one simple vertex of Gi and adds it to �. We note that Li is the set of all the simple vertices of Gi, and
also vk for k = i is that vertex of Li which is added �rst to the ordering �. It is easy to see that the
constructed ordering � is a strong elimination ordering of G, since every vertex which is simple in G is
also simple in every induced subgraph of G. Clearly, the constructed set I is a maximum independent
set of G.

From the fact that G is a P6-free strongly chordal graph and from the construction of I and � we
obtain the following properties. Recall that the distance d(v; u) from vertex v to vertex u is the minimum
length of a path from v to u (note that within this chapter we consider length of a path the number of
edges in the path); d(v; u) = ∞ if there is no path from v to u.

Property 2.1. Let G be a P6-free strongly chordal graph and let L be the set of all the simple vertices of
G. For each vertex vx =∈ L, there exists a chordless path of length at most 4 connecting vx to any vertex
v ∈ L.

Property 2.2. Let G be a P6-free strongly chordal graph, let L be the set of all the simple vertices of
G, and let I and � = (v1; v2; : : : ; vn) be the maximum independent set and the ordering, respectively,
constructed by our algorithm. Then,

(i) if vi =∈ L and i < j, then vj =∈ L;

(ii) for each vertex vx =∈ I, there exists a vertex vi ∈ I, i < x, such that vx ∈ NGi [vi].
Next, in Part (II) we describe an algorithm for computing a vertex coloring � of G using exactly �(G)

colors and, then, in Part (III) we show that � is a colinear coloring of G.

Part (II): The coloring � of G. Let G be a P6-free strongly chordal graph, and let L (resp. S) be
the set of all the simple (resp. simplicial) vertices in G. We consider a maximum independent set I and
a strong elimination ordering � of G, as constructed in Part (I). Now, in order to compute the colinear
chromatic number �(G) of G, we compute a vertex coloring � of G using �(G) colors and, then, we show
that � is a colinear coloring of G. Actually, in Parts (II)-(III) we show that we can compute a colinear
coloring of any P6-free strongly chordal graph with �(G) = �(G) colors, by using the constructed strong
elimination ordering � of G.

21

Algorithm Strong Elimination Ordering

This algorithm is a modi�ed version of Farber's algorithm for constructing a strong elimination ordering
� and a maximum independent set I of a strongly chordal graph G.

Input: a strongly chordal graph G;

Output: a strong elimination ordering � and a maximum independent set I of G;

1. set I = ∅, I∗ = V (G), � = ∅, n = |V (G)|, and V0 = V (G);

2. Let (V0; <0) be the partial ordering on V0 in which v <0 u if and only if v = u.
set V1 = V (G) and i = 1;

3. Let Gi be the subgraph of G induced by Vi, that is, Vi = V (Gi).
construct an ordering on Vi by v <i u if v <i−1 u or NGi [v] ⊂ NGi [u];

4. Let Li be the set of all the simple vertices in Gi.
k = i;

while Li 6= ∅ do
◦ construct an ordering on Vk by v <k u if v <k−1 u or NGk [v] ⊂ NGk [u];
choose a vertex vk which belongs to Li and is minimal in (Vk; <k), and add it to �;
set Vk+1 = Vk\{vk} and Li = Li\{vk};

◦ if vk ∈ I∗ then
set I = I ∪ {vk} and I∗ = I∗\{vk};
delete all neighbors of vk from I∗;

◦ set k = k + 1;
end-while;

i = k;

5. if i = n+ 1 then output the ordering � = (v1; v2; : : : ; vn) of V (G) and stop;
else go to step 3;

Algorithm 2: Algorithm Strong Elimination Ordering

First, we compute a vertex coloring � of G using �(G) colors as follows:

1. Successively visit the vertices in the ordering � from left to right, and assign the color �(vi) to the
�rst vertex vi ∈ I which has not been assigned a color yet.

2. For every uncolored vertex vk ∈ NGi(vi), if the collection {NG[vj] : vj ∈ NGi [vi] and �(vj) =
�(vi)} ∪ {NG[vk]} is linearly ordered by inclusion, then assign the color �(vk) = �(vi) to the vertex
vk.

3. Repeat steps 1 and 2 until there are no uncolored vertices vi ∈ I in G.

Based on this process, we obtain that every vertex vi belonging to the maximum independent set
I of G is assigned a di�erent color in step 1, and for each such vertex vi the collection {NG[vj] : vj ∈
NGi [vi] and �(vj) = �(vi)} is linearly ordered by inclusion. Therefore, we have assigned �(G) colors to
the vertices of G. Now, if we show that there is no vertex in � which has not been assigned a color, then
it follows that � is a colinear coloring of G with �(G) colors, since by the computation of � the collection
{NG[v`] : �(v`) = j} is linearly ordered by inclusion for all j ∈ {1; 2; : : : ; �(G)}.

The following property will be used for proving Lemma 2.1. The property holds, since simple vertices

22

are simplicial vertices, and for every simple vertex v ∈ L the set {NG[vx] : vx ∈ NGi [v]} is linearly ordered
by inclusion.

Property 2.3. For every simple vertex vi ∈ L ∩ I of G, every uncolored vertex vx ∈ NGi [vi] is assigned
the color �(vx) = �(vi) during the coloring � of G. Additionally, for each vertex vx =∈ L, if there exists
a vertex v ∈ L such that vvx ∈ E(G), then vx is assigned the color �(vx) = �(v′) from a simple vertex
v′ ∈ L, v′ ≤ v.

Note that � is not a proper vertex coloring of G. Actually, since Lemma 2.1 holds, from Proposi-
tion 4.10 it follows that � is a proper vertex coloring of G.

Part (III): The coloring � is a colinear coloring of G. In this part we prove the following result,
by showing that there is no vertex in � which has not been assigned a color during the coloring �.

Lemma 2.1. The coloring � is a colinear coloring of G.

Proof. Let G be a P6-free strongly chordal graph, and let L (resp. S) be the set of all the simple (resp.
simplicial) vertices in G. We consider a maximum independent set I, a strong elimination ordering �,
and a coloring � of G, as computed above. Hereafter, for two vertices vi and vj in the ordering �, we say
that vi < vj if the vertex vi appears before the vertex vj in �.

Next, we show that there is no vertex in � which has not been assigned a color during the coloring �,
and since the collection {NG[v`] : �(v`) = j} is linearly ordered by inclusion for all j ∈ {1; 2; : : : ; �(G)},
from Proposition 4.11 it follows that � is a colinear coloring of G.

Assume that there exists at least one uncolored vertex vj in G. It follows that vj =∈ I, since otherwise
vj would have been assigned a color in step 1 of the coloring �. Therefore, from Property 2.2(ii) vj has a
neighbor to its left in � which belongs to the independent set I. Let vi be the leftmost vertex in � which
belongs to the independent set I and did not color all its neighbors to its right in �, and let vj be the
leftmost such uncolored neighbor of vi in �. Next, we distinguish two cases regarding the vertex vi ∈ I;
in the �rst case we consider vi to be a simplicial vertex, i.e., vi ∈ S, and in the second case we consider
vi =∈ S. In both cases we show that our assumptions come to a contradiction.

Case 1: The vertex vi ∈ I and vi ∈ S. Since � is a strong elimination ordering, each vertex vi ∈ I is
simple in Gi and, thus, {NGi [vk] : vk ∈ NGi [vi]} is linearly ordered by inclusion. Also, by de�nition, if
vi ∈ L then the collection {NG[vk] : vk ∈ NGi [vi]} is linearly ordered by inclusion. Thus, vi ∈ I ∩ S and
vi =∈ L, since otherwise vj could have been assigned the color �(vj) = �(vi).

Therefore, there exists a neighbor vk of vi such that vi < vk < vj , �(vk) = �(vi), and neither
NG[vk] ⊆ NG[vj] nor NG[vk] ⊇ NG[vj]; recall that NGi [vk] ⊆ NGi [vj]. In the case where the equality
NGi [vk] = NGi [vj] holds, without loss of generality, we may assume that the degree of vk in G is less
than or equal to the degree of vj in G (note that in this case � is still a strong elimination ordering).

Since neither NG[vk] ⊆ NG[vj] nor NG[vk] ⊇ NG[vj], there exist vertices v2 and v3 in G such that
v2 ∈ NG[vk], v2 =∈ NG[vj], v3 ∈ NG[vj], and v3 =∈ NG[vk]. Since NGi [vk] ⊆ NGi [vj], it is easy to see that
v2 < vi in �. By the assumption that vi is the leftmost vertex in � which belongs to the independent set
I and has not colored all its neighbors to the right, and since �(vk) = �(vi) it follows that v2 =∈ I. Thus,
from Property 2.2(ii) there exists a vertex v4 ∈ I, such that v4 < v2 and v2 ∈ NG[v4]. Additionally, since
�(vk) = �(vi) and G is chordal it holds that vk; vj =∈ NG[v4]. Hence, the subgraph of G induced by the
vertices {v4; v2; vk; vj ; v3} is a P5. Concerning now the position of the vertex v3 in the ordering �, we can
have either v3 < vi or v3 > vi. We will show that in both cases we come to a contradiction to our initial
assumptions; that is, either it results that G has a P6 as an induced subgraph or that the vertices should
be added to � in an order di�erent than the one originally assumed.

Case 1.1. v3 < vi. Assume that vj has a neighbor v3 < vi. Since vi is the leftmost vertex in � which
belongs to the independent set I and has not colored all its neighbors to the right, it follows that v3 =∈ I,
since otherwise vj would have taken the color �(vj) = �(v3) during the coloring � of G. Thus, similarly

23

Case(A)
Gy

v v3

. . .
v4

.
v2

.
vi

.
vk

.
vj

. . .

Case(B.a)
Gy

v

v5

v3. . .
v4

.
v2

.
vi

.
vk

.
vj

. . .
Figure 2.5: Illustrating Case (A) and Case (B.a)

to the above, from Property 2.2(ii) there exists a vertex v5 ∈ I, such that v5 < v3 and v3 ∈ NG[v5].
Therefore, the vertices {v4; v2; vk; vj ; v3; v5} induce a P6 in G, which is also chordless since G is chordal.

Case 1.2. v3 > vi. Assume that vj does not have a neighbor v3 < vi, i.e., it has a neighbor v3 > vi.
Since vi =∈ L, from Property 2.2(i) it follows that v3 =∈ L. Thus, from Property 2.1 we obtain that there
exists a chordless path of length at most 4 connecting v3 =∈ L to any vertex v ∈ L. The vertex v4 may be
a simple vertex or not. However, we know that in a non-trivial strongly chordal graph there exist at least
two non adjacent simple vertices [27]. Thus, there exists a vertex v ∈ L, v 6= v4, such that the distance
d(v; v3) of v3 from v is at most 4, due to Property 2.1. Let dm(v3; v) = max{d(v3; v) : ∀v ∈ L; v 6= v4}.
Since v3 =∈ L and G is a P6-free graph, it follows that 1 ≤ dm(v; v3) ≤ 4.

Next, we distinguish four cases regarding the maximum distance dm(v3; v) and show that each one
comes to a contradiction. In each case we have that {v4; v2; vk; vj ; v3} is a chordless path on �ve vertices.
We �rst explain what is illustrated in Figures 2.5 and 2.6. Let Gy be the induced subgraph of G, such
that during the construction of � the vertex vi becomes simple in Gy, i.e., vi ∈ Ly and vy ≤ vi. In the
two �gures, the vertices are placed on the horizontal dotted line in the order that appear in the ordering
�. For the vertices which are not placed on the dotted line, we are only interested about illustrating the
edges among them. The vertices which are to the right of the vertical dashed line belong to the induced
subgraph Gy of G. The dashed edges illustrate edges that may or may not exist in the speci�c case.
Next, we distinguish the four cases, and show that each one of them comes to a contradiction:

Case (A): dm(v3; v) = 1.

It is easy to see that vjv =∈ E(G), since otherwise vj would have been assigned the color �(v) due
to Property 2.3, and would not be an uncolored neighbor of vi as assumed. Thus, in this case there
exists a P6 in G induced by the vertices {v4; v2; vk; vj ; v3; v}; since G is a chordal graph, other edges
among the vertices of this path do not exist. This is a contradiction to our assumption that G is a
P6-free graph.

Case (B): dm(v3; v) = 2.

In this case there exists a vertex v5 such that {v3; v5; v} is a chordless path from v3 to v. It follows
that there exists a P7 induced by the vertices {v4; v2; vk; vj ; v3; v5; v}. Having assumed that G is
a P6-free graph, the path {v4; v2; vk; vj ; v3} is chordless and vj ; vk =∈ NG[v] due to Property 2.3,
we obtain that vjv5 ∈ E(G) and vkv5 ∈ E(G). Next, we distinguish three cases regarding the
neighborhood of the vertex v3 in G and show that each one comes to a contradiction.

(B.a) The vertex v3 does not have neighbors in G other than v5 and vj . We will show that v3
becomes simple before vj becomes simple. Assume otherwise that vj becomes simple not after
v3 becomes simple. Since by assumption vk < vj we know that vk becomes simple not after
vj becomes simple. Therefore, vk becomes simple not after v3 becomes simple. Assume that
vk becomes simple in a subgraph G′ of G. We have assumed that v2 < vi < vk and, thus,
v2 and vi have been already added to �. It follows that v5 has not been already added to �,

24

Case(B.b)

Gy

v′

v′

5

v

v5

v3

. . .
v4

.
v2

.
vi

.
vk

.
vj

. . .

Case(B.c)
Gy

v′′

v′

6

v′

v′

5

v′′′
≡ v

v5

v3

v6

. . .
v4

.
v2

.
vi

.
vk

. . .
vj

. . .

Figure 2.6: Illustrating Cases (B.b) and (B.c) of the proof.

since it cannot become simple before at least one between vk and v3 is added to �. Therefore,
when vk becomes simple in G′, it follows that either NGi [v5] ⊆ NGi [vj] or NGi [v5] ⊇ NGi [vj].
Therefore, since we have assumed that v3 does not have neighbors in G other than v5 and vj ,
it follows that v3 becomes also simple in G′, along with vk. However, vj is not simplicial in G′

since vkv3 =∈ E(G) and, thus, vj is not simple in G′. Therefore, v3 will be added to � before
vj will be added to �.

Additionally, since v5 sees the simple vertex v, from Property 2.3 it follows that v5 will be
assigned a color from a simple vertex and v5 =∈ I. Moreover, by assumption vj =∈ I. Therefore,
v3 ∈ I and since we have showed that v3 < vj , it follows that vj is the only uncolored neighbor
of v3 to its right in � and, thus, vj will be assigned the color �(vj) = �(v3). This is a
contradiction to our assumption that vj has not been assigned a color.

So far, we have shown that if the vertex v3 does not have neighbors in G other than v5 and vj ,
then we come to a contradiction to our assumptions. Since we initially assumed that v3 > vi
in �, i.e., that v3 does not become simple before vi becomes simple, we continue by examining
the cases where v3 has neighbors in Gy other than v5 and vj .

(B.b) The vertex v3 has two neighbors v5 and v′5 in Gy, such that v5v′5 =∈ E(G). Since we have
assumed that the maximum distance of the vertex v3 from v in G, for any vertex v ∈ L,
v 6= v4, is dm(v3; v) = 2, and v3 has no neighbor belonging to L since G is a P6-free graph,
it follows that v5; v′5 =∈ L and there exist vertices v; v′ ∈ L such that the vertices {v3; v5; v}
induce a chordless path from v3 to v and {v3; v′5; v′} induce a chordless path from v3 to v′. It
is easy to see that v 6= v′ and vv′ =∈ E(G) since G is a chordal graph. Therefore, from Case
(B.a) we have vk; vj ∈ NG[v5] and vk; vj ∈ NG[v′5]. However, in this case there exists a C4 in
G induced by the vertices {v5; v3; v′5; vk}, since by assumption v5v′5 =∈ E(G) and v3vk =∈ E(G).
Concluding, the vertex v3 cannot have two neighbors v5 and v′5 in G, such that v5v′5 =∈ E(G).
Thus, v3 ∈ S.

(B.c) The vertex v3 has two neighbors v5 and v′5 (where v5 6= vj and v′5 6= vj) in Gy, such that
v5v′5 ∈ E(G), but neither NGy [v5] ⊆ NGy [v′5] nor NGy [v′5] ⊆ NGy [v5]; thus, there exist vertices
v6 and v′6 in Gy such that v5v6 ∈ E(G) and v5v′6 =∈ E(G) and, also, v′5v′6 ∈ E(G) and
v′5v6 =∈ E(G). Since v3 ∈ S, it follows that v6; v′6 =∈ NG[v3]. Since dm(v3; v) = 2, there exists
a vertex v ∈ L such that {v3; v5; v} is a chordless path from v3 to v. Similarly, there exists
a vertex v′ ∈ L such that {v3; v5; v′} is a chordless path from v3 to v′. We have that v 6= v′,
vv′5 =∈ E(G) and v′v5 =∈ E(G), since otherwise v and v′ would not be simple in G. Additionally,
vv′ =∈ E(G), vv′6 =∈ E(G), and v′v6 =∈ E(G), since G is a chordal graph. Therefore, from Case
(B.a) we have vk; vj ∈ NG[v5] and vk; vj ∈ NG[v′5]. Assume that there exist vertices v′′; v′′′ ∈ L,
such that v6v′′′ ∈ E(G) and v′6v′′ ∈ E(G). It is easy to see that at least one of the equivalences

25

v ≡ v′′′ and v′ ≡ v′′ holds, otherwise G has a P6 induced by the vertices {v′′′; v6; v5; v′5; v′6; v′′}.
Without loss of generality, assume that v ≡ v′′′ holds.

Since v ∈ L, v5; v6 ∈ NG[v], v′5 ∈ NG[v5], and v′5 =∈ NG[v6], it follows that NG[v6] ⊂ NG[v5].
In the case where vk; vj =∈ NG[v6] we have v6 ∈ L and, thus, v6 would be added to � in
the �rst iteration which is a contradiction to our assumption that v6 ∈ Gy. Assume that
vjv6 ∈ E(G); it follows that vkv6 ∈ E(G), since otherwise G has a P6 induced by the vertices
{v4; v2; vk; vj ; v6; v}. If v′ ≡ v′′, the same arguments hold for v′6 too and, thus, if vjv′6 ∈ E(G)
then vkv′6 ∈ E(G). In the case where v′ 6= v′′ we have v′6vk ∈ E(G), since otherwise G has a
P6 induced by the vertices {v4; v2; vk; v′5; v′6; v′′}. Thus, in any case v6; v′6 ∈ NG[vk], and G has
a 3-sun induced by the vertices {vk; v5; v′5; v′6; v6; v3}. Since other edges between the vertices
of the 3-sun do not exist, it follows that at least one of the vertices v6 and v′6 does not belong
to the neighborhood of vk and, thus, of vj in G. Without loss of generality, let v6 be that
vertex. Thus, v6 ∈ L and, subsequently, v6 will be added to � during the �rst iteration. Thus,
v3 is simple and will be added to � during the second iteration, along with v2, while vi will
be added to � after the second iteration (i.e., v3 < vy ≤ vi). This is a contradiction to our
assumption that v3 > vi.

Using similar arguments, we can prove that v3 will be added to � before vi, even if there
exist edges between v2 and the vertices v5, v′5, v6, and v′6. Actually, it easily follows that
v2v6 =∈ E(G), since v6vk =∈ E(G) and G is a chordal graph. Additionally, v2v5 =∈ E(G),
since we know that v5v′6 =∈ E(G), vkv3 =∈ E(G) and v2 is simple in G2. Therefore, whether
v2v′5; v2v′6 ∈ E(G) or not, it does not change the fact that v3 becomes simple after the �rst
iteration and, thus, v3 is added to � before vi. Note, that even in the case where v ≡ v4 or
v′ ≡ v4 (in the case where v4 ∈ L), it similarly follows that v′6 ∈ L or v6 ∈ L respectively and,
thus, v3 becomes simple after the �rst iteration and is added to � before vi.

Case (C): dm(v3; v) = 3.

In this case there exist vertices v5 and v6 such that {v3; v5; v6; v} is a chordless path from v3 to v.
Since now G has a P8, it follows that v5vj ∈ E(G) and, additionally, some other edges must exist
among the vertices v2, vk, vj , v5, and v6. In any case, we will prove that either NG[v5] ⊆ NG[vj] or
NG[vj] ⊆ NG[v5] and, thus, v3 ∈ L. Similarly to Case (B), we distinguish three cases regarding the
neighborhood of the vertex v3 in G and show that if v3 =∈ L then each one comes to a contradiction.

(C.a) The vertex v3 does not have neighbors in G other than v5 and vj . Since v5vj ∈ E(G)
then some other edges must exist, since otherwise G has a P7 induced by the vertices
{v4; v2; vk; vj ; v5; v6; v}.
• Consider the case where vkv5 ∈ E(G). Then either v2v5 ∈ E(G) or vkv6 ∈ E(G), since G

has a P6. In the case where v2v5 ∈ E(G) then viv5 ∈ E(G). In the case where vkv6 ∈ E(G)
then either viv5 ∈ E(G) or viv6 ∈ E(G). For both cases, assume that viv5 ∈ E(G). Since
v5 and vj are adjacent to vk and v3, and vkv3 =∈ E(G), it follows that v5 and vj cannot be
added to � unless at least one of vk and v3 is added to �. Additionally, by assumption,
vi < vk < vj and vi < v3. Thus, when vi is added to � it follows that vk and v3 have not
been added to � yet and, thus, v5 and vj have not been added to � yet neither, i.e., vk,
v3, v5, and vj belong to Gi. Thus, NGi [v5] ⊇ NGi [vj].

If v2v5 ∈ E(G) then NG2 [v5] ⊇ NG2 [vk]. Then, since in Case 1.2 we have assumed that
there exists no vertex vx such that vx < vi, vxvj ∈ E(G), and vxvk =∈ E(G); thus, for every
neighbor vx of vj such that v2 < vx < vi, it follows that vxv5 ∈ E(G). Also, there exists
no vertex vx such that vx < v2 and vxvj ∈ E(G). Indeed, if we assume otherwise then
vxvk ∈ E(G), and since v2vk ∈ E(G), it follows from De�nition 2.6 that v2vj ∈ E(G).
This is a contradiction on the choice of v2. Summarizing, there exists no vertex vx such

26

that vx < vi, vxvj ∈ E(G), and vxv5 =∈ E(G). Therefore, since NGi [v5] ⊇ NGi [vj], it
follows that NG[v5] ⊇ NG[vj]. Thus, v3 ∈ L which is a contradiction.
Consider now the case where v2v5 =∈ E(G). In other words, v5 does not have a neighbor
vx in � such that vx < vi, vxvk ∈ E(G) and vxvj =∈ E(G). Then vkv6 ∈ E(G) and
either viv5 ∈ E(G) or viv6 ∈ E(G). We now show that in both cases vjv6 ∈ E(G). If
viv5 ∈ E(G) then either v6 < vi or v6vj ∈ E(G), since NGi [vk] ⊆ NGi [vj]. However,
even if v6 < vi then again v6vj ∈ E(G), since we have proved that v5 does not have a
neighbor vx in � such that vx < vi, vxvk ∈ E(G) and vxvj =∈ E(G). Also, if viv6 ∈ E(G)
then again v6vj ∈ E(G), since vi ∈ S. Therefore, in both cases v6vj ∈ E(G). We now
show that v5 does not have a neighbor vx such that vx < vi and vxvj =∈ E(G). Indeed,
if such a vertex vx exists then also vxvk =∈ E(G). If vx ∈ L then �(v5) = �(v); thus,
we can prove similarly to Case (B.a) that v3 < vj and �(vj) = �(v3). In the case where
vx =∈ L, then d(vx; v`) ≥ 1 for any vertex v` ∈ L; in this case it follows that G has a
P6 induced by the vertices {v4; v2; vk; v5; vx; v`}, since vxvk =∈ E(G). Therefore, we have
showed that v5 does not have a neighbor vx such that vx < vi and vxvj =∈ E(G). Assume
that v5 has a neighbor vx such that vx > vi and vxvj =∈ E(G). Then vxvk =∈ E(G) since
NGi [vk] ⊂ NGi [vj]. Similarly to the above it follows that if v5 has such a neighbor vx then
either vx ∈ L or G has a P6. Therefore, we have showed that NG[v5] ⊆ NG[vj] and, thus,
v3 ∈ L which is a contradiction.

• Consider now the case where vkv5 =∈ E(G). Then vk; vj ∈ NG[v6], since otherwise G has
a P6. Assume that v5 has a neighbor vx, such that vxvj =∈ E(G). Since vkv5 =∈ E(G), it
follows similarly to the above that in this case G has a P6. Therefore, we have showed
that NG[v5] ⊆ NG[vj] and, thus, v3 ∈ L which is a contradiction.

(C.b) The vertex v3 has two neighbors v5 and v′5 in Gy, such that v5v′5 =∈ E(G). Using the same
arguments as in Case (B.b), we obtain that in this case G has a C4 which is a contradiction
to our assumptions.

(C.c) The vertex v3 has two neighbors v5 and v′5 (where v5 6= vj and v′5 6= vj) in Gy, such that
v5v′5 ∈ E(G), and neither NGy [v5] ⊆ NGy [v′5] nor NGy [v′5] ⊆ NGy [v5]; that is, there exist
vertices v6 and v′6 in Gy such that v5v6 ∈ E(G) and v5v′6 =∈ E(G) and, also, v′5v′6 ∈ E(G) and
v′5v6 =∈ E(G). Similarly to Case (B.c), we can prove that this case comes to a contradiction as
well. Note that, in this case dm(v3; v) = 3 and, thus, there exists a chordless path {v3; v5; v7; v}
from v3 to v. Again, at least one of v ≡ v′′′ and v′ ≡ v′′ must hold, since otherwise G has a
P6 induced by the vertices {v′′′; v6; v5; v′5; v′6; v′′}. Using the same arguments as in Case (B.c),
we obtain that if v ≡ v′′′ then vk; vj =∈ NG[v6]. However, now, we must additionally have
v6v7 ∈ E(G), since otherwise G has a C4 induced by the vertices {v; v7; v5; v6}. Therefore, as
in Case (B.c) we obtain v6 ∈ L, which is a contradiction to our assumption that the vertex vi
appears in the ordering before the vertices v6, v′6, v5, and v′5.

Case (D): dm(v3; v) = 4.

In this case there exist vertices v5, v6 and v7 such that {v3; v5; v6; v7; v} is a chordless path from v3
to v. Since now G has a P9, it follows that v5vj ∈ E(G) and, additionally, some other edges must
exist. Similarly to Cases (A) and (B), we distinguish three cases regarding the neighborhood of the
vertex v3 in G and show that if v3 =∈ L then each one comes to a contradiction.

(D.a) The vertex v3 does not have neighbors in G other than v5 and vj . If we assume that v3 =∈ L,
then v5 has a neighbor in G which is not a neighbor of vj and, additionally, vj has a neighbor
in G which is not a neighbor of v5. Thus, we can have one of the following three cases, each
of which comes to a contradiction:

• v2 ∈ NG[v5] and v7 ∈ NG[vj]. Now, we have that v2v6 ∈ E(G), since otherwise G has a P6

induced by the vertices {v4; v2; v5; v6; v7; v}. However, in this case v2 would not be simple

27

in G2, where G2 is the subgraph of G induced by the vertices to the right of v2 in �, since
v7 ∈ NG[v6] and v7 =∈ NG[v5] and, also, v3 ∈ NG[v5] and v3 =∈ NG[v6]. Indeed, it su�ces
to show that the vertices v5, v6, v7, and v3 belong to the induced subgraph G2 of G.

We know that v5; v3 ∈ NG[vj] and, thus, v5 > vi and v3 > vi since we have assumed
that vj does not have a neighbor vx, such that vx < vi. Additionally, from v7 ∈ NG[vj] it
follows that v6 ∈ NG[vj], since otherwise G has a C4 induced by the vertices {vj ; v5; v6; v7}.
Therefore, v6; v7 ∈ NG[vj] and, thus, vi < v6 and vi < v7. Therefore, the vertices v5, v6,
v7, and v3 belong to the induced subgraph G2 of G, and thus, the vertex v2 is not simple
in G2, which is a contradiction to our assumption that � is a strong elimination ordering.

• vk =∈ NG[v5] and v6 =∈ NG[vj]. From vk =∈ NG[v5] we obtain that v2; vi =∈ NG[v5]. In this
case G has a P8 induced by the vertices {v4; v2; vk; vj ; v5; v6; v7; v}. This path is chordless
since G is a chordal graph.

• vi =∈ NG[v5] and v6 =∈ NG[vj]. In this case, we have a P8 in G induced by the ver-
tices {v4; v2; vk; vj ; v5; v6; v7; v}; thus, vkv5 ∈ E(G). From vi =∈ NG[v5] we obtain that
v2 =∈ NG[v5] and, thus, v6vk ∈ E(G). Now, G has a 3-sun induced by the vertices
{v5; vk; vj ; v6; vi; v3}, since we have assumed that viv5 =∈ E(G), v6vj =∈ E(G), and other
edges do not exist by assumption. This is a contradiction to our assumption that G is a
strongly chordal graph.

Using similar arguments as in Case (B.a) and Case (C.a), we can prove that either NG[v5] ⊆
NG[vj] or NG[vj] ⊆ NG[v5] and, thus, v3 ∈ L. Similarly to Cases (B) and (C), we distinguish
three cases regarding the neighborhood of the vertex v3 in G and can show that each one
comes to a contradiction.

(D.b) The vertex v3 has two neighbors v5 and v′5 in Gy, such that v5v′5 =∈ E(G). Using the same
arguments as in Case (B.b), we obtain that in this case G has a C4 which is a contradiction
to our assumptions.

(D.c) The vertex v3 has two neighbors v5 and v′5 (where v5 6= vj and v′5 6= vj) in Gy, such that v5v′5 ∈
E(G), and neither NGy [v5] ⊆ NGy [v′5] nor NGy [v′5] ⊆ NGy [v5]. Using the same arguments as
in Cases (B.c) and (C.c), we can prove that this case comes to a contradiction.

Case 2: The vertex vi ∈ I and vi =∈ S. Since � is a strong elimination ordering, each vertex vi ∈ I
is simple in Gi and, thus, {NGi [vk] : vk ∈ NGi [vi]} is linearly ordered by inclusion. Since vi is not
a simplicial vertex in G, there exist at least two vertices v1; v2 ∈ NG(vi) such that v1v2 =∈ E(G) and
v1 < vi < v2. If there exists a neighbor vk of vi such that vi < vk < vj and neither NG[vk] ⊆ NG[vj] nor
NG[vk] ⊇ NG[vj], then as we showed in Case 1, we come to a contradiction; recall that we have assumed
that vj is the uncolored vertex.

Assume that such a vertex vk does not exist. Therefore, since �(vj) 6= �(vi) it follows that neither
NG[vi] ⊆ NG[vj] nor NG[vi] ⊇ NG[vj] and, thus, there exists a vertex v2 such that v2 < vi < vj ,
v2vi ∈ E(G), and v2vj =∈ E(G). Additionally, there exists a vertex v3 in � such that v3vi =∈ E(G) and
v3vj ∈ E(G). Thus, {v2; vi; vj ; v3} is a chordless path on 4 vertices. Additionally, since v2 is a neighbor
of vi ∈ I it follows that v2 =∈ I, and from Property 2.2(i) it follows that there exists a vertex v4 ∈ I in �
such that v4 < v2 and v4v2 ∈ E(G). Therefore, {v4; v2; vi; vj ; v3} is a chordless path on 5 vertices. Using
the same arguments as in Case 1, we can come to a contradiction by substituting vk by vi in the proof
of Case 1.

From Cases 1 and 2 we conclude that using the constructed strong elimination ordering � of G, we
have proved that there is no uncolored vertex in �, and since the set {NG[vk] : �(vk) = j} is linearly
ordered by inclusion for every j ∈ {1; 2; : : : ; �(G)}, it follows that � is a colinear coloring of G. Thus, the
lemma holds.

28

Part (IV): The equality �(GA) = �(GA) holds for every A ⊆ V (G). It is easy to see that, in
Parts (I){(III), we have showed that we can assign a colinear coloring with �(G) = �(G) colors to any
P6-free strongly chordal graph, by using the constructed strong elimination ordering � of G.

From Corollary 3.1, we have that �(G) ≥ �(G) holds for any graph G. Since � is a colinear coloring of
G using �(G) colors, it follows that the equality �(G) = �(G) holds for G. Since every induced subgraph
of a strongly chordal graph is strongly chordal [27], we can construct a strong elimination ordering � as
described above for every induced subgraph GA of G, ∀A ⊆ V (G); thus, we can assign a coloring � to
GA with �(GA) colors. Concluding, the equality �(GA) = �(GA) holds for every induced subgraph GA
of a strongly chordal graph G and, therefore, any strongly chordal graph G is a linear graph.

Therefore, in Parts (I){(IV) we have proved the following result.

Lemma 2.2. Any P6-free strongly chordal graph is a linear graph.

From Lemma 2.2, we obtain the following result.

Lemma 2.3. If G is a k-sun graph (k ≥ 3), then G is a linear graph.

Proof. Let G be a k-sun graph. It is easy to see that the equality �(G) = �(G) holds for the k-sun G.
Since a k-sun constitutes a minimal forbidden subgraph for the class of strongly chordal graphs, it follows
that every induced subgraph of a k-sun is a strongly chordal graph and, thus, from Lemma 2.2 we obtain
that G is a linear graph.

From Lemmas 2.2 and 2.3, we also derive the following results.

Proposition 2.17. Linear graphs form a superclass of the class of P6-free strongly chordal graphs.

We have proved that any P6-free chordal graph which is not a linear graph has a k-sun as an induced
subgraph; however, the k-sun itself is a linear graph. The interest of these results lies on the following
characterization that we obtain for the class of linear graphs in terms of forbidden induced subgraphs.

Theorem 2.1. Let F be the family of all the minimal forbidden induced subgraphs of the class of linear
graphs, and let Fi be a member of F . The graph Fi is either a Cn (n ≥ 4), or a P6, or it properly contains
a k-sun (k ≥ 3) as an induced subgraph.

In light of the above result, it would be interesting to investigate whether or not linear graphs are
characterized completely by a �nite set of forbidden induced subgraphs. To this end, we need to investigate
the P6-free chordal graphs which are forbidden subgraphs for linear graphs; as we have shown these
graphs properly contain a k-sun. An example of such a graph is the complement of the graph depicted
in Figure 3.4; this graph is a P6-free chordal graph on 9 vertices which properly contains a 4-sun, and is
not a linear graph.

In general, an example of a forbidden induced subgraph of linear graphs is a graph H on 2k+1 vertices
which properly contains a k-sun Sk (k ≥ 4) such that H = {v} ∪ {u1; u2; : : : ; uk} ∪ {w1; w2; : : : ; wk} and
v is adjacent to every vertex of the clique W = {w1; w2; : : : ; wk} and to exactly two vertices, say, uj and
ui (j < i) of the independent set U = {u1; u2; : : : ; uk} such that i 6= j + 1 (mod k); recall that U is
the independent set and W is the clique of the sun Sk. We claim that the P6-free chordal graphs which
are forbidden subgraphs for linear graphs do not restrict to graphs with such a structure and, also, that
linear graphs are characterized completely by a �nite set of forbidden induced subgraphs.

A �nite set of forbidden subgraphs could lead to a recognition algorithm for linear graphs. Such an
algorithm would require the detection of graphs of a speci�c structure which properly contain a k-sun. It
is worth noting that �nding a k-sun in a general graph has been recently proved to be NP-complete [43].
However, one can answer the question whether or not a chordal graph G contains a k-sun by using
Farber's algorithm [27]; if G contains a k-sun as an induced subgraph, Farber's algorithm reports that
G is not a strongly chordal graph and, also, returns an induced subgraph of G which contains a k-sun.
However, there is no known polynomial algorithm for detecting and reporting a k-sun in a chordal graph.

29

Investigating an algorithm for detecting and reporting a k-sun in a chordal graph is of great interest,
since it could be a step toward the recognition of the class of linear graphs. Additionally, such an
algorithm along with a minimal set of forbidden induced subgraphs could help us to characterize and
provide properties of linear graphs which could be used for �nding polynomial solutions for problems on
linear graphs, which are NP-complete on chordal graphs.

2.7 Concluding Remarks

In this work we introduced the colinear coloring on graphs, and proposed a colinear coloring algorithm
that can be applied to any graph G. Based on the colinear coloring we de�ned two graph properties,
namely the �-colinear and �-colinear properties, and characterized known graph classes in terms of
these properties. We also studied the graphs that are characterized completely by the �-colinear or the
�-colinear property, which form two new classes of perfect graphs, namely colinear and linear graphs.

An interesting question would be to study structural and recognition properties of colinear and linear
graphs and see whether they can be characterized by a �nite set of forbidden induced subgraphs. More-
over, an obvious though interesting open question would be whether combinatorial and/or optimization
problems can be e�ciently solved on the classes of linear and colinear graphs. In addition, it would be
interesting to study the relation between the colinear chromatic number and other coloring numbers such
as the harmonious number and the achromatic number on classes of graphs.

30

Chapter 3

The Harmonious Coloring Problem

3.1 Introduction

3.2 Connected Interval and Permutation Graphs

3.3 Harmonious Coloring on Split Graphs

3.4 Harmonious Coloring on Colinear Graphs

3.5 Harmonious Coloring on Split Strongly Chordal Graphs

3.6 Concluding Remarks

3.1 Introduction

A harmonious coloring of a simple graph G is a proper vertex coloring such that each pair of colors
appears together on at most one edge, while the harmonious chromatic number h(G) is the least integer
k for which G admits a harmonious coloring with k colors [13].

Several NP-complete problems on arbitrary graphs admit polynomial solutions when restricted to the
classes of strongly chordal graphs, undirected path graphs, and interval graphs (see e.g. [1, 7, 20, 28,
38, 49, 51, 52]). However, the pair-complete coloring problem, which is NP-hard on arbitrary graphs
[67], remains NP-complete when restricted to graphs that are simultaneously interval and cographs [8].
A pair-complete coloring of a simple graph G is a proper vertex coloring such that each pair of colors
appears together on at least one edge, while the achromatic number (G) is the largest integer k for which
G admits a pair-complete coloring with k colors. The achromatic number was introduced in [41, 42].

Bodlaender [8] provides a proof for the NP-completeness of the pair-complete coloring problem for
disconnected cographs and interval graphs and extends his results for connected such graphs. His proof
also establishes the NP-hardness of the harmonious coloring problem for disconnected interval graphs
and cographs. Note that the problem of determining the harmonious chromatic number of connected
cographs is trivial, since in such a graph each vertex must receive a distinct color as it is at distance at
most 2 from all other vertices [13]. On the contrary, although the harmonious coloring problem is NP-
complete for disconnected interval graphs, the complexity of the problem for connected interval graphs is
not straightforward. Moreover, the NP-hardness of the pair-complete coloring problem for cographs also
establishes the NP-hardness of the pair-complete coloring problem for the class of permutation graphs,
and, also, the NP-hardness of the harmonious coloring problem when restricted to disconnected permu-
tation graphs. However, the complexity of the harmonious coloring problem for connected permutation

31

graphs has not been studied. Motivated by these issues we prove that the harmonious coloring problem is
also NP-complete for connected interval and permutation graphs. In addition, we show that the problem
remains NP-complete for the class of split graphs.

Additionally, the NP-completeness of the problem has been also proved for the classes of trees and
disconnected bipartite permutation graphs [25, 26], connected bipartite permutation graphs [2], and
disconnected quasi-threshold graphs [2]. Since the problem of determining the harmonious chromatic
number of a connected cograph is trivial, the harmonious coloring problem is polynomially solvable on
connected quasi-threshold graphs and threshold graphs.

Since we prove that the harmonious coloring problem is NP-complete on interval graphs, we obtain
that the problem is also NP-complete on the classes of strongly chordal and undirected path graphs.
Extending our results for the harmonious coloring problem on interval graphs and split graphs, in this
work we also study the complexity status of the harmonious coloring problem on two subclasses of colinear
graphs; for de�nitions and results on colinear and linear graphs see Chapter 2. We �rst show that the
harmonious coloring problem is NP-complete on split undirected path graphs and, then, we show that
the class of split undirected path graphs forms a subclass of colinear graphs; thus, we obtain the NP-
completeness of the harmonious coloring problem on colinear graphs as well. Moreover, we provide a
polynomial solution for the harmonious coloring problem on split strongly chordal graphs, the interest of
which lies on the fact that the problem is NP-complete on both split graphs and strongly chordal graphs.
However, the complexity status of the problem for the class of connected linear graphs still remains an
open question; note that the harmonious coloring problem is NP-complete on disconnected linear graphs,
since it is NP-complete on disconnected quasi-threshold graphs [2] and quasi-threshold graphs form a
subclass of linear graphs.

The rest of this chapter is organized as follows. In Section 3.2 we we prove that the harmonious
coloring problem is NP-complete on connected interval and permutation graphs, while in Section 3.3 we
prove the NP-completeness of the problem on split graphs. In Section 3.4 we prove that the problem
remains NP-complete for split undirected path graphs; we also prove that the problem is NP-complete
for colinear graphs by showing that split undirected path graphs form a subclass of colinear graphs.
Moreover, in Section 3.5 we provide a polynomial solution for the harmonious coloring problem for the
class of split strongly chordal graphs. Some concluding remarks follow.

3.2 Connected Interval and Permutation Graphs

The formulation of the harmonious coloring problem in [13] is equivalent to the following formulation.

Harmonious Coloring Problem
Instance: Graph G, positive integer K ≤ |V (G)|.
Question: Is there a positive integer k ≤ K and a proper coloring using k colors such that each pair of
colors appears together on at most one edge?

We next prove our main result of this section, that is, the harmonious coloring problem is NP-complete
for connected interval graphs.

Theorem 3.1. Harmonious coloring is NP-complete when restricted to connected interval graphs.

Proof. Harmonious coloring is obviously in NP. In order to prove NP-hardness, we use a transformation
from a strongly NP-complete problem, that is, the 3-PARTITION problem. The formulation of the
3-PARTITION problem [33] is presented below.

3-PARTITION
Instance: Set A of 3m elements, a bound B ∈ Z+, and a size s(a) ∈ Z+ for each a ∈ A, such that
1
4B < s(a) < 1

2B, and such that
∑
a∈A s(a) = mB.

Question: Can A be partitioned into m disjoined sets A1; A2; : : : ; Am such that, for 1 ≤ i ≤ m,∑
a∈Ai s(a) = B (note that each Ai must therefore contain exactly three elements from A)?

32

v . . .m − 1 + B − s(a1)m + B − s(ai) + i − 2m + B − s(a3m) + 3m − 2

P
v1 v2 . . . vi . . . v3m−1 v3m

x1 x2 xi x3m−1 x3m

y1
1 y1

2

. . .
y1

s(a1) y2
1 y2

2

. . .
y2

s(a2) yi

1 yi

2

. . .
yi

s(ai) y3m−1
1 y3m−1

2

. . .
y3m−1

s(a3m−1) y3m

1 y3m

2

. . .
y3m

s(a3m)

Km KB

Figure 3.1: Illustrating the constructed connected interval and permutation graph G.

Let a set A = {a1; : : : ; a3m} of 3m elements, a positive integer B and let positive integer sizes s(ai) for
each ai ∈ A be given, such that 1

4B < s(ai) < 1
2B, and such that

∑
ai∈A s(ai) = mB. We may suppose

that, for each ai ∈ A, s(ai) > m (if not, then we can multiply all s(ai) and B with m+ 1).

Extending the result of Bodlaender [8], we construct the following connected graph which is an interval
and a permutation graph: Consider a clique with m vertices, a clique with B vertices, and add a vertex
v that is connected to every vertex in the two cliques; let G1 be the resulting graph. Next we construct
for every ai ∈ A a tree Ti of depth one with s(ai) leaves and root xi, that is, every leaf is adjacent to the
root; note that there are 3m such trees T1; T2; : : : ; T3m. Then we construct a path P = [v1; v2; : : : ; v3m]
of 3m vertices, and we connect each vertex vi of the path P to all the vertices of the tree Ti, 1 ≤ i ≤ 3m.
Additionally, for each vertex vi ∈ P , we add m−1+B−s(ai)+ i−1 vertices and connect them to vertex
vi; let G2 be the resulting graph. Note that the graph G1 ∪G2 is disconnected. Finally, we add an edge
to the graph G1 ∪ G2 connecting vertices v1 and v and let G be the resulting graph. The graph G is a
connected graph and it is illustrated in Fig. 3.1.

One can easily verify that G is an interval graph. A clique can be represented as a number of
intervals that share at least one point in common. Two cliques sharing a vertex u can be represented as
a number of intervals such that one of them, which corresponds to u, shares at least one point with the
intervals corresponding to the vertices of each clique. Thus, the vertices of G can be put in one-to-one
correspondence with a family of intervals on the real line such that two vertices are adjacent in G if and
only if their corresponding intervals intersect.

It is easy to see that the total number of edges in G is
(
m
2

)
+

(
B
2

)
+m+B + 3m+mB + 3m+mB + 3m(m− 2) + 2mB +

3m∑

i=1

i =
(

4m+B + 1

2

)

For every harmonious coloring of G and every pair of distinct colors i; j, i 6= j, there must be at most
one edge with its endpoints colored with i and j. Thus, it follows that the harmonious chromatic number
cannot be less than 4m+B + 1, and if it is equal to 4m+B + 1 then we have, for every pair of distinct
colors i; j, 1 ≤ i; j ≤ 4m+B + 1, a unique edge with its end-points colored with i and j. Thus, we have
an exact coloring of G; an exact coloring of G with k colors is a harmonious coloring of G with k colors
in which, for each pair of colors i, j, there is exactly one edge (a; b) such that a has color i and b has
color j.

We now claim that the harmonious chromatic number of G is (less or equal to) 4m + B + 1 if and
only if A can be partitioned in m sets A1; : : : ; Am such that

∑
a∈Aj s(a) = B, for all j, 1 ≤ j ≤ m.

33

(⇐=) Suppose now a 3-partition of A in A1; : : : ; Am such that ∀j :
∑
a∈Aj s(a) = B exists. We

show how to �nd a harmonious coloring of G using 4m + B + 1 colors. We color the vertices of the
�rst clique with colors 1; 2; : : : ;m, the vertices of the second clique with m + 1;m + 2; : : : ;m + B, and
vertex v with m + B + 1. For convenience and ease of presentation, let M be the set containing colors
1; 2; : : : ;m, let B be the set containing colors m + 1;m + 2; : : : ;m + B, and let K be the set containing
colors m+B + 2;m+B + 3; : : : ; 4m+B + 1. If ai ∈ Aj then we color the vertex xi with color j. Each
color j ∈ M is assigned to the three vertices corresponding to three ai that have together exactly B
neighbors of degree 2. We assign to each one of these B neighbors a di�erent color from B, and next we
assign to each vertex vi of the path P a distinct color from K. Recall that each vertex vi, 1 < i < 3m,
is connected to two other vertices of P , i.e., vi−1 and vi+1, and m+B + i− 1 more vertices, vertex v1 is
connected to v2, v and m+B other vertices, while vertex v3m is connected to v3m−1 and m+B+3m−1
more vertices (see Fig. 1).

Next, we color the rest m − 1 + B − s(ai) + i − 1 neighbors of each vi. We assign a distinct color
from the set M\ci to m − 1 neighbors of vi, where ci is the color previously assigned to the vertex xi.
We next assign a distinct color from the set B\Ci to B − s(ai) neighbors of vi, where Ci is the set of the
colors previously assigned to s(ai) neighbors of the vertex xi. Finally, we assign a di�erent color to the
rest i − 1 neighbors of vi, 3 ≤ i ≤ 3m, using color m + b + 1 and the colors assigned to the vertices vj ,
1 ≤ j ≤ i− 2. Note that, in order to color the m+B − s(a2) neighbors of v2, we only need to use color
m+B + 1 and colors from M and B, while for the m− 1 +B − s(a1) neighbors of v1 we only use colors
from M and B. A harmonious coloring of G using 4m+B + 1 colors results, and thus, the harmonious
chromatic number of G is 4m+B + 1.

(=⇒) We next suppose that the harmonious chromatic number of G is (less or equal to) 4m+B + 1.
Consider a harmonious coloring of G using 4m+B+1 colors. Without loss of generality we may suppose
that the m vertices of the �rst clique have distinct colors from M, while the B vertices of the second
clique have distinct colors from B. Also, without loss of generality, we color vertex v with color m+B+1
since v is adjacent to all the vertices of the two cliques. Since v3m is the vertex having the maximum
degree, that is, 4m+ B, it has to take a color from K. Indeed, if it takes a color from M, then none of
its neighbors can take a color from M and we cannot color 4m+B vertices using only 4m+B + 1−m
colors. Using similar arguments, we cannot color vertex v3m using a color from B or the color m+B+1.
Thus, without loss of generality, we assign to v3m the color 4m+B + 1. We color all its neighbors with
distinct colors from M∪B∪{m+B+ 1}∪K\{4m+B+ 1}. Note that, vertex v3m−1 takes a color from
K\{4m+B + 1}; let 4m+B be this color. Indeed, using similar arguments, it cannot take a color from
M∪ B ∪ {m + B + 1} ∪ {4m + B + 1}. Note that, color 4m + B + 1 cannot be assigned to any other
vertex of G since any pair of colors (4m+B + 1; j), 1 ≤ j ≤ 4m+B, already appears in the harmonious
coloring. Recall that, for every pair of distinct colors i; j, 1 ≤ i; j ≤ 4m+ B + 1, there is a unique edge
with its end-points colored with i and j. Recursively, as can easily be proved by induction on i, the same
holds for all vi ∈ P , 1 ≤ i ≤ 3m − 2, that is, vi takes a color from K\L, where L is the set containing
colors m + B + 1 + i + 1;m + B + 1 + i + 2; : : : ; 4m + B + 1, which are the colors already assigned to
vertices vj , i < j ≤ 3m.

Note that pairs (�; �), � ∈M, � ∈ B, have not appeared yet. Since every pair of colors must appear,
we assign these pairs to the mB edges that have both endpoints uncolored. Note that these edges are
the edges (xi; yij), 1 ≤ i ≤ 3m, 1 ≤ j ≤ s(ai), where xi corresponds to ai and yij corresponds to the
j-th neighbor of xi having degree 2. The vertices xi cannot take a color from B, otherwise its s(ai) > m
uncolored neighbors yij cannot be colored with m colors from M. Thus, vertices xi are assigned a color
from M and vertices yij are assigned a color from B (recall that B

4 < s(ai) < B
2). Note that the only

uncolored vertices are m − 1 + B − s(ai) + i − 1 neighbors of each vi, 1 ≤ i ≤ 3m. In order to color
m−1+B−s(ai) of the uncolored neighbors of vi, we use distinct colors from (M∪B)\F , where F is the
set containing all colors already assigned to the s(ai) + 1 neighbors of vi. In order to color the last i− 1
uncolored neighbors of vi, i > 1, we can only use colors from K\L\{m + B + 1 + i;m+ B + i} because
the only unused pairs are (m+B + 1 + i; j), where m+B + 1 ≤ j ≤ m+B + 1 + i− 2.

34

Finally, let ai ∈ Aj if and only if the vertex xi (with neighbors yij) is colored with color j ∈ M. We
claim that for all j,

∑
a∈Aj s(a) = B. Indeed, each color j must be adjacent to some colors from B, and

each color from B is assigned to exactly one vertex which is adjacent to all xi colored with j. Hence, a
correct 3-partition exists.

The theorem follows from the strong NP-completeness of 3-PARTITION, since the transformation
can be done easily in polynomial time.

We can easily show that the interval graph G illustrated in Fig. 3.1 is also a permutation graph. The
graph G is an interval graph if and only if it is a chordal graph and the graph G is a comparability graph
[37]. Moreover, one can easily verify that G admits an acyclic transitive orientation and, thus, it is a
comparability graph. Since G and G are comparability graphs, it follows that G is a permutation graph
[37]. Consequently, we can state the following theorem.

Theorem 3.2. Harmonious coloring is NP-complete when restricted to connected permutation graphs.

We have shown that the connected interval graph G presented in this section, which is also a permu-

tation graph, has
(

4m+B + 1

2

)
edges and h(G) = 4m+B + 1. In [25] it was shown that if G is a graph

with exactly
(
k
2

)
edges, then a proper vertex coloring of G with k colors is pair-complete if and only if

it is a harmonious coloring. Thus, if G is a graph with
(
k
2

)
edges, then (G) = k if and only if h(G) = k

[13]. Consequently, for the graph G, which is simultaneously an interval and a permutation graph, we
have that (G) = 4m + B + 1 and, thus, our results could be also used to prove that the achromatic
number is NP-complete for connected interval and permutation graphs.

3.3 Split Graphs

We next show that the harmonious coloring problem is NP-complete for split graphs, by exhibiting a
reduction from the chromatic number problem for general graphs, which is known to be NP-complete
[33].

Let G be an arbitrary graph with n vertices v1; v2; : : : ; vn and m edges e1; e2; : : : ; em. We construct
in polynomial time a split graph Ĝ, where V (Ĝ) = K + I, as follows: the independent set I consists of
n vertices v̂1; v̂2; : : : ; v̂n which correspond to the vertices v1; v2; : : : ; vn of the graph G and the clique K
consists of m vertices û1; û2; : : : ; ûm which correspond to the edges e1; e2; : : : ; em of G. A vertex ût ∈ K,
1 ≤ t ≤ m, is connected to two vertices v̂i; v̂j ∈ I, 1 ≤ i; j ≤ n, if and only if the corresponding vertices vi
and vj are adjacent in G. Note that, every ûi ∈ K sees all the vertices of the clique K and two vertices
of the independent set I; thus, |E(Ĝ)| = m(m−1)

2 + 2m.
We claim that the graph G has a chromatic number �(G) if and only if the split graph Ĝ has a

harmonious chromatic number h(Ĝ) = �(G) +m.
Let ci ∈ {1; : : : ; �(G)} be the color assigned to the vertex vi ∈ G, 1 ≤ i ≤ n, in a minimum

coloring of G. We assign the color ci to the vertex v̂i of the set I and a distinct color from the set
{�(G) + 1; : : : ; �(G) + m} to each vertex of the clique K. Since two adjacent vertices of G receive
a di�erent color, the neighbors of each ûi ∈ K belonging to the independent set have distinct colors.
Moreover, every vertex v̂i ∈ I sees |NG(vi)| vertices of the clique K, where NG(vi) is the neighborhood
of the vertex vi in G. Thus, every pair of colors appears in at most one edge. In addition, the number
of colors assigned to the set I is equal to �(G) and the number of colors assigned to the clique is equal
to m. This results to a harmonious coloring of Ĝ using �(G) + m colors, which is minimum since the
vertices of the set I cannot receive a color assigned to a vertex of the clique K.

Conversely, a harmonious coloring of Ĝ using h(Ĝ) = �(G)+m colors assigns m colors to the vertices
of the clique K and �(G) colors to the vertices of the set I. Note that, �(G) is the minimum number of

35

permutation chordalbipartitepermutation interval split
quasi-threshold

threshold
cographs NP-completeP

Figure 3.2: The complexity status of the harmonious coloring problem for some graph subclasses of
permutation and chordal graphs. A→ B indicates that class A contains class B.

colors so that vertices v̂i; v̂j having a neighbor in common are assigned di�erent colors. Since vi; vj are
adjacent in G, it follows that we have a minimum coloring of G using �(G) colors.

Thus, we have proved the following result.

Theorem 3.3. Harmonious coloring is NP-complete for split graphs.

Figure 3.2 shows a diagram of class inclusions for a number of graph classes, subclasses of permutation
and chordal graphs, and the current complexity status of the harmonious coloring problem for connected
graphs of these classes; for de�nitions of the classes shown, see [10, 37].

3.4 Harmonious Coloring on Colinear Graphs

In this section we show that the harmonious coloring problem remains NP-complete when restricted to
the class of colinear graphs, which is a subclass of co-chordal graphs and a superclass of threshold graphs.
The problem is NP-complete on co-chordal graphs, since in Section 3.3 we proved that it is NP-complete
on split graphs, and also it has a polynomial solution on threshold graphs. Therefore, it is interesting to
study the complexity of the problem on colinear graphs.

We �rst show that the problem remains NP-complete even when restricted to graphs which are
simultaneously split graphs and undirected path graphs. Then, we show that every split undirected path
graph is a colinear graph, thus, proving that the problem is NP-complete on colinear graphs.

We �rst give some de�nitions and results which were introduced or proven in Chapter 2 and will be
used for obtaining some results in the rest of this chapter.

De�nition 3.1. Let G be a graph and let v ∈ V (G). The clique set of a vertex v is the set of all maximal
cliques of G containing v and is denoted by CG(v).

De�nition 3.2. Let G be a graph and let k be an integer. A surjective map � : V (G) → {1; 2; : : : ; k}
is called a k-colinear coloring of G if the collection {CG(v) : �(v) = i} is linearly ordered by inclusion for
all i ∈ {1; 2; : : : ; k}. Equivalently, for two vertices v; u ∈ V (G), if �(v) = �(u) then either CG(v) ⊆ CG(u)
or CG(v) ⊇ CG(u). The least integer k for which G is k-colinear colorable is called the colinear chromatic
number of G and is denoted by �(G).

36

co-chordal NP chordal NPcolinear NP split NP undirected path NP strongly chordal NP linear ?
split undirectedpath NP split stronglychordal P quasi-threshold P, NP

threshold P
Figure 3.3: Illustrating the complexity status of the harmonious coloring problem, and the inclusion
relations, for the classes of colinear graphs, linear graphs, and other subclasses of co-chordal and chordal
graphs.

In Chapter 2 we presented a polynomial time algorithm for colinear coloring which can be applied to
any graph G and, also, we proved the following results.

Proposition 3.1. For any graph G, �(G) ≥ �(G).

De�nition 3.3. A graph G is called colinear if and only if �(GA) = �(GA), ∀A ⊆ V (G). A graph G is
called linear if and only if �(GA) = �(GA), ∀A ⊆ V (G).

In Chapter 2 we also showed inclusion relations between the classes of colinear and linear graphs
and other subclasses of co-chordal and chordal graphs. More speci�cally, the class of colinear graphs is a
subclass of co-chordal graphs, a superclass of threshold graphs, and is distinguished from the class of split
graphs. Additionally, linear graphs form a subclass of chordal graphs and a superclass of quasi-threshold
graphs. We also proved that any P6-free strongly chordal graph is a linear graph.

The inclusion relations among the classes of colinear graphs, linear graphs, and other subclasses of
co-chordal and chordal graphs are depicted in Figure 3.3. Note that since any P6-free strongly chordal
graph is a linear graph, it follows that split strongly chordal graphs form a subclass of linear graphs.
Then, we can easily obtain that any split strongly chordal graph is a colinear graph, since if a graph G
is strongly chordal then G is also a strongly chordal graph.

The following characterization of undirected path graphs will be used for obtaining our results. Note
that, C denotes the set of all maximal cliques of a graph G; recall that, C(v) denotes the set of all maximal
cliques containing v.

Theorem 3.4. ([35, 57]) A graph G is an undirected path graph if and only if there exists a tree T whose
set of vertices is C, so that for every vertex v ∈ V (G), the subgraph T [C(v)] of T induced by the vertex
set C(v), is a path in T . Such a tree will be called characteristic tree of G.

We next show that the harmonious coloring problem is NP-complete for split undirected path graphs
by exhibiting a reduction from the chromatic number problem for general graphs, which is known to be
NP-complete [33].

Let G be an arbitrary graph with n vertices v1; v2; : : : ; vn and m edges e1; e2; : : : ; em. We construct
in polynomial time a split graph Ĝ, where V (Ĝ) = K + I, as follows: the independent set I consists of

37

n vertices v̂1; v̂2; : : : ; v̂n which correspond to the vertices v1; v2; : : : ; vn of the graph G and the clique K
consists of m vertices û1; û2; : : : ; ûm which correspond to the edges e1; e2; : : : ; em of G. A vertex ût ∈ K,
1 ≤ t ≤ m, is connected to two vertices v̂i; v̂j ∈ I, 1 ≤ i; j ≤ n, if and only if the corresponding vertices vi
and vj are adjacent in G. Note that, every ûi ∈ K sees all the vertices of the clique K and two vertices
of the independent set I; thus, |E(Ĝ)| = m(m−1)

2 + 2m.
Moreover, we claim that the constructed split graph Ĝ is also an undirected path graph. Indeed, we

prove this by showing that the graph Ĝ has a characteristic tree. Let C be the set of all maximal cliques
of Ĝ. Note that K is a maximal clique for Ĝ, thus, we have |C| = |I|+ 1. Every vertex v̂i ∈ I belongs to
exactly one maximal clique, i.e., |C(v̂i)| = 1. Additionally, every vertex ûi ∈ K belongs to exactly three
maximal cliques, one of which is maximal clique K, i.e., |C(ûi)| = |N [ûi]| − |K|+ 1 = 3.

Consider now a tree T with vertex set C, such that the maximal clique K is connected by an edge
to every maximal clique C(v̂i) for every v̂i ∈ I, i.e., T is a star. We now show that T is a characteristic
tree for Ĝ. Indeed, for every vertex v̂i ∈ I, the subgraph T [C(v̂i)] induced by C(v̂i) is a path on one
vertex, and also for every vertex ûi ∈ K, the subgraph T [C(ûi)] is a path on three vertices. Therefore,
the constructed graph Ĝ has a characteristic tree and, thus, from Theorem 3.4 it follows that Ĝ is a split
undirected path graph.

We claim that the graph G has a chromatic number �(G) if and only if the split undirected path
graph Ĝ has a harmonious chromatic number h(Ĝ) = �(G)+m. Note that the same arguments are used
in Section 3.3 for proving the NP-completeness of the problem for split graphs.

Let ci ∈ {1; : : : ; �(G)} be the color assigned to the vertex vi ∈ G, 1 ≤ i ≤ n, in a minimum
coloring of G. We assign the color ci to the vertex v̂i of the set I and a distinct color from the set
{�(G) + 1; : : : ; �(G) + m} to each vertex of the clique K. Since two adjacent vertices of G receive
a di�erent color, the neighbors of each ûi ∈ K belonging to the independent set have distinct colors.
Moreover, every vertex v̂i ∈ I sees |NG(vi)| vertices of the clique K, where NG(vi) is the neighborhood
of the vertex vi in G. Thus, every pair of colors appears in at most one edge. In addition, the number
of colors assigned to the set I is equal to �(G) and the number of colors assigned to the clique is equal
to m. This results to a harmonious coloring of Ĝ using �(G) + m colors, which is minimum since the
vertices of the set I cannot receive a color assigned to a vertex of the clique K.

Conversely, a harmonious coloring of Ĝ using h(Ĝ) = �(G)+m colors assigns m colors to the vertices
of the clique K and �(G) colors to the vertices of the set I. Note that, �(G) is the minimum number of
colors so that vertices v̂i; v̂j having a neighbor in common are assigned di�erent colors. Since vi; vj are
adjacent in G, it follows that we have a minimum coloring of G using �(G) colors.

Thus, we have proved the following result.

Theorem 3.5. The harmonious coloring problem is NP-complete for split undirected path graphs.

Next, we show the following result.

Theorem 3.6. Any split undirected path graph is a colinear graph.

Proof. Let G be a split undirected path graph. Assume that G is not a colinear graph. Then, from De�ni-
tion 3.3 there exists an induced subgraph GA of G such that �(GA) 6= �(GA); thus, due to Proposition 3.1,
�(GA) > �(GA).

From Theorem 3.4, we obtain that split undirected path graphs are hereditary, that is, every induced
subgraph GA of G is a split undirected path graph. Let V (GA) = K + I be a partition of the vertex set
of GA into a maximal clique K and an independent set I. Also, from Theorem 3.4 we have that GA has
a characteristic tree T with vertex set C, where C is the set of all maximal cliques of GA, such that for
every vertex v ∈ V (GA), the subgraph T [C(v)] of T induced by the vertex set C(v) is a path in T .

In particular, since GA is a split graph, for every vertex v ∈ I, the subgraph T [C(v)] of T induced by
the vertex set C(v) is a vertex in T that corresponds to the unique maximal clique of GA that v belongs to;
we will denote this clique by Cv, i.e., Cv = NGA [v] and C(v) = {Cv} for every vertex v ∈ I. Also, for every
vertex v ∈ K, the path (Cu; : : : ; Cx;K;Cy; : : : ; Cz) of T induced by the vertex set C(v), always passes

38

from the vertex K; equivalently, for every vertex v ∈ K, the subgraph of T induced by the vertex set
C(v), corresponds to the vertex K and to at most two vertex disjoint paths (Cy; : : : ; Cz) and (Cx; : : : ; Cu)
where Cy and Cx are adjacent to K in T . Moreover, observe that for any path (K;Cv1 ; Cv2 ; : : : ; Cvk) of
the characteristic tree T of GA, we have Cv1 \ {v1} ⊇ Cv2 \ {v2} ⊇ : : : ⊇ Cvk \ {vk}, since Cvi \ {vi} =
NGA(vi) ⊂ K, where vi ∈ I for every i, 1 ≤ i ≤ k.

Let � : V (GA) → {1; 2; : : : ; �(GA)} be a colinear coloring of GA. In order to see how a colinear coloring
can be assigned to the vertices of GA we refer to the colinear coloring algorithm presented in Chapter 2.
Recall that, the algorithm �rst constructs the directed acyclic graph (DAG) DGA associated to the graph
GA and, then, �nds a minimum path cover of the transitive DAG DGA . The size of the minimum path
cover of DGA equals the colinear chromatic number �(GA). Also, the algorithm assigns a colinear coloring
� to the vertices of GA such that a set of vertices are assigned the same color in � if and only if they
belong to the same path of the minimum path cover of DGA . Moreover, the DAG DGA associated to
the graph GA is constructed as follows: V (DGA) = V (GA) and E(DGA) = {−→xy : x; y ∈ V (DGA) and
NGA [x] ⊆ NGA [y]}, where −→xy is a directed edge from x to y. Note that DGA is a transitive DAG. For
simplicity, throughout the proof we will denote the DAG DGA associated to the graph GA by D.

The following observations will be useful in the rest of this proof. Two vertices u; v ∈ V (D) are not
adjacent in D if and only if neither NGA [v] ⊆ NGA [u] nor NGA [v] ⊇ NGA [u]; we call two sets with this
property incompatible. In GA the vertices of I form a clique, therefore, for two vertices u; v ∈ I, u and v
are not adjacent in D if and only if the sets NGA [u]∩K and NGA [v]∩K are incompatible. Note that, for
any two vertices u; v of GA, NGA [u] ⊆ NGA [v] if and only if NGA(u) ⊇ NGA(v). Additionally, for every
vertex u ∈ I, we have NGA(u) ⊂ K.

Having assumed that �(GA) > �(GA) = |K|, there exists a minimum path cover of D with size
�(GA) ≥ |K|+1. The size of a minimum path cover of D equals the cardinality of a maximum independent
set ID of D [37]; thus, |ID| ≥ |K|+ 1. Moreover, the independent set ID corresponds to a collection C of
mutually incompatible sets NGA [v], for all v ∈ ID, that is, C = {NGA [v] : v ∈ ID}. Thus, |C| ≥ |K|+ 1
and the sets of C contain at most |K| vertices of K. Also, recall that for any two vertices u; v ∈ V (D)
such that u ∈ K and v ∈ I, if uv ∈ E(GA) then NGA [u] ⊂ NGA [v]; thus, for any two vertices u; v ∈ V (D)
such that u ∈ K and v ∈ I, u and v are adjacent in GA if and only if u and v are adjacent in D.

Assume that K ⊂ ID. Then, no vertex v ∈ I can belong to ID since every vertex of I is adjacent
to at least one vertex of K in GA and, thus, in D, due to our assumption that K is a maximal clique
of GA. Thus, not every vertex of K can belong to ID, since |ID| ≥ |K| + 1. Assume that a vertex
u ∈ K belongs to ID. Then, no vertex v ∈ I that is adjacent to u in D and, thus, in GA, belongs to
ID; equivalently, u =∈ NGA [v], for every vertex v ∈ ID. Therefore, if we delete the vertex u ∈ K from the
set ID, we obtain an independent set I ′D = ID \ {u} and a collection C ′ = C \ {NGA [u]} of at least |K|
mutually incompatible sets, which contain at most |K| − 1 vertices of K. Using the same arguments, if
we delete every vertex of K from the independent set ID, we obtain an independent set I ′′D, such that
I ′′D ⊆ I and |I ′′D| ≥ k+1 (where k ≤ |K|), which corresponds to a collection C ′′ of at least k+1 mutually
incompatible sets NGA [v], v ∈ I, which contain at most k vertices of K.

A collection C ′′ of at least k+1 mutually incompatible sets NGA [v], v ∈ I, corresponds to a collection
F of at least k + 1 mutually incompatible sets NGA(v), v ∈ I. Since, for every vertex v ∈ I we have
NGA(v) = Cv \ {v}, it follows that a collection F of at least k + 1 mutually incompatible sets NGA(v),
v ∈ I, corresponds to a collection of at least k + 1 maximal cliques Cv of GA, v ∈ I, each of which must
belong to a di�erent path (K;Cv1 ; Cv2 ; : : : ; Cvk) of a characteristic tree T of GA. However, every vertex
z ∈ K belongs to at most two such paths, therefore, every vertex z ∈ K belongs to at most two sets of
the collection F . Thus, every vertex z ∈ K belongs to at least |C ′′| − 2 sets of the collection C ′′.

Summarizing, we have a collection C ′′ of at least k + 1 mutually incompatible sets NGA [v], v ∈ I,
which contain at most k vertices of K and, also, every vertex z ∈ K belongs to at least |C ′′| − 2 sets of
the collection C ′′. Recall that for two vertices u; v ∈ I, the sets NGA [u] and NGA [v] are incompatible if
and only if the sets NGA [u] ∩K and NGA [v] ∩K are incompatible. Therefore, we have a collection of at
least k + 1 mutually incompatible vertex sets on k vertices. It is easy to see that it is impossible to �nd

39

Figure 3.4: A split graph G which is not a colinear graph, since �(G) = 4 and �(G) = 5. Also, G is not
an undirected path graph.

a collection of at least k + 1 mutually incompatible sets on k vertices, if every vertex belongs to at least
k sets of the collection. This is a contradiction to our assumptions. Therefore, G is a colinear graph.

Note that, not any split graph is a colinear graph (for example see Fig. 3.4). From Theorems 3.5
and 3.6, we obtain the following result.

Corollary 3.1. The harmonious coloring problem is NP-complete on the class of colinear graphs.

3.5 Harmonious Coloring on Split Strongly Chordal Graphs

In this section we show that the harmonious coloring problem admits a polynomial solution on the class
of split strongly chordal graphs. Strongly chordal graphs form a known subclass of chordal graphs [10, 27]
and were �rst introduced by Farber [27]. A graph is strongly chordal i� it admits a strong elimination
ordering; a vertex ordering � = (v1; v2; : : : ; vn) is a strong elimination ordering of a graph G i� � is
a perfect elimination ordering and also has the property that for each i, j, k and `, if i < j, k < `,
vk; v` ∈ N [vi], and vk ∈ N [vj], then v` ∈ N [vj] [14, 27].

Let us now give the de�nitions of a k-sun and an incomplete k-sun. An incomplete k-sun Sk (k ≥ 3)
is a chordal graph on 2k vertices whose vertex set can be partitioned into two sets, U = {u1; u2; : : : ; uk}
and W = {w1; w2; : : : ; wk}, so that W is an independent set, and wi is adjacent to uj if and only if i = j
or i = j + 1 (mod k); the graph Sk (k ≥ 3) is a k-sun if U is a complete graph.

The following characterization of strongly chordal graphs was proved by Farber [27] and turns up
to be useful in obtaining a polynomial solution for the harmonious coloring problem on split strongly
chordal graphs.

Proposition 3.2. (Farber [27]) A chordal graph G is strongly chordal if and only if it contains no induced
k-sun.

Note also that a bipartite graph G is chordal bipartite if and only if the split graph obtained from G
by making one of its two color classes complete is strongly chordal [56].

Next, we present a polynomial solution for the harmonious coloring problem on split strongly chordal
graphs. Before describing our algorithm, we �rst construct a graph HG from a split graph G, which we
call neighborhood intersection graph of G, and we use it in the proposed algorithm.

The neighborhood intersection graph HG of a split graph G. Let G be a split graph, and let
V (G) = K+I be a partition of its vertex set, where K induces a clique in G and I induces an independent
set. We �rst compute the open neighborhood NG(v) of each vertex v ∈ I and, then, we construct the
following graph HG, which depicts all intersection relations among the vertices' open neighborhoods:
V (HG) = I and E(HG) = {xy : x; y ∈ I and NG(x) ∩NG(y) 6= ∅}. It is easy to see that the resulting
graph HG is unique up to isomorphism.

The following result is important for proving the correctness of our algorithm.

Lemma 3.1. The neighborhood intersection graph HG of a split strongly chordal graph G is a chordal
graph.

40

Proof. Let G be a split strongly chordal graph and let HG be the neighborhood intersection graph of
G. We will show that HG is a chordal graph, i.e., that HG is a Ck-free graph, for every k ≥ 4. Since
G is a split graph, there exists a partition of its vertex set V (G) = K + I, where K induces a clique
and I induces an independent set in G. By the construction of HG, there is a one to one correspondence
between the vertices of V (HG) and the vertices of V (G) ∩ I.

Assume that HG is not a chordal graph and let Ck = (v1; v2; : : : ; vk) be a chordless cycle of HG

on k vertices, k ≥ 4; thus, vivj ∈ E(HG) if and only if j = i + 1 (mod k). Therefore, we have
that NG(vi) ∩ NG(vj) 6= ∅ if and only if j = i + 1 (mod k) or, equivalently, there exists at least one
vertex wi ∈ K in G such that wi ∈ NG(vi) ∩NG(vj) if and only if j = i+ 1 (mod k); note that, the set
W = {w1; w2; : : : ; wk} consists of distinct vertices, since Ck is a chordless cycle. Thus, U = {v1; v2; : : : ; vk}
induces an independent set in G, W = {w1; w2; : : : ; wk} induces a clique in G, and wi is adjacent to vj
if and only if j = i or j = i+ 1 (mod k). Therefore, the subgraph of G induced by the vertices U ∪W is
a k-sun, k ≥ 4. It follows that G is a split graph and, thus, it is a chordal graph, which contains a k-sun
as an induced subgraph. This is a contradiction to our assumption that G is a strongly chordal graph
due to Proposition 3.2. Therefore, we conclude that HG is a chordal graph.

The algorithm for a harmonious coloring of a split strongly chordal graph. The proposed
algorithm computes a harmonious coloring and the harmonious chromatic number h(G) of a split strongly
chordal graph G, and works as follows:

Algorithm Harmonious Coloring

Input: a split strongly chordal graph G, and a partition of its vertex set V (G) = K + I, where I induces
an independent set in G and K induces a clique.

Output: a harmonious coloring of G.

(i) construct the neighborhood intersection graph HG of G.

(ii) compute a minimum proper vertex coloring � : V (HG) → {1; 2; : : : ; �(HG)}, and the chromatic
number �(HG), of the chordal graph HG (see e.g. [37]).

(iii) compute a coloring �′ : V (G) → {1; 2; : : : ; h(G)} of G, by assigning �′(v) = �(v) to each vertex
v ∈ I, and a distinct color �′(v) from the set {�(HG) + 1; �(HG) + 2; : : : ; �(HG) + |K|} to each
vertex v ∈ K.

(iv) return the value �′(v) for each vertex v ∈ V (G) and the size �(HG) + |K| of the number of
di�erent colors used in �′; the coloring �′ is a harmonious coloring of G, and �(HG) + |K| equals
the harmonious chromatic number h(G) of G.

Algorithm 3: Algorithm Harmonious Coloring

Correctness of the algorithm. Let G be a split strongly chordal graph, and let V (G) = K + I be a
partition of its vertex set, where I induces an independent set in G and K induces a clique. Let HG be
the neighborhood intersection graph of G.

We claim that the split strongly chordal graph G has a harmonious chromatic number h(G) = |K|+r,
where r equals the chromatic number �(HG) of the graph HG. Indeed, a harmonious coloring of G, using
h(G) = |K|+ r colors, assigns a distinct color from the set {1; 2; : : : ; |K|} to each vertex of the clique K,
and also assigns r colors to the vertices of the set I. Note that, r is the minimum number of colors so that
vertices vi; vj ∈ I having a neighbor in common are assigned di�erent colors. Since vi; vj are adjacent in
HG, it follows that r is the minimum number of colors for which a proper vertex coloring of HG exists,
i.e., r = �(HG).

41

Therefore, the split strongly chordal graphG has a harmonious chromatic number h(G) = |K|+�(HG),
where �(HG) is the chromatic number of the neighborhood intersection graph HG of G. Additionally,
it is easy to see that the coloring �′ computed by the algorithm is a harmonious coloring of G using
h(G) = |K|+ �(HG) colors.

Complexity of the algorithm. Let G be a split strongly chordal graph on n vertices and m edges.
Let V (G) = K + I be a partition of its vertex set into a clique K and an independent set I, and let HG

be the neighborhood intersection graph of G. Step (i) of the algorithm, which includes the construction
of the graph HG, takes O(n3) time. Step (ii) computes a minimum proper vertex coloring of HG; since
from Lemma 3.1, HG is a chordal graph, the problem is solvable in O(n+m′) time (see e.g. [37]), where
m′ = |E(HG)| = O(n2). Finally, both Steps (iii) and (iv) can be executed in O(n) time. Therefore, the
complexity of the algorithm is O(n3) time.

Therefore, the following result holds.

Theorem 3.7. The harmonious coloring problem has a polynomial solution on split strongly chordal
graphs.

3.6 Concluding Remarks

In this work we �rst show that the harmonious coloring problem is NP-complete on connected interval
and permutation graphs. Also we prove the NP-completeness of the problem on the class of split graphs.
Extending our results, we then prove that the harmonious coloring problem is NP-complete on the classes
of split undirected path graphs and colinear graphs. We also present a polynomial solution for the same
problem on the class of split strongly chordal graphs. The interest of this result lies on the fact that the
harmonious coloring problem is NP-complete on split graphs and strongly chordal graphs. In addition,
polynomial solutions for the problem are only known for the classes of threshold graphs and connected
quasi-threshold graphs; note that, the harmonious coloring problem is NP-complete on disconnected
quasi-threshold graphs. Since linear graphs form a superclass of both split strongly chordal graphs and
quasi-threshold graphs, the harmonious coloring problem is NP-complete on disconnected linear graphs,
while it still remains open on connected linear graphs.

42

Chapter 4

The Longest Path Problem on
Interval Graphs

4.1 Introduction

4.2 Theoretical Framework

4.3 Interval Graphs and the Longest Path Problem

4.4 Correctness and Time Complexity

4.5 Concluding Remarks

4.1 Introduction

A well studied problem in graph theory with numerous applications is the Hamiltonian path problem,
i.e., the problem of determining whether a graph is Hamiltonian; a graph is said to be Hamiltonian
if it contains a Hamiltonian path, that is, a simple path in which every vertex of the graph appears
exactly once. Even if a graph is not Hamiltonian, it makes sense in several applications to search for a
longest path, or equivalently, to �nd a maximum induced subgraph of the graph which is Hamiltonian.
However, �nding a longest path seems to be more di�cult than deciding whether or not a graph admits a
Hamiltonian path. Indeed, it has been proved that even if a graph has a Hamiltonian path, the problem
of �nding a path of length n − n" for any " < 1 is NP-hard, where n is the number of vertices of
the graph [47]. Moreover, there is no polynomial-time constant-factor approximation algorithm for the
longest path problem unless P=NP [47]. For related results see also [29, 31, 32, 66, 68].

It is clear that the longest path problem is NP-hard on every class of graphs on which the Hamiltonian
path problem is NP-complete. The Hamiltonian path problem is known to be NP-complete in general
graphs [33, 34], and remains NP-complete even when restricted to some small classes of graphs such as
split graphs [37], chordal bipartite graphs, split strongly chordal graphs [58], circle graphs [22], planar
graphs [34], and grid graphs [46]. However, it makes sense to investigate the tractability of the longest
path problem on the classes of graphs for which the Hamiltonian path problem admits polynomial time
solutions. Such classes include interval graphs [1], circular-arc graphs [24], biconvex graphs [3], and co-
comparability graphs [23]. Note that the problem of �nding a longest path on proper interval graphs
is easy, since all connected proper interval graphs have a Hamiltonian path which can be computed in
linear time [6]. On the contrary, not all interval graphs are Hamiltonian; in the case where an interval

43

graph has a Hamiltonian path, it can be computed in linear time [1, 15]. However, in the case where an
interval graph is not Hamiltonian, there is no known algorithm for �nding a longest path on it.

In contrast to the Hamiltonian path problem, there are few known polynomial time solutions for the
longest path problem, and these restrict to trees and some small graph classes. Speci�cally, a linear time
algorithm for �nding a longest path in a tree was proposed by Dijkstra around 1960, a formal proof of
which can be found in [12]. Later, through a generalization of Dijkstra's algorithm for trees, Uehara
and Uno [63] solved the longest path problem for weighted trees and block graphs in linear time and
space, and for cacti in O(n2) time and space, where n and m denote the number of vertices and edges of
the input graph, respectively. More recently, polynomial algorithms have been proposed that solve the
longest path problem on bipartite permutation graphs in O(n) time and space [64], and on ptolemaic
graphs in O(n5) time and O(n2) space [65].

Furthermore, Uehara and Uno in [63] introduced a subclass of interval graphs, namely interval biconvex
graphs, which is a superclass of proper interval and threshold graphs, and solved the longest path problem
on this class in O(n3(m+ n log n)) time. As a corollary, they showed that a longest path of a threshold
graph can be found in O(n + m) time and space. They left open the complexity of the longest path
problem on interval graphs.

In this work, we resolve the open problem posed in [63] by showing that the longest path problem
admits a polynomial time solution on interval graphs. Interval graphs form an important and well-known
class of perfect graphs [37]; a graph G is an interval graph if its vertices can be put in a one-to-one
correspondence with a family of intervals on the real line, such that two vertices are adjacent in G if
and only if their corresponding intervals intersect. In particular, we propose an algorithm for solving
the longest path problem on interval graphs which runs in O(n4) time using a dynamic programming
approach. Thus, not only we answer the question left open by Uehara and Uno in [63], but also improve
the known time complexity of the problem on interval biconvex graphs, a subclass of interval graphs [63].

Interval graphs form a well-studied class of perfect graphs, have important properties, and admit
polynomial time solutions for several problems that are NP-complete on general graphs (see e.g. [1, 37,
49, 15]). Moreover, interval graphs have received a lot of attention due to their applicability to DNA
physical mapping problems [36], and �nd many applications in several �elds and disciplines such as
genetics, molecular biology, scheduling, VLSI circuit design, archaeology and psychology [37].

The rest of this chapter is organized as follows. In Section 4.2, we review some properties of interval
graphs and introduce the notion of normal paths, which is central for our algorithm. In Section 4.3, we
present our algorithm for solving the longest path problem on an interval graph, which includes three
phases. In Section 4.4 we prove the correctness and compute the time complexity of our algorithm.
Finally, some concluding remarks are given in Section 4.5.

4.2 Theoretical Framework

For basic de�nitions in graph theory refer to [10, 37, 56]. Recall that by V (P) we denote the set of
vertices in a path P , and within this chapter we consider the length of the path P to be the number of
vertices in P , i.e., |P | = |V (P)|.

4.2.1 Structural Properties of Interval Graphs

A graph G is an interval graph if its vertices can be put in a one-to-one correspondence with a family F of
intervals on the real line such that two vertices are adjacent in G if and only if the corresponding intervals
intersect; F is called an intersection model for G [1]. The class of interval graphs is hereditary, that is,
every induced subgraph of an interval graph G is also an interval graph. Ramalingam and Rangan [61]
proposed a numbering of the vertices of an interval graph; they stated the following lemma.

Lemma 4.1. (Ramalingam and Rangan [61]): The vertices of any interval graph G can be numbered
with integers 1; 2; : : : ; |V (G)| such that if i < j < k and ik ∈ E(G), then jk ∈ E(G).

44

This numbering, which also results after sorting the intervals of the intersection model of an interval
graph G on their right ends [1], can be obtained in O(|V (G)| + |E(G)|) time [61]. An ordering of the
vertices according to this numbering is found to be quite useful in solving some graph-theoretic problems
on interval graphs [1, 61]. Throughout this work, such an ordering is called a right-end ordering of G.
Let u and v be two vertices of G; if � is a right-end ordering of G, denote u <� v if u appears before v
in �. In particular, if � = (u1; u2; : : : ; u|V (G)|) is a right-end ordering of G, then ui <� uj if and only if
i < j.

The following lemma appears to be useful in obtaining some important results.

Lemma 4.2. Let G be an interval graph, and let � be a right-end ordering of G. Let P = (v1; v2; : : : ; vk)
be a path of G, and let v` =∈ V (P) be a vertex of G such that v1 <� v` <� vk and v`vk =∈ E(G). Then,
there exist two consecutive vertices vi−1 and vi in P , 2 ≤ i ≤ k, such that vi−1v` ∈ E(G) and v` <� vi.

Proof. Consider the intersection model F of G, from which we obtain the right-end ordering � of G. Let
Ii denote the interval which corresponds to the vertex vi in F , and let l(Ii) and r(Ii) denote the left
and the right endpoint of the interval Ii, respectively. Without loss of generality, we may assume that
all values l(Ii) and r(Ii) are distinct. Since P = (v1; v2; : : : ; vk) is a path from v1 to vk, it is clear from
the intersection model F of G that at least one vertex of P sees v`. Recall that vkv` =∈ E(G); let vi−1,
2 ≤ i ≤ k, be the last vertex of P such that vi−1v` ∈ E(G), i.e., vjv` =∈ E(G) for every index j, i ≤ j ≤ k.
Thus, since v` <� vk, it follows that r(I`) < l(Ij) < r(Ij) for every index j, i ≤ j ≤ k and, thus, v` <� vj .
Therefore, in particular, v` <� vi. This completes the proof.

4.2.2 Normal Paths

Our algorithm for constructing a longest path of an interval graph G uses a speci�c type of paths, namely
normal paths. We next de�ne the notion of a normal path of an interval graph G.

De�nition 4.1. Let G be an interval graph, and let � be a right-end ordering of G. The path
P = (v1; v2; : : : ; vk) of G is called normal, if v1 is the leftmost vertex of V (P) in �, and for every i,
2 ≤ i ≤ k, the vertex vi is the leftmost vertex of N(vi−1) ∩ {vi; vi+1; : : : ; vk} in �.

The notion of a normal path of an interval graph G is a generalization of the notion of a typical path of
G; the path P = (v1; v2; : : : ; vk) of an interval graph G is called a typical path, if v1 is the leftmost vertex
of V (P) in �. The notion of a typical path was introduced by Arikati and Rangan [1], in order to solve
the path cover problem on interval graphs; they proved the following result.

Lemma 4.3. (Arikati and Rangan [1]): Let P be a path of an interval graph G. Then, there exists a
typical path P ′ in G such that V (P ′) = V (P).

The following lemma is the basis of our algorithm for solving the longest path problem on interval graphs.

Lemma 4.4. Let P be a path of an interval graph G. Then, there exists a normal path P ′ of G, such
that V (P ′) = V (P).

Proof. Let G be an interval graph, let � be a right-end ordering of G, and let P = (v1; v2; : : : ; vk)
be a path of G. If k = 1, the lemma clearly holds. Suppose that k ≥ 2. We will prove that for
every index i, 2 ≤ i ≤ k, there exists a path Pi = (v′1; v′2; : : : ; v′k), such that V (Pi) = V (P), v′1 is the
leftmost vertex of V (Pi) in �, and for every index j, 2 ≤ j ≤ i, the vertex v′j is the leftmost vertex of
N(v′j−1) ∩ {v′j ; v′j+1; : : : ; v′k} in �. The proof will be done by induction on i.

Due to Lemma 4.3, we may assume that P = (v1; v2; : : : ; vk) is typical, i.e., that v1 is the left-
most vertex of V (P) in �. Let i = 2. Assume that vj ∈ V (P), j > 2, is the leftmost vertex of
N(v1) ∩ {v2; v3; : : : ; vk} in �. Then, since G[V (P)] is an interval graph, and since v1 <� vj <� v2 and
v1v2; v1vj ∈ E(G), it follows that N [vj] ∩ {v1; v2; : : : ; vk} ⊆ N [v2] ∩ {v1; v2; : : : ; vk}. Thus, there exists a
path

P2 = (v′1; v
′
2; : : : ; v

′
k) = (v1; vj ; vj−1; : : : ; v3; v2; vj+1; vj+2 : : : ; vk)

45

v1

v2 v3
v5

v6

v4

I1

I2 I3

I4

I5

I6

P = (v2, v1, v6, v5, v4, v3)

v1

v2 v3
v5

v6

v4

I1

I2 I3

I4

I5

I6

P ′ = (v1, v2, v4, v3, v6, v5)

Figure 4.1: Illustrating an intersection model of an interval graph G. The path P = (v2; v1; v6; v5; v4; v3),
which is Hamiltonian for the graph G, is not a normal path. The path P ′ = (v1; v2; v4; v3; v6; v5) is a
normal path such that V (P ′) = V (P).

of G, such that V (P2) = V (P), v′1 is the leftmost vertex of V (P2) in �, and v′2 is the leftmost vertex of
N(v′1) ∩ {v′2; v′3; : : : ; v′k} in �. This proves the induction basis.

Consider now an arbitrary index i, 2 ≤ i ≤ k − 1, and let Pi = (v′1; v′2; : : : ; v′k) be a path of G,
such that V (Pi) = V (P), v′1 is the leftmost vertex of V (Pi) in �, and for every index j, 2 ≤ j ≤ i, the
vertex v′j is the leftmost vertex of N(v′j−1) ∩ {v′j ; v′j+1; : : : ; v′k} in �. In particular, it follows that the
subpath (v′1; v′2; : : : ; v′i) of Pi is normal. We will now prove that for any vertex v′` ∈ {v′i+1; v′i+2; : : : ; v′k},
where v′` <� v′i, it holds v′`v′i ∈ E(G). Indeed, suppose otherwise that v′`v′i =∈ E(G), for such a vertex
v′`. Then, since v′1 <� v′` <� v′i, it follows by Lemma 4.2 that there are two consecutive vertices v′j−1

and v′j in Pi, 2 ≤ j ≤ i, such that v′j−1v′` ∈ E(G) and v′` <� v′j . Thus, v′j is not the leftmost vertex
of N(v′j−1) ∩ {v′j ; v′j+1; : : : ; v′`; : : : ; v′k} in �, which is a contradiction. Therefore, for any vertex v′` ∈
{v′i+1; v′i+2; : : : ; v′k}, where v′` <� v′i, it holds v′`v′i ∈ E(G).

Assume that v′j ∈ V (Pi), j > i+ 1, is the leftmost vertex of N(v′i) ∩ {v′i+1; v′i+2; : : : ; v′k} in �. Con-
sider �rst the case where v′i <� v′j . Then, for every vertex v′` ∈ {v′i+1; v′i+2; : : : ; v′k} it holds v′i <� v′`.
Indeed, suppose otherwise that v′` <� v′i <� v′j for such a vertex v′`. Then, as we have proved above,
v′`v′i ∈ E(G), which is a contradiction, since v′j is the leftmost vertex of N(v′i) ∩ {v′i+1; v′i+2; : : : ; v′k}
in � and v′` <� v′j . Thus, v′i <� v′` for every vertex v′` ∈ {v′i+1; v′i+2; : : : ; v′k}. Therefore, since
G[V (Pi)] is an interval graph, and since v′i <� v′j <� v′i+1 and v′iv′i+1; v′iv′j ∈ E(G), it follows that
N [v′j] ∩ {v′i; v′i+1; : : : ; v′k} ⊆ N [v′i+1] ∩ {v′i; v′i+1; : : : ; v′k}. Then, there exists the path

Pi+1 = (v′′1 ; v
′′
2 ; : : : ; v

′′
i ; v

′′
i+1; : : : ; v

′′
k) = (v′1; v

′
2; : : : ; v

′
i; v

′
j ; v

′
j−1; : : : ; v

′
i+2; v

′
i+1; v

′
j+1; : : : ; v

′
k)

of G, such that V (Pi+1) = V (Pi), v′′1 is the leftmost vertex of V (Pi+1) in �, and for every index j,
2 ≤ j ≤ i+ 1, the vertex v′′j is the leftmost vertex of N(v′′j−1) ∩ {v′′j ; v′′j+1; : : : ; v′′k} in �.

Consider now the case where v′j <� v′i. Then, v′j is the leftmost vertex of {v′i+1; v′i+2; : : : ; v′k} in
�. Indeed, suppose otherwise that v′` <� v′j <� v′i for a vertex v′` ∈ {v′i+1; v′i+2; : : : ; v′k}. Then, as we
have proved above, v′`v′i ∈ E(G), which is a contradiction, since v′j is the leftmost vertex of N(v′i) ∩
{v′i+1; v′i+2; : : : ; v′k} in � and v′` <� v′j . Thus, there exists by Lemma 4.3 a typical path P0, such that
V (P0) = {v′i+1; v′i+2; : : : ; v′k}. Since P0 is typical and v′j is the leftmost vertex of V (P0) in �, it follows
that v′j is the �rst vertex of P0. Then, since v′iv′j ∈ E(G), there exists the path

Pi+1 = (v′′1 ; v
′′
2 ; : : : ; v

′′
i ; v

′′
i+1; : : : ; v

′′
k) = (v′1; v

′
2; : : : ; v

′
i; P0)

of G, such that V (Pi+1) = V (Pi), v′′1 is the leftmost vertex of V (Pi+1) in �, and for every index j,
2 ≤ j ≤ i+ 1, the vertex v′′j is the leftmost vertex of N(v′′j−1) ∩ {v′′j ; v′′j+1; : : : ; v′′k} in �. This proves the
induction step.

Thus, the path P ′ = Pk is a normal path of G, such that V (P ′) = V (P).

46

4.3 Interval Graphs and the Longest Path Problem

In this section we present our algorithm, which we call Algorithm LP Interval, for solving the longest
path problem on interval graphs; it consists of three phases and works as follows:

• Phase 1: it takes an interval graph G and constructs the auxiliary interval graph H;

• Phase 2: it computes a longest path P on H using Algorithm LP on H;

• Phase 3: it computes a longest path P̂ on G from the path P ;

The proposed algorithm computes a longest path P of the graph H using dynamic programming
techniques and, then, computes a longest path P̂ of G from the path P . We next describe in detail the
three phases of our algorithm and prove properties of the constructed graph H which will be used for
proving the correctness of the algorithm.

4.3.1 The interval graph H

In this section we present Phase 1 of the algorithm: given an interval graph G and a right-end ordering
� of G, we construct the interval graph H and a right-end ordering � of H.

I Construction of H and �: Let G be an interval graph and let � = (v1; v2; : : : ; v|V (G)|) be a right-
end ordering of G. Initially, set V (H) = V (G), E(H) = E(G), � = �, and A = ∅. Traverse the ver-
tices of � from left to right and do the following: for every vertex vi add two vertices ai;1 and ai;2 to
V (H) and make both these vertices to be adjacent to every vertex in NG[vi] ∩ {vi; vi+1; : : : ; v|V (G)|};
add ai;1 and ai;2 to A. Update � such that a1;1 <� a1;2 <� v1, and vi−1 <� ai;1 <� ai;2 <� vi for
every i, 2 ≤ i ≤ |V (G)|.

We call the constructed graph H the stable-connection graph of the graph G. Hereafter, we will denote
by n the number |V (H)| of vertices of the graph H and by � = (u1; u2; : : : ; un) the constructed ordering
of H. By construction, the vertex set of the graph H consists of the vertices of the set C = V (G) and
the vertices of the set A. We will refer to C as the set of the connector vertices c of the graph H and to
A as the set of stable vertices a of the graph H; we denote these sets by C(H) and A(H), respectively.
Note that |A(H)| = 2|V (G)|.

By the construction of the stable-connection graph H, all neighbors of a stable vertex a ∈ A(H) are
connector vertices c ∈ C(H), such that a <� c. Moreover, observe that all neighbors of a stable vertex
form a clique in G and, thus, also in H. For every connector vertex ui ∈ C(H), we denote by uf(ui)

and uh(ui) the leftmost and rightmost neighbor of ui in �, respectively, which appear before ui in �, i.e.,
uf(ui) <� uh(ui) <� ui. Note that uf(ui) and uh(ui) are distinct stable vertices, for every connector vertex
ui.

Lemma 4.5. Let G be an interval graph. The stable-connection graph H of G is an interval graph, and
the vertex ordering � is a right-end ordering of H.

Proof. Consider the intersection model F of G, from which we obtain the right-end ordering � =
(v1; v2; : : : ; v|V (G)|) of G. Let Ii denote the interval which corresponds to the vertex vi in F , and let
l(Ii) and r(Ii) denote the left and the right endpoint of the interval Ii, respectively. Without loss of
generality, we may assume that all values l(Ii) and r(Ii) are distinct. Let " be the smallest distance
between two interval endpoints in F .

For every interval Ii which corresponds to a vertex vi ∈ C, we replace its right end-
point r(Ii) by r(Ii) + "

2 , and we add two non-intersecting intervals Ii;1 = [r(Ii); r(Ii) + "
8] and

Ii;2 = [r(Ii) + "
4 ; r(Ii) + 3"

8] (one for each vertex ai;1 and ai;2 of A, respectively). The two new inter-
vals do not intersect with any interval Ik, such that r(Ik) < r(Ii). Additionally, the two new intervals

47

intersect with the interval Ii, and with every interval I`, such that r(I`) > r(Ii) and I` intersects with
Ii. After processing all intervals Ii, 1 ≤ i ≤ |V (G)|, of the intersection model F of G, we obtain an
intersection model of H. Thus, H is an interval graph, and the ordering which results from numbering
the intervals after sorting them on their right ends is identical to the vertex ordering � of H and, thus,
� is a right-end ordering of H.

De�nition 4.2. Let H be the stable-connection graph of an interval graph G, and let � = (u1; u2; : : : ; un)
be the right-end ordering of H. For every pair of indices i; j, 1 ≤ i ≤ j ≤ n, we de�ne the graph H(i; j)
to be the subgraph H[S] of H, induced by the set S = {ui; ui+1; : : : ; uj} \ {uk ∈ C(H) : uf(uk) <� ui}.

The following properties hold for every induced subgraph H(i; j), 1 ≤ i ≤ j ≤ n, and they are used
for proving the correctness of Algorithm LP on H.

Observation 4.1. Let uk be a connector vertex of H(i; j), i.e., uk ∈ C(H(i; j)). Then, for every vertex
u` ∈ V (H(i; j)), such that uk <� u` and uku` ∈ E(H(i; j)), u` is also a connector vertex of H(i; j).

Observation 4.2. No two stable vertices of H(i; j) are adjacent.

Lemma 4.6. Let P = (v1; v2; : : : ; vk) be a normal path of H(i; j). Then:

(a) For any two stable vertices vr and v` in P , vr appears before v` in P if and only if vr <� v`.

(b) For any two connector vertices vr and v` in P , if v` appears before vr in P and vr <� v`, then vr
does not see the previous vertex v`−1 of v` in P .

Proof. The proof will be done by contradiction.

(a) Let vr and v` be any two stable vertices of H(i; j) that belong to the normal path
P = (v1; v2; : : : ; vk), such that vr appears before v` in P , and assume that v` <� vr. Then, clearly
v` 6= v1, since vr appears before v` in P . Since P is a normal path of H(i; j), v1 is the leftmost
vertex of V (P) in �. Thus, v1 <� v` <� vr, and since no two stable vertices of H(i; j) are adjacent
due to Observation 4.2, it follows that vrv` =∈ E(H(i; j)). Thus, by Lemma 4.2 there exist two
consecutive vertices u and u′ in P that appear between v1 and vr in P , such that uv` ∈ E(H(i; j))
and v` <� u′. Thus, since P is a normal path, v` should be the next vertex of u in P instead of u′,
which is a contradiction. Therefore, vr <� v`.

(b) Let vr and v` be any two connector vertices of H(i; j) that belong to the normal path
P = (v1; v2; : : : ; vk), such that v` appears before vr in P and vr <� v`. Since P is a normal
path of H(i; j), v1 is the leftmost vertex of V (P) in �. Since vr <� v`, it follows that v` 6= v1 and,
thus, there exists a vertex v`−1 which appears before v` in P . Assume that vrv`−1 ∈ E(H(i; j)).
Since vr <� v`, and since P is a normal path, vr should be the next vertex of v`−1 in P instead of
v`, which is a contradiction. Therefore, vrv`−1 =∈ E(H(i; j)).

4.3.2 Finding a longest path on H

In this section we present Phase 2 of Algorithm LP Interval. Let G be an interval graph and let H be
the stable-connection graph of G constructed in Phase 1. We next present Algorithm LP on H, which
computes a longest path of the graph H. Let us �rst give some de�nitions and notations necessary for
the description of the algorithm.

De�nition 4.3. Let H be a stable-connection graph, and let P be a path of H(i; j), 1 ≤ i ≤ j ≤ n. The
path P is called binormal if P is a normal path of H(i; j), both endpoints of P are stable vertices, and
no two connector vertices are consecutive in P .

48

Algorithm LP on H

Input: a stable-connection graph H, a right-end ordering � = (u1; u2; : : : ; un) of H.
Output: a longest binormal path of H.

for j = 1 to n
for i = j downto 1

if i = j and ui ∈ A(H) then
`(ui; i; i) ← 1; P (ui; i; i) ← (ui);

if i 6= j then
for every stable vertex uk ∈ A(H), i ≤ k ≤ j − 1

`(uk; i; j) ← `(uk; i; j − 1); P (uk; i; j) ← P (uk; i; j − 1); {initialization}
if uj is a stable vertex of H(i; j), i.e., uj ∈ A(H) then

`(uj ; i; j) ← 1; P (uj ; i; j) ← (uj);
if uj is a connector vertex of H(i; j), i.e., uj ∈ C(H) and i ≤ f(uj) then

execute process(H(i; j));
compute the max{`(uk; 1; n) : uk ∈ A(H)} and the corresponding path P (uk; 1; n);

where the procedure process() is as follows:

process(H(i; j))

for y = f(uj) + 1 to j − 1
for x = f(uj) to y − 1 {ux and uy are adjacent to uj}

if ux; uy ∈ A(H) then
w1 ← `(ux; i; j − 1); P ′1 ← P (ux; i; j − 1);
w2 ← `(uy;x+ 1; j − 1); P ′2 ← P (uy;x+ 1; j − 1);
if w1 + w2 + 1 > `(uy; i; j) then

`(uy; i; j) ← w1 + w2 + 1; P (uy; i; j) ← (P ′1; uj ; P ′2);
return the value `(uk; i; j) and the path P (uk; i; j), ∀ uk ∈ A(H(f(uj) + 1; j − 1));

Algorithm 4: Algorithm LP on H for �nding a longest binormal path of H.

Notation 4.1. Let H be a stable-connection graph, and let � = (u1; u2; : : : ; un) be the right-end ordering
of H. For every stable vertex uk ∈ A(H(i; j)), we denote by P (uk; i; j) a longest binormal path of H(i; j)
with uk as its right endpoint, and by `(uk; i; j) the length of P (uk; i; j).

Since any binormal path is a normal path, Lemma 4.6 also holds for binormal paths. Moreover, since
P (uk; i; j) is a binormal path, it follows that its right endpoint uk is also the rightmost stable vertex of
P in �, due to Lemma 4.6(a).

Algorithm LP on H computes for every induced subgraph H(i; j) and for every stable vertex uk ∈
A(H(i; j)), the length `(uk; i; j) and the corresponding path P (uk; i; j). Since H(1; n) = H, it follows
that the maximum among the values `(uk; 1; n), where uk ∈ A(H), is the length of a longest binormal
path P (uk; 1; n) of H. In Section 4.4.2 we prove that the length of a longest path of H equals to the
length of a longest binormal path of H. Thus, the binormal path P (uk; 1; n) computed by Algorithm
LP on H is also a longest path of H.

4.3.3 Finding a longest path on G

During Phase 3 of our Algorithm LP Interval, we compute a path P̂ from the longest binormal path P
of H, computed by Algorithm LP on H, by simply deleting all the stable vertices of P . In Section 4.4.2
we prove that the resulting path P̂ is a longest path of the interval graph G.

49

Algorithm LP Interval

Input: an interval graph G and a right-end ordering � of G.
Output: a longest path P̂ of G.

1. Construct the stable-connection graph H of G and the right-end ordering � of H;

let V (H) = C ∪ A, where C = V (G) and A are the sets of the connector and stable vertices of H,
respectively;

2. Compute a longest binormal path P of H, using Algorithm LP on H;

let P = (v1; v2; : : : ; v2k; v2k+1), where v2i ∈ C, 1 ≤ i ≤ k, and v2i+1 ∈ A, 0 ≤ i ≤ k;

3. Compute a longest path P̂ = (v2; v4; : : : ; v2k) of G, by deleting all stable vertices {v1; v3; : : : ; v2k+1}
from the longest binormal path P of H;

Algorithm 5: Algorithm LP Interval for solving the longest path problem on an interval graph G.

In this section we present our Algorithm LP Interval for solving the longest path problem on an
interval graph G; note that Steps 1, 2, and 3 of the algorithm correspond to the presented Phases 1, 2,
and 3, respectively.

4.4 Correctness and Time Complexity

In this section we prove the correctness of our algorithm and compute its time complexity. More speci�-
cally, in Section 4.4.1 we show that Algorithm LP on H computes a longest binormal path P of the graph
H (in Lemma 4.13 we prove that this path is also a longest path of H), while in Section 4.4.2 we show
that the length of a longest binormal path P of H is equal to 2k + 1, where k is the length of a longest
path of G. Finally, we show that the path P̂ constructed at Step 3 of Algorithm LP Interval is a longest
path of G.

4.4.1 Correctness of Algorithm LP on H

We next prove that Algorithm LP on H correctly computes a longest binormal path of the graph H.
The following lemmas appear useful in the proof of the algorithm's correctness.

Lemma 4.7. Let H be a stable-connection graph, and let � = (u1; u2; : : : ; un) be the right-end ordering
of H. Let P be a longest binormal path of H(i; j) with uy as its right endpoint, let uk be the rightmost
connector vertex of H(i; j) in �, and let uf(uk)+1 ≤� uy ≤� uh(uk). Then, there exists a longest binormal
path P ′ of H(i; j) with uy as its right endpoint, which contains the connector vertex uk.

Proof. Let P be a longest binormal path of H(i; j) with uy as its right endpoint, which does not contain
the connector vertex uk. Assume that P = (uy). Since uk is a connector vertex of H(i; j) and uf(uk) is
a stable vertex of H(i; j), we have that ui ≤� uf(uk) <� uy <� uk. Thus, there exists a binormal path
P1 = (uf(uk); uk; uy) such that |P1| > |P |. However, this is a contradiction to the assumption that P is
a longest binormal path of H(i; j).

Therefore, assume now that P = (up; : : : ; uq; u`; uy). By assumption, P is a longest binormal path of
H(i; j) with uy as its right endpoint that does not contain the connector vertex uk. Since the connector
vertex u` sees the stable vertex uy and, also, since uk is the rightmost connector vertex of H(i; j) in
�, it follows by Observation 4.1 that uf(uk) <� uy <� u` <� uk. Thus, uk sees the connector vertex u`.
Consider �rst the case where uk does not see the stable vertex uq, i.e., uq <� uf(uk) <� uy <� u` <� uk.
Then, it is easy to see that the connector vertex u` sees uf(uk), where uf(uk) is always a stable vertex,

50

and also, from Lemma 4.6(a) it follows that the vertex uf(uk) does not belong to the path P . Therefore,
there exists a binormal path P2 = (up; : : : ; uq; u`; uf(uk); uk; uy) in H(i; j), such that |P2| > |P |. This is
a contradiction to our assumption that P is a longest binormal path.

Consider now the case where uk sees the stable vertex uq. Then, there exists a path
P ′ = (up; : : : ; uq; uk; uy) of H(i; j) with uy as its right endpoint that contains the connector vertex uk,
such that |P | = |P ′|; since P is a binormal path, it is easy to see that P ′ is also a binormal path. Thus, the
path P ′ is a longest binormal path of H(i; j) with uy as its right endpoint, which contains the connector
vertex uk.

Lemma 4.8. Let H be a stable-connection graph, and let � be the right-end ordering of H. Let P =
(P1; v`; P2) be a binormal path of H(i; j), and let v` be a connector vertex of H(i; j). Then, P1 and P2

are binormal paths of H(i; j).

Proof. Let P = (v1; v2; : : : ; v`−1; v`; v`+1; : : : ; vk) be a binormal path of H(i; j). Then, from De�nition 4.1,
v1 is the leftmost vertex of V (P) in �, and for every index r, 2 ≤ r ≤ k, the vertex vr is the leftmost
vertex of N(vr−1)∩{vr; vr+1; : : : ; vk} in �. It is easy to see that P1 = (v1; v2; : : : ; v`−1) is a normal path of
H(i; j). Indeed, since V (P1) ⊂ V (P), then v1 is also the leftmost vertex of V (P1) in �, and additionally, vr
is the leftmost vertex of N(vr−1)∩{vr; vr+1; : : : ; v`−1} in �, for every index r, 2 ≤ r ≤ `−1. Furthermore,
since P is binormal and v` is a connector vertex, it follows that v`−1 is a stable vertex and, thus, P1 is a
binormal path of H(i; j) as well.

Consider now the path P2 = (v`+1; v`+2; : : : ; vk) of H(i; j). Since P is a binormal path and v` is a
connector vertex, it follows that v`+1 is a stable vertex and, thus, v`+1 <� v` due to Observation 4.1.
We �rst prove that v`+1 is the leftmost vertex of V (P2) in �. Since P is a binormal path, we obtain
from Lemma 4.6(a) that v`+1 is the leftmost stable vertex of V (P2) in �. Moreover, consider a connector
vertex vt of P2. Then, its previous vertex vt−1 in P2 is a stable vertex and, thus, vt−1 <� vt due to
Observation 4.1. Since v`+1 is the leftmost stable vertex of V (P2) in �, we have that v`+1 ≤� vt−1 and,
thus, v`+1 <� vt. Therefore, v`+1 is the leftmost vertex of V (P2) in �. Additionally, since P is a binormal
path, it is straightforward that for every index r, ` + 2 ≤ r ≤ k, the vertex vr is the leftmost vertex of
N(vr−1) ∩ {vr; vr+1; : : : ; vk} in �. Thus, P2 is a normal path. Finally, since P is binormal and v`+1 is a
stable vertex, P2 is a binormal path as well.

Lemma 4.9. Let H be a stable-connection graph, and let � = (u1; u2; : : : ; un) be the right-end ordering
of H. Let P1 be a binormal path of H(i; j − 1) with ux as its right endpoint, and let P2 be a binormal
path of H(x+ 1; j − 1) with uy as its right endpoint, such that V (P1) ∩ V (P2) = ∅. Suppose that uj is a
connector vertex of H and that ui ≤� uf(uj) ≤� ux. Then, P = (P1; uj ; P2) is a binormal path of H(i; j)
with uy as its right endpoint.

Proof. Let P1 be a binormal path of H(i; j−1) with ux as its right endpoint, and let P2 be a binormal path
ofH(x+1; j−1) with uy as its right endpoint, such that V (P1)∩V (P2) = ∅. Let uz be the �rst vertex of P2.
Since uj is a connector vertex of H such that ui ≤� uf(uj) ≤� ux it follows that uj sees the right endpoint
ux of P1. Additionally, since uz ∈ V (H(x+ 1; j − 1)), we have uf(uj) ≤� ux <� ux+1 ≤� uz <� uj and,
thus, uj sees uz. Therefore, since V (P1) ∩ V (P2) = ∅, it follows that P = (P1; uj ; P2) is a path of H.
Additionally, since H(i; j − 1) and H(x+ 1; j − 1) are induced subgraphs of H(i; j), it follows that P is
a path of H(i; j). Hereafter, in the rest of this proof P1 = (v1; v2; : : : ; vp−1), P2 = (vp+1; vp+2; : : : ; v`),
ux = vp−1, uy = v`, and uj = vp.

We �rst show that P = (v1; v2; : : : ; vp; : : : ; v`) is a normal path. Since v1 is the leftmost vertex
of V (P1) in �, it follows that v1 ≤� ux. Furthermore, since for every vertex vk ∈ V (P2) it holds ux
<� ux+1 ≤� vk, it follows that v1 is the leftmost vertex of V (P) in �. We next show that for every k,
2 ≤ k ≤ `, the vertex vk is the leftmost vertex of N(vk−1) ∩ {vk; vk+1; : : : ; v`} in �.

Consider �rst the case where 2 ≤ k ≤ p− 1, i.e., vk ∈ V (P1). Since P1 is a normal path, vk
is the leftmost vertex of N(vk−1) ∩ {vk; vk+1; : : : ; vp−1} in �. Assume that vk−1 is a stable ver-
tex. Then, Lemma 4.6(a) implies that vk−1 <� ux and, due to Observation 4.2, it follows that

51

N(vk−1) ∩ {vk; vk+1; : : : ; v`} is a set of connector vertices. Since every connector vertex vr ∈ V (P2)
is a vertex of H(x + 1; j − 1), it follows that vk−1 <� ux+1 ≤� uf(vr) and, thus, vr =∈ N(vk−1). Ad-
ditionally, since vp is the rightmost vertex of H(i; j) in �, it follows that vk <� vp. Therefore,
since vk is the leftmost vertex of N(vk−1) ∩ {vk; vk+1; : : : ; vp−1} in �, it follows that vk is the left-
most vertex of N(vk−1) ∩ {vk; vk+1; : : : ; v`} in �. Assume now that vk−1 is a connector vertex. Since
P1 is a binormal path, vk is a stable vertex such that vk ≤� ux and vk is the leftmost vertex of
N(vk−1)∩ {vk; vk+1; : : : ; vp−1} in �. Since for every r, p+ 1 ≤ r ≤ `, the vertex vr ∈ V (H(x+ 1; j − 1)),
it follows that vk ≤� ux <� vr. Additionally, vk <� ux+1 <� vp. Therefore, vk is the leftmost vertex of
N(vk−1) ∩ {vk; vk+1; : : : ; v`} in �.

Consider now the case where k = p. Since P1 is a normal path and vp−1 is a stable vertex,
N(vp−1) ∩ {vp; vp+1; : : : ; v`} is a set of connector vertices, due to Observation 4.2. Additionally, since ev-
ery connector vertex vr ∈ V (P2) is a vertex of H(x+1; j−1), it follows that vp−1 <� ux+1 ≤� uf(vr) and,
thus, vr =∈ N(vp−1). Therefore, N(vp−1) ∩ {vp; vp+1; : : : ; v`} = {vp} and, thus, vp is the leftmost vertex
of N(vp−1) ∩ {vp; vp+1; : : : ; v`} in �. Now, in the case where k = p+ 1, we have that vp+1 is the leftmost
vertex of V (P2) = {vp+1; vp+2; : : : ; v`} in �, since P2 is a normal path. Therefore, it easily follows that
vp+1 is the leftmost vertex of N(vp) ∩ {vp+1; vp+2; : : : ; v`} in �. Finally, in the case where p+ 2 ≤ k ≤ `,
since P2 is a normal path it directly follows that vk is the leftmost vertex of N(vk−1) ∩ {vk; vk+1; : : : ; v`}
in �.

Concluding, we have shown that P is a normal path of H(i; j). Additionally, since P1 and P2 are
binormal paths of H(i; j), the path P has stable vertices as endpoints and no two connector vertices are
consecutive in P . Therefore, P is a binormal path of H(i; j) with uy as its right endpoint.

Next, we prove the correctness of Algorithm LP on H.

Lemma 4.10. Let H be a stable-connection graph, and let � be the right-end ordering of H. For every
induced subgraph H(i; j) of H, 1 ≤ i ≤ j ≤ n, and for every stable vertex uy ∈ A(H(i; j)), Algorithm
LP on H computes the length `(uy; i; j) of a longest binormal path of H(i; j) which has uy as its right
endpoint and, also, the corresponding path P (uy; i; j).

Proof. Let P be a longest binormal path of the stable-connection graph H(i; j), which has a vertex
uy ∈ A(H(i; j)) as its right endpoint. Consider �rst the case where C(H(i; j)) = ∅; the graph H(i; j)
is consisted of a set of stable vertices A(H(i; j)), which is an independent set, due to Observation 4.2.
Therefore, in this case Algorithm LP on H sets `(uy; i; j) = 1 for every vertex uy ∈ A(H(i; j)), which
is indeed the length of the longest binormal path P (uy; i; j) = (uy) of H(i; j) which has uy as its right
endpoint. Therefore, the lemma holds for every induced subgraph H(i; j), for which C(H(i; j)) = ∅.

We examine next the case where C(H(i; j)) 6= ∅. Let C(H) = {c1; c2; : : : ; ck; : : : ; ct} be the set of
connector vertices of H, where c1 <� c2 <� : : : <� ck <� : : : <� ct. Let � = (u1; u2; : : : ; un) be the vertex
ordering of H constructed in Phase 1. Recall that, by the construction of H, n = 3t, and A(H) =
V (H) \ C(H) is the set of stable vertices of H.

Let H(i; j) be an induced subgraph of H, and let ck be the rightmost connector vertex of H(i; j) in
�. The proof of the lemma is done by induction on the index k of the rightmost connector vertex ck of
H(i; j). More speci�cally, given a connector vertex ck of H, we prove that the lemma holds for every
induced subgraph H(i; j) of H, which has ck as its rightmost connector vertex in �. To this end, in both
the induction basis and the induction step, we distinguish three cases on the position of the stable vertex
uy in the ordering �: ui ≤� uy ≤� uf(ck), uh(ck) <� uy ≤� uj , and uf(ck)+1 ≤� uy ≤� uh(ck). In each of
these three cases, we examine �rst the length of a longest binormal path of H(i; j) with uy as its right
endpoint and, then, we compare this value to the length of the path computed by Algorithm LP on H.
Moreover, we prove that the path computed by Algorithm LP on H is a binormal path with uy as its
right endpoint.

52

We �rst show that the lemma holds for k = 1. In the case where ui ≤�uy ≤� uf(c1) or
uh(c1) <�uy ≤� uj , it is easy to see that the length `(uy; i; j) of a longest binormal path P of H(i; j)
with uy as its right endpoint is equal to 1. Indeed, in these cases, if uy 6= uf(c1), then uy does not
see the unique connector vertex c1 of H(i; j) and, thus, the longest binormal path with uy as its right
endpoint is consisted of the vertex uy. Now, in the case where uy = uf(c1), the connector vertex c1
sees uy, however, c1 does not belong to any binormal path with uy as its right endpoint, since uy is the
leftmost neighbor of c1 in �. Therefore, in the case where ui ≤� uy ≤� uf(c1) or uh(c1) <� uy ≤� uj ,
Algorithm LP on H computes the length of the longest binormal path P (uy; i; j) = (uy) of H(i; j) with
uy as its right endpoint. In the case where uf(c1)+1 ≤� uy ≤� uh(c1), Algorithm LP on H computes (in
the subroutine process()) for every stable vertex ux of H(i; j), such that uf(c1) ≤� ux ≤� uy−1, the
value `(ux; i; j − 1) + `(uy;x + 1; j − 1) + 1 = 1 + 1 + 1 = 3 and sets `(uy; i; j) = 3. It is easy to see
that the path P (uy; i; j) = (ux; c1; uy), computed by Algorithm LP on H in this case, is indeed a longest
binormal path of H(i; j) with uy as its right endpoint.

Let now ck be a connector vertex of H, such that k ≤ t. Assume that the lemma holds for every
induced subgraph H(i; j) of H, which has c` as its rightmost connector vertex in �, where 1 ≤ ` ≤ k− 1.
That is, we assume that for every such graph H(i; j), the value `(uy; i; j) computed by Algorithm LP on H
is the length of a longest binormal path P (uy; i; j) of H(i; j) with uy as its right endpoint. We will show
that the lemma holds for every induced subgraph H(i; j) of H, which has ck as its rightmost connector
vertex in �.

Case 1: ui ≤� uy ≤� uf(ck). In this case, it holds `(uy; i; j) = `(uy; i; h(ck)) (note that uh(ck) is the
previous vertex of ck in �). Indeed, on the one hand, using similar arguments as in the induction basis,
it easily follows that the connector vertex ck does not belong to any binormal path of H(i; j) with uy as
its right endpoint. On the other hand, since ck is the rightmost connector vertex of H(i; j), it follows
that every vertex u` of H(i; j), where ck <� u` ≤� uj , is a stable vertex and, thus, u` does not see uy,
due to Observation 4.2. Therefore, we obtain that `(uy; i; j) = `(uy; i; h(ck)).

Next, we show that this is the result computed by Algorithm LP on H in this case. Note �rst that,
since h(ck) < j, Algorithm LP on H has already computed the value `(uy; i; h(ck)) at a previous iteration,
where j was equal to h(ck). Additionally, this computed value `(uy; i; h(ck)) equals indeed to the length
of a longest binormal path P (uy; i; h(ck)) of H(i; h(ck)) with uy as its right endpoint. Indeed, consider
�rst the case where H(i; h(ck)) is a graph for which C(H(i; h(ck))) = ∅, i.e., H(i; h(ck)) has only stable
vertices. Then, as we have shown in the �rst paragraph of the proof, the computed value `(uy; i; h(ck)) = 1
equals to the length of a longest binormal path of H(i; h(ck)) with uy as its right endpoint. Consider
now the case where H(i; h(ck)) is a graph for which C(H(i; h(ck))) 6= ∅, i.e., H(i; h(ck)) has at least
one connector vertex; let c` be its rightmost connector vertex in �. Then, c` <� ck, since uh(ck) <� ck.
Therefore, by the induction hypothesis, the value `(uy; i; h(ck)) computed by Algorithm LP on H equals
indeed to the length of a longest binormal path of H(i; h(ck)) with uy as its right endpoint.

We now show that in Case 1 Algorithm LP on H computes `(uy; i; j) = `(uy; i; h(ck)). Consider �rst
the case where uj is a connector vertex of H(i; j), i.e., uj = ck. Then, Algorithm LP on H computes
`(uy; i; j) = `(uy; i; j − 1), which equals to `(uy; i; h(ck)), since in this case j − 1 = h(ck). Consider now
the case where uj is a stable vertex; then j − 1 > h(ck). If j − 1 = h(ck) + 1, then Algorithm LP on H
computes `(uy; i; j) = `(uy; i; j − 1), which is equal to `(uy; i; h(ck) + 1); moreover, since uh(ck)+1 = ck is
a connector vertex, it follows that `(uy; i; h(ck)+1) = `(uy; i; h(ck)) and, thus, `(uy; i; j) = `(uy; i; h(ck)).
Similarly, if j − 1 > h(ck) + 1, then Algorithm LP on H computes `(uy; i; j) = `(uy; i; j − 1), which
is again equal to `(uy; i; h(ck)). Therefore, in Case 1, where ui ≤� uy ≤� uf(ck), Algorithm LP on H
computes `(uy; i; h(ck)) as the length of a longest binormal path of H(i; j) with uy as its right endpoint
and, also, computes P (uy; i; j) = P (uy; i; h(ck)). Then, by the induction hypothesis, this path is also
binormal. Thus, in Case 1 the lemma holds.

Case 2: uh(ck) <� uy ≤� uj . Since ck is the rightmost connector vertex of H(i; j), and since uy is a
stable vertex, it follows that uy does not see any vertex of H(i; j). Thus, the longest binormal path of

53

H(i; j) with uy as its right endpoint is consisted of the vertex uy, i.e., `(uy; i; j) = 1. One can easily see
that in this case Algorithm LP on H computes the length `(uy; i; j) = 1, and the path P (uy; i; j) = (uy),
which is clearly a binormal path. Thus, in Case 2 the lemma holds.

Case 3: uf(ck)+1 ≤�uy ≤� uh(ck). In this case, the connector vertex ck sees uy. Let
P = (ux′ ; : : : ;ux; ck;uy′ ; : : : ;uy) be a longest binormal path of H(i; j) with uy as its right endpoint, which
contains the connector vertex ck; due to Lemma 4.7, such a path always exists. Let ux be the previous
vertex of ck in the path P ; thus, uf(ck) ≤� ux <� uy. Since P is a binormal path, the vertices ux′ ,
ux, uy′ , and uy are all stable vertices. Also, since ck sees uy, which is the rightmost stable vertex of
P in �, all stable vertices of P belong to the graph H(i; h(ck)). Additionally, since ck is the rightmost
connector vertex of H(i; j) in �, all connector vertices of P belong to the graph H(i; h(ck)+1). Therefore,
all vertices of P belong to the graph H(i; h(ck) + 1). Thus, the path P is a longest binormal path of
H(i; h(ck) + 1) with uy as its right endpoint, which contains the connector vertex ck. Therefore, for
every graph H(i; j), for which ck is its rightmost connector vertex in � and h(ck) + 1 ≤ j, we have that
`(uy; i; j) = `(uy; i; h(ck) + 1). Thus, we will examine only the case where h(ck) + 1 = j, that is, ck is the
rightmost vertex uj of H(i; j) in �.

Next, we examine the length `(uy; i; j) of a longest binormal path of H(i; j) with uy as its right
endpoint, in the case where h(ck) + 1 = j. Consider removing the connector vertex ck from the path
P . Then, we obtain the paths P1 = (ux′ ; : : : ; ux) and P2 = (uy′ ; : : : ; uy). Since P is a binormal path of
H(i; j), from Lemma 4.8 we obtain that P1 and P2 are binormal paths of H(i; j). Since, as we have shown,
all vertices of P belong to H(i; h(ck)+1), and since ck = uj is the rightmost vertex of H(i; j) in �, it follows
that all vertices of P1 and P2 belong to the graph H(i; h(ck)) = H(i; j − 1). Since P is a binormal path,
from Lemma 4.6(a) it follows that for every stable vertex u`1 ∈ V (P1), we have ui ≤� ux′ ≤� u`1 ≤� ux.
Additionally, for every stable vertex u`2 ∈ V (P2), we have ux <� u`2 ≤� uy ≤� uj−1, where uj−1 = uh(ck)

is the rightmost vertex of H(i; j − 1) in �, since uj = ck. Therefore, for every stable vertex u`1 ∈ V (P1)
it holds u`1 ∈ A(H(i; x)), and for every stable vertex u`2 ∈ V (P2) it holds u`2 ∈ A(H(x+ 1; j − 1)).

Similarly, since P1 is a binormal path, ux is the rightmost stable vertex of V (P1) in �, due
to Lemma 4.6(a). Moreover, since P1 is binormal, every connector vertex c`1 ∈ V (P1) sees
at least two stable vertices of P1 and, thus, ui ≤� uf(c`1) <�ux. Therefore, for every connec-
tor vertex c`1 ∈ V (P1), we have that c`1 ∈ C(H(i; j − 1)) \ {c` ∈ C(H(i; j − 1)) :ux ≤� uf(c`)} ⊆
C(H(i; j − 1)) \ C(H(x+ 1; j − 1)). Additionally, from Lemma 4.6(b) we have that every
connector vertex c`2 ∈ V (P2) does not see the vertex ux, i.e., ux <� uf(c`2) <� c`2 ≤� uj−1;
thus, c`2 ∈ C(H(x+ 1; j − 1)). Summarizing, let H1 and H2 be the induced subgraphs
of H(i; j − 1), with vertex sets V (H1) = A(H(i; x)) ∪ C(H(i; j − 1)) \ C(H(x+ 1; j − 1)) and
V (H2) = A(H(x+ 1; j − 1)) ∪ C(H(x+ 1; j − 1)), respectively. Note that the graphs H1 and H2 are
de�ned with respect to a stable vertex ux, where uf(ck) ≤� ux <� uj−1, and that H2 = H(x+ 1; j − 1).
Now, it is easy to see that V (H1) ∩ V (H2) = ∅. Moreover, P1 and P2 belong to the graphs H1 and H2,
respectively and, therefore, V (P1) ∩ V (P2) = ∅.

Since P = (P1; ck; P2) is a longest binormal path of H(i; j) with uy as its right endpoint, and since
the paths P1 and P2 belong to two disjoint induced subgraphs of H(i; j), it follows that P1 is a longest
binormal path of H1 with ux as its right endpoint, and that P2 is a longest binormal path of H2 with
uy as its right endpoint. Thus, since H2 = H(x + 1; j − 1), we obtain that |P2| = `(uy;x + 1; j − 1).
We will now show that |P1| = `(ux; i; j − 1). To this end, consider a longest binormal path P0 of
H(i; j − 1) with ux as its right endpoint. Due to Lemma 4.6(a), ux is the rightmost stable vertex of
P0 in � and, thus, all stable vertices of P0 belong to A(H1) = A(H(i; x)). Furthermore, since P0 is
binormal, every connector vertex c` of P0 sees at least two stable vertices of P0 and, thus, uf(c`) <� ux,
i.e., c` ∈ C(H1) = C(H(i; j − 1)) \ C(H(x + 1; j − 1)). It follows that V (P0) ⊆ V (H1) and, thus,
|P0| ≤ |P1|. On the other hand, |P1| ≤ |P0|, since H1 is an induced subgraph of H(i; j − 1). Thus,
|P1| = |P0| = `(ux; i; j − 1). Therefore, for the length |P | = `(uy; i; j) of a longest binormal path P of
H(i; j) with uy as its right endpoint, it follows that `(uy; i; j) = `(ux; i; j − 1) + `(uy;x+ 1; j − 1) + 1.

54

Hereafter, we examine the results computed by Algorithm LP on H in Case 3. Let P ′ be the path
of the graph H(i; j) with uy as its right endpoint computed by Algorithm LP on H, in the case where
uf(ck)+1 ≤� uy ≤� uh(ck). Consider �rst the case where uj is a connector vertex of H(i; j), i.e., uj = ck. It
is easy to see that the path P ′ constructed by Algorithm LP on H (in the subroutine process()) contains
the connector vertex ck. Algorithm LP on H computes the length of the path P ′ = (P ′1; ck; P ′2), for two
paths P ′1 and P ′2 as follows. The path P ′1 = P (ux; i; j − 1) is a path of H(i; j−1) with ux as its right end-
point, where ux is a neighbor of ck, such that uf(ck) ≤� ux <� uy. The path P ′2 = P (uy;x+ 1; j − 1) is a
path of H(x+1; j−1) with uy as its right endpoint, where uf(ck)+1 ≤� uy ≤� uh(ck). Actually, in this case,
Algorithm LP on H computes (in the subroutine process()) the value w1 + w2 + 1 = |P ′1|+ |P ′2|+ 1, for
every stable vertex ux, where uf(ck) ≤� ux <� uy, and sets |P ′| to be equal to the maximum among these
values. Additionally, Algorithm LP on H computes the corresponding path P ′ = (P ′1; ck; P ′2).

Note that the path P ′1 = P (ux; i; j − 1) (resp. P ′2 = P (uy;x + 1; j − 1)) has already been com-
puted by Algorithm LP on H at a previous iteration. Additionally, the computed path P (ux; i; j − 1)
(resp. P (uy;x+ 1; j − 1)) is indeed a longest binormal path of H(i; j − 1) (resp. of H(x+ 1; j − 1))
with ux (resp. with uy) as its right endpoint. Indeed, consider �rst the case where H(i; j − 1)
(resp. H(x+ 1; j − 1)) is a graph for which C(H(i; j − 1)) = ∅ (resp. C(H(x+ 1; j − 1)) = ∅), i.e.,
H(i; j − 1) (resp. H(x+ 1; j − 1)) has only stable vertices. Then, as we have shown in the �rst para-
graph of the proof, the computed path P (ux; i; j − 1) (resp. P (uy;x+ 1; j − 1)) is a longest binormal
path of H(i; j − 1) (resp. of H(x+ 1; j − 1)) with ux (resp. with uy) as its right endpoint. Con-
sider now the case where H(i; j − 1) (resp. H(x+ 1; j − 1)) is a graph for which C(H(i; j − 1)) 6= ∅
(resp. C(H(x+ 1; j − 1)) 6= ∅), i.e., H(i; j − 1) (resp. H(x+ 1; j − 1)) has at least one connector vertex;
let c` be its rightmost connector vertex in �. Then, c` <� ck, since uj−1 <� uj = ck. Therefore, by the
induction hypothesis, the path P (ux; i; j−1) (resp. P (uy;x+1; j−1)) computed by Algorithm LP on H
is indeed a longest binormal path of H(i; j − 1) (resp. of H(x+ 1; j − 1)) with ux (resp. with uy) as its
right endpoint.

Since by the induction hypothesis, P ′1 and P ′2 are binormal paths of H(i; j−1) with ux and uy as their
right endpoints, respectively, it follows similarly to the above that P ′1 and P ′2 belong to the graphs H1 and
H2, respectively. Recall that, the graphs H1 and H2 are de�ned with respect to a stable vertex ux, where
uf(ck) ≤� ux <� uj−1. Since, as we have shown, V (H1) ∩ V (H2) = ∅, it follows that V (P ′1) ∩ V (P ′2) = ∅.
Therefore, from Lemma 4.9 we obtain that the computed path P ′ = (P ′1; uj ; P ′2) is a binormal path as
well. Moreover, Algorithm LP on H computes (in the subroutine process()) for every stable vertex ux,
where uf(ck) ≤� ux <� uy, the value `(ux; i; j−1)+ `(uy;x+1; j−1)+1, and sets |P ′| to be equal to the
maximum among these values. Thus, the computed path P ′ is a longest binormal path of H(i; j) with
uy as its right endpoint.

Consider now the case where uj is a stable vertex of H(i; j). Let ck be the rightmost connector
vertex of H(i; j) in �; then h(ck) + 1 < j. Assume �rst that h(ck) + 1 = j − 1. Since uj is a stable vertex
and also the rightmost vertex of H(i; j), uj does not see any vertex of H(i; h(ck) + 1). In this case,
Algorithm LP on H correctly computes the path P ′ = P (uy; i; j − 1) = P (uy; i; h(ck) + 1), with length
|P ′| = `(uy; i; h(ck)+1). Similarly, in the case where h(ck)+1 < j−1, Algorithm LP on H again computes
the path P ′ = P (uy; i; j − 1) = P (uy; i; h(ck) + 1), with length |P ′| = `(uy; i; j − 1) = `(uy; i; h(ck) + 1).
Algorithm LP on H has already computed the value `(uy; i; h(ck) + 1) at a previous iteration where j
was equal to h(ck) + 1 (i.e., uj = ck) and, also, the computed path P ′ = P (uy; i; h(ck) + 1) is binormal.

Concluding, in both cases where uj is a connector or a stable vertex of H(i; j), the path P ′ of H(i; j)
with uy as its right endpoint computed by Algorithm LP on H is a longest binormal path P (uy; i; j) of
H(i; j) with uy as its right endpoint, and |P ′| = `(uy; i; j). Thus, the lemma holds in Case 3 as well.

Due to Lemma 4.10, and since the output of Algorithm LP on H is the maximum among the lengths
`(uy; 1; n), uy ∈ A(H(1; n)), along with the corresponding path, it follows that Algorithm LP on H com-
putes a longest binormal path of H(1; n) with right endpoint a vertex uy ∈ A(H(1; n)). Thus, since
H(1; n) = H, we obtain the following result.

55

Lemma 4.11. Let G be an interval graph. Algorithm LP on H computes a longest binormal path of the
stable-connection graph H of the graph G.

4.4.2 Correctness of Algorithm LP Interval

We next show that Algorithm LP Interval correctly computes a longest path of an interval graph G. The
correctness proof is based on the following property: for any longest path P of G there exists a longest
binormal path P ′ of H, such that |P ′| = 2|P |+1 and vice versa (this property is proved in Lemma 4.12).
Therefore, we obtain that the length of a longest binormal path P of H computed by Algorithm LP on H,
is equal to 2k + 1, where k is the length of a longest path P̂ of G. Next, we show that the length of a
longest binormal path of H equals to the length of a longest path of H. Finally, we show that the path
P̂ computed at Step 3 of Algorithm LP Interval is indeed a longest path of the interval graph G.

Lemma 4.12. Let H be the stable-connection graph of an interval graph G. Then, for any longest path
P of G there exists a longest binormal path P ′ of H, such that |P ′| = 2|P |+ 1 and vice versa.

Proof. Let � be the right-end ordering of H, constructed in Phase 1.

(=⇒) Let P = (v1; v2; : : : ; vk) be a longest path of G, i.e., |P | = k. We will show that there exists
a binormal path P ′ of H such that |P ′| = 2k + 1. Since G is an induced subgraph of H, the path P of
G is a path of H as well. We construct a path P̂ of H from P , by adding to P the appropriate stable
vertices, using the following procedure. Initially, set P̂ = P and for every subpath (vi; vi+1) of the path
P̂ , 1 ≤ i ≤ k − 1, do the following: consider �rst the case where vi <� vi+1; then, by the construction of
H, vi+1 is adjacent to both stable vertices ai;1 and ai;2 associated with the connector vertex vi. If ai;1 has
not already been added to P̂ , then replace the subpath (vi; vi+1) by the path (vi; ai;1; vi+1); otherwise,
replace the subpath (vi; vi+1) by the path (vi; ai;2; vi+1). Similarly, in the case where vi+1 <� vi, replace
the subpath (vi; vi+1) by the path (vi; ai+1;1; vi+1) or (vi; ai+1;2; vi+1), respectively. Finally, consider the
endpoint v1 (resp. vk) of P̂ . If a1;1 (resp. ak;1) has not already been added to P̂ , then add a1;1 (resp.
ak;1) as the �rst (resp. last) vertex of P̂ ; otherwise, add a1;2 (resp. ak;2) as the �rst (resp. last) vertex
of P̂ .

By the construction of P̂ it is easy to see that for every connector vertex v of P we add two stable
vertices as neighbors of v in P̂ , and since in H there are exactly two stable vertices associated with every
connector vertex v, it follows that every stable vertex of H appears at most once in P̂ . Furthermore,
since we add in total k + 1 stable vertices to P , where |P | = k, it follows that |P̂ | = 2k + 1. Denote now
by P ′ a normal path of H such that V (P ′) = V (P̂). Such a path exists, due to Lemma 4.4. Due to the
above construction, the path P̂ is consisted of k+ 1 stable vertices and k connector vertices. Thus, since
no two stable vertices are adjacent in H due to Observation 4.2, and since P ′ is a normal path of H, it
follows that P ′ is a binormal path of H. Thus, for any longest path P of G there exists a binormal path
P ′ of H, such that |P ′| = 2|P |+ 1.

(⇐=) Consider now a longest binormal path P ′ = (v1; v2; : : : ; v`) of H. Since P ′ is binormal, it follows
that ` = 2k + 1, and that P ′ has k connector vertices and k + 1 stable vertices, for some k ≥ 1. We
construct a path P by deleting all stable vertices from the path P ′ of H. By the construction of H,
all neighbors of a stable vertex a are connector vertices and form a clique in G; thus, for every subpath
(v; a; v′) of P ′, v is adjacent to v′ in G. It follows that P is a path of G. Since we removed all the k + 1
stable vertices of P ′, it follows that |P | = k, i.e., |P ′| = 2|P |+ 1.

Summarizing, we have constructed a binormal path P ′ of H from a longest path P of G such that
|P ′| = 2|P |+ 1, and a path P of G from a longest binormal path P ′ of H such that |P ′| = 2|P |+ 1. This
completes the proof.

In the next lemma, we show that the length of a longest path of H is equal to the length of a longest
binormal path of H.

56

Lemma 4.13. For any longest path P and any longest binormal path P ′ of H, it holds |P ′| = |P |.

Proof. Let P be a longest path of H, and let P ′ be a longest binormal path of H, i.e., a binormal path of
H with maximum length. Then, clearly |P ′| ≤ |P |. Suppose that P has k connector and ` stable vertices.
Since no two stable vertices of H are adjacent due to Observation 4.2, it holds clearly that ` ≤ k + 1.
Similarly to the second part of the proof of Lemma 4.12, we can obtain a path P̂ of H with k vertices,
by removing all ` stable vertices from P . Then, similarly to the �rst part of the proof of Lemma 4.12,
there exists a binormal path P ′′ of H, where |P ′′| = 2k + 1 ≥ k + ` = |P | ≥ |P ′|. However, |P ′′| ≤ |P ′|,
since P ′ be a longest binormal path of H. Therefore, |P ′| = |P |. This completes the proof.

Let P be the longest binormal path of H computed in Step 2 of Algorithm LP Interval, using Algorithm
LP on H. Then, in Step 3 Algorithm LP Interval computes the path P̂ by deleting all stable vertices
from P . By the construction of H, all neighbors of a stable vertex a are connector vertices and form a
clique in G; thus, for every subpath (v; a; v′) of P , v is adjacent to v′ in G. It follows that P̂ is a path of
G. Moreover, since P is binormal, it has k connector vertices and k+ 1 stable vertices, i.e., |P | = 2k+ 1,
where k ≥ 1. Thus, since we have removed all k + 1 stable vertices of P , it follows that |P̂ | = k and,
thus, P̂ is a longest path of G due to Lemma 4.12. Therefore, we have proved the following result.

Theorem 4.1. Algorithm LP Interval computes a longest path of an interval graph G.

4.4.3 Time Complexity

Let G be an interval graph on |V (G)| = n vertices and |E(G)| = m edges. It has been shown that we
can obtain the right-end ordering � of G, which results from numbering the intervals after sorting them
on their right ends, in O(n+m) time [1, 61].

First, we show that Step 1 of Algorithm LP Interval, which constructs the stable-connection graph
H of the graph G, takes O(n2) time. Indeed, for every connector vertex ui, 1 ≤ i ≤ n, we can add two
stable vertices in V (H) in O(1) time and we can compute the speci�c neighborhood of ui in O(n) time.

Step 2 of Algorithm LP Interval includes the execution of Algorithm LP on H. The subroutine
process() takes O(n2) time, due to the O(n2) pairs of the neighbors ux and uy of the connector vertex
uj in the graph H(i; j). Additionally, the subroutine process() is executed at most once for each
subgraph H(i; j) of H, 1 ≤ i ≤ j ≤ n, i.e., it is executed O(n2) times. Thus, Algorithm LP on H takes
O(n4) time.

Step 3 of Algorithm LP Interval can be executed in O(n) time since we simply traverse the vertices
of the path P , constructed by Algorithm LP on H, and delete every stable vertex.

Therefore, we obtain the following result concerning the time complexity of the algorithm.

Theorem 4.2. A longest path of an interval graph can be computed in O(n4) time.

In order to compute the length of a longest path, we need to store one value for every induced subgraph
H(i; j) and for every stable vertex uy of H(i; j). Thus, since there are in total O(n2) such subgraphs
H(i; j), 1 ≤ i ≤ j ≤ n, and since each one has at most O(n) stable vertices, we can compute the length
of a longest path in O(n3) space. Furthermore, in order to compute and report a longest path, instead of
its length only, we have to store a path of at most n vertices for every one of the O(n3) computed values.
Therefore, the space complexity of Algorithm LP Interval is O(n4).

4.5 Concluding Remarks

In this work we presented a polynomial-time algorithm for solving the longest path problem on interval
graphs, which runs in O(n4) time and, thus, provided a solution to the open problem stated by Uehara
and Uno in [63] asking for the complexity status of the longest path problem on interval graphs. It

57

would be interesting to see whether the ideas presented in this work can be applied to �nd a polynomial
solution to the longest path problem on convex and biconvex graphs, the complexities of which still
remain open [63].

58

Chapter 5

The Longest Path Problem on
Cocomparability Graphs

5.1 Introduction

5.2 Theoretical Framework

5.3 The Algorithm

5.4 Correctness and Time Complexity

5.5 Concluding Remarks

5.1 Introduction

The longest path problem, i.e., the problem of �nding a path of maximum length in a graph, is a
generalization of the Hamiltonian path problem. The Hamiltonian path problem is the problem of
determining whether a graph is Hamiltonian; a graph is said to be Hamiltonian if it contains a simple
path in which every vertex of the graph appears exactly once. The longest path problem or, equivalently,
the problem of �nding a maximum Hamiltonian induced subgraph of a graph, is NP-complete on general
graphs and, in fact, on every class of graphs that the Hamiltonian path problem is NP-complete. Thus, it
is interesting to study the longest path problem on classes of graphs where the Hamiltonian path problem
is polynomial, since even if a graph is not Hamiltonian, it makes sense in several applications to search
for a longest path of the graph. Although the Hamiltonian path problem has received a great deal of
attention the past two decades, only recently did the longest path problem start receiving attention.

Additionally, the longest path problem has also received attention the recent years in the direction of
approximation related results, some of which imply that �nding a longest path seems to be more di�cult
than deciding whether or not a graph admits a Hamiltonian path. Indeed, it has been proved that even
if a graph has a Hamiltonian path, the problem of �nding a path of length n − n" for any " < 1 is
NP-hard, where n is the number of vertices of the graph [47]. Moreover, there is no polynomial-time
constant-factor approximation algorithm for the longest path problem unless P=NP [47]. For related
results see also [29, 31, 32, 66, 68].

As we have mentioned, the longest path problem is NP-hard on every class of graphs on which the
Hamiltonian path problem is NP-complete. The Hamiltonian path problem is known to be NP-complete
in general graphs [33, 34], and remains NP-complete even when restricted to some small classes of graphs

59

such as split graphs [37], chordal bipartite graphs, split strongly chordal graphs [58], circle graphs [22],
planar graphs [34], and grid graphs [46]. However, it makes sense to investigate the tractability of the
longest path problem on the classes of graphs for which the Hamiltonian path problem admits polynomial
time solutions. Such classes include interval graphs [1], circular-arc graphs [24], biconvex graphs [3], and
cocomparability graphs [23, 39]. Note that the problem of �nding a longest path on proper interval graphs
is easy, since all connected proper interval graphs have a Hamiltonian path which can be computed in
linear time [6]; on the contrary, not all interval graphs are Hamiltonian.

In contrast to the Hamiltonian path problem, the known polynomial time solutions for the longest
path problem are rather recent, and restrict to smaller graph classes. Speci�cally, a linear time algorithm
for �nding a longest path in a tree was proposed by Dijkstra around 1960, a formal proof of which can
be found in [12]. Later, through a generalization of Dijkstra's algorithm for trees, Uehara and Uno [63]
solved the longest path problem for weighted trees and block graphs in linear time and space, and for
cacti in O(n2) time and space, where n and m denote the number of vertices and edges of the input
graph, respectively. More recently, polynomial algorithms have been proposed that solve the longest
path problem on bipartite permutation graphs in O(n) time and space [64], and on ptolemaic graphs in
O(n5) time and O(n2) space [65]. Furthermore, Uehara and Uno in [63] solved the longest path problem
on a subclass of interval graphs in O(n3(m+ n logn)) time, and as a corollary they showed that a longest
path on threshold graphs can be found in O(n + m) time and space. In Chapter 4 we presented a
polynomial solution of the longest path problem on interval graphs, answering thus the question left open
in [63].

In this chapter we present a polynomial solution for the longest path problem on cocomparability
graphs. Cocomparability graphs form an important and well-known class of perfect graphs [37], which is
a superclass of interval graphs and permutation graphs. As interval and permutation graphs have linear
structures, so do cocomparability graphs: a graph G is a cocomparability graph if and only if its vertices
can be put in an order v1; v2; : : : ; v|V (G)| such that if i < k < j and vivj ∈ E(G), then vjvk ∈ E(G)
or vivk ∈ E(G) [56]. The Hamiltonian path problem on cocomparability graphs has been proved to be
polynomial [23], while the status of the longest path problem on such graphs is unknown; actually, the
status of the longest path problem is unknown even on the more special class of permutation graphs.
In this work, we present a polynomial-time algorithm for solving the longest path problem on the class
of cocomparability graphs. Therefore, we resolve the open question for the status of the problem on
cocomparability graphs, and thus on permutation graphs. This result extends our polynomial solution of
the longest path problem on interval graphs presented in Chapter 4.

The rest of this chapter is organized as follows. In Section 5.2, we �rst review some properties of
partial orders, comparability and cocomparability graphs and, then, introduce the notion of a normal
antipath on a cocomparability graph, which is needed for our algorithm. In Section 5.3, we present our
algorithm for solving the longest path problem on a cocomparability graph, and in Section 5.4 we prove
the correctness and compute the time complexity of our algorithm. Finally, some concluding remarks are
given in Section 5.5.

5.2 Theoretical Framework

For basic de�nitions in graph theory refer to [10, 37, 56]. Recall that by V (P) we denote the set of vertices
in a path (resp. antipath) P , and within this chapter we consider the length of the path (resp. antipath)
P to be the number of vertices in P , i.e., |P | = |V (P)|.

5.2.1 Partial Orders and Cocomparability Graphs

A partial order will be denoted by P = (V;<P), where V is the �nite ground set of elements or vertices
and <P is an irreexive, antisymmetric, and transitive binary relation on V . Two elements a; b ∈ V are
comparable in P (denoted by a ∼P b) if a <P b or b <P a. Otherwise, they are said to be incomparable

60

H1

H2

H3

H4

v1 v2
v3

v4
v5

v6 v7

v8
v9 v10

Figure 5.1: Illustrating a Hasse diagram of a cocomparability graph G, with layers H1;H2;H3;H4. Note
that � = (v1; v2; : : : ; v10) is a layered ordering for G.

(denoted by a ‖ b). An extension of a partial order P = (V;<P) is a partial order L = (V;<L) on the
same ground set that extends P , i.e., a <P b ⇒ a <L b, for all a; b ∈ V . The dual partial order P d of
P = (V;<P) is a partial order P d = (V;<Pd) such that for any two elements a; b ∈ V , a <Pd b if and
only if b <P a. A linear order is a partial order without incomparable elements. A linear extension of a
partial order P = (V;<P) is a linear order L = (V;<L) on the same ground set that extends P .

The graph G, edges of which are exactly the comparable pairs of a partial order P on V (G), is called
the comparability graph of P , and is denoted by G(P). The complement graph G, whose edges are the
incomparable pairs of P , is called the cocomparability graph of P , and is denoted by G(P). Alternatively, a
graph G is a cocomparability graph if its complement graph G has a transitive orientation, corresponding
to the comparability relations of a partial order PG. Note that a partial order P uniquely determines
its comparability graph G(P) and its cocomparability graph G(P), but the reverse is not true, i.e., a
cocomparability graph G has as many partial orders PG as is the number of the transitive orientations
of G. Furthermore, the class of cocomparability graphs is hereditary, i.e., every induced subgraph of a
cocomparability graph G is also a cocomparability graph.

Let G be a comparability graph, and let PG be a partial order which corresponds to G. The graph G
can be represented by a directed covering graph with layers H1;H2; : : : ;Hh, in which each vertex is on
the highest possible layer. That is, the maximal vertices of the partial order PG are on the highest layer
Hh, and for every vertex v on layer Hi−1 there exists a vertex u on layer Hi such that v <PG u; such a
layered representation of G (respectively PG) is a called the Hasse diagram of G (respectively PG). Let
� = (V (G); <�) be a partial order on the vertices of a comparability graph G, such that for any two
vertices v; u ∈ V (G), v <� u if and only if v ∈ Hi, u ∈ Hj , and i < j; we may, equivalently, denote
v <� u by u >� v. For vertices v; u ∈ V (G) which belong to the same layer Hi of the Hasse diagram of
G, for simplicity sometimes we shall write v =� u; v 6=� u denotes that vertices v; u ∈ V (G) belong to
di�erent layers. Also, v ≤� u implies that either v <� u or v =� u; again we may, equivalently, denote
v ≤� u by u ≥� v. Throughout the chapter, such an ordering � is called a layered ordering of G. Note
that, the partial order � is an extension of the partial order PG; in particular, it holds that for any two
vertices u; v ∈ V (G), v <PG u if and only if v <� u and vu ∈ E(G).

Since a comparability graph G does not uniquely determine a partial order, hereafter, for clarity, we
will consider a comparability graph G represented by its Hasse diagram and we will denote by PG the
partial order (V (G); <PG) to which the Hasse diagram of G corresponds, i.e., the vertices which are on
the highest layer Hh of the Hasse diagram are the maximal vertices of the partial order PG, and for two
vertices u; v ∈ V (G), v <PG u if v ∈ Hi−1, u ∈ Hi and uv ∈ E(G). Thus, we will say that PG is the
partial order which corresponds to the comparability graph G. Also note that the transitivity property
holds for vertices in the Hasse diagram; for any three vertices v; u; w ∈ V (G) such that v ∈ Hi, u ∈ Hj ,
w ∈ Hk, and i < j < k (or, equivalently, v <� u <� w), if vu ∈ E(G) and uw ∈ E(G), then vw ∈ E(G).

The following de�nition and results where given by Damaschke et al. in [23] for providing an alterna-
tive proof for their algorithm for �nding a Hamiltonian path of a cocomparability graph; note that the
algorithm and the original correctness proof were �rst presented in [39], in order to provide a polynomial

61

solution for the bump number problem of a partial order.

De�nition 5.1. (Damaschke et al. [23]): Let G be a comparability graph, and let PG be the partial
order which corresponds to G. A path P = (v1; v2; : : : ; vk) of the cocomparability graph G is monotone
if vi <PG vj implies i < j, i.e., vi appears before vj in the path P .

The following results appear to be useful in the sequence.

Lemma 5.1. (Damaschke et al. [23]): Let G be a comparability graph, and let PG be the partial order
which corresponds to G. Let P = (v1; v2; : : : ; vk) be a Hamiltonian path of the cocomparability graph
G such that v1 is a minimal element of PG. Then there exists a monotone Hamiltonian path P ′ of G
starting with vertex v1.

Theorem 5.1. (Damaschke et al. [23]): Let G be a cocomparability graph. Then, G has a Hamiltonian
path if and only if G has a monotone Hamiltonian path.

Note that the above two results were proved in [23] for Hamiltonian paths of a cocomparability graph
G. In fact, it appears that the two results hold not only for Hamiltonian paths of G, but also for any path
of G. Indeed, let P be a path of the cocomparability graph G, and let G′ = G[V (P)] be the subgraph
of G induced by the vertices of P . Also, let PG′ be the partial order which corresponds to G′, such that
PG is an extension of PG′ , i.e., for any two vertices u; v ∈ V (G), if u <PG v and u; v ∈ V (G′), then
u <PG′ v. Then since P is a Hamiltonian path of G′, then from Lemma 5.1 and Theorem 5.1, there exists
a monotone path P ′ of G′ (with respect to PG′) such that V (P ′) = V (P). From De�nition 5.1 it is easy
to see that P ′ is also a monotone path of G (with respect to PG), since PG is an extension of PG′ .

Additionally, since a path P of a cocomparability graph G is an antipath on the comparability graph
G, and since our algorithm for computing a longest path of a cocomparability graph G computes, in fact,
a longest antipath of the comparability graph G, we restate the above de�nition and results and whenever
P denotes a path of a cocomparability graph G, we refer to P as an antipath of the comparability graph
G.

We �rst restate De�nition 5.1 as follows: an antipath P = (v1; v2; : : : ; vk) of a comparability graph G
is monotone if vi <PG vj implies i < j, where PG is the partial order which corresponds to G. We next
restate Lemma 5.1 and Theorem 5.1 in a form stronger than the one stated in [23], to assist us obtain
some important for the correctness of our algorithm results, in the sequence.

Lemma 5.2. Let G be a comparability graph, and let PG be the partial order which corresponds to G.
Let P = (v1; v2; : : : ; vk) be an antipath of G such that v1 is a minimal element of V (P) in PG. Then
there exists a monotone antipath P ′ of G starting with vertex v1 such that V (P ′) = V (P).

Theorem 5.2. Let G be a comparability graph. If P is an antipath of G, then there exists a monotone
antipath P ′ of G such that V (P ′) = V (P).

The following lemma derives from properties of comparability graphs, and appears to be useful in
obtaining some important results.

Lemma 5.3. Let G be a comparability graph, and let � be the layered ordering of G. Let P =
(v1; v2; : : : ; vk) be an antipath of G, and let v` =∈ V (P) be a vertex of G such that v1 ≤� v` <� vk
and v`vk ∈ E(G). Then there exist two consecutive vertices vi−1 and vi in P , 2 ≤ i ≤ k, such that
vi−1v` =∈ E(G) and v` <� vi.

Proof. Let P = (v1; v2; : : : ; vk) be an antipath of G, and let v` =∈ V (P) be a vertex of G such that
v1 ≤� v` <� vk and v`vk ∈ E(G). We �rst show that at least one vertex of P does not see v`. In
the case where v1 =� v`, then v1 is such a vertex, i.e., v1v` =∈ E(G). Consider now that case where
v1 <� v` <� vk, and assume that v`vi ∈ E(G) for every vertex vi ∈ V (P), 1 ≤ i ≤ k. Then for every
vertex vi ∈ V (P), 1 ≤ i ≤ k, it follows that v` 6=� vi, since vertices belonging to the same layer of
the Hasse diagram of G form an independent set. If v2 <� v1, then obviously v2 <� v`. Assume now

62

that v1 <� v2; recall that v1 <� v`. If v1 <� v` <� v2, from the transitivity property it follows that
v2v1 ∈ E(G), since v2v` ∈ E(G) and v`v1 ∈ E(G); this is a contradiction to our assumption that v1 and
v2 are consecutive in the antipath P . Thus, v2 <� v`. Similarly, we can easily show by induction that
for every pair vx−1; vx of consecutive vertices in P , 2 ≤ x ≤ k− 1, if vx−1 <� v` then vx <� v`, otherwise
vx−1vx ∈ E(G) due to the transitivity property. In particular, the same holds for the pair vk−2 and vk−1,
i.e., from vk−2 <� v`, we obtain vk−1 <� v`. Recall that v` <� vk; thus, vk−1 <� v` <� vk, and since
vkv` ∈ E(G) and v`vk−1 ∈ E(G), from the transitivity property we obtain that vkvk−1 ∈ E(G). This
comes to a contradiction to our assumption that P is an antipath of G. Thus, there exists at least one
vertex of P which does not see v`.

Let vi−1 be the last vertex from left to right in P (i.e., i− 1 is the greatest index) such that vi−1v` =∈
E(G), 2 ≤ i ≤ k. Therefore, for every index j, i ≤ j ≤ k, we have vjv` ∈ E(G) and, thus, vj 6=� v`. If
i = k, then vk−1; vk is a pair of consecutive vertices in P such that vk−1v` =∈ E(G) and v` <� vk, and the
lemma holds. Assume that 2 ≤ i ≤ k − 1. We will show that v` <� vj for every j, i ≤ j ≤ k. For j = k,
v` <� vk holds by assumption. Consider now the case where i ≤ j ≤ k − 1. Assume that there exists a
vertex vp, i ≤ p ≤ k − 1, such that vp <� v`; let vp be the last such vertex from left to right in P . Thus,
v` <� vp+1, by the choice of vp. Then, vp <� v` <� vp+1, and since vp+1v` ∈ E(G) and v`vp ∈ E(G), we
obtain that vp+1vp ∈ E(G). This is a contradiction to our assumption that vp and vp+1 are consecutive
in the antipath P of G. Therefore, there exists no vertex vp, i ≤ p ≤ k − 1, such that vp <� v`. Thus,
we have shown that v` <� vj for every j, i ≤ j ≤ k. In particular, v` <� vi. Therefore, the vertices vi−1

and vi are a pair of consecutive vertices in P such that vi−1v` =∈ E(G) and v` <� vi.

5.2.2 Normal Antipaths on Comparability Graphs

It is easy to see that P is a longest antipath of a comparability graph G if and only if P is a longest path
of the cocomparability graph G. Our algorithm computes a longest path P of a cocomparability graph
G, by computing in fact a longest antipath P of the comparability graph G. In particular, our algorithm
uses a speci�c type of antipaths of comparability graphs, which we call normal antipaths. We next de�ne
the notion of a normal antipath of a comparability graph G. Recall that by NG(v) we denote the set of
the antineighbors of a vertex v in the graph G.

De�nition 5.2. Let G be a comparability graph, and let � be a layered ordering of G. The antipath
P = (v1; v2; : : : ; vk) of G is called normal, if v1 is a leftmost (i.e., minimal) vertex of V (P) in �, and for
every i, 2 ≤ i ≤ k, the vertex vi is a leftmost vertex of NG(vi−1) ∩ {vi; vi+1; : : : ; vk} in �.

Using Lemma 5.3 and De�nition 5.2, we prove the following result.

Lemma 5.4. Let G be a comparability graph, and let � be the layered ordering of G. Let P =
(v1; v2; : : : ; vk) be a normal antipath of G, and let v`, and vj be two vertices of P such that v` <� vj and
v`vj ∈ E(G). Then ` < j, i.e., v` appears before vj in P .

Proof. Let P = (v1; v2; : : : ; vk) be a normal antipath of a comparability graph G, and let v`, and vj be two
vertices of P such that v` <� vj and v`vj ∈ E(G). Assume that j < `, i.e., P = (v1; : : : ; vj ; : : : ; v`; : : : ; vk).
Since P is a normal antipath, then v1 is a leftmost vertex of V (P) in �; thus, v1 ≤� v` <� vj . Since
P ′ = (v1; v2; : : : ; vj) is an antipath, v` =∈ V (P ′), v1 ≤� v` <� vj , and v`vj ∈ E(G), then from Lemma 5.3,
we obtain that there exist two consecutive vertices vi−1 and vi in P ′, 2 ≤ i ≤ j, such that vi−1v` =∈ E(G)
and v` <� vi. However, this comes to a contradiction to our assumption that P is a normal antipath,
since from De�nition 5.2 we obtain that v` should be the next vertex of vi−1 in P , instead of vi. Therefore,
we obtain ` < j.

Recall that, if G is a comparability graph, PG is the partial order corresponding to G, and � is the
layered ordering of G, then v` <PG vj if and only if v` <� vj and v`vj ∈ E(G), for any two vertices
v`; vj ∈ V (G). Therefore, the de�nition of a monotone antipath can be paraphrased as follows: an

63

antipath P = (v1; v2; : : : ; vk) of a comparability graph G is monotone if v` <� vj and v`vj ∈ E(G) implies
that v` appears before vj in P . Then, from Lemma 5.4 we obtain that the notion of a normal antipath
of a comparability graph G is a generalization of the notion of a monotone antipath of G. In particular
we obtain the following result. Note that the inverse of Corollary 5.1 is not always true.

Corollary 5.1. Let G be a comparability graph. If P is a normal antipath of G, then P is a monotone
antipath of G.

In [23], for proving that for any Hamiltonian path P of a cocomparability graph G there exists a mono-
tone Hamiltonian path of G, Damaschke et al. �rst show that there exists a path P ′ = (v1; v2; : : : ; v|V (G)|)
of G such that v1 is a minimal vertex of either PG or P dG. Using the same arguments, we show the following
lemma, which is useful for obtaining some important results.

Lemma 5.5. Let G be a comparability graph, and let PG be the partial order which corresponds to G. If
P is an antipath of G, then there exists an antipath P ′ of G such that V (P ′) = V (P) which starts with
a minimal vertex of V (P) in PG.

Proof. Let P = (v1; v2; : : : ; vx) be an antipath of a comparability graph G. Let k be the smallest index
such that vk is either a minimal or a maximal vertex of V (P) in P dG. First, consider the case where
vk is a minimal vertex of V (P) in P dG. We apply Lemma 5.2 to the antipath P1 = (vk; : : : ; vx), and
we obtain a monotone antipath P1

′ = (vk′; : : : ; vx′) (with respect to P dG) such that V (P ′1) = V (P1) and
v′k = vk. Therefore, P2 = (v1; v2; : : : ; vk−1; vk′; : : : ; vx′) is an antipath of G such that V (P2) = V (P).
Since (v1; v2; : : : ; vk−1) contains no maximal vertex of V (P) in P dG, and (vk′; : : : ; vx′) is monotone (with
respect to P dG), it follows that v′x is a maximal vertex of V (P) = {v1; v2; : : : ; v′k; : : : ; v′x} in P dG (and not
only of {vk′; : : : ; vx′}). Now, consider the reversed antipath P ′ = (v′x; v′x−1; : : : ; v′k; vk−1; : : : ; v1), where
v′x is a minimal vertex of V (P ′) in PG. Thus, P ′ is an antipath of G such that V (P ′) = V (P) which
starts with a minimal vertex of V (P) in PG.

Consider now the case there vk is a maximal vertex of V (P) in P dG. Thus, vk is a minimal vertex of
V (P) in PG. Then following the above same maner we can obtain an antipath P ′ = (v′1; v′2; : : : ; v′x) of G
such that V (P ′) = V (P) and v′1 is a minimal vertex of V (P) in P dG. Thus, by applying again the same
above procedure to P ′, we can obtain an antipath P ′′ of G such that V (P ′′) = V (P) which starts with a
minimal vertex of V (P) in PG.

The following result is very important for proving the correctness of our algorithm for solving the longest
path problem on cocomparability graphs.

Lemma 5.6. Let P be a longest antipath of a comparability graph G. Then, there exists a normal antipath
P ′ of G, such that V (P ′) = V (P).

Proof. Let G be a comparability graph, PG be the partial order that corresponds to G, � be the layered
ordering of G, and let P = (v1; v2; : : : ; vk) be a longest antipath of G. If k = 1, the lemma holds. Suppose
that k ≥ 2. We will prove that for every index i, 2 ≤ i ≤ k, there exists an antipath Pi = (v′1; v′2; : : : ; v′k),
such that V (Pi) = V (P), v′1 is a leftmost vertex of V (Pi) in �, and for every index j, 2 ≤ j ≤ i, the
vertex v′j is a leftmost vertex of NG(v′j−1) ∩ {v′j ; v′j+1; : : : ; v′k} in �. The proof will be done by induction
on i.

From Lemma 5.5, we may assume that v1 is a minimal vertex of V (P) in PG, and then from Lemma 5.2
we may assume that P is a monotone antipath of G. Thus, for every vertex vi, 2 ≤ i ≤ k, such that
vi <� v1, we have viv1 =∈ E(G). If v1 is a leftmost vertex of V (P) in �, then P1 = P . Consider now the
case where v1 is not a leftmost vertex of V (P) in �. Let j, 2 ≤ j ≤ k, be the greatest index such that
vj is a leftmost vertex of V (P) in �. If v1vj+1 =∈ E(G) then P1 = (vj ; vj−1; : : : ; v1; vj+1; : : : ; vk) is an
antipath of G such that V (P1) = V (P) and v1 is a leftmost vertex of V (P1) in �.

Consider now the case where v1vj+1 ∈ E(G). Since P is monotone and v1 appears in P before vj+1, we
obtain that v1 <� vj+1. Since vj <� v1 <� vj+1, vjvj+1 =∈ E(G), and v1vj+1 ∈ E(G), from the transitivity

64

property it follows that v1vj =∈ E(G). Therefore, by the construction of the Hasse diagram of G (and,
thus, of �), there exists a vertex vx in G, such that vx =� v1 and vjvx ∈ E(G); thus, vj+1vx =∈ E(G)
due to the transitivity property. If vx =∈ V (P), then P ′ = (vj ; vj−1; : : : ; v1; vx; vj+1; : : : ; vk) is an antipath
of G longer than P . This is a contradiction to our assumption that P is a longest antipath of G, thus,
vx ∈ V (P). Since P is monotone, vjvx ∈ E(G), and vj <� vx =� v1, it follows that vj appears in
P before vx, i.e., j + 1 ≤ x ≤ k. In fact, j + 2 ≤ x ≤ k, since vx =� v1 <� vj+1. Then P ′ =
(vj ; vj−1; : : : ; v1; vx; vx−1; : : : ; vj+1) is an antipath of G such that V (P ′) = V (P) \ {vx+1; vx+2; : : : ; vk}.
If vj+1vx+1 =∈ E(G) then P1 = (vj ; vj−1; : : : ; v1; vx; vx−1; : : : ; vj+1; vx+1; : : : ; vk) is an antipath of G such
that V (P1) = V (P) and vj is a leftmost vertex of V (P1) in �.

Consider now the case where vj+1vx+1 ∈ E(G). Since P is monotone, vj+1vx+1 ∈ E(G) and vj+1

appears in P before vx+1, we have that vj+1 <� vx+1; thus, vx <� vj+1 <� vx+1. Since vxvj+1 =∈
E(G), it follows by the construction of the Hasse diagram, that there exists a vertex vy in G such
that vy =� vj+1 and vxvy ∈ E(G); thus, vx+1vy =∈ E(G) due to the transitivity property. Similarly
to the above, vy ∈ V (P), since P is a longest antipath of G. Since P is monotone, vxvy ∈ E(G) and
vx <� vy =� vj+1, it follows that vx appears in P before vy, i.e., x+1 ≤ y ≤ k and, in fact, x+2 ≤ y ≤ k.
Therefore, P ′ = (vj ; vj−1; : : : ; v1; vx; vx−1; : : : ; vj+1; vy; vy−1; : : : ; vx+1) is an antipath of G such that
V (P ′) = V (P) \ {vy+1; vy+2; : : : ; vk}. Again, if vx+1vy+1 =∈ E(G), then using the above transformation
we obtain an antipath P1. If vx+1vy+1 ∈ E(G), then we can repeat the above procedure until we �nd a
pair of vertices vx+1 and vy+1 in P such that vy <� vx+1, x+ 2 ≤ y ≤ k, and vx+1vy+1 =∈ E(G).

Assume that such a pair of vertices vx+1 and vy+1 does not exists in P , i.e., vy+1 is the last
vertex vk of P , vy <� vx+1, x + 2 ≤ y = k − 1, and vx+1vy+1 ∈ E(G). Therefore, P ′ =
(vj ; vj−1; : : : ; v1; vx; vx−1; : : : ; vj+1; vy; vy−1; : : : ; vx+1) is an antipath of G such that V (P ′) = V (P) \
{vy+1} and y + 1 = k. Since P is monotone, vx+1vy+1 ∈ E(G), and vx+1 appears in P before vy+1,
it follows that vx+1 <� vy+1; thus, vy <� vx+1 <� vy+1. Then, similarly to the above, it follows
that vyvx+1 =∈ E(G), and thus there exists a vertex v` in G such that vx+1 =� v` and vyv` ∈ E(G);
thus v`vy+1 =∈ E(G). Since P is monotone, vy <� v` and vyv` ∈ E(G), it follows that if v` ∈ V (P),
then v` appears in P after vy and, in fact, after vy+1, i.e., y + 1 < ` ≤ k. This comes to a con-
tradiction to our assumption that y + 1 = k, i.e., vy+1 is the last vertex vk of P . Thus, v` =∈ V (P)
and, therefore, P ′ = (vj ; vj−1; : : : ; v1; vx; vx−1; : : : ; vj+1; vy; vy−1; : : : ; vx+1; v`; vy+1) is an antipath of
G longer that P , since vy + 1 = k and, thus, V (P ′) = V (P) ∪ {v`}. This comes to a contradic-
tion to our assumption that P is a longest antipath of G. Therefore, there exists a pair of ver-
tices vx+1 and vy+1 in P such that vy <� vx+1, x + 2 ≤ y ≤ k, and vx+1vy+1 =∈ E(G). Then,
P1 = (vj ; vj−1; : : : ; v1; vx; vx−1; : : : ; vj+1; vy; vy−1; : : : ; vx+1; vy+1; vy+2; : : : ; vk) is an antipath such that
V (P1) = V (P) and vj is a leftmost vertex of V (P1) in �. This completes the proof for the induction
basis.

Consider now an arbitrary index i, 2 ≤ i ≤ k − 1, and let Pi = (v′1; v′2; : : : ; v′i; v′i+1; : : : ; v′k) be an
antipath of G, such that V (Pi) = V (P), v′1 is a leftmost vertex of V (Pi) in �, and for every index j,
2 ≤ j ≤ i, the vertex v′j is a leftmost vertex of NG(v′j−1)∩{v′j ; v′j+1; : : : ; v′k} in �. Therefore, the antipath
(v′1; v′2; : : : ; v′i) is normal. We now show that v′i is a minimal vertex of {v′i; v′i+1; : : : ; v′k} in PG. Assume
otherwise that there exists a vertex v′x ∈ {v′i+1; v′i+2; : : : ; v′k}, such that v′x <PG v′i or, equivalently,
v′x <� v′i and v′xv′i ∈ E(G). By the induction hypothesis, v′1 is a leftmost vertex of V (P) in � and,
thus, v′1 ≤� v′x <� v′i. Since P ′ = (v′1; v′2; : : : ; v′i) is an antipath of G, v′x =∈ V (P ′), v′xv′i ∈ E(G), and
v′1 ≤� v′x <� v′i, from Lemma 5.3 we obtain that there exist two consecutive vertices v′y−1 and v′y in P ′,
2 ≤ y ≤ i, such that v′y−1v′x =∈ E(G) and v′x <� v′y. This comes to a contradiction to our assumptions,
since by the induction hypothesis v′y is a leftmost vertex of NG(v′y−1) ∩ {v′y; v′y+1; : : : ; v′i; : : : ; v′x; : : : ; v′k},
while v′x ∈ NG(v′y−1) ∩ {v′y; v′y+1; : : : ; v′i; : : : ; v′x; : : : ; v′k} and v′x <� v′y. Therefore, we conclude that v′i is
a minimal vertex of {v′i; v′i+1; : : : ; v′k} in PG. From Lemma 5.2, for any antipath P of a comparability
graph G which starts with a minimal element v of V (P) in PG, there exists a monotone antipath P ′′ of
G starting with the same vertex v such that V (P ′′) = V (P). Therefore, without loss of generality we
may assume that {v′i; v′i+1; : : : ; v′k} is a monotone antipath of G. Therefore, by the induction hypothesis

65

H1

H2

H3

H4

v1

v2 v3

v4 v5

v6 v7

P = (...........)

H1

H2

H3

H4

v1

v2 v3

v4 v5

v6 v7

P = (v3, v1, v5, v7)

H1

H2

H3

H4

v1

v2 v3

v4 v5

v6 v7

P ′′

P ′′ = (v1, v3, v2, v5, v7, v6)

Figure 5.2: Illustrating a Hasse diagram of a comparability graph G, an antipath P = (v3; v1; v5; v7) of
G which is not normal and a normal antipath P ′′ = (v1; v3; v2; v5; v7; v6) of G.

it is easy to obtain that the path Pi is a monotone path.
If v′i+1 is a leftmost vertex of NG(v′i) ∩ {v′i+1; v′i+2; : : : ; v′k} in �, then Pi+1 = Pi. Consider

now the case where vi+1 is not a leftmost vertex of NG(v′i) ∩ {v′i+1; v′i+2; : : : ; v′k} in �. Let j,
i + 2 ≤ j ≤ k, be the greatest index for which v′j is a leftmost vertex of NG(v′i) ∩ {v′i+1; v′i+2; : : : ; v′k}
in �. Then, P ′ = (v′1; v′2; : : : ; v′i; v′j ; v′j−1; : : : ; v′i+1) is an antipath of G such that V (P ′) =
V (P) \ {v′j+1; v′j+2; : : : ; v′k}. If v′i+1v′j+1 =∈ E(G), then Pi+1 = (v′′1 ; v′′2 ; : : : ; v′′i ; v′′i+1; : : : ; v′′k) =
(v′1; v′2; : : : ; v′i; v′j ; v′j−1; : : : ; v′i+1; v′j+1; v′j+2; : : : ; v′k) is an antipath of G such that V (Pi+1) = V (P), v′′1
is a leftmost vertex of V (Pi+1) in �, and for every index `, 2 ≤ ` ≤ i + 1, the vertex v′′` is a left-
most vertex of NG(v′′`−1) ∩ {v′′` ; v′′`+1; : : : ; v′′k} in �. In the case where v′i+1v′j+1 ∈ E(G), then we re-
peat exactly the same procedure described in the induction basis until we �nd a pair of vertices v′x+1

and v′y+1 in P such that v′y <� v′x+1, x + 2 ≤ y ≤ k, and v′x+1v′y+1 =∈ E(G); such a pair of ver-
tices exists, as we have proven in the induction basis. Then, Pi+1 = (v′′1 ; v′′2 ; : : : ; v′′i ; v′′i+1; : : : ; v′′k) =
(v′1; v′2; : : : ; v′i; v′j ; v′j−1; : : : ; v′i+1; : : : ; v′x+1; v′y+1; v′y+2; : : : ; v′k) is an antipath of G such that V (Pi+1) =
V (P), v′′1 is a leftmost vertex of V (Pi+1) in �, and for every index `, 2 ≤ ` ≤ i + 1, the vertex v′′` is a
leftmost vertex of NG(v′′`−1) ∩ {v′′` ; v′′`+1; : : : ; v′′k} in �. This completes the proof for the induction step.

Thus, the antipath P ′ = Pk is a normal antipath of G such that V (P ′) = V (P).

Figure 5.2 illustrates a Hasse diagram of a comparability graph G. The antipath P = (v3; v1; v5; v7) of
G is not normal, and there exists no normal antipath P ′ of G such that V (P ′) = V (P). Also, P is not a
longest antipath of G, since there exists an antipath P ′′ = (v1; v3; v2; v5; v7; v6) of G such that |P ′′| > |P |;
note that P ′′ is a normal antipath of G.

5.3 The Algorithm

In this section we present our algorithm, which we call Algorithm LP Cocomparability, for solving the
longest path problem on cocomparability graphs. The proposed algorithm computes a longest path P of
a cocomparability graph G, by computing actually a longest antipath P of the comparability graph G.

Let G be a comparability graph, given by its Hasse diagram with layers H1; H2; : : : ; Hk. For simpli-
fying our notations, we add a dummy vertex u0 to G, such that u0 belongs to a layer H0 in the Hasse
diagram of G, and u0ui ∈ E(G), for every i, 1 ≤ i ≤ n; let G′ be the resulting graph after adding the ver-
tex u0. Note that, G′ is a comparability graph, having a Hasse diagram with layers H0;H1;H2; : : : ;Hk,
and let � = (u0; u1; u2; : : : ; un) be the layered ordering of G′. Note that for any longest antipath of G′

there exists a longest antipath of G′ which does not contain the dummy vertex u0; such an antipath
is also a longest antipath of G, since G is an induced subgraph of G′. Algorithm LP Cocomparability
computes a longest antipath of G′ which does not contain the vertex u0 and, thus, it is a longest antipath

66

H1

H2

H3

H4

v1 v2

v3 v4

v5 v6

v7 v8

v0H0

G

H1

H2

H3

H4

v1 v2

v3 v4

v5 v6

v7 v8

v0H0

G(v1, 2, 3)

H1

H2

H3

H4

v1 v2

v3 v4

v5 v6

v7 v8

v0H0

G(v0, 1, 3)

Figure 5.3: Illustrating a Hasse diagram of a comparability graph G and the induced subgraphs G(v1; 2; 3)
and G(v0; 1; 3) of G.

of the original graph G as well. Hereafter, we consider comparability graphs having assumed that we
have already added the dummy vertex u0, which we denote by G, and the antipaths we compute in G
are also antipaths of the graph G \ {u0} = G[V (G) \ {u0}]. We next give some de�nitions and notations
necessary for the description of the algorithm.

Let Lj = (v1; v2; : : : ; vk) be an arbitrary ordering of the set {v1; v2; : : : ; vk}. We denote by V (Lj) the
set of vertices in the ordering Lj and by |Lj | the cardinality of the set V (Lj), i.e., |Lj | = |V (Lj)|. For
every vertex vz ∈ Lj , we denote by Lj(vz) the ordering (v1; v2; : : : ; vz−1; vz+1; vz+2; : : : ; v|Lj |; vz), and for
every index r, 0 ≤ r ≤ |Lj |, we denote by Lrj(vz) the ordering containing the �rst r vertices of Lj(vz);
that is:

• Lj = (v1; v2; : : : ; v|Lj |),

• Lj(vz) = (v1; v2; : : : ; vz−1; vz+1; vz+2; : : : ; v|Lj |; vz),

• L0
j (vz) = ∅,

• Lrj(vz) = (v1; v2; : : : ; vr) if 1 ≤ r ≤ z − 1,

• Lrj(vz) = (v1; v2; : : : ; vz−1; vz+1; vz+2; : : : ; vr+1) if z ≤ r ≤ |Lj | − 1, and

• Lrj(vz) = Lj(vz) if r = |Lj |.

De�nition 5.3. Let G be a comparability graph, given by its Hasse diagram with layers
H0; H1;H2; : : : ; Hk, and let � = (u0; u1; u2; : : : ; un) be the layered ordering of G. For every triple p,
i, and j, where 1 ≤ i ≤ j ≤ k and up ∈ Hi−1, we de�ne the graph G(up; i; j) to be the subgraph G[S] of
G induced by the set S = {ux : ux ∈ H`; i ≤ ` ≤ j} \ {ux : upux =∈ E(G)}.
De�nition 5.4. Let Lj be an ordering of the set Hj ∩ V (G(up; i; j)). We de�ne the graph
Gruz (up; i; j), where uz ∈ Lj and 0 ≤ r ≤ |Lj |, to be the subgraph G[S] of G induced by the set
S = V (G(up; i; j − 1)) ∪ Lrj(uz) if i < j, and S = Lrj(uz) if i = j.

Note that, since the dummy vertex u0 is adjacent to every other vertex of G, the graph G(up; 1; j),
1 ≤ j ≤ k, is the subgraph G[S] of G, induced by the set S = {ux : ux ∈ H`; 1 ≤ ` ≤ j}. Additionally,
G|Lj |uz (up; i; j) = G(up; i; j), and if i < j, then G0

uz (up; i; j) = G(up; i; j − 1).
Figure 5.3 illustrates two examples which correspond to De�nition 5.3. In particular, the �gure to the

left illustrates a Hasse diagram of a comparability graph G with layers H0; H1; : : : ; H4. The �gure in the
middle illustrates the subgraph G(v1; 2; 3) of G induced by the vertices {v3; v5}. The �gure to the right
illustrates the subgraph G(v0; 1; 3) of G induced by the vertices {v1; v2; v3; v4; v5; v6}, which are all the
vertices belonging to the layers H1;H2;H3; recall that no vertex of G is an antineighbor of the dummy
vertex v0.

67

H1

H2

H3

H4

v1 v2

v3 v4 v5

v6 v7

v8

v0H0

v9
v10 v11

v12
v13H5

G

H1

H2

H3

H4

v1 v2

v3 v4 v5

v6 v7

v8

v0H0

v9
v10 v11

v12
v13H5

G(v1, 2, 4)

H1

H2

H3

H4

v1 v2

v3 v4 v5

v6 v7

v8

v0H0

v9
v10 v11

v12
v13H5

G2

v9
(v1, 2, 4)

Figure 5.4: Illustrating a Hasse diagram of a comparability graph G and the induced subgraphs G(v1; 2; 4)
and G2

v9(v1; 2; 4) of G.

Figure 5.4 illustrates an example which corresponds to De�nition 5.4. In particular, the �gure to
the left illustrates a Hasse diagram of a comparability graph G with layers H0;H1; : : : ; H5. The �gure
in the middle illustrates the subgraph G(v1; 2; 4) of G induced by the vertices {v3; v6; v7; v8; v9; v10}.
The �gure to the right illustrates the subgraph G2

v9(v1; 2; 4) of G, if we consider the ordering L4 =
(v8; v9; v10) for the vertices of H4 ∩ V (G(v1; 2; 4)). The subgraph G2

v9(v1; 2; 4) of G is induced by the
vertices {v3; v6; v7; v8; v10}, and it is actually an induced subgraph of G(v1; 2; 4).

Notation 5.1. Let G be a comparability graph, given by its Hasse diagram with layers H0;H1; H2; : : : ; Hk,
and let � = (u0; u1; u2; : : : ; un) be the layered ordering of G. For every vertex ut ∈ V (Gruz (up; i; j)), if
ut ∈ Hj, then we denote by f(ut) the smallest index such that f(ut) < j, for which there exists a vertex
ux of Gruz (up; i; j) such that ux ∈ Hf(ut) and uxut =∈ E(G); in the case where no such vertex ux exists in
Gruz (up; i; j), where ux <� ut, we set f(ut) = j.

Notation 5.2. Let G be a comparability graph, and let � = (u0; u1; u2; : : : ; un) be the layered ordering of
G. For every vertex uy ∈ V (Gruz (up; i; j)) we denote by P (uy;Gruz (up; i; j)) a longest normal antipath of
Gruz (up; i; j) with right endpoint the vertex uy, and by `(uy;Gruz (up; i; j)) the length of P (uy;Gruz (up; i; j)).

Notation 5.2 is also used by substituting Gruz (up; i; j) by G(up; i; j). Note that, when we refer to
an antipath P = P (uy;G(up; i; j)) as a longest normal antipath, it follows that P is a normal antipath
of G(up; i; j) with right endpoint the vertex uy, and that P is a longest such antipath; thus, P is not
necessarily a longest antipath of G(up; i; j). However, if P ′ is a longest antipath of G(up; i; j), from
Lemma 5.6 we may assume that P ′ is normal; let uy be the last vertex of the normal antipath P ′. Thus,
there exists a longest normal antipath P ′ = P (uy;G(up; i; j)) which is also a longest antipath of G(up; i; j)
for some vertex uy ∈ V (G(up; i; j)).

Given a comparability graph G, Algorithm LP Cocomparability computes for every induced subgraph
G(up; i; j) of G, and for every vertex uy ∈ V (G(up; i; j)), the length `(uy;G(up; i; j)) and the correspond-
ing antipath P (uy;G(up; i; j)). Since G(u0; 1; k) = G \ {u0}, it follows that the maximum among the
values `(uy;G(u0; 1; k)) is the length of a longest normal antipath P (uy;G(u0; 1; k)) of G \ {u0} and,
thus, of G. In Section 5.4.1, we prove that the normal antipath P (uy;G(u0; 1; k)) computed by Algo-
rithm LP Cocomparability is also a longest antipath of G and, thus, a longest path of the cocomparability
graph G.

Before giving Algorithm LP Cocomparability in detail, which is presented in Figures Algorithm 6 and
Algorithm 7, we give a high level description of our algorithm.

68

Algorithm LP Cocomparability. Let G be a comparability graph, given by a Hasse diagram with
H0; H1; : : : ; Hk. Let P be a longest antipath of G. Since there exists a longest antipath of G which does
not contain the vertex u0 we may assume that P belongs to the graph G \ {u0}. Due to Lemma 5.6, we
may assume without loss of generality that P is a normal antipath; let the vertex u be the right endpoint
of P .

(A) For every vertex uy ∈ V (G(u0; 1; k))

compute a longest normal antipath of G(u0; 1; k) with right endpoint the vertex uy, where
G(u0; 1; k) = G \ {u0}.

(Â) Compute the longest antipath among the n antipaths computed in (Á).

Step (B) is trivial, while for executing Step (A) we do the following:

(A:1) For every subgraph G(up; i; j) and

for every vertex uy ∈ V (G(up; i; j))

compute a longest normal antipath of G(up; i; j) with right endpoint the vertex uy.

Let Lj be an ordering of Hj ∩ V (G(up; i; j)).

(A:1:1) For every subgraph Gruz (up; i; j) and

for every vertex uy ∈ V (Gruz (up; i; j)) such that uy =∈ Lj \ {ut} (where ut is the last vertex
of Lrj(uz))

compute a longest normal antipath of Gruz (up; i; j) with right endpoint the vertex uy,
where G|Lj |uz (up; i; j) = G(up; i; j), ∀uz ∈ Lj .

5.4 Correctness and Time Complexity

In this section we prove the correctness of our algorithm and compute its time complexity. In particular,
in Section 5.4.1 we show that Algorithm LP Cocomparability computes a longest normal antipath P of
the comparability graph G which is, in fact, a longest antipath of G and, thus, a longest path of the
cocomparability graph G. Finally, in Section 5.4.2 we analyze the time complexity of our algorithm.

5.4.1 Correctness of Algorithm LP Cocomparability

We next prove that Algorithm LP Cocomparability correctly computes a longest antipath of the compa-
rability graph G. The following lemmas appear useful in the proof of the algorithm's correctness.

Lemma 5.7. Let G be a comparability graph, given by its Hasse diagram with layers H0;H1; H2; : : : ; Hk,
let � be the layered ordering of G, and let Lj be an ordering of the set Hj ∩ V (G(up; i; j)). Let P =
(P1; v`; P2) be a normal antipath of Gruz (up; i; j), and let v` be the last vertex of Lrj(uz). Then, P1 and
P2 are normal antipaths of Gruz (up; i; j).

69

Algorithm LP Cocomparability

Input: a comparability graph G, given by its Hasse diagram with layers H0; H1;H2; : : : ; Hk, and a layered
ordering � = (u0; u1; u2; : : : ; un) of G.

Output: a longest normal antipath of G.

1. for j = 1 to k
2. for i = j downto 1
3. for every vertex up ∈ Hi−1

4. let Lj be an ordering of Hj ∩ V (G(up; i; j))
5. for every vertex uz ∈ Lj
6. for r = 1 to |Lj |
7. let ut be the last vertex of Lrj(uz)
8. for every vertex uy ∈ V (Gruz (up; i; j)) and y 6= t {initialization for uy 6= ut}
9. if r = 1 then
10. `(uy;G0

uz (up; i; j)) ← `(uy;G(up; i; j − 1));
11. P (uy;G0

uz (up; i; j)) ← P (uy;G(up; i; j − 1));
12. `(uy;Gruz (up; i; j)) ← `(uy;Gr−1

uz (up; i; j));
13. P (uy;Gruz (up; i; j)) ← P (uy;Gr−1

uz (up; i; j));
14. end for
15. if i = j then {case i = j}
16. `(ut;Gruz (up; j; j)) ← |Lrj(uz)|;
17. P (ut;Gruz (up; j; j)) ← Lrj(uz);
18. if i 6= j then
19. `(ut;Gruz (up; i; j)) ← 1; {initialization for uy = ut}
20. P (ut;Gruz (up; i; j)) ← (ut);
21. execute process(Gruz (up; i; j));
22. end for
23. `(uz;G(up; i; j)) ← `(uz;G

|Lj |
uz (up; i; j)); {for the vertex uz ∈ Lj}

24. P (uz;G(up; i; j)) ← P (uz;G
|Lj |
uz (up; i; j));

25. end for
26. for every vertex uy ∈ V (G(up; i; j)) and uy =∈ Lj {for the vertices uy =∈ Lj}
27. `(uy;G(up; i; j)) ← `(uy;G

|Lj |
uz (up; i; j));

28. P (uy;G(up; i; j)) ← P (uy;G
|Lj |
uz (up; i; j));

29. end for
30. end for
31. end for
32. end for
33. compute the max{`(uy;G(u0; 1; k)) : uy ∈ G(u0; 1; k)} and the corresponding antipath

P (uy;G(u0; 1; k));

Algorithm 6: Algorithm LP Cocomparability for �nding a longest antipath of G.

70

where the procedure process() is as follows:

process(Gruz (up; i; j))

procedure bridge(Gruz (up; i; j))
if f(ut) < j then {ut is the last vertex of Lrj(uz)}

for h = f(ut) + 1 to j
for ` = f(ut) to h− 1

for every vertex ux ∈ H` ∩ V (Gr−1
uz (up; i; j)) and uxut =∈ E(G)

for every vertex uy ∈ Hh ∩ V (Gr−1
uz (ux; `+ 1; j))

w1 ← `(ux;Gr−1
uz (up; i; j)); P ′1 ← P (ux;Gr−1

uz (up; i; j));
w2 ← `(uy;Gr−1

uz (ux; `+ 1; j)); P ′2 ← P (uy;Gr−1
uz (ux; `+ 1; j));

if w1 + w2 + 1 > `(uy;Gruz (up; i; j)) then
`(uy;Gruz (up; i; j)) ← w1 + w2 + 1;
P (uy;Gruz (up; i; j)) ← (P ′1; ut; P ′2);

end for
end for

end for
end for

procedure append(Gruz (up; i; j))
for ` = f(ut) to j {ut is the last vertex of Lrj(uz)}

for every vertex ux ∈ H` ∩ (V (Gr−1
uz (up; i; j)) and uxut =∈ E(G)

w1 ← `(ux;Gr−1
uz (up; i; j)); P ′1 ← P (ux;Gr−1

uz (up; i; j));
if w1 + 1 > `(ut;Gruz (up; i; j)) then

`(ut;Gruz (up; i; j)) ← w1 + 1;
P (ut;Gruz (up; i; j)) ← (P ′1; ut);

end for
end for

return (the value `(uy;Gruz (up; i; j)) and the antipath P (uy;Gruz (up; i; j)), for every vertex
uy ∈ V (Gruz (up; f(ut) + 1; j)) if f(ut) < j, and for uy = ut if f(ut) = j);

Algorithm 7: The procedure process().

71

Proof. Let P = (v1; v2; : : : ; v`−1; v`; v`+1; : : : ; vy) be a normal antipath of Gruz (up; i; j). Then, from Def-
inition 5.2, v1 is a leftmost vertex of V (P) in �, and for every index x, 2 ≤ x ≤ y, the vertex vx is a
leftmost vertex of NG(vx−1) ∩ {vx; vx+1; : : : ; vy} in �. It is easy to see that P1 = (v1; v2; : : : ; v`−1) is a
normal antipath of Gruz (up; i; j). Indeed, since V (P1) ⊂ V (P), then v1 is also a leftmost vertex of V (P1)
in � and, additionally, vx is a leftmost vertex of NG(vx−1) ∩ {vx; vx+1; : : : ; v`−1} in �, for every index x,
2 ≤ x ≤ `− 1.

Consider now the antipath P2 = (v`+1; v`+2; : : : ; vy) of Gruz (up; i; j). We �rst prove that v`+1 is a
leftmost vertex of V (P2) in �. By assumption v` ∈ Lj , thus, vx ≤� v` for every index x, `+ 1 ≤ x ≤ y.
We will show that vxv` =∈ E(G), for every index x, `+ 1 ≤ x ≤ y. Let vx be a vertex of V (P2). Consider
�rst the case where vx =� v`; then it is straightforward that vxv` =∈ E(G). Consider now the case where
vx <� v`. Since P is a normal antipath, vx <� v`, and v` appears before vx in P , from Lemma 5.4 we
obtain that vxv` =∈ E(G). Thus, we have proved that vxv` =∈ E(G) for every vertex vx ∈ V (P2). Since v`+1

is a leftmost vertex of NG(v`)∩{v`+1; v`+2; : : : ; vy} in �, and since NG(v`)∩{v`+1; v`+2; : : : ; vy} = V (P2),
it follows that v`+1 is a leftmost vertex of V (P2) in �. Additionally, since P is a normal antipath, it
is straightforward that vx is a leftmost vertex of NG(vx−1) ∩ {vx; vx+1; : : : ; vy} in �, for every index x,
`+ 2 ≤ x ≤ y. Therefore, from De�nition 5.2 it follows that P2 is a normal antipath of Gruz (up; i; j).

Lemma 5.8. Let G be a comparability graph, given by its Hasse diagram with layers H0;H1; H2; : : : ; Hk,
let � = (u0; u1; u2; : : : ; un) be the layered ordering of G, let Lj be an ordering of the set Hj∩V (G(up; i; j)),
and let ut be the last vertex of Lrj(uz). Let P1 be a normal antipath of Gr−1

uz (up; i; j) with right endpoint
a vertex ux such that ux ∈ H`, f(ut) ≤ ` ≤ j − 1, and utux =∈ E(G). Let P2 be a normal antipath of
Gr−1
uz (ux; `+1; j) with right endpoint a vertex uy such that uy ∈ Hh, `+1 ≤ h ≤ j, and V (P1)∩V (P2) = ∅.

Then, P = (P1; ut; P2) is a normal antipath of Gruz (up; i; j) with right endpoint the vertex uy.

Proof. Let P1 be a normal antipath of Gr−1
uz (up; i; j) with right endpoint a vertex ux such that ux ∈ H`,

f(ut) ≤ ` ≤ j − 1, and utux =∈ E(G), and let P2 be a normal antipath of Gr−1
uz (ux; ` + 1; j) with right

endpoint a vertex uy such that uy ∈ Hh, ` + 1 ≤ h ≤ j, and V (P1) ∩ V (P2) = ∅. Since utux =∈ E(G),
ux <� us ≤� ut and usux ∈ E(G) for every vertex us ∈ V (P2), it follows that utus =∈ E(G) for
every vertex us ∈ V (P2). Thus, the �rst vertex of P2 is an antineightbor of ut. Therefore, since
V (P1) ∩ V (P2) = ∅, it follows that P = (P1; ut; P2) is an antipath of G. Additionally, since up <� ux <�
us, upux ∈ E(G), and uxus ∈ E(G) for every vertex us ∈ V (Gr−1

uz (ux; ` + 1; j)), from the transitivity
property we obtain that upus ∈ E(G), for every vertex us ∈ V (P2); thus, for every vertex us ∈ V (P2),
we obtain us ∈ V (Gr−1

uz (up; i; j)). Therefore, since Gr−1
uz (up; i; j) and Gr−1

uz (ux; ` + 1; j) are induced
subgraphs of Gruz (up; i; j), it follows that P is a antipath of Gruz (up; i; j). Hereafter, in the rest of this
proof P1 = (v1; v2; : : : ; vq−1), P2 = (vq+1; vq+2; : : : ; vs), ux = vq−1, uy = vs, and ut = vq.

We �rst show that P = (v1; v2; : : : ; vq; : : : ; vs) is a normal antipath. Since v1 is a leftmost vertex of
V (P1) in �, it follows that v1 ≤� ux. Furthermore, since for every vertex vk ∈ V (P2) it holds ux <� vk,
it follows that v1 is a leftmost vertex of V (P) in �. We next show that for every k, 2 ≤ k ≤ s, the vertex
vk is a leftmost vertex of NG(vk−1) ∩ {vk; vk+1; : : : ; vs} in �.

Consider �rst the case where 2 ≤ k ≤ q − 1, i.e., vk ∈ V (P1). Since P1 is a normal antipath, it follows
that vk is a leftmost vertex of NG(vk−1)∩{vk; vk+1; : : : ; vq−1} in �. Consider �rst the case where vk ≤� ux.
Since ux <� vk′ for every vertex vk′ , q ≤ k′ ≤ s, it follows that vk <� vk′ . Therefore, in the case where
vk ≤� ux, we obtain that vk is also a leftmost vertex of NG(vk−1)∩{vk; vk+1; : : : ; vs} in �. Consider now
the case where ux <� vk. Since vq is a rightmost vertex of V (P) is �, it follows that vk is a leftmost vertex
of NG(vk−1)∩{vk; vk+1; : : : ; vq−1; vq} in �. Now, since ux <� vk, and vk is the next vertex of vk−1 in P1, it
follows that vk−1ux ∈ E(G). Also, since P1 is normal, vk−1ux ∈ E(G), and vk−1 appears before ux in P1,
from Lemma 5.4 it follows that vk−1 <� ux. Now, since vk−1 <� ux <� vk′ for every vertex vk′ ∈ V (P2),
vk−1ux ∈ E(G), and uxvk′ ∈ E(G), from the transitivity property it follows that vk−1vk′ ∈ E(G). Thus,
for every vertex vk′ of P2, it follows that vk−1vk′ ∈ E(G). Therefore, in the case where ux <� vk, we
obtain again that vk is a leftmost vertex of NG(vk−1) ∩ {vk; vk+1; : : : ; vs} in �. Therefore, in the case
where 2 ≤ k ≤ q − 1, we have proved that vk is a leftmost vertex of NG(vk−1) ∩ {vk; vk+1; : : : ; vs} in �.

72

Consider now the case where k = q. Since P1 is a normal antipath, and for every vertex vk′ ∈ V (P2)
we have that vk′ ∈ V (Gr−1

uz (ux; `+1; j)), it follows that vk′ux ∈ E(G). Therefore, vq is the only antineigh-
bor of vq−1 in {vq; vq+1; : : : ; vs} and, thus, vq is a leftmost vertex of NG(vq−1) ∩ {vq; vq+1; : : : ; vs} in �.
Now, in the case where k = q + 1, we have that vq+1 is a leftmost vertex of V (P2) = {vq+1; vq+2; : : : ; vs}
in �, since P2 is a normal antipath. Therefore, it easily follows that vq+1 is a leftmost vertex of
NG(vq) ∩ {vq+1; vq+2; : : : ; vs} in �. Finally, in the case where q + 2 ≤ k ≤ s, since P2 is a normal an-
tipath it directly follows that vk is a leftmost vertex of NG(vk−1) ∩ {vk; vk+1; : : : ; vs} in �.

We next prove the correctness of Algorithm LP Cocomparability.

Lemma 5.9. Let G be a comparability graph, given by its Hasse diagram with layers H0;H1; H2; : : : ; Hk,
and let � = (u0; u1; u2; : : : ; un) be the layered ordering of G. For every induced subgraph G(up; i; j)
of G, and for every vertex uy ∈ V (G(up; i; j)), Algorithm LP Cocomparability computes the length
`(uy;G(up; i; j)) of a longest normal antipath of G(up; i; j) with right endpoint the vertex uy and, also,
the corresponding antipath P (uy;G(up; i; j)).

Proof. The proof of the lemma for every subgraph G(up; i; j), 1 ≤ i ≤ j ≤ k, will be done by induction
on the index j, 1 ≤ j ≤ k.

We �rst prove the lemma for j = 1, i.e., for the subgraph G(up; 1; 1), where up = u0 in this case.
Let L1 be an ordering of the set H1 ∩ V (G(up; 1; 1)). It is easy to see that the length `(uz;G(up; 1; 1)),
of a longest normal antipath of G(up; 1; 1) with right endpoint a vertex uz ∈ L1, equals to |L1|. Let us
now compare this value to the value computed by Algorithm LP Cocomparability. Firstly, since in this
case i = j, it easy to see that for every graph Gruz (up; 1; 1), 1 ≤ r ≤ |L1|, Algorithm LP Cocomparability
correctly computes and sets `(ut;Gruz (up; 1; 1)) = |Lr1(uz)| and P (ut;Gruz (up; 1; 1)) = Lr1(uz), where ut is
the last vertex of Lr1(uz) (lines 15-17). Finally, for r = |L1|, it is easy to see that `(ut;G

|L1|
uz (up; 1; 1)) =

|L1(uz)| and P (ut;G
|L1|
uz (up; 1; 1)) = L1(uz), and Algorithm LP Cocomparability sets `(uz;G(up; 1; 1)) =

`(uz;G
|L1|
uz (up; 1; 1)) and P (uz;G(up; 1; 1)) = P (uz;G

|L1|
uz (up; 1; 1)), for every vertex uz of L1 (lines 23-24).

Therefore, the lemma holds for every subgraph Gruz (up; 1; 1), 1 ≤ r ≤ |L1|. This proves the induction
basis.

Assume now that the lemma holds for every index j′, 1 ≤ j′ ≤ j − 1 ≤ k − 1. That is, assume
that for every induced subgraph G(up; i′; j′) of G, 1 ≤ i′ ≤ j′ ≤ j − 1 ≤ k − 1, and for every vertex
uy ∈ V (G(up; i′; j′)), Algorithm LP Cocomparability computes the length `(uy;G(up; i′; j′)) of a longest
normal antipath of G(up; i; j′) with right endpoint the vertex uy and, also, the corresponding antipath
P (uy;G(up; i′; j′)).

We will next show that the lemma holds for j′ = j, 1 ≤ i < j ≤ k, i.e., for every induced subgraph
G(up; i; j) of G.

Consider �rst the case where 1 ≤ i = j ≤ k. Let Lj be an ordering of the set Hj ∩ V (G(up; j; j)).
It is easy to see that the length `(uz;G(up; j; j)), of a longest normal antipath of G(up; j; j) with right
endpoint a vertex uz ∈ Lj , equals to |Lj |. Let us now compare this value to the value computed
by Algorithm LP Cocomparability. Let ut be the last vertex of Lrj(uz). We �rst show that for ev-
ery graph Gruz (up; j; j), 1 ≤ r ≤ |Lj |, Algorithm LP Cocomparability correctly computes the values
`(ut;Gruz (up; j; j)) and P (ut;Gruz (up; j; j)). It is easy to see that the length `(ut;Gruz (up; j; j)), of a
longest normal antipath of Gruz (up; j; j) which has ut as its right endpoint, equals to |Lrj(uz)|. In the case
where i = j, Algorithm LP Cocomparability correctly computes and sets `(ut;Gruz (up; j; j)) = |Lrj(uz)|
and P (ut;Gruz (up; j; j)) = Lrj(uz) (lines 15-17); note that for r = |Lj |, we have |Lrj(uz)| = |Lj |. Since
Algorithm LP Cocomparability computes these values for every vertex uz ∈ Lj , i.e., for every sub-
graph Gruz (up; j; j)), and since G(up; j; j) = G|Lj |uz (up; j; j), for any vertex uz ∈ Lj , it follows that Al-
gorithm LP Cocomparability correctly computes and sets `(uz; G(up; j; j)) = `(uz; G

|Lj |
uz (up; j; j)) and

P (uz; G(up; j; j)) = P (uz; G
|Lj |
uz (up; j; j)) (lines 23-24), for every vertex uz ∈ Lj . Thus, the lemma holds

for every subgraph G(up; i; j) of G such that 1 ≤ i = j ≤ k.

73

Consider now the case where 1 ≤ i < j ≤ k. To prove that the lemma holds in this case, we use the
following claim.

Claim 5.1. For every induced subgraph Gruz (up; i; j) of G, 1 ≤ i < j ≤ k, and for every vertex
uy ∈ V (Gruz (up; i; j)) such that uy =∈ Lj \ {ut}, where ut be the last vertex of Lrj(uz), Algorithm
LP Cocomparability correctly computes `(uy;Gruz (up; i; j)) and P (uy;Gruz (up; i; j)).

Recall that G(up; i; j) = G|Lj |uz (up; i; j) for any vertex uz ∈ Lj . Then, for the length of a longest normal
antipath of G(up; i; j) with right endpoint a vertex uy ∈ V (G(up; i; j)) such that uy =∈ Lj , from Claim 5.1
we obtain that `(uy;G(up; i; j)) = `(uy;G

|Lj |
uz (up; i; j)), where uz is any vertex of Lj . It is easy to see

that Algorithm LP Cocomparability sets `(uy;G(up; i; j)) = `(uy;G
|Lj |
uz (up; i; j)) and P (uy;G(up; i; j)) =

P (uy;G
|Lj |
uz (up; i; j)), where uz is any vertex of Lj , for every vertex uy of G(up; i; j) such that uy =∈ Lj

(lines 26-28). Also, for the length of a longest normal antipath of G(up; i; j) with right endpoint a vertex
uz ∈ Lj , from Claim 5.1 we obtain that `(uz;G(up; i; j)) = `(uz;G

|Lj |
uz (up; i; j)). Since the procedure

process() is executed for every vertex uz ∈ Lj , i.e., for every subgraph Gruz (up; i; j)), it follows that
Algorithm LP Cocomparability correctly computes and sets `(uz;G(up; i; j)) = `(uz;G

|Lj |
uz (up; i; j)) and

P (uz;G(up; i; j)) = P (uz;G
|Lj |
uz (up; i; j)) for every vertex uz ∈ Lj (lines 23-24). It is now clear that

Algorithm LP Cocomparability correctly computes the length of a longest normal antipath of G(up; i; j)
with right endpoint a vertex uy, for every vertex uy ∈ V (G(up; i; j)). This proves the lemma.

Proof of Claim 5.1. For proving the claim we use the induction hypothesis of Lemma 5.9. That is, we
assume that for every induced subgraph G(up; i′; j′) of G, 1 ≤ i′ ≤ j′ ≤ j−1 ≤ k−1, and for every vertex
uy ∈ V (G(up; i′; j′)), Algorithm LP Cocomparability correctly computes the length `(uy;G(up; i′; j′)) of
a longest normal antipath of G(up; i′; j′) with right endpoint the vertex uy and, also, the corresponding
antipath P (uy;G(up; i′; j′)).

Let Gruz (up; i; j) be an induced subgraph of G such that 1 ≤ i < j ≤ k. We prove the claim
by induction on j, 2 ≤ j ≤ k, i.e., given a speci�c index j, we prove that the claim holds for every
induced subgraph Gruz (up; i; j) of G, where 1 ≤ i < j ≤ k and 0 ≤ r ≤ |Lj |, and for every vertex
uy ∈ V (Gruz (up; i; j)) such that uy =∈ Lj \ {ut}, where ut is the last vertex of Lrj(uz). To this end, we
distinguish three cases on the position of the vertex uy in the ordering �: uy ∈ H` where ` ≤ f(ut),
uy ∈ H` where f(ut) + 1 ≤ ` ≤ j − 1, and uy = ut. In each of these cases, we examine �rst the length of
a longest normal antipath of Gruz (up; i; j) with right endpoint the vertex uy and, then, we compare this
value to the length of the antipath computed by Algorithm LP Cocomparability. The proof is done by
induction on the index r, 0 ≤ r ≤ |Lj |.

Consider �rst the case where r = 0, i.e., L0
j = ∅. Since here we examine the case where i 6= j, from

De�nition 5.4 we obtain that G0
uz (up; i; j) = G(up; i; j − 1). Therefore, it is easy to see that for every

subgraph G0
uz (up; i; j), and for every vertex uy ∈ V (G0

uz (up; i; j)), the length `(uy;G0
uz (up; i; j)) equals

to `(uy;G(up; i; j − 1)). It is easy to see that Algorithm LP Cocomparability sets `(uy;G0
uz (up; i; j)) =

`(uy;G(up; i; j−1)) and P (uy;G0
uz (up; i; j)) = P (uy;G(up; i; j−1)), for every vertex uy ∈ V (G0

uz (up; i; j))
(lines 8-11). Since by the induction hypothesis of Lemma 5.9, Algorithm LP Cocomparability correctly
computes the values of `(uy;G(up; i; j − 1)) and P (uy;G(up; i; j − 1)), it follows that the algorithm also
correctly computes the values of `(uy;G0

uz (up; i; j)) and P (uy;G0
uz (up; i; j)). Therefore, the claim holds

for r = 0.
Suppose now that the claim holds for every index `, 0 ≤ ` ≤ r− 1 ≤ |Lj | − 1. We will now prove that

the claim holds for the subgraph Gruz (up; i; j) of G, 1 ≤ r ≤ |Lj |.
Case 1. For every vertex uy of Gruz (up; i; j) such that uy ∈ H` and i ≤ ` ≤ f(ut), it is easy to see that
`(uy;Gruz (up; i; j)) = `(uy;Gr−1

uz (up; i; j)), since ut does not belong to any normal antipath with right
endpoint a vertex uy ∈ H`, i ≤ ` ≤ f(ut). In this case, Algorithm LP Cocomparability computes and
sets `(uy;Gruz (up; i; j)) = `(uy;Gr−1

uz (up; i; j)) for the length of a longest normal antipath of Gruz (up; i; j)
with right endpoint a vertex uy ∈ H`, i ≤ ` ≤ f(ut); the algorithm also computes the corresponding

74

antipath. This computation is done during the initialization (lines 8-14), and these values do not change
during the process() of the algorithm, since uy ∈ H` and ` < f(ut) + 1. Since by the induction
hypothesis Algorithm LP Cocomparability correctly computes the value of `(uy;Gr−1

uz (up; i; j), for every
vertex uy ∈ Gr−1

uz (up; i; j) such that uy =∈ Lj , it follows that Algorithm LP Cocomparability correctly
computes the values of `(uy;Gruz (up; i; j)) and P (uy;Gruz (up; i; j)).

Case 2. We consider next the case where uy ∈ Hh and f(ut) + 1 ≤ h ≤ j − 1. Let P = (ux′ ; : : : ; uy) be
a longest normal antipath of Gruz (up; i; j) with right endpoint the vertex uy.

(I) Consider �rst the case where P contains the vertex ut. Assume �rst that P = (ut; uy) is a longest
normal antipath of Gruz (up; i; j) with right endpoint the vertex uy. Since uy ∈ Hh, f(ut)+1 ≤ h ≤ j− 1,
it follows that there exists at least one vertex ux ∈ Hf(ut) such that uxut =∈ E(G). Thus, P ′ = (ux; ut; uy)
is a normal antipath of Gruz (up; i; j) with right endpoint the vertex uy which is longer than P . This is a
contradiction to our assumption on P .

Assume now that P = (ux′ ; : : : ; ux; ut; uy′ ; : : : ; uy) = (P1; ut; P2) is a longest normal antipath of
Gruz (up; i; j) with right endpoint the vertex uy. From Lemma 5.7, we obtain that P1 = (ux′ ; : : : ; ux) and
P2 = (uy′ ; : : : ; uy) are normal antipaths of Gruz (up; i; j), and in fact of Gr−1

uz (up; i; j).
We will now show that ux <� us and uxus ∈ E(G), for every vertex us ∈ V (P2), where ux is the

right endpoint of P1. Since ut ∈ Lj and P is an antipath of Gruz (up; i; j), it follows that us ≤� ut, for
every vertex us ∈ V (P2). Consider �rst the case where us is a vertex of P2 such that us <� ut. Since P
is normal and ut is the next vertex of ux in P , it follows that uxus ∈ E(G) for every vertex us ∈ V (P2)
such that us <� ut. Since P is normal, uxus ∈ E(G), and ux appears before us in P , from Lemma 5.4
we obtain that ux <� us, for every vertex us ∈ V (P2) such that us <� ut. Therefore, we have proved
that for every vertex us ∈ V (P2) such that us <� ut, we have ux <� us and uxus ∈ E(G).

Consider now the case where us is a vertex of P2 such that us =� ut. Since uy is a vertex of P2

such that uy <� ut, from the above we obtain that ux <� uy. Since ux <� uy <� ut =� us, it follows
that ux <� us, for every vertex us ∈ V (P2) such that us =� ut. It is left to show that the property
uxus ∈ E(G) for every vertex us ∈ V (P2) such that us =� ut holds. Assume that P is an antipath
for which this property does not hold. We next show that there exists a longest normal antipath P ′ of
Gruz (up; i; j) with right endpoint the vertex uy, such that P ′ = (P1; P ′2) and V (P ′) = V (P), for which
this property holds.

Assume now that there exists a vertex us ∈ V (P2), such that us =� ut and uxus =∈ E(G). Let
P = (P1; ut; P2) = (P1; ut; uy′ : : : ; us′ ; us; us′′ ; : : : ; uy), and let us be the last such vertex in P . Then
P ′ = (P1; P ′2) = (P1; us; uy′ : : : ; us′ ; ut; us′′ ; : : : ; uy) is an antipath, since we next prove that ut and us
have an antiedge with every vertex of P2. To this end, let uq be a vertex of P2 such that q 6= s. If
uq =� ut, then indeed uqut =∈ E(G) and uqus =∈ E(G). If uq <� ut, then from the above we have proved
that ux <� uq and uxuq ∈ E(G). Since ux <� uq <� ut, uxuq ∈ E(G), and uxut =∈ E(G), from the
transitivity property we obtain uqut =∈ E(G); using the same arguments we obtain that uqus =∈ E(G).
Therefore, since uy′ ; us′ ; us′′ ∈ V (P2), we obtain that P ′ = (P1; us; uy′ : : : ; us′ ; ut; us′′ ; : : : ; uy) is a longest
antipath of Gruz (up; i; j) with right endpoint the vertex uy. It is easy to see that P ′ is normal, since P
is normal and ut =� us. By repeating the above procedure we can obtain a longest normal antipath
P ′ = (P ′1; ut; P ′2) with right endpoint the vertex uy such that uxus ∈ E(G) for every vertex us ∈ V (P ′2)
such that us =� ut, where ux is the last vertex of P ′1. Therefore, we may assume without loss of generality
that P = (ux′ ; : : : ; ux; ut; uy′ ; : : : ; uy) = (P1; ut; P2) is a longest normal antipath of Gruz (up; i; j) with
right endpoint the vertex uy, with the property that uxus ∈ E(G) for every vertex us ∈ V (P2) such that
us =� ut.

Therefore, we have proved that ux <� us and uxus ∈ E(G), for every vertex us ∈ V (P2). Since
ux <� uy and by assumption uy ∈ Hh, f(ut) + 1 ≤ h ≤ j − 1, we obtain that ux ∈ H`, where
f(ut) ≤ ` ≤ j − 2. Then, for every vertex us ∈ V (P2) we obtain that us ∈ Hh, where ` + 1 ≤ h ≤ j.
Additionally, since we have shown that uxus ∈ E(G) for every vertex us ∈ V (P2), from De�nition 5.4
we obtain that us ∈ V (Gr−1

uz (ux; ` + 1; j)) for every vertex us ∈ V (P2). Note that, every vertex us of
Gr−1
uz (ux; `+1; j) is also a vertex of Gr−1

uz (up; i; j). Indeed, since i < `+1 ≤ j, and since up <� ux <� us,

75

upux ∈ E(G), and uxus ∈ E(G), from the transitivity property we obtain that upus ∈ E(G). Let H2 be
the subgraph of Gruz (up; i; j) induced by V (H2) = V (Gr−1

uz (ux; `+ 1; j)). Therefore, we have shown that
every vertex of P2 belongs to H2.

By assumption, for every vertex uq ∈ V (P1) we have uq ∈ V (Gr−1
uz (up; i; j)). Let now uq be any vertex

of P1. If uq ≤� ux, then uq ∈ Hd and d ≤ `; thus, from De�nition 5.4 we obtain that uq =∈ V (H2) =
V (Gr−1

uz (ux; `+1; j)). Consider now the case where uq is a vertex of P1 such that ux <� uq. Since P1 is a
normal antipath, ux <� uq, and uq appears before ux in P1, from Lemma 5.4 we obtain that uxuq =∈ E(G).
Therefore, from De�nition 5.4 we obtain again that uq =∈ V (H2) = V (Gr−1

uz (ux; ` + 1; j)). Therefore, we
have proved that no vertex of P1 can belong to H2. Let H1 be the subgraph of Gruz (up; i; j) induced by
V (H1) = V (Gr−1

uz (up; i; j)) \ V (Gr−1
uz (ux; `+ 1; j)). Thus, we have shown that every vertex of P1 belongs

to H1. Therefore, we have shown that V (P1) ⊆ V (H1), V (P2) ⊆ V (H2), and V (H1) ∩ V (H2) = ∅. It is
easy to see that V (P1) ∩ V (P2) = ∅.

Since P = (P1; ut; P2) is a longest normal antipath of Gruz (up; i; j) with right endpoint the vertex uy,
and since the antipaths P1 and P2 belong to two disjoint induced subgraphs of Gruz (up; i; j), it follows
that P1 is a longest normal antipath of H1 with right endpoint the vertex ux, and that P2 is a longest
normal antipath of H2 with right endpoint the vertex uy. Thus, since H2 = Gr−1

uz (ux; `+ 1; j), we obtain
that |P2| = `(uy;Gr−1

uz (ux; `+ 1; j)). We will now show that |P1| = `(ux;Gr−1
uz (up; i; j)). To this end,

let P0 be a longest normal antipath of Gr−1
uz (up; i; j) with right endpoint the vertex ux. Assume that

there exists a vertex us ∈ V (P0) such that us ∈ V (H2) = V (Gr−1
uz (ux; ` + 1; j)). Since ux ∈ H`, then

ux <� us and uxus ∈ E(G). Since P0 is normal, from Lemma 5.4 we obtain that ux appears before us
in P0. This comes to a contradiciton to our assumption that ux is the right endpoint of P0. Thus, no
vertex of P0 belongs to H2. Thus, V (P0) ⊆ V (H1), and since P1 is a longest normal antipath of H1 with
right endpoint the vertex ux, we obtain that |P0| ⊆ |P1|. Additionally, since H1 is an induced subgraph
of Gr−1

uz (up; i; j), we obtain that |P1| ⊆ |P0|. Thus, |P0| = |P1| and, therefore, P1 is a longest normal
antipath of Gr−1

uz (up; i; j) with right endpoint the vertex ux. Thus, |P1| = `(ux;Gr−1
uz (up; i; j)).

Therefore, for a longest normal antipath P = (P1; ut; P2) of Gruz (up; i; j) with right endpoint
a vertex uy ∈ Hh, f(ut) + 1 ≤ h ≤ j − 1, we have shown that |P | = `(uy;Gruz (up; i; j)) =
`(ux;Gr−1

uz (up; i; j)) + `(uy;Gr−1
uz (ux; ` + 1; j)) + 1 and, also, P = P (uy;Gruz (up; i; j)) =

(P (ux;Gr−1
uz (up; i; j)); ut; P (uy;Gr−1

uz (ux; `+ 1; j))).
Hereafter, we examine the results computed by Algorithm LP Cocomparability in Case 2. Let P ′ be

the antipath of Gruz (up; i; j) with right endpoint a vertex uy computed by Algorithm LP Cocomparability,
in the case where uy ∈ Hh, f(ut) + 1 ≤ h ≤ j − 1. Note that the antipath P ′ which is constructed by
the algorithm with the procedure(bridge) contains the vertex ut. Algorithm LP Cocomparability
computes the length of P ′ = (P ′1; ut; P ′2), where ut is the last vertex of Lrj(uz), for two antipaths P ′1 and
P ′2 as follows. The antipath P ′1 = P (ux;Gr−1

uz (up; i; j)) is a longest normal antipath of Gr−1
uz (up; i; j) with

right endpoint a vertex ux such that ux ∈ H`, f(ut) ≤ ` ≤ j − 2, and uxut =∈ E(G). The antipath
P ′2 = P (uy;Gr−1

uz (ux; `+ 1; j)) is a longest normal antipath of Gr−1
uz (ux; ` + 1; j) with right endpoint a

vertex uy such that uy ∈ Hh, ` + 1 ≤ h ≤ j − 1. Actually, in this case, Algorithm LP Cocomparability
computes with the procedure(bridge) the value w1 + w2 + 1 = |P ′1|+ |P ′2|+ 1, for every vertex ux such
that ux ∈ H`, f(ut) ≤ ` ≤ j − 2, and uxut =∈ E(G), and sets |P ′| to be equal to the maximum among
these values. Also, Algorithm LP on H computes the corresponding antipath P = (P ′1; ut; P ′2).

By the induction hypothesis, Algorithm LP Cocomparability has correctly computed the values
P ′1 = P (ux;Gr−1

uz (up; i; j)) and P ′2 = P (uy;Gr−1
uz (ux; `+ 1; j)). Since, by the induction hypothesis, the

computed antipaths P ′1 and P ′2 are normal antipaths of Gruz (up; i; j) with right endpoints the ver-
tices ux and uy, respectively, it follows similarly to the above that P ′1 belongs to the graph H1 and
P ′2 belongs to the graph H2, where V (H1) = V (Gr−1

uz (up; i; j)) \ V (Gr−1
uz (ux; ` + 1; j)), V (H2) =

V (Gr−1
uz (ux; ` + 1; j)), and ux is the right endpoint of P ′1. Since V (H1) ∩ V (H2) = ∅, it follows that

V (P ′1) ∩ V (P ′2) = ∅. Then, from Lemma 5.8 we obtain that the antipath P ′ = (P ′1; ut; P ′2) com-
puted by Algorithm LP Cocomparability is a normal antipath of Gruz (up; i; j) with right endpoint the
vertex uy. Moreover, since Algorithm LP Cocomparability computes with the procedure(bridge)

76

the value `(ux;Gr−1
uz (up; i; j)) + `(uy;Gr−1

uz (ux; ` + 1; j)) + 1, for every vertex ux such that ux ∈ H`,
f(ut) ≤ ` ≤ j − 2, and uxut =∈ E(G), and sets `(uy;Gruz (up; i; j)) to be equal to the maximum
among these values, it follows that the value `(uy;Gruz (up; i; j)) computed by the algorithm equals to
the length of a longest normal antipath of Gruz (up; i; j) with right endpoint the vertex uy. Also, Al-
gorithm LP Cocomparability also correctly computes the corresponding antipath P (uy;Gruz (up; i; j) =
(P (ux;Gr−1

uz (up; i; j)); ut; P (uy;Gr−1
uz (ux; `+ 1; j))).

(II) Consider now the case where the longest normal antipath P of Gruz (up; i; j) with right endpoint
the vertex uy does not contain the vertex ut. Then, V (P) ⊆ V (Gr−1

uz (up; i; j)), and it easily follows that
P is a longest normal antipath of Gr−1

uz (up; i; j) with rigth endpoint the vertex uy. By the induction
hypothesis, Algorithm LP Cocomparability correctly computes the value `(uy;Gr−1

uz (up; i; j)), for every
vertex uy ∈ Gr−1

uz (up; i; j) such that uy =∈ Lj \ {ut}. During the initialization (lines 8-14) the algorithm
sets `(uy;Gruz (up; i; j)) = `(uy;Gr−1

uz (up; i; j)), for every vertex uy ∈ Hh, f(ut) + 1 ≤ h ≤ j − 1.
From Lemma 5.8 (since we have shown above that V (P ′1) ∩ V (P ′2) = ∅), we obtain that during the

execution of the procedure(bridge) the antipaths constructed by Algorithm LP Cocomparability are
normal antipaths of Gruz (up; i; j) with right endpoint a vertex uy. Therefore, since we have assumed
that P is a longest normal antipath of Gruz (up; i; j) with right endpoint the vertex uy, it follows that no
antipath with right endpoint the vertex uy which is constructed with the procedure(bridge) is longer
than P . Thus, since |P | is the initial value given to `(uy;Gruz (up; i; j)), it follows that the statement
w1 +w2 +1 > `(uy;Gruz (up; i; j)) (in the procedure(bridge)) is false for every vertex ux ∈ H` such that
f(ut) ≤ ` ≤ h − 1 and utux =∈ E(G). Therefore, the initial value of `(uy;Gruz (up; i; j)) is not changed
during the execution of the process(). Therefore, Algorithm LP Cocomparability correctly computes
and sets `(uy;Gruz (up; i; j)) = `(uy;Gr−1

uz (up; i; j)) for the vertex uy ∈ Hh, f(ut) + 1 ≤ h ≤ j − 1.
Concluding, in both Cases 2(I) and 2(II), we have proved that the antipath P ′ computed by Algorithm

LP Cocomparability is a longest normal antipath P (uy;Gruz (up; i; j)) of Gruz (up; i; j) with uy as its right
endpoint, and |P ′| = `(uy;Gruz (up; i; j)). Thus, the claim holds in Case 2.

Case 3. Consider now the case where uy = ut. Assume �rst that ut has no antineighbors in Gruz (up; i; j).
Then (ut) is a longest normal antipath of Gruz (up; i; j) with right endpoint the vertex ut. Since we examine
the case where i 6= j, it is easy to see that Algorithm LP Cocomparability sets `(ut;Gruz (up; i; j)) = 1
and P (ut;Gruz (up; i; j)) = (ut) (lines 19-20). Since ut has no antineighbors in Gruz (up; i; j), it follows
that r = 1 and f(ut) = j. Thus, the initial value of `(ut;Gruz (up; i; j)) is not changed during the
execution of the process(). Therefore, Algorithm LP Cocomparability correctly computes the values of
`(ut;Gruz (up; i; j)) and P (ut;Gruz (up; i; j)) in the case where ut has no antineighbors in Gruz (up; i; j).

Assume now that ut has at least one antineighbor in Gruz (up; i; j). Let P = (ux′ ; : : : ; ux; ut) = (P ′; ut)
be a longest normal antipath of Gruz (up; i; j) with right endpoint the vertex ut. Then, it is easy to see that
P ′ is a longest normal antipath of Gr−1

uz (up; i; j) with rigth endpoint the vertex ux. In this case, with the
procedure(append), Algorithm LP Cocomparability computes the value w1+1 = `(ux;Gr−1

uz (up; i; j))+1,
for every vertex ux ∈ H` ∩ V (Gr−1

uz (up; i; j)) such that f(ut) ≤ ` ≤ j, x 6= t, and uxut =∈ E(G), and sets
`(ut;Gruz (up; i; j)) to be equal to the maximum amongs these values. We next show that the algorithm
correctly computes the values `(ut;Gruz (up; i; j)) and P (ut;Gruz (up; i; j)).

(a) Assume �rst that ux =∈ Lj , where ux is the right endpoint of P ′. Since by the induction hypothesis
the algorithm correctly computes the values `(ux;Gr−1

uz (up; i; j), for every vertex ux ∈ Gr−1
uz (up; i; j)

such that ux =∈ Lj , it follows that Algorithm LP Cocomparability computes, among other, the value
`(ux;Gr−1

uz (up; i; j)) + 1 = |P ′| + 1, and sets `(ut;Gruz (up; i; j)) to be equal to |P ′| + 1 = |P | which is
the length of a longest normal antipath P of Gruz (up; i; j) with right endpoint the vertex uy. Also, the
algorithm correctly computes the corresponding antipath P (ut;Gruz (up; i; j)) = (P (ux;Gr−1

uz (up; i; j)); ut).
(b) Consider now the case where for any longest normal antipath P = (ux′ ; : : : ; ux; ut) = (P ′; ut) of

Gruz (up; i; j) with right endpoint the vertex uy = ut we have ux ∈ Lj . Then P ′ is a longest normal antipath
of Gr−1

uz (up; i; j) with right endpoint any vertex of Lj , i.e., |P ′| ≥ |P ′′|, for any normal antipath P ′′ of
Gr−1
uz (up; i; j) with right endpoint a vertex of Lj . Let ux be the last vertex of Lr−1

j (uz) for which such
an antipath P ′ exists. Since Algorithm LP Cocomparability computes, with the procedure(append),

77

the value w1 + 1 = `(ux;Gr−1
uz (up; i; j)) + 1, for every vertex ux ∈ Lr−1

j (uz), and sets `(ut;Gruz (up; i; j))
to be equal to the maximum amongs these values, it follows that it su�ces to show that there exists at
least one vertex ux ∈ Lr−1

j (uz) such that Algorithm LP Cocomparability correctly computes the value
`(ux;Gr−1

uz (up; i; j)) and sets it to be equal to |P ′|.
Assume that ux is the last vertex of Lr−1

j (uz), i.e., there exists such a longest normal antipath P ′ for
which ux is the last vertex of Lr−1

j (uz). Then by the induction hypothesis, Algorithm LP Cocomparability
correctly computes the length `(ux;Gr−1

uz (up; i; j)) of a longest normal antipath of Gr−1
uz (up; i; j) with right

endpoint the vertex ux. Therefore, in this case the last vertex ux of Lr−1
j (uz) is such a vertex, and the

claim holds.
Consider now the case where ux is not the last vertex of Lr−1

j (uz), i.e., ux ∈ Lr−2
j (uz). Let uq be

the last vertex of Lr−1
j (uz). Since P ′ is a longest normal antipath of Gr−1

uz (up; i; j) with right endpoint
any vertex of Lj , it follows that uq ∈ V (P ′), since otherwise P ′′ = (P ′; uq) is such an antipath longer
than P ′. Let P ′ = (ux′ ; : : : ; uq′ ; uq; uq′′ ; : : : ; ux) = (P1; uq; P2). We now prove that uq′ <� uq. The case
where uq′ >� uq does not exist since uq ∈ Lj . Assume that uq′ =� uq. Then using similar arguments
as in Case 2(I), Lemma 5.4, and De�nition 5.2, it is easy to obtain that us =� uq for every vertex
us ∈ V (P2). Thus, P ′ = (P1; uq′′ ; : : : ; ux; uq) is a normal antipath such that V (P ′′) = V (P ′) with right
endpoint the vertex uq which appears after ux in Lr−1

j (uz); this is a contradiction to our assumption
on ux. Therefore, we obtain that uq′ <� uq. Assume now that P ′ = (ux′ ; : : : ; uq′ ; uq; uq′′ ; : : : ; ux) is a
longest normal antipath of Gr−1

uz (up; i; j) with the property that for any vertex us of Lr−2
j (uz) which

appears after uq in P ′ we have usuq′ ∈ E(G); since we have proved that uq′ <� uq, then using the same
arguments as in Case 2(I) we can prove that such a longest normal antipath exists. In particular, using
the same arguments as in Case 2(I), we can prove that uq′ <� us and uq′us ∈ E(G), for every vertex
us ∈ V (P2).

Since uq′uq =∈ E(G) and uq′ <� uq, we assume that uq′ ∈ H`, f(uq) ≤ ` ≤ j − 1. Let H2 be
the subgraph of Gr−1

uz (up; i; j) induced by V (H2) = V (Gr−2
uz (uq′ ; ` + 1; j)). Similarly to Case 2(I), we

can show that every vertex of P2 belongs to H2. Let H1 be the subgraph of Gr−1
uz (up; i; j) induced by

V (H1) = V (Gr−2
uz (up; i; j)) \ V (Gr−2

uz (uq′ ; `+ 1; j)). Again, we can show that every vertex of P1 belongs
to H1. Therefore, we have that V (P1) ⊆ V (H1), V (P2) ⊆ V (H2), and V (H1) ∩ V (H2) = ∅. It is easy to
see that V (P1)∩V (P2) = ∅. Finally, we can obtain that P1 is a longest normal antipath of Gr−2

uz (up; i; j)
with right endpoint the vertex uq′ , i.e., |P1| = `(uq′ ;Gr−2

uz (up; i; j)), and P2 is a longest normal antipath
of Gr−2

uz (uq′ ; `+ 1; j) with right endpoint the vertex ux, i.e., |P2| = `(ux;Gr−2
uz (uq′ ; `+ 1; j)).

Since uq′ <� uq, it follows that uq′ =∈ Lj . Therefore, from the induction hypothesis Algorithm
LP Cocomparability correctly computes the length `(uq′ ;Gr−2

uz (up; i; j)) = |P1|. Now it is left to show
that the value `(ux;Gr−2

uz (uq′ ; `+1; j)) = |P2| computed by the algorithm is the length of a longest normal
antipath of Gr−2

uz (uq′ ; `+1; j) with right endpoint the vertex ux. Observe that now P2 is a longest normal
antipath of Gr−2

uz (uq′ ; `+1; j) with right endpoint any vertex of Lr−2
j (uz) and, actually, ux is the last vertex

of Lr−2
j (uz) for which such an antipath P2 exists, otherwise we come to a contradiction to the choice of P ′.

If ux is the last vertex of Lr−2
j (uz) then, similarly to the above, by the induction hypothesis the algorithm

correctly computes the value `(ux;Gr−2
uz (uq′ ; ` + 1; j)). If ux is not the last vertex of Lr−2

j (uz), then we
repeat the above same procedure for the last vertex of Lr−2

j (uz). We repeat the above procedure until ux
is the last vertex of the ordering Lr

′
j (uz), 1 ≤ r′ ≤ r−2. Then, using the induction hypothesis, we obtain

that the algorithm correctly computes the value of the corresponding normal antipath P2 with right
endpoint the vertex ux, since at that iteration ux is the last vertex of the ordering Lr

′
j (uz). Concluding

Algorithm LP Cocomparability correctly computes the length `(ux;Gr−1
uz (up; i; j)) = |P ′| and, thus, the

length `(ut;Gruz (up; i; j)) = |P ′|+ 1 = |P |; the algorithm also computes the corresponding antipaths.
Concluding, we have proved that the claim holds for the subgraph Gruz (up; i; j) of G, where 1 ≤ r ≤

|Lj |.

Now, let P be a longest antipath of G. From Lemma 5.6 we may assume without loss of generality
that P is a normal antipath of G. If uy ∈ V (G) is the right endpoint of P , then P is a longest normal

78

antipath of G with right endpoint the vertex uy. Since there exists a longest antipath of G which does not
contain the vertex u0 we may assume that P belongs to the graph G\{u0}. Since G(u0; 1; k) = G\{u0},
from Lemma 5.9 it follows that Algorithm LP Cocomparability correctly computes a longest normal
antipath of G(u0; 1; k) with right endpoint the vertex uy and, thus, sets `(uy;G(u0; 1; k)) = |P |. Since
the output of Algorithm LP Cocomparability is the maximum among the lengths {`(uy;G(u0; 1; k)) :
uy ∈ V (G(u0; 1; k))}, along with the corresponding antipath, from Lemma 5.9 it follows that Algorithm
LP Cocomparability computes a longest normal antipath P ′ of G(u0; 1; k) with right endpoint any vertex
uy ∈ V (G(u0; 1; k))) such that |P ′| = |P |. Therefore, we obtain the following result.

Theorem 5.3. Algorithm LP Cocomparability computes a longest antipath of a comparability graph.

5.4.2 Time Complexity

Let G be a comparability graph on |V (G)| = n vertices and |E(G)| = m edges. Given a Hasse diagram
of G, the time complexity of our algorithm is as follows.

Algorithm LP Cocomparability executes the subroutine process() for every induced sub-
graph Gruz (up; i; j) of G. In particular, the subroutine process() contains two procedures, the
procedure(bridge) and the procedure(append). The execution of the procedure(bridge) for the
subgraph Gruz (up; i; j) takes O(n2) time, due to the O(n2) pairs of antineighbors ux and uy of the vertex
ut in the graph Gruz (up; i; j). The execution of the procedure(append) for the subgraph Gruz (up; i; j)
takes O(n) time, due to the O(n) antineighbors ux of the vertex ut in the graph Gruz (up; i; j). Therefore,
the execution of the subroutine process() for the subgraph Gruz (up; i; j) takes O(n2) time.

Additionally, the subroutine process() is executed at most once for each subgraph Gruz (up; i; j) of
G. Since 1 ≤ i ≤ j ≤ k, up ∈ Hi−1, uz ∈ Lj , and 1 ≤ r ≤ |Lj |, it follows that there exist O(n5) such
subgraphs Gruz (up; i; j) of G. Thus, Algorithm LP Cocomparability takes O(n7) time.

In order to compute the length of a longest antipath, we need to store one value for every vertex uy
of Gruz (up; i; j), for every induced subgraph Gruz (up; i; j) of G. Thus, since there are in total O(n5) such
subgraphs Gruz (up; i; j), and since each one has at most O(n) vertices, we can compute the length of a
longest antipath in O(n6) space. Furthermore, in order to compute and report a longest antipath, instead
of its length only, we have to store an antipath of at most n vertices for each one of the O(n6) computed
values. Therefore, the space complexity of Algorithm LP Cocomparability is O(n7).

5.5 Concluding Remarks

In this chapter we presented a polynomial-time algorithm for solving the longest path problem on co-
comparability graphs, resolving thus the open question on the complexity status of the problem on
cocomparability and, also, on permutation graphs. We also help to shed some light on the borderline
between P and NP, since the longest path problem is known to be NP-complete on comparability graphs
and quasi-parity graphs, which are superclasses of permutation and cocomparability graphs, respectively.

It would be interesting to study the complexity of the longest path problem on distance-hereditary
and bipartite distance-hereditary graphs, since they admit polynomial solutions for the Hamiltonian
path problem, and also since the longest path problem has been proved to be NP-complete on chordal
bipartite graphs, HHD-free graphs, and parity graphs, while it is polynomial on ptolemaic graphs and
trees. Additionally, the same holds for the classes of convex and biconvex graphs, since the longest path
problem has been proved to be NP-complete on chordal bipartite graphs and polynomial on bipartite
permutation graphs.

79

perfect

quasi-parity

cocomparability
strongly perfect

Meyniel

perfectly
contractile

perfectly
orderable

weakly
chordal

trapezoid HHD-free parity

bipartite

co-chordal chordal chordal
bipartite

distance-hereditary

bipartite

distance-hereditary

convex

split

biconvex

strongly
chordal

undirected
path

directed
path

ptolemaic

tree

tolerance comparability

bounded
tolerance

proper

unit

tolerance

tolerance

P4-sparsepermutation

P4-reducible

cograph

bipartite
permutationinterval

proper
interval

quasi-threshold

threshold

?

?

?

NP

NP

NP

P

P

P
P

P

Figure 5.5: Illustrating a map of some classes of perfect graphs and the complexity status of the longest
path problem.

Figure 5.5 illustrates a map of some classes of perfect graphs and the complexity status of the longest
path problem.

• By NP we mark the classes for which the longest path problem has been proved to be NP-complete;
in fact, we obtain these results from the NP-completeness of the Hamiltonian path problem.

• By P we mark the classes for which polynomial solutions have been presented for the longest path
problem until now.

• With gray color we mark the classes of interval graphs and cocomparability graphs, as well as their
subclasses, for which we have proved within this work that the longest path problem admits a
polynomial solution.

• By the symbol ? we mark the classes for which the Hamiltonian path problem has been proved to
be polynomial, while the complexity of the longest path problem still remains an open question.

80

Chapter 6

Conclusions and Further Research

6.1 Colinear and Linear Graphs

6.2 Coloring Problems

6.3 Longest Path Problem

6.1 Colinear and Linear Graphs

In this work we introduced the colinear coloring on graphs and proposed a colinear coloring algorithm
that can be applied to any graph G. Based on the colinear coloring we de�ned two graph properties,
namely the �-colinear and �-colinear properties, and characterized known graph classes in terms of these
properties. We also de�ned and studied the graphs that are characterized completely by the �-colinear
or the �-colinear property, which form two new classes of perfect graphs, and which we call colinear and
linear graphs.

We also provide characterizations for colinear and linear graphs and prove structural properties. More
speci�cally, we show that the class of colinear graphs is a subclass of co-chordal graphs, a superclass of
threshold graphs, and is distinguished from the class of split graphs. Additionally, we infer that linear
graphs form a subclass of chordal graphs and a superclass of quasi-threshold graphs. We also prove that
any P6-free chordal graph, which is not a linear graph, properly contains a k-sun as an induced subgraph.
However, the k-sun is not a forbidden induced subgraph for the class of linear graphs and, thus, linear
graphs form a superclass of the class of P6-free strongly chordal graphs.

An interesting question would be to study structural and recognition properties of colinear and linear
graphs and see whether they can be characterized by a �nite set of forbidden induced subgraphs. More-
over, an obvious though interesting open question would be whether combinatorial and/or optimization
problems can be e�ciently solved on the classes of linear and colinear graphs. In addition, it would be
interesting to study the relation between the colinear chromatic number and other coloring numbers such
as the harmonious number and the achromatic number on classes of graphs.

Concerning the question of whether optimization problems can be e�ciently solved on the classes of
linear and colinear graphs, it would be interesting as a �rst step to study the complexity status of the
harmonious coloring problem and the longest path problem. From the results presented in Chapter 3
it follows that the harmonious coloring problem is NP-complete on the classes of colinear graphs and
disconnected linear graphs, while it still remains open on connected linear graphs. Additionally, the
longest path problem is NP-complete on both colinear and linear graphs, a result which follows from

81

v

w1 w2 w3

. . .

wk−1 wk

I

v1 v2 v3

. . .

vk−1
vk

K

w1 w2 w3

. . .

wk−1 wk

I

v v1 v2 v3

. . .

vk−1
vk

K

w1 w2 w3

. . .

wk−1 wk

I

v v1 v2 v3

. . .

vk−1
vk

K

Figure 6.1: Illustrating forbidden subgraphs F1, F2, and F3 (in the order they appear from left to right).
Note that, in all three graphs, the set K is a clique, and I is an independent set.

the NP-completeness of the problem on split strongly chordal graphs [58], which form a subclass of both
linear and colinear graphs.

Additionally, a promising and interesting area for further research is studying structural and recogni-
tion properties of colinear and linear graphs, and seeing whether they can be characterized by a �nite set
of forbidden induced subgraphs. In fact, we have done some progress towards this direction, and below
we present some preliminary results.

Briey, we build on our results presented in Chapter 2, where we proved some structural properties
for colinear and linear graphs, including the following theorem.

Theorem 2.1. Let F be the family of all the minimal forbidden induced subgraphs of the class of linear
graphs, and let Fi be a member of F . The graph Fi is either a Cn (n ≥ 4), or a P6, or it properly contains
a k-sun (k ≥ 3) as an induced subgraph.

Observe now that, if Sk is a k-sun graph, k ≥ 4, then from Theorem 2.1 and the de�nition of colinear
and linear graphs, it is easy to see that any P 6-free co-chordal graph which is not a colinear graph
properly contains an Sk graph as an induced subgraph. Additionally, from the de�nition of strongly
chordal graphs it is easy to obtain that for any k-sun graph Sk, k ≥ 4, the graph Sk contains a k′-sun,
k′ ≤ k, as an induced subgraph. From the above observations, and our study on colinear and liner graphs
in terms of forbidden induced subgraphs, we conjecture the following.

Conjecture 6.1. Any P 6-free co-chordal graph which is not a colinear graph properly contains a k-sun,
k ≥ 3, as an induced subgraph.

Let us now explain the graphs illustrated in Figures 6.1 and 6.2. We �rst explain the graphs illustrated
in Figure 6.1. Note that in all three graphs, the set K is a clique, and I is an independent set. In F1, the
vertex vk sees the vertex wk ∈ I, and also another vertex wi ∈ I such that i 6= k− 1. In F2, the vertex v
sees at least three vertex of I, such that for any two neighbors wi; wj ∈ I, i < j, of v we have i 6= j − 1
(mod k). In F3, the vertex v sees w1 ∈ I, and also another vertex wi ∈ I such that i 6= 2 and i 6= k. Also,
the vertex vk sees wk ∈ I, and also another vertex wi ∈ I such that i 6= k − 1 and i 6= 1.

We explain now the graphs illustrated in Figure 6.2. Again in all three graphs, the set K is a clique,
and I is an independent set. In F̃1, the vertex vk sees the vertex wk ∈ I, and also another vertex wi ∈ I
such that i 6= k− 1. Also, the vertex v sees the vertex w1 ∈ I and also every vertex of the set K \N(w1).
In F̃2, the vertex v sees at least three vertex of K, such that for any two neighbors vi; vj ∈ K, i < j, of
v we have i 6= j − 1 (mod k). In F̃3, the vertex v sees vk ∈ K, and also another vertex vi ∈ K such that
i 6= k − 1 and i 6= 1. Also, the vertex w1 sees v1 ∈ K, and also another vertex vi ∈ K such that i 6= 2
and i 6= k.

82

w1 w2 w3

. . .

wk−1 wk

I

v1 v2 v3

. . .

vk−1
vk

K

v

w1 w2 w3

. . .

wk−1 wk v

I

v1 v2 v3

. . .

vk−1
vk

K

w1 w2 w3

. . .

wk−1 wk v

I

v1 v2 v3

. . .

vk−1
vk

K

Figure 6.2: Illustrating the forbidden subgraphs F̃1, F̃2, and F̃3 (in the order they appear from left to
right). Note that, in all three graphs, the set K is a clique, and I is an independent set.

In sum, from Theorem 2.1, Claim 6.1, and after much work towards the direction of characterizing
colinear and linear graphs in terms of forbidden induced subgraphs, we conjecture the following.

Conjecture 6.2. Let G be a P6-free chordal graph. Then, G is a linear graph if and only if G is
(F1,F2,F3)-free and G is (F̃1,F̃2,F̃3)-free.

6.2 The Harmonious Coloring Problem

In this work we �rst show that the harmonious coloring problem is NP-complete on connected interval
and permutation graphs. Also we prove the NP-completeness of the problem on the class of split graphs.
Extending our results, we then prove that the harmonious coloring problem is NP-complete on the classes
of split undirected path graphs and colinear graphs. We also present a polynomial solution for the same
problem on the class of split strongly chordal graphs. The interest of this result lies on the fact that the
harmonious coloring problem is NP-complete on split graphs and strongly chordal graphs. In addition,
polynomial solutions for the problem were only known until now for the classes of connected cographs,
connected quasi-threshold graphs, and threshold graphs, all of which have a trivial solution; note that,
the harmonious coloring problem on disconnected quasi-threshold graphs is NP-complete.

An interesting next step in the study of the harmonious coloring problem would be to see if the
problem admits a polynomial solution on linear graphs. Since linear graphs form a superclass of both split
strongly chordal graphs and quasi-threshold graphs, the harmonious coloring problem is NP-complete on
disconnected linear graphs, while it still remains open on connected linear graphs. Obtaining a polynomial
solution of the harmonious coloring problem on connected linear graphs would be interesting, since most
of the known results for the harmonious coloring problem on special classes of graphs are NP-completeness
results; indeed, the only known non-trivial polynomial algorithm for the problem is our solution on split
strongly chordal graphs, which form a subclass of linear graphs.

6.3 The Longest Path Problem

In this work we presented a polynomial-time algorithm for solving the longest path problem on interval
graphs, which runs in O(n4) time and, thus, provided a solution to the open problem stated by Uehara
and Uno in [63] asking for the complexity status of the longest path problem on interval graphs.

Moreover, we studied the longest path problem on the class of cocomparability graphs, a well-known

83

class of perfect graphs which includes both interval and permutation graphs. Although the Hamiltonian
path problem on cocomparability graphs was proved to be polynomial almost two decades ago [23], the
complexity status of the longest path problem on cocomparability graphs has remained open until now;
actually, the complexity status of the longest path problem has been open even on the more special class
of permutation graphs. In this work, we presented a polynomial-time algorithm for solving the longest
path problem on the class of cocomparability graphs. This result extends our polynomial solution of
the longest path problem on interval graphs, and resolves the open question for the complexity of the
problem on cocomparability graphs, and thus on permutation graphs.

Additionally, through this work we help to shed some light on the borderline between P and NP,
since the longest path problem was known to be NP-complete on comparability graphs and quasi-parity
graphs [58], which are superclasses of permutation and cocomparability graphs, respectively.

It would be interesting to study the complexity of the longest path problem on convex and biconvex
graphs, which they admit polynomial solutions for the Hamiltonian path problem; the longest path prob-
lem is NP-complete on chordal bipartite graphs [58] which is a superclass of both convex and biconvex
graphs, and polynomial on bipartite permutation graphs [64] which is subclass of convex and bicon-
vex graphs. Additionally, the same holds for the classes of distance-hereditary and bipartite distance-
hereditary graphs. Indeed, the longest path problem is NP-complete on chordal bipartite graphs [58]
which is a minimal superclass of bipartite distance-hereditary graphs, and polynomial on trees [12] which
is a minimal subclass of bipartite distance-hereditary graphs. Additionally, the longest path problem
is NP-complete on the minimal superclasses of distance-hereditary graphs, namely HHD-free graphs
and parity graphs [58], while it is polynomial on ptolemaic graphs [65] which is a minimal subclass of
distance-hereditary graphs.

Therefore resolving the question concerning the complexity of the longest path problem on these
graph graphs, would sharpen the demarcation line between polynomially solvable and NP-hard cases of
the problem, for most of the well-known subclasses of perfect graphs.

84

Bibliography

[1] S.R. Arikati and C.P. Rangan, Linear algorithm for optimal path cover problem on interval graphs,
Inform. Process. Lett. 35 (1990) 149{153.

[2] K. Asdre and S.D. Nikolopoulos, NP-completeness results for some problems on subclasses of bipar-
tite and chordal graphs, Theoret. Comput. Sci. 381 (2007) 248{259.

[3] K. Asdre and S.D. Nikolopoulos, The 1-Fixed-Endpoint Path Cover Problem is Polynomial on In-
terval Graphs, Algorithmica (to appear).

[4] C. Berge, Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind, Wiss. Z.
Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10 (1961) 114{115.

[5] C. Berge, Graphs and Hypergraphs, American Elsevier, New York, 1973.

[6] A.A. Bertossi, Finding Hamiltonian circuits in proper interval graphs, Inform. Proc. Lett. 17 (1983)
97{101.

[7] A.A. Bertossi, Total domination in interval graphs, Inform. Proc. Lett. 23 (1986) 131{134.

[8] H.L. Bodlaender, Achromatic number is NP-complete for cographs and interval graphs, Inform.
Proc. Lett. 31 (1989) 135{138.

[9] F.T. Boesch and J.F. Gimpel, Covering the points of a digraph with point-disjoint paths and its
application to code optimization, J. of the ACM 24 (1977) 192{198.

[10] A. Brandst�adt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey, SIAM, Philadelphia, PA, 1999.

[11] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941) 194{197.

[12] R. Bulterman, F. van der Sommen, G. Zwaan, T. Verhoe�, A. van Gasteren, and W. Feijen, On
computing a longest path in a tree, Inform. Proc. Lett. 81 (2002) 93{96.

[13] N. Cairnie and K. Edwards, Some results on the achromatic number, J. Graph Theory 26 (1997)
129{136.

[14] G.J. Chang, Labeling algorithms for domination problems in sun-free chordal graphs, Discrete Ap-
plied Math. 22 (1988) 21{34.

[15] M.S. Chang, S.L. Peng, and J.L. Liaw, Deferred-query: An e�cient approach for some problems on
interval graphs, Networks 34 (1999) 1{10.

[16] M. Chudnovsky, N. Robertson, P.D. Seymour, and R. Thomas, The strong perfect graph theorem,
Annnals of Math. 164 (2006) 51{229.

[17] V. Chv�atal and P.L. Hammer, Aggregation of inequalities for integer programming, Ann. Discrete
Math. I (1977) 145{162.

85

[18] Y. Civan and E. Yal�cin, Linear colorings of simplicial complexes and collapsing, J. Comb. Theory A
114 (2007) 1315{1331.

[19] S. Cook, The complexity of theorem-proving procedures, Proc. 3rd Ann. ACM Symp. on Theory of
Computing, Association for Computing Machinery, New York, 151{158.

[20] D.G. Corneil, H. Lerchs, and L. Stewart Burlingham, Complement reducible graphs, Discrete Applied
Math. 3 (1981) 163{174.

[21] P. Csorba, C. Lange, I. Schurr, and A. Wassmer, Box complexes, neighborhood complexes, and the
chromatic number, J. Comb. Theory A 108 (2004) 159{168.

[22] P. Damaschke, The Hamiltonian circuit problem for circle graphs is NP-complete, Inform. Proc.
Lett. 32 (1989) 1{2.

[23] P. Damaschke, J.S. Deogun, D. Kratsch, and G. Steiner, Finding Hamiltonian paths in cocompara-
bility graphs using the bump number algorithm, Order 8 (1992) 383{391.

[24] P. Damaschke, Paths in interval graphs and circular arc graphs. Discrete Math. 112 (1993) 49{64.

[25] K.J. Edwards, The harmonious chromatic number and the achromatic number, in: Surveys in Com-
binatorics (R.A. Baily, Ed.), Cambridge University Press, Cambridge (1997) 13{47.

[26] K.J. Edwards and C. McDiarmid, The complexity of harmonious coloring for trees, Discrete Applied
Math. 57 (1995) 133{144.

[27] M. Farber, Characterizations of strongly chordal graphs, Discrete Math. 43 (1983) 173{189.

[28] M. Farber, Domination, independent domination, and duality in strongly chordal graphs, Discrete
Applied Math. 7 (1984) 115{130.

[29] T. Feder and R. Motwani, Finding large cycles in Hamiltonian graphs, Proc. of the 16th annual
ACM-SIAM Symp. on Discrete Algorithms (SODA), ACM (2005) 166{175.

[30] O. Frank, F. Harary, and M. Plantholt, The line-distinguishing chromatic number of a graph, Ars
Combin. 14 (1982) 241{252.

[31] H.N. Gabow, Finding paths and cycles of superpolylogarithmic length, Proc. of the 36th annual
ACM Symp. on Theory of Computing (STOC), ACM (2004) 407{416.

[32] H.N. Gabow and S. Nie, Finding long paths, cycles and circuits, Proc. of the 19th annual International
Symp. on Algorithms and Computation (ISAAC), LNCS 5369 (2008) 752{763.

[33] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
completeness, W.H. Freeman, San Francisco, 1979.

[34] M.R. Garey, D.S. Johnson, and R.E. Tarjan, The planar Hamiltonian circuit problem is NP-complete,
SIAM J. Computing 5 (1976) 704{714.

[35] F. Gavril, A recognition algorithm for the intersection graph of paths of a tree, Discrete Math. 23
(1978) 377{388.

[36] P.W. Goldberg, M.C. Golumbic, H. Kaplan, and R. Shamir, Four strikes against physical mapping
of DNA, Journal of Comp. Biology 2 (1995) 139{152.

[37] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics,
Vol 57), North-Holland Publishing Co., Amsterdam, The Netherlands, 2004.

86

[38] U.I. Gupta, D.T. Lee, and J.Y. Leung, E�cient algorithms for interval graphs and circular-arc
graphs, Networks 12 (1982) 459{467.

[39] M. Habib, R.H. Morhing, and G. Steiner, Computing the bump number is easy, Order 5 (1988)
107{129.

[40] F. Harary, Graph Theory, Addison-Wesley, 1969.

[41] F. Harary and S.T. Hedetniemi, The achromatic number of a graph, J. Comb. Theory 8 (1970)
154{161.

[42] F. Harary, S.T. Hedetniemi, and G. Prins, An interpolation theory for graphical homomorphisms,
Portugal. Math. 26 (1967) 453{462.

[43] CT. Ho�ang, On the complexity of �nding a sun in a graph, eprint arXiv:0807.0462 (2008).

[44] J. Hopcroft and R.M. Karp, A n5=2 algorithm for maximum matchings in bipartite graphs, SIAM
J. Computing 2 (1973) 225{231.

[45] J.E. Hopcroft and M.S. Krishnamoorthy, On the harmonious coloring of graphs, SIAM J. Alg.
Discrete Meth. 4 (1983) 306{311.

[46] A. Itai, C.H. Papadimitriou, and J.L. Szwarc�ter, Hamiltonian paths in grid graphs, SIAM J. Com-
puting 11 (1982) 676{686.

[47] D. Karger, R. Motwani, and G.D.S. Ramkumar, On approximating the longest path in a graph,
Algorithmica 18 (1997) 82{98.

[48] R.M. Karp, Reducibility among combinatorial problems, Complexity of Computer Computations,
Plenum Press, New York, 85{103, 1972.

[49] J.M. Keil, Finding Hamiltonian circuits in interval graphs, Inform. Proc. Lett. 20 (1985) 201{206.

[50] M. Kneser, Aufgabe 300, Jahresbericht der Deutschen Mathematiker-Vereinigung 58 (1955) 2.

[51] D. Kratsch, Finding dominating cliques e�ciently, in strongly chordal graphs and undirected path
graphs, Discrete Math. 86 (1990) 225{238.

[52] R. Lin, S. Olariu and G. Pruesse, An optimal path cover algorithm for cographs, Comput. Math.
Appl. 30 (1995) 75{83.

[53] L. Lov�asz, A characterization of perfect graphs, J. Combinatorial Theory B 13 (1972) 95{98.

[54] L. Lov�asz, Kneser's conjecture, chromatic numbers and homotopy, J. Comb. Theory A 25 (1978)
319{324.

[55] J. Matou�sek and G.M. Ziegler, Topological lower bounds for the chromatic number: a hierarchy,
Jahresbericht der Deutschen Mathematiker-Vereinigung 106 (2004) 71{90.

[56] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory, Society for Industrial and
Applied Mathematics, Philadelphia, 1999.

[57] C.L. Monma and V.K. Wei, Intersection graphs of paths of a tree, J. Comb. Theory B 41 (1986)
141{181.

[58] H. M�uller, Hamiltonian Circuits in chordal bipartite graphs, Discrete Math. 156 (1996) 291{298.

[59] S.D. Nikolopoulos, Recognizing cographs and threshold graphs through a classi�cation of their edges,
Inform. Proc. Lett. 74 (2000) 129{139.

87

[60] S.D. Nikolopoulos and L. Palios, Hole and antihole detection in graphs, Proc. 15th Annual ACM-
SIAM Symp. on Discrete Algorithms (SODA'04), (2004) 850{859.

[61] G. Ramalingam and C.P. Rangan, A uni�ed approach to domination problems on interval graphs,
Inform. Proc. Lett. 27 (1988) 271{274.

[62] A.A. Sch�a�er, A faster algorithm to recognize undirected path graphs, Discrete Applied Math. 43
(1993) 261{295.

[63] R. Uehara and Y. Uno, E�cient algorithms for the longest path problem, Proc. of the 15th annual
International Symp. on Algorithms and Computation (ISAAC), LNCS 3341 (2004) 871{883.

[64] R. Uehara and G. Valiente, Linear structure of bipartite permutation graphs and the longest path
problem, Inform. Proc. Lett. 103 (2007) 71{77.

[65] Y. Takahara, S. Teramoto, and R. Uehara, Longest path problems on ptolemaic graphs, IEICE
Trans. Inf. and Syst. 91-D (2008) 170{177.

[66] S. Vishwanathan, An approximation algorithm for �nding a long path in Hamiltonian graphs, Proc.
of the 11th annual ACM-SIAM Symp. on Discrete Algorithms (SODA), ACM (2000) 680{685.

[67] M. Yannakakis and F. Gavril, Edge dominating sets in graphs, SIAM J. Appl. Math. 38 (1980)
364{372.

[68] Z. Zhang, and H. Li, Algorithms for long paths in graphs, Theoret. Comput. Sci. 377 (2007) 25{34.

[69] G.M. Ziegler, Generalised Kneser coloring theorems with combinatorial proofs, Inventiones mathe-
maticae 147 (2002) 671{691.

88

Index

k-sun, 4, 8, 12, 20, 29, 40, 41, 81, 82
3-PARTITION problem, 32

actual edge, 16, 17
algorithm

deterministic, 5
exponential time, 5
nondeterministic, 5
polynomial time, 5, 14, 21, 29, 41, 47, 48, 50,

66
antihole, 3
antineighbors, 1, 63, 79
antipath, 1, 60, 62{64

Berge, 2
binormal path, 48{52, 56, 57
bipartite graph, 8, 16, 40, 43, 60, 79

characteristic tree, 37
chordal graph, 3, 4, 8, 12, 19{21, 35, 37, 40
chromatic number problem, 35, 37
clique, 1{4, 13, 14, 16, 17, 19, 29, 33{38, 40{42, 47,

82, 83
clique set, 7, 11, 13, 36
co-chordal graph, 3, 8, 12, 16, 18, 19, 81
cocomparability graph, 3, 10, 60{63, 84
cographs, 8
colinear coloring, 7, 11{14, 21, 36, 39
colinear graph, 8, 12, 18, 19, 32, 36{38, 40
comparability graph, 3, 4, 35, 61{64, 84
complexity class

NP, 5
P, 5

computability, 4
computational complexity, 4, 15, 32, 36, 42, 44, 50,

57, 79
connector vertices, 47, 48
cycle, 2, 3, 19, 41

DAG associated to a graph, 14, 15, 39
degree, 1, 23, 34
distance, 2, 8, 21, 24, 25, 31, 47
dynamic programming, 10

Hamiltonian graph, 9, 43, 59
Hamiltonian path, 9, 10, 43, 44, 59{62, 64, 79
harmonious coloring, 8, 9, 31, 32, 36, 38, 40{42
Hasse diagram, 4, 61
hereditary, 3, 4, 38, 44, 61
hole, 2, 3, 17, 19

independent set, 1{4, 12, 19{22, 35, 37{41, 52, 62,
82, 83

intersection model, 4, 44, 45, 47
interval graph, 4, 8{10, 31, 32, 35, 42{45, 47, 56, 57,

60, 83
intractability, 5

length, 1, 2, 5, 9, 21, 43, 49, 50, 52, 56, 57, 59, 68,
73, 79

linear graph, 8, 12, 18{20, 29, 32, 37
linear order, 2, 61
longest path, 9, 10, 43, 47, 48, 56, 57, 59, 60, 62, 63,

66, 68

monotone path, 62{64

neighborhood, 1, 14{16, 35, 38, 57
neighborhood intersection graph, 40{42
normal antipath, 63, 64, 68{70, 72, 73, 78
normal path, 45, 48
NP-complete, 6, 29, 30, 32, 35, 36, 38, 40, 79
NP-hard, 5, 31, 32, 43, 59, 84
number

chromatic, 2, 8
clique, 2, 8
clique cover, 2
colinear chromatic, 7, 11, 13, 14, 19, 36, 39
harmonious chromatic, 8, 9, 31{33, 41
independence, 2
stability, 2, 8, 12

ordering
layered, 61{63, 66{68, 70
right-end, 45, 47
strong elimination, 4, 20{22, 40

pair-complete coloring, 31, 35

89

partial order, 2, 3, 22, 60{64
path, 1, 3, 15, 21, 33, 38, 43, 45, 47, 59, 62
perfect

graph, 2, 3, 8, 12, 16{18, 44
property, 2

Perfect Graph Theorem, 2
permutation graph, 4, 9, 10, 31, 33, 35, 44, 60, 79,

83, 84
polynomial transformation, 5
proper vertex coloring, 2, 8, 12, 13, 23, 31, 32, 35,

41, 42
property

�-colinear, 8, 12, 16, 18
�-colinear, 8, 12, 16{18

quasi-threshold graph, 3, 8, 16{19, 32, 37, 42

reduction, 5, 35, 37
right endpoint, 1, 45, 47, 49{52, 55, 68, 72, 73

split graph, 3, 8, 9, 12, 18, 32, 35, 36, 40, 43, 60, 81
stable set, 1, 2
stable vertices, 47, 48
stable-connection graph, 47{50
strong perfect graph

conjecture, 3
theorem, 3

strongly chordal graph, 4, 8, 9, 12, 19, 20, 32, 40{43,
60

technique
dynamic programming, 6, 44, 47
greedy, 6
reduction, 6

threshold graph, 3, 8, 10, 12, 16, 18, 32, 36, 37, 42,
44, 60, 81

time complexity function, 5
tree, 8, 32, 44, 60, 79
typical path, 45

undirected path graph, 4, 9, 31, 37, 38, 83

90

Author's Publications

• K. Ioannidou and S.D. Nikolopoulos, Colinear coloring on graphs, 3rd Annual Workshop on Algo-
rithms and Computation (WALCOM'09), LNCS 5431 (2009) 117{128.

• K. Ioannidou and S.D. Nikolopoulos, Colinear coloring and colinear graphs, Technical Report TR-
2007-06, Department of Computer Science, University of Ioannina, 2007 (submitted to journal).

• K. Asdre, K. Ioannidou, S.D. Nikolopoulos, The harmonious coloring problem is NP-complete for
interval and permutation graphs, Discrete Applied Math. 155 (2007) 2377{2382.

• K. Ioannidou and S.D. Nikolopoulos, Harmonious coloring on subclasses of colinear graphs, 4rd
Annual Workshop on Algorithms and Computation (WALCOM'10), accepted.

• K. Ioannidou, G.B. Mertzios, and S.D. Nikolopoulos, The longest path problem is polynomial on
interval graphs, 34th International Symposium on Mathematical Foundations of Computer Science
(MFCS'09), LNCS 5734 (2009) 403{414.

• K. Ioannidou and S.D. Nikolopoulos, The longest path problem is polynomial on cocomparability
graphs, Technical Report TR-2009-28, Department of Computer Science, University of Ioannina,
2009 (submitted to journal).

91

Short CV

Kyriaki Ioannidou was born in Larnaka (Cyprus) on the 6th of August, 1982. She received a B.Sc in
Mathematics from the Department of Mathematics, Aristotle University of Thessaloniki (2000-2004),
and a M.Sc in Analysis, Design & Management of Information Systems from the London School of
Economics and Political Science (2004-2005). Since 2005 she has been a Ph.D student at the Department
of Computer Science, University of Ioannina, and she received her Ph.D. on the 11th of December, 2009.
Her research interests are in design and analysis of algorithms, graph theory, and graph algorithms. She
has studied characterizations of perfect graph classes, and algorithms for optimization problems as well
as NP-complete problems on classes of perfect graphs. Her research work has been published at journals
and conferences.

93

