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EKTENHY IIEPIAHUH >TA EAAHNIKA

Xaodvng Baotietog tou Owpd xou tng Ppdowe.

Awaxtopind Atmiwua, Turua Hinpogopinic, Havemothwo Ioavvivwy, EAidda. lodviog,
20009.

Tithog: Teyvixée Mnyovixhic Manone yia Awayelplon I'viong oe TTohupeoud Aedouévoa.
EmupBiénovrag: Aploteldng Adxog.

H Awtpi31, eotidleton ota {nthuota tne katdTunong (video segmentation) xo avanapd-
otaons Pivreo (video representation) ue tn ypfion texvikdr unyavikns udnong (ma-
chine learning techniques), xaddc xon oY €QUEUOYY| TV TROTEWOUEVLY PeVOdWY oTa
TpoBAAuaTa TS TEpikng apovtdpiotou Pivteo (video rushes summarization) xou maparo-
Aovnong péow Pivreo (video surveillance).

Karoapyrv eletdletar 1o younidtepo eninedo xatdtunons Pivieo mou oyetiletal Ue To
mpdPAnpa tns aviyvevons twv opiwv twv mAdverv (shot boundary detection). Ilpotetvetar
wa pedodoroyio ydinong pe eniBiedn mou yenowonolel Eva GUVORO YUPAXTNRIOTIXWY TOU
€)0UV GYEDLACTEL €WXE Yo VoL EXPEACOUV TN CUVIPEL TWV EXOVOTAUGIWY GE o YELTOVLY.
‘Eva ovotnua taé&wdpunong SVM (Support Vector Machines) exnaideteton 1660 yior Tov
EVIOTIOUO TWV 0plwY TV TAAVWY OGO XAt Yo TO YULUXTNEWOUS TwV UETUBAoE®Y UETAED TwY
TAAYOV.

Y1n ouvéyeta mpotefveTon €vag ahyoptduog €faywyris xapakTnpioTIkGY €1KovoTAQIoIwY
(key-frame extraction) evéc mAdvou mou Booiletan oe teyvixéc paouatikis opadoroinons
(spectral clustering). H npotewduevn uédodoc noupéyel enione wa extiunon tou aprduod twy
YARUXTNPLOTIXWY ELXOVOTAUCIWY eEETACOVTAS TIC LOTIIES TOU Tivoxo OUOLOTNTAG UETAED TRV

eovomhauciov evog mAdvou. To elaydueva yopaxtnetoTixd exovomlaioto eivor Lovadixd,

xiil



un emavolopBavoueva xow cuVohilouy tXavoToNTIXE TO TEQIEYOUEVO TOU XIVE TAAVOL.

Kotomy npoteivetan évoc ahydprduoc yioo tny katdtunon evds Piveeo oe oknrés (video
scene segmentation). To nhdva evoc Bivteo apyixd oUadOTOLOUVTOL GE OPABES YENOILOTOLN-
VTOC TEYVIXES QAOPATIXTC ouadomoinong. Xtr ouvéyela, o xdde mhdvo avTioTory(eTon
wio etieéta (label) pe Bdon v opdda otny onolo avixer. Lo v aviyveuon twv opiwyv
TV oxnveY avalntolye ahhayés oto potifo TwV ETXETWV Twv TAdvwy. [ autd To
Aoyo yenowonoeiton évac alyoprduoc evduypdupions axodovdidr (sequence alignment
algorithm), o omolog cuyxpiver oxohoudie and cuuBolixés etxéteg mhdvwy. To dpwa
WY oxNVeY eviormilovial oto yeovixd onueio Yo T onola o ahyderdpog eLIUYEAUULOTS
oxONOVNOY TOREYEL YAUNAES TIUES.

Y1n ouvéyeta mpotetvetan uio wédodog yia Ty vPnAol emmédov kardTunon plas tawviag
(high-level movie segmentation), dnh. v xotdtunon oe oxnvéc xon xepdiato (chapters).
H pédodoc yenowonotel teprypagels tomxdy yapaktnpionixdy (local invariant descriptors)
YL TNV AVATUEdoTAGT) TV TAAVWY UE o onpactohoyixt| teptypagy|. 1o ouyxexpuéva, éva
Aebiddyro ontikdy Aééewr  (visual word vocabulary) mopdyeton and touc meprypagpeic o
éva TAGvo avamapioTaton and Eva IGTOYPUPHO ToU EXPEACEL T1) CUYVOTATA EUPAVIONS TV
TepLYpapéwy Tou TAdvou o€ xdve AEEN Tou Aeduhoyiou. Twldetdvrag o mpocéyyion and
10 TED{0 TNG XATATUNONS AEWEVWY, AUTE T CNUACIOAOYIXE LOTOYPAUUATE OUOAOTO0VTAL
OE OYECT UE YELTOVIXY LOTOYQIUUATO YPNOILOTOWVIAG WUid YXAOUGOLAVY] CUVERTNOY) TUPTVYL
(gaussian kernel). To tomixd péyiota g Slagopds WY OUANOTOUUEVWY 1OTOYROUUATWY GE
BLpopeS YpOVIXES XMUAXES AVTIGTOLYOUY GTA GELAL TOV OXNVMY/XEQURAWY.

‘Eva dhho Chtrua mou yehetdrar oTr dtateBy| ebvar to mpdBAnuo tne mepidning apovtdpr-
otou Pivteo (video rushes summarization). To agovtdpioto Bivieo neptéyet apxety| nepttty
TATROYOplN, OTWS HOVOYEWU EXoVOTAAloLa, 0AAG xan eTavolopfavoueva TAdva. O ot6yog
elvon 1 amoudxpuvon TV aVETWUUNTLY ELXOVOTAMGCIWY GhAd XaL TNG ETUVIAAUPAVOUEVTS
TAnpogoplouc. Ileprypagels TomX®WY yopaxTnEIoTIXWY xaL 10Toypdupata Sedluvong akuwy
(edge direction histograms) ypnowonoohvTon yio Ty ATopdxpeuveT Twy ovemtuunTwy exo-
vomhausiwy. 3Tr cuvéyela, oplleton éva Yétpo ouotdTnTag PETUE) TAdVeY Bactouévo otny

OTTXY] OUOLOTNTA TWY YUPAXTNEOTIX®Y ExovoThaciwy toug. Me Bdon autd To pétpo

Xiv



TOQOUOLL TAAYAL OUUDOTIOOUVTUL GE OUABES Xt EVa WOVO TAGvo amd xdle oudda xpauteitan
WG AVTITEOCKTEVTIXG, anakelpovTag £Tol emavahauBavoueva tAdva. Téhog, emhéyovtag éva
aptdud EOVOTAUGIWY TPV Xl UETE amd Ta YAAXTNRIOTIXG ExoVoTAdicLo xddE avTimpocn-
TELTIXOY TAGVOU, xatahiyoupe oty TeAxr TepiAnd Tou apyxol axatépyacTou Bivieo.
Téhog ot dtateiBn mpoteiveton Evag ahyopriuog yia aviyveuon kal XapaKTnpiops yeyo-
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In this thesis, we study the video segmentation and representation problems using
machine learning techniques. We also consider two video analysis applications such as
video rushes summarization and video surveillance.

At first we examine the first level of video segmentation which is the shot boundary
detection problem. We propose a supervised learning methodology that uses a set of
features that are specifically designed to capture the variation between adjacent frames
and the contextual information in a neighborhood of frames. A support vector machine
(SVM) classifier is trained both to locate shot boundaries and characterize transition
types in videos with different characteristics.

Next we present a key-frame extraction algorithm that is based on spectral clustering
and the fast global k-means algorithm. The proposed method also provides an estimation
of the number of clusters using elements from spectral graph theory. The extracted key-
frames are unique, non-repetitive and summarize the video shot content. This is also
indicated from numerical experiments, where appropriate quality measures are computed.

Then a video scene segmentation algorithm is proposed. Shots are clustered into groups
using the improved spectral clustering algorithm and a label is assigned to each shot
according to the group that it belongs to. In order to detect scene boundaries, we search

for changes in the patterns of shot labels. Therefore, a sequence alignment algorithm is
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applied to compare sequences of shot labels. Scene boundaries correspond to low score
values of the sequence alignment algorithm. Numerical experimental results on several
videos indicate that the proposed method accurately detects most scene boundaries, while
providing a good trade off between recall and precision.

Next we present a high-level movie segmentation algorithm. Local invariant descriptors
are employed to provide a semantical shot representation through visual word histograms.
The visual word histograms of shots are temporally smoothed using a gaussian kernel
with respect to neighboring histograms to preserve useful contextual information. The
semantic smoothing process at different time scales results in efficient movie segmentation
at different high-levels, such as scenes and chapters.

Based on the above methods for video segmentation and key-frame extraction, a video
rushes summarization algorithm has been proposed. Fdge direction histograms and local
invariant descriptors are first employed to remove useless frames from the initial video.
Next in order to remove repetitive shots, a shot similarity metric is computed based
on a sequence alignment algorithm on the key-frames of the shots under comparison.
Finally, by selecting a number of frames around each key-frame, the final video summary
is generated constituting an efficient representation of the initial video.

Finally an event detection and classification algorithm is proposed for video surveil-
lance sequences. The method employs local invariant descriptors to segment the video se-
quence in segments/events and describe each video segment with a visual word histogram.
Two different dissimilarity metrics between events are defined based on the computed vi-
sual word histograms and machine learning techniques are employed to classify events

into predefined categories.
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CHAPTER 1

INTRODUCTION

[LT Video Indexing and Retrieval

Video Segmentation and Representation

L3 Machine Learning Problems

[[4] Thesis Contribution

1.1 Video Indexing and Retrieval

In recent years, there has been a significant increase in the availability of high quality
digital video as a result of the expansion of broadband services and the availability of large
volume digital storage devices. Due to the extended use of videos in several applications
such as distance learning, video surveillance, internet-TV, digital libraries and video on
demand, as well as the the thousands of produced movies and documentaries, a large
amount of video information is added to the repositories every year. Consequently, there
has been an increase in the need to access this huge amount of information and a great
demand for techniques that will provide efficient indexing, browsing and retrieving of

video data.



Content-based video database modeling, representation, summarization, indexing, re-
trieval, navigation and browsing have emerged as challenging and important problems
in computer vision and database management. Video structure parsing is an initial step
to organize the content of videos. Video data are typically organized in an hierarchical
structure [44] [32]. Such structure is obtained through video segmentation into meaningful
pieces of information, either physical (shots) or semantical (scenes or chapters).

Another important problem is video browsing and summarization, i.e. the representa-
tion of the whole content of a video in a form as concise and accessible as possible [92] [59].
The need behind such representation is that users are often interested to inspect only part
of the video, and it should be possible to locate such segment without watching the whole
video. The most common approach is to represent the shots or the scenes of each video
with a sequence of key-frames, which are the most representative frames of the video
content. In this way, few images can summarize several minutes of a video. Moreover, a
user can access the video and search its content by referring to the key-frames without
watching the whole content.

A successful segmentation and representation of a video is important for video clas-
sification, indexing and retrieval [25]. Automatic or semi-automatic methods have been
proposed to categorize the video into predefined categories. However, this is a quite chal-
lenging task due to the semantic gap, defined as the problem of accurately classifying
multimedia content from automatically extracted low-level features. Alternatively, videos
can be indexed in video databases using selected keywords. The last stage of video anal-
ysis is content-based video retrieval, where a user can search and retrieve selected video
segments from a video database [70]. There are three widely accepted approaches to ac-
cess a video database. The first one is query by example, where users provide an example
video clip and retrieve a set of similar videos. In the second approach, users prefer to
query the video database via high-level semantic visual concepts. Finally, in the query
by keyword approach, the users query the video database via keywords that are used for
indexing the videos in the databases.

In this thesis, we focus on the problems of efficient segmentation and representation of



a video sequence. More specifically, the first step towards automatic annotation of digital
video sequences is to divide the video stream into a set of meaningful and manageable
segments (shots) that are used as basic elements for indexing [44]. The shot is defined as
an unbroken sequence of frames recorded from one camera. Proceeding further towards
the goal of video indexing and retrieval requires the grouping of shots into high level
video units such as scenes and chapters (stories) [62]. A scene refers to a group of shots
that take place in a fixed setting or describe an action or event. A chapter or story
is a more compact representation of a video corresponding to a group of semantically
correlated scenes. Concerning the video representation problem, each video segment (shot
or scene) is represented with still frames (key-frames) or a short sequence of frames (video

summary).

1.2 Video Segmentation and Representation

Under the visual perspective, a video is a three-dimensional signal, in which two dimen-
sions reveal the visual content in the horizontal and vertical frame direction, and the third
one reveals the variations of the visual content over the time axes. Shot boundary detec-
tion aims to temporally segment the video into consecutive shots (low-level segmentation).
The basic idea is to identify the discontinuities of visual content [85].

There are three major challenges concerning the shot boundary detection problem [85].
The first one is the representation of the visual content of each video frame. The most
common approach is to extract different features from each frame and obtain a compact
content representation (i.e. histogram). Video segmentation techniques can be applied
on a variety of features extracted from the video frames such as wvisual, audio, motion
and text features. Visual features such as color, texture and shape provide important
information to recognize the content of the video. Audio features are not commonly
used, but sometimes they provide additional and useful information for video. Motion

features are proposed to exploit the spatio-temporal relation of video frames and are



usually employed to describe the relation of moving objects across time. Text features are
extracted from embedded objects in videos and contain rich semantic information related
to the multimedia content. The extracted features must be invariant to several content
variations such as illumination changes and object/camera movement. Furthermore, the
more details feature captures, the more sensitive it is, since the feature can even reflect
the tiny changes of visual content. Thus, the feature within shots should remain relatively
stable, whereas between different shots should exhibit considerable change.

The second challenge concerns the construction of a discontinuity signal to identify
the shot transitions. The most common practice is to calculate the discontinuity (dis-
tance) values of adjacent frames. In this way, the visual content flow is transformed into
a 1-D temporal signal. This signal should keep low magnitudes within shots, while should
increase to high values surrounding the positions of shot transitions. However, the tem-
poral signal obtained by inter-frame comparison of features is not always stable enough
to various disturbances such as abrupt illumination variation and large object/camera
movement. Thus, contextual information expressing the variations in a neighborhood of
a particular frame should also be considered.

Finally, classification of discontinuity values is a critical issue. The most common
approaches compare discontinuity values with predefined thresholds or employ machine
learning techniques to classify discontinuity values into shot transitions or normal transi-
tions.

Video segmentation into high level units such as scenes and chapters (high-level seg-
mentation) is a very difficult but also challenging task [32] 62]. The difficulty stems from
the fact that high level units do not have physical boundaries like shots, but their bound-
aries correspond to changes in the semantic content of the movie. A common approach to
detect scene boundaries is to compare adjacent shots and construct a discontinuity signal
similar to the shot boundary detection problem. The constant change of the video con-
tent and the fact that adjacent shots do not always describe the same setting, necessitate
the consideration of contextual information in a neighborhood of shots. Furthermore,

shot representation should be enriched with semantic features, extracted directly from



the video content or by classifying shots using a predefined lexicon of semantic concepts.

Shot representation is also an important issue, since it is a pre-processing step for
scene and chapter segmentation [92]. Shots are usually represented as a set of key-frames.
The extracted representative frames (key-frames) should fulfil some requirements. Firstly,
the key-frames should represent the whole video content without missing important in-
formation and secondly, these key-frames should not be similar, in terms of video content
information, in order not to contain redundant information.

Apart from typical video database applications, video segmentation and representation
can also be extended and provide solution to other video-based applications. Two such
applications that are examined in this thesis are video rushes summarization [59] and
video surveillance [34]. The goal of video rushes summarization is to create a condensed
version of the initial video, so that judgements about the video content can be made in
less time and effort than using the initial video. Video rushes contain many repetitive
information and junk frames that should be removed from the final video summary. In
video surveillance systems, the goal is to detect and characterize the major events of the

video surveillance sequence into predefined categories.

1.3 Machine Learning Problems

Machine learning is the area of artificial intelligence that attempts to provide machines
with the ability to learn from examples [3, [43]. More specifically, in machine learning
problems we make use a set of observations (examples), which we call training set, in
order to make predictions for unseen events. In the area of machine learning there are two
major categories of problems; supervised learning and unsupervised learning. In supervised
learning, every training example of the training set has the form of a pair (input, target),
where input contains the features of the examples we want to characterize and target, the
desired output result. The aim is to build a model that can be used to make predictions

for the outputs of previously unseen inputs. On the other hand, unsupervised learning



methods assume a training set that only consists of observed inputs. The objective is to
learn a model of these inputs, which can later be used for example to predict missing values
of some of the observations, or to group similar observations into clusters. Semi-supervised
machine learning methods combine characteristics of both supervised and unsupervised
methods. These methods, require that some of the input observations are associated with
the corresponding desired output, but they can also take advantage of available input
observations whose corresponding desired output is unknown.

Supervised methods are further divided in two categories depending on the type of
the outputs. In classification problems the outputs are labels that distinguish in which
category the input belongs to. In contrast, if the outputs are continuous variables, the
problem is known as regression. A popular classification method used in this thesis is the
Support Vector Machines (SVM) [17].

Unsupervised methods consider among others the problems of density estimation and
clustering. In density estimation problems, we wish to find the distribution that could
have generated a set of observations with high probability. In clustering problems a set
of examples is given that we wish to group them into clusters such that the examples
in a cluster are similar and different from the examples in other clusters. To solve these
problems we can use probability density estimation methods, such as mizture models and
assign one cluster to each mixture component. A similar approach is followed in the k-
means algorithm, where each example is assigned to the cluster whose center (also called
centroid) is nearest. A quite different method is the hierarchical clustering algorithm,
which is based on the gradual formation of clusters. The agglomerative algorithm starts
with one cluster for each example and builds the hierarchy by progressively merging clus-
ters with minimal distance. Another clustering approach based on graph theory is spectral
clustering [56]. A graph can be constructed where the distances between prototypes cor-
respond to the weights of edges of the graph. Clusters are obtained by analyzing the
spectrum of the similarity matriz. Several clustering methods have been considered in

this thesis as it will be described in the following chapters.



1.4 Thesis Contribution

The contribution of the thesis is twofold. On one hand, we focus on the efficient seg-
mentation of a video into shots, scenes and chapters and we also provide an efficient
shot representation scheme. On the other hand, using the proposed algorithms for video
segmentation and representation, we provide efficient methods for video rushes summa-
rization and event detection in video surveillance sequences. Next, we summarize the
contributions of this thesis.

In Chapter 2| we present a supervised learning methodology for video shot detection
[T, 15]. The main novelty of this approach is that shot transitions are detected without
using any thresholds, which is the main drawback of the majority of shot detection al-
gorithms. In the proposed approach, novel features that describe the variation between
adjacent frames and the contextual information in a neighborhood of frames become in-
puts to a SVM classifier which categorizes transitions to three classes: normal, abrupt and
gradual. Another novelty of out approach is that all types of shot transitions are detected
using a single classifier. Numerical experiments are presented that compare our algorithm
with threshold dependent methods and another supervised learning methodology.

In Chapter B we consider the key-frame extraction problem [I0, 14]. In order to find
unique and non repetitive frames that summarize the shot content, frames are clustered
into groups using an enhanced spectral clustering algorithm. In the clustering stage after
the eigenvector computation we employ the very efficient global k-means algorithm and
the medoids of the clusters are characterized as key-frames. A novelty of the proposed
approach is that the number of key-frames is estimated using results from spectral graph
theory, by examining the eigenvalues of the similarity matrix corresponding to pairs of shot
frames. Appropriate quality measures indicate that the proposed approach outperforms
traditional techniques and provides efficient summarization and reconstruction of the
video sequence from the extracted key-frames.

The efficient shot detection and representation methods are the first steps towards

the definition of shot similarity metrics and the segmentation of videos into high-level



units. In Chapter , we present a scene detection algorithm [9] [14] that is based on the
improved spectral clustering of Chapter 3 and on sequence alignment methods. In the
method we propose, to overcome the difficulty of having prior knowledge of the scene
duration, the shots are clustered into groups based only on their visual similarity and a
label is assigned to each shot according to the group that it belongs to. Next, a sequence
alignment algorithm is applied to detect when the pattern of shot labels changes, providing
the final scene segmentation result. Experiments on TV-series and movies indicate that
the proposed scene detection method accurately detects most of the scene boundaries
while preserving a good tradeoff between recall and precision.

In Chapter |5, we present a high-level movie segmentation algorithm [I3]. The main
novelty of this approach is that movie shots are represented with local invariant descrip-
tors instead of color histograms, resulting into a visual words histogram representation.
Using a technique from text document segmentation, the visual words histograms of shots
are temporally smoothed (using a gaussian kernel) with respect to neighboring histograms
to preserve valuable contextual information. As indicated from numerical experiments,
the semantic smoothing process at different time scales provides the efficient movie seg-
mentation into different high-levels, such as scenes and chapters.

In Chapter [6] we propose a system for video rushes summarization [I2]. A video
sequence is segmented into shots and key-frames are extracted for each shot. Then,
the edge direction histogram of each key-frame is computed in order to determine if
it is a monochrome frame or a colorbar. In order to remove redundant information, we
compare shots using a sequence alignment metric between the sets of their key-frames. The
SIFT descriptors of the key-frames of the remaining representative shots are compared
with a database of descriptors of frames containing clapboards. In that way, frames
with clapboards are identified and removed from the video summary. Finally, the video
summary is generated by concatenating frames around the key-frames of the remaining
shots. Experimental results indicate that our system exhibited good performance in the
Rushes Summarization task of TRECVID 2008.

In Chapter[7] we describe a system for event detection and classification in video rushes



surveillance sequences. First, the video is segmented into events using the local invariant
descriptors of video frames. Next, we compute the visual words histograms for each
video event and we employ machine learning techniques to classify events into predefined
categories. Numerical experiments indicate that the proposed approach provides high
event detection and classification rates.

Finally, in Chapter [§| we provide a review of the results of this thesis and we suggest

some interesting directions for further research.



CHAPTER 2

A SUPPORT VECTOR MACHINE
APPROACH FOR DETECTION OF VIDEO

SHOT TRANSITIONS

2.1 Introduction

Feature Selection

Feature Vector Formulation for Shot Boundary Classification

2.4 Support Vector Machine Classifier

Numerical Experiments

Conclusions

2.1 Introduction

The first step towards indexing, browsing and retrieval of video data is the efficient seg-

mentation of video into smaller physical units. The smallest physical segment of a video
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is the shot and is defined as an unbroken sequence of frames recorded from one cam-
era. After this segmentation has been accomplished, each shot can be summarized with
one or more frames called key-frames which are selected using spatial and temporal fea-
tures. Further analysis requires grouping of shots into scenes with similar content. In this
Chapter, we will focus on the first stage of the video segmentation problem which is shot
boundary detection. Shot transitions can be classified into two categories. The first one
which is the most common is the abrupt cut. An abrupt or hard cut takes place between
consecutive frames due to camera switch. In other words, a different or the same camera
is used to record a different aspect of the scene. The second category concerns gradual
transitions such dissolves, fade-outs followed by fade-ins, wipes and a variety of video
effects which stretch over several frames. A dissolve takes place when the initial frames
of the second shot are superimposed on the last frames of the first shot. A fade-out is a
gradual decrease in the intensity of a frame resulting to a black frame, while fade-in is the
opposite i.e., starting from a black image the intensity of the frame gradually increases.

In Fig. and Fig. we present examples of a hard cut and a dissolve, respectively.

Figure 2.2: Visual example of a dissolve.

A formal study of the shot boundary detection problem is presented in [85]. In [31],
the major issues to be considered for the effective solution of the shot-boundary detection
problem are identified. A comparison of existing methods is presented in [6, 19} 29] 47].
There are several approaches to the shot-boundary detection task most of which involve
the determination of a predefined or adaptive threshold. A simple way to declare a hard

cut is pair-wise pixel comparison [90]. This method is very sensitive to object and camera
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motions, thus many researchers propose the use of a motion independent characteristic,
which is the intensity or color, global or local histogram [54, 90]. The use of second order
statistical characteristics of frames, in a likelihood ratio test, is also suggested [40)], 90].
More specifically, the likelihood ratio test is used to compare corresponding blocks of
successive frames. Shot transitions are identified when the number of changed blocks
is above a predefined threshold. To overcome the difficulties that arise from the use
of global thresholds several adaptive thresholding methods are reported [77, 83, [86]. In
[87], an algorithm is presented based on the analysis of entering and exiting edges between
consecutive frames. This approach works well on abrupt changes, but fails in the detection
of gradual changes. In [7], mutual information and joint-entropy between frames are used
for the detection of cuts, fade-ins and fade-outs. An original approach to partitioning of
a video into shots based on a foveated representation of the video is proposed in [5].

A quite interesting approach is presented in [85], where the detection of shot bound-
aries is based on a graph partitioning problem. More specifically a weighted graph is
constructed where each frame is treated as a node and the edges represent the similar-
ity between corresponding frames. Then, the min-max criterion is used to partition this
graph and the scores for all feasible cuts are calculated. As it concerns the gradual tran-
sitions, multi-resolution graphs are constructed which are further partitioned using the
same criterion. Finally, support vector machines with active learning are implemented to
declare boundaries and non-boundaries. A support vector machine classifier with color
and motion features is also employed in [20]. In that work, the first minutes of a video
have been used for training and the rest for testing. In [27], the authors propose as inputs
to SVMs, wavelet coefficient vectors within sliding windows.

A variety of methods have been proposed for gradual transitions detection, but still
are inadequate to solve this problem due to the complicated nature of such transitions.
In [90], a twin-comparison technique is proposed for hard cuts and gradual transitions
detection by applying different thresholds based on differences in color histograms between
successive frames. In [57], a spatio-temporal approach was presented for the detection of

a variety of transitions. There is also research specifically aimed towards the dissolve
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detection problem. In [4§], the problem of dissolve detection is treated as a pattern
recognition problem. Another direction, which is followed in [28, [31) 46], is to model
the transitions types by presupposing probability distributions for the feature difference
metrics and perform a posteriori shot change estimation. It is worth mentioning that the
organization of the TREC video shot detection task [68] provides a standard performance
evaluation and comparison benchmark.

In summary, the main drawback of most previous algorithms is that they are threshold
dependent. As a result, if there is no prior knowledge about the visual content of the video
that we wish to segment into shots, it is rather difficult to select an appropriate threshold.

In order to overcome this difficulty we propose in this Chapter a supervised learning
methodology for the shot detection problem [I11 [I5]. The herein proposed approach does
not use thresholds and can actually detect shot boundaries of videos with different visual
characteristics. Another advantage of the proposed approach, apart from the fact that
we do not use any thresholds, is that we can detect hard cuts and gradual transitions
at the same time in contrast with existing approaches. For example, in [20], a support
vector machine classifier only for abrupt cut detection is proposed. In [85], features for
abrupt cuts and dissolves are constructed separately and two different SVM models are
trained. In our approach, we define a set of features designed to discriminate hard cuts
from gradual transitions. These features are obtained from color histograms and describe
the variation between adjacent frames and the contextual information at the same time.
Due to the fact that the gradual transitions spread over several frames, the frame-to-
frame differences are not sufficient to characterize them. Thus, we also use the differences
between non-adjacent frames in the definition of the proposed features.

The rest of the Chapter is organized as follows: In Sections and [2.3] the proposed
features used for video shot classification are described. In Section 2.4l the SVM method
employed for this application is briefly presented. In Section we present numerical
experiments and compare our method with four existing methods and finally, in Section

[2.6] we provide some conclusions.
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2.2 Feature Selection

2.2.1 Color Histogram and 2> Value

Color histograms are the most commonly used features to detect shot boundaries. They
are quite robust to object and camera motion, and provide a good trade-off between
accuracy of detection and implementation speed. We have chosen to use normalized RGB
histograms. Thus, for each frame a normalized histogram is computed, with 256 bins for
each one of the RGB component defined as Hg, Hg and Hp, respectively. These three
histograms are concatenated into a 768 dimension vector representing the final histogram
of each frame:

H = [HpHHp). (2.1)

To determine whether two shots are separated with an abrupt cut or a gradual transition
we have to define a difference measure between frames. The simplest method for shot
detection is to compute the histograms of two adjacent frames, calculate the sum of their
bin-wise differences and compare it to a threshold. In our approach, we use a variation
of the x? value [54, [66] to compare the histograms of two frames. Finally, the difference
between two images I;, I; based on their color histograms H;, H; is given from the

following equation:

1 o (Hi(k) — H;(k))?
0D =3 2 T w) 2

where k denotes the bin index.

2.2.2 Inter-frame Distance

The dissimilarity value given in equation can be computed for any pair of frames
within the video sequence. We compute the value not only between adjacent frames, but
also between frames with time distance [, where [ is called the inter-frame distance as
suggested in [1, B1]. We compute the dissimilarity value d(I;, I;4;) for three values of the

inter-frame distance [:
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1. [ = 1. This is used to identify hard cuts between two consecutive frames. Thus, the

dissimilarity values are computed for [ = 1.

2. 1 = 2. Due to the fact that during a gradual transition two consecutive frames may
be the same or very similar to each other, the dissimilarity value will tend to zero
and, as a result, the sequence of the dissimilarity values could have the form shown
in Fig. 2.3l The computation for [ = 2 usually results in a smoother curve, which is
more useful for our further analysis. A typical example of a sequence of dissimilarity

values for | = 2 is shown in Fig. 2.4

3.1 = 6. A gradual transition stretches along several frames, while the difference
value between consecutive frames is smaller, so we are interested not only in the
difference between consecutive frames, but also between frames that are a specific
distance apart from each other. As the inter-frame distance increases, the curve

becomes smoother as it can be observed in the example of Fig. [2.5]

The maximum distance between frames for which the inter-frame distance is useful is
rather small. This distance should be less than the minimum length of all transitions in
the video set in order to capture the form of the transition. Thus, the choice of [ = 6 was
made due to the fact that most of the gradual transitions in our set of videos have length

between 7 and 40 frames.
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Figure 2.3: Dissimilarity pattern for [ = 1.
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2.3 Feature Vector Formulation for Shot Boundary Classifica-
tion
The dissimilarity values defined in Section [2.2] will not be compared with any threshold,

but they will be used to form the feature vectors based on which an SVM classifier will

be constructed.

2.3.1 Definition of Feature Vectors

The selected feature vectors are the normalized dissimilarity values calculated in a tem-
poral window centered at the frame of interest. More specifically, the dissimilarity values

that have been defined in Section form three vectors, one for each of the three inter-
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frame distances I.

D=t =[d(L, L), ..., d(Li, Ii1), - ., d(In—1, IN)], (2.3)
D=2 = [d(Iy, I3), ..., d(I;, Iiys), ..., d(In_2, In)], (2.4)
D=8 = [d(I,, Is), . ..,d(I;, Iiss), . . ., d(In_g, In)]. (2.5)

where N denotes the number of video frames. Moreover, for each frame ¢ we define a
window of length w that is centered at this frame and contains the dissimilarity values.

As a result, for the i-th frame the following three vectors are composed:

W=, 1 w) = [DZYi —w/2),..., D), ..., D= i+ w/2 —1)], (2.6)
W=2(i,1:w) = [D=2(i —w/2),...,D=2(4),..., D= (i + w/2 — 1)], (2.7)
W=0(i,1:w) = [D=%i —w/2),...,D=@),..., D=8 +w/2 — 1)]. (2.8)

To obtain the final features we normalize the dissimilarity values in equations ({2.6), (2.7
and (2.8) by dividing each dissimilarity value by the sum of the values in the window.

This provides the normalized “magnitude” independent features.

W'=H(i, j)

Fol=k/: N
W (Z,]) - Zw 1Wl:k(i ])
]1= Y

, k=1,2,6. (2.9)

The size of the window used is w = 40. In our experiments, we also considered windows
of length 50 and 60 in order to capture longer transitions. The 120-dimensional vector
resulting from the concatenation of the normalized dissimilarities for the three windows

given by equation (2.10)), is the feature vector corresponding to frame 1.

F(i) = [W'=16) W=2(i) W=0(33)] . (2.10)

In what follows, we show examples of the feature vectors for a hard cut, two dissolves and

a “normal” sequence of frames in Fig. 2.6] Fig. 2.7, Fig. [2.§ and Fig. respectively. By
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observing these features, it is clear that the shape of the [ = 1 normalized dissimilarity
vectors for normal sequences and dissolves may be of similar shape. However, the inclusion

of the [ = 2 and [ = 6 dissimilarity vectors discriminates the two categories.
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Figure 2.7: Feature vector for the first dissolve example.

2.4 Support Vector Machine Classifier

After the feature definition, an appropriate classifier has to be used in order to categorize

each frame in three categories: normal sequences, abrupt cuts and gradual transitions. For
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Figure 2.8: Feature vector for the second dissolve example.

=] [e=] =

Figure 2.9: Feature vector for a normal sequence of frames.

this purpose we selected the Support Vector Machine (SVM) classifier [17] that provides
state-of-the-art performance and scales well with the dimension of the feature vector which
is relatively large (equal to 120) in our problem.

The classical SVM classifier finds an optimal hyperplane which separates data points
of two classes. More specifically, suppose we are given a training set of m vectors x; € R,
i=1,...,m and a vector y € R™ with y; € {1,-1} denoting the class of vector x;. We also
assume a mapping function ¢(x), that maps each training vector to a higher dimensional

space, and the corresponding kernel function (equation (2.15))). Then, the SVM classifier
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[17] is obtained by solving the following primal problem:

mg% 2wl +CY " & (2.11)
subject to  yi(wlo(z;) +b) > 1 — & (2.12)
£>0,i=1,...,m (2.13)
The decision function is:
sign(z w; K (z;,7) +b), where K(z;,7;) = ¢ (x;)¢(x;) . (2.14)
i=1

A notable characteristic of SVMs is that after training, usually most of the training
patterns z; have w; = 0 in equation (2.14)), in other words they do not contribute to the
decision function. Those x; for which w; # 0, are retained in the SVM model and called
Support Vectors (SVs). In our approach the commonly used radial basis function (RBF)
kernel is employed:

K (i, 1) = exp(—y||lz; — z;*) , (2.15)

where v denotes the width of the kernel. It must be noted that in order to obtain an
efficient SVM classifier the parameters C) v in equations , respectively, must
be carefully selected, usually through cross-validation.

The above algorithm is suitable for binary classification. In our application, we have
a three-class problem, thus we used the “one-against-one” approach [41] in which for a
k-class problem, k(k — 1)/2 binary classifiers are constructed and each one is trained to
discriminate data from two classes. More specifically, if we assume that class label 0
corresponds to normal sequences, class label 1 to dissolves and class label 2 to hard cuts,
three binary classifiers discriminating between pairs of classes (0,1), (1,2) and (0,2) are
constructed. The final classification is based on a voting strategy where the decision of
each binary classifier is considered as a vote for its proposed class and the class with the
maximum number of votes is selected. In the case of a tie the class with the smallest index

is selected. This tie braking strategy is well-justified in our case, since class 0 corresponds
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Table 2.1: Characteristics of videos used for the shot detection problem.

Video ID Frames Cuts Dissolves Genre
T1 6318 36 23 Comedy
T2 9466 28 16 Action
T3 11807 4 6 Drama
T4 1535 14 8 Educational
T5 17982 146 7 Action
T6 1665 1 19 Comedy
T7 14993 105 11 Drama
T8 9840 12 41  Documentary
T9 6355 9 11  Documentary

Total 69334 355 142 -

Table 2.2: Training examples and support vectors.

Transition type Positive examples Negative examples Support vectors

Cuts 315 - 152
Dissolves 126 - 101
Normal - 2200 1276

to normals which is the most probable outcome.

2.5 Numerical Experiments

In this Section, we present numerical experiments of the proposed approach and compare

our method with four other methods.

2.5.1 Video Data for Shot Detection Problem

The video sequences used for our data set were taken from TV-series, documentaries and
educational films. Nine videos (70000 frames), manually annotated by a human observer,

were used; containing 355 hard cuts and 142 dissolves (Table [2.1]).
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2.5.2 Performance Criteria

To evaluate the performance of our method we used the following commonly used criteria

[2:
N,
Recall — — e 2.16
eca Nt N (2.16)
Ne
Precision = ]V(;ijf7 (2.17)
o 2 x Recall x Plrecision7 (2.18)

Recall + Precision

where N, stands for the number of correct detected shot boundaries, N,, for the number
of missed ones and Ny the number of false detections. During our experiments we calcu-
late the F} value for the cuts (Fi¢) and the dissolves (Fip) separately. Then, the final

performance measure is given from the following equation:

b
Y R+

F =
! a+b a+b

Fip , (2.19)

where « is the number of true hard cuts and b the number of true dissolves.

2.5.3 Results

In our experiments, 8 videos are used for training and the 9-th for testing, therefore,
9 “rounds” of testing were conducted. In order to obtain good values of the parame-
ters C' and ~ (in terms of providing high F; values), in each “round” we applied 3-fold
cross-validation using the 8 videos of the corresponding training set. A difficulty of the
problem under consideration is the generation of an imbalanced training set that contains
few positives examples and a huge number of negative ones. In [65], an active learning
procedure is proposed to reduce the training time. Based on the assumption that the
support vectors determine the decision boundary in equation , they suggest remov-
ing the training examples that are far from the SVM’s decision hyperplane. In [85], the

authors identify the positive examples while reducing the number of negative ones by
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applying a predefined

Table 2.3: Performance results for w = 40,1 =1, =2 and [ = 6.
Transition type N. N, Ny Recall (%) Precision (%) Fi (%)

Cuts 351 4 9 98.87 97.50 98.18
Dissolves 127 15 33 89.44 79.38 84.11
Average - - - 96.18 92.32 94.21

Table 2.4: Performance results for w = 50,1 = 1,1 =2 and [ = 6.
Transition type N. N, N; Recall (%) Precision (%) Fi (%)

Cuts 352 3 8 99.15 97.78 98.46
Dissolves 130 12 25 91.55 83.87 87.54
Average - - - 96.98 93.80 95.37

Table 2.5: Performance results for w = 60,1 = 1,1 =2 and [ = 6.
Transition type N. N,, N; Recall (%) Precision (%) Fi (%)

Cuts 353 2 4 99.44 98.88 99.16
Dissolves 127 15 25 89.44 83.55 86.39
Average - - - 96.58 94.50 95.53

threshold on their constructed features. In our approach, we sample negative examples
uniformly, thus we reduce their number to 3% of the total number of examples. More
specifically, in our training set there are 440 positive examples (transitions) and 2200 neg-
ative examples (no transitions) on average. Finally, each model of the training procedure
generated on average 1276 support vectors for normal transitions, 101 support vectors
for gradual transitions and 152 support vectors for abrupt transitions. The number of
examples and support vectors (on average) of the support vector machines classification
are summarized in Table 2.2

We also tested our method by using larger windows of width w = 50 and w = 60. In
what follows in Tables and 2.5 we provide the classification results using different
selections of window lengths. It can be observed that the performance improves as the

size of the window increases. False boundaries are reduced since larger windows contain
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more information. The use of larger windows also helps the detection of dissolves that
last longer.

In order to reduce the size of our feature vector, we have also considered as feature
vectors used to train the SVM classifier, those obtained from the concatenation of features
extracted for [ = 2 and | = 6, only. It can be observed in Tables and [2.§ that
even with the shorter feature vector the proposed algorithm gives very good results that
are only slightly inferior to the ones obtained by the longer feature vector.

In order to test the importance of selecting the best values for parameters (C, ), in
another experiment we used the SVM classifier with constant values pair (C,v) = (6,
8) for all “rounds” of testing. The obtained results (Tables indicate that even
without the optimal “selection” of (C,~) the performance of the SVM classifier remains
very good.

In another additional experiment we carried out, an HSV normalized histogram is
computed for each frame, with eight bins for hue and four bins for each of saturation and
value, resulting 8 x 4 x 4 bins. In Tables and [2.16] we provide the classification
results using the z? value defined in equation and the Kullback-Liebler distance
between two histograms. It can be observed that the method is not sensitive to the choice

of the color space and the distance measure between the color.

Table 2.6: Performance results for w = 40, [ = 2 and [ = 6.
Transition type N. N, Ny Recall (%) Precision (%) Fi (%)

Cuts 351 4 9 98.87 97.50 98.18
Dissolves 127 16 30 88.73 80.77 84.56
Average - - - 95.98 92.72 94.32

Table 2.7: Performance results for w = 50, [ = 2 and | = 6.
Transition type N, N, Ny Recall (%) Precision (%) Fi (%)

Cuts 350 5 5 98.59 97.49 98.04
Dissolves 129 13 21 90.85 86.00 88.36
Average - - - 96.38 94.21 95.28
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Table 2.8: Performance results for w = 60, [ = 2 and [ = 6.
Transition type N. N,, N; Recall (%) Precision (%) Fi (%)

Cuts 351 4 5 98.87 98.60 98.73
Dissolves 128 14 26 90.14 83.12 86.49
Average - - - 96.38 94.17 95.26

Table 2.9: Performance results for w = 40, [ = 1, ] = 2 and | = 6 and constant (C, 7).
Transition type N, N, Ny Recall (%) Precision (%) Fi (%)

Cuts 353 2 9 99.44 96.98 98.19
Dissolves 128 14 23 90.14 84.77 87.37
Average - - - 96.78 93.49 95.11

Table 2.10: Performance results for w = 50,1 = 1, [ = 2 and [ = 6 and constant (C,~).
Transition type N. N, Ny Recall (%) Precision (%) Fi (%)

Cuts 353 2 7 99.44 98.06 98.74
Dissolves 128 14 31 90.14 80.50 85.05
Average - - - 96.78 93.04 94.87

Table 2.11: Performance results for w = 60, = 1, ] = 2 and [ = 6 and constant (C, ).
Transition type N. N, N; Recall (%) Precision (%) Fi (%)

Cuts 353 2 5 99.44 98.60 99.02
Dissolves 128 14 23 90.14 84.77 87.37
Average - - - 96.78 94.65 95.70

Table 2.12: Performance results for w = 40, [ = 2, I = 6 and constant (C,~).
Transition type N, N, Ny Recall (%) Precision (%) Fi (%)

Cuts 352 3 13 99.15 96.44 97.78
Dissolves 127 16 22 88.73 85.14 86.90
Average - - - 96.18 93.21 94.67

Table 2.13: Performance results for w = 50, [ = 2 and [ = 6 and constant (C, 7).
Transition type N. N, Ny Recall (%) Precision (%) Fi (%)

Cuts 352 3 10 99.15 96.44 98.19
Dissolves 129 13 20 90.85 86.58 88.66
Average - - - 96.78 94.19 95.47

In order to gain more intuition of how the SVM classifier solves this problem, in Fig.

- [2.12] we provide correctly detected feature vectors from dissolves, hard cuts and
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Table 2.14: Performance results for w = 60, [ = 2 and [ = 6 and constant (C, ).
Transition type N. N, Ny Recall (%) Precision (%) Fy (%)

Cuts 351 4 7 98.87 98.04 98.46
Dissolves 127 15 22 89.44 85.23 87.29
Average - - - 96.18 94.38 95.27

normal sequences of frames. From these figures, it is clear that the selected features of
the three classes of frame sequences exhibit distinguishable characteristics. More specifi-
cally, for hard cuts the feature vector contains three “impulses” with decaying height and
increasing width. For dissolves it contains three replicas of a pattern that resembles to a
rectangle from which a sinusoidal lobe has been subtracted. Furthermore, these patterns
become smoother as we move from left to right. Finally, for “normal” sequences of frames

13

the pattern resembles to “white noise” superimposed on a constant DC value.
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Figure 2.10: Correctly detected dissolve patterns.

26



i 06
06 G 04
04 03 04
04 04
02 -
02
02 02 0.1
0 n 0  bech) 0
i 50 100 i 50 100 i 50 100 i 50 100 i 50 100
s ik
o 0 13 05
04 - 04
03 0.4 03 03
02
5 02 02 02
01 ik L 01
= o == 0 i
i 50 100 i 50 00 i 50 100 i 50 100 i 50 00
0E s L 08
06
04 e
04 i s 04
02
02
o2 0z 04 02
T - L.
0 0 0 0 0 4
i 50 100 i 50 00 i 50 100 i 50 100 i 50 100
06 o 06 04 05
04
03
04 04 0.4 03
02
02 02 0.2 02
01 oA
i 0 i i i
i 50 100 i 50 100 i 50 100 i 50 100 i 50 100
Figure 2.11: Correctly detected hard cut patterns.
0.06 L
01 008 0.04
i 004 003 0o
G 004
002
0.04 nm 0.02 0.02
002 .01
i i n i i
i 50 100 i 50 100 i 50 100 i 50 100 i 50 100
nos
006 0.04 004 006
004
003
0m no4 883 004
002 . 002 002
0o
001 0.o1 0o
i i n i i
i 50 00 i 50 00 i 50 00 i 50 00 i 50 100
0.05 004 0.06 0.06 0.05
004 e ik - 004
003 003
g 002
0.02 0.02 0.02
00 B 0o
0 0 n i i
i 50 100 i 50 00 i 50 00 i 50 00 i 50 100
00s
B 0o 005 004
004 004
0.0z
003 003 004 003
0o 002 0.02 - 002
0.01 001 oo 001
0 i n i 0
i 50 00 i 50 00 i 50 00 i 50 00 i 50 100

Figure 2.12: Correctly detected patterns of normal sequences.

In Fig. -[2.15], we provide a portion of SVs for all the cases for the same “round”.

These examples are training patterns for which w; # 0 in equation (2.14]) and are retained

in the SVM model. We immediately notice, as expected, that the SVs are the “borderline
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examples” for all categories. The hardest cases to separate are normal from dissolves, since

more SVs of the normal class have characteristics of correctly classified dissolves and fewer

have characteristics of hard cuts. Similarly, more SVs for dissolves have characteristics of

“normal” than hard cuts. Furthermore, the SVs for hard cuts are much fewer than their

“normal” and dissolves counterparts. Also one cannot make an assessment whether most

of them have characteristics of the normal or dissolve class.

2.5.4 Comparison

To demonstrate the effectiveness of our algorithm and its advantage over threshold de-

pended methods, we implemented three methods that use thresholds in different ways.

More specifically, we implemented pair-wise comparison of successive frames [90], likeli-

hood ratio test [40, 90] and the twin-comparison method [90].

The first two methods
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Support vectors for dissolves.

50 100

can only detect cuts, while the third can identify both abrupt and gradual transitions.

We have also compared our method with the method proposed in [27].

The pair-wise comparison method [90] compares corresponding pixels of successive
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Figure 2.15: Support vectors for normal sequences.

frames to determine how many pixels have changed. More specifically we consider that a

pixel changes if the difference of its corresponding pixel in the following frame is over a
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predefined threshold:

17 if Plxay _Pz T,y >Tha
DP;(z,y) = i) = Peate)| (2.20)

0, otherwise.

where P;(z,y) is the intensity of pixel with coordinates (z,y) in frame i. A shot boundary
is declared if the number of the pixels that have changed is over another predefined
threshold. However the appropriate selection of such a threshold is a tedious task. Firstly,
this threshold is different for videos that belong to different genres and secondly, even in
the same video differences between frames may vary due to different states of illumination
and content. Thus, it is difficult to define a global threshold. In [86], the authors propose
the use of a sliding window over the differences. A shot boundary is detected if two
conditions are fulfilled: the middle sample of the window (a) is the maximum in the

window and (b) is greater than:

max(,uleft + A0|efty Mright + agright)v (221)

where e e, fright and Ogegt, Origne are the means and standard deviations of the samples,
left and right of the middle sample of the window, respectively. The length of the window
and the parameter a are set to 21 and 5, respectively. In Tables and we provide
the performance results of the pair-wise comparison method.

The second method we implemented uses the likelihood ratio [40, Q0] as the metric
to compute frame differences. More specifically, this metric compares the second order
statistics of corresponding regions. Each frame is divided into blocks, which represent
the regions, and the likelihood ratio between two consecutive frames ,7 + 1 for a specific

block k is given from the following equation:

Aivi+ 1), = ) O (2.22)

0; X 041

where p;, p1;41 and o;, 0,41 are the means and standard deviations of block k£ of frames
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1,7 + 1, respectively. Then,the likelihood ratio between two consecutive frames 4,7 + 1 is

as follows:
K ..
1
L(i,i+1) = Lkt A;’(’Z + Dk (2.23)

where K is the number of blocks of the frame. A shot boundary is detected when the
likelihood ratio between two frames exceeds a predefined threshold. To improve the
performance of the specific method, we do not use a global threshold, but we select
the threshold via cross-validation, using the “leave-one-out” method. To identify the
threshold and test it on a video of our dataset, we choose the threshold that achieves the
best performance over the rest eight videos of our dataset. In Tables and we

provide the performance of the likelihood ratio method.
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Figure 2.16: Twin-comparison algorithm [90].

The third method we implemented was the twin-comparison algorithm [90] which
uses two thresholds for the detection of abrupt and gradual transitions. Each frame is
represented with a histogram and the differences between histograms of consecutive frames
are calculated. Histograms and their differences are computed using equations and
. If the difference between two successive frames exceeds a high threshold T}qn, a
cut is detected. A low threshold Tj,, is used for the detection of gradual transitions.
If the difference is above T}, then this frame is characterized as a potential start Fj
of the gradual transition. Then, F is compared with subsequent frames providing the
accumulated differences metric. The end frame F, of the transition is detected if two

conditions are satisfied: (1) the consecutive difference falls below threshold T}, and (2)
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Table 2.15: Comparative results using Recall, Precision and F; measures for cuts detec-
tion.

METHOD CUTS

Recall (%) Precision(%) Fy(%)
w = 40, =1, [=2 and [=6. 98.87 97.50 98.18
w = 40, =2 and [=6. 98.87 97.50 98.18
w = 40, [=1, [=2,l=6 and constant (C,~). 99.44 96.98 98.19
w = 40, =2, [=6 and constant (C,~). 99.15 96.44 97.78
w = 40, [=1, [=2 and =6 (HSV, z?). 99.44 98.89 99.16
w = 40, (=1, [=2 and =6 (HSV, KL). 99.15 98.60 98.92
Pair-wise comparison [90] 85.07 84.83 84.95
Likelihood ratio [90] 94.37 86.12 90.05
Twin-comparison [90] 89.30 88.05 88.92
27] 07.18 91.57 94.29

the accumulated difference exceeds threshold Tj;4,. If consecutive difference falls below
Tiow before the accumulated difference exceeds Tjgn, then the potential start frame is

discarded. In Fig. |2.16} we illustrate the twin-comparison algorithm.

Table 2.16: Comparative results using Recall, Precision and F} measures for dissolves
detection.

METHOD DISSOLVES

Recall (%) Precision(%) Fy(%)
w = 40, (=1, [=2 and [=6. 89.44 79.38 84.11
w = 40, =2 and [=6. 88.73 80.77 84.56
w = 40, [=1, [=2,l=6 and constant (C,~). 90.14 84.77 87.37
w = 40, =2, [=6 and constant (C,~). 88.73 85.14 86.90
w = 40, =1, I=2 and 1=6 (HSV, 2?). 88.03 81.17 84.46
w = 40, [=1, [=2 and [=6 (HSV, KL). 85.92 79.74 82.73
Pair-wise comparison [90] - - -
Likelihood ratio [90] - - -
Twin-comparison [90] 70.42 64.94 67.57
27] 74.64 81.53 77.93

To compute the two thresholds we follow the method proposed in [42]. The threshold

Tiow is calculated from the following equation:

ﬂow = + ao, (224)
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where ;1 and o are the mean and standard deviation of histogram differences respectively.
The value of parameter a is set to 5. To calculate T}, we compute the histogram of
the differences values. Threshold T};4, is assigned to the index value that corresponds to
half of the peak value on the right slope of the peak value of the histogram. 7};,, must
be higher than mean value. In Tables and [2.16 we provide the performance of the
twin-comparison method.

Finally, in [27], Blocked Color Histogram is incorporated as feature vector and the
temporal multi-resolution characteristics of shot presented by the wavelet transition co-
efficients are selected as video frame series patterns for a SVM classifier. In Tables 2.15]
and [2.16] we present the classification results for this method.

The obtained results indicate that our algorithm outperforms the other three thresh-
old dependent methods and the method proposed in [27]. In Tables and we
provide the recall, precision and F; values for our algorithm and the four methods un-
der consideration for cuts and dissolves detection, respectively. For our algorithm we
present the results using w = 40, for best values (C,~) and constant values pair (C,~)
= (6, 8), using all features (I =1, I = 2 and | = 6) and less features (Il = 2 and [ =
6). We also present the results using HSV histograms and two different distance metrics
between histograms: (a) z? value and (b) Kullback-Liebler. The thresholds used in the
three threshold dependent methods were calculated in different ways. We used adaptive
thresholds in pair-wise comparison algorithm, cross-validation in likelihood ratio method
and finally global adaptive threshold in the twin-comparison method. Especially for the
dissolve detection our algorithm, provides far better results than the twin-comparison
algorithm.

In summary, the proposed system is capable of identifying where a shot boundary
occurs and whether the transition is abrupt or gradual. The main advantage of the
method is that it can be trained using different types of video and then it can be used to

locate shot boundaries in other videos without using any thresholds.
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2.6 Conclusions

In this Chapter we have proposed a method for shot boundary detection and discrimina-
tion between a hard cut and a gradual transition. Traditionally, video shot segmentation
approaches rely on thresholding methodologies which are sensitive to the content of the
video being processed and do not generalize well when there is little prior knowledge about
the video content. To ameliorate this shortcoming, we have proposed a learning based
methodology using a set of features that are specifically designed to capture the differ-
ences between hard cuts, gradual transitions and normal sequences of frames at the same
time. These features describe the variation between adjacent frames and the contextual
information and are derived from color histograms using a temporal window. Next, they
become inputs to a SVM classifier which categorizes transitions of the video sequence
into normal transitions, hard cuts and gradual transitions. This categorization provides
an effective segmentation of any video into shots, thus is a valuable aid to further analysis
of the video for indexing and browsing. The main advantage is that throughout the whole

procedure, no use of any thresholds is made.
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CHAPTER 3

KEY-FRAME EXTRACTION USING AN
ENHANCED SPECTRAL CLUSTERING

APPROACH

B.1 Introduction

Key-Frame Extraction Algorithm

Estimation of Number of Key-Frames Using Spectral Graph Theory

B4 Summary Evaluation

Numerical Experiments

Conclusions

3.1 Introduction

A major issue with video retrieval is the efficient indexing of databases. The most popular

indexing and summarization method is based on key-frame extraction. More specifically,

35



each video shot can be sufficiently summarized using its most representative frames, which
are the key-frames. Any key-frame extraction algorithm should fulfil some requirements.
Firstly, the key-frames should represent the whole video content without missing impor-
tant information and secondly, these key-frames should not be similar, in terms of video
content information, thus containing redundant information.

The simplest methods choose the first, last and median frames of a shot or a com-
bination of the previous ones to describe the content of a shot [63]. A major category
of key-frame extraction algorithms detect abrupt changes in the similarity between suc-
cessive frames. In [7§], the optical flow is computed and the local minima of a motion
metric are selected as key-frames. In [22], it is proposed to form a trajectory from the
feature vectors for all frames within a shot. The magnitude of the second derivative of
this feature trajectory with respect to time is used as a curvature measure in this case.
As key-frames the local minima and maxima of this magnitude are selected. In [30], the
key frames are extracted by detecting curvature points within the curve of the cumulative
frame differences.

Another category of key-frame extraction algorithms perform clustering of shot frames
into groups and select a representative frame of each group as key-frame. In [92], multiple
frames are detected using unsupervised clustering based on the visual variations in shots.
A main drawback of this algorithm is the determination of the appropriate number of key-
frames to represent each shot which depends on the threshold parameter that controls the
density of the clusters. A variant of this algorithm is presented in [62], where the final
number of key-frames depends on a threshold parameter which defines whether two frames
are similar. In [7], the mutual information values of consecutive frames are clustered
into groups using a split-merge approach. As key-frames are selected the representative
frames of the clusters that maximize the interframe mutual information in each cluster. A
different approach is presented in [38], where a video shot is segmented into homogeneous
parts based on major types of camera motion and key-frames are extracted for each
segment.

There are two major issues concerning key-frame extraction problem. The first one
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is the extraction of key-frames that capture the whole content of the shot and do not
contain redundant information. The second problem is the selection of the appropriate
number of key-frames without any knowledge about the shot content. In this Chapter
[10), 14], we propose a clustering of the frames of a video sequence into groups using an
improved version of the typical spectral clustering algorithm [56] that employs the fast
global k-means algorithm [49] in the clustering stage after the eigenvector computation.

The rest of this Chapter is organized as follows: In Section [3.2] we describe our key-
frame extraction algorithm. In Section [3.3] we propose a method to estimate the number
of key-frames using results from the spectral graph theory. In Section [3.4] we provide
the criteria based on which the proposed key-frame extraction algorithm is evaluated. In
Section 3.5 we provide numerical experiments and examples of video shot summarizations

and finally, in Section [3.5 we conclude our work.

3.2 Key-Frame Extraction Algorithm

In this Section, we present the key-frame extraction algorithm that is based on the combi-
nation of the spectral clustering approach with the fast global k-means algorithm. Next,
we estimate the number of key-frames using the eigenvalues of the similarity matrix cor-
responding to pairs of shot frames. For each frame, a 16-bin HSV normalized histogram

is used, with 8 bins for hue and 4 bins for each saturation and value.

3.2.1 The Typical Spectral Clustering Algorithm

To perform key-frame extraction the video frames of a shot are clustered into groups
using an improved spectral clustering algorithm. Then, the medoid of each group, defined
as the frame of a group whose average similarity to all other frames of this group is
maximal, is characterized as a key-frame. The main steps of the typical spectral clustering
algorithm [56] are described next. Suppose there is a set of objects S = s1, S2,...,sn to

be partitioned into K groups.
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1. Compute similarity matrix A € RV*¥ for the pairs of objects of the data set S.

2. Define D to be the diagonal matrix whose (7,7) element is the sum of the A’s i-th

row and construct the Laplacian matrix L = I — D~Y2AD~1/2,

3. Compute the K principal eigenvectors xq, xs, ..., rx of matrix L to build an N x K

matrix X = [z zo... Tg].

4. Renormalize each row of X to have unit length and form matrix Y so that:
yij =i/ (Y ap)'. (3.1)
l

5. Cluster the rows of Y into K groups using k-means.

6. Finally, assign object s; to cluster j if and only if row ¢ of the matrix ¥ has been

assigned to cluster j.

In what concerns our key-frame extraction problem, suppose we are given a data
set H = {H,,...,Hy} where H, is the feature vector (normalized color histogram) of
the n-th frame. The distance function we consider is the Euclidean distance between the
histograms of the frames. As a result, each element of the similarity matrix A is computed

as follows:

a(i,j) =1- 7 h;;g(ﬂi(h) — H;(h))* . (3.2)

3.2.2 Fast Global k-means

In our method, in the fifth step of the spectral clustering algorithm, instead of using the
typical k-means approach, we have used the fast version of the very efficient global k-means
algorithm [49]. Global k-means in an incremental deterministic clustering algorithm that
overcomes the important initialization problem of the typical k-means approach. This
initialization problem has been found to be severe in the case of frame clustering, signif-
icantly affecting the quality of the key-frames. Using the global k-means, the obtained

key frames usually provide a sensible representation of shot content.

38



Next, we briefly review the global k-means algorithm. Suppose we are given a data set
X ={xy,...,2x}, T, € R to be partitioned into K disjoint clusters C;, Cy, ..., Cg. This
algorithm is incremental in nature. It is based on the idea that the optimal partition into
K groups can be obtained through local search (using k-means) starting from an initial
state with i) the K-1 centers placed at the optimal positions for the (K-1)-clustering
problem and ii) the remaining K-th center placed at an appropriate position within the
dataset. Based on this idea, the K-clustering problem is incrementally solved as follows.
Starting with k£ = 1, find the optimal solution which is the centroid of the data set X. To
solve the problem with two clusters, the k-means algorithm is executed N times (where
N is the size of the data set) from the following initial positions of the cluster centers: the
first cluster center is always placed at the optimal position for the problem with £ = 1,
whereas the second center at execution n is initially placed at the position of data x,,. The
best solution obtained after the N executions of k-means is considered as the solution for
k = 2. In general, if we want to solve the problem with & clusters, N runs of the k-means
algorithm are performed, where each run n starts with the k-1 centers initially placed at
the positions corresponding to solution obtained for the (k-1)-clustering problem, while
the k-th center is initially placed at the position of data z,. A great benefit of this
algorithm is that it provides the solutions for all k-clustering problems with k£ < K.

The computational cost of the global k-means algorithm can be reduced without sig-
nificant loss in the quality of the solution using the fast global k-means algorithm [49].
This method computes an upper bound F,, of the final clustering error obtained by ini-
tializing a new cluster center at position z,. The initial position of the new cluster center
is selected as the point x; that minimizes F,, and k-means runs only once for each k. The
application of fast global k-means requires a single execution of k-means for each value

(m) of the number of clusters: m =1,... k.
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3.3 Estimation of Number of Key-Frames Using Spectral Graph

Theory

As already mentioned in Section [3.1] the number of key-frames cannot be predetermined
due to the different content of each shot. In our approach, we attempt to estimate the
number of the key-frames using results from the spectral graph theory. Assume we wish
to partition dataset S into K disjoint subsets (Si,...,Sk), and let X = [Xy,..., Xg| €
RNM*E denote the partition matrix, where X; is the binary indicator vector for set S; such

that:

X(@i,j)=1:ifi€es;, (3.3)

X(i,j) =0 : otherwise. (3.4)
This clustering problem can be defined as [81]:

max trace(XT LX), (3.5)

sit. XTX = Ix and X (4,7) € {0,1}. (3.6)

where L is the Laplacian matrix defined in Section[3.2.1} The spectral clustering algorithm

(for K clusters) provides solution to the following relazed optimization problem:

max trace(YTLY), (3.7)

st. YTY = Iy, (3.8)

Relaxing Y into the continuous domain turns the discrete problem into a continuous
optimization problem. The optimal solution is attained at Y = Uy, where the columns

u; of Ug,i = 1,..., K, are the eigenvectors corresponding to the ordered top K largest
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Figure 3.1: Eigenvalues and selection of k.

eigenvalues \; of L. Since it holds that [8§]:

MA A+ +Ax = max trace(YTLY), (3.9)
YTY=Ix

the optimization criterion that quantifies the quality of the solution for K clusters and

its corresponding difference for successive values of K are respectively given by:

SOl(K) :/\1+)\2+---+)\K7 (310)

sol(K + 1) — sol(K) = Ag 1. (3.11)

When the improvement in this optimization criterion (i.e. the value of the Ay y; eigen-
value) is below a threshold, improvement by the addition of cluster K41 is considered
negligible, thus the estimate of the number of clusters is assumed to be K. The threshold
value that is used in all our experiments was fixed to Th=0.005 with very good results. In
Fig.[3.1, we provide an example of the eigenvalues of a matrix L for a key-frame extraction
problem with five clusters (key-frames).

Summarizing, to extract the appropriate key-frames for a shot, we compute the cor-
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responding Laplacian matrix L and analyze its eigenvalues to select the number of key-
frames ky. After we have determined k;, we proceed with the steps 4-6 of the spectral

clustering algorithm employing the fast global k-means in step 5, instead of k-means.

3.4 Summary Evaluation

A difficult issue of the key-frame extraction problem is related to the evaluation of the
extracted key-frames, since it is rather subjective which frames are the best representatives
of the content of a shot. There are several quality measures that can be used to evaluate
the efficiency of the algorithms. In [30], two quality measures are used. The first is
the Fidelity measure proposed in [§] and the second is the Shot Reconstruction Degree

measure proposed in [51].

3.4.1 Average Shot Fidelity

The Fidelity measure compares each key-frame with other frames in the shot. Given the
frame sequence I’ = {Fy, Fy, ..., Fiy} and the set of key-frames KF' = {KFy, KF3,...,KFy,,}

the distance between the set of key-frames K F' and a frame F), is defined as:
d(F,, KF)=min Dif f(F,,KFj), j=1,...,Ngs , (3.12)
J

where Ny is the number of key-frames and Dif f(F;, Fj) is the histogram intersection

[74] between two frames F; and Fj, defined as:

Dif f(F;, Fy) = ) min(H;(h), Hy(h)) , (3.13)

h€bins

where H; and H; are the feature vectors (normalized color histograms) of frames F; and
F;.

However, as mentioned in [51], Fidelity cannot capture well the dynamics of a shot
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since it focuses on global details. For that reason we compute the Average Shot Fidelity
(ASF) measure which is computed using the average of the minimal distances between

the key frame set and the video shot and is given from the following equation:

N
1
ASF(F KF) =1 -+ ; d(F,, KF) . (3.14)

3.4.2 Shot Reconstruction Degree

The whole frame sequence of a shot can be reconstructed from the set of key-frames using
an interpolation algorithm. The better the reconstructed video sequence approximates
the original sequence, the better the set of key-frames summarizes the video content.
More specifically, given the frame sequence F', the set of key-frames K F' and a frame
interpolation algorithm IA(), we can reconstruct any frame from a pair of key-frames in
KF [51]:

Fn = IA(KFTL], KF?’Lj+1), n; <n< Njt1 - (315)

The Shot Reconstruction Degree (SRD) measure is defined as follows:
N-1 )
SRD(F,KF) =Y Sim(F,, F,) , (3.16)

n=0

where Sim() is given from the following equation:
Sim(F,, F,) = log(1/Dif f(F,, E,)) , (3.17)

where Dif f(F;, Fj) is the the histogram intersection between frames F; and Fj, defined

in equation (3.13)).
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3.5 Numerical Experiments

Numerical experiments have been carried out in order to demonstrate the efficiency of
the proposed key-frame extraction algorithm. We have also compared our method with

existing approaches.

3.5.1 Data for Key-Frame Extraction

To evaluate the performance of our key-frame extraction algorithm we have used two
datasets. The first one (Dataset A) consists of seven frame sequences (single-shot) taken
from TV-series and sports (Table , which contain high camera and object motion.
The first frame sequence describes an action of a comedy movie that takes place in an of-
fice. The next three sequences describe three attempts in a NBA Slam Dunk Contest and
the other three a goal attempt in a football match taken from three individual cameras.

The second dataset (Dataset B) consists of ten video sequences taken from TV-series and

movies (Table [3.2).

Table 3.1: Dataset A characteristics.

Frame Sequence No. Frames Genre
F 633 Comedy
F, 144 Basketball
I 145 Basketball
F, 146 Basketball
E5 225 Football
F 300 Football
F 172 Football

3.5.2 Comparison with other Key-Frame Extraction Algorithms

We have compared the proposed approach with three other methods. The first one is the
simple k-means algorithm applied on the histogram vectors. For each shot, we performed

20 runs of the k-means algorithm keeping as final solution one with the minimum clustering
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Table 3.2: Dataset B characteristics.
Video Duration(min) Shots Genre

Wi 22 404  comedy
Vs 31 591  comedy
Vs 30 587  comedy
Vi 23 437  comedy
Vs 27 633 drama
Vi 26 454 drama
Vs 32 377  comedy
Vs 45 608 drama
Vo 31 714 action
Vio 26 246 action

error. The number of clusters in k-means algorithm is assumed to be the same as selected
using the proposed estimation algorithm (Section . The second technique used for
comparison is presented in [62], as a variant of the method proposed in [92]. Initially,
the middle frame of the video sequence is selected as the first key-frame and added to
the empty set of key-frames KF. Next, each frame in the video sequence is compared
with the current set of key-frames. If it differs from every key-frame in the current set,
then it is added into the set as a new key-frame. This algorithm uses a threshold to
discriminate whether two frames are similar or not. In our experiments, this threshold
parameter is set to such a value that the number of key-frames extracted is the same as
in our algorithm. Finally, the third technique is the typical spectral clustering algorithm
[56], described in Section and employing the simple k-means algorithm (20 runs of
the k-means algorithm are performed keeping as final solution one with the minimum
clustering error).

To evaluate the results of the extracted key-frames we use the metrics mentioned in
Section 3.4, More specifically in Tables [3.3] and [3.4) we present the performance results
on dataset A, for the ASF and SRD measures respectively. To compute the SRD we use
a simple linear interpolation algorithm on the frame’s features [51]. The dataset A, which
contains high camera and object motion, is used to show the effectiveness of our algorithm
in cases where many key-frames are required to represent the shot. It is clear that our

approach provides the best summarization of each shot compared to the other methods

45



Table 3.3: Comparative results of the tested key-frame extraction algorithms using Aver-
age Shot Fidelity measure on dataset A.

ASF Algorithm
Frame Seq. Our method K-means [62]  Spectral
F 0.973 0.9549  0.9616 0.9619
Fy 0.9437 0.9278  0.8913  0.9235
F; 0.9506 0.9344  0.9268  0.9253
Fy 0.9557 0.948  0.9405 0.9462
Fj 0.9673 0.9467 0.955  0.9625
F 0.9558 0.931 0.9424  0.9318
Fr 0.9782 0.9654  0.9672 0.9675

Table 3.4: Comparative results of the tested key-frame extraction algorithms using SRD
measure on dataset A.

SRD Algorithm
Frame Seq. Our method K-means [62]  Spectral
F 1859.66 1533.34  1693.1  1620.6
Fy 424.72 369.87 29243  362.64
F; 502.76 430.78  374.23  431.32
Fy 528.09 356.46  340.89  393.02
F; 843.10 808.2 758.23  780.33
Fs 855.44 753.75 813.1 791.2
Fy 707.92 648.71  642.97 663.15

and the best reconstruction of the original video sequence from the extracted key-frames.

We have also tested our key-frame extraction algorithm and compared it with the
other methods using dataset B (TV-series and movies). The measures we have used are :
i) Average Video Fidelity, which is the mean of Average Shot Fidelities of each video and
ii) Average SRD, which is the mean of the SRD of the shots of each video. In Fig. (3.2
and Fig. [3.3] we present the Average Video Fidelity and the Average SRD, respectively.
It is obvious that our key-frame extraction algorithm provides better shot representation

and reconstruction than the other three methods.
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Figure 3.2: Comparative results of the tested key-frame extraction algorithms using Av-
erage Video Fidelity measure on dataset B.
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Figure 3.3: Comparative results of the tested key-frame extraction algorithms using Av-
erage SRD measure on dataset B.
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3.5.3 Video Shot Representation

As already mentioned (Section , a great benefit of the fast global k-means algorithm
is that it provides the solutions for all intermediate k-clustering problems with £ < K. In
Fig. we give an example of the extracted key-frames of a video shot with object and
camera motion. Moving from the top to the bottom of this figure we show all intermediate
solutions until the selected number of key-frames Ny = 5 is reached. The shot that we
used contains 633 frames (frame sequence Fi). It shows a woman in an office set-up. This
shot can be semantically divided into 5 sub-shots. a) The woman stands against a door
eavesdropping and then rushes to her office to pick up the phone that is ringing; b) she
talks on the phone, c¢) lays the receiver of the phone down with a visible effort not to
make any noise, d) she rushes back to the door, and e) she continues eavesdropping.

In Fig. 3.5, we provide the key-frames extracted performing the simple k-means algo-
rithm, the algorithm in [62] and the typical spectral clustering algorithm. All algorithms
fail to provide a solution adequately describing the visual content of the shot, whereas our
approach provides a sensible solution. More specifically, they do not produce any frames
for sub-shots (c), (d) and (e) and instead produce multiple frames for sub-shot (a). In
contrast, the proposed approach produces key frames for all sub-shots.

In Fig. 3.6] we provide the key-frames for these four algorithms for a video shot
describing a slam dunk attempt (frame sequence F3). It becomes clear that our algorithm
summarizes the attempt from the beginning to the end, whereas the other three fail to

describe the end of the action.

3.6 Conclusions

In this Chapter, we considered the key-frame extraction problem [I0, 14]. In Section
B.2] we described how key-frames are extracted using a spectral clustering approach that
employs the fast global k-means algorithm in the clustering procedure. In Section

we described the estimation of the number of key-frames using results from the spectral

48



FRAME 35958-ITERATION 1

FRAME 853-ITERATION 2

FRAME 398-ITERATION 3 FRAME B05-ITERATION 3

FRAME 254-TERATION £ FRAME 716-TERATION 4 FRAME B05-ITERATION 4

TS

FRAME 273-ITERATION & FRAMZ 864-ITERATION &

Figure 3.4: Key-frame extraction using the proposed approach of a shot with object and
camera motion (Nyy = 5).
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Figure 3.5: Results for the key-frame extraction algorithms used for comparison with (N s
= 5). Ist row: K-means. 2nd row: [62]. 3rd row: Spectral Clustering employing simple
k-means.
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Figure 3.6: Key-frame extraction algorithms in comparison in basketball sequence. 1st
row: Our method. 2nd row: K-means. 3rd row: [62]. 4th row: Spectral Clustering
employing simple k-means.

graph theory, by examining the eigenvalues of the similarity matrix corresponding to pairs
of shot frames. Finally, we evaluated the performance of our algorithm using appropriate
quality measures that indicate that our method outperforms traditional techniques and
provides efficient summarization and reconstruction of a video sequence from the extracted
key-frames.

In the next Chapters, we use the proposed key-frame extraction algorithm for shot
representation. The efficient shot representation assists the definition of an effective shot
similarity metric since only the most representative frames of the shots are compared and
not all the frames. In Chapter 4] we also demonstrate the efficiency of our key-frame
extraction algorithm in the scene detection problem. Numerical results show that, the
more information we extract about the shot content, the better we can associate shots

and detect scene boundaries.
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CHAPTER 4

SEGMENTATION OF VIDEOS INTO
SCENES USING SPECTRAL CLUSTERING

AND SEQUENCE ALIGNMENT

4.1 Introduction

Video Shots Representation

Scene Detection Algorithm

141 Numerical Experiments

Conclusions

4.1 Introduction

Proceeding further towards the goal of video indexing and retrieval requires the grouping
of shots into scenes. A scene can be regarded as a series of semantically correlated shots.

Usually, a scene refers to a group of shots that take place in a fixed physical setting (e.g.
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a dialogue detection in a room) or a group of shots that describe an action or event (e.g. a
car chase by police cars). A more compact representation/segmentation of a video is the
merging of scenes into logical story units. The latter, corresponds to the DVD chapters
describing the different sub-themes of a movie.

Several approaches have been proposed for the scene segmentation problem. In [62],
the authors transform this task into a graph partitioning problem. A shot similarity graph
is constructed, where each node represents a shot and the edges between shots depict their
similarity based on color and motion information. Then, the Normalized cuts [67] method
is applied to partition the graph. In [32], a method is proposed for detecting boundaries of
the logical story units by linking similar shots and connecting overlapping links. For each
shot, all key frames are merged into a larger image and the similarity between shots is
computed by comparing these shot images. A similar approach is presented in [84], where
a scene transition graph is constructed to represent the video and the connectivity between
shots. Then, this transition graph is divided into connected subgraphs representing the
scenes. A different approach is presented in [61], where a two-pass algorithm is proposed.
In the first pass, shots are clustered by computing backward shot coherence, a similarity
measure of a given shot with respect to the previously seen shots, while in the second pass
oversegmented scenes are merged based on the computation of motion content in scenes.
Another method that uses Markov chain Monte Carlo to determine scene boundaries is
proposed in [89]. Two processes, diffusions and jumps, are used to update the scene
boundaries that are initialized at random positions. Diffusions are the operations that
adjust the boundaries between adjacent scenes, while jump operations merge or split
existing scenes.

Most of the above approaches, calculate shot similarity based on visual similarity.
Furthermore, they consider the temporal distance of shots as an extra feature that is
taken into account when computing the similarity between two shots for shot clustering
into scenes. Due to the absence of prior knowledge concerning the video content and the
duration of scenes, it is difficult to determine an appropriate weight parameter that will

account for the contribution of the temporal distance in the computation of the overall
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similarity between shots.

In this Chapter we present an approach [9 [14] where shots are clustered into groups
using an improved version of the typical spectral clustering method [56] that uses the fast
global k-means algorithm [49] in the clustering stage after the eigenvector computation
[10, 14]. In addition, we employ a criterion for estimating the number of groups based
on the magnitude of the eigenvalues of the similarity matrix as proposed in the previous
Chapter. The resulted groups of shots are not the final scene boundaries, but this clus-
tering procedure is a preprocessing step towards the final detection of scene boundaries.

Another novelty of our method is that shot similarity is computed based only on visual
features, because incorporating time distance in a shot similarity metric requires a priori
knowledge of the scene duration. Thus, it is a quite difficult task to determine a distance
parameter that defines whether two shots are related or not. In our method, cluster labels
are assigned to shots according to their visual content and then, sequences of shot labels
are compared to identify changes in the patterns of successive labels. In that way, time
distance between shots is not taken into account since our method locally searches for
changes in patterns of shot labels ignoring the relation between shots with respect to time
distance.

Typically, the sequence of shots in a video follows specific production rules. The most
common is known as the 180 ° rule, where the director draws a line in the physical setting
of a scene and all cameras are placed on the same side of this line [73]. This production
rule produces repeating shots of one person, a group of persons or the same setting which
is commonly seen in movies, documentaries and TV-series. The most common patterns of
repetitive shots are two. The first one is a dialogue between two or more persons, where
the camera switches from one person to another, thus producing a sequence of shots like
ABABCBCABABC, where A, B and C are the shot labels for three different persons.
Another common pattern is a sequence of shots like A;AyA;A3A3As where Aq, Ay and
Az are captions of three different cameras providing views of the same physical setting
from different angles. When a scene changes it is expected that a change in such patterns

will occur. For example, if two dialogues take place in different scenes, it is expected
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that a sequence of shots like ABABCBDEDFEDEF is produced where ABABCB
corresponds to the first scene and DEDFEDFEF corresponds to the second scene. To
identify the change in pattern, a comparison of successive non-overlapping windows of
shot labels is performed. Thus, we need to define a proper measure to define whether
two sequences are related (share the same patterns of shots) or not. A very efficient
category of algorithms that compare sequences in order to define whether two sequences
are related or not are the sequence alignment algorithms that are successfully used in
biological applications [39)].

In our approach, to compare sequences we use the “Needleman - Wunsch” global
sequence alignment algorithm [55], which performs global alignment on two sequences
and is guaranteed to find the alignment with the maximum score. This algorithm requires
the definition of a substitution matrix in order to implement the alignment. This matrix
represents the rate at which one character in a sequence changes to another character
over time. In our method, the substitution matrix is formulated based on criteria that are
adapted to the problem of scene detection. Color similarity between clusters of shot labels
and probability of existence of a pair of successive shot labels are the two components
that contribute to the substitution matrix. The score of each alignment is given through
a scoring function which takes into account matches, mismatches and gaps of shot labels.
When an alignment gives a low score, a change in the patterns of shot labels is implied and
suggests a scene boundary. The proposed two-stage approach (shot clustering, sequence
alignment) achieves high correct detection rates while preserving a good trade off between
the number of missed scenes and the number of falsely detected scenes.

In Fig. [4.1] we summarize the main steps of our approach and the algorithms employed
in these steps. The video is segmented into shots and the spectral clustering algorithm of
the previous Chapter is employed to extract the key-frames of the corresponding shots.
Next, shots are grouped with respect to their visual similarity and labeled according to
the group they are assigned. Finally, a sequence alignment algorithm is implemented to
identify high dissimilarities between successive windows of shot labels. Scene boundaries

are considered to be the points of high dissimilarity.
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The rest of the Chapter is organized as follows: In Section the procedure of
video shot representation and similarity is described. In Section the proposed scene
detection algorithm is presented. In Section 4.4 we present numerical experiments and
compare our method with two other methods proposed in [62] and [84]. Finally, in Section

we provide some conclusions.
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RESPECT TO COLOR
SHOT SIMILARITY
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SCENE DETECTION

Figure 4.1: The main steps of our scene segmentation method.

4.2 Video Shots Representation

4.2.1 Key-Frame Extraction and Shot Detection

In order to proceed with video segmentation into scenes, the volume of video data to be

processed must be reduced. It is required to start with the video segmentation into shots
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and continue with the efficient shot representation. In this way, a video comprised of
thousands of frames can be efficiently represented using only several hundreds of frames.
In our approach [14], each video is manually segmented into shots and each shot is rep-
resented with key-frames extracted by applying the algorithm proposed in Section [3.2]
Each frame is represented by an 16-bin HSV normalized histogram with 8 bins for hue
and 4 bins for each of saturation and value. The frames of the shot are clustered into
groups using the method of the previous Chapter which is based on an improved version
of the typical spectral clustering method [56] that uses the fast global k-means algorithm
[49] in the clustering stage after the eigenvector computation. Then, the medoid of each
group, defined as the frame of the group whose average similarity to all other frames of

this group is maximal, is characterized as a key-frame.

4.2.2 Shot Similarity

As explained earlier, shots that belong to the same scene often have similar color content.
As suggested in [62], the visual similarity between a pair of shots i and j can be computed

as the maximum color similarity (ColSim) among all possible pairs of their key-frames:

VisSim(i,j) = max  ColSim(p,q) , (4.1)

peK;,qeK;

where K; and K are the sets of key-frames of shots 7 and j respectively, and the color
similarity (C'olSim) between two frames f;, f; is defined as the histogram intersection
[74):

ColSim(i,j) = > min(H;(h), H;(h)) , (4.2)

hebins

where H;, H; are the HSV normalized color histograms of frames f; and f; respectively.
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4.3 Scene Detection Algorithm

Scene detection is a quite difficult task, because a scene is a group of shots that are i)
semantically correlated and ii) continuous in time. The semantic correlation between two
shots cannot actually be described with low-level features. However, low-level features
such as color give useful information about the connection between shots and the physical
setting where the scene takes place. On the other hand, taking into account the contri-
bution of temporal distance in the computation of the overall similarity between shots is

difficult, due to the absence of prior knowledge about the scene duration.

4.3.1 Shots Clustering

In order to perform scene detection, clustering of shots into groups is required, taking
into account visual similarity (VisSim) and time adjacency. Suppose there is a set V' =
{v1,v9,...,ux} of N shots, ordered in time, to be segmented. In order to implement
shot grouping, an N x N similarity matrix A must be specified. In [58] 62], both visual
similarity and time distance are combined in a single similarity metric (see Section .
On the contrary, in our method we have considered only visual similarity (equation (4.1]))
for shot clustering:

a(i, j) = VisSim(v;,v;), vi,v; €V, (4.3)

while ordering of shots is taken into account at a later processing stage.

After the similarity matrix A has been computed, the modified spectral clustering
algorithm is used to group shots into clusters. The main steps of this algorithm have
been presented in Section |3.2.1 The selection of the number of shot clusters is done in
a way similar to the key-frame extraction problem in Section |3.3] However it is worth
mentioning that the number of shot clusters is not equal to the number of scenes in the
video. Our aim is to estimate the principal color distributions over the video shots and
group all shots according to the color distribution that they fit most. Following the same

approach proposed for key-frame extraction, the analysis of the eigenspectrum of the
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Laplacian matrix L provides an estimate of the number of clusters K. Then, shots are
clustered into K groups with respect to their visual content (color histogram similarity
(equation (4.1)), while the final number of scenes will be extracted at a later step of our
algorithm.

Once the spectral clustering algorithm has provided a partition of the shots into K
clusters {C,Cy,...,Ck}, a label is assigned to each shot according to the cluster it
belongs, thus producing a symbolic sequence of labels. In this way, the sequence of shots
is transformed into a new sequence of labels that illustrates the visual similarity between
shots. An illustrative example is given in Fig. [4.2}

Vo1V02V03 Vo4 Vos Vos VorVos Voo Vio V11 V12 V13 V14 Vis Vg V17 Vis Vig Voo Var
C1 Cp G Gy Gy G Gy Gy G C3 G5 C3 G5 C3 G5 C3 Cy Gy G Gy Cy

Figure 4.2: Video sequence of labels.

To each shot V; (the index ¢ implies time) a label from the set {Cy, Cy, C3,Cy, C5}
is assigned to. Typically, during a scene there exists a sequence of similar shot labels
(different captions of the same person/place) or a sequence of repetitive label patterns
(rotation of different camera captions, eg. dialogue). We consider that a scene change
occurs when the pattern of symbols changes. In our example, distinct scenes correspond to
shots with time indices 1-5, 6-9, 10-16 (repetitive pattern C3C5) and 17-21. In practice,
due to the presence of noise (shot Vig with label Cy), it is not trivial to discriminate
patterns of symbols. To efficiently segment the symbolic sequence into segments-scenes,
two methods are suggested in this Chapter. In the first one [9], a comparison of successive
pairs of labels is employed. In the second one [14], a sequence alignment algorithm is used

that provides the best performance.

4.3.2 Symbolic Sequence Segmentation

In order to account for noise in the sequence (shot Cy in the last scene in Fig. 4.2]) and

for the case of repetitive patterns (scene Vip-Vig in Fig. [4.2)) we form a new sequence

28



containing pairs of successive labels (this is analogous to two-grams in traditional string
processing). In this sequence of pairs, successive similar pairs are considered to belong to
the same scene. More specifically, in order to merge successive pairs in the same scene we
check for the existence of at least one similar label in both pairs. If this is not the case,
a scene boundary is identified and we consider that a new scene starts from the next pair
in the sequence.

The algorithm [9] proceeds in two passes. In pass one, the first two shots are regarded
as the first pair, whereas in pass two the second and the third shots are regarded as the
first pair. As we can see in Fig. [1.3] during the first pass the scene boundary (denoted
as |) between clusters 1 and 2 is not detected since shots that belong to different scenes
form a pair. However, in the second pass this boundary is clearly detected. The final

boundaries are the union of the boundaries detected from both passes.

Original sequence

C1C1C1 010100 CoCoCsC5C5C5C3C5C3CCy Co Cy Cy

Shot pairs sequence - First Pass

(C1C1)(C1C1)(C1C2) (C2C2)(CoC3) (C5C3) (C5C3) (C5C3) L(CaCa ) (C2Cy ) Ca

Shot pairs sequence - Second Pass

Ci(CL1C)(C1Ch) [(C2C2)(CaC2) (C3C5)(C3C5) (C5C5) (C5C4) (CaC2) (CaCl)

Figure 4.3: Video sequence of labels.

4.3.3 Sequence Segmentation Through Sequence Alignment

However, there are some disadvantages in the method proposed in Section [£.3.2] The
first one is that shots with different labels (for example shot ¢ with label C} and shot j
with label Cy) are considered as totally different. As already mentioned in Section
a common pattern in a video shot sequence is a sequence of shots like A; Ay A1 A3A3A,
where Ay, As and As are captions of three different cameras providing views of the same
physical setting form different angles. Suppose that views A; and A, are assigned to

cluster C'; and view Aj is assigned to cluster C5. Then the shot sequence A1 Ay A1 A3A3A,
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is transformed to label sequence C1C1CCyC,C,. If we apply the method described in
Section a scene boundary will be falsely detected between shots 3 (C) and 4 (Cy).
Thus, we should take into consideration the similarity between clusters C and Cy, which
in the above example is quite high since they describe the same physical setting. In other
words, we need to find a more robust “label similarity” metric between shots labels. Next,
we propose the use of a sequence alignment algorithm that employs a substitution matrix
and fits better to the problem of scene detection.

The second disadvantage of the method described in Section [4.3.2]is the existence of
multiple irrelevant shots (noise) in the symbolic sequence of labels. Suppose the following
sequence of shot labels describing a scene CyCyCyC,C,Cy. The noisy shots have labels Cs
and C;. If there has been only one such shot, the method proposed in Section [4.3.2| would
successfully not detect a scene boundary. In this case however, a scene boundary would be
detected regarding shot labels C5C as a separate scene. To avoid such occasions, we have
to extend the window of shots compared and take into account the possible similarity of
shot labels Csy, C'; with shot label Cy. In the following, the sequence alignment algorithm
employed for scene detection compares successive sequences of shots labels of length larger
than 2.

As already mentioned in the introduction, videos such as movies, documentaries and
TV-series, follow some production rules. These rules result in the generation of patterns
of shots inside a scene. Different scenes share different patterns of shots (different sub-
sequences of labels). Thus, it is expected to detect scene changes in cases where the
pattern of shot labels changes. In order to find the points in the sequence of shot labels
where the pattern of symbols changes, we compare successive non-overlapping windows of
shot labels using a sequence alignment algorithm. More specifically, given the set V' of N
shots, the sub-sequences of the original video sequence to be compared at each iteration

1 are formulated as:

X{ = LiLi—l-l Ce Li—l—w—l and X% = Li—l—wLi—l-w—i-l . Li+2w—1; (44)
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where 7 =1,..., N — 2w, w is the length of the window used and L;, j =1,..., N are the
shot labels. In Fig. [4.4] the first three sub-sequences of the video sequence in Fig. are
shown, using a window of length 4. In iteration 1 the first sub-sequence containing shots
Vi — V, will be compared with sub-sequence containing shots V5 — V5. In next iteration
the two sub-sequences under comparison are those containing shots V5 — V5 and Vg — Vg

respectively.

OriginalSequence
7\

Vo1 Vo2V VosVos Vos Vor Vos Vog Vio V11 V12 V13 V14 V15 Vie V17 Vis Vig Vo Var
Cp Cp Cp Cp Gy Gy Gy Gy Cy C3 C5 C3 C5 C3 C5 C3 Cy Cy Gy Cy Cy

Iteration 1 — (01010101) (ClcQCQCQ)

N J

Iteration 2 — (01010101) (CQCQCQCQ)

(. / J

Iteration 3 — (01010102) (02020203)

Xi X3

Figure 4.4: Sub-sequences to be compared.

A well established approach to compare sequences of symbols is the sequence alignment
algorithm. Significant similarity between sequences may imply that the sequences belong
to the same scene. Our interest however, focuses on cases of high dissimilarity that is
a strong indication of a scene boundary. The sequence alignment algorithm we used
in our approach is the “Needleman-Wunsch” algorithm [55] which is commonly used in
bioinformatics to align protein or nucleotide sequences. This algorithm performs global
alignment on two sequences and is guaranteed to find the alignment with the maximum
score. The input consists of two sequences of length w as described in equation . Let

us denote

X, =IL.Ly...L, and Xy= MM,...M, - (4.5)

The labels L;, M;, i = 1,...,w belong to some alphabet of K symbols, where K is the
number of cluster labels generated from the spectral clustering of shots. To align these
sequences, a w X w matrix N is constructed where the value N(i,j) is the score of the

best alignment between the segment X;(1...4) and the segment X5(1...7) [39]. There
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are three possible ways to obtain the best score of an alignment up to X;(i), X2(j): a)
X1 (%) could be aligned to Xs5(j), b) X;(7) could be aligned to a gap and ¢) X5(j) could

be aligned to a gap. The best score will be the largest of these three options:

N(i—1,j = 1) + 5(X:1(4), Xa(5))
N(i,j) = N(@i—1,5)—d

N(i,j—1)—d
where S is a substitution matrix and d is a gap penalty. The definition and calculation
of these quantities are given below. The traceback from N(w,w) to N(0,0) defines the
optimal alignment of X; and X5. The time complexity for aligning two sequences of length
w is O(w?). A typical example of a sequence alignment over an alphabet {C}, Cy, C3, Cy}
is given in Fig. [£.5] The output of the alignment algorithm is an alignment matrix. The
columns of this matrix that contain the same label in both rows are called matches (M),
while columns containing different letters are called mismatches (m). The columns of the
alignment containing one space are called gaps (G). A gap in an alignment is defined
as a contiguous sequence of spaces in one of the rows of the alignment matrix [39]. By
inserting one or more gaps, the algorithm succeeds in aligning symbols that occur in

different positions.

56(]1 . 0102010203040101030404
SGQQ . 040102010202030404010304

Output : (Alignment matrix)

Seq1 _ Cl Cg Cl CQ _ Cg 04 Cl Cl 03 C4 04
S €qo C 4 C 1 02 Cl CQ Cg Cg C4 C4 Cl C! 3 C 4 _
Type | G| M| M | M|M|G | M|[M|m|M|M|M|G

Figure 4.5: Alignment matrix of a sequence alignment example.

The sequence alignment algorithm requires a substitution matrix S and a gap cost
function 4. In our problem, the elements s(i, j) of the substitution matrix S express how

similar are shot labels C; and C; in terms of color and position. The color similarity
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between shot labels can be defined from the similarity of their respective clusters. In
what concerns position, it can be observed that during a scene, repetitive patterns of
labels frequently occur. This increases the possibility that a shot label i can be aligned
with a shot label 7 and the opposite with high score, when shot labels ¢ and j belong to
the same pattern, thus the similarity between shot labels, as far as position is concerned,
can be expressed through the possibility that a shot label ¢ precedes or follows a shot label
j. As a result, the substitution matrix S is defined as the combination of two different
similarity metrics. Next, we define these similarity metrics, one for color similarity and
one for position similarity, and how they are combined to formulate matrix 5.

For color similarity, for each cluster ¢ we compute the medoid m;, defined as the shot of
a cluster, whose average similarity to all the other shots of this cluster is maximal. Then,
the visual similarity between shot clusters can be computed from the visual similarity

between the corresponding medoids, thus producing a cluster similarity matrix (C'SM):
CSM(i,j) = VisSim(m;,m;), m;, m; € Med (4.7)

where VisSim is given from equation and Med is the set of the medoids of the
clusters. Next, we compute a pair probability matrix (PPM) which represents the prob-
ability (frequency) of existence of a pair of sequential labels in the video. There are N-1
pairs of successive labels in a video containing N shots and the PPM matrix is given

from the following equation:
1
PPM(i, j) = m{# pairs(L; = Cj, Ly = Cj)} (4.8)

where Ly, Ly are the first and the second label of a pair respectively and 7,5 = 1,..., K.

The final substitution matrix S is computed as follows:

A(i,7) + B(i,j =7
S(i.) = (4,5) + B(i, j) J | (4.9)
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where A and B are the C'SM and PP M matrices respectively and «, § with a4 = 1, are
weights controlling the contribution of each matrix element. Each entry (4, j) of the matrix
represents the score of alignment of the 7th and jth symbols in the alphabet. The diagonal
elements of matrix S account for match operations, while the non-diagonal elements
account for the mismatch operations during the alignment procedure. To represent the
cost of having a gap of length [ we consider the linear gap model §(1) = —Id, where d is
a nonnegative constant called the “linear gap penalty” and is set to 1.

After the formulation of the substitution matrix, the sequence alignment algorithm
computes the score for the best alignment in each iteration (Fig. [£.4). The evaluation
of the alignment is based on the number of matches, mismatches and gaps between the

sequences. A scoring function [39] is defined as:

F = (score of matches) — (score of mismatches) — (score of gaps). (4.10)

In Fig. we illustrate the computation of this scoring function for the previous se-
quence alignment example using a similarity matrix with score +1 for matches (M), -1

for mismatches (m) and a linear gap (G) function with d =1.

Seq1 . 0102010203040101030404
S€QQ . 0401 0201020203040401 0304

S €q1 _ 01 CQ Cl 02 _ 03 04 Cl C 1 C 3 C 4 C 4
S €q2 C 4 Cl Cg Cl CQ CQ 03 04 04 C 1 C 3 C 4 _
Type G M| M| M| M| G|IM| M| m M M| M|G
Score | -1 | 1 1 1 1 ]-1]1 1 ]-17]1 1 1] -1

Figure 4.6: Scoring function of the sequence alignment example.

We apply the above sequence alignment procedure to all pairs of subsequences (X7, X3),
t=1,..., N —2w. The values of the scoring function are stored in a score sequence SC'
In Fig. [1.7] an example of the score sequence values is shown. At the scene boundaries
a change in the pattern of labels occurs, thus it is expected to observe a low score value.

In other words, low score values are considered as indicators of the possibility for scene
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Figure 4.7: Scoring sequence of a sequence alignment example.

change. The global minimum of the score sequence corresponds to the most dissimilar
sub-sequences in the video, thus to the most certain scene boundary. Since there are
many local minima in the score sequence, it is expected that those with value close to
the global minimum to correspond to the most probable scene boundaries. To locate
these boundaries we first find the global minimum value in sequence SC'. Then, the local
minima of the sequence SC' that are less than a percentage of the global minimum value

are characterized as scene boundaries. In our experiments, a percentage equal to 80% was

used providing very good results.

4.4 Numerical Experiments

4.4.1 Data and Performance criteria

To evaluate the performance of our scene detection algorithm, we used Dataset B (see Ta-
ble , which contains video sequences taken from TV-series and movies. The commonly

used criteria in equations (2.16)), (2.17) and (2.18]), where N, stands for the number of cor-

rect detected scene boundaries, N,,, for the number of missed ones and Ny the number of
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false detections, were used to evaluate our method and the algorithms under comparison.

In Fig.[4.8] the average performance of our algorithm on all videos is presented, varying
the length of the window w, (which defines the length of the sequences to be aligned) from
2 to 8. It can be observed that even for w = 8, the algorithm yields very good results. We
believe that the choice of w = 4 is preferable because, apart from reducing the possibility
of missing a scene with a small number of shots, it is sufficiently large for a reliable
comparison during the sequence alignment algorithm.

To detect the final scene boundaries, as already mentioned in Section 4.3.3] we select
the local minima of the SC' sequence that are less than a percentage Th of its global
minimum. In Fig. .9 the average F; values (for w = 4) for all videos are presented,
for Th varying from 0.7 to 0.95. It can be observed that for any T'h from 0.7 to 0.85
our algorithm provides very good result achieving the best performance for Th = 0.8. In
Fig. |4.10, we present the F; values for w = 4 and T"h = 0.8 varying the weight parameter
«, which controls the contribution of the matrices CSM and PPM, from 0 to 1. The best
performance is achieved for a = 0.5. It can be observed that for & = 1 the performance
is very low, thus indicating that the use of the PP M matrix is beneficial. In Table
we present the recall, precision and F} values for w = 4, Th = 0.8 and a = 0.5 for our
algorithm [I4]. Tt can be observed that our approach achieves high correct detection rate
while keeping small the number of false detections.

To demonstrate the efficiency of the string comparison method, we also implemented
another approach where subsequences are simply considered as sets of labels and their
similarity is measured using the similarity of the corresponding histograms of labels (as
an extension of the comparison of pairs of shot labels in Section . In Fig. |4.11] we
present the F} values comparing the set comparison and our method (string comparison
using sequence alignment). It is clear that the structure of the label sequence assists in the

scene detection problem. In Table [.1], we also present the performance of the algorithm

presented in Section 4.3.2 [9].
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Figure 4.8: Average performance results for different values of the window parameter w.
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4.4.2 Comparison

To compare the effectiveness of our approach, we have also implemented two other meth-
ods. The first one is proposed in [62]. This method computes both color and motion
similarity between shots and the final similarity value is weighted by a decreasing func-

tion of the temporal distance between shots given by the following equation:

l|mi7mj 2

we(i,j) =e a7 a1 (4.11)

where m; and m; are the time indices of the middle frames of the two shots under con-
sideration and o the standard deviation of the shots duration in the entire video. The
parameter d plays a critical role in the final number of scenes produced by the algorithm.
The final shot similarity matrix defines a weighted undirected graph where each node
represents a shot and the edges are the elements of the matrix. To partition the video
into scenes, an iterative application of Normalized cuts method [67] was used that divides
the graph into subgraphs. It must be noted that the implementation of the Normalized
cuts method in this approach does not require the computation of eigenvectors, because
scenes are composed of shots which are time continuous. Thus a cut can be made along
the diagonal of the shot similarity matrix. The Ncut algorithm is applied recursively
as long as the Ncut value is below some stopping threshold 7. We have implemented
and tested this method using the same video set for different values of the threshold pa-
rameter 7" and the parameter d (equation (4.11))). Determination of optimal values for
these parameters is a tedious task. In our comparisons we found distinct values for each
video that provide the best performance. The recall, precision and the F} values of the
experiments are presented in Table [1.1] [62].

The second method has been proposed in [84]. This method clusters shots into groups
taking into account the visual characteristics and temporal dynamics of video. Then, a
scene transition graph which is a graphical representation of the video is constructed. The
nodes of this graph represent the shots and the edges the transitions between the shots. To

find the scenes, this graph is partitioned into connected subgraphs. The above algorithm
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depends on two parameters. The first one is the parameter 6 which defines the minimum
separation between any two resulting clusters and controls the final number of clusters.
The second parameter is T that defines two shots to belong in different clusters if they are
not close to each other. After the initial segmentation, the segmented scenes are refined
by adjusting the threshold parameter T' to reflect the duration of scenes. Determination
of optimal values for the parameters § and T is a tedious task. To test the performance
of this algorithm we executed multiple runs using different values for the parameters o
and T'. In our comparisons, we used distinct values for each video that provide the best
performance. The recall, precision and the F; values of the experiments are presented in
Table [4.1], [34].

In Fig. the F} values of the three examined methods are graphically presented.
It is clear that our algorithm provides the best Fj value for all videos, and in general our
method outperforms the other approaches. Finally, to show that a sensible representation
of a shot by its key-frames contributes to the scene detection problem, we carried out
the following experiment. We implemented our scene detection algorithm using as key-
frames for the shots those extracted the method proposed in Chapter [3| and the other
three methods mentioned in Chapter 8] The F; values of the four examined methods
are presented in Fig. .13 It is obvious that the better the shot is represented by its
key-frames, the better our algorithm detects scene boundaries.

All three algorithms were implemented in Matlab. Considering the scene detection
problem for the first video sequence, our algorithm and the method in [62] took approxi-
mately the same time to identify the scene boundaries, whereas the method in [84] took

approximately five times more than the first two.

4.5 Conclusions

In this Chapter, we have proposed a new method for video scene segmentation. First,

key-frames are extracted using a spectral clustering method employing the fast global
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Table 4.1: Comparative results of the tested scene detection algorithms ([14] - C2009, [9]-
C2007, [62] - R2005, [84] - Y1998) using Recall(R), Precision(P) and F; measures.

C2009 C2007 R2005 Y1998

86.67 86.60 86.67  60.00
92.85 7220 61.90 81.82

=
g
ES

F(%) 89.70 7870 7222  69.23
R(%) 100.00 93.30 83.33 72.22
Vs P(%) 90.00 8820 6250 68.42
F(%) 9474 90.70 7143  70.27
R(%) 87.50 81.30 81.25 87.50
Vs P(%) 7368 65.00 52.00 70.00
F(%) 80.00 7220 6341 77.78
R(%) 7692 84.60 9231 76.92
Vi P(%) 8333 6470 60.00 71.43
F(%) 80.00 7330 7273 74.07
R(%) 8571 9250 92.86 78.57
Vi P(%) 9231 7640 63.16 64.71
F(%) 8889 83.70 7518 70.97
R(%) 8235 80.00 7647 70.59
Vs P(%) 9333 60.00 61.90 66.67
F(%) 8750 68.60 6842 68.57
R(%) 86.67 73.30 86.67 80.00
V. P(%) 8125 91.60 6190 75.00
F(%) 8387 8140 6842 77.42
R(%) 76.00 72.00 80.77 71.43
Vs P(%) 9500 85.70 70.00 74.07
F(%) 8444 7830 7500 72.73
R(%) 72.00 68.00 80.77 64.00
Vo P(%) 75.00 58.60 55.26 59.26
F\(%) 7347 63.00 6563 61.54
R(%) 70.00 75.00 75.00 68.42
Vie P(%) 9333 7895 7500 72.22
F(%) 80.00 76.82 7500 70.27

k-means algorithm in the clustering phase and also providing an estimate for the number
of the key-frames. Then, shots are clustered into groups using only visual similarity as a
feature and they are labeled according to the group they are assigned. Shot grouping is
achieved using the same spectral clustering method proposed for key-frame extraction.

After shot grouping, shots are labeled according to the cluster they are assigned. Since
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Figure 4.12: Scene detection results (using F; measure) comparing three scene detection
algorithms.
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Figure 4.13: Scene detection results (using F; measure) comparing four key-frame extrac-
tion algorithms.

a typical scene contains a sequence of similar shot labels or a sequence of repetitive label
patterns of two or more different groups of shots, when a change in the pattern occurs,
we consider that a scene boundary also occurs. To identify such changes, we considered

windows of shot sequences which are compared using the “Needleman - Wunsch” sequence
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alignment algorithm [55]. Thus, our approach treats time adjacency in a distinct process-
ing phase while existing methods use temporal distance between shots in the definition
of the similarity matrix that is subsequently used as input to the clustering procedure.
The presented experimental results on several videos indicate that the proposed method
accurately detects most scene boundaries, while providing a good trade off between recall

and precision.
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CHAPTER 5

MOVIE SEGMENTATION USING
TEMPORALLY WEIGHTED HISTOGRAMS

OF VISUuAL WORDS

b1 Introduction

Video Representation with Bag of Visual Words

Scene and Chapter Detection Using Temporally Weighted Histograms of Visual
Words

541 Numerical Experiments

Conclusions

5.1 Introduction

Movie is the genre of a video that provides the most well-defined structure so far. Typ-

ically, a movie is organized into low-level units (shots) and high-level units (scenes and
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chapters). Movie segmentation into high-level units is a quite tedious task due to the “se-
mantic gap”. Low-level features do not provide useful information about the semantical
correlation between shots and usually fail to detect scenes with constantly dynamic con-
tent. The scene and chapter boundaries of a movie are not physical, as shot boundaries,
but correspond to changes in the semantic content of the movie.

There are two major problems concerning movie segmentation into scenes and chap-
ters. The first problem concerns the nature of the video content. In dialogue scenes, where
the content of video does not change dramatically (changes between cameras recording
actors speaking), low-level features such as color histograms are quite efficient in detecting
the scene boundaries. This is expected since the shots of a dialogue scene have similar
color distribution due to the fixed physical setting (same background). Thus, to detect a
scene boundary, we have to seek for a change in the color distribution of shots. However,
there are scenes where content changes constantly.

For example, in a scene describing a car chase, there are different shots taken at
different places during the course of the car resulting into a constant change in the color
distribution of the shots. If we use the same approach described above for a dialogue scene,
then the correspondence between scene boundaries and changes in color distributions of
shots would lead to a large number of falsely detected scenes. Therefore, color histograms
are inefficient to describe scenes with constant changing content. On the other hand, there
are some objects or distinctive points that are repeated in consecutive shots during the
progress of such an event (e.g. the thief and the stolen car). Locally invariant descriptors
have been found to provide sufficient description of these interest points and their possible
transformations (rotation, scale). These descriptors can be further grouped into a large
number of clusters, where each cluster is treated as a visual word and represents a specific
local pattern shared by all the descriptors in the cluster. By mapping the descriptors into
visual words we can adopt the bag of words representation, that in the field of image and
video processing is known as bag of visual words [82] [75]. Thus, each video shot can be
represented as a vector containing the frequency of each visual word in the shot. This

derived shot representation uses a set of “semantically” richer features, the visual words,
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Figure 5.1: Main steps of our high-level movie segmentation method.

helping to correlate two shots and detect possible scene boundaries.

The second problem in movie segmentation concerns the detection of chapters (logical
story units). Since a chapter is a group of scenes describing a sub-theme of the movie,
it is expected that the color distributions of the corresponding shots will fail to describe
the connectivity between them. For example, consider a chapter that comprises of the
following two scenes. The first scene describes a thief stealing a car followed by the second
scene that describes the chase of the stolen car from the police. Considering that these
two events take place in different places, the color distribution of the shots will be very
different. On the other hand, features describing the stolen and the police cars could
provide useful information about the semantical connection of these two scenes and their

corresponding shots.
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Several approaches have been proposed for the scene segmentation problem as men-
tioned in Section [f.I] Most of these approaches calculate shot similarity based on color
histograms. Thus, their major disadvantage is the erroneous detection of scenes when
the visual content changes continuously. Segmentation of a movie into a more compact
representation, such as chapters, has not received much attention yet. In [62], the scene
segmentation results of the proposed algorithm are compared with the chapters provided
in the DVD compilations of known movies. Considering that chapters are more compact
representations, there are many false detections resulting into a very low precision, thus
making the specific algorithm inefficient for the chapter detection problem.

In the method we propose herein [13], each video is first segmented into shots. To
represent the content of each shot, key-frames are extracted using an improved version of
spectral clustering [10, 14]. Then, local invariant descriptors are extracted from all key-
frames of the shot. The descriptors of all shots are clustered into a predefined number
of visual words (visual vocabulary) and a visual words histogram is constructed for each
shot. The histograms of visual words corresponding to each shot are further smoothed
temporally by taking into account the histograms of neighboring shots. This is a process
that applies local semantic smoothing and enables preserving valuable contextual infor-
mation. Smoothing is achieved using a Gaussian kernel whose variance can be adjusted to
control the amount of smoothing [45]. The final scene and chapter boundaries are deter-
mined at the local maxima of the difference of successive smoothed histograms for low and
high values of the smoothing parameter, respectively. Thus, by adjusting the smoothing
parameter of the gaussian kernel, we can segment each video at different levels, i.e. scenes
or chapters. In Fig. [5.1, we summarize the main steps of our approach.

The proposed approach exhibits several novel characteristics such as the use of local
invariant descriptors instead of color histograms for movie shots representation. In this
way, we provide a semantic representation of a movie that is more robust to visual content
variations. Also, the visual words histograms of shots are temporally smoothed (using
a gaussian kernel) with respect to neighboring histograms to preserve valuable contex-

tual information. The semantic smoothing process at different time scales facilitates the
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efficient segmentation of a movie at different high-levels, such as scenes and chapters.
Finally, using the proposed method with different values of smoothing parameter of the
gaussian kernel we can tackle both scene and chapter segmentation.

The rest of the Chapter is organized as follows: In Section[5.2] the key-frame extraction
method, the feature extraction method and the construction of the visual vocabulary
are described. In Section the proposed scene and chapter detection algorithm is
presented that is based on temporally smoothed shot histograms. In Section [5.4] we
present numerical experiments and compare our method with the method proposed in
previous chapter and two other methods proposed in [62] and [84]. Finally, in Section ,

we conclude our work and provide suggestions for further study.

5.2 Video Representation with Bag of Visual Words

Each video is first segmented into shots and each shot is represented with key-frames
extracted using the algorithm presented in Chapter [3] Each frame is represented by a
3D HSV normalized histogram with 8 bins for hue and 4 bins for each of saturation and
value, resulting to 8 x 4 x 4 bins. It is worth mentioning that, we use color histograms for
the key-frame extraction problem, whereas for the scene and chapter detection problem
we propose the use of local invariant descriptions. The latter could also be used for the
key-frame extraction problem. However, this is not examined in this Chapter since color

histograms sufficiently work well for key-frame extraction as demonstrated in Chapter [3]

5.2.1 Feature Extraction

As already mentioned, color histograms fail to describe connectivity between shots in cases
where the visual content constantly changes. The semantic content usually remains the
same because objects or interest points are repeated during consecutive shots of a scene. A
well-known method to describe objects in images are the invariant local descriptors. In our

approach, we consider two kinds of descriptors that have been proposed in bibliography:
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the SIFT descriptors proposed in [52] and the CCH descriptors proposed in [35].

SIFT Descriptors

In [52], scale-invariant feature transforms have been proposed that transform image data
into scale-invariant coordinates relative to local features. These features are invariant to

image scale and rotation. The method described in [52], consists of four major stages:
1. scale-space peak selection;
2. keypoint localization;
3. orientation assignment;
4. keypoint descriptor.

In the first stage, the image is scanned over scale and location to detect features (or
interest) points. A Gaussian pyramid is constructed and local peaks (keypoints) in a
series of difference-of-Gaussian (DoG) images are detected. In the second stage, unstable
keypoints are eliminated. In the third stage, the dominant orientations for each key-
point based on its local image patch are identified. Finally, in the fourth stage, a local
image descriptor is built for each keypoint, based upon the image gradient in its local
neighborhood. In Fig. 5.2 we present the stages for the keypoint selection.

The standard keypoint descriptor used by SIFT is created by sampling the magni-
tudes and orientations of the image gradient in the patch around the keypoint, and build-
ing smoothed orientation histograms to capture the important aspects of the patch (see
Fig. . A 4 x 4 array of histograms, each with 8 orientation bins, captures the rough
spatial structure of the patch. This 128-element vector (4 x 4 x 8) is then normalized
to unit length and thresholded to remove elements with small values. SIF'T descriptors
constitute a very popular approach successfully employed for several computer vision

problems [60), 26].
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Figure 5.2: Stages of keypoint selection (Image taken from [52]). (a) The original im-
age. (b) The initial 832 keypoints locations at maxima and minima of the difference-of-
Gaussian function. Keypoints are displayed as vectors indicating scale, orientation, and
location. (c¢) After applying a threshold on minimum contrast, 729 keypoints remain. (d)
The final 536 keypoints that remain following an additional threshold on ratio of principal
curvatures.
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Figure 5.3: Computation of a keypoint descriptor (Image taken from [52]).
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CCH Descriptors

A similar local invariant descriptor, called contrast context histogram (CCH) has been
proposed in [35] and successfully employed for the shot detection problem [36]. It repre-
sents the contrast distributions of a local region around an interest point and serves as a
local descriptor for this region. Given an image I, gaussian kernels are applied to smooth
this image. Then, a multi-scale Laplacian pyramid is constructed and salient points are
extracted by detecting Harris corners [33]. A region R around each salient point p. and

the contrast of a point p in this area is given from the following equation:

C(p) = 1(p) — I(pc)- (5.1)

Region R is defined in a quantized log-polar coordinate system (7, 0), where r; = 0,...,7,
r = |log(v/2n?)] and 6; = Zm, m=0,...,1— 1. Parameters r,[ define the distance and
orientation quantization, respectively. For each sub-region R;; = (1;6;), a positive and a
negative bin of the contrast values are computed. More specifically, given a salient point

pe and a sub-region R;;, the positive and the negative histogram bins are defined from

equations (5.2) and (j5.3)) respectively:

Hpij;(pe) = 2ACWlp € Zﬁ"d Clp) 2 0}
ij

(5.2)

~ > ACW)lp € Ry and C(p) < 0}

Hp;(pe) = R (5.3)

where #R;; and #R,; define the number of positive and negative positive contrast values
in R;;. By composing the contrast histograms of all the sub-regions into a single vector,

the CCH descriptor of p. with respect to its local region R is defined as follows:

COH])C: (HRJO’HRaov"‘7HR$7HRﬁ>' (54)

In our approach, we have used r = 3 and [ = 8, as proposed in [35], resulting to
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Figure 5.4: Contrast context histogram of a salient corner p. under the log-polar coordi-
nate system (Image taken from [35]).
2 X 4 x 8 = 64 dimensions for each CCH descriptor. In Fig. [5.4] we present the contrast

context histogram of a salient corner p. under the log-polar coordinate system.

5.2.2 Bag of Visual Words

For each shot a different number of descriptors is computed that describe certain objects or
interest points in the shot. More specifically, suppose we are given a shot s; and its corre-
sponding set of n key-frames KF' = {kfi,...,kf,}. For each key-frame kf;, i =1,...,n,
a set of descriptors Dy, is extracted (SIFT or CCH) using the algorithms presented in
[52] and [35], respectively. Then, all the sets of descriptors are concatenated to describe

the whole shot

D,, = Dip, | .-\ Diy,.- (5.5)

To speed up the implementation, the set D, of the descriptors of each shot s; is summa-
rized to obtain a more compact representation. More specifically, the set Dy, is clustered
into M groups (set to 20 in our experiments) using the fast global k-means algorithm [49].
Thus, each shot is finally represented by the centroids of the M groups denoted as Di‘f :

To extract wvisual words from the descriptors, the set of representative centroids de-
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scriptors for all N video shots Dg = DY DM |J...[UD} is clustered into k groups
{C1,Cs, ..., Ck} using the k-means algorithm, where k denotes the total visual words
vocabulary size. To construct the visual word histogram (bag of visual words) for shot
s, each element of the set of descriptors Dy, is assigned to one of the k visual words
(clusters), thus resulting into a vector containing the frequency of each visual word in the
shot. Thus, given that shot s, has D descriptors d;,, ..., d;,, the visual word histogram

V H, for this shot is defined as:

di, € Cy, g=1,...,D
V() = T ’é Y1k (5.6)

5.3 Scene and Chapter Detection Using Temporally Weighted

Histograms of Visual Words

So far, each video shot s; is described by a visual word histogram V H; that corresponds
to the probability that a specific visual word of the video is included in the specific shot.
Next, the similarity between successive shots must be defined in order to detect the scene
and chapter boundaries. This will be based on a technique that has been previously

proposed for text documents.

5.3.1 Similarities Between Video and Text Documents

Video and text documents exhibit many analogies. Videos can be segmented into shots,
scenes and logical story units (DVD chapters). In a similar way, text documents can be
segmented into words, paragraphs and logical story units (book chapters). A key aspect
of our method is that, based on an idea from text segmentation, the histograms of visual
words corresponding to each shot are further smoothed temporally by taking into account
the histograms of neighboring shots.

In [45], the Locally Weighted Bag of Words (Lowbow) framework has been proposed

for text document representation and segmentation. The main idea of this approach is
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to represent a text document by describing several locations in its word sequence using
histograms, instead of using a typical bag of words histogram that models the word dis-
tribution in that document. To construct a local histogram representation, a smoothing
kernel is utilized to smooth the semantics temporally around a given location in the origi-
nal word sequence. Initially each location ¢ in a word sequence is described using a trivial
histogram H,; whose probability mass is concentrated only at the bin that corresponds to
the word that occurs at that location in text. Formally, the Lowbow representation for a

certain location ¢ in a text sequence is computed by

L= i H, - K,(t—n), (5.7)

n=—oo

where K, is a normalized discretized gaussian kernel with zero mean and standard devi-
ation o. In this way, the presence of a word at a certain location in the document also
contributes to a neighboring location but with discounted contribution depending on the
temporal distance between the two locations. This representation captures the sequential
content at a certain resolution determined by a given local smoothing parameter (o).
We have adopted a similar approach for video documents. Video shots can be con-
sidered analogous to the words of a document that compose a paragraph (scene) that
further compose a book chapter (movie chapter) that describes a specific theme. Initially,
each location in the video shot sequence can be described using a visual word histogram
computed as described in Section Next, the temporal semantic smoothing takes
place to compute the final shot representations, the temporally smoothed visual word his-
tograms. It must be noted that video shots are complicated units of visual information,
contrary to textual words. For this reason, we introduce the visual words histograms to
initially summarize the semantics of the raw features extracted from video shots, while
in the text case trivial histograms are used as described previously. As a result, in the
case of video data, the temporal semantic smoothing can be considered to be at a higher

semantic level than that of the original method for texts.
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Figure 5.5: Temporal smoothing of visual word histograms representing the video shots,
using a gaussian smoothing kernel.

5.3.2 Scene and Chapter Segmentation

In a similar way to Lowbow framework described in [45], a local smoothing kernel is used
to smooth temporally the visual word histogram of a shot with respect to the histograms
of neighboring shots. The smoothed histogram SH; of a visual word histogram V H; of a

shot s; (where ¢ denotes the time index of the shot) is given from the following equation:

SH, = i VH, - K,(t—n), (5.8)

n=—oo

where K, is a normalized discretized gaussian kernel with zero mean and standard de-
viation o. In Fig. 5.5 a visual representation of the smoothing process is given. First,
the visual words histogram (V H;) for each shot is computed (bottom level). Then, the

visual words histogram of shot s; is smoothed temporally with the neighbor visual word
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histograms using a gaussian kernel, resulting to the smoothed histogram (SH;) of the
shot (upper level). The number of neighboring histograms that contribute to smoothing
is defined by the value of the smoothing parameter ¢. By adjusting the value of o, we
can preserve contextual information at different time scales. A low value of ¢ results in
small scale smoothing and can preserve contextual information within scenes, whereas a
higher value of ¢ results in large scale smoothing and can preserve contextual information
within chapters.

Our model associates each shot s;, t = 1,..., N with a smoothed histogram SH,
which can be considered to be a point in the multinomial simplex P,_;, where k is the
vocabulary size. The multinomial simplex P,_; for £ > 1 is the k-dimensional subset of

R* of all histograms over k objects:

k
Py ={0€R¥:Vif; >0, > 0;=1}. (5.9)

j=1
The sequence SH;, t = 1,..., N of smoothed histograms represents the video shot se-

quence with a curve in Py_; called Temporally Smoothed Visual Words Histograms or
TSVWH curve. Fig. [5.6] illustrates an example of a video shot sequence, whose TSVWH
curve representation is projected from P;_; to Py using Principal Component Analysis
(PCA). This semantic representation of a video shot sequence could be extended in many
other applications, such as video retrieval and surveillance since it provides useful infor-
mation about the semantic content of the video sequence and its progress in time. The
boundaries between different video segments separate video parts containing different vi-
sual words distributions. In the context of the TSVWH curve produced by the smoothed
histograms, a boundary point would correspond to sudden shifts in the curve location.
Due to the continuity of TSVWH curve, such sudden shifts may be discovered by consider-

ing the local maxima of the Euclidean distance between successive smoothed histograms:

Vi= > (SHy(h) = SHypa(R))?, t=1,...,N — 1, (5.10)

k
h=1
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Figure 5.6: 2D embedding (using PCA) of the TSVWH curve representing a video shot
sequence.
where k denotes the number of visual words (histogram bins).

In Fig. and Fig. 5.8 we present the difference values between successive smoothed
histograms for an example shot sequence using smoothing parameter o = 8 (for scene de-
tection) and o = 16 (for chapter detection), respectively. In both cases, circles correspond
to detected boundaries and stars correspond to true boundaries. It can be observed that
using a high value of the smoothing parameter o results into a smoother curve whose
maxima are the boundaries of more compact representations (chapters). Therefore, us-
ing the same method with different values of o we can tackle both scene and chapter

segmentation.

5.4 Numerical Experiments

In this Section, we present numerical experiments for the scene and chapter detection
problems, and we also compare our method with the method proposed in Chapter 4| and

two other approaches: [62] and [84].
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Figure 5.7: Difference values of the smoothed histograms using o = 8 (scene detection).

Difference values
N w » ($,] (o)) ~ (o]
T T T

-

o

50 100 150 200 250 300 350
Number of Shot

o

Figure 5.8: Difference values of the smoothed histograms using o = 16 (chapter detection).

5.4.1 Data and Performance Criteria

To evaluate the performance of our detection algorithm we use five movies that belong to
different genres. The characteristics of these movies are shown in Table [5.1]

To evaluate the performance of our method we have computed the commonly used
criteria of equations (2.16)), and (2.18), where N, stands for the number of correctly
detected scene or chapter boundaries (true positive), N, for the number of missed ones

(false positive) and Ny the number of false detections (false negative). Two human ob-
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Table 5.1: Movies characteristics.

=
G
g g
< = 0 g = )
g = £ 2 Z 2
Q = @
= 2 A & & O S
A Beautiful Mind M1 36 421 18 7 Biography | Drama
Sex and the City M2 70 1217 45 19 Comedy | Romance
Gone in 60 seconds M3 80 1788 74 23 Action | Crime | Thriller
Goldeneye M4 74 1218 46 20 Action | Adventure
Top Gun M5 74 1113 48 16 Action | Romance

servers identified the scene boundaries and the ground truth was defined as the cases for
which there was agreement between the observers. The boundaries of the movie chapters

were obtained from the menu of the corresponding DVD compilations.

5.4.2 Results

In Fig. 5.9, the average performance of our algorithm on all movies is presented, using
SIFT descriptors and a visual vocabulary of 500 words, varying the smoothing parameter
o from 2 to 32. It can be observed that for 0 = 8 the algorithm provides the best
performance for the scene detection problem, whereas for ¢ = 16 the algorithm provides
the best performance for the chapter detection problem. In all our experiments, we use
o = 8 and o = 16 for the scene and chapter detection problems respectively. In Fig. [5.10],
the average F) values for all movies are presented using SIFT and CCH descriptors,
varying the vocabulary size (number of visual words) from 10 to 500. It can be observed
that as the number of visual words increases, the performance of our algorithm improves.
However, it is computational expensive to produce a good partition of the shot descriptors
into a large number of visual words, thus we have only experimented with less or equal to
500 visual words. In Tables [5.2] and [5.3| (first two methods (SIFT, CCH)) we present the
recall, precision and Fj values using 500 visual words, ¢ = 8 for scene detection, o = 16

for chapter detection, for both SIFT and CCH descriptors.
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Figure 5.9: Average performance results (on all movies) for different values of the smooth-
ing parameter o for the scene and chapter detection problems, using SIF'T descriptors and
a vocabulary of 500 visual words.
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Figure 5.10: Average performance results (on all movies) for different number of visual
words, using SIFT and CCH descriptors and ¢ = 8 and ¢ = 16 for the scene and chapter
detection problems, respectively.

5.4.3 Comparison

To compare the effectiveness of our approach, we have also tested three other methods. In
the method proposed in Chapter [4] shots are clustered into groups based on their visual
similarity using an improved spectral clustering algorithm and a label is assigned to each
shot according to the group that it belongs to. Then a sequence alignment algorithm is

applied to detect when the pattern of shot changes providing the final segmentation result.
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Table 5.2: Comparative results using Recall(R), Precision(P) and F; measures for the
scene detection problem for movies M;-M;, (SEQAL - [14], NCUT - [62], GRAPH - [84]).

SIFT' CCH SEQAL NCUT GRAPH HSV

R(%) 88.80 83.33 77.78 8333 7178 7222
M1 P(%) 8889 8824 8235 60.00 60.87 72.22
F(%) 88.89 8571 80.00 69.77 6829  72.22
R(%) 91.11 80.00 80.00 7171  64.44  73.33
M2 P(%) 83.67 7347 67.92 4624  56.86  63.46
F(%) 8723 76.60 7347 5622  60.42  68.04
R(%) 8243 77.03 7973 7432  62.16  71.62
M3 P(%) 7262 69.51 68.60 5556 5412  67.09
F(%) 7722 73.08 7375 6358  57.86  69.28
R(%) 8889 77.78 88.89  80.00  68.89  68.89
M4 P(%) 6897 6394 6452 5373 4844  58.49
F(%) 77.67 70.00 7477 6429  56.88  63.27
R(%) 75.00 70.83 7500 7292  70.83  52.08
M5 P(%) 7347 7234 7059 5385 4533  58.14
F(%) 7423 TL58 7273 61.95 5528  54.95

In Table (third method (SEQAL)) we present the recall, precision and F; values of
the experiments with this method.

The second method we implemented has been proposed in [62]. It computes both
color and motion similarity between shots and the final similarity value is weighted by a
decreasing function of the temporal distance between shots. The shot similarity matrix
defines a weighted undirected graph where each node represents a shot and the edges are
the elements of the matrix. To partition the video into scenes, an iterative application of
Normalized cuts method [67] is used that divides the graph into subgraphs. The Ncut
algorithm is applied recursively as long as the Ncut value is below some stopping threshold
T'. We have implemented and tested this method using the same movies set for different
values of the threshold parameter 7. In our comparisons, we found distinct values for
each video that provided the best performance. The recall, precision and the F; values of
the experiments are presented in Table (fourth method (NCUT)).

The third method we implemented has been proposed in [84]. It clusters shots into

groups taking into account the visual characteristics and temporal dynamics of video.
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Table 5.3: Comparative results using Recall(R), Precision(P) and F; measures for the
chapter detection problem for movies M;-M;, (SEQAL - [14], NCUT - [62], GRAPH -
[84]).

SIFT' CCH SEQAL NCUT GRAPH HSV

R(%) 100.00 85.71  42.86 71.43 71.43  71.43
M1 P(%) 63.64 60.00 33.33 41.67 31.25  50.00
F(%) 77.78 70.59  37.50 52.63 43.49  58.82
R(%) 89.47 84.21  68.42 57.89 63.18  73.68
M2 P(%) 68.00 59.26 41.94 45.83 37.50  50.00
Fy (%) 7727 69.57  52.00 41.16 47.06  59.57
R(%) 7826 82.61 65.22 60.87 60.87  65.22
M3 P(%) 4500 43.18 30.62 40.00 40.00  30.61
Fi (%) 5714 56.72  41.67 48.28 48.28  41.67
R(%) 80.00 75.00 95.00 40.00 45.00  60.00
M4 P(%) 61.54 5357  30.65 42.10 33.33  42.86
Fi (%) 69.57 62.50 46.34 41.02 38.29  50.00
R(%) 8750 75.00 68.75 56.25 81.25  56.25
M5 P(%) 51.85 50.00 32.33 36.00 26.00  39.13
Fi (%) 65.12 60.00 44.00 43.90 39.39  46.15

Then, a scene transition graph, which is a graphical representation of the video, is con-
structed. The nodes of this graph represent the shots and the edges the transitions
between the shots. To find the scenes, this graph is partitioned into connected subgraphs.
The above algorithm depends on two parameters. The first one is the parameter ¢ which
defines the minimum separation between any two resulting clusters and controls the fi-
nal number of clusters. The second parameter is T that defines two shots to belong in
different clusters if they are not close to each other. After the initial segmentation, the
segmented scenes are refined by adjusting the threshold parameter T to reflect the dura-
tion of scenes. Determination of optimal values for the parameters 6 and T is a tedious
task. To test the performance of this algorithm we executed multiple runs using different
values for the parameters ¢ and 7. In our comparisons we used distinct values for each
video that report the best performance. The recall, precision and the F} values of the
experiments are presented in Table (fifth method (GRAPH)).

To demonstrate the efficiency of using local invariant descriptors, instead of smooth-
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ing the visual words histograms of shots, we smoothed the corresponding HSV color
histograms. In Tables and (sixth method (HSV)), we present the recall, precision
and the F} values of these experiments. It is clear that local invariant descriptors outper-
form color histograms. However, it is worth mentioning that the proposed technique that
uses temporal smoothing of histograms with a gaussian kernel, provides better results
than the approaches proposed in [62] and [84], even when color histograms are smoothed.

It must be noted that the three other algorithms SEQAL, NCUT and GRAPH have
been proposed for scene detection. However, fewer boundaries (that correspond to more
compact representations, such as chapter boundaries) can be detected if the thresholds
that these algorithms employ are modified. Thus, the thresholds that these methods
employ are adjusted to provide the best performance considering the chapter detection
problem. More specifically, in the SEQAL method scene boundaries are identified from
the local minima of a sequence alignment scoring function that are under a predefined
threshold. To provide the best performance considering the chapter detection problem,
we increase this threshold. In this way, fewer boundaries are detected that correspond to
chapter boundaries. The recall, precision and the F; values of the experiments are pre-
sented in Table (third method (SEQAL)). Similarly, in NCUT method the stopping
threshold T controls the number of final scene boundaries. By decreasing this threshold
we identified the threshold value providing the best performance for chapter detection and
fewer scenes are detected corresponding to more compact representations (chapters). The
recall, precision and the F; values of the experiments are presented in Table [5.3| (fourth
method (NCUT). Finally, in GRAPH method the threshold parameter ¢ controls the final
number of clusters. To find the best performance considering the chapter detection prob-
lem, we must increase this threshold. In this way, fewer number of clusters are obtained
and fewer boundaries corresponding to chapters are detected. The recall, precision and
the I} values corresponding to the best value of the threshold parameter are presented
in Table |5.3| (fifth method (GRAPH)). It is clear that the use of local invariant descrip-
tors in combination with the temporal smoothing of visual words histograms provides the

best results outperforming the other methods both for scene and chapter detection. Also,
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SIFT descriptors provide better performance compared to CCH descriptors.

5.5 Conclusions

In this Chapter, a new high-level movie segmentation method has been proposed based
on the temporal smoothing of visual word histograms of video shots. For each movie shot
a number of key-frames is extracted and local invariant descriptors are computed for each
key-frame. All the descriptors are clustered to form the visual words vocabulary and for
each shot a visual word histogram is computed. Next, to preserve contextual information,
the Lowbow framework proposed for text segmentation is adopted and the histograms of
visual words are smoothed temporally by taking into account the histograms of neigh-
boring shots. A notable characteristic of the method is that by adjusting the smoothing
parameter of the gaussian kernel we can detect both scene and chapter boundaries of
each movie, determined at the local maxima of the difference of successive smoothed his-
tograms. The presented experimental results on five movies indicate that the proposed
method outperforms other methods and accurately detects most scene and chapter bound-
aries, while providing a good trade off between recall and precision. A direction for future
work, is to incorporate the proposed movie representation with temporally smoothed shot

histograms in other video-based applications, such as video retrieval and surveillance.

94



CHAPTER 6

VIDEO RUSHES SUMMARIZATION

Introduction

Video Representation

Useless Frames Detection

[6.4] Redundant Information Retrieval

Clapboard Removal

Summarization

Experiments

Conclusions

6.1 Introduction

In this Chapter, we present a system for video rushes summarization [12]. A video sum-
mary is a condensed version of the initial video where judgements about the video content

can be made in less time and effort than using the initial video [59]. Video rushes are
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unedited video footage and contain many repetitive information, since the same scene
is taken many times until the desired result is produced. Moreover, since it is unedited
video, it contains many “junk” frames such as colorbars, monochrome frames and frames
that contain clapboards. Colorbars are an artificial electronic signal generated by the
camera or by post production equipment. They are recorded at the head of a videotape
to provide a consistent reference in post production. They are also used for matching the
output of two cameras in a multi-camera shoot and to set up a video monitor. A clap-
board is a device used to assist in the synchronizing of picture and sound. Additionally,
the clapboard is used to designate and mark particular scenes and takes recorded during
a production.

Three issues should be considered during the rushes summarization process. The first
one is that useless frames such as colorbars, monochrome frames and frames that contain
clapboards should be removed from the video. The second issue is that similar segments
generated from multiple takes of the same scene should be removed keeping only one
representative segment. The third issue is the efficient representation of the content of
each of the selected representative shots and the creation of the final video summary.

In [16], a baseline video summarization system is described that presents the entire
video in 25X, 50x and 100x speed, while removing junk frame using color and SIFT
features. In [76], dynamic generation of binary trees is used, allowing realtime, on-the-fly
summaries to be generated. In [21], shot similarity is computed based on color histograms
of regions in so-called characteristic frames, and similar shots are then stacked. Then, an
adaptive acceleration technique is used, changing playback speed based on the (visual)
similarity of adjacent frames in the generated summary.

In the method we propose herein, each video is initially segmented into shots by
comparing the normalized histograms of adjacent video frames. Then, for key-frame ex-
traction we use the method proposed in Chapter |3| where an enhanced spectral clustering
algorithm is employed that both estimates the number of clusters and uses the fast global
k-means algorithm in the clustering stage after the eigenvector computation of the simi-

larity matrix. Next, useless frames such as colorbars and monochrome frames are removed
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Figure 6.1: The main steps of our video rushes summarization method.

by checking their edge direction histogram. Rushes video contain redundant information,
since the same scene is taken many times until the desired result is produced. To find
similar segments (shots) in the rushes video, the key-frames of shots are compared using
a sequence alignment algorithm. Those similar shots that describe the same scene are
removed and only one of them is kept to contribute to the final video summary. More-
over, key-frames that contain clapboards should be removed from the final representative
shots. Comparing the SIFT descriptors of the key-frames of each shot with the SIFT
descriptors of a database of clapboards, we are able to determine if a key frame contains a
clapboard and remove it. Finally, to produce the video summary with duration less than
a percentage of the duration of the original video, a number of frames around each key
frame of the selected shots are considered to contribute to the final video summary. In
Fig. [6.1] we summarize the main steps of our approach and the algorithms employed in
these steps.

The rest of the Chapter is organized as follows: In Section [6.2] we present the rep-

resentation of the video by its shots key-frames. In Section [6.3] the removal of junk
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frames is presented. In Section [6.4] the procedure for removing redundant information is
described. In Section [6.5] the process of removing frames with clapboards is presented
and in Section the final summarization process is described. Finally, in Section [6.7]
we present numerical experiments from the TRECVID Rushes Summarization task 2008,

which indicate that our system exhibited good performance.

6.2 Video Representation

In this Section, we describe the shot detection and key-frame extraction methods. The first
level of video processing is the extraction of features for each frame and the segmentation

of the video into shots.

6.2.1 Feature Extraction and Shot Detection

Each video is sampled uniformly keeping only five frames per second. Then, for each
frame an HSV normalized histogram is computed, with 8 bins for hue and 4 bins for
each of saturation and value, resulting to 8 x 4 x 4 bins. Since rushes are unedited video
footage, they are always stand alone shots and do not contain transitions of any type.
Thus, a simple shot detection algorithm is a very fast and efficient method. To detect
shot boundaries we calculate the sum of the bin-wise differences of adjacent frames and
compare them to a threshold. We use a variation of 2% to compare the histograms of
two frames in order to enhance the difference between the two histograms. Finally, the

difference between two images I;, I; based on their color histograms H;, H; is computed:

128

1 <= (H;(k) — Hj(k))?
Al ;) = 3 ; (Hi(uc)) T Hj(w))) ’ o

where & denotes the bin index. A shot boundary is defined at frame I; if d(;, ;) is
greater than a threshold T, which in our experiments was set to 0.15. Shots shorter

than 1 second were removed.
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6.2.2 Key-Frame Extraction

To speed up the summarization process each shot must be represented by unique frames
that will capture the whole content of the shot. In this way, to compare two shots, we
don’t use all the frames of each shot but a small number of key-frames that provide a
sensible representation of the shot content. To perform key-frame extraction we use the
method presented in Chapter |3 The video frames of each shot are clustered into groups
using an enhanced spectral clustering algorithm [56] that employs the very efficient global
k-means algorithm [49] in the clustering stage after the eigenvector computation. The
medoids of the obtained groups are selected as the key-frames of the shot.

A key aspect of the summarization process is the number of key-frames that are
necessary to capture the video content. In this Chapter, the number of key-frames is

estimated using the method proposed in Section [3.3]

6.3 Useless Frames Detection

Video rushes contain many useless frames such as colorbars and monochrome frames (see
Fig.[6.2), which are not necessary for the final summarization and should be removed. The
shot detection algorithm usually isolates colorbars or monochrome frames into single shots,
thus to speed up the implementation process the first key-frame of each shot is checked and
if it is defined as useless frame, the corresponding shot is removed from the summarization
process. To check whether a key-frame is useless or not we calculate its edge direction
histogram [53]. The edge direction histogram captures the spatial distribution of edges.
The key-frame is first sub-divided into 16 sub-images, and local edge histograms for
each of these sub-images is computed. Edges are grouped into five categories: vertical,
horizontal, 45 diagonal, 135 diagonal, and isotropic (nonorientation specific). Thus, each
local histogram has five bins corresponding to the above five categories resulting in a
80-bin histogram for the whole frame. To compute the edge histograms, each of the 16

sub-images is further subdivided into image blocks (see Fig. . A simple edge detector
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(a) Colorbar (b) Monochrome

Figure 6.2: Junk frames in rushes videos.

is then applied to each macro-block, which is treated as a 2 x 2 pixel image. The edge-
detector operators include four directional selective detectors and one isotropic operator
(Fig. . Thus, for an image block, we can compute five edge strengths, one for each
of the five filters. Those image blocks whose edge strengths exceed a certain minimum
threshold are used in computing the histogram.

In Fig. we provide the edge direction histograms for (a) a colorbar and (b) a
normal frame. The edge direction histogram of a colorbar produces peaks in vertical and
horizontal bins whereas the other bins are close to zero. The bins of the edge direction
histogram of a monochrome frame are all close to zero. Thus a colorbar or monochrome
frame is detected if the difference between the sum of all bins of the edge histogram and

the sum of the vertical and horizontal bins is lower that a threshold T,4,:

128 15 15

S Ei(k) =Y E(m+1)—=> Ei(5m+2) < T, , (6.2)

k=1 m=0 m=0

where E; is the edge direction histogram of frame I; and E;(5m + 1), E;(bm + 2),
m = 0,...,15 are the vertical and horizontal bins of the histogram respectively. In

our experiments 1,4, was set to 10.
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Each sub-image is
dividedintoa g;d Each image block is then partitioned into
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oﬂgiml ‘image the average intensity as the
divided into 16 corresponding block intensity value.
subimages.

Figure 6.3: Edge direction histogram computation (Image taken from [53]).
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Figure 6.4: Edge detection filters (Image taken from [53]).
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Figure 6.5: Edge direction histograms.
6.4 Redundant Information Retrieval

Rushes often contain repetitive information, since the same scene is usually taken many
times until the desired result is produced. Our goal is to detect similar segments which in
our case are shots and keep only one representative for each group of similar shots that

will be further analyzed to contribute to the final summary.
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6.4.1 Visual Shot Similarity Metric

Once we have removed the shots that correspond to colorbars or monochrome frames
we need to suggest a proper visual shot similarity metric. Suppose we are given two
shots S; and Sj and KF; = {KF}, KF?,..., KF"}, KF; = {KF}, KF?,..., KF}}
their corresponding key-frame sets. An m x n similarity matrix SM is constructed with

elements:

SM(m,n) = VisSim(KF", KF}') , (6.3)

where VisSim is the visual similarity between two frames /; and I; given by the following
equation:

with d(I;, I;) defined in equation and VisSim € [0, 1].

Taken into consideration that in rushes two shots that describe the same scene are
similar, we expect that their key frames will follow the same order. Thus, it is expected
that either a segment of one shot or the whole shot will also appear in the other shot.
To find similar segments in two shots we use a sequence alignment algorithm between
the sets of their key-frames. In this way, a key-frame is “matched” with the most similar
(visually) key-frame of the the other set of key-frames, while also taking into consideration
the temporal order of key-frames. Suppose that the first shot describes the following time
ordered events F, F», F3, Ey, E5, Eg and the second shot describes events Es, E3, Es, Eg.

An optimal alignment of the two shots is presented in Fig. [6.6]

Seq1 : E1E2E3E4E5E6
S€QQ : E2E3E5E6

Seqi | By | By | B3 | By | BEs | Es
Seqa | - | Ey | B3| - | E5 | Eg

Figure 6.6: Sequence alignment example

The score of the sequence alignment constitutes the final shot similarity metric. To

align two sequences we use the “Smith-Waterman” algorithm [69]. This is a well-known
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Figure 6.7: Sequence alignment of the key-frames of two shots describing the same scene.

algorithm for performing local sequence alignment in protein or nucleotide sequences and
is guaranteed to find the optimal local alignment with respect to the scoring system being
used, defined by a substitution matrix. The substitution matrix in our case is given by

similarity matrix SM. The score of each alignment is normalized to be in range of 0-1:

Scoren = Score/min(ngsi, ngs2) , (6.5)

where ny 1, ngp2 are the numbers of key-frames of the two shots under alignment, respec-
tively.

In Fig. we present the sequence alignment of the key-frames of two shots, where
the three key-frame of the first shot are successfully aligned with the second, third and

fourth key-frames of the second shot.

6.4.2 Repetitive shot detection

To find groups of repetitive and similar shots we compared each shot with the next
three. If one of the three shots is similar with the shot under consideration then all
the shots between these two shots and the shots under comparison, form a group. If
none of the shots is similar then a new group of shots is considered and the algorithm
continues until all shots are examined. Two shots are considered similar if the score of
the sequence alignment of their sets of key-frames exceeds a predefined threshold which in

our experiments was set to 0.9. Finally, the shot of each group with the largest duration
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is selected as the representative for this group.
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Figure 6.8: Clapboard and its sift descriptors.

Figure 6.9: Comparison of the sift descriptors of two clapboards.

6.5 Clapboard Removal

So far, we have selected unique and non-repetitive shots which are represented by their
key-frames. Rushes also contain clapboards to indicate the current number of the shot
(see Fig. [6.8(a))). These frames should not be included in the final summarization, thus
they have to be removed. Clapboards usually appear at the beginning of each shot.

To detect clapboards we compute for each key-frame the scale-invariant feature trans-
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forms (SIFT) [52]. An example of the SIFT descriptors of a clapboard are shown in (see
Fig. 6.8(b))). Using the TRECVID 2007 Development Data [59], a database of approxi-
mately 150 frames containing only clapboards was generated and their SIFT descriptors
were calculated. In order to detect whether a key-frame contains a clapboard, we compute
its SIFT descriptors and compare them with the SIFT descriptors of the database. In
Fig.[6.9, we present the matching descriptors of two frames containing clapboards. If the
number of matching descriptors is over a predefined threshold, this key-frame is charac-
terized as clapboard and the cluster corresponding to this key-frame is removed from the
shot. Having checked all the key-frames of a shot and having removed those key-frames

characterized as clapboards and their corresponding clusters, we extract new key-frames

for the shot using the method described in Section [3.2]

6.6 Summarization

The final stage of our summarization method involves the production of the final video
summary. The summary of a video can be a set of key-frames or a video of a smaller
duration than the original video. The method we described so far has produced unique,
non-repetitive shots that are represented from their time-ordered key-frames. The goal of
the rushes summarization process is to create a video summary with duration less than
p% of the original video duration. Once the repetitive shots have been detected (Section
, the shot with the largest duration is selected as their representative. The duration of
a group of similar shots is referred as T;;. We want the duration of the summarized video
Tyum for the specific group, to be p% of T,;. Suppose now that this shot is represented
from k key-frames. A duration of T}y = Tyym/k is assigned to each key-frame. Finally,
sampling every 3 frames, the |7}/2| preceding and |Tj/2] following frames of each

key-frame are selected to summarize the shot under consideration.
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Table 6.1: Performance of our video rushes summarization method.

Our method All
Mean Median Avg.(Mean) Avg.(Median)
IN (0-1) 053  0.56 0.44 0.44
JU (1-5)  3.31  3.33 3.17 3.21
TE (1-5)  2.50 2.33 2.76 2.75
RE (1-5)  3.16 3.33 3.3 3.36
DU (secs) 25.07  28.00 27.01 28.25
XD (secs) 6.64 5.17 4.69 3.93
TT (secs) 39.86  41.33 40.76 39.91
VT (secs) 27.57  30.33 29.31 30.47

6.7 Experiments

We have tested our method on TRECVID 2008 Test Data [59], under the Rushes Summa-
rization task of TRECVID 2008 [59]. The goal of this task is to produce video summaries
with duration less than or equal to p = 2% of the duration of the original video. The
summary was to be constructed to maximize a viewer’s efficiency in recognizing the main
(primarily visual) objects and events from the original video as quickly as possible. The
performance of our method was tested on 40 videos. The data are unedited video footage,
shot mainly for five series of BBC drama programs, and was provided to TRECVid for
research purposes by the BBC Archive [59]. The drama series included a historical drama
set in London in the early 1900’s, a series on ancient Greece, a contemporary detective
program, a program on emergency services, a police drama, as well as miscellaneous scenes

from other programs.

6.7.1 Evaluation metrics

Three humans at Dublin City University have judged each summary. The quality of each

summary was evaluated directly by subjective and objective measures [59].
e Subjective measures

1. The fraction of inclusions found in the summary (IN) ranging from 0 to 1.
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2. Lack of junk (colorbars, clapboars and monochrome frames) (JU). The lack of

junk score was an integer ranging from 1 (worst) to 5 (best).

3. Whether the summary had a pleasant tempo/rythm (TE). Score ranges from

1 (worst) to 5 (best).

4. Whether the summary contained lots of duplicate video (RE). Score ranges

from 1 (worst) to 5 (best).
e Objective measures

1. Duration of summary in seconds (DU).
2. Different between target and actual summary size in seconds (XD).
3. Total time spent judging the inclusions in seconds (TT).

4. Total video play time (versus pause) judging the inclusions (VT).

6.7.2 Results and comparison

In Table we present the scores of our method for the different measures given in Sec-
tion [6.7.1] We also present the average mean and median for all 31 groups participated in
the same task. It is worth mentioning that the proposed key-frame extraction algorithm
efficiently summarizes the content of a shot, which is indicated from the high fraction of
inclusions found in the summary (IN) that ranked our algorithm in the top ten in perfor-
mance. In what concerns the removal of useless frames (JU), we observe that the results
of our method are above average. Colorbars and monochrome were successfully removed
from the summaries. However, clapboard removal could be further investigated and im-
proved. Finally, the identification of repetitive information (RE) also needs improvement

as indicated from the results.
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6.8 Conclusions

In this Chapter, we have presented a method for video rushes summarization. There are
three challenges concerning rushes summarization. The first one is the removal of junk
frames (colorbars, clapboards and monochrome frames). The second one is the removal
of repetitive shots generated from multiple takes of the same scene. The third one is the
efficient summarization of the initial video in a summary video of much smaller duration
describing most of the information provided in the initial video.

In the method we have proposed herein an improved spectral clustering algorithm
was used to extract the key-frames of each shot as described in Section [3.2] Color-
bars and monochrome frames were removed from each video using edge direction his-
tograms, since they produce peaks in vertical and horizontal bins (colorbars) or empty
bins (monochrome frames) and differ significantly form the edge direction histograms of
normal frames. Frames containing clapboards were removed by comparing their SIFT
descriptors with a set of descriptors of a database of clapboards that were computed in
advance. To remove redundant video segments we have suggested a new shot similarity
metric. A sequence alignment algorithm was employed to align the key-frames of the
two shots under comparison with respect to their visual similarity and their temporal
order. Next, similar segments were identified and only a single representative was kept.
Finally, selecting a number of frames around each key-frame the final video summary was
generated constituting an efficient representation of the initial video. Numerical results
presented in this Chapter indicate that our system exhibited good performance in the

Rushes Summarization task of TRECVID 2008.
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CHAPTER 7

EVENT DETECTION AND
CLASSIFICATION IN VIDEO

SURVEILLANCE SEQUENCES

[71] Introduction

Background Substraction

Video Segmentation into Events

[T 4 Event Dissimilarity

Experimental Results

Conclusions

7.1 Introduction

In this Chapter, we present a system for event recognition and classification in video

surveillance sequences. Video surveillance has received many attention over the last years
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and is a major research topic in computer vision [34]. Typically, the framework of a video
surveillance system involves the following stages: background substraction, environment
modeling, object detection, classification and tracking of moving objects and descriptions
of behaviors/events. The goal of video surveillance systems is to detect and characterize
events as activities using unsupervised or supervised techniques.

In [I8], a method is presented that integrates audio and visual information for scene
analysis in a typical surveillance scenario, using only one camera and one monaural mi-
crophone. However, the proposed method is designed to discriminate specific events such
as “making or receiving a call”, “entering a room and switching on light”. In [80], a
video behavior modeling method is proposed for online normal behavior recognition and
anomaly detection. For each video segment, blobs are detected that correspond to scene
events. These scene events are clustered into groups using a gaussian mixture model pro-
ducing a behavior representation for the video segment. Each behavior pattern is modeled
using a Dynamic Bayesian Network and a spectral clustering algorithm is employed to
cluster behavior patterns in groups. Then, a composite behavior model is constructed for
the observed/expected behaviors. Finally, an anomaly measure is introduced to detect
abnormal behavior, whereas normal behavior patterns are recognized using the Likeli-
hood Ration Test method. In [4], a combination of Hidden Markov Model and stochastic
grammar is proposed to recognize activities and identify different behaviors based on con-
textual information. In [91], an unsupervised technique for detecting unusual activity is
proposed. A video sequence is segmented into equal length segments and for each frame
a spatial histogram of detected objects is computed. The extracted spatial histograms
are classified into prototypes and a prototype-segment co-occurrence matrix is computed
from which unusual activity is detected.

The goal of video surveillance systems is first to detect those time intervals where
a person performs an activity. Then, a crucial issue is to find the objects that corre-
spond to this action by applying background substraction. Furthermore, each activity
must be effectively represented in order to be classified in predefined categories. In our

approach, local invariant descriptors are employed to remove background information.
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Then, by analyzing the number of foreground descriptors, we automatically segment the
video surveillance sequence into segments/events, which describe some activity taking
place in the room under surveillance. Each video segment/event is represented either by
a single (summary) visual word histogram or by multidimensional signal corresponding to
the visual word histograms of its own frames. In the second case, Dynamic Time Warping
distance [64] is employed to define a proper event dissimilarity metric. Finally, supervised
and unsupervised techniques are implemented either to classify or to cluster events into
categories.

The rest of the Chapter is organized as follows: In Section [7.2] the procedure of back-
ground substraction is described. In Section [7.3] the proposed event detection algorithm
is presented. In Section we define an event dissimilarity metric and in Section (7.5 we
present numerical experiments for video event classification and clustering into categories.

Finally, in Section [7.6] we provide some conclusions.

7.2 Background Substraction

For each frame of the video surveillance sequence we extract local invariant descriptors.
In the proposed approach, we consider the SIFT descriptors proposed in [52]. Details of
the extraction process are given in Section [5.2] In this work, we concentrate on different
individual activities performed in an indoor environment, captured by using a standing
camera. Thus, background remains the same and object/event detection relies on fore-
ground detection modules. A popular idea for background substraction is proposed in
[79, [72], 24], where background is characterized using Gaussian mixtures in a statistical
framework. Alternative strategies for finding new objects in the scene involve motion
based segmentation of some kind [50]. However, most flow computation methods are
computationally heavy and very sensitive to noise. In our approach, for background ex-
traction and event detection we use SIF'T descriptors rather than image data, which offers

several advantages, such as resistance to illumination changes, ability to cope with unusual
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Figure 7.1: Video frame of the background and the location of the extracted descriptors.

motion activity, camouflaged foreground object detection, higher tolerance to background
motion, and lower computation.

In order to remove descriptors that correspond to background objects, we compare the
descriptors of each frame of the video surveillance sequence with a set of pre-computed
descriptors corresponding to frames describing only the background. In Fig. we

present a video frame of the background and the location of the extracted descriptors.

Figure 7.2: Video frame with its descriptors.

Suppose now that Dy is the set of the descriptors extracted from video frames describ-
ing only the background and D); is the set of descriptors of another video frame j. In order
to find the descriptors of frame j that correspond to the background, each descriptor of
set D; is compared with the descriptors of set D, to find a “match”. According to a stan-

dard approach, the best candidate match for each descriptor is obtained by comparing
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Figure 7.3: Video frame with unmatched descriptors.

the distance of its closest neighbor to the distance of its second-closest neighbor [52]. If
it is lower than a threshold then a match is defined. The descriptors of set D; that have
a match in set D, are removed, thus for frame j only the “unmatched” descriptors are
kept. In Fig. [7.2] we present a video frame and the corresponding SIFT descriptors and
in Fig. we present the same video frame with the descriptors that do not match with

those of set Dy,.

7.3 Video Segmentation into Events

After we have subtracted the descriptors corresponding to background, we wish to identify
unique events in the video sequence. In our surveillance problem a video event is defined
as the time interval where a person performs an activity. Thus, it is expected that
when someone enters the room under surveillance, new descriptors will appear that do
not correspond to background. In [36] the authors propose a shot detection approach
by analyzing a vector that corresponds to the number of matching descriptors between
adjacent frames. In a way similar to that method we analyze a vector that corresponds
to the number of “unmatched” descriptors between each frame and the background. In
Fig. [7.4] we present the sequence of “unmatched” descriptors of a video surveillance

sequence.
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Figure 7.4: Number of unmatched descriptors of a video surveillance sequence.

In order to detect the beginning and the end of a video event, we first smooth this
vector with the discretized gaussian kernel of equation . Furthermore, we discard low
values of the smoothed signal to remove noise (background descriptors that have not been
removed). In Fig. we present the final smoothed signal for the sequence of Fig. [7.4]

Given the final smoothed signal S, we can detect a video event beginning at time
instant ¢, such that S(¢,) > 0, S(t,—1) = 0 and ending at time ¢, with S(t.) > 0, S(tey1) =
0. In Fig.[7.6] we present the signal values for a video event. It can be observed that the
event has at least two peaks, one close to the start of the event and the other close to its
end. Typically, these two segments, i.e from the start to the first peak and from the last
peak to the end, correspond to the entrance and exit from the room under surveillance
of the person involved in the event, respectively. Thus, these two segments are removed

and the remaining frames (their corresponding descriptors) constitute the event.

7.3.1 Event Representation

After we have segmented the video into events, we represent each video frame of the
event with a visual word histogram following the method presented in Section More

specifically, the descriptors of all event frames are clustered into a predefined number of
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Figure 7.5: Smoothed signal of the number of unmatched descriptors.

clusters K using the k-means algorithm, where K denotes the size of the visual words
vocabulary. A visual word histogram V HF ; of a frame j of event ¢ is constructed by
assigning the frame’s descriptors to one of the K visual words (clusters). Similarly, a
visual word histogram V H E; of an event ¢ is constructed by assigning each descriptor of

all the event frames to one of the K visual words (clusters).

7.4 Event Dissimilarity

In order to proceed with video event classification an event dissimilarity metric must
be defined. In our approach we consider two approaches. In the first one, to compute
a distance value between two events F; and E; we compare their corresponding visual
word histograms VHE; and VHE;. In the second approach, we compare the visual
word histograms VHF of their frames. More specifically, suppose that we are given
events E; = {f{,.... fx.} and E; = {f],..., fh,}. Since N; # N, we have to define
a proper dissimilarity metric to compare these two events. Next, we describe Dynamic
Time Warping (DTW) distance, which is employed to compare two events with different

number of frames.
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Figure 7.6: Descriptors selection of a video event.

7.4.1 Dynamic Time Warping

Dynamic Time Warping (DTW) is a well-known technique to find an optimal alignment
between two given time-independent sequences. Originally, DTW has been used to com-
pare different speech patterns in automatic speech recognition [64]. The objective of
DTW is to compare two time-dependent sequences; X = (z1,xs,...,2xy) of length N
and Y = (y1,y2,...,ym) of length M, x;,y; € R. The first step in computing the DTW
distance between time-series X and Y is to construct a N x M distance matrix D con-
taining the pairwise distances between the samples, i.e D;; = (z; —y;)%, i = 1,2,...,N
and j = 1,2,..., M. The objective is to find a path through the matrix so that the
cumulative distance between X and Y is minimized. This path called warping path
W = (wy,ws,...,wy), max(N,M) < L < N+ M — 1 is a contiguous set of matrix
elements that defines a mapping between X and Y. The warping path must satisfy the

following criteria [64]:

1. Boundary condition: wy; = (1,1) and wy, = (N, M). The starting and ending points

of the warping path must be the first and the last points of the aligned sequences.

2. Monotonicity condition: This condition preserves the time-ordering of points.
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3. Step size condition: This criterion limits the warping path from long jumps (shifts

in time) while aligning sequences. The basic step size condition is formulated as

(wl+1 - wl) € {(17 1)7 (17 O)’ (07 1)}

The cost function associated with a warping path w is computed with respect to matrix

D:
L

cw(X,Y) = ZD(l’iz,yﬂ)- (7.1)

=1

The DTW distance minimizes this cost function [64]:
DTW (X,Y) = min{c,(X,Y),w € WN*M} (7.2)

where WY*M is the set of all possible warping paths. Then, the accumulated cost matrix

DA is computed as follows:
L. DA(L,5) = iy D(wi,ye), j € [1, M].
2. DA(i,1) = 3i_, D(zy, 1), i € [1,N].

DA(i,j—1)
3. DA(i,j) = D(xi,y;) + min§ DA(i — 1, 7)
DA —1,j-1)
Once the accumulated cost matrix DA is built, the optimal warping path could be found
by the simple backtracking from the point we,q = (N, M) to the wgyqre = (1,1). The final
DTW distance is given from the sum of the values of matrix DA following the optimal

path.

7.4.2 Event Dissimilarity Metric

Each frame f;, 7 =1,...,N; of event E; is represented with a visual word histogram

VHF ; as defined in equation 1) Thus, event F; is represented by a K-dimensional

117



signal of length N;:

VHF{(k=1) ... VHFy(k=1)
VE, : : , (7.3)

VHF!(k=K) ... VHFy (k=K)

where K the size of the vocabulary size employed to create the visual word histograms in
Section [5.2.2] Each row k of matrix V E; represents the frequency of “visual word” k in
the time interval of the event.

In order to compute the distance between two video segments/events FE; and E; we

compute the average DTW distance of their K-multidimensional signals. More specifically

D(E;, E) = % i DTW (VHF!(k),VHF'(k)), (7.4)

k=1
where VHF'(k),VHF"'(k) are the k-th rows of the K-dimensional signals V E;, V E; rep-

resenting segments/events E; and Ej, respectively.

7.5 Experimental Results

In this Section, we present numerical experiments for event classification and clustering

using supervised and unsupervised learning methods.

7.5.1 Video surveillance sequences

As already mentioned in Section we concentrate on different individual activities
performed in an indoor environment captured by a standing camera. The performed
activities are not overlapping, in the sense that a person enters the room performs a set of
basic actions and leaves the room. The fist video sequence comprises of more than 25000
frames. In this video sequence, 20 activities/events are performed that are divided in five

categories, as follows.
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1. Phone:a person enters the room, goes to the phone and makes a conversation.
2. Scanner:a person enters the room, goes to the scanner and scans a document.
3. Library:a person enters the room, goes to the library and opens it.

4. Computer:a person enters the room, goes to the computer and works with it.
5. Board:a person enters the room, goes to the board and writes something.

In Fig. [7.7, we present sample frames of the background and the five categories of

events.

Background Scanner

Computer

Figure 7.7: Sample frames of the background and the five categories of events.

The result of the automatic segmentation was optimal, since no over-segmentation or

under-segmentation was performed and all 20 events were detected as unique.

7.5.2 Classification Results

To classify the 20 events into 5 categories we carried out two experiments. In the first one,
we used the nearest neighbor classifier [23] and in the second one we used Support Vector
Machines [I7]. We implemented the nearest neighbor classifier with 1, 3, and 5 nearest

neighbors for both dissimilarity measures defined in Section [7.4] Comparison between the
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Table 7.1: Classification results for the first video sequence.
K 1-NN 3-NN 5-NN SVM

DTW EV DTW EV DTW EV DTW EV

10 80% 8% 80% 8% 65% 65% 7%  65%
20 90% 90% 95%  90%  90%  80%  95%  95%
50 95%  95%  95%  95%  95%  90%  100%  95%
100 95% 90% 100% 100% 10%  95% 100%  95%
200 95% 90% 100% 100% 100% 100% 100% 100%

visual word histograms of events is referred as £V and comparison between the visual
word histograms of the frames of the events is referred as DTW. In Table [7.1] we present
the numerical results of the experiments for different number of visual words K. The
classification accuracy was estimated using the leave-one-out (LOO) approach [23].

In the second experiment, Support Vector Machine (SVM) classifiers [I7] were em-
ployed using the leave one out (LOO) scheme again. In our approach, we employed the
typical radial basis function (RBF) kernel (equation (2.15))) and the parameters C, v of
equations , respectively, were selected through cross-validation. In Table ,
we present the numerical results for the two compared approaches of Section [7.4] and for
different number of visual words K. It can be observed that DTW distance gives results

slightly superior to the ones obtained by the other dissimilarity metric.

7.5.3 Clustering Results

We have also employed an unsupervised method for grouping the video events into cate-
gories. More specifically, we performed agglomerative hierarchical clustering [37], setting
the number of cluster to five and using the Ward criterion to select the clusters to be
merged at each iteration. In Fig. [7.8] we present the hierarchical clustering dendrogram
using DTW distance to compare video events using a visual word vocabulary of 50 words.
In this example all video events were successfully clustered into groups. The clustering
accuracy was calculated by computing the number of errors: a clustering error occurs if
an event is assigned to a cluster in which the majority of the events belongs to another

category. In Table[7.2)we present the clustering accuracy for the two approaches of Section
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using a different number of visual words K. It can be observed that DTW distance

provides better results for a small number of visual words.
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Figure 7.8: Hierarchical clustering dendrogram.

Table 7.2: Clustering results for the first video sequence.

K  Hierarchical Clustering

DTW EV
10 80% 45%
20 95% 90%
50  100% 90%
100 100% 100%
200 100% 100%
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7.6 Conclusions

In this Chapter, we have presented a method for video event detection and classification in
video surveillance sequences. For each video frame, local invariant descriptors were com-
puted and compared to a pre-computed set of descriptors from the background framer of
the surveillance room. In this way, a number of “unmatched” descriptors was identified
that describe foreground objects. By analyzing the number of “unmatched” descriptors,
the video sequence was segmented into segments/events. Fach video event was repre-
sented either by a single (summary) visual word histogram or by a K-dimensional signal
corresponding to the visual word histograms of its frames. Thus, two different approaches
were followed in order to compare video events. Unsupervised and supervised learning
methods were employed to cluster and classify the events into certain categories. Numer-
ical results presented in this Chapter indicate that our approach achieves high detection,

classification and clustering rates.
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CHAPTER 8

CONCLUSIONS

R Concluding Remarks

Directions for Future Research

8.1 Concluding Remarks

In this thesis we have proposed novel methods for video segmentation and representa-
tion that are based on machine learning techniques (classification, clustering). First, we
considered support vector machines for video shot detection. Then, an improved spectral
clustering algorithm was employed for video shot representation. The same algorithm in
combination with a sequence alignment algorithm was employed for video scene segmen-
tation. Movie segmentation into scenes and chapters was also implemented using tem-
porally smoothed visual words histograms. Furthermore, the proposed techniques were
also employed for video rushes summarization and event detection in video surveillance
sequences.

More specifically, in order to perform video shot detection, we proposed in Chapter
a supervised learning methodology [I1), I5]. In this way, we have avoided the use of

thresholds and we were able to detect shot boundaries of videos with totally different
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visual characteristics. Novel features have been defined describing the variation between
adjacent frames and the contextual information in a neighborhood of frames and became
inputs to a SVM classifier which categorized transitions to normal, abrupt and gradual. In
this way, all categories of video shot transitions were detected simultaneously. Numerical
experiments that compare our algorithm with threshold dependent methods and another
supervised learning methodology indicate that our algorithm provides superior results.

In Chapter [3|a key-frame extraction algorithm [10], [14] has been presented that is based
on the combination of spectral clustering approach and fast global k-means algorithm. We
have also proposed a technique to estimate the number of the extracted key-frames. The
extracted key-frames are unique, non-repetitive and summarize the video shot content,
which is also indicated from the numerical experiments where appropriate quality mea-
sures were defined and computed.

In Chapter |4] we presented a novel video scene segmentation algorithm [0, [14] that
employs the improved spectral clustering algorithm of Chapter|3[and a sequence alignment
algorithm. Shots were first clustered into groups based only on their visual similarity using
the method presented in Chapter |3|and a label was assigned to each shot according to the
group that it belonged to. Then, a sequence alignment algorithm was applied to detect
when a change occurs to the pattern of shot labels, providing the final scene segmentation
result. Numerical experiments on TV-series and movies have shown that the proposed
scene detection method accurately detects most of the scene boundaries, while preserving
good tradeoff between recall and precision.

In Chapter |5 we presented a high-level movie segmentation algorithm [I3]. In this
approach, the movie shots were represented with local invariant descriptors instead of color
histograms, resulting into a visual words histogram representation. Next the visual words
histograms of shots were temporally smoothed (using a gaussian kernel) with respect to
histograms of neighboring shots in order to preserve valuable contextual information. This
semantic smoothing process at different time scales results in efficient movie segmentation
at different high-levels, such as scenes and chapters.

In Chapter [6] a system for video rushes summarization [I2] has been presented. A
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video sequence was first segmented into shots and key-frames were extracted for each
shot using the method presented in Chapter Then, the edge direction histogram of
each key-frame was computed to check whether the frame is monochrome or a colorbar.
In order to remove redundant information (repetitive shots), we compared shots using
a sequence alignment score between the sets of their key-frames. The SIF'T descriptors
of the key-frames of the remaining representative shots were compared to a database of
descriptors obtained from frames with clapboards. In that way, frames with clapboards
were removed from the final video summary. Finally, the video summary was generated
by concatenating frames around the key-frames of the remaining shots. Numerical results
indicate that our system exhibited good performance in the Rushes Summarization task
of TRECVID 2008.

In Chapter [7, a system for event detection in video rushes surveillance sequences
has been presented. First, local invariant descriptors of video frames were employed to
remove background information and segment the video into events. Next, visual word
histograms were computed for each video event and used to define a distance measure
between events. Finally, machine learning techniques were employed to classify events
into predefined categories. Numerical experiments indicate that the proposed approach

provids high event detection and classification rates.

8.2 Directions for Future Research

In future work it would be very interesting to consider the use of local invariant descriptors
for the shot boundary detection problem of Chapter 2] The experiments of Chapter
using this type of descriptors are very promising and the proposed semantic smoothing
process could also be applied to the shot boundary detection problem.

The temporally smoothed visual histograms of Chapter [5{could be used as well for the
key-frame extraction algorithm. Using this method it would be interesting to examine

in what degree the semantic concepts change inside the video shot. Another interesting

125



direction for future work would be to build a visual word vocabulary from different features
such as motion and local invariant descriptors or even a combination of features.

Furthermore, in the high-level movie segmentation problem of Chapter [5| it would
be interesting to build a visual word vocabulary by comparing video shots to existing
semantic detectors [71]. An issue that worths to be examined is whether global semantic
concepts, i.e. cars, people, animals and buildings, can provide better performance than
semantic concepts extracted from local descriptors.

The high-level segmentation algorithm presented in Chapter 5| could also be tested
for a variety of video genres, i.e sports and tv-news. In sport videos, such as a video
sequence describing a basketball game, it would be very desirable to provide a video
segmentation into play-time, replays, timeouts and other possible segments. In tv-news
a possible segmentation could divide the video sequence into dialogues, reportage and
tv-commercials.

Finally, in video surveillance there are several open problems that deserve further
investigation. For example, a very challenging problem is the detection of multiple events
in a video sequence. The majority of event detection algorithms consider independent
events. The combination of motion trajectories with the semantic representation of video

frames could provide a possible solution to this difficult problem.
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