
Mpeôzianèc Mèjodoi gia Probl mata Mhqanik c
M�jhshc kai EpexergasÐac Eikìnac

H DIDAKTORIKH DIATRIBH

upob�lletai sthn

orisjeÐsa apì thn Genik Sunèleush Eidik c SÔnjeshc

tou Tm matoc Plhroforik c Exetastik Epitrop

apì ton

Dhm trh TzÐka

wc mèroc twn Upoqre¸sewn gia th l yh tou

DIDAKTORIKOU DIPLWMATOS STHN PLHROFORIKH

Ianou�rioc 2009

EuqaristÐec

H paroÔsa didaktorik diatrib ekpon jhke sto Tm ma Plhroforik c tou PanepisthmÐou

IwannÐnwn me epiblèponta ton Anaplhrwt Kajhght k. AristeÐdh LÔka kai mèlh thc tri-

meloÔc sumbouleutik c epitrop c touc k.k. Nikìlao Galats�no, Kajhght tou Tm matoc

Hlektrolìgwn kai Mhqanik¸n kai TeqnologÐac Upologist¸n tou PanepisthmÐou P�trac

kai Isa�k Lagar , Kajhght tou Tm matoc Plhroforik c tou PanepisthmÐou IwannÐnwn,

touc opoÐouc ja jela na euqarist sw gia thn �risth sunergasÐa touc.

IdiaÐtera, ja jela na euqarist sw jerm� touc k.k. AristeÐdh LÔka kai Nikìlao Gala-

ts�no gia thn episthmonik touc kajod ghsh kat� thn di�rkeia thc ekpìnhshc aut c thc

diatrib c, gia thn genikìterh st rixh touc kata thn di�rkeia twn metaptuqiak¸n mou spou-

d¸n, kaj¸c kai gia tic enèrgeiec touc pou exasf�lisan thn qrhmatodìthsh meg�lou tm ma-

toc thc pragmatopoihjeÐsac èreunac, mèsw ereunhtik¸n programm�twn. H bo jei� touc

 tan kajoristik gia thn ekpìnhsh aut c thc diatrib c.

Ja jela epÐshc na euqarist sw touc did�ktorec tou Tm matoc Plhroforik c tou

PanepisthmÐou IwannÐnwn KwnstantÐno Kwnstantinìpoulo kai Iw�nnh Q�nta kai touc u-

poy fiouc did�ktorec tou Ðdiou Tm matoc BasÐlh Qas�nh kai ArgÔrh Kaloger�to gia

thn sumbol touc sthn dhmiourgÐa enìc exairetikoÔ ereunhtikoÔ perib�llontoc. Tèloc,

ja jela na euqarist sw touc goneÐc mou Gi¸rgo kai Rèna, thn aderf mou MarÐa kai

th D mhtra pou mou sumparast�jhkan kai me st rixan kat� thn ekpìnhsh thc diatrib c

aut c.

Dhm trhc TzÐkac

Iw�nnina, Ianou�rioc 2009

i

ii

Contents

List of Figures vii

List of Tables ix

PerÐlhyh xi

Abstract xiii

1 Introduction 1

1.1 Machine Learning Basics . 1

1.2 Image Processing Problems . 4

1.3 Thesis Contribution . 5

2 Bayesian Inference 9

2.1 Introduction . 9

2.2 Graphical Models . 11

2.3 Bayesian Inference with Conjugate priors 12

2.4 The Expectation Maximization (EM) Algorithm 13

2.5 The Maximum A Posteriori (MAP) Approximation 16

2.6 The Variational Bayes Approximation . 17

3 Linear Regression 19

3.1 Introduction . 19

3.2 Maximum Likelihood Estimation . 21

3.3 The Bayesian Linear Model . 21

3.4 The Sparse Bayesian Linear Model . 24

3.4.1 Variational Bayesian Inference . 25

3.4.2 MAP Estimation of Precision Parameters 27

3.4.3 Incremental Training Algorithm . 28

3.4.4 Understanding Sparsity . 29

3.5 The Relevance Vector Machine . 31

3.6 Relation of RVM to other models . 32

3.6.1 Gaussian Processes . 32

iii

3.6.2 Support Vector Machines . 33

3.7 Linear Regression Examples . 34

3.8 Classification . 35

3.9 Conclusions . 37

4 Sparse Multikernel Regression for Image Analysis 39

4.1 Introduction . 39

4.2 Multikernel RVM for Image Regression . 41

4.3 Sparse Linear Regression in the DFT domain 43

4.4 Evaluation of the DFT-based RVM implementation 45

4.5 Object Detection Using the Multikernel RVM Model 46

4.5.1 Experimental Evaluation . 47

4.6 Conclusions . 49

5 Bayesian Blind Image Deconvolution with Student’s t priors 51

5.1 Introduction . 51

5.2 BID Model . 54

5.2.1 PSF kernel model . 55

5.2.2 PSF sparseness . 55

5.2.3 Image model . 57

5.2.4 Noise model . 58

5.3 Variational Bayesian Inference . 58

5.3.1 Approximate Posterior Distributions 59

5.3.2 Parameter Estimation . 61

5.3.3 Computational issues . 63

5.3.4 Variational Optimization Algorithm 64

5.4 Numerical Experiments . 64

5.4.1 Experiments with artificially blurred images 65

5.4.2 Comparison with other BID methods 66

5.4.3 Experiments with real astronomical images 67

5.4.4 Selecting the kernel width and initial values for the parameters . . . 71

5.5 Conclusions and Future Work . 74

6 Adaptive Kernel Learning for the Relevance Vector Machine 77

6.1 Introduction . 77

6.2 Adjusting sparsity . 79

6.3 Kernel Learning . 81

6.3.1 Sparse infinite linear models . 81

6.3.2 Learning algorithm . 82

6.4 Numerical Experiments . 85

6.4.1 Experiments on Artificial Data . 86

6.4.2 Experiments on Real Datasets . 90

iv

6.5 Discussion . 92

6.5.1 Computational Cost . 92

6.5.2 Probabilistic Kernel Interpretation 93

6.6 Statistical Models for Analysis of Functional Neuroimages 94

6.6.1 The t-test . 96

6.6.2 Application of the Sparse Linear Model with Kernel Learning to

Detect fMRI Activations . 97

6.6.3 Experimental Setup . 98

6.6.4 Numerical Results . 98

6.7 Conclusions . 99

7 Local Feature Selection with Adaptive Kernel Learning: Application to

the Analysis of DNA Microarray Datasets 103

7.1 Introduction . 103

7.2 Feature Selection based on Linear Models 104

7.2.1 Recursive Feature Elimination . 105

7.2.2 Automatic Relevance Determination 105

7.3 Adaptive Kernel Learning for Feature Selection 106

7.3.1 A Bayesian Model for Feature Selection 107

7.3.2 Parameter Estimation . 108

7.3.3 The Proposed Algorithm . 109

7.4 Numerical Experiments . 109

7.4.1 Artificial Example . 109

7.4.2 Evaluation on Common Benchmark Datasets 110

7.4.3 Evaluation on DNA Microarray Datasets 111

7.5 Conclusions . 113

8 Conclusions 115

8.1 Concluding Remarks . 115

8.2 Directions for Future research . 117

Curriculum Vitae 127

Author’s Publications 129

v

vi

List of Figures

2.1 Example of directed Graphical Model. 12

3.1 Graphical models for linear regression. 22

3.2 The Student’s t pdf. 30

3.3 Linear regression examples. 34

4.1 Evaluation of DFT-based approximation for sparse Bayesian image regression. 45

4.2 Image denoising example with the multikernel DFT-RVM algorithm for

sparse Bayesian linear regression. 46

4.3 Object detection example with multikernel DFT-RVM and ARIR methods. 48

4.4 LROC curves of the ARIR and DFT-RVM algorithms for the two detection

problems shown in Fig. 4.3. 49

5.1 Generation mechanism of the observed image in blind image deconvolution. 52

5.2 Example blind image deconvolution. 52

5.3 Histograms of PSF weights, local differences and model errors. 56

5.4 Example of the estimated local variances of PSF and image residuals. . . . 58

5.5 Graphical model that describes the dependencies between the random vari-

ables of the proposed model. 59

5.6 Comparison of the proposed methods with Gaussian PSF. 67

5.7 Degraded cameraman images. 68

5.8 Comparison using the cameraman image with SNR = 40dB. 69

5.9 Comparison using the cameraman image with SNR = 20dB. 70

5.10 Comparison using a real astronomical image of Saturn planet. 71

5.11 True and estimated PSFs for the real astronomical images of Saturn planet

of Fig. 5.10. 72

6.1 Regression example with Doppler signal. 87

6.2 Comparison of the performance of aRVM, typical RVM and sRVM for

several noise values. 88

6.3 (a) True signal and (b) noisy samples of the two-dimensional ‘Doppler’

signal that was used for training. 89

vii

6.4 Estimation of the aRVM method with (a)isotropic and (b)anisotropic Gaus-

sian kernel functions. 89

6.5 Classification example of aRVM on artificial Gaussian clusters. 91

6.6 Example activation pattern and its estimation with typical RVM and RVM

with kernel learning. 100

6.7 ROC curves that summarize the performance of t-test, RVM and aRVM

methods. 100

7.1 Example aRVM classifiers (a) without feature selection (b) with feature

selection. 110

viii

List of Tables

2.1 Formulas for some common probability distribution functions. 14

2.2 Conjugate prior distributions. 14

4.1 Mean square error of the typical RVM algorithm and the DFT-based algo-

rithm with the two approximations for several choices of the kernel width

σ2. 45

5.1 ISNR for image and PSF for the experiments on the degraded lenna image

with a uniform, 7 × 7 square-shaped PSF. 66

5.2 ISNR for image and PSF for various values of the kernel width for the case

of Gaussian-shaped PSF with σ2
h = 5. 72

5.3 ISNR for image and PSF for various values of the kernel width for the case

of uniform, 7 × 7 square-shaped PSF. 72

6.1 Comparison of aRVM and RVM on regression. 92

6.2 Comparison of aRVM and RVM on classification. 92

7.1 Comparison on regression datasets. 111

7.2 Comparison on classification datasets. 111

7.3 Average Classification Error after feature selection with ARD. 112

7.4 Average Classification Error after selecting 20 features with RFE. 113

ix

x

PerÐlhyh

H diatrib esti�zetai sto araiì Mpeôzianì grammikì montèlo (sparse Bayesian linear

model) gia probl mata palindrìmhshc (regression) kai taxinìmhshc (classification) kai

se efarmogèc tou se probl mata epexergasÐac eikìnac.

Arqik�, parousi�zetai sunoptik� h mejodologÐa gia Mpeôzian sumperasmatologÐa.

Sth sunèqeia, proteÐnetai ènac upologistik� apodotikìc algìrijmoc gia to prìblhma thc

arai c Mpeôzian c palindrìmhshc eikìnwn. O proteinìmenoc algìrijmoc qrhsimopoieÐ lei-

tourgÐec sto pedÐo tou diakritoÔ metasqhmatismoÔ Fourier kai th mèjodo beltistopoÐhshc

suzug¸n kateujÔnsewn (conjugate gradient) gia na epitÔqei palindrìmhsh eikìnwn me efi-

ktì upologistikì kìstoc. 'Epeita, o algìrijmoc autìc qrhsimopoieÐtai gia thn epÐlush tou

probl matoc anÐqneushc antikeimènwn se eikìnec, proteÐnontac mia parallag tou montèlou

Relevance Vector Machine (RVM) pou to onom�zoume multikernel RVM.

To araiì Mpeôzianì grammikì montèlo qrhsimopoieÐtai sth sunèqeia gia na ektim soume

thn sun�rthsh diaspor�c shmeÐou thc jìlwshc (blurring PSF) sto prìblhma thc tufl c

aposunèlixhc eikìnwn (blind image deconvolution). ProteÐnetai èna statistikì montèlo,

basik� pleonekt mata tou opoÐou eÐnai h ektÐmhsh tou megèjouc thc sun�rthshc diaspo-

r�c shmeÐou pou perigr�fei thn jìlwsh, h anakataskeu twn akm¸n thc eikìnac kai h

anjektikìthta sto jìrubo. H Mpeôzian sumperasmatologÐa ulopoieÐtai me thn qr sh thc

variational prosèggishc.

Katìpin, h diatrib esti�zetai sto prìblhma epilog c kat�llhlwn sunart sewn b�shc

gia to araiì Mpeôzianì grammikì montèlo, to opoÐo eÐnai shmantikì z thma prokeimènou na

kataskeu�soume sust mata me kal genikeutik ikanìthta. Tupik�, h epilog kat�llhlwn

sunart sewn b�shc pragmatopoieÐtai me thn qr sh thc teqnik c cross-validation, ìmwc h

teqnik aut èqei uyhlèc upologistikèc apait seic kai ètsi mporeÐ na efarmosteÐ gia thn

epilog tou kalÔterou sÔnolou sunart sewn b�shc, mìno e�n o arijmìc twn upoy fiwn

sunìlwn eÐnai mikrìc. ProteÐnetai ènac prosarmostikìc algìrijmoc m�jhshc twn sunar-

t sewn b�shc, o opoÐoc eÐnai an�logoc me to montèlo RVM, all� ektim� tic paramètrouc

twn sunart sewn b�shc tautìqrona me thn ekpaÐdeush tou montèlou. Pio sugkekrimèna,

h proteinìmenh mèjodoc ektim� diaforetikèc timèc gia tic paramètrouc k�je sun�rthshc

b�shc kai ètsi prokÔptei èna polÔ euèlikto montèlo. Gia na apofeuqjeÐ h uperekpaÐdeu-

sh, epib�lletai mia ek twn protèrwn katanom pou odhgeÐ se araièc lÔseic, rujmÐzontac

autìmata ton ousiastikì arijmì paramètrwn tou montèlou. H proteinìmenh mejodologÐa

efarmìzetai se di�fora probl mata palindrìmhshc kai taxinìmhshc kai qrhsimopoieÐtai gia

xi

thn an�lush eikìnwn leitourgikoÔ magnhtikoÔ suntonismoÔ (fMRI).

EpÐshc, proteÐnetai mia tropopoÐhsh thc prohgoÔmenhc mejìdou, pou qrhsimopoieÐ aniso-

tropikèc Gkaoussianèc sunart seic b�shc, me xeqwrist par�metro klÐmakac (pl�toc) gia

k�je qarakthristikì, ¸ste na epitÔqei topik epilog qarakthristik¸n. H epilog qara-

kthristik¸n eÐnai topik , me thn ènnoia ìti upojètoume ìti diaforetik� qarakthristik� eÐnai

shmantik� se diaforetikèc perioqèc tou q¸rou paradeigm�twn. Gia na apaleÐyoume ta qara-

kthristik� pou den eÐnai qr sima, upojètoume mia kat�llhlh ek twn protèrwn katanom gia

tic paramètrouc klÐmakac. Oi parap�nw mejodologÐec m�jhshc twn paramètrwn twn sunar-

t sewn b�shc (me qwrÐc tautìqronh topik epilog qarakthrstik¸n) qrhsimopoioÔntai

gia thn taxinìmhsh dedomènwn apì mikrosustoiqÐec (microarrays) DNA.

xii

Abstract

In this thesis, we study the sparse Bayesian linear model for regression and classification

tasks and for solving image processing problems.

We start with an overview of the Bayesian inference methodology and its application

to linear regression. We then develop a computationally efficient training algorithm for

sparse Bayesian regression of images. The proposed training algorithm uses operations in

the Fourier domain and the conjugate gradients method, in order to allow regression of

large images at reasonable computational cost. We then apply this algorithm to detect

objects in images, using a variant of the relevance vector machine (RVM), which uses

many types of kernels simultaneously and we call the multikernel RVM.

Next, we use the sparse Bayesian linear model to estimate the point spread function

(PSF) in the blind image deconvolution (BID) problem. We propose a Bayesian model

that estimates the support of the blurring PSF, allows reconstruction of image edges

and achieves noise robustness. Bayesian inference on this model is performed using the

variational approximation.

Furthermore, we focus on the problem of selecting appropriate basis functions for the

sparse Bayesian linear model, which is crucial in order to achieve good generalization

performance. Typically, this problem is tackled using cross-validation technique, but this

technique is computationally expensive and it can be used to select the best out of a small

number of candidate basis function sets. Instead, we propose an adaptive kernel learning

algorithm, which is similar to the RVM but also learns the parameters of the kernels during

model training. More specifically, the proposed method estimates different parameter

values for each kernel, resulting in a very flexible model. In order to avoid overfitting, a

sparsity enforcing prior is imposed that controls the effective number of parameters of the

model. The proposed methodology is evaluated on benchmark regression and classification

datasets and applied for analysis of functional magnetic resonance images (fMRI).

We also propose a modification of this method that performs local feature selection

by estimating the parameters of appropriate kernel functions. In order to incorporate

local feature selection, anisotropic Gaussian kernels are considered, which use a separate

scaling factor (width) for each feature. Feature selection is local, in the sense that different

features are assumed to be significant at different regions of the input space. This is

achieved because we learn different values for the scaling factors of each kernel. In order

to eliminate irrelevant features, we assume a sparsity enforcing prior on the scaling factors

xiii

of the kernels. The proposed adaptive kernel learning algorithms (with or without local

feature selection) are employed to the problem of classifying DNA microarray datasets.

xiv

Chapter 1

Introduction

1.1 Machine Learning Basics

1.2 Image Processing Problems

1.3 Thesis Contribution

1.1 Machine Learning Basics

Machine learning is the area of artificial intelligence that attempts to give machines the

ability to learn from their environment. More specifically, in machine learning problems

we want to use a set of observations, which we call the training set, in order to make

predictions for unseen events. Typically, we separate this problem in two phases; first we

use the training set to learn a model of the observations and then we make predictions

based on this model. For example, in handwritten digit recognition we are given a training

set that consists of handwritten images and corresponding labels that identify the digits

that appear on each image. Using this training set we can learn a model that captures the

correlations between the observed images and their labels. Then, we can use this model

to predict the label of a previously unseen image. The importance of machine learning

is that it can be used to solve problems (such as handwritten digit recognition or speech

recognition) for which it is difficult to design typical algorithms.

But how do we learn a system using the available observations in the training set? A

common approach is to consider a parametric function (model) that is used to describe

the process that generates the observed data. Then, during the training phase, we es-

timate the parameters of this model by maximizing some objective function. Under a

stochastic framework, it is convenient to assume that the observations are random vari-

ables and define an appropriate parametric probability density function (pdf) for them.

Then, we can define the objective function for learning as the likelihood of the obser-

vations, which is the probability that the observations have been generated by specific

1

values of the parameters. Estimation of the parameters is performed by maximizing the

likelihood of the observations in a process known as maximum likelihood estimation. Al-

ternatively, Bayesian methods assume that the parameters of the model are also random

variables. This framework provides an elegant way to apply constraints on the param-

eters by assigning suitable prior distributions to them. More importantly, the Bayesian

framework provides a principled methodology to measure uncertainties of the parameter

estimates and propagate these uncertainties to the predictions made using this model.

These Bayesian learning methodologies are discussed in detail in Chapter 2.

An important issue to note is that in order for a model to generalize the observations of

the training set to unseen examples, it needs to make certain assumptions for the mecha-

nism that generates the observations. These assumptions are called the bias of the model.

For example, a common assumption is that similar inputs should be mapped to similar

outputs. The more assumptions a model makes, the larger the bias is. Models with very

large bias generally have poor performance, because they make too many assumptions,

which are unlikely to be realistic. On the other hand, models with very small bias make

too few assumptions and for this reason their predictions are heavily affected by noise that

commonly exists in the observations. How much a machine learning model is affected by

noise of the training examples is measured by the variance of the method. More specif-

ically, the generalization performance of a model increases as the bias and variance gets

smaller. However, there is a bias-variance tradeoff; the larger the bias of an algorithm,

the smaller its variance. For this reason it is important to measure the generalization

performance of a machine learning method. This is commonly achieved by comparing

the prediction of the method to the known labels of a separate set observations, which is

called the test set and should be independent of the training set.

Machine learning methods are divided in two broad categories depending on the level of

supervision that they require. Supervised learning methods assume that the observations

have the form of pairs, containing inputs and corresponding outputs. The aim is to build

a model that can be used to make predictions for the outputs of previously unseen inputs.

On the other hand, unsupervised learning methods assume a training set that only consists

of observed inputs. They learn a model of these inputs, which can later be used for example

to predict missing values of some of the observations, or to group similar observations

in clusters. Semi-supervised machine learning methods combine characteristics of both

supervised and unsupervised methods. These methods, require that some of the input

observations are associated with the corresponding desired output, but they can also take

advantage of available input observations whose corresponding output is unknown.

Supervised methods are further divided in two categories depending on the type of

the outputs. Classification methods assume that outputs are labels that describe the

category which the observation belongs to. For example, handwritten digit recognition

and speech recognition are examples of classification problems. In contrast, if the outputs

are continuous variables, the problem is known as regression. For example, predicting the

temperature based on some other measurements, predicting the value of a stock based on

2

its previous values and estimating the value of an image pixel given its neighboring pixels

are regression problems.

When designing classification methods there are two general approaches; the discrim-

inative and the generative approach. In the discriminative approach we attempt to find a

function that directly discriminates the categories. For example, in binary classification,

where we assume only two categories, we may discriminate the two categories based on the

sign of the output of some function, whose parameters are estimated during the training

phase. Instead, when using the generative approach we attempt to learn for each category

a (probability distribution) function that describes the mechanism that generates its data.

Then, we can make predictions for unseen data using the Bayes law. Generative methods

solve a more general problem than required, since they also estimate a model of how the

observations of each category are generated. Thus, they typically require larger training

sets compared to discriminative methods, but they provide a framework to overcome other

difficulties, such as missing data in the training set. Furthermore, it is usually straight-

forward to extend discriminative methods for regression problems. In contrast generative

methods cannot be used for regression tasks, since the outputs in regression are contin-

uous and therefore they can take an infinite range of values (a generative method would

attempt to estimate the generative model for each possible output value).

The most common assumption that supervised learning methods make is that similar

inputs should be mapped to similar outputs. However, it is not always straightforward how

to define similar inputs. Many simple algorithms measure similarity between two input

points x1, x2 using their inner product xT
1 x2. However, this is usually insufficient and

more flexible similarity representations can be obtained using a mapping function ψ(x) to

map the inputs to some feature space of usually higher dimension. Then similarity of the

input points can be computed as the inner product ψ(x1)
Tψ(x2) in the new feature space.

For example, instead of working directly with the two dimensional input x = (x1, x2)
T

we can map it to the feature vector ψ(x) = (x2
1, x1x2, x

2
2)

T . Furthermore, we notice that

inner products in the feature space can be efficiently computed using a kernel function

K(x1,x2) = ψ(x1)
Tψ(x2), which in the above example is K(x1,x2) = (xT

1 x2)
2. In

summary, it is often useful to measure similarity using kernel functions rather than the

typical inner product approach. Such methods that use kernel functions are known as

kernel methods and have become very popular for solving regression and classification

tasks. However, their performance depends largely on selecting an appropriate kernel

function, which generally is an empirical task.

A property of kernel-based machine learning methods that has lately attracted a lot

of interest is sparsity. Kernel classifiers make predictions for a new input point based on

its similarity with the input points of the training set. The key observation in developing

sparse methods is that it is typically redundant to consider the similarity with all the input

points of the training set. Instead, sparse methods consider the similarity with only a small

subset of the input points, which are selected during the training phase. Popular sparse

kernel classifiers are the support vector machine (SVM), the relevance vector machine

3

(RVM) and several sparse approximations of Gaussian processes. In Chapter 3 we describe

in detail the linear model and explain how to obtain sparse estimations and in Chapter 6

we propose a modification that learns parameters of the kernel function simultaneously

with the parameters of the model.

1.2 Image Processing Problems

Nowadays, computer systems have excessive storage and computational capabilities that

allow storage and processing of multitmedia content. A lot of interest is paid in applica-

tions that process and store images, since images are a very important type of information.

There are several problems of interest in the image processing field. For example,

edge detection is the problem of detecting the edges (discontinuities) in a given image.

Image segmentation is the problem of segmenting the image into regions that correspond

to different objects. Image registration is the problem of aligning two or more images.

In image denoising we are given an observed image that has been corrupted by additive

noise and we want to estimate the initial image. Image restoration is a similar problem,

where the observed image has been degraded by known blur and addition of some noise

source and we want to restore the original image. The problem is known as blind image

deconvolution when the type of blur is unknown. In image recognition we want to identify

what type of object is depicted in a given image and in the more specific problem of face

recognition we wish to recognize individuals using images of their face. Image detection

is a slightly different problem, were we want to identify all occurrences of a target object

in an observed image and we also want to find the locations were they appear. In the

tracking problem, we are given sequences of images (video), and after detecting an object

we attempt to keep track of it. In image retrieval we assume to have a database of images

and we want to retrieve images that are similar to some other given image. Furthermore,

many problems of interest involve processing of medical images.

A large variety of image processing methods have been developed in order to treat

such problems. Many of these methods are based on the discrete Fourier trasform (DFT)

that describes images based on their frequency spectrum. Another useful tool that has

been more recently used for image processing, is the discrete Wavelet trasnform (DWT),

which combines information in the spatial and frequency domains. Furthermore, machine

learning methods have been used with great success, because many of the previously

mentioned problems can be tackled by learning a model using a set of training examples.

An image can be mathematically defined as a function f : Ω → Ic that maps input

points (pixels) from its support Ω ⊂ R2 to a color space Ic ⊂ Rc, where R is the set of

real numbers. The support Ω of the image commonly has rectangular form Ω = {(x, y) :

x ∈ [xmin, xmax], y ∈ [ymin, ymax]}, where xmin, xmax, ymin and ymax are minimum and

maximum values for both image dimensions. Color images are usually encoded using

three channels that correspond to the intensities of the three basic colors (red, green

4

blue), therefore the color space is Ic = R3. On the other hand, grayscale images assume

only one channel (Ic = R) that corresponds to the grayscale intensity. Computers can

only process digital representations of images and for this reason, the image support and

color space cannot be infinite sets. This limitation is overcome by quantizing the image

support and color space, which can then be assumed to be integer sets, Ω ⊂ Z2 and

Ic ⊂ Zc, where Z is the set of integers. The elements of the image support are then called

image pixels. A specific characteristic of images, in contrast to arbitrary functions, is that

image pixels lie on a uniform grid, which means that they are not randomly distributed,

but they have equal distances between their neighbors. For this reason, we can represent

images as vectors that contain the intensity values at all the pixels in some specified

order, without explicitly representing the pixel location. In this thesis we will only treat

grayscale images. However, it should not be difficult to extend the proposed methods in

order to deal with the case of color images.

1.3 Thesis Contribution

The contribution of this thesis is twofold. On one hand, we focus on the problem of

selecting appropriate basis functions for the sparse Bayesian linear model and we propose

methods that automatically learn the parameters of the basis functions. On the other

hand, we develop computationally efficient training algorithms for applying the sparse

Bayesian linear model to regression problems on images and we treat image processing

problems, such as object detection, blind image deconvolution and analysis of functional

neuroimages.

In Chapter 2 we provide an overview of the Bayesian inference methodology [Tzikas

et al., 2008b], which will be used in the following chapters. More specifically, we discuss

graphical models that provide a powerful approach to visualize the random variables of a

stochastic model and the dependencies among them. We then describe how exact Bayesian

inference can be achieved if we use conjugate priors, and how to estimate the parameters

of a Bayesian model using the expectation maximization (EM) algorithm. Finally, we

describe the maximum a posteriori (MAP) principle and the variational Bayesian ap-

proximation, which can be used with rather complex Bayesian models. The application

of these methodologies to the linear regression problem is shown in Chapter 3. We first

describe the maximum likelihood approach and explain its drawbacks. We then impose

conjugate Bayesian priors on the parameters of the linear model to derive a model that

can be solved exactly using the EM algorithm. Furthermore, we describe how the prior

distribution can be modified in order to obtain sparse estimations using the variational

Bayesian approximation. Finally, we discuss how the sparse linear model has been used

to solve classification problems.

In Chapter 4 we consider a specific case of the linear model, which we call the mul-

tikernel RVM and which is a variant of the well-known relevance vector machine (RVM)

5

model, but uses many types of kernels simultaneously [Tzikas et al., 2006b, 2007b]. We

then propose a fast algorithm that can be used for sparse Bayesian linear regression of

large scale images. The proposed algorithm uses operations in the Fourier domain in order

to allow regression of large images with reasonable computational cost. We then use this

method to detect objects in images and simultaneously determine their locations.

In Chapter 5 we present a new Bayesian approach for the blind image deconvolution

(BID) problem [Tzikas et al., 2006a, 2007a,c, a]. The main novelty of this approach is the

use of the sparse Bayesian linear model for the blurring point spread function (PSF) that

allows estimation of both PSF shape and support. In the proposed approach, a robust

model of the BID errors and an image prior that preserves edges of the reconstructed

image are also used. Sparseness, robustness and preservation of edges are achieved by

using priors that are based on the Student’s t probability density function (PDF). This

pdf, in addition to having heavy tails, is closely related to the Gaussian and thus yields

tractable inference algorithms. The approximate variational inference methodology is

used to solve the corresponding Bayesian model. Numerical experiments are presented

that compare this BID methodology to previous ones using both simulated and real data.

Sparse kernel methods are very efficient in solving regression and classification prob-

lems. The sparsity and performance of these methods depend on selecting an appropriate

kernel function, which is typically achieved using a cross-validation procedure. In Chap-

ter 6 we propose an incremental method for kernel-based supervised learning, which is

similar to the Relevance Vector Machine (RVM), but it also learns the parameters of the

kernels during model training [Tzikas et al., 2008a, b]. Specifically, we learn different

parameter values for each kernel, resulting in a very flexible model. In order to avoid

overfitting we use a sparsity enforcing prior that controls the effective number of param-

eters of the model. We present experimental results on artificial data to demonstrate

the advantages of the proposed method and we provide a comparison with the typical

RVM on several commonly used regression and classification datasets. Furthermore, we

apply the proposed approach to model spatial correlations of the activation signal in func-

tional neuroimaging. Numerical results with an artificial phantom show that, in contrast

to previous approaches, the proposed model can simultaneously detect the presence of

activations that are i) strong but small and ii) large but weak.

In Chapter 7 we propose a modification to the kernel learning method of Chapter 6 that

performs local feature selection simultaneously with model inference. In order to incor-

porate local feature selection, appropriate kernels need to be used; we consider Gaussian

anisotropic kernels, which use a separate scaling factor (width) for each feature. Because

we learn different values for the scaling factors of each kernel, feature selection is local, i.e.

different features are assumed to be significant at different regions of the input space. In

order to eliminate irrelevant features, we impose a sparsity enforcing prior on the scaling

factors of the kernels. Experimental results show that the proposed method has improved

performance in several regression and classification benchmark datasets.

Furthermore, we consider the classification task with biological DNA microarray data-

6

sets, where feature selection is very important, sinse the microarray examples are of very

high dimension. The proposed methodology first applies two popular (and computation-

ally efficient) feature selection approaches, namely recursive feature elimination (RFE)

and automatic relevance determination (ARD), to initially reduce the number of features.

Then, using the remaining features, we apply both the adaptive RVM with kernel learning

and the local feature selection approach and examine their performance. Experimental

results indicate that the adaptive kernel learning algorithm of Chapter 6 exhibits superior

classification performance compared to the commonly used RVM model. Furthermore,

the proposed local feature selection approach has similar performance and may be useful

in identifying which genes are significant for the classification task.

7

8

Chapter 2

Bayesian Inference

2.1 Introduction

2.2 Graphical Models

2.3 Bayesian Inference with Conjugate priors

2.4 The Expectation Maximization (EM) Algorithm

2.5 The Maximum A Posteriori (MAP) Approximation

2.6 The Variational Bayes Approximation

2.1 Introduction

Statistical models are collections of random variables, whose behavior is determined by

their joint probability distribution. Typically, these random variables can be distinguished

as observed x and hidden z random variables, depending on whether they are included

in the training set or not. Furthermore, it is common to use parameters θ in order to

define the joint distribution model p(x, z; θ) of the random variables. In this chapter we

will discuss methodologies that can be used to achieve i) inference of the hidden random

variables and ii) estimation of the model parameters. Hereafter, the term inference will be

used to refer to the computation of the posterior distribution p(z|x) of the hidden random

variables z, while the term estimation will refer to the process of assigning appropriate

values to the parameters θ, using the observations x. We will later see that exact inference

can be achieved when using conjugate prior distributions. However, in many cases of

interest it is advantageous to use more complicated prior distributions, even though we

need to resort to approximate inference methods.

Many simple statistical models do not use any hidden variables and it is easy to com-

pute the likelihood function p(x; θ) that describes the probabilistic relationship between

the observations x and the parameters θ. In this case estimation of the model parameters

9

is commonly performed using the popular maximum likelihood (ML) approach. According

to this approach, the ML estimate is obtained as

θ̂ = argmax
θ

p(x; θ). (2.1)

However, in many problems of interest, direct assessment of the likelihood function

p(x; θ) is complex and is either difficult or impossible to compute it directly or optimize it.

In such cases the computation of this likelihood is greatly facilitated by the introduction of

hidden variables z. These random variables act as “links” that connect the observations

to the unknown parameters via Bayes’ law. The choice of hidden variables is problem

dependent. However, as their name suggests, these variables are not observed and they

provide sufficient information about the observations so that the conditional probability

p(x|z; θ) and therefore the joint distribution p(x, z; θ) are easy to compute.

Once the hidden variables z and a prior probability for them p(z; θ) have been intro-

duced, one can obtain the likelihood of the observations x or the marginal likelihood as

it is usually called, by integrating out (marginalizing) the hidden variables z:

p(x; θ) =

∫
p(x,z; θ) dz =

∫
p(x|z; θ)p(z; θ) dz (2.2)

This seemingly simple integration is the core of the Bayesian methodology, since in this

manner we can obtain both the likelihood function, and by using Bayes’ theorem, the

posterior of the hidden variables:

p(z|x; θ) =
p(x|z; θ)p(z; θ)

p(x; θ)
. (2.3)

As it will be shown later, if the posterior distribution of the hidden variables p(z|x; θ)

can be analytically computed, the parameters of Bayesian models can be estimated using

the EM algorithm, which iteratively maximizes the likelihood function without explicitly

computing it.

In many cases of interest the posterior distribution is not available, because the in-

tegral in (2.2) is either intractable or very difficult to compute in closed form. Thus,

the main effort in Bayesian inference is concentrated on techniques that allow us to by-

pass or approximately evaluate this integral. Such methods can be classified into two

broad categories. The first contains numerical sampling methods also known as Monte

Carlo [Robert and Casella, 2005, Andrieu et al., 2003] techniques and the second cate-

gory concerns deterministic approximations of the integral, such as the Variational Bayes

methodology.

10

2.2 Graphical Models

Graphical Models provide a framework for representing dependencies among the random

variables in a statistical modelling problem. They constitute a comprehensive and elegant

way to graphically represent the interaction among the entities involved in a probabilistic

system. A graphical model is a graph whose nodes correspond to the random variables

of a problem and the edges represent the dependencies among the variables. A directed

edge from a node A to a node B in the graph indicates that the variable B stochastically

depends on the value of the variable A. Graphical models can be either directed or undi-

rected. In the second case they are also known as Markov Random Fields [Bishop, 2006,

Borgelt and Kruse, 2002, Neapolitan, 2003]. We will focus on directed graphical models

also called Bayesian Networks, where all the edges are considered to have a direction from

parent to child denoting the conditional dependency among the corresponding random

variables. In addition we assume that the directed graph is acyclic (i.e. it contains no

cycles).

Let G = (V,E) be a directed acyclic graph with V being the set of nodes and E the

set of directed edges. Let also xs denote the random variable associated with node s

and πs the set of parents of node s. Associated with each node s is also a conditional

probability density p(xs|xπs) that defines the distribution of xs given the values of its

parent variables. Therefore, for a graphical model to be completely defined, apart from

the graph structure, the conditional probability distribution at each node should also be

specified. Once these distributions are known, the joint distribution over the set of all

variables can be computed as the product:

p(x) =
∏

s

p(xs|xπs) (2.4)

The above equation constitutes a formal definition of a directed graphical model

[Bishop, 2006] as a collection of probability distributions that factorize in the way spec-

ified in the above equation (which of course depends on the structure of the underlying

graph).

In Fig. 2.1 we show an example of a directed Graphical Model. The random variables

at the nodes are a,b,c and d. Each node computes a conditional probability density that

quantifies the dependency of the node from its parents. The conditional densities at a

node i may not be exactly known and may be parameterized by a set of parameters θi.

Using the chain rule of probability, we would write the joint distribution as:

p(a, b, c, d; θ) = p(a; θ1)p(b|a; θ2)p(c|a, b; θ3)p(d|a, b, c; θ4) (2.5)

However, we can simplify this expression by taking into account the independencies

that the graph structure implies. In general, in a graphical model each node is independent

of its ancestors given its parents. This means that node c does not depend on node a

given node b, and node d does not depend on node a given nodes b and c. Thus, from (2.4)

11

Figure 2.1: Example of directed Graphical Model. Nodes denoted with circles correspond
to random variables, while nodes denoted with squares correspond to parameters of the
model. Doubly circled nodes represent observed random variables, while single circled
nodes represent hidden random variables.

we can write:

p(a, b, c, d; θ) = p(a; θ1)p(b|a; θ2)p(c|a; θ3)p(d|b, c; θ4), (2.6)

which is also obtained by applying (2.4).

Once a graphical model is completely determined (i.e. all parameters have been spec-

ified), then several inference problems could be defined, such as computing the marginal

distribution of a subset of random variables, computing the conditional distribution of

a subset of variables given the values of the rest variables and computing the maximum

point in some of the previous densities. In the case where the graphical model is para-

metric, then we have the problem of learning appropriate values of the parameters given

some dataset with observations. Usually, in the process of parameter learning, several

inference steps are also involved.

2.3 Bayesian Inference with Conjugate priors

Conjugate priors play an important role in facilitating Bayesian calculations. More specif-

ically, assume a Bayesian model with hidden variables z, observed variables x, prior dis-

tribution p(z) and conditional likelihood p(x|z). Then, the marginal likelihood is given

12

by

p(x) =

∫
p(x,z) dz =

∫
p(x|z)p(z) dz, (2.7)

which cannot always be computed analytically. However, the marginal likelihood is in-

volved in the computation of the posterior distribution p(z|x) of the hidden variables z,

which is computed according to

p(z|x) =
p(x|z)p(z)

p(x)
, (2.8)

and is required in order to proceed with Bayesian inference. Thus, it is important to

find a prior p(z) such that when multiplied with a likelihood distribution p(x|z) allows

analytical computation of the marginalization integral of (2.7). A common practice is to

choose the prior distribution such that it has the same form as the likelihood, so that the

resulting posterior distribution p(z|x) has also the same form as the likelihood p(z|x),

when viewed as a function of the hidden variables. Such prior distributions allow closed

form marginalization of the hidden variables and are called conjugate to the likelihood

distribution.

For example, consider a Gaussian conditional likelihood with zero mean and whose

precision (inverse variance) is given by a hidden variable α:

p(x|α) = (2π)−1/2α1/2 exp(−1

2
αx2). (2.9)

This likelihood, when viewed as a function of α, has the form of a Gamma pdf defined as

p(α; a, b) =
ba

Γ(a)
αa−1 exp(−bα). (2.10)

Thus, the marginalization of the precision α of a Gaussian pdf (when a Gamma conjugate

prior is used for it) is possible in closed form according to

p(x; a, b) =

∫
p(x|α)p(α; a, b) dα =

Γ(a+ 1/2)

Γ(a)

ba

(2π)1/2

(
b+

x2

2

)−(a+ 1
2
)

, (2.11)

and gives the Student’s t pdf. Unfortunately, given an arbitrary likelihood distribution,

a conjugate prior distribution does not always exist. Table 2.1 shows the formula of some

common distributions, and Table 2.2 shows their conjugate prior distributions and the

resulting posteriors.

2.4 The Expectation Maximization (EM) Algorithm

In the case of statistical models where inference is tractable, therefore the posterior distri-

bution of the hidden variables can be analytically computed, estimation of the parameters

13

Distribution pdf

Normal N(x|µ,Σ) = (2π)−n/2|Σ|−1/2 exp
[
−1

2
(x − µ)T Σ−1(x − µ)

]
Gamma Gamma(x|a, b) = baΓ(a)−1xa−1e−bx

Wishart Wishart(X|ν,V) =
|X|(ν−d−1)/2 exp(trace− 1

2
V X)

2νd/2πd(d−1)/4V −n/2
Qd

i=1 Γ(ν+1−i)/2

Multinomial Mult(x|π) =
(
Pn

i=1 xi)!
Qn

i=1 xi!

∏n
i=1 π

xi
i

Dirichlet Dirichlet(x|α) =
Γ(

PM
j=1 αj)

QM
j=1 Γ(αj)

∏M
j=1 x

αj−1
j

Table 2.1: Formulas for some common probability distribution functions.

Likelihood Conjugate Prior Posterior

N(x|µ,Σ) N(µ|µ0,Σ0) N(µ|µ̃, Σ̃), µ̃ = Σ̃(Σ−1
0 µ0 + nΣ−1x̄), Σ̃ = (Σ−1

0 + nΣ−1)−1

N(x|µ, σ2) Gamma(σ−2|a, b) Gamma (σ−2|a+ n/2, b+
∑n

i=1(xi − µ)2/2)
N(x|µ,Σ) Wishart(Σ−1|ν,V) Wishart

(
Σ−1|ν + n,V +

∑n
i=1(xi − µ)T (xi − µ)

)
Mult(x|π) Dirichlet(π|α) Dirichlet(π|α +

∑n
i=1 xi)

Table 2.2: Conjugate prior distributions. Here, n denotes the number of observations and
x̄ =

∑n
i=1 xi is the mean of x.

can be performed using the maximum likelihood principle. Typically the conditional like-

lihood given the hidden variables p(x|z; θ) is readily computable. However, parameter

estimation should be carried out by maximizing the marginal likelihood p(x; θ), which

may be difficult to compute or difficult to maximize. In such cases, the EM algorithm

can be used to compute the parameter values θ that maximize the marginal likelihood

p(x; θ), without explicitly computing it. The computations involve only the conditional

likelihood p(x|z; θ) and the posterior of the hidden variables p(z|x; θ).

Hereafter, we will follow the exposition of the EM in [Neal and Hinton, 1998, Bishop,

2006, Tzikas et al., 2008b]. It is straightforward to show that the log-likelihood can be

written as

ln p(x; θ) = F (q,θ) +KL(q‖p), (2.12)

with

F (q,θ) =

∫
q(z) ln

p(x, z; θ)

q(z)
dz, (2.13)

and

KL(q‖p) = −
∫
q(z) ln

p(z|x; θ)

q(z)
dz, (2.14)

where q(z) is any probability density function, KL(q‖p) is the Kullback-Leibler divergence

between p(z|x; θ) and q(z), and since KL(q‖p) ≥ 0, it holds that ln p(x; θ) ≥ F (q,θ).

In other words, F (q,θ) is a lower bound of the log-likelihood. Equality holds only when

KL(q‖p) = 0, which implies q(z) = p(z|x; θ). The EM algorithm and some recent

advances in deterministic approximations for Bayesian inference can be viewed in the

14

light of the decomposition in (2.12) as the maximization of the lower bound F (q,θ) with

respect to the density q(z) and the parameters θ.

In particular, EM is a two step iterative algorithm that maximizes the lower bound

F (q,θ) and hence the log-likelihood. Assume that the current value of the parameters

is θOLD. In the E-step the lower bound F (q,θOLD) is maximized with respect to q(z).

It is easy to see that this happens when KL(q‖p) = 0, in other words, when q(z) =

p(z|x; θOLD). In this case the lower bound is equal to the log-likelihood. In the subsequent

M-step, q(z) is held fixed and the lower bound F (q,θ) is maximized with respect to θ

to give some new value θNEW . This will cause the lower bound to increase and as a

result, the corresponding log-likelihood will also increase. Because q(z) was determined

using θOLD and is held fixed in the M-step, it will not be equal to the new posterior

p(z|x; θNEW) and hence the KL distance will not be zero. Thus, the E-step and M-step

need to be repeated until the algorithm converges.

If we substitute q(z) = p(z|x; θOLD) into the lower bound and expand (2.13) we get

F (q,θ) =

∫
p(z|x; θOLD) ln p(x, z; θ) dz −

∫
p(z|x; θOLD) ln p(z|x; θOLD) dz

= Q(θ,θOLD) + constant, (2.15)

where the constant is simply the entropy of p(z|x; θOLD) which does not depend on θ.

The function

Q(θ,θOLD) =

∫
p(z|x; θOLD) ln p(x,z; θ) dz = 〈ln p(x,z; θ)〉p(z|x;θOLD) (2.16)

is the expectation of the log-likelihood of the complete data (observations + hidden vari-

ables) which is maximized in the M-step. The usual way of presenting the EM algorithm

in the literature has been via use of the Q(θ,θOLD) function directly [Moon, 1996, Kay,

1997].

In summary, the EM algorithm is an iterative algorithm involving the following two

steps:

• E-step: Compute p(z|x; θOLD)

• M-step: Update θNEW = argmaxθ Q(θ,θOLD)

Furthermore, it is interesting to point out that the EM algorithm requires that the pos-

terior of the hidden variables p(z|x; θ) is explicitly known, or at least we should be able

to compute the conditional expectation of its sufficient statistics 〈ln p(x, z; θ)〉p(z|x;θ),

see (2.16). While p(z|x; θ) is in general much easier to compute than p(x; θ), in many

interesting problems this is not possible, thus the EM algorithm is not applicable. For

this reason, approximate inference techniques are employed.

15

2.5 The Maximum A Posteriori (MAP) Approximation

One of the most commonly used methodologies in the statistical modeling is the maximum

a posteriori (MAP) method. MAP can be considered as an approximation of Bayesian

inference, since the parameter vector θ is assumed to be a random variable and a prior

distribution p(θ) is imposed on θ. However, this approximation is rather crude, since the

posterior distribution is approximated with a degenerate distribution at its mode.

For observations x generated by model p(x|θ), the MAP estimate is defined as

θ̂MAP = argmax
θ

p(θ|x) (2.17)

and using Bayes theorem it can be obtained from

θ̂MAP = argmax
θ

p(x|θ)p(θ), (2.18)

where p(x|θ) is the likelihood of the observations. The MAP estimate is easier to obtain

from (2.18) than (2.17). The posterior in (2.17) based on Bayes’ theorem is given by

p(θ|x) =
p(x|θ)p(θ)∫
p(x|θ)p(θ) dθ

(2.19)

and requires the computation of the Bayesian integral in the denominator of (2.19) to

marginalize θ.

From the above it is clear that both MAP and Bayesian estimators assume that θ is

a random variable and use Bayes’ theorem, however, their similarity stops there.

The MAP approach uses only the mode of the posterior, which is found by maximiz-

ing the posterior with respect to the parameters θ. In fact, the MAP approach can be

considered as a simple extension of the maximum likelihood approach, which incorpo-

rates penalty terms for the parameters through definition of prior distributions for them.

In contrast, for Bayesian inference the posterior is used and thus θ has to be marginal-

ized. It is important to note that Bayesian inference, unlike MAP, averages over all the

available information about θ. Therefore, it is preferable over MAP, because it generally

produces more accurate estimations and it also provides measures of the uncertainty of

the estimation [Tzikas et al., 2008b].

The EM algorithm can also be used to obtain MAP estimates of θ. Using Bayes’

theorem we can write

ln p(θ|x) = ln p(x,θ) − ln p(x) = ln p(x|θ) + ln p(θ) − ln p(x). (2.20)

Using a similar framework as for the ML-EM case in Section we can write

ln p(θ|x) = F (q,θ) +KL(q‖p) + ln p(θ) − ln p(x) (2.21)

≥ F (q,θ) + ln p(θ) − ln p(x), (2.22)

16

where in this context ln p(x) is a constant. The right hand side of (2.21) can be maximized

in an alternating fashion as in the EM algorithm. Optimization with respect to q(z) gives

an identical E-step as in the ML case previously explained. Optimization with respect

to θ gives a different M-step since the objective function now contains also the term

ln p(θ). In general the M-step for the MAP-EM algorithm is more complex than in its

ML counterpart [Blekas et al., 2005, Nikou et al., 2007]. Strictly speaking in such a model

MAP estimation is used only for the θ random variables, while Bayesian inference is used

for hidden variables z.

2.6 The Variational Bayes Approximation

Because MAP is a coarse approximation that does not consider uncertainties of the estima-

tion, more flexible approximations are commonly considered. For example, the Laplacian

approximation [Bishop, 2006] approximates the posterior distribution with a Gaussian

distribution whose mean is assumed to be a mode of the true posterior distribution. Then,

the covariance of the Gaussian distribution can be determined in terms of the Hessian

matrix (matrix of second derivatives) of the true posterior at its mode.

More general approximations have also been considered. Variational Bayesian in-

ference is an approximate inference technique that proceeds by assuming an arbitrary

approximation q(z) for the posterior distribution. Inference proceeds using a EM-like

algorithm, which is called Variational EM (VEM) and which is based on the decompo-

sition of (2.12). In the E-step q(z) is found by maximizing F (q,θ) keeping θ fixed. To

perform this maximization, a particular form of q(z) must be assumed. In certain cases

it is possible to assume knowledge of the form of q(z; ω), where ω is a set of parameters.

Thus, the lower bound F (ω,θ) becomes a function of these parameters and is maximized

with respect to ω in the E-step and with respect to θ in the M-step, see for example

[Bishop, 2006].

However, in its general form the lower bound F (q,θ) is a functional in terms of q, in

other words, a mapping that takes as input a function q(z), and returns as output the

value of the functional. This leads naturally to the concept of the functional derivative,

which in analogy to the function derivative, gives the functional changes for infinitesimal

changes to the input function. This area of mathematics is called calculus of variations

[Weinstock, 1974] and has been applied to many scientific areas.

Variational methods can be used to find approximate solutions in Bayesian inference

problems. This is done by assuming that the functions over which optimization is per-

formed have specific forms. For example, we can assume only quadratic functions or

functions that are linear combinations of fixed basis functions. For Bayesian inference a

particular form that has been used with great success is the factorized one, see [Jaakola,

1997, Jordan et al., 1999]. The idea for this factorized approximation stems from theo-

retical physics where it is called mean field theory [Parisi, 1988].

17

According to this approximation, the hidden variables z are assumed to be partitioned

intoM partitions zi with i = 1, . . . ,M . Also it is assumed that q(z) factorizes with respect

to these partitions as

q(z) =
M∏
i=1

qi(zi). (2.23)

Thus, we wish to find the q(z) of the form of (2.23) that maximizes the lower bound

F (q,θ). It can be shown that this happens when [Jaakola, 1997, Jordan et al., 1999]:

ln qj(zj) = 〈ln p(x,z; θ)〉i 6=j + const, (2.24)

and with appropriate normalization the approximate posterior distributions qj(zj) are:

qj(zj) =
exp

(
〈ln p(x,z; θ)〉i 6=j

)
∫

exp
(
〈ln p(x, z; θ)〉i 6=j

)
dzj

. (2.25)

The above equations for j = 1, . . . ,M are a set of consistency conditions for the

maximum of the lower bound subject to the factorization of (2.23). They do not provide

an explicit solution since they depend on the other factors qi(zi) for i 6= j. Therefore, a

consistent solution is found by cycling through these factors and replacing each in turn

with the revised estimate.

In summary, the Variational EM algorithm is given by the following two steps:

1. Variational E-Step

Evaluate qNEW (z) to maximize F (q,θOLD) solving the system of (2.25)

2. Variational M-Step

Compute θNEW = argmaxθ F (qNEW ,θ)

At this point it is worth noting that in certain cases a Bayesian model can contain

only hidden variables and no parameters. In such cases the Variational EM algorithm has

only an E-step in which q(z) is obtained using (2.25). This function q(z) constitutes an

approximation to p(z|x) that can be used for inference of the hidden variables.

18

Chapter 3

Linear Regression

3.1 Introduction

3.2 Maximum Likelihood Estimation

3.3 The Bayesian Linear Model

3.4 The Sparse Bayesian Linear Model

3.5 The Relevance Vector Machine

3.6 Relation of RVM to other models

3.7 Linear Regression Examples

3.8 Classification

3.9 Conclusions

3.1 Introduction

In this chapter we will apply the Bayesian Inference methods of the previous chapter on

the problem of linear regression. For this problem, we consider an unknown function

y(x) ∈ R, x ∈ Ω ⊆ RN and want to predict its value t∗ = y(x∗) at an arbitrary location

x∗ ∈ Ω, using a vector t = (t1, . . . , tN)T of N noisy observations (tn = y(xn) + εn), at

locations x = (x1, . . . ,xN)T , xn ∈ Ω, n = 1, . . . , N .

The unknown function y is commonly modelled as the linear combination of M basis

functions φm(x):

y(x) =
M∑

m=1

wmφm(x), (3.1)

where w = (w1, . . . , wM)T are the weights of the linear combination. Selection of appro-

priate basis functions is essential in order to achieve good performance. However, there

19

is no rigorous methodology in doing so, but cross-validation techniques can be used to

compare the performance of several basis function sets and then select the best one.

The additive noise ε = (ε1, . . . , εN)T is commonly assumed to be zero-mean, Gaussian

distributed

p(ε) = N(ε|0,B−1), (3.2)

where B is the inverse covariance (precision) matrix. Usually, we assume that the obser-

vations are independent and identically distributed (i.i.d.), therefore B = βI. However,

here we retain the more general form of the precision matrix, because it is used to derive

the classification algorithm and also allows considering non-Gaussian noise distributions.

For example, if we assume independent noise, but assign separate precision βn to each

data point tn, the precision matrix becomes B = diag{β1, . . . , βn} and this allows design-

ing robust regression models by selecting an appropriate noise precision prior p(βn). More

specifically, assuming a Gamma pdf for the noise precisions:

p(βn) = Gamma(βn|c, d), (3.3)

we obtain a Student’s t pdf for the noise

p(εn) =

∫
p(εn|βn)p(βn) dβn = Student(εn|0, ν, λ), (3.4)

with λ = c/d and ν = 2c. This pdf can provide robustness, because it may have heavy

tails [Tipping and Lawrence, 2003].

Here, we consider Gaussian distributed noise, therefore by defining the design matrix

Φ = (φ1, . . . ,φM), with φm = (φm(x1), . . . , φm(xN))T , the observations t are modelled

as

t = Φw + ε, (3.5)

and their likelihood is

p(t; w,B) = N(t|Φw,B−1). (3.6)

In what follows Bayesian inference is applied to the linear regression problem and

we demonstrate three well-known methodologies to compute the unknown weights w of

this linear model [Bishop, 2006, Tzikas et al., 2008b]. First, we apply typical maximum

likelihood (ML) estimation of the weights which are assumed to be parameters. As it will

be demonstrated, if the number of parameters is large (compared to the number of ob-

servations), the ML estimates are very sensitive to the noise and overfit the observations.

Subsequently, to ameliorate this problem a prior p(w) is imposed on the weights, which

are assumed to be random variables. First, a simple Bayesian model is used, which is

based on a stationary Gaussian prior for the weights. For this model, Bayesian inference is

performed using the EM algorithm and the resulting solution is robust to noise. Neverthe-

less, this Bayesian model is very simplistic, and it is possible to use a more sophisticated

non-stationary hierarchical model, which is equivalent to assuming a Student’s t prior for

20

the weights, see Section 3.4.4. This model is too complex to solve using the EM algorithm.

Instead, the variational Bayesian methodology described in Section 2.6 is used to infer

values for the unknowns of this model. In Fig. 3.1 we show the graphical models for the

three approaches to Linear Regression that are described in the following sections.

3.2 Maximum Likelihood Estimation

The simplest estimate of the weights w of the linear model is obtained by maximizing the

likelihood of the model. This ML estimate assumes the weights w to be parameters, as

shown in the graphical model of Fig. 3.1a. The ML estimate is obtained by maximizing

the likelihood function of (3.6):

p(t; w,B) = (2π)−N/2|B|1/2 exp

(
−1

2
(t − Φw)T B (t − Φw)

)
. (3.7)

This is equivalent to minimizing

ELS = ‖t − Φw‖2
B = (t − Φw)T B (t − Φw). (3.8)

Thus, in this case the ML is equivalent with the least squares (LS) estimate

wLS = argmax
w

p(t; w,B) = argmin
w

ELS = (ΦT BΦ)−1ΦT Bt (3.9)

In many situations and depending on the basis functions that are used, the matrix

ΦT BΦ may be ill-conditioned and difficult to invert. This means that if noise ε is included

in the observations, it will heavily affect the estimation wLS of the weights. Thus, when

using maximum likelihood linear regression, the basis functions should be carefully chosen

to ensure that matrix ΦT BΦ can be inverted. This is generally achieved by using a model

with few basis functions, which also has the advantage that only few parameters have to

be estimated.

3.3 The Bayesian Linear Model

A Bayesian treatment of the linear model begins by assigning a prior distribution p(w) to

the weights of the model. This introduces bias in the estimation, but also greatly reduces

its variance, which is a major problem of the maximum likelihood estimate. Here, we

consider the common choice of independent, zero-mean, Gaussian prior distribution for

the weights of the linear model:

p(w;α) = N(w|0, α−1I). (3.10)

21

(a) (b) (c)

Figure 3.1: Graphical models for linear regression solved using (a) model without prior
(direct ML estimation), (b) model with stationary Gaussian prior (EM), (c) model with
hierarchical prior (variational EM).

This is a stationary prior distribution, meaning that the distribution of all the weights is

identical. The graphical model for this problem is shown in Fig. 3.1b. Notice that here

the weights w are hidden random variables and the set of model parameters contains the

parameter α of the prior for the weights and the precision B of the additive noise.

Bayesian inference proceeds by computing the posterior distribution of the hidden

variables:

p(w|t;α,B) =
p(t|w; B)p(w;α)

p(t;α,B)
. (3.11)

Notice, that the marginal likelihood p(t;α, β) that appears on the denominator can be

computed analytically:

p(t;α,B) =

∫
p(t|w; B)p(w;α) dw = N(t|0,B−1 + α−1ΦΦT). (3.12)

Then, the posterior of the hidden variables is:

p(w|t;α,B) = N(w|µ,Σ), (3.13)

with

µ = ΣΦT Bt, (3.14)

Σ = (ΦT BΦ + αI)−1. (3.15)

If we assume that the noise is i.i.d. then B = βI and the parameters of the model are the

weight and noise precisions α, β and they can be estimated by maximizing the logarithm

22

of the marginal likelihood p(t;α, β):

(αML, βML) = argmax
α,β

{log |β−1I + α−1ΦTΦ| + tT
(
β−1I + α−1ΦΦT

)−1
t}. (3.16)

Optimization of the marginal likelihood can be performed using the EM algorithm,

which provides an efficient framework to simultaneously obtain estimates for α, β and

infer the posterior distribution of w. Notice, that although the EM algorithm does not

involve computations with the marginal likelihood of (3.12), the algorithm converges to

a local maximum of it. After initializing the parameters to some values (α(0), β(0)), the

algorithm proceeds by iteratively performing the following steps:

• E- step

Compute the expected value of the logarithm of the complete likelihood:

Q(t)(t,w;α, β) = 〈ln p(t,w;α, β)〉p(w|t;α(t),β(t)) . (3.17)

This is computed using equations (3.6) and (3.10) as

Q(t)(t,w;α, β) =

〈
N

2
ln β − β

2
‖t − Φw‖2 +

M

2
lnα− α

2
‖w‖2

〉
+ const

=
N

2
ln β − β

2

〈
‖t − Φw‖2

〉
+
M

2
lnα− α

2

〈
‖w‖2

〉
+ const. (3.18)

These expected values are with respect to p(w|t;α(t), β(t)) and can be computed

from (3.13), giving

Q(t)(t,w;α, β) =
N

2
ln β − β

2

(
‖t − Φµ(t)‖2 + trace(ΦTΣ(t)Φ)

)
+

M

2
lnα− α

2

(
‖µ(t)‖2 + trace(Σ(t))

)
+ const, (3.19)

where µ(t) and Σ(t) are computed using the current estimates of the parameters α(t)

and β(t):

µ(t) = β(t)Σ(t)ΦT t, (3.20)

Σ(t) = (β(t)ΦTΦ + α(t)I)−1. (3.21)

• M-step

Maximize Q(t)(t,w;α, β) with respect to the parameters α and β:

(α(t+1), β(t+1)) = argmax
α,β

Q(t)(t,w;α, β) (3.22)

23

The derivatives of Q(t)(t,w;α, β) with respect to the parameters are:

∂Q(t)(t,w;α, β)

∂α
=
M

2α
− 1

2

(
‖µ(t)‖2 + trace(Σ(t))

)
, (3.23)

∂Q(t)(t,w;α, β)

∂β
=
N

2β
− 1

2

(
‖t − Φµ(t)‖2 + trace(ΦTΣ(t)Φ)

)
. (3.24)

Setting these to zero, we obtain the following formulas to update the parameters α

and β:

α(t+1) =
M

‖µ(t)‖2 + trace(Σ(t))
, (3.25)

β(t+1) =
N

‖t − Φµ(t)‖2 + trace(ΦTΣ(t)Φ)
. (3.26)

Notice, that the maximization step can be analytically performed, in contrast to direct

maximization of the marginal likelihood in (3.12), which would require numerical opti-

mization. Furthermore, equations (3.25) and (3.26) guarantee that positive estimations

for the parameters α and β are produced, which is a requirement since these represent

inverse variance parameters. However, the parameters should be initialized with care,

since, depending on the initialization, a different local maximum may be attained. Infer-

ence for w is obtained directly, since the sufficient statistics of the posterior p(w|t|α, β)

are computed in the E-step. The mean of this posterior, given by (3.20), can be used as

Bayesian linear minimum mean square error (LMMSE) estimate for w.

3.4 The Sparse Bayesian Linear Model

In the Bayesian approach described in the previous section, due to the use of a stationary

Gaussian prior distribution for the weights of the linear model, exact computation of the

marginal likelihood is possible and Bayesian inference is performed analytically. However,

in many situations, it is important to allow the flexibility to model local characteristics of

the function, which the simple stationary Gaussian prior distribution is unable to do. For

this reason, a non-stationary Gaussian prior distribution with a distinct inverse variance

αm for each weight is considered:

p(w|α) = N(w|0,A−1), (3.27)

where A = diag{α1, . . . , αM}. However, such a model is over-parameterized, since there

are as many parameters αi to be estimated as the number of basis functions. For this

purpose the precision parameters α = (α1, . . . , αM)T are constrained, by treating them

24

as random variables and imposing a Gamma prior distribution to them according to

p(α) =
M∏

m=1

Gamma(αm|a, b). (3.28)

This prior is selected because it is conjugate to the Gaussian.

We also assume i.i.d. noise, therefore B = βI and we use a Gamma distribution as

prior for the noise inverse variance β:

p(β) = Gamma(β|c, d). (3.29)

The graphical model for this Bayesian approach is shown in Fig. 3.1c, where the de-

pendence of the hidden variables w on the hidden variables α is apparent. Also the

parameters a, b, c and d of this model and the hidden variables that depend on them are

also depicted.

Bayesian inference requires the computation of the posterior distribution

p(w,α, β|t) =
p(t|α, β)p(w|α)p(α)p(β)

p(t)
. (3.30)

However, the marginal likelihood p(t) =
∫
p(t|α, β)p(w|α)p(α)p(β) dw dα dβ cannot be

computed analytically, and thus the normalization constant in (3.30) cannot be obtained.

3.4.1 Variational Bayesian Inference

Because exact Bayesian inference is intractable, approximate Bayesian inference methods

are employed and specifically the variational inference methodology of Section 2.6. As-

suming posterior independence between the weights w and the variance parameters α

and β,

p(w,α, β|t) ≈ q(w,α, β) = q(w)q(α)q(β), (3.31)

the approximate posterior distributions q can be computed from (2.24) as follows. Keeping

only the terms of ln q(w) that depend on w, we have:

ln q(w) = 〈ln p(t,w,α, β)〉q(α)q(β) + const

= 〈ln p(t|w, β) + ln p(w|α)〉q(α)q(β) + const

=

〈
−β

2
(t − Φw)T (t − Φw)) − 1

2
wT Aw

〉
q(α)q(β)

+ const

= −〈β〉
2

(tT t − 2tTΦw + wTΦTΦw)) − 1

2
wT 〈A〉w + const

= −1

2

[
wT
(
〈β〉ΦTΦ + 〈A〉

)
w − 2 〈β〉wTΦT t

]
+ const

= −1

2

[
wTΣ−1w − 2wTΣ−1µ

]
+ const. (3.32)

25

Notice, that this is the exponent of a Gaussian distribution with mean µ and covariance

matrix Σ given by

Σ =
(
〈β〉ΦTΦ + 〈A〉

)−1
, (3.33)

µ = 〈β〉ΣΦT t. (3.34)

Therefore, q(w) is given by:

q(w) = N(w|µ,Σ). (3.35)

The posterior q(α) is similarly obtained by computing the terms of ln q(α) that depend

on α:

ln q(α) = 〈p(t,w,α, β)〉q(w)q(β) + const

= 〈ln p(w|α) + ln p(α)〉q(w) + const

=
1

2
ln |A| − 1

2

〈
wT Aw

〉
+ (a− 1)

M∑
m=1

lnαm − b
∑

m = 1Mαm + const

=

(
a− 1

2

) M∑
m=1

lnαm −
M∑

m=1

αm

(
〈wm〉

2
+ b

)
+ const

= ã
M∑

m=1

lnαm −
M∑

m=1

αmb̃+ const. (3.36)

This is the exponent of the product of M independent Gamma distributions with param-

eters ã and b̃, given by

ã = a+
1

2
, (3.37)

b̃ = b+
〈wm〉

2
. (3.38)

Thus, q(α) is given by:

q(α) =
M∏

m=1

Gamma(αm|ã, b̃). (3.39)

The posterior distribution of the noise inverse variance can be similarly computed as:

q(β) = Gamma(β|c̃, d̃). (3.40)

with

c̃ = c+
N

2
, (3.41)

d̃ = d+
〈‖t − Φw‖2〉

2
. (3.42)

26

The approximate posterior distributions in equations (3.35), (3.39) and (3.40) are then

iteratively updated until convergence, since they depend on the statistics of each other,

see for details [Bishop and Tipping, 2000].

3.4.2 MAP Estimation of Precision Parameters

In this section an alternative training algorithm for the sparse Bayesian linear model is

described, which is based on the MAP approximation for estimation of the weight and

noise precisions α and β. Under the MAP approximation, update formulas for the weight

precisions α can be obtained by maximizing the logarithm of the marginal likelihood

p(t|α,β) =
∫
p(t|w,β)p(w|α)p(α) dw. Here, we assume an uninformative prior for α

(p(α) = const), therefore the marginal likelihood is given by [Tipping, 2001]:

L = log p(t|α,β) = −1

2

(
N log 2π + |C| + tT C−1t

)
, (3.43)

where C = B−1 + ΦA−1ΦT .

Maximization of the marginal likelihood is typically performed by considering the

weights w as hidden variables and then using the EM algorithm. It can be shown that

the updates which this approach gives, are equivalent to the updates of the variational

algorithm of the previous section. However, instead of using the EM algorithm, [Tipping,

2001] suggests that in this case it is more efficient to maximize the marginal likelihood

directly. The derivative of the marginal likelihood with respect to logαi is

∂L

∂ logαi

=
1

2
(1 − αiΣii − αiµ

2
i). (3.44)

Equating this to zero and setting γi = 1 − αiΣii, we obtain the following update formula

for αi:

αi =
γi

µ2
i

. (3.45)

We can also compute updates for the noise precision β. The derivative of the marginal

likelihood with respect to log β is

∂L

∂ log β
=

1

2

[
N

β
− ‖t − Φµ‖2 − trace(ΣΦTΦ)

]
, (3.46)

and by setting it to zero we obtain the following update formula for β:

β =
N −

∑N
i=1 γi

‖t − Φµ‖2
. (3.47)

These updates do not enjoy the theoretical convergence properties of the EM-based up-

date equations. However, it has been experimentally observed that they always converge

and, furthermore, they typically converge faster than the EM-based updates.

27

3.4.3 Incremental Training Algorithm

Notice that the computational cost of the sparse Bayesian learning algorithm is high for

large datasets, because the computation of Σ in (3.33) involves matrix inversion and typ-

ically requires O(N3) operations. An incremental algorithm that is more computationally

efficient has been proposed in [Tipping and Faul, 2003]. It initially assumes that αi = ∞,

for all i = 1, . . . ,M , which corresponds to assuming that all basis functions have been

pruned because of the sparsity constraint. Then, at each iteration one basis function may

be either added to the model or re-estimated or removed from the current model. When

adding a basis functions to the model, the corresponding parameter αi is set to the value

that maximizes the marginal likelihood.

More specifically, the terms of the marginal likelihood (3.43) that depend on a single

parameter αi are [Tipping and Faul, 2003]:

l(αi) =
1

2

(
logαi − log(αi + si) +

q2
i

αi + si

)
, (3.48)

where

si = φT
i C−1

−i φi, (3.49)

qi = φT
i C−1

−i t̂, (3.50)

and C−i = B +
∑

j 6=i αjφjφ
T
j . In regression we have t̂ = t and usually B = βI, while in

classification B and t̂ are given by (3.88) and (3.89) respectively.

In order to simplify computations one can define:

Si = φT
i C−1φi, (3.51)

Qi = φT
i C−1t̂, (3.52)

and compute si, qi from:

si =
αiSi

αi − Si

, (3.53)

qi =
αiQi

αi − Si

. (3.54)

Also the inversion of C can be avoided by using the Woodbury identity to write:

Si = φT
i Bφi − φT

i BΦΣΦT Bφi, (3.55)

Qi = φT
i Bt̂ − φT

i BΦΣΦT Bt̂. (3.56)

It has been shown in [Faul and Tipping, 2002] that l(αi) has a single maximum at:

αi =
s2
i

q2
i −si

, if q2
i > si, (3.57)

28

αi = ∞, if q2
i ≤ si. (3.58)

Based on this result, the incremental algorithm proceeds iteratively, adding each time one

basis function φi if q2
i > si and removing it otherwise.

An important question that arises in the incremental RVM algorithm is which basis

function to update at each iteration. There are several possibilities, for example we

could choose a basis function at random or with some additional computational cost, we

could test several and select the one whose addition will cause the largest increase in the

marginal likelihood. In the first approach, where we select basis functions at random,

the incremental algorithm may require a very large number of iterations to converge.

On the other hand, in the second approach, where we select the best basis function for

addition, much less iterations are required, but the computational cost of each iteration

is significantly increased.

3.4.4 Understanding Sparsity

As already mentioned, the ‘true’ prior distribution of the weights can be computed by

marginalizing the hyper-parameters α

p(w) =

∫
p(w|α)p(α)dα (3.59)

=

∫ M∏
m=1

[
N(wm|0, α−1

m)Gamma(αm|a, b)dαm

]
(3.60)

=
M∏

m=1

Student(wm|0, λ, ν), (3.61)

and is a Student’s t pdf,

Student(x|µ, λ, ν) =
Γ((ν + 1)/2)

Γ(ν/2)

(
λ

πν

)1/2 [
1 +

λ(x− µ)2

ν

]−(ν+1)/2

, (3.62)

with mean µ = 0, parameter λ = a/b and degrees of freedom ν = 2a. This distribution

can be considered as a generalization of the Gaussian; with appropriate selection of its

parameters, it can have heavy tails and in the limit it can become either Gaussian (large

ν), or uninformative (small ν), see Fig. 3.2(a).

The important issue is that when the weights of a linear model follow a heavy-tailed

distribution (such as the Student’s t pdf with few degrees of freedom ν), this results in

sparse models, i.e. models with few non-zero parameters wi. The sparsity of such models

can be understood by observing the plots of the two-dimensional pdfs in Fig. 3.2(b). Most

of the mass of the Student’s t pdf is concentrated along the axes and the center, unlike

the Gaussian, where it is evenly distributed around ellipses, as shown in Fig. 3.2(c). This

observation can be generalized for vectors of arbitrary dimension, where the Student’s

29

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

x

p(
x)

Student t (ν=0.1)
Student t (ν=1)
Student t (ν=10)
Gaussian

(a)

10
20

30
40

50
60

20

40

60
0

0.002

0.004

0.006

0.008

0.01

yx

p(
x,

y)

(b)

10
20

30
40

50
60

20

40

60
0

0.05

0.1

0.15

yx

p(
x,

y)

(c)

Figure 3.2: (a) The Student’s t pdf with 0.1, 1 and 10 degrees of freedom compared to
the Gaussian pdf. Two dimensional plot of (b) the Student’s-t pdf with 0.1 degrees of
freedom and (c) the Gaussian pdf.

t pdf assigns large probability mass to estimations that contain a large number of zero

elements. In similar spirit the Laplacian pdf (which also has heavy tails) has been used

for obtaining sparse models [Figueiredo, 2003]. Since most of the weights are set to zero,

most of the basis functions are pruned and do not contribute to the estimation.

There are several advantages of using sparse priors:

• The complexity of the model is automatically adjusted, thus very complex models

may be initially considered.

• The basis functions that remain on the model provide information about which basis

functions are relevant with the data. This may be useful in many applications.

• The output of sparse models is computed very efficiently, since only few basis func-

tions are involved in the computation.

Notice, that for simplicity we have assumed fixed the parameters a, b, c and d of the

Student’s t distributions. In practice we can often obtain good results by assuming un-

informative distributions, which are obtained by setting these parameters to very small

30

values, i.e. a = b = 10−6. In the limit, setting a = b = 0 gives the improper Jeffrey’s prior

p(x) =
1

|x|
, (3.63)

which is also known to provide sparse solutions. Alternatively, we can estimate the above

parameters using a Variational EM algorithm. Such an approach would add an M-step

to the described method, in which the Variational bound would be maximized with re-

spect to these parameters. However, a usual approach in Bayesian modeling is to fix the

hyperparameters so that uninformative hyperpriors are defined at the highest level of the

model.

3.5 The Relevance Vector Machine

The linear model is very efficient provided that appropriate basis functions are used.

However, there is no rigorous methodology to select these basis functions. A significant

advantage of the sparse linear model is that its estimations are not heavily affected by

irrelevant basis functions, since it has the ability to prune them. For this reason, it is

possible to consider sparse linear models with a large number of initial candidate basis

functions and let the training algorithm prune the irrelevant ones.

The Relevance Vector Machine (RVM) [Tipping, 2001] is an instance of the sparse

Bayesian linear model that assumes a particular form for the basis functions. Specifically,

it has been motivated by the popular Support Vector Machine (SVM) [Schölkopf and

Smola, 2001], and it assumes that the basis functions are kernel functions. A kernel

function K(x1,x2) is a function that corresponds to the inner product ψ(x1)
Tψ(x2) at

some high dimensional feature space defined by the mapping function ψ(x). In this sense,

kernel functions compute a measure of the similarity between two input points, after

projecting them to the feature space. A common type of kernel function is the Gaussian

kernel function:

K(x1,x2) = exp

(
− 1

2σ2
‖x1 − x2‖2

)
, (3.64)

where σ2 is the width of the kernel. Notice, that since kernel functions are not probability

distribution functions we can omit the normalizing constant.

More specifically, the RVM assumes that the number of the basis functions is equal to

the number N of training examples and that each basis function φi(x) is a kernel K(x,xi)

that computes the similarity between the input x and the i-th training example xi. Then,

the output of the RVM model is given by

y(x) =
N∑

i=1

wiK(x,xi). (3.65)

Because of the sparse prior only a small subset of the available kernels remains in

31

the final model. The examples of the training set that correspond to the kernels that

contribute to the estimation are called relevance vectors (RV).

3.6 Relation of RVM to other models

3.6.1 Gaussian Processes

Gaussian processes [Rasmussen and Williams, 2006] are collections of N random variables

x1, . . . ,xN , any finite number of which have a Gaussian distribution. A Gaussian process

is completely specified by its mean m(xi) and covariance function k(xi,xj), which are

defined as:

m(xi) = 〈f(xi)〉 , (3.66)

k(xi,xj) = 〈[f(xi) −m(xi)][f(xj) −m(xj)]〉 . (3.67)

A Gaussian process with these statistics is denoted as

f(x) = GP (m(xi), k(xi,xj)). (3.68)

It can be seen that the linear model of (3.1) is a special case of the Gaussian process

model. Here, we consider a zero mean Gaussian distribution for the weights with arbitrary

precision matrix A

p(w) = N(w|0,A−1). (3.69)

Then, the output t∗ = y(x∗) of the model at an arbitrary point x∗ is given by t∗ =

φT
∗ w+ε, where φ∗ = (φ1(x∗), . . . , φM(x∗))

T is a vector that contains all the basis functions

evaluated at x∗ and it is Gaussian distributed with:

〈t∗〉 = φT
∗ 〈w〉 = 0, (3.70)〈

t1∗t
2
∗
〉

= φ1
∗
T 〈

wwT
〉
φ2

∗ = φ1
∗
T
A−1φ2

∗. (3.71)

Therefore the Bayesian linear model is a special case of a Gaussian process whose

covariance function is determined by the covariance A of the Gaussian prior of the weights

and the basis functions φi(x). In the Bayesian linear model of Section 3.3 and in the sparse

Bayesian linear model of Section 3.4 we assume that A = αI and A = diag{α1, . . . , αM}
respectively. The main difference between the typical Gaussian process model and the

Bayesian linear model is that in the former we typically assume a fixed covariance function

while in the latter we update the covariance function by estimating the precision matrix A.

Apart from the RVM, other versions of sparse Gaussian processes have also been

developed, most of which are specific cases of a unified view proposed by [Quiñonero-

Candela and Rasmussen, 2005].

32

3.6.2 Support Vector Machines

Support vector regression (SVR) [Smola and Schölkopf, 1998] is a regression method based

on the popular Support Vector Machine (SVM) model [Schölkopf and Smola, 2001]. It is

analogous to to the RVM in the sense that they both produce sparse solutions using an

initially complex linear model. However, unlike the RVM which is based on the Bayesian

framework an therefore sparseness is derived by a suitable weight prior, in SVR sparseness

is derived by defining an appropriate penalty function for the noise.

More specifically, in SVR we ideally want to constraint all the errors to be smaller

than a constant ε, without penalizing at all any errors that are smaller than ε. However,

such a solution does not always exist and, when necessary, we may allow some errors to

be larger than ε. Errors are penalized using the function:

|ξ|ε =

{
0 if |ξ| ≤ ε,

|ξ| − ε otherwise.
(3.72)

Furthermore, in order to make smooth estimations for the unknown function, we seek

the values of the weights that have the smallest magnitude. By introducing auxiliary

variables ξi, ξ
∗
i , the SVR training can be formulated as follows:

minimize
1

2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i) (3.73)

subject to

yi − wT φ(x) − b ≤ ε+ ξi

wT φ(x) + b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

(3.74)

w.r.t. w, ξ, ξ∗, b. (3.75)

Here, the constant C determines the strength of the penalty for errors larger then ε. The

above maximization can be performed efficiently by constructing the Lagrangian function

and then considering its dual function.

There are several drawbacks of SVR compared to the Bayesian sparse linear regression

approach. First, in SVR we need to select appropriate values for the parameters C and ε,

which is usually achieved with a cross-validation procedure. Furthermore, Bayesian sparse

linear modelling is usually sparser than support vector regression or classification, where

the number of support vectors scales with the size of the training set [Tipping, 2001].

Another potential advantage of the Bayesian sparse linear model is that, in contrast to

SVR, it provides probabilistic predictions and therefore it also offers estimations of the

accuracy of predictions. Finally, in SVR the kernel function needs to satisfy Mercer’s

condition, otherwise the SVR optimization problem might have no solution [Burges,

1998]. In RVM this constraint does not exist.

33

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

original
observations
ML(MSE=7.4e−02)
Bayesian(MSE=4.9e−02)
Variational(MSE=3.7e−02)
RVs(5)

Figure 3.3: Linear regression solutions obtained by ML estimation, EM-based Bayesian
inference and variational-EM sparse Bayesian inference.

3.7 Linear Regression Examples

Next, we present numerical examples to demonstrate the properties of the previously

described linear regression models. We also demonstrate the advantages that can be

reaped by using the variational Bayesian inference. An artificially generated signal y(x)

is used so that the “ground truth” is known. We have obtained N = 50 samples of the

signal and added Gaussian noise of variance σ2 = 4×10−2, which corresponds to signal to

noise ratio SNR = 6.6dB. We used N basis functions and, specifically, one basis function

centred at the location of each observation, similarly to the RVM. The basis functions are

Gaussian kernels of the form

φi(x) = K(x,xi) = exp

(
− 1

2σ2
φ

‖x − xi‖2

)
. (3.76)

We then used the observations to build a regression model, using i) ML estimation (3.9)

ii) EM-based Bayesian inference (3.14) iii) sparse Bayesian inference (RVM) (3.34). For

the case of sparse Bayesian model, we assume uninformative precision prior p(α) by

setting a = b = 0.

Results are shown in Fig. 3.3. Notice, that the ML estimate follows exactly the noisy

observations. Thus, it is the worst in terms of mean square error. This should be expected,

since in this formulation we use as many basis functions as the observations and there is no

constraint on the weights. The Bayesian methodology overcomes this problem since the

weights are constrained by the priors. However, since this signal contains some regions

with large variance and some with very small variance, it is clear that the stationary

34

prior does not provide the flexibility to accurately model local signal characteristics. In

contrast, the hierarchical non-stationary prior is more flexible and seems to achieve better

local fit. Actually, the solution corresponding to the latter prior, uses only a small subset

of the basis functions, whose locations are shown as circled observations in Fig. 3.3. This

happens because we have set a = b = 0, which defines an uninformative student’s t

distribution. Therefore, most weights are estimated to be exactly zero and only few

relevance vectors are finally used for signal estimation (denoted as (RV) in Fig. 3.3).

3.8 Classification

The classification exhibits analogy to the regression problem, but in classification the

unknown function maps input points xn to discrete and unordered class labels tn rather

than continuous valued outputs. Assuming K classes, the outputs can be coded so that

tnk = 1 if xn belongs to class k, otherwise tnk = 0. Predictions can be made by assuming

that the outputs tn follow a multinomial distribution, whose parameters are given by

applying a sigmoid function to a linear model with K outputs:

p(t|w) =
N∏

n=1

K∏
k=1

σ(yk(xn|w))tnk , (3.77)

where σ(z) = 1
1+e−z . For simplicity we only consider binary classification and assume

that the outputs are coded so that tn ∈ {0, 1}. Multiclass problems can be solved using

the one-vs-all approach, which builds only two-class models. In binary classification the

multinomial likelihood in (3.77) simplifies to a Bernoulli likelihood:

p(t|w) =
N∏

n=1

ytn
n (1 − yn)1−tn , (3.78)

where yn = σ(y(xn|w)).

Unlike the regression case, we cannot perform exact Bayesian inference with this like-

lihood. Instead we use the Laplacian approximation that is based on a Gaussian approx-

imation of the posterior distribution around its mode [Tipping, 2001].

We can find the values of the weights wMP that maximize the posterior p(w|t,α) ∝
p(t|w)p(w|α)

wMP = argmax
w

p(w|t,α). (3.79)

We consider again a zero mean Gaussian prior distribution for the weights:

p(w|α) = N(w|0,A), (3.80)

where A is the precision matrix. Then, the logarithm of the posterior distribution that

35

appears in (3.79) is given by

log p(w|t,A) = log p(t|w)p(w|A) + const (3.81)

= argmax
w

N∑
n=1

(tn log yn + (1 − tn) log(1 − yn)) − 1

2
wT Aw + const, (3.82)

and its maximization can be efficiently performed using the iteratively reweighted least

squares (IRLS) algorithm [Björck, 1996].

The Laplacian approximation is based on a Gaussian approximation of the posterior,

or equivalently a quadratic approximation of its logarithm:

log p(w|t,A) ≈ −1

2
(w − wMP)TΣ−1(w − wMP). (3.83)

We set the covariance matrix Σ so that the Hessian matrix −1
2
Σ−1 of the approximation

is equal to the Hessian of the log-posterior

−1

2
Σ−1 = ∇w∇w log p(w|t,A) = −(ΦT BΦ + A), (3.84)

with B = diag{β1, . . . , βN} and βn = σ(y(xn))[1 − σ(y(xn))], which gives

Σ = (ΦT BΦ + A)−1. (3.85)

At the mode of the posterior wMP its curvature is zero, therefore the mode can be found

by setting the gradient of the log-posterior to zero:

∇w log p(w|t,A)|wMP
= 0, (3.86)

which gives

wMP = ΣΦT Bt̂, (3.87)

with t̂ = Φw + B−1(t − y).

In summary, using the Laplacian approximation, the classification problem is mapped

to a regression problem with heteroscedastic noise p(εn) = N(εn|0, βn) [Tipping, 2001],

whose precision is given by

βn = yn(1 − yn), (3.88)

and the regression targets t̂ = (t̂1, . . . , t̂N)T are:

t̂ = Φw + B−1(t − y), (3.89)

where y = (y1, . . . , yN)T and B = diag(β1, . . . , βN). Furthermore, depending on the

structure of the covariance matrix of the prior of the weights in (3.80) we can obtain

either the simple Bayesian linear model of Section 3.3 by setting A = αI, or the sparse

36

Bayesian linear model of Section 3.4 by setting A = diag{α1, . . . , αM}.

3.9 Conclusions

In this chapter we considered the regression problem using the linear model. In Sec-

tion 3.2 we described the simplest approach that treats the weights of the linear model

as parameters and estimates them using the ML approach. If the linear model contains

a large number of basis functions, it is very flexible and the ML estimations may be

heavily corrupted by noise. For this reason, in Section 3.3 the Bayesian linear model is

described, that treats the weights as random variables. In its simplest form, it uses a

stationary Gaussian distribution for the weights, which forces them to small values and

allows tractable Bayesian inference. However, there are many advantages in considering

more complex prior distributions. In Section 3.4 we presented the sparse Bayesian linear

model that uses a non-Gaussian prior distribution to provide sparse solutions that use

only few of the available basis functions.

In the next chapters, we use the sparse Bayesian linear model to treat some image

processing problems. More specifically, we use the sparse linear model to perform regres-

sion of images, which presents several computational difficulties, due to the large scale of

the problem. For this reason, in Chapter 4 we propose a training algorithm for sparse

Bayesian regression of images that is based on operations in the Fourier domain. Then we

use this algorithm to tackle the problem of detecting objects in images and the problem

of blind image deconvolution (in Chapter 5). In Chapter 6 we propose a methodology to

learn parameters of the basis functions. In contrast to the cross-validation approach that

is commonly used for selecting basis function parameters, the proposed incremental ap-

proach uses different parameter values for each basis function. We evaluate this method-

ology in several regression and classification datasets and in we apply it for detecting

activations in functional neuroimages. In Chapter 7 we extend the previous method in

order to simultaneously perform feature selection and we apply it to the analysis of DNA

microarray datasets.

37

38

Chapter 4

Sparse Multikernel Regression for

Image Analysis

4.1 Introduction

4.2 Multikernel RVM for Image Regression

4.3 Sparse Linear Regression in the DFT domain

4.4 Evaluation of the DFT-based RVM implementation

4.5 Object Detection Using the Multikernel RVM Model

4.6 Conclusions

4.1 Introduction

A major issue with the linear model is how to select appropriate basis functions. Typically,

using a large number of basis functions results in a very flexible model which overfits the

noise and has poor generalization capability. However, this is not an issue in the sparse

linear model, because it computes sparse solutions that use only a small number of the

available basis functions. For example, the relevance vector machine (RVM) [Tipping,

2001] initially places one kernel basis function at each point of the training set. In the

RVM it is important to select appropriate kernel function, for example Gaussian kernel

functions are very commonly used. Parameters of the kernel function, such as the variance

of Gaussian kernels are typically selected using cross-validation techniques.

In this chapter we propose an extension of the typical RVM, which is based on a linear

model with several different basis functions and we call the multikernel RVM [Tzikas

et al., 2006b, 2007b]. Similarly to the RVM, each of these basis functions is placed at all

39

the points of the training set, therefore the multikernel model is given by

y(x) =
M∑

m=1

N∑
i=1

wmiφm(x,xi), (4.1)

where N is the number of training points and M is the number of different basis function

types and φm(x,xi) is the i-th basis function. For example, we might use Gaussian basis

functions of several different widths

φm(x,xi) = exp
[
−h−2

m ‖x − xi‖2
]
, (4.2)

where hm is the width of the Gaussian kernel.

We then apply this model for modeling images. Unfortunately, since N is large (equal

to the number of image pixels) the standard training algorithms are too computationally

demanding, even for small images. We notice that if the training points xi lie on a

uniform grid, the linear model can be rewritten as the convolution of the weight vector

w = (w1, . . . , wN)T with a vector φ = (φ(x1), . . . , φ(xN))T , which consists of the basis

function φ(x) evaluated at the training points xi. The output of the linear model can

then be written as:

y = φ ∗ w, (4.3)

where ∗ denotes the convolution operator and y = (y(x1), . . . , y(xN))T is a vector con-

taining the outputs of the model evaluated at the training points. In section 4.2 we present

in detail the multikernel RVM model and propose an alternative implementation of the

EM-based training algorithm [Tipping, 2001]. Our implementation computes convolu-

tions in the DFT domain, improving both time and memory requirements and allows to

train RVM models on high resolution images, with reasonable computational costs. The

proposed implementation is evaluated in section 4.4.

We then use the proposed algorithm to treat the object detection problem, which is the

problem of finding the location of an unknown number of occurrences of a given ‘target’

image in another given ‘observed’ image, under the presence of noise. The ‘target’ may

appear significantly different in the observed image, as a result of being scaled, rotated,

occluded by other objects, different illumination conditions and other effects.

The most common approaches to solve the object detection problem are variants of

the matched filter, such as the phase-only [Horner and Gianino, 1984] and the symmetric

phase-only [Chen et al., 1994] matched filters. These are based on computing the cor-

relation image between the ‘observed’ and ‘target’ images and then using a threshold to

determine the locations where the ‘target’ object is present. Alternatively, the problem

can be formulated as an image restoration problem, where the image to restore is consid-

ered as an impulse function at the location of the ‘target’ object. This technique allows

many interesting background models to be considered, such as autoregressive models

[Abu-Naser et al., 1998]. A different object detection approach, which has been success-

40

fully applied on face detection [Viola and Jones, 2001], is to split the observed image in

several regions and train a classifier with some features of the target ‘object’ in order to

decide which regions contain the ‘target’ object.

In section 4.5 we propose a method for object detection, which is based on training a

multikernel RVM model on the ‘observed’ image [Tzikas et al., 2007b]. The RVM model

consists of two sets of basis functions: basis functions that are used to model the ‘target’

image and basis functions that are used to model the background. After training the

model, each ‘target’ basis function whose corresponding weight is larger than a specified

threshold is considered as a detected ‘target’ object. Finally, we provide examples of the

proposed RVM-based object detection algorithm and a comparison with the autoregressive

impulse restoration [Abu-Naser et al., 1998] method.

4.2 Multikernel RVM for Image Regression

The linear model is very efficient provided that suitable basis functions φi are selected

and that there exist adequate training examples. Thus, finding a basis function set that

describes the data well is an important problem, that is difficult to solve. In this paper,

we simultaneously consider M different types of basis functions φ1, . . . , φM centered at

each training point xi, resulting in the following model with MN basis functions:

y(x) =
M∑

m=1

N∑
i=1

wmiφm(x − xi), (4.4)

Although we use so many basis functions (and therefore parameters), overfitting should

not be a concern, because of the sparseness in the final RVM model.

In order to model a Ni × Nj image t using an RVM, we assume that the intensity

t(i, j) of the observed image at location (i, j) has been generated from the output y(i, j)

of the model (4.4) at the same location, after addition of independent white noise ε(i, j):

t(i, j) = y(i, j) + ε(i, j), (4.5)

ε(i, j) ∼ N(0, β−1), (4.6)

where β is the inverse variance of the noise.

Defining t = (t(1, 1), . . . , t(1, Nj), . . . , t(Ni, Nj))
T to be a vector that contains the

intensities of the image pixels in lexicographical order and similarly defining the noise

vector ε = (ε(1, 1), . . . , ε(1, Nj), . . . , ε(Ni, Nj))
T , Eq. (4.5) can be rewritten in compact

form as:

t = Φw + ε =
M∑

m=1

Φmwm + ε, (4.7)

where Φ is the N × (MN) design matrix, each column of which is a vector with the

values of a basis function at all the training points. The design matrix can be partitioned

41

as Φ = (Φ1, . . . ,ΦM), with Φm = (φm1, . . . ,φmN) being the part of the design matrix

corresponding to basis functions of type φm(x) and φmi = (φm(x1 − xi), . . . , φm(xN −
xi))

T being a vector consisting of the basis function φm(x−xi) evaluated at all the training

points. The weight vector w can be similarly partitioned as w = (wT
1 , . . . ,w

T
M)T , with

each wm = (wm1, . . . , wmN), m = 1, . . . ,M , consisting of the weights corresponding to

basis function φm(x). The likelihood of the data set can then be written as:

p(t|w, β) = (2π)−N/2βN/2 exp

{
−1

2
β‖t − Φw‖2

}
. (4.8)

Given that the described model has M times more parameters than the available

training examples, it is essential to seek a sparse solution. Under the Bayesian framework

sparseness is obtained by assigning suitable prior distributions on the parameters as men-

tioned in Chapter 2 and Chapter 3. Specifically, independent Gaussian prior distributions

with unknown variances are imposed on the weights w:

p(w) =
M∏

m=1

N∏
i=1

p(wmi) =
M∏

m=1

N∏
i=1

N(wmi|0, α−1
mi), (4.9)

where αmi is the inverse variance of the corresponding weight wmi. These parameters

are assumed unknown and Gamma hyperpriors are assigned to them. The inverse noise

variance β may also be assumed unknown and similarly, a Gamma prior distribution is

assigned to it:

p(α) =
M∏

m=1

N∏
i=1

Γ(a, b), (4.10)

p(β) = Γ(c, d), (4.11)

where α = (α11, . . . , α1N , . . . , αMN).

Since this model is an instance of the Bayesian linear model described in Chapter 3,

the posterior weight distribution is:

p(w|t,α, β) = N(w|µ,Σ), (4.12)

with

Σ = (βΦTΦ + A)−1, (4.13)

µ = βΣΦT t, (4.14)

where A = diag{α} and the precision parameters can be updated using:

αmi =
1 − αmiΣii

µ2
mi

, (4.15)

42

β =
N −

∑N
i=1(1 − αiΣii)

‖t − Φµ‖2
. (4.16)

The learning algorithm proceeds by iteratively computing the posterior statistics µ, Σ

of the weights, given by (4.13) and (4.14) and then updating the hyperparameters using

(4.15) and (4.16). Computation of Σ involves inverting an MN × MN matrix which

is an O(M3N3) procedure. During the training process, many of the hyperparameters

are set to infinite values and the corresponding basis functions can be punned, allowing

computation of the posterior statistics in O(L3) time, where L is the number of functions

that remain in the model. This results in significant speed-up of the latter iterations of

the algorithm, however in the first iteration all the basis functions have to be considered

and the overall complexity is still O(M3N3). For this reason it is difficult to apply this

algorithm on large training sets, such as images. Furthermore, the incremental training

algorithm of Section 3.4.3 is an important improvement, but it still cannot be used for

large scale problems, such as modeling images. In this chapter we propose an RVM

implementation based on DFT computations, that successfully resolves the problem of

computational complexity.

4.3 Sparse Linear Regression in the DFT domain

It can be observed that if the training points are the pixels of an image, or generally uni-

form samples of a signal, then the RVM given by (4.4) can be written using a convolution

as:

y =
M∑

m=1

φm ∗ wm. (4.17)

Equation (4.7) still holds, with the additional property that matrices Φm are circulant.

This means that each row of Φm can be obtained with a circular shift of the elements of

the previous row. For this reason, we do not need to store in memory the whole matrix

Φm, but it is sufficient to store only one of its rows. Furthermore, because Φm is circulant

the product Φmwm is a convolution which can be efficiently computed in the DFT domain

by multiplying the DFT Fm and W of the basis function φm and the weight vector w

respectively.

Ti =
M∑

m=1

FmiWmi, (4.18)

where T is the DFT of the vector t. This observation allows computation of the output

of the model without using the complete design matrix, but using only one basis vector,

improving memory complexity from O(N2) to O(N) and time complexity from O(N2) to

O(N logN).

The posterior statistics of the weights µ and Σ can also be computed in the DFT

domain, thus obtaining the same advantage. Beginning with (4.14), the posterior mean

43

of the weights can be found by solving the equation:

Σ−1µ = βΦT t, (4.19)

(βΦTΦ + A)µ = βΦT t. (4.20)

Instead of analytically inverting the matrix βΦTΦ + A, which is computationally

expensive and requires inversion of the large design matrix Φ, we solve equation (4.20) by

using the conjugate gradient method [Shewchuk, 1994] to minimize the following quadratic

function:

µ∗ = argmin
µ

(µT (βΦTΦ + A)µ − µTβΦT t). (4.21)

The quantities βΦTΦµ and βΦT t can be easily computed in the DFT domain since

Φ is circulant, while computation of Aµ is straightforward since A is diagonal. In the

ideal case, the conjugate gradient method is guaranteed to find the exact minimum after

N iterations. In practice, a very good estimate can be obtained in only a few iterations.

Unfortunately, in order to compute the posterior weight covariance Σ we have to invert

the matrix βΦTΦ + A, which is a computational burden. To overcome this problem,

we notice that we only need to compute the diagonal elements of Σ and consider two

approximations.

The simplest approximation is to consider only the main diagonal of the matrix

βΦTΦ + A, and estimate Σii as:

Σii = (β‖φ‖2 + αi)
−1, (4.22)

with φ = (φT
11, . . . , φ

T
1M)T . Although this approximation is not valid in general, it has

been proved very effective in the experiments, because the matrix A has generally very

large values and is the dominant term in the sum βΦTΦ + A.

An alternative approximation that has been considered is to approximate the matrix

βΦTΦ + A with a circulant matrix and estimate Σii as:

Σii = (βΦTΦ + αiI)−1 =
1

N

M∑
j=1

(βF2
j + αi)

−1, (4.23)

where Fj is the j-th element of the DFT of the first row of matrix Φj. Notice, that

a different (circulant) approximating matrix has to be inverted for the computation of

each element of the diagonal of Σ. For this reason, this approximation requires more

computations than the first and may be impractical for large images.

44

(a)

−15

−10

−5

0

5

10

15

(b) (c) (d)

Figure 4.1: (a) An artificially generated image with added noise. Estimates of (b) the
RVM algorithm and the DFT-RVM algorithm using (c) the diagonal approximation of
Eq. (4.22) and (d) the circulant approximation of Eq. (4.23).

Algorithm σ2 = 1 σ2 = 2 σ2 = 4 σ2 = 8

RVM 0.055(229) 0.038(84) 0.040(45) 0.052(70)
DFT-RVM 0.055(249) 0.039(120) 0.048(49) 0.111(12)
DFT-RVM(2) 0.058(234) 0.041(105) 0.077(165) 0.111(190)

Table 4.1: Mean square error of the typical RVM algorithm and the DFT-based algorithm
with the two approximations for several choices of the kernel width σ2. Inside parenthesis
is the number of relevance vectors for each case.

4.4 Evaluation of the DFT-based RVM implementation

In order to verify the validity and evaluate the performance of the proposed DFT-based

implementation we consider the following artificial example. We sampled uniformly the

function

t(x, y) =
sin(‖x+ y‖)
‖x+ y‖

, (4.24)

and added white Gaussian noise of variance 0.1 to generate a 30x30 image shown in

Fig. 4.1. We then applied both the typical and the DFT-based algorithm to estimate

the parameters of an RVM model, which was then evaluated at each pixel location to

produce an estimate of the initial function t. Figure 4.1 shows the estimates obtained

using the typical RVM algorithm and the DFT-based algorithm with the two different

approximations respectively. Averages over 10 runs with different noise realizations of the

mean squared error (MSE) of each method and the number of relevance vectors are shown

in Table 4.1 for four different widths σ2 of the kernel. We notice that the first (diagonal)

approximation typically gives better results than the second (circulant) approximation

and it also requires less computations. Also notice that the approximation gives excellent

results when the size of the kernel is small, because the matrix Σ is almost diagonal.

Unfortunately, we can’t compare the algorithms for larger images because we can’t

apply the typical RVM algorithm on larger datasets. However, we demonstrate the ef-

fectiveness of the proposed DFT-based algorithm on large scale regression problems, by

training a multikernel RVM model with Gaussian kernels of sizes σ2
1 = 2, σ2

2 = 4 and

45

(a) (b)

Figure 4.2: (a) An 128 × 128 image with added gaussian noise. (b) Estimate of the
DFT-RVM algorithm using gaussian kernels of width 2, 4 and 8.

σ2
3 = 8 on a 256 × 256 image. The estimated image, shown in Fig. 4.2, is improved

with respect to the initial noisy image, having ISNR = 2.2, where ISNR is defined as

ISNR = 10 log
(
‖f − g‖2/‖f − f̂‖2

)
and is a measure of the improvement in quality of

the estimated image with respect to the initial image.

4.5 Object Detection Using the Multikernel RVM Model

In this section, we present an method for object detection, which is based on training

a multikernel RVM model on the ‘observed’ image [Tzikas et al., 2007b]. The RVM

model consists of two sets of basis functions: basis functions that are used to model the

‘target’ image and basis functions that are used to model the background. After training

the model, each ‘target’ basis function that remains in the model can be considered as

a detected ‘target’ object. However, if the background basis functions are not flexible

enough, ‘target’ functions may also be used to model areas of the background. Thus, we

should consider only ‘target’ basis functions whose corresponding weight is larger than a

specified threshold.

We denote by t = (t(1, 1), . . . , t(1, Nj), . . . , t(Ni, Nj))
T a vector consisting of the in-

tensity values of the pixels of the ‘observed’ image in lexicographical order. We model

this image using the following RVM model:

t =
N∑

i=1

wtiφt(x − xi) +
N∑

i=1

wbiφb(x − xi) + ε, (4.25)

where N = NiNj, φt is the ‘target’ basis function which is a vector consisting of the

intensity values of the pixels of the ‘target’ image, and φb is the background basis function,

46

which we selected to be a Gaussian function. After training the RVM model, we obtain

the vectors µt and µb, which are the posterior mean for the kernel and background weights

respectively, using (4.14). Ideally, ‘target’ kernel functions would only be used to model

occurrences of the ‘target’ object. However, because the background basis functions are

often not flexible enough to model the background accurately, some ‘target’ basis functions

may have been used to model the background as well. In order to decide which ‘target’

basis functions actually correspond to ‘target’ occurrences, the posterior ‘target’ weight

means are thresholded, and only those that exceed a specified threshold T are considered

significant:

|µti| > T ⇒ Target exists at location i. (4.26)

Choosing a low threshold may generate false alarms, indicating that the object is

present at locations where it actually doesn’t exist. On the other hand, choosing a high

threshold may result in failing to detect an existing object. There is no unique optimal

value for the threshold, but instead it should be chosen depending on the characteristics

of the application.

It must be also noted that the Support Vector Machine (SVM) cannot be used with this

approach, since the basis functions used here are the ‘target’ image and do not correspond

to valid kernel functions, since they do not satisfy the Mercer condition.

Next we present experiments that demonstrate the improved performance of the DFT-

RVM algorithm compared to autoregressive impulse restoration (ARIR), which is an effec-

tive method for object detection [Abu-Naser et al., 1998]. We demonstrate two examples

where the ‘observed’ images have been constructed by adding the ‘target’ object to a

background image and then adding white Gaussian noise. Images consisting of the val-

ues of the kernel weights computed with the DFT-RVM algorithm are shown in Fig. 4.3

and compared with the output of the ARIR method. Notice that, because of the RVM

sparseness property, the output of the algorithm is zero at most locations where there is

no target object. This property of the DFT-RVM detection method, is the main reason

for the improved detection performance.

4.5.1 Experimental Evaluation

When evaluating a detection algorithm it is important to consider the detection probabil-

ity PD, which is the probability that an existing ‘target’ is detected and the probability

of false alarm PFA, which is the probability that a ‘target’ is incorrectly detected. Any

of these probabilities can be set to an arbitrary level by selecting an appropriate value

for the threshold T . The receiver operating characteristics (ROC) curve is a plot of the

probability of detection PD versus the probability of false alarm PFA that provides a

comprehensive way to demonstrate the performance of a detection algorithm. However,

the ROC curve is not suitable for evaluating object detection algorithms because it only

considers if an algorithm has detected an object or not; it does not consider if the object

was detected in the correct location. Instead, we can use the localized ROC (LROC)

47

20

40

60

80

100

120

(a) (b)

5

10

15

20

25

30

35

40

45

50

(c)

50

100

150

200

250

(d)

10

20

30

40

(e)

10

20

30

40

(f)

Figure 4.3: Two object detection examples. (a) and (d) are the ‘observed’ images, (b) and
(e) are the results of the ARIR algorithm and (c) and (f) are the results of the DFT-RVM
algorithm. The target object is the tank in image (a) and the jeep in image (d). In the
results, only a small area around the target is shown. In all cases, the output of both
algorithms is maximum at the location of the target. However, at all other locations,
where there is no target and the output should ideally be zero, DFT-RVM outperforms
the ARIR algorithm, since its output is zero at most locations.

curve which is a plot of the probability of detection and correct localization PDL versus

the probability of false alarm and considers also the location where a ‘target’ has been

detected.

In order to evaluate the performance of the algorithm, we created 50 ‘observed’ images

by adding a ‘target’ image at a random location of the background image, and another

50 ‘observed’ images without the ‘target’ object. White Gaussian noise of variance σ2 =

20 was then added to each ‘observed’ image, that corresponds to signal to noise ratio

22dB. The DFT-RVM algorithm was then used to estimate the parameters of an RVM

model with a ‘target’ kernel and a Gaussian background kernel for each ‘observed’ image,

generating 100 kernel weight images. The background basis functions were Gaussian

functions of the form φi(x) = exp(− 1
r2‖x− xi‖2) with the width parameter set to r = 6.

The kernel weight images were then thresholded for many different threshold values and

estimates of the probabilities PDL and PFA were computed for each threshold value.

Similar experiments were also performed for the ARIR algorithm and an LROC curve

was plotted for each algorithm. Figure 4.4 shows the LROC curve of each algorithm for

the two cases of background and target images shown in Fig. 4.3. It can be observed

48

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
DFT−RVM
ARIR

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
DFT−RVM
ARIR

Figure 4.4: LROC curves of the ARIR and DFT-RVM algorithms for the two detection
problems shown in Fig. 4.3.

that the area under the LROC curve, which is a common measure of the performance

of a detection algorithm, is significantly larger for the DFT-RVM algorithm. Another

important observation is that the LROC curve is high for small values of PFA, since

usually the threshold is chosen so that only a small fraction of false detections is allowed.

4.6 Conclusions

We have proposed the multikernel RVM model and an approximate but accelerated infer-

ence method for training the RVM model on large scale images, based on fast computation

of the posterior statistics in the DFT domain [Tzikas et al., 2006b, 2007b]. Experiments

on images demonstrate that the proposed approximation allows inference on large scale

images, where the typical RVM algorithm is too computationally demanding to run. We

then presented an application of the method to the object detection problem. Experimen-

tal results indicate that this approach is more robust than existing methods. Furthermore,

the proposed technique can be extended to solve the rotation and scaling invariant object

detection problem, by optimizing the model with respect to rotation and scaling of the

basis functions.

49

50

Chapter 5

Bayesian Blind Image

Deconvolution with Student’s t

priors

5.1 Introduction

5.2 BID Model

5.3 Variational Bayesian Inference

5.4 Numerical Experiments

5.5 Conclusions and Future Work

5.1 Introduction

In this chapter we propose the use of the sparse Bayesian linear model to estimate the

PSF in the blind image deconvolution (BID) problem [Tzikas et al., a]. In order to reduce

the computational cost of inference, the proposed algorithm uses operations in the DFT

domain, similarly to the algorithm of Chapter 4.

In the BID problem, we observe an image which has been degraded by blurring and

addition of some noise source. Such images are commonly observed in many situations;

for example motion blur might be induced by motion of the camera during the image

acquisition and in astronomy blurring is also induced by the atmosphere. Here, we assume

that the point spread function (PSF) of the blur is the same at all regions of the image,

which happens when the blur caused by motion of objects is negligible. In this case the

blurring can be modeled as a convolution of the initial image with the blurring PSF. The

process that generates the observed image is summarized in Fig. 5.1 and an example is

shown in Fig. 5.1.

51

Figure 5.1: Generation mechanism of the observed image in blind image deconvolution.

Figure 5.2: Example blind image deconvolution.

Because in blind image deconvolution both the initial image and the point spread

function (PSF) are unknown, the observed data are not sufficient to uniquely specify

both the unknown image and PSF. In order to resolve this ambiguity, prior knowledge

(constraints) has to be used for both the image and the PSF. Over the years a number of

methodologies have been employed to introduce constraints in BID. A rather old survey

paper on this problem is [Kundur and Hatzinakos, 1996a,b], while a very recent edited

book on BID methods is [Campisi and Egiazarian, 2007].

One category of such methods is based on regularization using the total variation

(TV) principle. These methods define a distance function based on the data and use

smoothness constraints on both the image and the PSF based on the TV principle [Chan

and Wong, 1998]. A survey of recent developments on TV methods in image recovery

problems and a book containing a review of the recent developments in mathematical

tools for low level image processing problems can be found in [Chan et al., 2005a] and

52

[Chan et al., 2005b] respectively. Methods based on anisotropic diffusion regularization

have been also proposed [You and Kaveh, 1999], however they require the choice of the

diffusion operator. There are also methods based on soft constraints [Yap et al., 2005,

Chen and Yap, 2005], which are very flexible, however, the form and the type of the

used soft constraints is ad-hoc. Methods based on sparse image representations and quasi

likelihood criteria have been also suggested [Bronstein et al., 2005].

Another way to apply constraints to the image and the PSF, is through the use of

the Bayesian methodology. In this approach the unknown quantities are assumed to be

random variables and suitable prior distributions are selected to impose the desired char-

acteristics [Jeffs and Christou, 1998, Galatsanos et al., 2002, Miskin and MacKay, 2000,

Fergus et al., 2006, Likas and Galatsanos, 2004, Molina et al., 2006]. Unfortunately, since

the BID data generation model is non-linear, the posterior distribution of the unknown

image and PSF can not be computed analytically. Thus, Bayesian inference using con-

ventional methods, such as Maximum Likelihood (ML) via the Expectation Maximization

(EM) algorithm, cannot be applied.

These difficulties can be overcome using the variational Bayesian methodology [Bishop,

2006] and [Jordan et al., 1998] described in Chapter 2. To our knowledge this method-

ology was first applied to the BID problem in [Miskin and MacKay, 2000]. In that work

the PSF and the image were modeled by an exponential and a mixture of exponential

distributions, respectively. Furthermore, the support of the PSF was known, and the im-

ages were line drawings which are sparse, in the sense that their intensity is zero at most

locations. This work was recently extended for natural scene images in [Fergus et al.,

2006] with promising results. More specifically, a mixture of Gaussians for the gradient

of the image, and a mixture of exponentials for the PSF were used. This PSF model

allows only positive PSF intensities and encourages sparsity, all of which are desirable

properties for BID. However, it does not model spatial PSF correlations. In another line

of work [Likas and Galatsanos, 2004], a simultaneously autoregressive (SAR) prior and

a Gaussian prior with unknown mean and spherical covariance have been used for the

image and PSF respectively. This methodology was extended in [Molina et al., 2006]

to account for spatial PSF correlations using SAR models for both PSF and the image.

However, this approach fails to model edges in the image or PSF and does not provide a

mechanism to estimate the support of the PSF.

In this chapter we propose a kernel-based Bayesian approach for the BID problem

that allows reconstruction of image edges, models spatial PSF correlations and estimates

the PSF support [Tzikas et al., 2006a, 2007c,a, a]. The main contribution of this work,

is a model that enforces PSF smoothness and simultaneously estimates the PSF support.

This is achieved by modeling the PSF as an RVM model, as described in Chapter 3.

More specifically, the PSF is modeled as a linear combination of kernel functions that are

placed at all the pixels of the image. Thus, the amount of smoothness can be controlled

by appropriately selecting the kernel function. The support of the PSF can be arbitrarily

large, since we placed kernel functions at all image pixels. However, following the sparse

53

Bayesian linear model approach, we assume that the distribution of the weights of the

kernels that models the PSF is a heavy tailed Student’s t distribution. As explained

in Section 3.4.4, this distribution favors sparse models, forcing most of the weights to

become zero and therefore limiting the support of the PSF. Furthermore, in order to

promote smooth image estimates, we constrain the local image differences, by assuming

that they follow a zero-mean Student’s-t distribution in order to allow reconstruction of

edges [Chantas et al., 2006]. Finally, we model the errors of the imaging model with a

Student’s-t distribution. This is important, not only because the noise in the observed

image may not be Gaussian, but also because inaccurate PSF estimates produce heavy

tailed errors, since the BID model is non-linear.

The rest of this chapter is organized as follows. In Section 5.2 the Bayesian BID model

is presented. In Section 5.3 the variational methodology is applied for inference to the pro-

posed model. In Section 5.4 we present experiments, with artificially blurred images where

the ground truth is known and with real astronomical images. In these experiments we

compare the proposed methodology with Bayesian methods that use Gaussian priors and

TV based methods and the advantages of the proposed methodology are demonstrated.

Finally, in Section 5.5 we provide conclusions and directions for future work.

5.2 BID Model

We assume that the observed image g(x) is given by convolving an unknown image f(x)

with an unknown PSF h(x). To account for errors, additive, independent, identically

distributed noise n(x) is also assumed. This model is written as

g(x) = f(x) ∗ h(x) + n(x), (5.1)

where x = (x1, x2) ∈ ΩI , ΩI ⊂ R2 is the support of the image and ∗ denotes two-

dimensional circular convolution. Equivalently, this can be written in vector form as

g = f ∗ h + n, (5.2)

where g, f , h and n are M × 1 lexicographically ordered vectors (M is the number of

pixels) of the intensities of the degraded image, observed image, PSF and additive noise

respectively. Here, we introduce the M × M block-circulant matrices F and H that

implement two-dimensional convolution with the vectors f and h respectively, so that

Fh = Hf = f ∗ h. Then, the BID model in (5.2) can be written as

g = Fh + n = Hf + n. (5.3)

The blind image deconvolution problem is difficult because there are too many un-

known parameters that have to be estimated. More specifically, the number of unknown

parameters h and f is larger than the number of observations g, and thus reliable estima-

54

tion of these parameters can only be achieved by exploiting prior knowledge of the char-

acteristics of the unknown quantities. Following the Bayesian framework, the unknown

parameters are treated as hidden random variables and prior knowledge is expressed by

assuming that they have been sampled from specific prior distributions.

5.2.1 PSF kernel model

We model the PSF as a kernel-based linear model:

h(x) =
M∑
i=1

wiφi(x), (5.4)

where φi(x) = R(x,xi) is a kernel function centered at xi = (xi1, xi2) ∈ ΩI and wi ∈ R.

We denote as h = (h(x1), . . . , h(xM))T the vector of values of the PSF h(x) at each xi

and with φi = (φi(x1), . . . , φi(xM))T the corresponding basis vector for φi(x). Then the

PSF vector h can be written as

h =
M∑
i=1

wiφi. (5.5)

We further assume that the kernel is invariant to translations, i.e. R(x,xi) = R(x − xi),

thus (5.5) can be further written as

h = φ ∗ w = Φw = Wφ, (5.6)

where w = (w1, . . . , wM)T are the weights of the linear combination and Φ, W are M×M
block-circulant matrices that implement two-dimensional convolution with φ = φ1 and

w respectively, so that Φw = Wφ = w ∗ φ. Thus, the BID data generation model (5.2)

can be written as

g = FΦw + n = ΦWf + n. (5.7)

Here, we consider Gaussian kernel function of the form R(x,x0) = exp[− 1
2σ2

φ
‖x−x0‖2]

(RBF kernels), which produces smooth estimates of the PSF. However, any other type of

kernel could be used as well. It is even possible to model the PSF using a multikernel

RVM that considers many different types of kernels simultaneously, at a small additional

computational cost, as described in the previous chapter.

5.2.2 PSF sparseness

A hierarchical prior that enforces sparsity is imposed on the weights w [Tipping, 2001]:

p(w|α) = N(w|0,A−1), (5.8)

where α = (α1, . . . , αM)T , A = diag{α}. Each weight is assigned a separate local preci-

sion parameter αi, which is treated as a random variable that follows a Gamma distribu-

55

−0.05 0 0.05
0

0.5

1

x

p(
x)

(a)

−0.2 0 0.2
0

0.5

1

x

p(
x)

(b)

−0.2 0 0.2
0

0.5

1

x

p(
x)

(c)

−0.01 0 0.01
0

0.5

1

x

p(
x)

(d)

Figure 5.3: Histograms of (a) estimated weights of the PSF sparse linear model, as-
suming the true PSF is known, (b) horizontal and (c) vertical local differences of the
“Lenna” image and (d) model errors of an image restoration method using incorrect
PSF estimation. Solid lines show fits by the Student’s t pdf with parameters (a)
µ = 2.51×10−34, λ = 9.05×1037, ν = 0.043 (b) µ = 1.7×10−3, λ = 4.59×103, ν = 1.09 (c)
µ = −4×10−4, λ = 1.03×104, ν = 1.132 and (d) µ = 2.39×10−6, λ = 6.68×105, ν = 3.12.

tion:

p(α) =
M∏
i=1

Gamma(αi|aα, bα). (5.9)

This hierarchical prior is equivalent to a Student’s t pdf. In order to demonstrate why

sparse estimations of the PSF weights are appropriate, Fig. 5.3(a) shows a histogram of

the PSF weights. This histogram was obtained using a 7× 7 uniform square-shaped PSF

function. Estimates of the PSF weights were obtained using the sparse Bayesian linear

model of Chapter 3. It is apparent that the pdf of the weights is very heavy tailed and

that there are only few non-zero weights. For this reason, we set aα = bα = 0 that define a

very heavy tailed, uninformative Student’s-t distribution. It is interesting that the hidden

variables αi of this Student’s-t distribution provide an estimate of the support of the PSF.

Specifically, the local precision αi that corresponds to kernels outside the support of the

PSF obtains very large values, therefore those kernels are pruned by setting wi = 0. This

is demonstrated in Fig. 5.4(a) where we show the estimated local variances for a BID

problem with a 7 × 7 uniform PSF. Notice that outside a limited area that captures the

support of this PSF these variances are zero.

56

5.2.3 Image model

The image prior that we use is based on K filtered versions of the image: εk = Qkf ,

where Qk are M ×M convolutional operators of the filters (k = 1, . . . , K). Specifically,

we use horizontal and vertical first order local differences, by defining K = 2, Q1 and Q2

so that:

ε1(x, y) = f(x, y) − f(x+ 1, y), (5.10)

ε2(x, y) = f(x, y) − f(x, y + 1). (5.11)

Without any changes in the method, we could also use other convolutional operators Qk

[Chantas et al., 2007]. In practice, we join all operators Qk in the KM ×M operator

Q̃ = (Q1T
, . . . ,QKT

)T that produces the KM × 1 vector ε̃ = (ε1T
, . . . , εKT

)T :

ε̃ = Q̃f = ((Q1f)T , . . . , (QKf)T)T . (5.12)

We assume that εki is Gaussian distributed with distinct precision γk
i :

p(εki |γk
i) = N(εki |0, (γk

i)−1). (5.13)

Assuming the εki independent with respect to i, induces a prior for the image, which is

given by

pk(f |γk) = N(f |0, (QkT
ΓkQk)−1), (5.14)

with γk = (γk
1 . . . γ

k
M)T and Γk = diag{γk}. In order to combine the information captured

by each prior pk, we define a composite prior, which is the product of them [Welling et al.,

2003]:

p(f |γ̃) =
1

Z

K∏
k=1

pk(f |γk) = N(f |0, (Q̃T Γ̃Q̃)−1), (5.15)

with γ̃ = (γ1T
, . . . ,γKT

)T and Γ̃ = diag{γ̃}. Unfortunately, it is not possible to an-

alytically compute the determinant |Q̃T Γ̃Q̃| that is required to estimate the normal-

ization constant Z in (5.15), since Q̃ is not square. Instead we approximate it as

|Q̃T Γ̃Q̃| ≈ |Γ̃||Q̃T Q̃|, giving:

p(f |γ̃) ∝
K∏

k=1

M∏
i=1

(
γk

i

) 1
2 exp

[
−1

2
fT Q̃T Γ̃Q̃f

]
. (5.16)

Notice, that the approximation only affects the normalizing constant of the pdf. Therefore,

this is an improper pdf, whose integral is not necessarily unity. Improper pdfs have been

used in many other Bayesian methods [Bernardo and Smith, 1994]. The local precision

parameters γk
i are assumed to be independent identically distributed, Gamma random

57

5

10

15

20

25

30

35

40

(a)

50

100

150

200

250

(b)

50

100

150

200

250

(c)

Figure 5.4: Example of the estimated local variances (a) α−1 of the PSF weights for a
uniform 7 × 7 square-shaped PSF, (b) and (c) (γ1)−1 and (γ2)−1 of the image model
residuals.

variables:

p(γ̃) =
K∏

k=1

M∏
i=1

Gamma(γk
i |aγ, bγ). (5.17)

Thus, the prior on the first order local differences εk is equivalent to a Student’s t pdf.

5.2.4 Noise model

The noise n of the BID model (5.3) is assumed to be zero mean Gaussian distributed,

given by:

p(n|β) =
M∏
i=1

N(ni|0, β−1
i) = N(n|0,B−1), (5.18)

with β = (β1, . . . , βM) and B = diag{β}. The local precision parameters βi are also

assumed to be random variables with a Gamma prior:

p(β) =
M∏
i=1

Gamma(βi|aβ, bβ). (5.19)

This two-level hierarchical prior for noise is equivalent to a Student’s t pdf.

5.3 Variational Bayesian Inference

The observed variables of the proposed model are D = {g}, the hidden variables are

θ = {w,f ,α,β,γ} and the parameters of the model are ξ = {aα, bα, aβ, bβ, aγ, bγ}. The

dependencies among the random variables that define the proposed Bayesian model are

shown in the graphical model of Fig. 5.5.

58

Figure 5.5: Graphical model that describes the dependencies between the random vari-
ables of the proposed model. Circular nodes represent random variables, while square
nodes represent parameters of the model. The observed variables are represented by
double circled nodes.

Because the BID model is non-linear, the posterior distribution of the parameters

p(θ|D) cannot be computed. Thus, we can not apply exact inference methods, such as

maximum likelihood via the EM algorithm. Instead, we resort to approximate inference

and specifically to the variational Bayesian methodology described in Chapter 2.

5.3.1 Approximate Posterior Distributions

Using the mean field approximation (2.23), the posterior distribution of the parameters

is given by (2.24). Because we have used conjugate priors, the approximate posteriors

have the same form as the priors. Specifically, the approximate posterior distributions of

the PSF weights w and the image f are Gaussian and the distributions of the precision

parameters α,β and γ are Gamma:

q(w) = N(w|µw,Σw), (5.20)

q(f) = N(f |µf ,Σf), (5.21)

q(α) =
M∏
i=1

Gamma(αi|ãα, b̃αi), (5.22)

q(β) =
M∏
i=1

Gamma(βi|ãβ, b̃βi), (5.23)

q(γ) =
K∏

k=1

M∏
i=1

Gamma(γk
i |ãγ, b̃γ

k

i), (5.24)

59

where

µw = ΣwΦT 〈F T 〉〈B〉g, (5.25)

Σw =
(
ΦT 〈F T BF 〉Φ + 〈A〉

)−1
, (5.26)

µf = ΣfΦ
T 〈W T 〉〈B〉g, (5.27)

Σf =
(
ΦT 〈W T BW 〉Φ + Q̃T 〈Γ̃〉Q̃

)−1

, (5.28)

ãα = aα + 1/2, (5.29)

b̃αi = bα +
1

2
〈w2

i 〉, (5.30)

ãβ = aβ +M/2, (5.31)

b̃βi = bβ +
1

2
〈nnT 〉ii, (5.32)

ãγ = aγ + 1/2, (5.33)

b̃γ
k

i = bγ +
1

2

(
Qk〈ffT 〉Qk

)
ii
. (5.34)

The required expected values can be computed as:

〈w〉 = µw, (5.35)

〈w2
i 〉 = µ2

wi
+ Σwii

, (5.36)

〈f〉 = µf , (5.37)

〈ffT 〉 = µfµ
T
f + Σf , (5.38)

〈αi〉 = ãα/b̃αi , (5.39)

〈βi〉 = ãβ/b̃βi , (5.40)

〈γk
i 〉 = ãγ/b̃γk

i , (5.41)

〈nnT 〉 = ggT − 2Φ〈Fw〉gT + Φ〈FwwT F T 〉ΦT . (5.42)

The approximate posterior distributions of (5.20) to (5.24) can be computed as follows.

In order to find the posterior distribution of the weights q(w) we start from (2.24) and

keeping only the terms that depend on w we have:

ln q(w) = 〈ln p(g|β,w,f)p(w|α)〉q(f)q(α)q(β)q(γ)

= 〈ln p(g|β,w,f) + ln p(w|α)〉q(f)q(α)q(β)

=

〈
−1

2
nT Bn − 1

2

M∑
i=1

αiw
2
i

〉
q(f)q(α)q(β)

+ const.

60

Then, because n = g − Φw and B is diagonal and therefore symmetric, we have:

ln q(w) = − 1

2
[gT 〈B〉 g − 2gT 〈BF 〉Φw + wTΦT

〈
F T BF

〉
Φw] − 1

2

M∑
i=1

〈αi〉w2
i

= − 1

2
wT
(
ΦT
〈
F T BF

〉
Φ + 〈A〉

)
w − wTΦT

〈
F T B

〉
g + const.

We can easily see that this is the exponent of a Gaussian distribution, therefore q(w) is a

Gaussian distribution given by (5.20). Similarly, we can obtain the posterior q(f) which

is also a Gaussian distribution given by (5.21).

The posterior q(α) is similarly obtained by computing the terms of ln q(α) that depend

on α:

ln q(α) = 〈ln p(w|α)p(α)〉q(f)q(w)q(β)q(γ)

=
1

2

M∑
i=1

lnαi −
M∑
i=1

αi

〈
w2

i

〉
+ (aα − 1)

M∑
i=1

lnαi − bα
M∑
i=1

αi

=

(
aα − 1

2

) M∑
i=1

lnαi −
M∑
i=1

(
1

2

〈
w2

i

〉
+ bα

)
+ const.

This is the exponent of a Gamma distribution, and therefore q(α) is a Gamma dis-

tribution given by (5.22). The posterior distributions q(β) and q(γ) are also Gamma

distributions given by (5.23) and (5.24) and their computation is very similar.

5.3.2 Parameter Estimation

The parameters aβ, bβ and aγ, bγ of the noise and image Gamma hyperpriors can be

estimated by optimizing the variational bound F (2.13), which is given by:

F (θ) =

〈
ln
p(g,f ,w,α,β,γ)

q(w,f ,α,β,γ)

〉
q(w,f ,α,β,γ)

= 〈ln p(g|w,β,f)〉 + 〈ln p(w|α)〉 + 〈ln p(f |γ)〉
+ 〈ln p(α)〉 + 〈ln p(β)〉 + 〈ln p(γ)〉 − 〈ln q(w)〉
− 〈ln q(f)〉 − 〈ln q(α)〉 − 〈ln q(β)〉 − 〈ln q(γ)〉

and the required expected values can be computed as:

〈ln p(g|w,β,f)〉 = −M
2

ln(2π) +
1

2

M∑
i=1

〈ln βi〉 −
1

2
〈(g − FΦw)T B(g − FΦw)〉

〈ln p(w|α)〉 = −M
2

ln(2π) +
1

2

M∑
i=1

〈lnαi〉 −
1

2

M∑
i=1

〈αi〉
〈
w2

i

〉
,

61

〈ln p(f |γ)〉 = −M
2

ln(2π) +
1

2

K∑
k=1

M∑
i=1

〈
ln γk

i

〉
− 1

2

K∑
k=1

M∑
i=1

〈
γk

i

〉
(Qkf)2

i ,

〈ln p(α)〉 = Maα ln bα + (aα − 1)
M∑
i=1

〈lnαi〉 − bα
M∑
i=1

〈αi〉 −M ln Γ(aα),

〈ln p(β)〉 = Maβ ln bβ + (aβ − 1)
M∑
i=1

〈ln βi〉 − bβ
M∑
i=1

〈βi〉 −M ln Γ(aβ),

〈ln p(γ)〉 = MKaγ ln bγ + (aγ − 1)
K∑

k=1

M∑
i=1

〈
ln γk

i

〉
− bγ

K∑
k=1

M∑
i=1

〈
γk

i

〉
−MK ln Γ(aγ),

〈ln q(w)〉 = −M
2

(ln(2π) + 1) − 1

2
ln |Σw|,

〈ln q(f)〉 = −M
2

(ln(2π) + 1) − 1

2
ln |Σf |,

〈ln q(α)〉 =
M∑
i=1

[ãα ln b̃αi + (ãα − 1) 〈lnαi〉 − b̃αi 〈αi〉 − ln Γ(ãα)],

〈ln q(β)〉 =
M∑
i=1

[ãβ ln b̃βi + (ãβ − 1) 〈ln βi〉 − b̃βi 〈βi〉 − ln Γ(ãβ)],

〈ln q(γ)〉 =
K∑

k=1

M∑
i=1

[ãγ ln b̃γ
k

i + (ãγ − 1)
〈
ln γk

i

〉
− b̃γ

k

i

〈
γk

i

〉
− ln Γ(ãγ)].

The derivatives of F with respect to the above parameters are:

∂F

∂aβ
= M ln bβ −Mψ(aβ) +

M∑
i=1

〈ln βi〉 , (5.43)

∂F

∂bβ
= M

aβ

bβ
−

M∑
i=1

〈βi〉 , (5.44)

∂F

∂aγ
= MK ln bγ −MKψ(aγ) +

K∑
k=1

M∑
i=1

〈
ln γk

i

〉
, (5.45)

∂F

∂bγ
= MK

aγ

bγ
−

K∑
k=1

M∑
i=1

〈
γk

i

〉
, (5.46)

where ψ(x) is the digamma function given by ψ(x) = d ln Γ(z)
dz

= Γ′(z)
Γ(z)

and Γ(x) =∫∞
0
tx−1e−t dt. We can obtain updates for these parameters by setting the above deriva-

tives to zero. This cannot be done analytically for the parameters aβ and aγ, thus we

find a numerical solution using a combination of bisection, secant, and inverse quadratic

interpolation methods, as implemented by matlab’s fzero function.

62

5.3.3 Computational issues

The computations in equations (5.25) - (5.42) involve matrix operations, whose dimension

isM×M , whereM is the number of pixels in the image. Unfortunately, computation of Σf

and Σw involves inversion of matrices that contain both diagonal and circulant matrices

and cannot be performed explicitly for large M . However, diagonal and circulant matrices

are easy to invert. For this reason, we approximate Σw (5.26) with a diagonal matrix and

Σf (5.28) with a circulant matrix, as:

Σ̄w =
(
diag{ΦT 〈F T BF 〉Φ} + 〈A〉

)−1
, (5.47)

Σ̄f =
(
〈β̄〉ΦT 〈W T W 〉Φ + 〈γ̄〉Q̃T Q̃

)−1

, (5.48)

with γ̄ = 1
MK

∑M
k=1

∑M
i=1 γ

k
i , β̄ = 1

M

∑M
i=1 βi and

〈W T W 〉 = 〈W T 〉〈W 〉 + I
M∑
i=1

〈Σ̄wii
〉, (5.49)

〈F T BF 〉 = 〈F T 〉〈B〉〈F 〉 + Σ̄f

M∑
i=1

〈βi〉. (5.50)

The diagonal approximation for matrix Σw is justified because parameters αi that

appear in the diagonal were found to dominate in (5.26). On the other hand, Σf is

approximated with a circulant matrix because both the parameters βi and γk
i obtain

values in the same range. The above approximations are used for computation of b̃αi , b̃βi ,

and b̃γ
k

i , in (5.30), (5.32) and (5.34) respectively, where the elements of the matrices Σw

and Σf appear directly. Furthermore, they are used for computing the expected value

〈FwwT F T 〉 that appears in (5.42) as:

〈FwwT F T 〉 = 〈F 〉〈wwT 〉〈F T 〉 + Σ̄f

∑
i,j

〈wwT 〉ij. (5.51)

For the posterior image and weight means µf and µw, we do not use the above

approximations, since we can exactly obtain them by solving the following linear systems:

Σ−1
f µf = ΦT 〈W 〉T 〈B〉g, (5.52)

Σ−1
w µw = ΦT 〈F 〉T 〈B〉g. (5.53)

These linear systems are solved iteratively with the conjugate gradient method, using

the approximation matrices Σ̄f and Σ̄w as preconditioners. In these iterations, products

of circulant matrices are efficiently computed in the DFT domain, while products of

diagonal matrices in the spatial domain. Specifically, each conjugate gradient iteration

requires O(M logM) iterations. Theoretically, an exact solution of the linear system is

obtained after C = N iterations, however, we typically obtain a good approximation after

63

only few iterations, e.g. C = 20. The overall computation cost is O(CM logM).

5.3.4 Variational Optimization Algorithm

Each iteration of the optimization algorithm proceeds as follows. First we compute the

parameters of the approximate posterior probabilities, as given in (5.25) - (5.34) and

then we compute the expected values using (5.35) - (5.42). Finally, we may update the

parameters of the noise and image prior distributions, using equations (5.43) - (5.46). The

means of the posteriors q(w) and q(f) are used to obtain estimates of the PSF ĥ and the

image f̂ : ĥ = Φµw and f̂ = µf .

5.4 Numerical Experiments

Several numerical experiments have been carried out both with artificially generated ob-

servations where the ground truth is known and with real observations in order to demon-

strate the properties of the proposed method. We compare the proposed method with

previous Bayesian BID formulations based on Gaussian PSF and image models [Likas

and Galatsanos, 2004], with the TV-based blind deconvolution method in [Chan and

Wong, 1998] and another recent variational Bayesian method in [Molina et al., 2006].

Hereafter, we will refer to the proposed method as the StStSt method, to imply that

three Student’s t priors are used to model the PSF weights, the BID model errors and the

image local differences. We also considered several simpler versions of this Bayesian model

that use Gaussian distributions in place of the Student’s t distributions. Specifically, we

consider Gaussian distributions for the PSF weights, p(w) = N(w|0, α−1I), the additive

noise, p(n) = N(n|0, β−1I), and the image local differences, p(f) = N(f |0, (γQT Q)−1).

The names of these simplified versions consist of three parts that express the distributions

of the PSF weights, the additive noise and the image local differences. For example, the

method that uses Gaussian distribution for the image local variances but Student’s t

distributions for the PSF weights and noise is denoted as StStG.

The GGG is very similar to the VAR1 method described in [Likas and Galatsanos,

2004], which also assumes that the PSF weights, the imaging model errors and the image

local differences are Gaussian. The only difference between VAR1 and GGG is that VAR1

does not use a kernel model for the PSF, i.e. h = (w1, . . . , wM)T . Thus, the VAR1 method

is identical to the GGG, when a Gaussian kernel of very small size is used.

In the simplified models GGG, GStG, StGG and StStG, where Gaussian stationary

image priors are used, we consider the typical simultaneously autoregressive (SAR) prior

that has been used extensively in image restoration [Likas and Galatsanos, 2004, Molina

et al., 2006]. This prior assumes a pdf for the image residuals ε(x, y) given by:

ε(x, y) =
∑

(k,l)∈D(x,y)

(f(x, y) − f(k, l)) , (5.54)

64

where D(x, y) is the set of four neighbors of (x, y), given by D(x, y) = {(x + 1, y), (x −
1, y), (x, y − 1), (x, y + 1)}. The Bayesian method in [Molina et al., 2006] uses the SAR

prior for both the image and PSF and then uses the variational methodology to achieve

inference, similarly to the proposed method.

Furthermore, we provide a detailed comparison with the TV blind deconvolution

method [Chan and Wong, 1998]. This method provides estimates of the image and PSF

by solving the following minimization problem:

min
f,h

1

2
‖h ∗ f − g‖2 + αfTV (f) + αhTV (h), (5.55)

where TV (x) =
∫
|∇x(z)| dz is a total variation regularization term.

5.4.1 Experiments with artificially blurred images

In the first experiment, we compared all the methods using artificially degraded images.

We generated a degraded image g by blurring the true image f with a known PSF h and

then adding Gaussian noise with variance σ2 = 10−6. The signal to noise ratio (SNR) of

the observed image g is SNR = 10 log10
‖f‖2

Mσ2 = 45dB. In all methods, the initial PSF hin

was set to a Gaussian-shaped function with variance σ2
hin

= 3. Since the true image is

known, we can measure the quality of a recovered image f̂ , by computing the improved

signal to noise ratio ISNRf = 10 log10
‖f−g‖2

‖f−f̂‖2
which is a measure of the improvement of

the quality of the estimated image with respect to the initial degraded image. We can also

measure the quality of a PSF estimation ĥ, by computing ISNRh = 10 log10
‖h−hin)‖2

‖h−ĥ‖2 .

The PSF that was used in this experiment was a 7 × 7 uniform, square-shaped PSF.

However, we initialized the PSF as a Gaussian-shaped function with variance σ2
hin

= 3.

The kernel function that we used was set to a Gaussian with variance σ2
φ = 0.1, which is

flexible enough to model the boundaries of the square. The ISNR values for the image

and PSF estimates of all methods are shown in Table 5.1. Furthermore, the degraded

image and restored images for some of these methods are shown in Fig. 5.6 along with

the restoration in [Chantas et al., 2006], which was obtained by assuming that the PSF

is known and a similar in spirit image prior.

Inspection of these results reveals that in general, improvement in the accuracy of the

estimated PSF implies improvement in the quality of the recovered image. Furthermore,

using a Student’s t distribution to model the weights of the kernel model of the PSF gives

significantly better PSF estimates as compared to using a Gaussian distribution for the

same task. This demonstrates beyond any doubt the importance of this selection for the

BID problem. The image estimates are also improved when using Student’s t distributions

for either the image local differences or noise. Finally, the StStSt model seems to produce

visually more pleasing restored images with “sharper” edges than either the StGSt and

StStG models, even though the ISNRf might be slightly lower. However, it is well known

that ISNRf does not always capture accurately the human perception of image quality.

65

Table 5.1: ISNR for image and PSF for the experiments on the degraded lenna image
with a uniform, 7 × 7 square-shaped PSF.

Method ISNRf ISNRh

GGG 0.47 0.88
GGSt 0.58 0.79
GStG 0.05 1.53
GStSt 1.11 1.64
StGG 2.17 6.69
StGSt 5.87 8.12
StStG 5.57 10.91
StStSt 5.29 9.44

Method in [Chan and Wong, 1998] 3.13 5.64
Method in [Molina et al., 2006] 0.54 2.44

Known PSF in [Chantas et al., 2006] 8.63 —

5.4.2 Comparison with other BID methods

In this subsection, we describe another experiment, where we compare the method based

on the StStSt model with methods in [Chan and Wong, 1998] and [Molina et al., 2006]. In

these experiments, we use the 256×256 “Cameraman” image, degraded with several PSFs

and noise levels. Specifically, we used three different PSFs; a Gaussian-shaped PSFs with

variance 5, a uniform square-shaped PSFs of size 7× 7 and a rectangular non-symmetric,

accelerated motion blur [Yitzhaky et al., 1998] given by

h(x, y) =

{
(u2

0 + 2a(x+ sx))
−1/2 if |x| ≤ sx and |y| ≤ sy ,

0 otherwise,

with sx = 4, sy = 1, u0 = 0.5 and a = 0.1. We also used two levels of noise; low noise

with SNR = 40dB and high noise with SNR = 20dB. The PSF was initialized as a

Gaussian-shaped function with variance σ2
hin

= 3. For the StStSt method we used a

Gaussian-shaped kernel function with variance σ2
φ = 2, in all cases except for the case of

accelerated motion PSF, where we used a Gaussian-shaped kernel with variance σ2
φ = 1.

The degraded images are shown in Fig. 5.4.2 and the restored images are shown in Fig. 5.8

and Fig. 5.9. The parameters of all the methods were selected in a trial and error manner

in order to optimize the resulting images.

We can observe here that in all cases the StStSt method outperforms both the methods

in [Chan and Wong, 1998] and [Molina et al., 2006], especially in the case of low noise with

SNR = 40dB. Specifically, the method in [Chan and Wong, 1998] fails to estimate the

Gaussian-shaped and motion PSFs, which is explained by the fact that the TV constraint

on the PSF has the tendency to create flat areas and discontinuities, that are in contrast

with the smooth PSFs that were used.

In terms of computational cost, the method in [Molina et al., 2006] is the most

66

50

100

150

200

250

(a) Degraded Image

50

100

150

200

250

(b) GGG 0.47, 0.88

50

100

150

200

250

(c) StStSt 5.29, 9.44

50

100

150

200

250

(d) [Chan and Wong, 1998]
3.13, 5.64

50

100

150

200

250

(e) [Molina et al., 2006] 0.54, 2.44

50

100

150

200

250

(f) Known PSF [Chantas et al.,
2006] 8.63,−

Figure 5.6: Comparison of the proposed methods on the (a) lenna image degraded with
a uniform, 7 × 7 square-shaped PSF. Estimated images using the (b) GGG method, (c)
StStSt method (d) method in [Chan and Wong, 1998], (e) method in [Molina et al., 2006]
and (f) Known PSF restoration method in [Chantas et al., 2006]. In all cases the PSF
was initialized as a Gaussian with σ2

hin
= 3 and the kernel was a Gaussian with variance

σ2
φ = 0.1. The numbers below each image are the ISNR values of the image (ISNRf) and

the corresponding PSF (ISNRh).

efficient, since each iteration involves O(M logM) operations. On the other hand, each

iteration of both the proposed method and the method in [Chan and Wong, 1998] require

the solution of a M ×M linear system that is solved using the conjugate gradient method

and require O(CM logM) computations, where C is the number of conjugate gradient

iterations.

5.4.3 Experiments with real astronomical images

We also applied the proposed methodology on a real astronomical image of the Saturn

planet, which has previously been used in [Molina et al., 2006]. Astronomical measure-

67

50

100

150

200

250

(a)

50

100

150

200

250

(b)

50

100

150

200

250

(c)

50

100

150

200

250

(d)

50

100

150

200

250

(e)

50

100

150

200

250

(f)

Figure 5.7: Degraded cameraman images with (a)-(c) SNR = 40dB and (d)-(f) SNR =
20dB. The PSF was (a),(d) Gaussian-shaped with variance σ2

h = 5, (b),(e) uniform,
square-shaped 7 × 7 and (c),(f) accelerated motion blur.

ments suggest the following PSF model for ground based telescopes:

h(r) ∝ (1 +
r2

R2
)−δ. (5.56)

The parameters δ and R can be measured [Molina et al., 2006] and δ ≈ 3 and R ≈ 3.4.

The recovered images by the different methods are shown in Fig. 5.10 and the resulting

PSFs in Fig. 5.11.

From these images it is clear again that the models with two or more Student’s t

priors give visually superior results. In these images there is less ringing at the edges,

noise in flat areas and the Saturn bands are better separated. Furthermore, the StStSt

model produces again “sharper” images. It is interesting to notice that the StGG model

does not yield good recovered images although it estimates well the measured PSF. This

demonstrates the inappropriateness of the Gaussian to model the errors of the BID model

and the image model. Notice also, that again, the TV-based methodology fails to estimate

the smooth PSF and creates edges in areas where they do not exist in the original PSF,

see Fig. 5.11.

68

StStSt [Chan and Wong, 1998] [Molina et al., 2006]

50

100

150

200

250

(a) 2.82, 14.12

50

100

150

200

250

(b) 1.32, 5.19

50

100

150

200

250

(c) 2.00, 4.78

50

100

150

200

250

(d) 8.31, 15.70

50

100

150

200

250

(e) 4.06, 8.90

50

100

150

200

250

(f) −0.17,−0.04

50

100

150

200

250

(g) 6.74, 9.26

50

100

150

200

250

(h) 0.51, 0.88

50

100

150

200

250

(i) −0.17, 0.62

Figure 5.8: Comparison on cameraman image with SNR = 40dB and (a)-(c) Gaussian-
shaped PSF with variance σ2

h = 5, (d)-(f) uniform, square-shaped 7 × 7 PSF (g)-(i)
motion-blur PSF. Estimates obtained with (b), (f), (g) the proposed StStSt method, (c),
(g), (k) method in [Chan and Wong, 1998] and (d), (h), (l) method in [Molina et al.,
2006]. The numbers below each image are the ISNR values of the image (ISNRf) and
the corresponding PSF (ISNRh).

69

StStSt [Chan and Wong, 1998] [Molina et al., 2006]

50

100

150

200

250

(a) 1.57, 6.03

50

100

150

200

250

(b) 1.17, 3.92

50

100

150

200

250

(c) 0.88, 1.02

50

100

150

200

250

(d) 2.69, 5.98

50

100

150

200

250

(e) 2.56, 5.19

50

100

150

200

250

(f) 1.05, 2.19

50

100

150

200

250

(g) 1.51, 2.34

50

100

150

200

250

(h) 0.52, 0.12

50

100

150

200

250

(i) 0.04,−0.12

Figure 5.9: Comparison on cameraman image with SNR = 20dB and (a)-(c) Gaussian-
shaped PSF with variance σ2

h = 5, (d)-(f) uniform, square-shaped 7 × 7 PSF (g)-(i)
motion-blur PSF. Estimates obtained with (b), (f), (g) the proposed StStSt method, (c),
(g), (k) method in [Chan and Wong, 1998] and (d), (h), (l) method in [Molina et al.,
2006]. The numbers below each image are the ISNR values of the image (ISNRf) and
the corresponding PSF (ISNRh).

70

20

40

60

80

100

120

140

(a)

20

40

60

80

100

120

140

(b) StGG

20

40

60

80

100

120

140

(c) StStG

20

40

60

80

100

120

140

(d) StGSt

20

40

60

80

100

120

140

(e) StStSt

20

40

60

80

100

120

140

(f) GGG

20

40

60

80

100

120

140

(g) [Chan and
Wong, 1998]

20

40

60

80

100

120

140

(h) [Molina et al.,
2006]

Figure 5.10: Comparison on real astronomical image of Saturn. (a) Degraded image.
Estimated images using the methods (b) StGG, (c) StStG (d) StGSt, (e) StStSt, (f)
GGG and the methods in (g) [Chan and Wong, 1998] and (h) [Molina et al., 2006]. The
PSF was initialized as a Gaussian with σ2

hin
= 3 in all cases and the kernel was a Gaussian

with variance σ2
φ = 1.

5.4.4 Selecting the kernel width and initial values for the pa-

rameters

The proposed method uses a sparse kernel model to estimate the PSF. The significance of

the kernel model is that it favors smooth estimations of the PSF, by forcing neighboring

pixels to have similar values. This is important in order to enforce PSF smoothness and

prevent the noise in the observed image to corrupt the PSF estimate. However, selecting

an appropriate kernel is not straightforward. Here, we have considered several Gaussian

kernels of different widths in order to determine how the proposed method is affected by

the width of the Gaussian kernel. We have applied the proposed method on the artificially

blurred images of the first experiment and considered degradation with Gaussian PSF or

71

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

real
StGG
StStG
GGG
StGSt
StStSt
TV
Mol

Figure 5.11: One dimensional slice of the true and estimated PSFs for the images of
Fig. 5.10. The true PSF has been estimated as h(r) ∝ (1 + r2

R2)
−δ, with δ ≈ 3 and

R ≈ 3.4. The kernel was Gaussian with variance σ2
φ = 1.

Table 5.2: ISNR for image and PSF for various values of the kernel width for the case of
Gaussian-shaped PSF with σ2

h = 5.

σ2
φ = 0.1 σ2

φ = 1 σ2
φ = 2 σ2

φ = 3

M
et

h
o
d

I
S
N
R

f

I
S
N
R

h

I
S
N
R

f

I
S
N
R

h

I
S
N
R

f

I
S
N
R

h

I
S
N
R

f

I
S
N
R

h

GGG 1.62 -0.57 1.92 0.47 2.57 2.62 2.90 5.12
StGG 3.53 6.58 3.53 7.49 3.47 7.95 2.39 1.78
StStG 3.19 7.15 3.21 7.40 3.77 10.55 2.33 0.36
StGSt 3.69 8.86 3.96 10.33 4.24 12.30 1.55 2.88
StStSt 4.00 11.32 3.98 11.36 3.94 12.31 2.48 0.71

Table 5.3: ISNR for image and PSF for various values of the kernel width for the case of
uniform, 7 × 7 square-shaped PSF.

σ2
φ = 0.1 σ2

φ = 1 σ2
φ = 2 σ2

φ = 3

M
et

h
o
d

I
S
N
R

f

I
S
N
R

h

I
S
N
R

f

I
S
N
R

h

I
S
N
R

f

I
S
N
R

h

I
S
N
R

f

I
S
N
R

h

GGG 0.70 -4.71 0.64 -3.41 0.12 -0.64 0.13 -3.87
StGG 2.17 6.69 1.20 9.09 -0.37 1.67 -2.31 -0.43
StStG 5.57 10.91 5.45 9.27 -0.29 1.87 -2.12 -0.20
StGSt 5.87 8.12 5.62 7.80 4.22 6.72 0.20 -0.12
StStSt 5.29 9.44 4.56 8.17 -0.51 2.01 -1.58 0.09

72

uniform-square shaped PSF. Tables 5.2 and 5.3 show the ISNRs of the image and PSF for

several values of the kernel width, for the case where the true PSF is Gaussian-shaped and

square-shaped, respectively. Notice that in all cases, selecting a very large kernel leads to

very smooth estimates of the PSF that provide poor results. In case of uniform square

true PSF (Table 5.3) the best results are obtained when using a very small kernel. This is

because the square PSF is not smooth at the edges of the rectangle. On the other hand,

in the case of Gaussian-shaped true PSF (Table 5.2), it is favorable to select a kernel that

produces smooth PSF estimation.

It must be also noted that the performance of all the variational algorithms generally

depends on the initialization of the parameters. This happens because the variational

bound is a non-convex function and therefore, depending on the initialization, a different

local maximum may be attained. In order to apply the proposed method, the following

parameters have to be initialized:

The weights w of the kernel model that define the PSF

In BID, having a good estimate of the PSF is usually very important and many BID

methods fail when they are badly initialized. This is a significant limitation, because in

many situations there is no available estimate of the PSF. The proposed method does

not rely on a good initial PSF estimation. Instead, the sparse kernel based PSF model,

can successfully estimate the PSF from the observed image. This is demonstrated in the

previous experiments, where we successfully estimated Gaussian-shaped, square-shaped

and accelerated motion PSFs using an initial PSF that was Gaussian-shaped with variance

σ2
hin

= 3. The weights w were initialized by solving the PSF model given in (5.6), which

gives w = βΣwΦTh with Σw =
(
βΦTΦ + αI

)−1
.

The weight normalization parameters αi of the PSF model and the hyperpa-

rameters aα, bα

Initially, we set all these parameters to very small values, e.g. αi = 10−16, which cor-

responds to a very flexible linear model. This is desirable in order to obtain an initial

estimate of the support of the PSF using all the available kernels. The hyperparameters

aα and bα are set to zero, thus assuming an uninformative distribution for the parameters

α. During inference, the parameters αi for most kernels tend to infinity, thus the support

of the PSF is limited.

The noise precision β and the hyperparameters aβ, bβ

The noise precision β is initially set to β = 103. The hyperparameters aβ, bβ are initially

set to values that define a Gamma distribution with mean 103 and variance 102, which is

a flat and rather uninformative distribution. Their values are then updated using (5.43)

and (5.44).

73

The strength of the image prior γ and the hyperparameters aγ, bγ

The parameter γ that defines the strength of the image prior is initially set to γ = 102.

The hyperparameters aγ and bγ are set to values that define a Gamma distribution with

mean 102 and variance 104. Updating aγ and bγ (Section 5.3.2), usually improves the

performance of the algorithm, at least in the first few iterations. However, we have

empirically found that at convergence, these hyperparameters attain very small values,

thus defining an uninformative distribution. This leads to very noisy image estimates and

for this reason we do not update the hyperparameters aγ, bγ but keep them fixed to their

initial values. An explanation for the failure to estimate these parameters is that we use

an improper prior for the image (5.16). Although selecting values for these parameters

may seem arbitrary they actually depend on the characteristics of the image. Specifically,

small values of the parameter bγ lead to very smooth solutions, while small values of the

parameter aγ allow few hard edges by defining a heavy tailed distribution for the image

local differences.

5.5 Conclusions and Future Work

We presented a Bayesian approach to the BID problem where the PSF is modeled as

a superposition of kernel functions, i.e. as a kernel-based linear model. We assumed a

suitable heavy tailed prior distribution on this kernel model, in order to obtain a sparse

estimate of the support and shape of the PSF. We also used a heavy tailed pdf both for

the noise, in order to achieve robustness to BID model errors and for the local image

differences, in order to allow the reconstruction of edges. The Student’s t pdf was our

choice as a heavy tailed pdf, due to its close relationship with the Gaussian. Because of the

complexity of this model, the variational framework was used for approximate Bayesian

inference.

Several experiments were carried out, to test the proposed methodology. These ex-

periments indicated beyond doubt that the use of a Student’s t pdf to model the weights

of the PSF kernel-based model in crucial to the success of this approach. Furthermore,

Bayesian BID models that use at least two Student’s t priors, one for the PSF, are clearly

superior to BID models that use two or more Gaussian priors. It is also interesting to

notice that the StStSt model that uses only Student’s-t priors seems to produce visu-

ally superior images compared to models that use a combination of two Student’s t and

Gaussian priors.

We also compared this methodology with TV-based and Bayesian as implemented in

[Molina et al., 2006] BID in a number of different scenarios. From these comparisons it

is clear that the proposed methodology is always superior to the Gaussian model based

methodology in [Molina et al., 2006]. As far as TV-based BID is concerned, the proposed

method is clearly superior for scenarios with small sized PSFs and low noise. In the

case of large PSFs and high noise the two methods produce different in nature results.

74

The proposed methodology produces image where image details were better preserved. It

also yields better ISNR values. However, it produces “ringing” artifacts in image edges.

TV-based BID gave no “ringing”, however, many image details were eliminated.

In the future it’s interesting to explore the possibility of learning the filters Qk in

a manner analogous to [Welling et al., 2003]. Furthermore, it is possible to explore

extending the constrained variational methodology in [Chantas et al., 2007] to BID in

order to avoid using the approximation of the partition function in (5.16). Finally, it

might be interesting to learn the width parameter of the kernel function, possibly using

the methodology described in Chapter 6.

75

76

Chapter 6

Adaptive Kernel Learning for the

Relevance Vector Machine

6.1 Introduction

6.2 Adjusting sparsity

6.3 Kernel Learning

6.4 Numerical Experiments

6.5 Discussion

6.6 Statistical Models for Analysis of Functional Neuroimages

6.7 Conclusions

6.1 Introduction

As mentioned in Chapter 3 the Relevance Vector Machine (RVM) constitutes a special

case of the sparse Bayesian linear model that assumes that the basis functions are kernels

placed at the training points. Recently, it has been used successfully in many applica-

tions; for example in recognition of hand motions [Wong and Cipolla, 2005], recovery

of 3D human pose from silhouettes [Agarwal and Triggs, 2004], detection of clustered

microcalcifications for mammography [Wei et al., 2005], classification of gene expression

data [Li et al., 2002, Yang et al., 2004], detection of activations for neuroimaging [Lukic

et al., 2007], real time tracking [Williams et al., 2005], etc. In spite of this, in order to

obtain good generalization performance, it is important to select an appropriate kernel

function.

Although typically the kernel is selected using a cross-validation technique, there has

been work on learning the kernel function simultaneously with model parameters. It has

been proposed in [Quiñonero-Candela and Hansen, 2002] that the width parameter of

77

Gaussian kernels can be learned by maximizing the marginal likelihood of the model.

Furthermore, in [Lanckriet et al., 2004, Girolami and Rogers, 2005, Sonnenburg et al.,

2006] the kernel has been modeled as a linear combination of other basis functions. In

[Krishnapuram et al., 2004] feature selection has been achieved by learning the variances

of anisotropic Gaussian kernel functions after applying to them a sparsity enforcing prior.

Also, in [Snelson and Ghahramani, 2006] an alternative to the Gaussian process model

has been proposed that learns a set of pseudo-inputs, which are similar to the relevance

vectors, but do not necessarily coincide with points of the training set. All these methods

attempt to learn parameters of kernels that are centered at many different locations,

however they assume that all these kernels share the same parameter values. This might be

a significant limitation if the data that we attempt to model have different characteristics

at different locations, such as a signal with varying frequency.

In this chapter, we propose a new methodology to automatically learn the basis func-

tions of a sparse linear model [Tzikas et al., b, 2008a]. Unlike the existing literature,

the proposed methodology assumes that each basis function has different parameters,

and in principle it can even have different parametric form, therefore it is very flexible.

In order to avoid overfitting, we use a sparsity enforcing prior that directly controls the

number of effective parameters of the model. This prior, has previously been used for

orthogonal wavelet basis function sets [Schmolck and Everson, 2007], but here we extend

it for arbitrary basis function sets. Learning in the proposed model is achieved using an

algorithm that is similar to the incremental RVM training algorithm [Tipping and Faul,

2003] described in Section 3.4.3. It starts with an empty model and at each iteration it

adds to the model an appropriate basis function, in order to maximize the marginal likeli-

hood of the model. In the case of incremental RVM, selecting a basis function is achieved

using discrete optimization over the location of the basis functions; all candidate basis

functions are tested for addition to the model. In contrast, the proposed methodology

uses continuous optimization with respect to the parameters (such as location and scale)

of the basis functions. We then employ this methodology to learn the center (mean) and

width (variance) parameters of Gaussian kernel basis functions.

There are several advantages of the proposed methodology as compared to traditional

RVM [Tipping, 2001]:

• There is no need to select the parameters of the kernel via cross validation, since

they are selected automatically.

• Because each kernel may have different parameter values, the model is very flexible

and it can accurately solve a wide variety of problems.

• The obtained models are typically much sparser compared to the typical RVM.

The rest of the chapter is organized as follows. In Section 6.2 we review the sparsity

prior of [Schmolck and Everson, 2007] and generalize it for non-orthogonal basis function

sets. In Section 6.3 we present an algorithm for learning the basis function set. In Sec-

tion 6.4 we provide experiments on artificial datasets that demonstrate the advantages of

78

the proposed method, we compare the proposed algorithm with the typical RVM algo-

rithm on benchmark datasets and we apply the proposed method for analysis of functional

neuroimages. In Section 6.5 we discuss the computational cost of the method and provide

a probabilistic interpretation of the kernel function and finally in Section 6.7 we provide

some conclusions.

6.2 Adjusting sparsity

In Bayesian modeling the characteristics of the estimation depend on the assumed prior

distribution p(w). Thus, the sparsity of the weights w of a sparse linear model is mo-

tivated by their prior distribution p(w) =
∫
p(w|α)p(α) dα. Since p(w|α) is given

by (3.27), sparsity depends on selecting an appropriate distribution p(α). The typical

RVM [Tipping, 2001] suggests the use of independent Gamma distributions, p(α|a, b) ∝∏M
i=1 α

a−1
i e−bαi . Then, the weight prior p(w) is a Student’s t distribution, which supports

sparse models because of its heavy tails. Because it is difficult to select appropriate values

for the parameters a, b of the Gamma distribution, they are typically set to a = b = 0.

These values define an improper uninformative distribution for αi and correspond to

p(w) =
∏M

i=1 1/|wi|, which again has heavy tails and supports sparse estimations.

Another approach to control the amount of sparsity, is to define a prior on α that di-

rectly penalizes models with large number of effective parameters [Schmolck and Everson,

2007]. Notice, that the output of the model at the training points y = (y(x1), . . . , y(xN))T

can be evaluated as y = St, where S = ΦΣΦT B is the so called smoothing matrix. The

‘degrees of freedom’ of S, given by the trace of the smoothing matrix trace(S), measure

the effective number of parameters of the model. This motivates the following sparsity

prior [Schmolck and Everson, 2007]:

p(α) ∝ exp(−c trace(S)), (6.1)

where the sparsity parameter c provides a mechanism to control the amount of desired

sparsity. When using specific values of the sparsity parameter c, some known model

selection criteria are obtained [Holmes and Denison, 1999]:

c =

0 None (typical RVM),

1 AIC (Akaike information criterion),

log(N)/2 BIC (Baysian information criterion),

log(N) RIC (Risk inflation criterion).

(6.2)

Learning using this prior is achieved by maximizing the posterior p(α,β|t) ∝ p(t|α,β)p(α)p(β).

If the basis function set is orthogonal (ΦTΦ = I) and the noise precision β is the same

79

for each data point (B = βI) this prior reduces to:

p(αi) ∝ exp(− c

1 + αi/β
). (6.3)

Assuming an uninformative prior for the noise (p(β) = const), the use of the sparsity

prior of (6.3) leads to the addition of a normalization term to the marginal log-likelihood

of (3.43):

Lo = L−
M∑
i=1

c

1 + αi/β
. (6.4)

Keeping only the terms that depend on a single parameter αi we can write:

lo(αi) = l(αi) −
c

1 + αi/β
. (6.5)

Based on this decomposition, an incremental algorithm that maximizes the marginal

likelihood has been proposed in [Schmolck and Everson, 2007], which is similar to the

typical incremental RVM algorithm [Tipping and Faul, 2003]. However, because of the

sparsity prior, setting the derivative of (6.5) to zero does not provide analytical updates

(such as (3.57)) for the weight precisions αi, but instead a numerical solution is required

to update them.

In the proposed method, we consider the general case of non-orthogonal basis functions

and heteroscedastic noise with different noise precision βn at each data point xn. Since

trace(ΦΣΦT B) = M −
∑M

i=1 αiΣii we can write the proposed sparsity prior as:

p(αi) ∝ exp

(
−c

(
M −

M∑
i=1

αiΣii

))
. (6.6)

Learning is again performed by maximizing the posterior p(α,β|t) ∝ p(t|α,β)p(α)p(β),

which leads to adding to the marginal log-likelihood of (3.43) an additional term that is

obtained from (6.6):

Ls = L− c(M −
M∑
i=1

αiΣii). (6.7)

Setting, the derivative of Ls with respect to logαi to zero,

∂Ls

∂ logαi

=
1

2
(1 − αiΣii − αiµ

2
i) + c(1 − αiΣii)αiΣii = 0, (6.8)

we obtain the following update formula for αi:

αi =
γi

µ2
i − 2cγiΣii

. (6.9)

In the regression case assuming that B = βI we can also update β by setting the

80

derivative of Ls with respect to log β to zero:

∂Ls

∂ log β
=

1

2

[
N

β
− ‖t − Φµ‖2 − trace(ΣΦTΦ)

]
− βc trace(ΦΣΦ) = 0. (6.10)

Because of the sparsity prior, we cannot solve this equation analytically. However, we can

easily obtain a numerical solution that we use to update β.

Regarding the incremental algorithm, keeping only the terms of L that depend on a

single parameter αi and because Σii = 1/(αi + si) [Tipping and Faul, 2003], we obtain:

ls(αi) = l(αi) − c(1 − αi

αi + si

), (6.11)

whose gradient is given by:

∂ls(αi)

∂αi

=
1

2

[
1

αi

− 1

αi + si

− q2
i − 2csi

(αi + si)2

]
. (6.12)

Setting this gradient to zero, we find that ls(αi) is maximized at

αi =
s2

i

q2
i − (2c+ 1)si

if q2
i > (2c+ 1)si,

αi = ∞ if q2
i ≤ (2c+ 1)si. (6.13)

6.3 Kernel Learning

6.3.1 Sparse infinite linear models

Consider a linear model of the form

y(x|w) =
M∑
i=1

wiφi(x). (6.14)

Applying a sparsity prior on the weights of this model allows us to use very flexible models,

for example the RVM assumes one kernel function for each training point. We can even

consider linear models with infinite number of basis functions:

y[x|w(ξ)] =

∫
w(ξ)φ(x; ξ) dξ, (6.15)

which are defined by using a family of basis functions φi(x) = φ(x; ξ) with parameters

ξ. Then, w(ξ) is a function whose output is the weight for the basis function with

parameters ξ. In this context, sparsity implies that there will be only a finite number of

81

nonzero weights:

w(ξ) =
M∑
i=1

wiδ(ξ,θi), (6.16)

where δ(ξ,θi) = 1 if ξ = θi, otherwise δ(ξ,θi) = 0. Thus, under the assumption of

(6.16), the sparse infinite linear model is equivalent to a finite linear model with weights

w = (w1, . . . , wM)T and kernel parameters θ = (θ1, . . . ,θM)T :

y(x|w) =
M∑
i=1

wiφ(x; θi). (6.17)

However, learning this model requires not only computing the posterior distribution

of the weights w and estimating the weight precisions αi, but also estimating the basis

function parameters θ. This can be achieved by modifying the incremental RVM algorithm

in order to optimize the kernel parameters θ at each iteration.

6.3.2 Learning algorithm

In this section we propose an algorithm for learning the model of (6.17). Notice that

the typical RVM algorithm cannot be applied here, since it is based on the assumption

that θi are fixed in advance. Instead, the proposed algorithm is based on the incremental

RVM algorithm and therefore it works with only a subset of the basis functions, which

are named active basis functions. In order to explore the basis function space, we use

mechanisms to convert inactive basis functions to active and vice versa.

Specifically, at each iteration we select the most appropriate basis function to add

to the model as measured by the increment of the marginal likelihood. Therefore, in

order to select a basis function for addition to the model, we perform an optimization of

the marginal likelihood with respect to the parameters of the basis function. In typical

RVM, where the basis functions are kernels, this optimization is performed with respect

to the locations of the kernels. Furthermore, because the kernels are assumed to be

located at the training points, this optimization is discrete. In contrast, an infinite linear

model assumes continuous parameters for the basis functions, and therefore continuous

optimization must be employed, which uses the derivatives of the marginal likelihood

with respect to the parameters of the basis functions. Furthermore, in contrast to the

incremental RVM algorithm, which at each iteration selects a single basis function and it

either adds it to the model or re-estimates its parameters or removes it from the model, the

proposed algorithm performs at each iteration all these three operations; it first attempts

to add a basis function to the model, then updates all parameters of active basis functions

and finally removes any active basis functions that no longer contribute to the model. The

additional operations speed up convergence without introducing significant computational

cost, since there are only few active basis functions.

The steps of the proposed learning method are summarized in Algorithm 1 and we

82

next discuss them in detail.

Algorithm 1 Sparse Infinite Linear Model Learning Algorithm.

1. Select an inactive basis function to add to the model (convert to active) as follows:

(a) Consider an initial set of inactive candidate basis functions by sampling their
parameters at random.

(b) Optimize separately the parameters of each candidate basis function to maxi-
mize the marginal likelihood.

(c) Add to the model the candidate basis function that increases the marginal
likelihood the most.

2. Optimize the parameters θ of all currently active basis functions.

3. Optimize hyperparameters α and noise precision β.

4. Remove from the model any unnecessary active basis functions.

5. Repeat steps 1 to 4 until convergence.

Select an inactive basis function to add to the model

Addition of a basis functions to the model should always be performed in a way that

increases the marginal likelihood. This search is an optimization procedure in the space

defined by the hyperparameters αi and the basis function parameters θi. In contrast, in

the typical incremental RVM method, where the set of candidate basis functions is discrete

and finite, selecting a basis function to add to the model requires discrete optimization

which is performed by evaluating the marginal likelihood for each candidate basis function.

In our continuous optimization framework, the required derivative for αi is given by

(6.12) and for θik is given by:

∂ls(αi)

∂θik

= −
(

1

αi + si

+
q2
i + cαi

(αi + si)2

)
ri +

qi
αi + si

wi, (6.18)

where

ri ≡
1

2

∂si

∂θik

= φi(θi)
T C−1

−i

∂φi(θi)

∂θik

, (6.19)

wi ≡
∂qi
∂θik

= tT C−1
−i

∂φi(θi)

∂θik

. (6.20)

These derivatives can be efficiently computed in a similar manner as in (3.55):

ri =
αiRi

αi −Ri

, (6.21)

83

wi =
αiWi

αi −Wi

, (6.22)

where

Ri = φT
i C−1∂φi(θi)

∂θik

, (6.23)

Wi = φT
i C−1∂φi(θi)

∂θik

, (6.24)

which gives:

Ri = φT
i B

∂φi(θi)

∂θik

− φT
i BΦΣΦT B

∂φi(θi)

∂θik

, (6.25)

Wi = φT
i B

∂φi(θi)

∂θik

− φT
i BΦΣΦT B

∂φi(θi)

∂θik

. (6.26)

Notice that since we use a local optimization method (in our case the quasi-Newton

BFGS method), we can only attain a local maximum of the marginal likelihood, which

depends on the initialization. For this reason, we perform this maximization several times,

each time with different initialization and then we use the parameters that correspond

to the best solution. The initialization is randomly performed by sampling from an

uninformative (uniform) distribution p(θ). In order to speed up convergence, we can

initially place a basis function with high probability at regions where the model does

not fit the data well. For example, if the basis functions are Gaussian kernels, we can

initialize the mean m of a Gaussian kernel at a training point xn selected with probability

proportional to the square of the error of the model at that point ε2n:

p(m = xn) =
ε2n∑N

n=1 ε
2
n

. (6.27)

Optimize active basis functions

Although we optimize the parameters of each basis function at the time that we add it

to the model, it is possible that the optimal values for the parameters of the already

existing basis functions will change, because of the addition of the new basis function.

For this reason, after the addition of a basis function, we optimize the parameters αi and

θi of all the active basis functions of the current model. Specifically, the weight precision

parameters αi are updated using (3.57), while the basis function parameters θi are updated

using an optimization algorithm. Instead of computing separately the derivative for each

θi from (6.18), we use the following formula [Tipping, 2001]:

∂Ls

∂θik

=
N∑

n=1

∂Ls

∂φi(xn; θi)

∂φi(xn; θi)

∂θik

, (6.28)

84

where ∂Ls

∂φi(xn;θi)
≡ Dni is given by:

D = (C−1ttT C−1 − C−1)ΦA−1 + 2cBΦΣAΣ (6.29)

= B
[
(t − Φµ)µT − ΦΣ

]
+ 2cBΦΣAΣ. (6.30)

Optimize hyperparameters and noise precision

The hyperparameters α of the active basis functions are updated at each iteration using

(6.9). Similarly, in regression the noise precision β is updated by numerically solving

(6.10).

Remove basis functions

After updating the hyperparameters α of the model it is possible that some of the active

basis functions will no longer have any contribution to the model. This happens because

of the sparsity property, which allows only few of the basis functions to be used in the

estimated model. For this reason, we remove from the model those basis functions that

no longer contribute to the estimate, specifically those with αi > 1012. Removing these

basis functions is important, not only because we avoid the additional computational

cost of updating their parameters, but also because we avoid possible singularities of the

covariance matrices due to numerical errors in the updates.

Repeat until convergence

We assume that the algorithm has converged when the increment of the marginal likeli-

hood is negligible (∆Ls < 10−6). Because at each iteration we consider only a subset of

the basis functions for addition to the model, we assume that convergence has occurred

only when the above criterion is met for ten successive iterations.

6.4 Numerical Experiments

In this section we present results from the application of the proposed method (denoted

with aRVM) to various artificial and real regression and classification problems. We

compare our approach with i) the typical RVM with Gaussian kernel [Tipping, 2001] and

ii) the RVM with a smoothness prior and orthogonal wavelet basis functions (denoted

with sRVM) [Schmolck and Everson, 2007]. Notice that the sRVM approach is based on

wavelet analysis requiring that the training data points are equally spaced. Therefore, it

can not be used for arbitrary multidimensional regression and classification problems and

we test it only on one-dimensional artificial regression example.

More specifically, we consider Gaussian kernel functions of the form

φi(x; mi, hi) = exp
[
−h−2

i ‖x − mi‖2
]
, (6.31)

85

whose derivatives with respect to the mean and variance parameters are:

∂φi(xn; mi, hi)

∂mi

= 2h−2
i φi(xn; mi, hi)(xn − mi), (6.32)

∂φi(xn; mi, hi)

∂hi

= 2h−3
i φi(xn; mi, hi)‖xn − mi‖2. (6.33)

Of course, we can use any other type of kernel functions, as long as we can compute the

derivatives with respect to the parameters we want to optimize. We can even examine

many types of basis functions simultaneously, as proposed in Chapter 4.

In our implementation we use the quasi-Newton BFGS method to perform the neces-

sary optimizations. Specifically, in order to select a basis function to add to the model,

we perform 100 runs of the BFGS, each time starting from a different initialization, and

each of these runs lasts no more than 10 BFGS iterations. Then, we only keep the

best solution and consider adding the corresponding basis function to the current model.

When updating the parameters of all the active basis functions we stop after 100 BFGS

iterations.

6.4.1 Experiments on Artificial Data

Regression

In the first experiment we generated N = 128 points from the well-known ‘Doppler’

function [Schmolck and Everson, 2007]:

g(x) =
√
x(1 − x) sin

2π(1 + δ)

x+ δ
, (6.34)

with δ = 0.01 and added white Gaussian noise of variance σ2 = 0.1. We then applied

the three compared methods and evaluated the estimated model on the same 128 points.

In order to measure the quality of the estimates we compute the mean square error

MSE =
∑

n(g(xn) − ŷn)2/N , where ŷn the estimated value of the function at input xn

and N is the number of data points. For aRVM and sRVM we set the sparsity parameter

to c = 1, c = log(N)/2 and c = log(N) and for the kernel width of RVM we test several

values and select to illustrate the cases h = 1.5, h = 2 and h = 4. The second of these

cases (h = 2) is the value that produced the smallest MSE among all tested values of h.

The results are shown in Fig. 6.1.

Notice that as the smoothness parameter c increases, the estimated aRVM model con-

tains less basis functions, thus it exhibits robustness to noise. The same happens with the

sRVM and also when increasing the width of the kernel in the typical RVM. Also notice,

that when using the typical RVM with a small kernel size (shown in Fig. 6.1b), noisy

estimates are obtained, while when using a large kernel size (shown in Fig. 6.1h), large

fluctuations of the function (high frequencies) cannot be adequately estimated. Instead,

the adaptive RVM and the sRVM (shown in Fig. 6.1d and Fig. 6.1f) can successfully es-

86

aRVM RVM sRVM

20 40 60 80 100 120

−0.6

−0.4

−0.2

0

0.2

0.4

(a) c = 1, MSE = 0.0037, RV = 16
20 40 60 80 100 120

−0.6

−0.4

−0.2

0

0.2

0.4

(b) h = 1.5, MSE = 0.0056, RV =
57

20 40 60 80 100 120

−0.6

−0.4

−0.2

0

0.2

0.4

(c) c = 1, MSE = 0.0047, RV = 36

20 40 60 80 100 120

−0.6

−0.4

−0.2

0

0.2

0.4

(d) c = log(N)
2 , MSE = 0.0037,

RV = 12

20 40 60 80 100 120

−0.6

−0.4

−0.2

0

0.2

0.4

(e) h = 2, MSE = 0.0050, RV = 41
20 40 60 80 100 120

−0.6

−0.4

−0.2

0

0.2

0.4

(f) c = log(N)
2 , MSE = 0.0061,

RV = 19

20 40 60 80 100 120

−0.6

−0.4

−0.2

0

0.2

0.4

(g) c = log(N), MSE = 0.0092,
RV = 5

20 40 60 80 100 120

−0.6

−0.4

−0.2

0

0.2

0.4

(h) h = 4, MSE = 0.0090, RV = 20
20 40 60 80 100 120

−0.6

−0.4

−0.2

0

0.2

0.4

(i) c = log(N), MSE = 0.0254,
RV = 4

Figure 6.1: Regression example with Doppler signal. Estimates obtained (a),(d),(g) with
aRVM, (b),(e),(h) with RVM and (c),(f),(i) with sRVM. The dashed line shows the true
signal, the dots are the noisy observations and the solid line shows the estimate. Under
each figure the values of the kernel width h or sparsity parameter c, the test mean square
error (MSE) of the model and the number of relevance vectors (RV) are shown.

timate functions that exhibit smoothness in some regions and large fluctuations in other

regions. However, the sRVM gives worst solutions in terms of MSE than aRVM, because

Gaussian basis functions appear to be more appropriate than wavelets for modeling the

‘Doppler’ signal.

In the next experiment, we compare the performance of aRVM, RVM and sRVM for

several noise levels, using again the ‘Doppler’ function of (6.34). For aRVM and sRVM,

we set the sparsity parameter to c = log(N)/2 and for RVM we selected to illustrate the

cases h = 1.5, h = 2 and h = 4 for the width of the kernel. Notice that h = 2 is the

optimal value for the width of the kernel when SNR = 10. In Fig. 6.2 we provide the

87

−10 −5 0 5 10 15 20 25 30

10
−4

10
−3

10
−2

10
−1

SNR

M
S

E

aRVM(c=log(N)/2)
RVM(h=4)
RVM(h=2)
RVM(h=1.5)
sRVM(c=log(N)/2)

Figure 6.2: Comparison of the performance of aRVM, typical RVM and sRVM for several
noise values.

MSE of the estimate of each method for various signal to noise (SNR) ratios. Here, we

observe that the RVM model with a specific kernel width provides good performance only

for a small SNR range. Instead, aRVM and sRVM provide effective models for any SNR

value, but aRVM provides consistently better performance than sRVM.

Next, we applied the proposed method on a two-dimensional generalization of the

‘Doppler’ function:

g(x1, x2) = g(x1)g(x2), (6.35)

where g(x) is given by 6.34. We then set δ = 0.01 and generated a 128 × 128 image by

sampling this function on a grid. We trained the compared methods using a subset of these

samples, containing a proportion of r = 0.5 randomly selected samples. Furthermore, we

added to the observations white Gaussian noise of variance σ2 = 0.1.

We consider two approaches for two dimensional regression. In the first, we use

isotropic Gaussian kernels, which assume the same variance for each dimension of the

input space and are given by

φ(x; m, h) = exp
[
−h−2‖x − m‖2

]
. (6.36)

The second approach uses anisotropic Gaussian kernels, which use a separate variance for

each dimension of the input space:

φ(x; m,h) = exp

[
−

d∑
j=1

(hj)−2(xj −mj)2

]
. (6.37)

We denote the second approach as aRVMd.

We then applied on the two-dimensional ‘Doppler’ function (i) the proposed aRVM

88

10

20

30

40

50

60

70

80

90

100

(a) true function

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) noisy samples

Figure 6.3: (a) True signal and (b) noisy samples of the two-dimensional ‘Doppler’ signal
that was used for training.

aRVM aRVMd RVM

10

20

30

40

50

60

70

80

90

100

(a) MSE = 0.0036

10

20

30

40

50

60

70

80

90

100

(b) MSE = 0.0031

10

20

30

40

50

60

70

80

90

100

(c) MSE = 0.0038

Figure 6.4: Estimation of the aRVM method with (a)isotropic and (b)anisotropic Gaussian
kernel functions.

method with Gaussian kernels (ii) aRVM with anisotropic kernels (aRVMd) and (iii) the

typical RVM method with a fixed Gaussian kernel that was selected using cross-validation.

The result of each method was evaluated by measuring the mean square error with respect

to the true function (without noise) on the whole 128× 128 image. For aRVM, we set the

sparsity parameter to c = log(N)/2 and for the kernel width of RVM we test several values

and select to illustrate the case h = 2, which is the value that produced the smallest MSE

among all tested values of h. The samples of the training set are shown in Fig. 6.3 and the

estimations of the algorithms are shown in Fig. 6.4. Observing these results, it is obvious

that in this case using anisotropic kernels improves the accuracy of the estimation.

Classification

In this subsection we compare the typical RVM and adaptive RVM (aRVM) models on

classification problems (sRVM has been proposed only for regression problems). We gen-

89

erated two-class, two-dimensional, artificial data by obtaining 50 samples from each of

the following Gaussian mixture distributions:

p(x|C1) = 0.25N(µ1, σ
2
1I) + 0.75N(µ2, σ

2
2I), (6.38)

p(x|C2) = 0.25N(µ2, σ
2
1I) + 0.75N(µ1, σ

2
2I), (6.39)

with µ1 = (0.5, 0.5)T , µ2 = (−0.5,−0.5)T , σ2
1 = 0.5 and σ2

2 = 0.05. It can be observed that

each class consists of two Gaussian clusters, one with large variance and another with small

variance. We then trained RVM and aRVM classifiers and evaluated them by computing

the percentage of misclassified examples over Nt = 10000 test points drawn from the

mixture distributions of (6.38) and (6.39). For aRVM we set the sparsity parameter to

c = 1, c = log(N)/2 and c = log(N) and for RVM we test several values for the kernel

width and select the values h = 0.2, h = 0.4 and h = 0.8, the second of which (h = 0.4)

is the value that minimizes the misclassified test examples. Notice in Fig. 6.5 that, when

using the typical RVM with a small kernel, there is severe noise in the estimation of the

decision boundary between the clusters with large variance. Instead, when using a large

kernel, the model fails to estimate the decision boundary near the clusters with small

variance. On the other hand, when using aRVM both clusters can be estimated well

because kernels of different width are used. Although the ability to use very small kernels

may lead to overfitting, this is avoided by selecting appropriate parameter value for the

sparsity controlling prior c (Fig. 6.5c).

6.4.2 Experiments on Real Datasets

In this section we compare the performance of the proposed method (aRVM) with the

typical RVM method on several regression and classification datasets1. In what follows, we

describe the experimental setup that we followed. For each dataset, in order to estimate

the generalization error of each method, we perform ten-fold cross validation, i.e. we

perform ten experiments using each time one fold as a test set and the remaining nine

folds for training. In each experiment, we test several values for the parameters of the

models, specifically h = 0.5, 1, 1.5, . . . , 10 for the width of RVM and c = 1, c = log(N)/2

and c = log(N) for the sparsity parameter of aRVM. For each parameter value, we train

nine models, using one of the nine folds as validation set and the remaining eight folds as

training set. The parameter value providing the best average performance over the nine

runs is selected and the corresponding model is subsequently evaluated by measuring

the error on the test fold. In regression, the error is the mean square error, MSE =∑
n(tn − ŷn)2/N , where tn is the value given by the test set, ŷn the predicted value and N

the number of test examples. In classification the error is the percentage of misclassified

1Computer hardware, concrete and pima datasets were obtained from the UCI machine learning
repository at http://archive.ics.uci.edu/ml/, the Boston housing dataset was obtained from http:
//lib.stat.cmu.edu/datasets/boston, and the banana, titanic, image and breast-cancer datasets from
http://ida.first.fraunhofer.de/projects/bench/.

90

http://archive.ics.uci.edu/ml/
http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/boston
http://ida.first.fraunhofer.de/projects/bench/

aRVM RVM

−1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) c = 1, E = 16.71%, RV = 7
−1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) h = 0.2, E = 19.24%, RV = 30

−1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c) c = log(N)/2, E = 15.10%, RV = 4
−1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(d) h = 0.4, E = 19.91%, RV = 16

−1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(e) c = log(N), E = 15.24%, RV = 4
−1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(f) h = 0.6, E = 23.74%, RV = 10

Figure 6.5: Classification example on artificial Gaussian clusters. Estimates obtained with
(a),(c),(e) aRVM, (b),(d),(f) RVM. Circles and crosses correspond to the data points of
the two classes, the solid line shows the decision boundary and the dotted line shows the
curves where the decision probability is 0.75. Under each figure the values of the kernel
width h (for RVM) or sparsity parameter c (for aRVM), the misclassification error (E)
and the number of relevance vectors (RV) are shown.

91

Table 6.1: Comparison of aRVM and RVM on regression.

aRVM RVM

Dataset patterns features error RVs error RVs

computer hardware 209 6 22379 5.0 30004 140.5
Boston housing 506 13 11.53 13.27 12.48 69.5
concrete 1030 8 34.515 9.10 44.204 140.2

Table 6.2: Comparison of aRVM and RVM on classification.

aRVM RVM

Dataset patterns features error RVs error RVs

banana 5300 2 0.1126 6.3 0.1092 12.1
titanic 2200 3 0.2270 2 0.2292 31
image 2310 18 0.0387 6.9 0.0390 34.6
breast-cancer 277 9 0.2844 4.4 0.2818 9.6
pima 768 8 0.2303 5.6 0.243 27.9

examples in the test set.

The results in Tables 6.1 and 6.2 show the cross-validation error and the number

of relevance vectors (averaged over 10 folds) that were obtained by applying the RVM

and aRVM methods on several regression and classification datasets. We can observe

that in both regression and classification problems, the solutions obtained with aRVM

use much less relevance vectors (RV) than the solutions obtained with the typical RVM.

Furthermore, in regression the aRVM method provides more accurate estimates compared

to the typical RVM. In the classification datasets, the accuracy of the two methods is

generally comparable, but the aRVM solution is considerably sparser.

6.5 Discussion

6.5.1 Computational Cost

The computational cost of each iteration of the typical RVM algorithm is dominated by

the inversion of the N ×N matrix of (3.33), which is O(N3), where N is the number of

training points, assuming that we use one basis function at each training point. In the

incremental RVM algorithm the size of the matrix Σ is M ×M , where M is the number

of active basis functions that are used in the estimated model and which is much smaller

because the model is sparse. The computational cost of the incremental algorithm is

dominated by the cost of selecting which basis function to add at each iteration, which is

O(N2M).

In the proposed aRVM algorithm, selection of which basis function to add is achieved

92

using a quasi-Newton optimization method, which is in general more computational ex-

pensive as compared to the incremental RVM basis function selection mechanism. How-

ever, generally aRVM requires significantly less iterations, because it adds less basis func-

tions than the incremental RVM. Furthermore, aRVM does not require the additional com-

putational cost of performing cross-validation to select the kernel width. The smoothness

parameter c can be set to c = log(N)/2, which corresponds to the BIC model selection

criterion and which has been observed to give very good results in most problems (this

value was also suggested in [Schmolck and Everson, 2007]). Even if we choose to use

cross-validation to select the smoothness parameter c, we typically need to consider only

few values, in contrast to the RVM where selecting the width of the kernel is a much more

tedious task.

6.5.2 Probabilistic Kernel Interpretation

As noted in Chapter 3, a Gaussian process (GP) [Rasmussen and Williams, 2006] models

an unknown function y(x) by assuming that the joint distribution p(y(x1), . . . , y(xN)) of

any subset ofN values of this function y(x) is Gaussian. Usually the mean of this Gaussian

distribution is assumed zero and the Gaussian process is defined by the covariance function

K(x1,x2), which computes the covariance of the outputs of the function y(x) at two

arbitrary points x1 and x2.

As noted in [Tipping, 2001], the marginal distribution of the observations in a sparse

linear model is a Gaussian distribution given by p(t|α, β) = N(t|0, C), see (3.43), therefore

the sparse linear model is a special case of GP, with covariance function given by:

K(x1,x2) =
M∑
i=1

α−1
i φi(x1)φi(x2). (6.40)

This covariance function depends directly to the basis functions φi(x). Furthermore,

assume that the generative model p(x) of the inputs x is a mixture model:

p(x) =
M∑
i=1

p(i)p(x|i), (6.41)

with the generative distributions p(x|i) proportional to the kernel functions φi(x):

p(x|i) ∝ φi(x) (6.42)

and p(i) ∝ α−1
i . Then the covariance function K(x1,x2) of (6.40) is proportional to the

probability to generate two inputs x1, x2 from the same component i1 = i2 of the mixture

model:

K(x1,x2) ∝ p(x1,x2|i1 = i2) =
M∑
i=1

p(i)p(x1|i)p(x2|i). (6.43)

93

Such probabilistic interpretation of the kernel function has been used to construct

kernels in [Haussler, 1999]. Here, it provides useful intuition on the advantages of learning

the basis functions. Typically, in order to fit a mixture model to some training set, we

learn the mixing coefficients and also parameters of the mixing distributions. However,

the typical RVM learns only the mixing coefficients. For this reason, it heavily depends

on a good choice of the mixing distributions—they are usually Gaussian kernels but

their variance is unknown. Furthermore, due to computational costs, we cannot consider

very large numbers of basis functions and therefore typically all the basis functions have

common width parameters. In contrast, aRVM which learns parameters of the basis

functions, can approximate p(x) more accurately, because it is a much more flexible

model. However, it is important to use the sparsity prior [Schmolck and Everson, 2007]

in order to avoid overfitting.

6.6 Statistical Models for Analysis of Functional Neuroimages

In this section we apply the proposed adaptive kernel learning methodology to detect

activations in functional neuroimages, which are brain images whose intensity measures

the neural activity of the brain [Friston et al., 2007]. Although neural activity cannot be

directly measured, there are techniques to measure it indirectly. PET imaging measures

the blood flow and Functional MRI the BOLD (Blood Oxygenation Level Dependent)

signal in a brain area, which are both proportional to the neural activity in that area.

Thus, brain regions which are activated can be identified by finding regions in a PET or

fMRI image where the blood flow or BOLD signal is elevated in comparison to a baseline

or control state. The baseline is the measurement of blood flow or BOLD signal when the

brain does not perform any task. Similarly, brain regions which have lower activity than

the baseline state are said to be inhibited.

A brain activation study aims in recording brain activity during performing a specific

task, such as cognition, memory, sensory stimulation and motor activity or studying the

effects of diseases or drugs to normal brain activity. A typical activation study consists

of four parts: experimental design, image acquisition, preprocessing and analysis.

The experimental design is the step where all the parameters of the experiment are

defined. There are mainly two types of designs: 1) block design and 2) event-related

design. In block related design, the experiment consists of alternating periods in which

a specific event or task is performed and periods of rest. Neuroimages are obtained

continuously, and can be split into two sets, depending on whether the task or event is

performed at the time or not. Event- related activation studies consist of a brief stimulus

performed only once. Furthermore, other parameters, such as the subjects that will be

tested and the machinery that will be used are determined. Usually, the signal to noise

ratio of the obtained images is very poor and in order to get robust results many images

are required.

94

In the image acquisition step several scans of the brain of each subject are obtained

and in the preprocessing step the data are prepared for analysis. The main objective

of this step is to eliminate the differences in the images that are caused by extraneous

factors. For example, the position of the head of the subjects cannot be perfectly repeated

among scans, so an image processing technique (image registration) is used to correct any

misalignments. If images are obtained from more than one subjects, differences in the

anatomy of the subject’s brain should also be eliminated before the image analysis step.

In this case, piecewise linear transformations based on a brain atlas are used to bring

the brain images into anatomical alignment in a standard coordinate system. Then, the

images are usually spatially smoothed by a low-pass filter.

The final step is image analysis. The aim of neuroimaging analysis are: i) characteri-

zation of the spatio-temporal activation pattern induced in the brain by the stimulus, and

ii) estimation of data model parameters that can be used to accurately predict the values

of experimental design parameters (e.g. state labels) given the brain scans not previously

analyzed.

There are several important factors that make it difficult to relate specific changes in

brain activity to the experimental conditions being studied. First, the brain is always

active therefore the experiment must be designed carefully to isolate the effect of the

stimulus. Furthermore, the degree of activation with respect to the baseline state may be

very slight and difficult to detect. Another problem is that the images often suffer from

poor quality (low resolution, blur and noise). In experiments that involve many subjects

additional errors may be introduced because of anatomical and functional differences

among subjects. Finally, it is difficult to validate the results of the analysis, because very

little prior knowledge is available about human brain activity.

These challenges have inspired the development of several image processing and sta-

tistical tools to detect and establish statistical significance of studies. The predominant

approach [Friston et al., 2007] is based on the t-test from statistics and uses pixel-wise

comparisons between images of the control and test states of the brain to detect the local

changes in activity. More recent methods, which have gained lower acceptance so far, are

based on pairwise pixel correlations. Recently, Bayesian techniques have been proposed

that model spatial correlations of the activation signal. More specifically, [Penny et al.,

2005] models spatial correlations using a Bayesian prior based on the Laplacian opera-

tor and [Flandin and Penny, 2007] uses a Wavelet-based prior. Furthermore, in [Lukic

et al., 2007] kernel methods, such as the RVM of Section 3.5, have been used to account

for spatial correlations of the activation signal.

In simple fMRI studies two sets of volumes are acquired during an experiment: i)

baseline volumes that are obtained when the subject rests and ii) activated volumes that

are obtained when the subject is exposed to the examined stimulus. The problem of

interest is to statistically compare activated and baseline volumes to find activated regions

in the brain, i.e. regions where neural activity significantly changes when the subject is

exposed to the studied stimulus. More complicated fMRI studies may study the effects

95

of many simultaneous stimuli.

6.6.1 The t-test

Typical statistical analysis of functional neuroimages is performed separately for each

voxel [Friston et al., 2007], without modeling any correlations between neighboring voxels.

For this reason, smoothing is commonly performed as a preprocessing step. A common

assumption is that the intensity of each voxel is generated by the addition of i) a constant

baseline value, ii) possibly an activation and iii) some noise source. We denote with Xb
in

and Xa
in the intensities in the i-th voxel of the n-th volume that has been acquired at the

baseline and activation states respectively. Then, we can write

Xb
in = Bi + εni , (6.44)

Xa
in = Bi + Ai + εni , (6.45)

where Bi and Ai are the unknown intensities in the i-th voxel of the baseline and activation

respectively and εni is the noise source. The noise is typically assumed zero-mean Gaussian

distributed, with different variance σ2
i at each voxel, p(εni) = N(εni |0, σ2

i). Based on this

assumption, we can compute the likelihood that a voxel has been generated from this

model:

p(X|Ai, Bi, σi) =
∏

i

 Nb∏
n=1

N(Xb
in|Bi, σ

2
i)

Na∏
n=1

N(Xa
in|Bi + Ai, σ

2
i)

 , (6.46)

where N b and Na are the numbers of volumes acquired in the baseline and activation

states respectively.

The maximum likelihood estimates of the baseline B̂i, the activation Âi and the vari-

ances σ̂2
i are given by:

B̂i =
1

N b

Nb∑
n=1

Xb
in, (6.47)

Âi =
1

Na

Nb∑
n=1

Xa
in − B̂i, (6.48)

σ̂2
i =

1

N − 1

(∑
n∈Nb

(Xb
in − B̂i)

2 +
∑

n∈Na

(Xa
in − B̂i − Âi)

2

)
, (6.49)

whereN = N b+Na is the total number of acquired volumes in both baseline and activation

states. Furthermore, it can be shown that the baseline and activation estimations B̂i and

Âi are Gaussian distributed, with B̂i ∼ N(B̂i|Bi,
σ2

i

Nb) and Âi ∼ N(Âi|Ai,
σ2

i

Na) and that

V ≡ (N − 1)σ̂2
i /σ

2
i follows a χ2 distribution.

96

Then, the quantity

t =
Âi

σ̂i/
√
N

∼ tN−1, (6.50)

follows a Student’s t distribution with N − 1 degrees of freedom. Therefore, in order to

test the hypothesis that there is no activation in the i-th voxel (Ai = 0), we use the t-test

t ≤ T, (6.51)

where T is a threshold that is defined by selecting the probability PFA of incorrectly

identifying a pixel as activated (typically PFA = 0.05).

6.6.2 Application of the Sparse Linear Model with Kernel Learn-

ing to Detect fMRI Activations

In this chapter, we apply the sparse Bayesian linear model of Chapter 6 to detect acti-

vations in functional neuroimages. More specifically, we use the sparse linear model to

estimate the unknown activation signal Ai. Sparsity is desirable because typically only a

small proportion of the voxels are activated. Because this approach models spatial corre-

lations of the activation signal, statistical inference is not performed voxel-wise. Instead,

after computing the voxel estimates Âi from (6.48) and their variance σ̂2
i from (6.49), we

refine this estimation using the sparse linear model.

The main advantage of learning the kernel parameters of the sparse linear model

is that activations of different sizes and shapes can be simultaneously detected. More

specifically, spatial correlations are not assumed to be identical in all brain regions. For

this reason, this method allows simultaneous detection of activations with small size and

high intensity, or large size and small intensity.

When detecting activations in fMRI, it is desirable to know the probability of incor-

rectly detecting an activation. Using the sparsity prior (6.1) we can adjust this probability

by setting an appropriate value for the sparsity parameter c. Assuming that we train the

sparse linear model using the incremental algorithm of Section 3.4.3, activation will be

detected only if a basis function is added to the model, which happens using (6.13) when

q2
i > (2c+ 1)si, (6.52)

(φT
i C−1

−i t̂)
2 > (2c+ 1)φT

i C−1
−i φi, (6.53)

β2(φT
i t̂)2 > (2c+ 1)βφT

i φi, (6.54)

T =
(φT

i t̂)2

β−1φT
i φi

> (2c+ 1), (6.55)

where we assume an initially empty model, thus C−i = β−1I. Assuming that there is no

activation in the observed signal we have:

t ∼ N(t|0, σ2I), (6.56)

97

φT
i t ∼ N(φT

i t|0, σ2φT
i φi), (6.57)

φT
i t

σ
√

φT
i φi

∼ N(φT
i t|0, 1), (6.58)

(φT
i t)2

σ2φT
i φi

∼ χ2. (6.59)

We assume that the noise estimate β−1 ≈ σ2 is accurate, therefore T follows a χ2 distri-

bution

T =
(φT

i t̂)2

β−1φT
i φi

∼ χ2. (6.60)

Based on this result we can compute the probability of incorrectly detecting activation as

a function of the sparsity parameter c. For example PFA = P (T > 2c + 1) = 0.05 gives

c = 1.42 and PFA = 0.01 gives c = 2.82.

6.6.3 Experimental Setup

It is widely accepted that evaluation of the detection performance of statistical analysis

methods is a difficult task, because in fMRI datasets the actual activation signal is gener-

ally unknown. For this reason, the evaluation of statistical analysis methods is typically

performed with simulated data (phantoms). However, in order for the evaluation to be

realistic the simulated data must have similar statistical properties with real fMRI data.

Typically, in order to generate simulated data, we first generate a baseline volume and

then add several instances of noise based on a stochastic noise model. Finally, activations

are added to the volumes that are assumed to belong to the active state. Here, in order

to generate data that have similar statistical properties to real fMRI data, we do not

generate artificial realization of the noise. Instead, we use real baseline volumes that have

been obtained using an fMRI scanner with the subject at the resting state. Then, we

add known artificial activations to some of the baseline volumes, in order to generate the

activated ones.

The activations that we add are Gaussian-shaped, given by

A(xi, yi) = V exp

(
− 1

σ2
x

(xi − x0)
2) − 1

σ2
y

(yi − y0)
2

)
, (6.61)

where V is the activation intensity, (x0, y0) is the center of the activation and σx, σy are

the variances at each direction.

6.6.4 Numerical Results

Next, we compare three methods for detecting activations in fMRI signals using the

simulated data described in the previous section. The first method, which we denote

with SPM, is based on estimating the activation signal using (6.48) and then denoting

a voxel as activated or not based on the t-statistic of (6.50). For this method we use

98

the popular software package statistical parametric mapping (SPM2). Instead of using

the t-test of (6.50), the other two methods that we compare attempt to model spatial

correlations of the activation signal. They are based on training a sparse Bayesian linear

model using the activation estimates of (6.48). More specifically, one method is denoted

with RVM and uses the RVM with Gaussian kernels [Lukic et al., 2007]. The other

method is denoted with aRVM and again uses an RVM with Gaussian kernels but also

uses the methodology presented in Chapter 6 to learn the location and scale parameters

of the Gaussian kernels. Furthermore, we assume separate variance parameter for each

direction of the kernel, in order to allow for elliptical shaped activations.

The increased flexibility of the aRVM method is demonstrated in Fig. 6.6, where the

estimated activations by each method are shown. We can see in Fig. 6.6b that the RVM

method with a small kernel size results in a large number of falsely detected activations.

On the other hand, in Fig. 6.6c we observe that using a larger kernel, we fail to estimate

the top right part of the activation, because it is not large enough. In Fig. 6.6d we see

that by learning parameters of the kernel we can detect all the regions of the activation

signal, while very few regions are incorrectly identified.

We have also performed a more detailed evaluation of the detection performance of the

methods. For this purpose, we added 40 Gaussian artificial activations given by (6.61), at

the baseline image and used each of the three methods to estimate them. The activations

were added in distant locations in order to make detection of each activation independent

to the others. Then ROC curves were generated by varying the probability threshold over

which voxels are detected as activated. The obtained ROC curves are shown in Fig. 6.7,

for probability of false alarm less than 0.1. In this figure we observe that aRVM has the

overall best detection performance. However, because of the sparsity enforcing prior, it

does not provide probabilities of false alarm larger than 0.05.

6.7 Conclusions

We have presented a learning methodology according to which the parameters of the basis

functions of sparse linear models can be determined automatically. More specifically, we

assume that the basis functions of this model are kernels and, unlike most kernel methods,

for each kernel we learn distinct values for a set of parameters (i.e. location, scale). Because

many parameters are adjusted, the proposed model is very flexible. Therefore, to avoid

overfitting we use a sparsity prior that controls the effective number of parameters of the

model, in order to encourage very sparse solutions.

The proposed approach has several avantages. First, it automatically learns the pa-

rameters of the kernel, therefore there is no need to select them using cross-validation.

Also, because each kernel may have different parameter values, the model is very flexi-

ble and it can solve difficult problems more efficiently than the typical RVM. This was

2SPM can be obtained from http://www.fil.ion.ucl.ac.uk/spm/software/.

99

http://www.fil.ion.ucl.ac.uk/spm/software/

(a) (b)

(c) (d)

Figure 6.6: (a) Example activation pattern and its estimation with (b) RVM with small
kernel (σ2 = 2.5) (c) RVM with large kernel (σ2 = 4) (d) RVM with adaptive kernel
learning.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

rvm (σ2 =4.00)

rvm (σ2 = 2.50)
t−test
arvm (kernel learning)

Figure 6.7: ROC curves that summarize the performance of t-test, RVM and aRVM
methods.

100

demonstrated in Section 6.4 where we considered regression of a function with varying

frequencies and classification of data drawn from a mixture of distributions with very

different characteristics. Because of the sparsity prior that we use, the obtained models

are typically much sparser than the models obtained using the typical RVM. Further-

more, we used the proposed kernel learning algorithm to model spatial correlations of the

activation signal in functional neuroimages. The proposed method, unlike previous ones,

can simultaneously detect activations that are small in size but have high intensity and

activations that have low intensity but large size.

In this method, we have assumed that the basis functions are Gaussian kernels and we

learn the location and their width parameters. However, the proposed methodology can be

also used for selecting other types of bases. Furthermore, it is possible to simultaneously

use several types of kernel functions and the appropriate kernel should be automatically

selected, in a similar spirit as in Chapter 4.

101

102

Chapter 7

Local Feature Selection with

Adaptive Kernel Learning:

Application to the Analysis of

DNA Microarray Datasets

7.1 Introduction

7.2 Feature Selection based on Linear Models

7.3 Adaptive Kernel Learning for Feature Selection

7.4 Numerical Experiments

7.5 Conclusions

7.1 Introduction

In several regression and classification problems the examples in the training set contain a

very large number of features. For example, in biological microarray datasets, the number

of features may be up to 100, 000. In such cases, it is often useful to preselect some of the

features, in a process known as feature selection, and then build regression or classification

models using only the selected features. This approach has several advantages. First, the

computational cost of training a model is usually greatly reduced, because of the reduction

in the number of features. More importantly, removing irrelevant features improves the

generalization performance. This happens because irrelevant features only add noise to the

observations, and many methods tend to overfit this noise. Finally, in several applications

it is interesting to know which features are relevant to make decisions, for example in

103

biological microarray experiments it is important to identify the gene expressions that are

related with some condition.

An introduction to feature selection methods can be found in [Guyon and Elisseeff,

2003]. Feature selection methods can be divided in two broad categories. First, there are

methods that are based on variable ranking, i.e. they identify the relevance of each feature

independently. Then there are methods based on subset selection that assess the discrim-

inative capability of subsets of features. The second category is generally more powerful,

because it can identify correlated features; for instance two features that independently

seem irrelevant to the problem, might turn out to have significant discriminative capability

when examined together. However, subset selection methods are more computationally

demanding and for this reason feature selection in biological experiments with microarray

datasets is usually performed with variable ranking methods.

In this chapter we propose a local feature selection method that is based on learning

kernel parameters of a sparse Bayesian linear model using the approach of Chapter 6.

More specifically, a sparse Bayesian liner model is assumed, whose basis functions are

Gaussian anisotropic kernels. Local feature selection is then achieved by estimating for

each kernel the separate scaling factor (width) parameter that corresponds to each feature.

Because we learn different values for the scaling factors of each kernel, feature selection is

local. This means that different features are assumed to be relevant at different regions of

the input space. In order to eliminate irrelevant features, we assume a sparsity enforcing

prior on the scaling factors of the kernels.

Furthermore, we treat the problem of analyzing DNA microarray datasets. We con-

sider some typical feature preselection approaches in order to eliminate irrelevant features

and reduce the dimensionality of the dataset to manageable size. Then we apply i) the

typical RVM, ii) the RVM with adaptive kernel learning classifier of Chapter 6 and iii)

the proposed RVM with simultaneous feature selection. Experimental results demonstrate

that the adaptive kernel learning algorithm of Chapter 6 exhibits superior classification

performance compared to the commonly used RVM model. Furthermore, the proposed

local feature selection approach has similar performance and may be useful in identifying

which genes are significant for the classification task.

7.2 Feature Selection based on Linear Models

Next we present an overview of two feature selection approaches based on variable rank-

ing, namely recursive feature elimination (RFE) and automatic relevance determination

(ARD). These approaches are based on training linear models on the available data.

However, ARD builds linear models that are sparse in the number of features, while RFE

builds linear models that may be sparse in the number of input points.

104

7.2.1 Recursive Feature Elimination

A common approach in feature selection is recursive feature elimination (RFE) [Kohavi

and John, 1997]. This approach initially builds an appropriate classification or regression

model using all the available features, and uses the produced model to assess the signifi-

cance of each feature. The least significant feature is then eliminated and this process is

repeated until the desired number of features are obtained.

More specifically, assume that we are given a two-class classification training set

{xn, yn}N
n=1, where yn ∈ {−1, 1} determines the category that the example xn ∈ Rd

belongs to. RFE is commonly used with linear classifiers, which make decisions based on

a decision function of the form

D(x) = wT x + b, (7.1)

where x = (x1, . . . , xd)
T and w = (w1, . . . , wd)

T is the vector of weights. Using a linear

classifier, a straightforward method to compute the significance si of the i-th feature is:

si = w2
i . (7.2)

In recent works, the popular SVM linear classifiers have been used [Guyon et al., 2002].

In such case, the parameters w of the final model are given by

w =
∑

n∈SV

αnynxn, (7.3)

where the parameters αn are estimated during SVM training and SV is the set of support

vectors. In the method proposed here, we estimate the parameters αn using an RVM

classifier. This classifier is very similar but it has no parameters to select, unlike the SVM

that needs the a priori specification of the soft margin parameter C.

In datasets that contain a very large number of features, the above sequential elimi-

nation approach may be very computationally demanding. In order to reduce the compu-

tations, we can eliminate more than one features at each iteration. Especially in the first

few iterations, irrelevant features should be easily identified, therefore we can begin by

eliminating a large number of features and at subsequent iterations reduce the number of

features eliminated at each step. In [Ding and Wilkins, 2006] it is suggested to eliminate
1

i+1
features at the i-th iteration.

7.2.2 Automatic Relevance Determination

A different approach to feature selection is based on the Bayesian framework using an

appropriate prior distribution and it is known as automatic relevance determination [Neal,

1996]. This approach employes a special type of the Sparse Bayesian Linear Regression

model described in Section 3.4 that does not use a kernel function. The output of the

105

linear model for input x = (x1, . . . , xd)
T is given by:

y(x) =
d∑

i=1

wixi = wT x, (7.4)

and a prior is assumed for the weights w:

p(w) =
d∏

i=1

N(wi|0, α−1
i). (7.5)

As explained in Section 3.4, this prior favors sparse the estimations for the weights,

meaning that most of the weights are set to zero. As a consequence, the features xi that

are associated with zero-valued weights are automatically eliminated.

7.3 Adaptive Kernel Learning for Feature Selection

In supervised learning problems, feature selection is typically performed as a preprocessing

step, which is performed before building a classification or regression model. The general

idea is to eliminate irrelevant features in the training set, in order to improve the gener-

alization performance of the model and simultaneously reduce the computational cost of

its training. However, it is possible to design supervised learning models that incorporate

feature selection mechanisms, in order to perform feature selection simultaneously with

estimation of model parameters. These models need to consider all the available features

for training and, for this reason, they have relatively high computational cost. How-

ever, they can achieve better peformance in feature selection, because they can exploit

information that the trained model provides.

For example, Krishnapuram et al. [2004] suggest the JCFO classification method that

jointly selects relevant features and estimates parameters of the classifier. The classifier

that they use is based on a linear model and feature selection is achieved by estimating

parameters of the kernel function. More specifically, a scaling factor θi is estimated for

each feature xi, which measures the significance of that feature. For example, Gaussian

kernels can be used, if they are parameterized as:

Kθ(x,xn) = exp

[
−

d∑
i=1

θi(xi − xni)
2

]
, (7.6)

Then a Laplacian sparsity prior is enforced on the scaling factors θ = (θ1, . . . , θd)
T in

order to eliminate irrelevant features.

In this section we propose a method to incorporate a feature selection mechanism in

the adaptive kernel learning approach for the RVM (aRVM) proposed in Chapter 6. This

method is similar in spirit to JCFO in that they both estimate parameters of kernels that

106

are called scaling factors in order to measure the significance of each feature. However, the

proposed approach that is based on aRVM of Chapter 6, learns separate scaling factors

for each kernel, therefore feature selection is local, since it is performed for each kernel

separately. This might be useful for example when different features are significant for

discriminating examples of each class, as demonstrated in Section 7.4.1.

7.3.1 A Bayesian Model for Feature Selection

We consider the sparse Bayesian linear model of Chapter 6:

y(x) =
M∑

n=1

wnφ(x; θn), (7.7)

where w = (w1, . . . , wM)T is the weight vector and φ(x; θn) is the n-th basis function

whose parameters are θn. In order to obtain sparsity, we assume a zero mean Gaussian

prior for the weights w, with separate variance parameter for each weight wn:

p(w) = N(w|0,A−1), (7.8)

where A = diag{α} and α = (α1, . . . , αM)T , and a prior distribution may be assumed on

α, following the approach of Section 3.4.

In (7.7) we assumed that all basis function have the same parametric form, but dif-

ferent values θn for the parameters. In order to facilitate feature selection we need to

parameterize the kernel function such that it incorporates the scaling factors. Here, we

consider anisotropic Gaussian kernel functions, which have a separate precision parameter

hni for each feature i:

φ(x; mn,hn) = exp

[
−

d∑
i=1

(hni)
2(xi −mni)

2

]
, (7.9)

where hn = (h1, . . . , hd)
T and mn = (m1, . . . ,md)

T . Estimation of the parameters θn =

(mn,hn)T can be performed using the method proposed in Chapter 6.

We notice that if we assign a very small value to a scaling factor hni of the n-th kernel,

the corresponding feature xi does not contribute to that kernel. Therefore, elimination of

irrelevant features can be motivated by assuming a prior distribution for the scaling factors

h = (hT
1 , . . . ,h

T
M)T that enforces sparsity. The distribution that we use is the Student’s

t distribution, which is known to give sparse solutions for few degrees of freedom, see

Section 3.4.4. Furthermore, as mentioned in previous chapters, a Student’s t distributed

random variable is equivalent to a Gaussian distributed random variable whose precision

parameter is assumed Gamma distributed. Therefore, we can write:

p(h|δ) = N(h|0,∆−1), (7.10)

107

with δn = (δn1, . . . , δnd)
T , ∆ = diag{δ1, . . . , δM} and

p(δ) =
M∏

n=1

d∏
i=1

Gamma(δni|a, b), (7.11)

where we set a = b = 0 that define an uninformative Gamma distribution.

7.3.2 Parameter Estimation

The learning method is similar to the adaptive kernel learning algorithm of Chapter 6. It

incrementally adds basis functions to an initially empty model and at the same time it as-

signs appropriate values to their parameters. Estimation of these parameters is performed

using a numerical optimization method, which is greatly assisted by the availability of

the parameter derivatives. The only difference of the proposed model that incorporates

feature selection is that the basis function parameters h are treated as random variables.

This is necessary since a prior distribution is assigned on them in order to encode sparsity.

However, exact Bayesian inference is not possible and we will attempt to obtain MAP

estimates.

In order to obtain MAP estimates, we need to maximize the posterior distribution

of h, or equivalently its logarithm that can be decomposed in two terms. The first is a

likelihood term and is identical to the case of Chapter 6, given by (7.12). The second

term comes from the newly defined prior on h and is −1
2
hT∆h. Therefore, we now want

to maximize Lfs, which is given by

Lfs = Ls − 1

2
hT∆h. (7.12)

This optimization is performed using a general purpose optimization technique, such as the

quasi-Newton BFGS method. The required gradient with respect to the kernel location

mn is identical to the case of Chapter 6 and is given by (6.18). However, the gradient

with respect to the scaling factors hn is given by adding the corresponding prior term to

(6.18):
∂Lfs

∂hni

=
∂Ls

∂hni

− δnihni. (7.13)

Furthermore, we need to consider estimation of the parameters δ that define the pre-

cision of h. By setting a = b = 0 in (7.11), we assume an uninformative prior distribution

for them. Then, maximization of the likelihood with respect to δ gives

δni =
1

h2
ni

. (7.14)

108

Algorithm 2 Feature Selection Using Adaptive Kernel Learning.

1. Select an inactive basis function to add to the model (convert to active) as follows:

(a) Consider an initial set of inactive candidate basis functions by sampling their
parameters at random.

(b) Optimize separately the parameters of each candidate basis function to maxi-
mize the marginal likelihood.

(c) Add to the model the candidate basis function that increases the marginal
likelihood the most.

2. Optimize the parameters θ of all currently active basis functions.

3. Update hyperparameters α and noise precision β.

4. Update hyperparameters δ using (7.14).

5. Remove from the model any unnecessary active basis functions.

6. Repeat steps 1 to 5 until convergence.

7.3.3 The Proposed Algorithm

The proposed learning algorithm, see Algorithm 2, is based on the incremental adaptive

kernel learning algorithm of Chapter 6, but it also updates the parameters δ that have been

introduced to facilitate feature selection. Initially an empty model is considered. Then,

basis functions are iteratively added to the model until convergence. Basis functions

are added in a way that the marginal likelihood of the model is increased. The main

differences from the adaptive kernel learning algorithm of Chapter 6 are:

1. An additional term is added to the derivative of the precision parameters in order

to achieve feature selection

2. The existence of parameters δni, n = 1, . . . ,M , i = 1, . . . , d that measure the signif-

icance of feature j for kernel i and are updated at each iteration.

7.4 Numerical Experiments

7.4.1 Artificial Example

The purpose of the first experiment is to demonstrate the feature selection capabilities

of the proposed method. For this reason, we have generated samples from two two-

dimensional zero-mean Gaussian distributions, each corresponding to one of the classes.

More specifically, we selected the variance of the Gaussian distributions to be s1 = (1, 10)T

and s2 = (10, 1)T , so that only one feature is significant for discriminating each class. In

109

−20 −10 0 10 20

−20

−15

−10

−5

0

5

10

15

20

(a)
−20 −10 0 10 20

−20

−15

−10

−5

0

5

10

15

20

(b)

Figure 7.1: Example aRVM classifiers (a) without feature selection (b) with feature selec-
tion. Solid lines show the decision boundary and dotted lines show the areas where the
probability of misclassification is 0.25.

Fig. 7.1 we show the estimated models using i) the RVM with adaptive kernel learning

algorithm of Chapter 6 and ii) the proposed modification to incorporate feature selection.

Notice, that the model obtained using the proposed approach contains only one basis

function for each class, with scaling factors θ1 = (0.6, 0.0)T and θ2 = (0.0, 0.4)T , therefore

it successfully identifies the relevant features for each basis function.

7.4.2 Evaluation on Common Benchmark Datasets

In order to evaluate the method we have performed experiments with several regression

and classification datasets from the UCI Machine Learning Repository that were also used

in Chapter 6. More specifically, we estimate the generalization error of each method by

performing ten-fold cross validation on each dataset. In regression, the error is the mean

square error, MSE =
∑

n(tn − ŷn)2/N , where tn is the value given by the test set, ŷn

the predicted value and N the number of test examples. In classification the error is the

percentage of misclassified examples in the test set. We evaluate three methods; i) the

typical RVM with Gaussian kernel (denoted as RVM), ii) adaptive RVM with learning

of Gaussian kernel parameters proposed in Chapter 6 (denoted as aRVM) and iii) the

proposed adaptive RVM with simultaneous feature selection by learning the parameters

of anisotropic Gaussian kernels (denoted as aRVMd). The regression and classification

results are shown in Table 7.1 and Table 7.2 respectively It can be observed that the

proposed approach, which incorporates feature selection, provides improved performance

compared to both the typical RVM model and the aRVM method of Chapter 6.

110

Table 7.1: Comparison on regression datasets.

RVM aRVM aRVMd

Dataset error RVs error RVs error RVs

computer 30004 140.5 22379 5.0 4089 13.6
Boston 12.48 69.5 11.53 13.27 13.66 17.5
concrete 44.204 140.2 34.515 9.10 28.868 42.3

Table 7.2: Comparison on classification datasets.

RVM aRVM aRVMd

Dataset error RVs error RVs error RVs

banana 0.1092 12.1 0.1126 6.3 0.0994 4.4
titanic 0.2292 31.0 0.2270 2.0 0.2254 4.0
image 0.0390 34.6 0.0387 6.9 0.0342 21.3
breast 0.2818 9.6 0.2844 4.4 0.2629 3.0
pima 0.243 27.9 0.2303 5.6 0.2276 5.1

7.4.3 Evaluation on DNA Microarray Datasets

DNA microarray experiments have recently attracted a lot of interest. In these experi-

ments datasets are constructed, which simultaneously describe the expression levels of a

very large number of genes of several tissues. Typical experiments involve two subsets of

tissues, one of which is associated with some disease and the other is not. The goal of

these experiments is not only to build classifiers with good generalization properties based

on these datasets, but it is also important to identify which are the important features for

discriminating the categories. Usually, analysis of the obtained datasets require special

treatment, because they contain an extremely large number of features (up to 100,000

features).

Several approaches have been used in the literature. Recursive feature elimination with

support vector machines has been proposed in [Guyon et al., 2002]. Also, in [Cawley and

Talbot, 2006] sparse logistic regression has been used to identify significant features. In

[Li et al., 2006] a relevance vector machine model that implements automatic relevance

determination has been proposed, while a Gaussian process based classifier has been

used in [Chu et al., 2005]. These approaches build classifiers directly on the feature

space. Instead in [Krishnapuram et al., 2004] the JCFO classification method is presented

that uses polynomial kernels and jointly identifies the optimal classifier and the relevant

features.

In this section we evaluate the proposed RVM-based feature selection method on the

task of classification of DNA microarray datasets. In this context, we performed several

experiments using datasets that have been previously studied in the literature. The

first dataset (Leukemia) contains 72 examples with 7, 129 features that correspond to

111

Table 7.3: Average Classification Error after feature selection with ARD.

Method Colon Leukemia Prostate AML Prognosis
Number of selected features 6 5 6 7

RVM (no kernel) 0.0322581 0.0138889 0.0 0.0185185
RVM (linear kernel) 0.16129 0.180556 0.0196078 0.0925926

RVM (Gaussian kernel) 0.225806 0.0 0.00980392 0.166667
aRVM 0.016129 0.0138889 0.0 0.0
aRVMd 0.0645161 0.0277778 0.0196078 0.0555556

expression levels of genes from 47 patients with acute myeloid leukemia (AML) and 25

patients with acute lymphoblastic leukemia (ALL). The second dataset (Colon) contains

62 examples with 2, 000 features that correspond to genes from 40 tumor and 22 normal

colon tissues. The third dataset (Prostate) contains 102 examples with 12, 533 features

that correspond to genes from 52 tumor tissues and 50 normal tissues. Finally the last

dataset (AML Prognosis), contains 54 examples with 12625 features that correspond to

gene expressions from 28 remission and 26 relapse cases of acute myeloid leukemia1.

In these experiments we compare the classification performance of the following meth-

ods i) RVM without kernel y(x) = wT x, ii) typical RVM y(x) =
∑M

i=1wiK(x,xi) with

linear kernel K(x1,x2) = xT
1 x2, iii) typical RVM with Gaussian kernel K(x1,x2) =

exp(−h−2‖x1 −x2‖2), where the width h was appropriately selected in order to minimize

the classification error, iv) adaptive RVM with learning of Gaussian kernel parameters

proposed in Chapter 6 (denoted as aRVM) and v) the proposed adaptive RVM with si-

multaneous feature selection by learning the parameters of anisotropic Gaussian kernels

(denoted as aRVMd).

We consider two feature selection strategies. In the first strategy, we initially select

2000 features using the RFE approach and then we use ARD considering only these

features. ARD typically selects 5–10 features. Then we train all classifiers using the few

selected features and we evaluate their classification performance using leave-one-out cross

validation. The results are reported in Table 7.3. We can observe that the aRVM method

gives the best results in all datasets. The proposed aRVMd method, which incorporates

feature selection, performs worse than the kernel learning aRVM without the feature

selection extension, probably because appropriate features have already been selected by

the ARD approach.

In the second strategy, we initially use the RFE feature selection approach to select 20

relevant features. Then we apply the compared methods, using the 20 selected features.

The classification performance of each classifier (computed using leave-one-out cross val-

idation) is reported in Table 7.4. In this table we can observe that using RFE for feature

1The Leukemia dataset can be obtained at http://www-genome.wi.mit.edu/mpr/table_AML_ALL_
samples.rtf, the Colon dataset can be obtained at http://microarray.princeton.edu/oncology/
affydata/index.html and the datasets Prostate and AML Prognosis can be obtained from http://
www.ailab.si/supp/bi-cancer/projections/index.htm.

112

http://www-genome.wi.mit.edu/mpr/table_AML_ALL_samples.rtf
http://www-genome.wi.mit.edu/mpr/table_AML_ALL_samples.rtf
http://microarray.princeton.edu/oncology/affydata/index.html
http://microarray.princeton.edu/oncology/affydata/index.html
http://www.ailab.si/supp/bi-cancer/projections/index.htm
http://www.ailab.si/supp/bi-cancer/projections/index.htm

Table 7.4: Average Classification Error after selecting 20 features with RFE.

Method Colon Leukemia Prostate AML Prognosis

RVM (no kernel) 0.112903 0.0694444 0.117647 0.277778
RVM (linear kernel) 0.370968 0.0694444 0.0392157 0.277778

RVM (Gaussian kernel) 0.516129 0.0833333 0.0882353 0.222222
aRVM 0.180328 0.112676 0.029703 0.207547
aRVMd 0.193548 0.0694444 0.0686275 0.240741

selection, all the classifiers generally exhibited worse performance compared to when us-

ing ARD for feature selection. Also, aRVM exhibited the best performance in two out

of four datasets. Furthermore, when using RFE for feature selection, aRVMd was a close

competitor to aRVM, probably because the RFE feature selection approach was relatively

inaccurate (compared to ARD).

7.5 Conclusions

In this chapter we have presented an approach to incorporate feature selection to the

sparse Bayesian linear model, using the adaptive kernel learning approach of Chapter 6.

In contrast to typical feature selection approaches the significance of each feature is as-

sessed separately for each kernel. Therefore, for each kernel a different set of significant

features is selected. This approach might be useful, for example in a classification prob-

lem when different features are significant for discriminating the examples of each class.

Furthermore, feature selection is performed simultaneously with model estimation, which

is expected to lead to improved performance but at higher computational cost.

Furthermore, we have used i) the adaptive kernel learning RVM of Chapter 6 and

ii) the proposed adaptive RVM with simultaneous feature selection to perform classifica-

tion with DNA microarray datasets. Experiments showed that aRVM exhibits excellent

classification performance. Although the performance of the proposed approach that in-

corporates feature selection was inferior, the approach has the advantage of identifying

which features (genes) are significant, which is important in such applications.

113

114

Chapter 8

Conclusions

8.1 Concluding Remarks

8.2 Directions for Future research

8.1 Concluding Remarks

In this thesis we have studied the sparse Bayesian linear model and its application on

regression and classification problems. First, we considered sparse Bayesian regression of

images, which presents several computational problems because of the size of typical im-

ages. We then used sparse Bayesian image regression on some image processing problems,

namely object detection, blind image deconvolution and analysis of functional neuroim-

ages. Furthermore, we studied the problem of selecting parameters of the basis functions,

which is commonly performed using the computationally expensive cross-validation tech-

nique.

In order to apply the sparse Bayesian linear model for regression of images, in Chap-

ter 4 we proposed an algorithm that is based on operations in the discrete Fourier trans-

form (DFT) domain. The conjugate gradient method was used to efficiently compute the

posterior mean, and for the computation of the posterior covariance we considered two

simple but rather efficient approximations. Furthermore, we considered a variant of the

Relevance Vector Machine (RVM), which we call the multikernel RVM and uses simulta-

neously many types of kernels. Finally, we used the proposed algorithm to detect objects

in images and simultaneously find their locations. Experimental results indicate that

the proposed method has improved detection performance compared to some common

alternatives [Tzikas et al., 2006b, 2007b].

In Chapter 5 we presented a Bayesian approach to the blind image deconvolution

(BID) problem [Tzikas et al., 2006a, 2007c,a, a], where the sparse Bayesian linear model

was used to obtain smooth PSF estimates with limited support. We used the Student’s

115

t pdf for the noise, in order to achieve robustness to BID model errors and for the local

image differences, in order to allow the reconstruction of edges. Because of the complex-

ity of this model, the variational framework was used for approximate Bayesian inference.

Several experiments were carried out, to test the proposed methodology. These exper-

iments indicated that the use of the sparse Bayesian linear model to model the PSF is

crucial to the success of this approach. Furthermore, the importance of using heavy tailed

distributions, such as the Student’s t distribution for modelling the BID noise and image

local differences is apparent. We have also compared this methodology with a TV-based

approach and an alternative Bayesian approach implemented in [Molina et al., 2006]. It

is clear that the proposed methodology is always superior to the Gaussian based method-

ology in [Molina et al., 2006]. As far as TV-based BID is concerned, the proposed method

is clearly superior for scenarios with small sized PSFs and low noise.

In Chapter 6 an adaptive kernel learning algorithm has been proposed to learn pa-

rameters of the basis functions for the sparse Bayesian linear model [Tzikas et al., 2008a,

b]. More specifically, the proposed algorithm learns different parameter values for each

kernel and for this reason it is very flexible. We have also imposed a prior distribution that

controls the effective number of parameters of the model, in order to force sparse estima-

tions and avoid overfitting the noise. Experimental results on artificial data demonstrate

the advantages of the proposed method. We also provide a comparison with the typical

RVM on several commonly used regression and classification datasets. Furthermore, the

proposed approach has been applied to model spatial correlations of the activation sig-

nals in functional neuroimaging. Numerical results with an artificial phantom indicate

that, in contrast to previous approaches, the proposed method can simultaneously detect

activations that are i) strong but small and ii) large but weak.

In Chapter 7 the adaptive kernel learning method of Chapter 6 was further extended

in order to perform local feature selection, simultaneously with model inference. To

achieve this behavior, we used anisotropic Gaussian kernels, which assume a separate

scaling factor (width) for each feature. Because the proposed approach estimates different

values for the scaling factors of each kernel, feature selection is local, i.e. different features

are assumed to be significant at different regions of the input space. We have then

imposed a sparsity enforcing prior on the scaling factors that results in eliminating features

from kernels to which they are irrelevant. We have conducted several experiments with

common regression and classification benchmark datasets showing that the performance

of the proposed method is improved. Furthermore, we considered the classification task

with biological DNA microarray datasets, where feature selection is very important. We

have applied two common (and computationally efficient) feature selection approaches,

recursive feature elimination (RFE) and automatic relevance determination (ARD) and

evaluated both the performance of the adaptive RVM with kernel learning of Chapter 6

and the proposed extension to incorporate local feature selection.

116

8.2 Directions for Future research

In future work it would be interesting to consider more efficient approximations in the

DFT-based algorithm of Chapter 4. The main computational difficulty arises in the com-

putation of the diagonal elements of the posterior covariance matrix (4.13). An approx-

imation that is based on the Lanczos process [Chantas et al.] appears to have superior

performance and should be examined. Also, a large scale version of the Expectation Prop-

agation algorithm [Seeger and Nickisch, 2008] has been used for training sparse linear

models on images.

In the adaptive kernel learning methodology of Chapter 6 the basis functions were

assumed to be Gaussian kernels and we learn the location and their width parameters.

However, the proposed methodology can be also used for selecting other types of bases.

Also, it is possible to simultaneously use several types of kernel functions and the ap-

propriate kernel should be automatically selected, in a similar spirit as in Chapter 4.

Furthermore, we have used an uninformative (uniform) distribution for sampling the pa-

rameters of the basis function (Algorithm 1, step 1a). However, it might be useful to

develop methodologies that appropriately select more informative distributions for sam-

pling the basis function parameters. Moreover, instead of obtaining maximum likelihood

estimations of the basis function parameters, it would be interesting to treat them as

random variables and use approximate Bayesian inference techniques. This approach was

followed in order to perform local feature selection in Chapter 7, however the MAP approx-

imation was used, which is very crude. There may be advantages in using sampling-based

approximate Bayesian inference methods, such as Markov Chain Monte Carlo (MCMC).

The adaptive kernel learning methodology of Chapter 6 could be used as well for

the problem of object detection, following an approach similar to Chapter 4. Using this

method, it would be interesting to introduce parameters that control the scale and rotation

of the target basis functions. Then, using the adaptive kernel learning methodology we

would be able to estimate these parameters, in order to adjust for scaling and rotation of

the target objects. This is very important in most object detection problems, where the

target objects may appear scaled and rotated. It would also be interesting to apply the

adaptive kernel learning methodology in real-world regression and classification problems

and compare its performance to other methods.

Furthermore, in the blind image deconvolution problem, it would be interesting to con-

sider estimating the width parameter of the kernel function, possibly using the method-

ology of Chapter 6. Also, it would be interesting to explore the possibility of learning the

filters Qk in a manner analogous to [Welling et al., 2003]. It is also possible to explore

extending the constrained variational methodology in [Chantas et al., 2007] to BID to

avoid using the approximation of the partition function in (5.16). The sparse Bayesian

linear model could also be used to model the blurring PSF in the related problem of super

resolution [He et al., 2006, Yang et al., 2008], where we want to fuse several low-resolution

images of the same scene, in order to obtain a high-resolution image.

It would also be interesting to further examine the proposed local feature selection

117

approach of Chapter 7 for classification using DNA microarray datasets. In Chapter 7 we

have presented experiments evaluating the classification performance of the method. It

would be interesting to evaluate the performance of the local feature selection approach

in selecting those genes that are significant for the classification task in DNA microarray

datasets.

118

Bibliography

A. Abu-Naser, N. P. Galatsanos, M. N. Wernick, and D. Shonfeld. Object recognition

based on impulse restoration using the expectation-maximization algorithm. Journal

of the Optical Society of America, 15(9):2327–2340, September 1998.

A. Agarwal and B. Triggs. 3D human pose from silhouettes by relevance vector regression.

In Proceedings of Computer Vision and Pattern Recognition, volume 2, pages 882–888,

2004.

C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan. An introduction to MCMC for

machine learning. Machine Learning, 50(1):5–43, January 2003.

J. Bernardo and A. Smith. Bayesian Theory. John Wiley and Sons, 1994.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, August 2006.

C. M. Bishop and M. E. Tipping. Variational relevance vector machines. In Proceed-

ings of the 16th Conference on Uncertainty in Artificial Intelligence, pages 46–53, San

Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

Å. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, 1996.

K. Blekas, A. Likas, N. P. Galatsanos, and I. E. Lagaris. A spatially-constrained mixture

model for image segmentation. IEEE Transactions on Neural Networks, 16:494–498,

2005.

C. Borgelt and R. Kruse. Graphical Models: Methods for Data Analysis and Mining. John

Wiley & Sons, Inc., New York, NY, USA, 2002.

M. M. Bronstein, A. M. Bronstein, M. Zibulevsky, and Y. Zeevi. Blind image deconvo-

lution of images using optimal sparse representations. IEEE Transactions on Image

Processing, 14(6):726–736, June 2005.

C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data

Mining and Knowledge Discovery, 2:121–167, 1998.

P. Campisi and K. Egiazarian, editors. Blind image deconvolution: theory and applica-

tions. CRC press, May 2007.

119

G. C. Cawley and N. L. C. Talbot. Gene selection in cancer classification using sparse lo-

gistic regression with Bayesian regularization. Bioinformatics, 22(19):2348–2355, 2006.

T. F. Chan and C. K. Wong. Total variation blind deconvolution. IEEE Transactions on

Image Processing, 7(3):370–375, March 1998.

T. F. Chan, S. Esedoglu, F. Park, and M. H. Yip. Recent developments in total variation

image restoration. In Handbook of Mathematical Models in Computer Vision. Springer,

2005a.

T. F. Chan, S. Esedoglu, F. Park, and M. H. Yip. Image Processing and Analysis -

Variational, PDE, wavelet, and stochastic methods. SIAM, 2005b.

G. Chantas, A. Likas N. P. Galatsanos, and M. Saunders. Variational bayesian image

restoration based on a product of t-distributions image prior. IEEE Transactions on

Image Processing. to appear.

G. Chantas, N. P. Galatsanos, and A. Likas. Bayesian restoration using a new nonsta-

tionary edge preserving image prior. IEEE Transactions on Image Processing, 15(10):

2987–2997, October 2006.

G. Chantas, N. P. Galatsanos, and A. Likas. Bayesian image restoration based on vari-

ational inference and a product of Student-t priors. In Proceedings of the IEEE Inter-

national Workshop on MLSP 2007, Thessaloniki, Greece, August 2007.

L. Chen and K. H. Yap. A soft double regularization approach to parametric blind image

deconvolution. IEEE Transactions on Image Processing, 14(5):624–633, May 2005.

Q. Chen, M. Defrise, and F. Deconinck. Symmetric phase-only matched filtering of

Fourier-Mellin transforms for image registration and recognition. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 16(12):1156–1168, 1994.

W. Chu, Z. Ghahramani, F. Falciani, and D. L. Wild. Biomarker discovery in microarray

gene expression data with Gaussian processes. Bioinformatics, 21(16):3385–3393, 2005.

Y. Ding and D. Wilkins. Improving the performance of SVM-RFE to select genes in

microarray data. BMC Bioinformatics, 7(2), 2006.

A. C. Faul and M. E. Tipping. Analysis of sparse Bayesian learning. In Proceedings of

Advances in Neural Information Processing Systems, pages 383–389. MIT Press, 2002.

R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman. Removing camera

shake from a single photograph. ACM Transactions on Graphics, 25(3):787–794, 2006.

M. A. T. Figueiredo. Adaptive sparseness for supervised learning. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 25(9):1150–1159, 2003.

120

G. Flandin and W.D. Penny. Bayesian fMRI data analysis with sparse spatial basis

function priors. NeuroImage, 34(3):1108–1125, 2007.

K.J. Friston, J. Ashburner, S.J. Kiebel, T.E. Nichols, and W.D. Penny, editors. Statistical

Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, 2007.

N. P. Galatsanos, V. Z. Mesarovic, R. Molina, A. K. Katsaggelos, and J. Mateos. Hyper-

parameter estimation in image restoration problems with partially-known blurs. Optical

Engineering, 41(8):1845–1854, 2002.

M. Girolami and S. Rogers. Hierarchic Bayesian models for kernel learning. In Proceedings

of the 22nd international conference on machine learning, pages 241–248, New York,

NY, USA, 2005. ACM.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of

Machine Learning Research, 3:1157–1182, 2003.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification

using support vector machines. Machine Learning, 46(1–3):389–422, 2002.

D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-CRL-

99-10, University of California, Santa Cruz, Computer Science Department, July 1999.

Y. He, K.-H. Yap, L. Chen, and L.-P. Chau. Blind super-resolution image reconstruc-

tion using a maximum a posteriori estimation. In Proceedings of IEEE International

Conference on Image Processing, pages 1729–1732, Oct. 2006.

C. C. Holmes and D. G. T. Denison. Bayesian wavelet analysis with a model complexity

prior. In José M. Bernardo, James O. Berger, A. P. Dawid, and Adrian F. M. Smith,

editors, Bayesian Statistics 6: Proceedings of the Sixth Valencia International Meeting.

Publisher: Oxford University Press, 1999.

J. L. Horner and P. D. Gianino. Phase-only matched filtering. Journal of Applied Optics,

23(6):812–816, 1984.

T. S. Jaakola. Variational Methods for Inference and Learning in Graphical Models. PhD

thesis, Massachusetts Institute of Technology, Department of Electrical Engineering

and Computer Science, 1997.

B. D. Jeffs and J. C. Christou. Blind Bayesian restoration of adaptive optics telescope

images using generalized Gaussian markov random field models. In D. Bonaccini and

R. K. Tyson, editors, Proceedings of SPIE. Adaptive Optical System Technologies, vol-

ume 3353, pages 1006–1013, 1998.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to varia-

tional methods for graphical models. Machine Learning, 37(2):183–233, 1999.

121

M.I. Jordan, Z. Gharamani, T.S. Jaakkola, and L.K. Saul. An introduction to variational

methods for graphical models. In M.I. Jordan, editor, Learning in Graphical Models,

pages 105–162. Kluwer, 1998.

S. M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice

Hall, 1997.

R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence,

97(1–2):273–324, 1997.

B. Krishnapuram, A. J. Hartemink, and M. A. T. Figueiredo. A Bayesian approach to

joint feature selection and classifier design. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 26(9):1105–1111, 2004.

D. Kundur and D. Hatzinakos. Blind image deconvolution. IEEE Signal Processing

Magazine, 13(3):43–64, 1996a.

D. Kundur and D. Hatzinakos. Blind image deconvolution revisited. IEEE Signal Pro-

cessing Magazine, 13(6):61–63, 1996b.

G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. Ghaoui, and M. I. Jordan. Learning the

kernel matrix with semidefinite programming. Journal of Machine Learning Research,

5:27–72, 2004.

Y. Li, C. Campbell, and M. Tipping. Bayesian automatic relevance determination algo-

rithms for classifying gene expression data. Bioinformatics, 18(10):1332–1339, 2002.

Y. Li, K. K. Lee, S. Walsh, C. Smith, S. Hadingham, K. Sorefan, G. Cawley, and M. W.

Bevan. Establishing glucose- and ABA-regulated transcription networks in arabidopsis

by microarray analysis and promoter classification using a relevance vector machine.

Genome Research, January 2006.

A. Likas and N. P. Galatsanos. A variational approach for Bayesian blind image decon-

volution. IEEE Transactions on Signal Processing, 52(8):2222–2233, 2004.

A. Lukic, M. Wernick, D. Tzikas, X. Chen, A. Likas, N. Galatsanos, Y. Yang, F. Zhao,

and S. Strother. Bayesian kernel methods for analysis of functional neuroimages. IEEE

Transactions on Medical Imaging, 26(12):1613–1622, December 2007.

J. Miskin and D. MacKay. Ensemble learning for blind image separation and deconvolu-

tion. In M. Girolami, editor, Advances in Independent Component Analysis. Springer-

Verlag, 2000.

R. Molina, J. Mateos, and A.K. Katsaggelos. Blind deconvolution using a variational

approach to parameter, image, and blur estimation. IEEE Transactions on Image

Processing, 15(12):3715–3727, 2006.

122

T. K. Moon. The expectation-maximization algorithm. Signal Processing Magazine,

IEEE, 13(6):47–60, 1996.

R. M. Neal. Bayesian Learning for Neural Networks (Lecture Notes in Statistics).

Springer, 1 edition, August 1996.

R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremental,

sparse, and other variants. In Proceedings of Learning in Graphical Models, pages 355–

368. Kluwer Academic Publishers, 1998.

R. E. Neapolitan. Learning Bayesian Networks. Prentice Hall, April 2003.

C. Nikou, N. P. Galatsanos, and A. Likas. A class-adaptive spatially variant mixture

model for image segmentation. IEEE Transactions on Image Processing, 16(4):1121–

1130, 2007.

G. Parisi. Statistical Field Theory. Addison-Wesley, 1988.

W.D. Penny, N. Trujillo-Bareto, and K.J. Friston. Bayesian fMRI time series analysis

with spatial priors. NeuroImage, 24(2):350–362, 2005.

J. Quiñonero-Candela and L. K. Hansen. Time series prediction based on the relevance

vector machine with adaptive kernels. In Proceedings of the International Conference

on Acoustics, Speech, and Signal Processing, volume 1, pages 985–988, Piscataway, New

Jersey, 2002. IEEE.

J. Quiñonero-Candela and C. E. Rasmussen. A unifying view of sparse approximate

gaussian process regression. Journal of Machine Learning Research, 6:1939–1959, 2005.

C. E. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. MIT Press,

2006.

C. P. Robert and G. Casella. Monte Carlo Statistical Methods (Springer Texts in Statis-

tics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

A. Schmolck and R. Everson. Smooth relevance vector machine: a smoothness prior

extension of the RVM. Machine Learning, 68(2):107–135, August 2007.

B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regu-

larization, Optimization, and Beyond (Adaptive Computation and Machine Learning).

The MIT Press, December 2001.

M. Seeger and H. Nickisch. Large scale variational inference and experimental design for

sparse generalized linear models. Technical report, Max Planck Institute for Biological

Cybernetics, 2008.

123

J. R. Shewchuk. An introduction to the conjugate gradient method without the agonizing

pain. http://www.cs.cmu.edu/ quake-papers/painless-conjugate-gradient.ps, 1994.

A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Technical report,

Statistics and Computing, 1998.

E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In

Y. Weiss, B. Schölkopf, and J. Platt, editors, Proceedings of Advances in Neural Infor-

mation Processing Systems 18, pages 1257–1264, Cambridge, MA, 2006. MIT Press.

S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large scale multiple kernel

learning. Journal of Machine Learning Research, 7:1531–1565, 2006.

M. E. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of

Machine Learning Research, 1:211–244, 2001.

M. E. Tipping and A. Faul. Fast marginal likelihood maximisation for sparse Bayesian

models. In Proceedings of the Ninth International Workshop on Artificial Intelligence

and Statistics, 2003.

M. E. Tipping and N. D. Lawrence. A variational approach to robust Bayesian interpo-

lation. In Proceedings of Neural Networks for Signal Processing, pages 229–238. IEEE,

2003.

D. Tzikas, A. Likas, and N. Galatsanos. Variational bayesian sparse kernel-based blind

image deconvolution with Student’s-t priors. IEEE Transactions on Image Processing,

a. to appear.

D. Tzikas, A. Likas, and N. Galatsanos. Sparse bayesian modeling with adaptive kernel

learning. IEEE Transactions on Neural Networks, b. to appear.

D. Tzikas, A. Likas, and N. Galatsanos. Variational Bayesian blind image deconvolution

based on a sparse kernel model for the point spread function. In Proceedings of European

Signal Processing Conference, Florence, Italy, September 2006a.

D. Tzikas, A. Likas, and N. Galatsanos. Large scale multikernel RVM for object detec-

tion. In Hellenic Conference on Artificial Intelligence, pages 389–399, Heraclion, Crete,

Greece, May 2006b.

D. Tzikas, A. Likas, and N. Galatsanos. Bayesian bid based on a kernel model for the

point spread function. In Proceedings of International Conference on Image Processing,

San Antonio, TX, USA, September 2007a.

D. Tzikas, A. Likas, and N. Galatsanos. Large scale multikernel relevance vector machine

for object detection. International Journal on Artificial Intelligence Tools, 16(6):967–

979, December 2007b.

124

D. Tzikas, A. Likas, and N. Galatsanos. Robust variational Bayesian kernel based blind

image deconvolution. In Proceedings of International Conference on Computer Vision

Theory and Applications, Barcelona, Spain, March 2007c.

D. Tzikas, A. Likas, and N. Galatsanos. Incremental relevance vector machine with kernel

learning. In Proceedings of Hellenic Conference on Artificial Intelligence, pages 301–

312, Syros, Greece, October 2008a.

D. Tzikas, A. Likas, and N. Galatsanos. The variational approximation for Bayesian

inference. IEEE Signal Processing Magazine, 25(6):131–146, December 2008b.

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features.

In Proceedings of Computer Vision and Pattern Recognition, Hawaii, 2001.

L. Wei, Y. Yang, R. Nishikawa, M. Wernick, and A. Edwards. Relevance vector machine

for automatic detection of clustered microcalcifications. IEEE Transactions on Medical

Imaging, 24(10):1278–1285, 2005.

R. Weinstock. Calculus of Variations. Dover Publications, 1974.

M. Welling, G. E. Hinton, and S. Osindero. Learning sparse topographic representations

with products of Student-t distributions. In MIT Press, editor, Proceedings of Advances

in Neural Information Processing Systems, volume 15, Cambridge, MA, 2003.

O. Williams, A. Blake, and R Cipolla. Sparse Bayesian learning for efficient visual track-

ing. Pattern Analysis and Machine Intelligence, 27:1292–1304, 2005.

S.-F. Wong and R. Cipolla. Real-time adaptive hand motion recognition using a sparse

Bayesian classifier. In Proceedings of IEEE Workshop on Human-Computer Interaction,

pages 170–179, 2005.

D. Yang, S. O. Zakharkin, G. P. Page, J. P. L. Brand, J. W. Edwards, A. A. Bartolucci,

and D.B. Allison. Applications of Bayesian statistical methods in microarray data

analysis. American Journal of PharmacoGenomics, 4(1):53–62, 2004.

H. Yang, J. Gao, and Z. Wu. Blur identification and image super-resolution reconstruction

using an approach similar to variable projection. Signal Processing Letters, IEEE, 15:

289–292, 2008.

K. H. Yap, L. Guan, and W. Liu. A recursive soft-decision approach to blind image

deconvolution. IEEE Transactions on Image Processing, 14(5):624–633, May 2005.

Y. Yitzhaky, I. Mor, A. Lantzman, and N. S. Kopeika. Direct method for restoration

of motion-blurred images. Journal of the Optical Society of America-A, 15:1512–1519,

June 1998.

Y. L. You and M. Kaveh. Blind image restoration by anisotropic regularization. IEEE

Transactions on Image Processing, 8(3):396–407, March 1999.

125

126

Curriculum Vitae

Dimitris Tzikas was born in Athens, Greece in 1981. He received the B.Sc. Degree in

Informatics and Telecommunications from the University of Athens, Greece in 2002 and

the M.Sc. Degree from the Department of Computer Science, University of Ioannina,

Greece in 2004. Since 2004 he has been a Ph.D. candidate in the same Department.

He has been involved in several research projects and has published six papers in

scientific journals and eight papers in refereed conference proceedings. He has also given

a tutorial at an international conference. His research interests include machine learning,

Bayesian models and statistical image processing.

127

128

Author’s Publications

Journal Publications

[1] D. Tzikas, A. Likas, and N. Galatsanos. Variational bayesian sparse kernel-based

blind image deconvolution with Student’s-t priors. IEEE Transactions on Image

Processing, to appear.

[2] D. Tzikas, A. Likas, and N. Galatsanos. Sparse bayesian modeling with adaptive

kernel learning. IEEE Transactions on Neural Networks, to appear.

[3] D. Tzikas, A. Likas, and N. Galatsanos. The variational approximation for Bayesian

inference. IEEE Signal Processing Magazine, 25(6):131–146, November, 2008.

[4] D. Tzikas, A. Likas, and N. Galatsanos. Large scale multikernel relevance vector

machine for object detection. International Journal on Artificial Intelligence Tools,

16(6):967-979, December 2007.

[5] A. Lukic, M. Wernick, D. Tzikas, X. Chen, A. Likas, N. Galatsanos, Y. Yang, F.

Zhao, and S. Strother. Bayesian kernel methods for analysis of functional neuroim-

ages. IEEE Transactions on Medical Imaging, 26(12):1613–1622, December 2007.

[6] D. Tzikas, L. Wei, A. Likas, Y. Yang, and N. Galatsanos. A tutorial on relevance vec-

tor machines for regression and classification with applications. EURASIP NEWS

LETTER, 17(2):4–23, June 2006.

Conference Publications

[1] D. Tzikas, A. Likas, and N. Galatsanos. Incremental relevance vector machine with

kernel learning. In Proceedings of Hellenic Conference on Artificial Intelligence,

pp. 301–312, Syros, Greece, October 2008.

[2] D. Tzikas, A. Likas, and N. Galatsanos. Bayesian bid based on a kernel model for

the point spread function. In Proceedings of International Conference on Image

Processing, San Antonio, TX, USA, September 2007.

129

[3] D. Tzikas, A. Likas, and N. Galatsanos. Robust variational Bayesian kernel based

blind image deconvolution. In Proceedings of International Conference on Computer

Vision Theory and Applications, Barcelona, Spain, March 2007.

[4] D. Tzikas, M. Kukar, and A. Likas. Transductive reliability estimation for kernel

based classifiers. In Proceedings of International Symposium on Intelligent Data

Analysis, Ljubljana, Slovenia, September 2007.

[5] D. Tzikas, A. Likas, and N. Galatsanos. Variational Bayesian blind image deconvo-

lution based on a sparse kernel model for the point spread function. In Proceedings

of European Signal Processing Conference, Florence, Italy, September 2006.

[6] D. Tzikas, A. Likas, and N. Galatsanos. Large scale multikernel RVM for object

detection. In Proceedings of Hellenic Conference on Artificial Intelligence, pp. 389–

399, Heraclion, Crete, Greece, May 2006.

[7] D. Tzikas, A. Likas, and N. Galatsanos. Bayesian regression of functional neuroim-

ages. In Proceedings of European Signal Processing Conference, Vienna, Austria,

September 2004.

[8] D. Tzikas, A. Likas, and N. Galatsanos. Relevance vector machine analysis of func-

tional neuroimages. In Proceedings of IEEE International Symposium on Biomedi-

cal Imaging, Arlington, VA, USA, April 2004.

Tutorials

[1] N. Galatsanos, D. Tzikas. New Tools for Bayesian Inference: The Variational Ap-

proximation. In European Signal Processing Conference, Lausanne, Switzerland,

August 2008.

130

