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EYXAPIZTIEY

AneuBvw i Oepudtepeg euyapLotieg wou atov emBAénovta xadnynth you x. Ltavpo A. Nuohénoulo yia
v ToAUTIUN Borifeta xon ouctacTxr GUUBOAT Tou 6TNY ETLTUYT| TERdTWoT TN dbaxtopixrc You dtatpBrc.
H ouufoli tou frav xaboplotixt yden otny emtotnuovixs; Tou yvoorn xa Borfeld tou oty auetnet xato-
OoXELY) ToU “ypo@huatos” Tng épeLVAS ou ot UTOdEET TV BEATLoTwY “Sladpopdy” Tou oe “ToAVWYUULXS”
¥eovo. Oa Hbeha var Tou eExPedow TNY EUYVWUOGUVN Uou, a@ol ywelc Ty ouvey’ xabodriynon xat tny
auéplotn unoothplEl tou, auth i epyaoia Sev Oa unopoloe vo oloxAnpewlel. Emmiéov, tov euyaplotd
Oepud ya Ty evBoLGLAOBY XaL GUVEYT TEOTEOTY| TOU YA GUVEYLOT] TNE £PEUVAC TOV “OUop@mV” SLdpoudY
Tou medlou e akyopLBunic Bewplac YpapnudTtwy.

Ou ffeda vo euyaplotion tov xabnynt tov Tuduatoc IMMinpogopixfic x. Aewvida Iainéd (uéhoc tne
TpLueroVS ouufouleutinic enttpomic) yia TV Borfela, T GUUBOLAES XoL TOV YEGVO TOU UOL NQLEPWOE.
Ou ouyfouiéc tou ftav xaboplotixég o dha Ta epeuvniixd Béuata mou ueketoaue. Entong, o H0eia va
euyapLoTHoW Tov Xafnynth x. Baoiieto Znowdnovho (Uéhoc tne Tpwerolc GLUBOUAEUTIXHC ETLTPOTTC)
Yo Ty emoTnUovXY) cUUBOAY Tou otV exndynon e dtateBric pov. Télog, euyoplotd Bepud Toug Xx.
Evotdfio Zdyo, Avidvio Zuufdvrn, Indvvny Mavorénovro, xar Xerioto Nouwxd (uéhn tng entauelolc
eZETAOTIXNAG ETLTPOTAS) Lo TLS EVOTOYES XUl ETOLXOSOUNTIXES TAPATNENOELS TOUS OE 0pXETE amd Ta Héuata
NS UEAETNS Uou.

Oa ftay mopdhewdn va uny avagepdd oty auéptotn Borbela, ot ouveyn VTOGTHELEN X STV LPNAOL
emnéSou LAOTEY VXY LTodouT| Tou uou napelye o Turua IIAnpogopuxic xal’” éAn tn didpxela TwV YeTo-
TTUYLOXGOY UoL onouddy. Emnhéov, Oewpd elatpetind onuaviixd to yeyovog 6t elya ) Suvatdtnta va
gpydlouat oe éva PuALxd xaL evydploto teptBdiloy, onwg autd tou Turuatog IIAnpogopxric. Eukuxpuvd,
eluat ELYVOUWY.

Télog, Oa RBehat VoL ELYAPLOTHOL TOUS YOVELS UOU Ylal TN CLUTAEECTAGY, XAl TNV RO uTooTHELEY ToUC
XATd T SLAPXELA TWV UETATTUYLIXGY UOU GTIOUSKOV.

Awortepivn Aodpé

Twdvviva, 27 Touviou 2008






IIEPIAHYH

Auth n gpyaoia emxevipdvetal ot UEAETN TNC TOAUTAOXSTNTOC TROBANUATWY emXIAVPNG UE UOVOTETLA
HOL YEWHUATIOUOU OE XAGOELS TENELWY YRUPNUATWY. XUYXEXPUWEVA, 0oYOAOUUACTE UE TNV oyedlaor X
avéhuon alyopiBuwy yio autd ta TEOBARUATA T, YLl TIC TERLTTMOOELS TOU qUTO dev elvat duvatd, Svouue
anoteréouata NP-mAnpétntag. Ta nepioodtepa anoteréouata authc Tne epyactiac £youv 1dn dnuoacteutel.
Y10 ouvéyEla TEPLYPAPOUUE ETEXTATELS TPOBANUATOV ETXAAVPNG Kot YPWUATLOUOV TTOU UOC ATy ONOUY
0T GUYXEXQPUWIEVT) EpyaaiaL.

IHopdAAnhot akydpibuot yia To TEdBAnUa Tng emuxdAludng Ue LovoTdTLa

Enuxevtpdvouue 1o evdlagépoy pag oty avdntuln evog BEATLoTou tapdAiniou alyopiBuou tou utohoyilet
Tov UxpdTepo aptBud Ty Zévey (W Tpog Touc XxGUPouc) UETAE) TOUC UOVOTUTLOY TOU XUAUTTOUY TOUC
%x6uPoug (Yvwotd wg to mpdBinua emtxdiudng ue wovondtio—path cover problem) evég Py-sparse ypapr-
uatog. Enwgehobuacte e Souric Tou md-3€vtpou (xal 6Tny TeayUaTxeTnTo TwY TpdTwy (prime) ypapn-
MATOVY TOU) Xot EXUETOAELVSUOOTE Ta Hovordtia dévtpwy (path trees—uta Sour| mou Statnpeel ta povondtia
e emxdhudne povonatdy). I cuyxexpyéva, dofévioc tou md-8évtpou evdc Py-sparse ypaguotoc
G og n w6Ufoug, YENoLULOTOLOUUE XAAOXEC SEVIPLMES TEYVXEC oupplxvwone xat talplacua Tapeviécewy
(bracket matching) xou meptypdgouue éva Bértioto mapdiinho ahydptbuo mou teéyel oe O(logn) yebvo
ue O(n/logn) enelepyaotéc ce EREW-PRAM uovtého. Elvar evdiogépov xavelc va emextelvel autry
Y TEYVIXY 68 GANEC HAEOELC YPUPNUATOV, Xt axduo TEPLOGATERO, Vo BewploeL Ueptnéc EMEXTACELS TOU
TpoPAMiuaToc, 6Twe elvar To TEdBANU emxdhudne ue povordtia xafoptouévey dxpwy (k-fixed-endpoint
path cover), oe Ps-sparse 1, o€ dAheg XAAOELS YPAUPNUATOV.

Auti 1 epyaoio 0dynoe oty dnuooieuon:

e K. Asdre, S.D. Nikolopoulos and C. Papadopoulos, An optimal solution for the path cover problem
on Py-sparse graphs, Workshop on Graphs and Combinatorial Optimization (CTW’05), Cologne,
Germany, 2005.

e K. Asdre, S.D. Nikolopoulos and Ch. Papadopoulos, An optimal parallel solution for the path cover
problem on Pjy-sparse graphs, Journal of Parallel and Distributed Computing 67, 63-76, 2007.

To npdfAnua tng emuxdAudng pe povondtia whixoug to tohl k (k-path partition problem)
Meletolue 10 mpéBAnua TG emxdAVPNG UE povoTdTia Urixoug to ToAD K xat, Ue xivntpeo uia mpdopotn
epyaota tou Steiner [87], énou dgnoe avolytd T0 MEOBANUA YLl TNV XAAOT TWV convex YedQnUdTey, o-
nodewvbouue 6Tt To TESBANua elvon NP-mhYpec yiar T ouyxexpuévn xAdon. Enlong anodewviouue 6t
70 TPOBANUa TNne emxdAvdNe ue Yovordtia ufixoug to moAd k elvar NP-mAfipec yia tnv xAdon twv quasi-
threshold ypognudtwy.

Auth 1 uehétn ouumepthoBdveTtat oty TopaxdTw epyaoto:



e K. Asdre and S.D. Nikolopoulos, NP-completeness results for some problems on subclasses of bi-
partite and chordal graphs, Theoret. Comput. Science 381, 248-259, 2007.

Edpeon Appovixol xor Aypopatixod Apgbuoi

Enextelvovtac nponyodueva anoteréouata NP-mAnedtntac yia ta mpoBAfuata edpeong Tou apuovixol xoL
TOL AypwUTLX0L aptfuol oe dévtpa (trees), duuept| ypaghuoata (bipartite graphs) xat cuumAnpouoTixd
Tapayéueva ypagriuata (cographs), anodewxviouue étt tor mpofAfuata autd elvan emtong NP-mifien yua
ouvdedeuéva Ypaphuata Staotnudtwy (interval graphs), ouvdedeuéva pyetabetind ypagphuata (permutation
graphs) xafdc xau yua duuep| petabetind ypaghuate (bipartite permutation graphs). Emm\éov, pehe-
TOVUE TNV TOAUTAOXSTNTA QUTEY TV TOPANUATOVY oe 800 YVWOTES UTOXALOELS TwV TptYyowxdVy (chordal)
Yoopnudtwy, ta quasi-threshold xat to threshold ypagriuata. Me Bdon ulo epyaotio tou Bodlaender [11],
napovatdovue anoteréoyorta NP-tAnpdtnrag yio tor tpofiriuota e0peoNE TOU OPUOVIXOU XAl TOU oY pOU-
ol aptBuol ot quasi-threshold ypagruata. Enione delyvouue éti to npdBinua ebpeons tou apUovixoy
aptbuot elvar NP-nhipec yia tor Staywplowwa (split) ypaghuata. Axduy, elvar yvwotd étt 1o npdfBinua
Aovetan moluwvuuixd oe threshold ypagrAuata. Aeiyvouue dtt ol 10 TEdBANUL €0pECNC TOU O EWUOTL-
%00 aplfuol AOveTal TOAUWYLULXE GTN) GUYXEXPWEVY XAAOT YRUPNUATWY, TEPLYPAPOVTAC VO YEAUULXS
akydetbuo.

Auth n epyaoto odynoe otic e€fc dnuootedoeic:

e K. Asdre and S.D. Nikolopoulos, NP-completeness results for some problems on subclasses of bi-
partite and chordal graphs, Theoret. Comput. Science 381, 248 - 259, 2007.

e K. Asdre, K. Ioannidou, and S.D. Nikolopoulos, The harmonious coloring problem is NP-complete
for interval and permutation graphs, Discrete Appl. Math. 155, 2377-2382, 2007.

To npéBAnua tng enuxdAvdns we wovordrtia ke k xabopiouéva dxpa (k-fixed-endpoint path cover
problem)

Meletolue Wa enéxtaon Tou TpolAiuatos emxdhudne pe povondtia mou ovoudlovue TpdBAnUe TN Ent-
xdAudne ue uovondtio pe k xoboprouéva dxpa (k-fixed-endpoint path cover problem), ¥ yio cuvtoula,
kPC. AobBévrog evée ypaghuatoc G xat evég unosuvéhou T mou meptéyet k x6ufoug tou V(G), ulo enixd-
Audm e yovordtia ue k xaboplouéva dxpa tou G elvan éva ovoho P and Eéva (w¢ mpog Toug xéuBous)
uetald Toug uovondtia Tou xaAUTTeEL Toug x6uBouc Tou G tétota Gote ot k xéuBot tou T va elvar dxpa
v Yovormatdy tou P. To mpdBinua e emuxdivdne pe uovondtia ye k xabopiouéva dxpa elvar 1 ev-
peom o emxdAvdne ue uovondtia ye k xabopiouéva dxpa eNdytotne TAnfudtntac. Enueidhvouvue O,
av 1o T elvor xevd, dnhadh av k = 0, 1o mpéBinua tautiletoar e 0 xhaooxd TedBAnua emxdAudng e
povordtia. Aetyvouue 61l 10 TEOBANnU NG EmdAUPNC ue Yovordtia Ye k xafoplouéva dxpa AOveTal oe
TOALWVUULXS YE6Vo Yo TNV ¥Adom twv cographs. Tuyxexpyuéva, uvnoloyilovue éva xdtw QedyUo YLo To
uéyebog utag emxdiudng ye wovondtia ye k xaboptouéva dxpa ehdylotng mnbuxdtntac yio évo cograph
XL ATOSEXVUOUUE BLOTNTES TWY UOVOTATLGY ULag TETOLOG ETEALYNG. XN cuvéyela, Ue Bdon autég Tig
WLétnree, meptypdgpouye évay alybpiuo o onolog unoloyilet oe ypauuxd yebvo (O(n +m)) uto enxdiu-
¢ e pwovondtia ue k xaboptopéva dxpa eldytotng tAnduxdtntoag oe éva cograph G e n xéuBoug xat m
axpéc. O mpotewvduevog ahyopLBuog elvar anhde, anoltel Ypouixd Y Mdpo xoL Uog EMLTEENEL VoL AUGOUUE %ol
Ao oyeTid TpoAfuata, onwg To 1HP xow to 2HP otnv %\don twv cographs ue tny (Sto toAuTthoxdTnta
YEOVOU XaL Y GEOL.

To 1993, o Damaschke moapatienoe 6t 1 nohumhoxdtnta Twv Teofinudtwy 1HP xau 2HP problems
YLoL TNV XAdon TV Yeapnudtey dtatnudtey (interval graphs) napauével éva avoryté nedfinua [27]. Adyw
authg T tapatipnong delyvouue 6t to kPC npdBhnuo unopet vo Aubel oe ypouuxd yeévo (O(n+m)) yia
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v xAdomn Twv proper interval ypogpnudtwy. Meketolue enlong to ntedfAnua tne emxdiudng e wovondtia
e éva xabopilouévo dxpo (yia ouvtoula, 1PC) oe interval graphs, to onolo anotehel eWdiny| nepintwon tou
npofhiuatoc kPC xat yevixevon tou npofBAfuatog 1HP. "Etot, Setyvouue 61 to npdBinua 1PC unopel va
AuBel oe TohuwVLULXS YEdVo YL TV ¥AdoT Twv interval ypagnudtwy. O npotetvduevoc alyoptBuog amontet
O(n?) ypbvo, Ypouuxd YGHpo xaL uac emTEéneL Vo hicoupe to TpdfBinua 1HP oe interval ypagruoato ue
v (Bt TOAUTAOXETNTAL YEAVOUL XAl YDEOL.

Auti) 1 epyacia odfynoe otic e€ric SnuooteloeLc:

e K. Asdre and S.D. Nikolopoulos, A linear-time algorithm for the k-fixed-endpoint path cover prob-
lem on cographs, Networks 50, 231-240, 2007.

e K. Asdre and S.D. Nikolopoulos, A polynomial solution for the k-fixed-endpoint path cover prob-
lem on proper interval graphs, Proc. 18th International Conference on Combinatorial Algorithms
(IWOCA’07), Lake Macquarie, Newcastle, Australia, 2007.

e K. Asdre and S.D. Nikolopoulos, The 1-fixed-endpoint path cover problem is polynomial on interval
graphs, submitted to Algorithmica.

e K. Asdre and S.D. Nikolopoulos, A polynomial solution for the k-fixed-endpoint path cover problem
on proper interval graphs, submitted to Theoret. Comput. Science.

To mpdfAnpa tng emuxdAudng we povordtia Ue k civola xabopLopévemy dxpwy (k-fixed-endpoint-
set Path Cover Problem)

Meketolyue uia enéxtaot tou TeoBAfuaTtog emxdAudng Ue yovordtio Tou ovoudlouue TpdBAnua Tng Emxd-
Aume ue povordtia pe k obvola xafopiouévev dxpwv (k-fixed-endpoint-set path cover problem), # yia
ouvtoula, kFSPC. AoBévtog evic ypagpruatoc G xor k E€vov yetald toug UTOGUVOALY, TN 72,...,TF
tou V(G), pa emxdiudn pe povondtia ue k ovvoha xaboptopévey dxpny tou G elval éva oUvoro P and
Eéva (we Tpog Touc x6UPouc) uetadl Toug HovoTdTia ToU XAAUTTEL Toug x6ufouc Tou G Tétol (oTe o
x6uPor tou T = THUT2U...UTF va glvar dxpa tov wovonatidy tou P xa 3%o xéufol u,v € T avhixouy
070 (Bto povordtt Tou P av ot u,v avhxouy oto dto olvoro TY, i € [1,k]. To mpbfAnua tne emxdiu-
Jne ue povondtia ye k obvola xaboplouévewy dxpwy elvol 1 edpeot uLag emxdAudng Ue uovondtio Ye k
oUvola xafoplouévey dxpev edytotne Thndudtntac. Snuetdvoupe 61t av 1o 70, Vi € [1, k] elvar xevéd
70 Mp6BAnua Tavtiletat Ye To ¥Aaooxd TedBAnua emxdAudNe Ue HovordTia xat enlong, To TEOBANUA TG
enxdALPNe Ue uovondtia ue €va oivolo xaboptouévey dxpwy tautiletat ue to tpéBinua kPC [?]. ‘Etot,
0 npdfBinua kFSPC yevixeter to npdBinua kPC »xafdg xon ta npoBiuata THP xaw 2HP, o onola glvan
NP-m\fien oe yevd ypopruata. Aelyvouue 6t to mpdBinuo kFSPC Aivetaw o molumvuuixé yebvo yia
v x\dom Twv cographs. O mpotelvéuevog yYpouunde alydetbuog elvor amhds xat amontel ypouxd yopeo.

To mpdfAnue g emuxdAudng e wovorndtia we 2 teppatixd cbvoha (2-terminal-set Path Cover
Problem)

Meketolue to TEéBANUL TG emxdAvng ue povordtia Ue 2 tepuatind oUvola (2-terminal-set path cover
problem), ¥ v ouvtoula, 2TPC, nou anotelel enéxtaon Tou TPolAiUaToc emxdAVne UE UovoTdTLa.
Aobévtog evie ypagripatoc G xon 2 Zévev UETAED TOUS UTOGLVOAWY, T xor T2 tou V(G), wa emxdAugn
pE povordtia Ye 2 tepuatind alvola tou G elvar éva alvolo P and Eéva (we Tpog Toug xOuPous) HETOEY
TOUC LOVOTETLAL TTOU XAAUTTEL Toug x6uBouc Tou G Tétota Gote oL xéufot Tou T1 xar T2 vo elvon dxpa Twv
LOVOTIATLGY Tou P %o Gha Tal povoTdrLa Tou €xouy xon Ta 8Uo dxpa Toug oTo alvoro T1UT 2, éyouv To éva
dxpo oto Tt xon 0 §Aho oto T2. To mpdPBhnua tne emxdhudrne ue povordtia Ye 2 tepuotind oUvoha elvar
1 elpeom ULog emxdiudne e povomdtia Ye 2 tepuatixd abvola eAdytotne TAnBixdtntac. EnUetdvouue 6T,
av 10 71 U T2 etvon xevéd 10 mpdfinua tautiletar ye 10 xhaooixd TedBAnua emxdhudne ue povordria.
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Eniong, to npéfBinua 2TPC yevixetel 1o npofiiuate 1THP xaw 2HP. Aelyvouue 61t 10 npdBinua 2TPC
AOvetat 6 TOALWYUULXS YpoVo Yo TNV XAdom Twv cographs. O mpotewvduevoe ypouuinde alydptiuog elvar
amh6g, anattel ypouuxd YGpeo xou wog divel tn duvatétnta va Adoouue to 1HP xaw to 2HP ota cographs
ue TV (St ToALTAOXSTNTA YPOVOUL XaL YDEOU.

Autr) n epyaoio odfynoe otic e<rc dnuootedoeic:

e K. Asdre and S.D. Nikolopoulos, The 2-terminal-set path cover problem and its polynomial solution
on cographs, Frontiers of Algorithmics Workshop (FAW ’08), Changsha, China, 2008.

e K. Asdre and S.D. Nikolopoulos, The 2-terminal-set path cover problem and its polynomial solution
on cographs, submitted to Discrete Appl. Math.

To medfAnua g emuxdiudng we wovondtia Ue k Tepratixd oUvola mAnduxdintag To mOAG 2
(k(2)-terminal-set Path Cover Problem)

H nolumhoxétnta tou mpofAfiuatog g emxdiudng ue povordtia e k tepuatixd obvola TAndudtnTag To
7oA 2 (k(2)-terminal-set path cover problem), # yia ouvtoulo k(2)TSPC, eetdleton enlong yio Ty xhdom
twv cographs. AoBévtoc evéc ypagriuatoc G xat k EEvov uetadd Toug UTOGUVOALY TY.72,....,7T% tou
V(@) mou 1o xdbe éva meptéyet 1o oAb 8o x6uPouc, Uita EXEALYT UE UOVOTETIA UE TEQUATIXE GUVORX
TAnfudTnTac To oAb 2 tou G gival éva alvolo P and Eéva (we tpoc touc xéufouc) uetal Touc Yovordtia

oL xaUTTEL TOUS XdUBouc Tou G tétowa Gote oL xpPortou TL, T2, ... Tk

vau elval dxpa THVY UOVOTATLOV
70U P %o 6Ad Ta JOVOTATLAL oL €YUV XaL Ta S0 dxpa Toug 6To abvoro TUT2U. . .UT* éyouv to éva dxpo
oto T xor 10 Mo ot0 T, i # jxori,j € [1,k]. Tonpbfinuak(2)TSPC elvon 1) ebpeon wrog emxdhung pe
povordtia ue k tepuatixd oUvola TANBudThTag T0 ToAD 2 ue eEAdytotn TAROSTTa. X nUeltdvouUe OTL, av
t0 T', Vi € [1,k] elvar xevé 10 TpdPhnua toutiletar Ue 10 xhaoowxd TpdPAnua emtxdhudne ye povondtia,
evo av [T¢ = 1, Vi € [1,k] 1o mpéPhnua toutiletor ye to mpbPinua kPC [?]. Ertone, to mpdBhnua
k(2)TSPC yevixelel ta npoBifuata 1HP xouw 2HP. Acetyvouue étt 1o npbfinua k(2)TSPC Advetar o€
TOALWVUULXS YEeOVo Yia TNV ¥Ador twv cographs. Téhog, O Htav evdlagépov va yehetrioel xavelg tny
rohumhoxétnta Tou npofhfuatos emxdAudng ue Lovondtia ue k teppatixnd obvola (yia ouvtouta kTSPC)
v Ty xAdon twv cographs. To mpdéBinuoa kTSPC anotekel yevixevon tou k(2)TSPC. H dtagopd twv
dVo mpoPAnudtwy elvat dtL oTo TPdTO dev UTdpEYEL TEpLoptouds 6T0 TANHOC TWY XOUBWY TIOL TEPLEYOLY TA
oGvora T1,T2,... Tk,
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EXTENDED ABSTRACT IN ENGLISH

This work focuses on the complexity status of path cover and coloring problems on classes of perfect
graphs. In particular, it deals with designing and analyzing graph algorithms for these problems or, for
the cases where this is not possible, with providing NP-completeness results. Most of our results have
already been published. We next describe the variations of the path cover and coloring problems that we
study in this work.

Parallel algorithms for the path cover problem

We focus on developing an optimal parallel algorithm to find and report the smallest number of vertex-
disjoint paths that cover the vertices (known as the path cover problem) for the class of Ps-sparse graphs.
We take advantage of the structure of its modular decomposition tree (and in fact its prime graphs) and
utilize its path trees (a structure that maintains the paths of the path cover). Specifically, given the
modular decomposition tree of a Py-sparse graph G on n vertices, we use standard tree contraction and
bracket matching techniques, and we describe an optimal parallel algorithm which runs in O(logn) time
with O(n/logn) processors on the EREW-PRAM model. It would be interesting to extend this technique
to other classes of graphs and, furthermore, to use this technique in order to solve some variants of the
problem, such as the k-fixed-endpoint path cover, on Py-sparse or on other classes of graphs.

This work lead to the following publications:

e K. Asdre, S.D. Nikolopoulos and C. Papadopoulos, An optimal solution for the path cover problem
on Py-sparse graphs, Workshop on Graphs and Combinatorial Optimization (CTW’05), Cologne,
Germany, 2005.

e K. Asdre, S.D. Nikolopoulos and Ch. Papadopoulos, An optimal parallel solution for the path cover
problem on Pjy-sparse graphs, Journal of Parallel and Distributed Computing 67, 63-76, 2007.

The k-path partition problem

We study the k-path partition problem and, motivated by a recent work of Steiner [87], where he left the
problem open for the class of convex graphs, we prove that the k-path partition problem is NP-complete
on convex graphs. We also prove that the problem is NP-complete on quasi-threshold graphs.

This work is published in:

e K. Asdre and S.D. Nikolopoulos, NP-completeness results for some problems on subclasses of bi-
partite and chordal graphs, Theoret. Comput. Science 381, 248-259, 2007.



Harmonious and Pair-Complete Coloring

Extending previous NP-completeness results for the harmonious coloring problem and the pair-complete
coloring problem on trees, bipartite graphs and cographs, we prove that these problems are also NP-
complete on connected interval and permutation graphs and also on bipartite permutation graphs. More-
over, we study the complexity of these problems on two well-known subclasses of chordal graphs, namely
quasi-threshold and threshold graphs. Based on the work of Bodlaender [11], we show NP-completeness
results for the pair-complete coloring and harmonious coloring problems on quasi-threshold graphs. We
also show that the harmonious coloring problem is NP-complete on split graphs. It is known that the har-
monious coloring problem is polynomially solvable on threshold graphs. We show that the pair-complete
coloring problem is also polynomially solvable on threshold graphs by describing a linear-time algorithm.

This work lead to the following publications:

e K. Asdre and S.D. Nikolopoulos, NP-completeness results for some problems on subclasses of bi-
partite and chordal graphs, Theoret. Comput. Science 381, 248 - 259, 2007.

e K. Asdre, K. Ioannidou, and S.D. Nikolopoulos, The harmonious coloring problem is NP-complete
for interval and permutation graphs, Discrete Appl. Math. 155, 2377-2382, 2007.

The k-fixed-endpoint path cover problem

We study a variant of the path cover problem, namely, the k-fixed-endpoint path cover problem, or kPC,
for short. Given a graph G and a subset 7 of k vertices of V(G), a k-fixed-endpoint path cover of G with
respect to 7 is a set of vertex-disjoint paths P that covers the vertices of G such that the k vertices of 7
are all endpoints of the paths in P. The k-fixed-endpoint path cover problem is to find a k-fixed-endpoint
path cover of G of minimum cardinality; note that, if 7 is empty, that is, £ = 0, the stated problem
coincides with the classical path cover problem. We show that the k-fixed-endpoint path cover problem
can be solved in linear time on the class of cographs. More precisely, we first establish a lower bound
on the size of a minimum k-fixed-endpoint path cover of a cograph and prove structural properties for
the paths of such a path cover. Then, based on these properties, we describe an algorithm which, for a
cograph G on n vertices and m edges, computes a minimum k-fixed-endpoint path cover of G in linear
time, that is, in O(n+m) time. The proposed algorithm is simple, requires linear space, and also enables
us to solve some path cover related problems, such as the 1HP and 2HP, on cographs within the same
time and space complexity.

In 1993, Damaschke stated that the complexity status of both 1HP and 2HP problems on interval
graphs remains an open question [27]. Motivated by this, we show that the kPC problem can be solved
in linear time, that is, in O(n 4+ m) time, on the class of proper interval graphs. We also study the
1-fixed-endpoint path cover problem on interval graphs, or 1PC for short, which is a special case of the
kPC problem and a generalization of the 1HP problem. We show that the 1PC problem can be solved
in polynomial time on the class of interval graphs. The proposed algorithm runs in O(n?) time, requires
linear space, and enables us to solve the 1HP problem on interval graphs within the same time and space
complexity.

This study lead to the following publications:

e K. Asdre and S.D. Nikolopoulos, A linear-time algorithm for the k-fixed-endpoint path cover prob-
lem on cographs, Networks 50, 231-240, 2007.

e K. Asdre and S.D. Nikolopoulos, A polynomial solution for the k-fixed-endpoint path cover prob-
lem on proper interval graphs, Proc. 18th International Conference on Combinatorial Algorithms
(IWOCA’07), Lake Macquarie, Newcastle, Australia, 2007.
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e K. Asdre and S.D. Nikolopoulos, The 1-fixed-endpoint path cover problem is polynomial on interval
graphs, submitted to Algorithmica.

e K. Asdre and S.D. Nikolopoulos, A polynomial solution for the k-fixed-endpoint path cover problem
on proper interval graphs, submitted to Theoret. Comput. Science.

The k-fized-endpoint-set Path Cover Problem

We study a generalization of the path cover problem, namely, the k-fixed-endpoint-set path cover problem,
or kFSPC for short. Given a graph G and k disjoint subsets 71,72,..., 7% of V(G), a k-fixed-endpoint-
set path cover of G is a set of vertex-disjoint paths P that covers the vertices of G such that the vertices
of T =T'UT?U...UT" are all endpoints of the paths in P and two vertices u,v € 7 belong to the same
path of P if both u, v belong to the same set 7°¢, i € [1, k]; a minimum k-fized-endpoint-set path cover of
G with respect to 7', 72,...,T" is a k-fixed-endpoint-set path cover of G with minimum cardinality; the
k-fized-endpoint-set path cover problem (kFSPC) is to find a minimum k-fixed-endpoint-set path cover of
the graph G. Note that, if 7%, Vi € [1,k] is empty, the stated problem coincides with the classical path
cover problem, while the 1-fixed-endpoint-set path cover problem coincides with the k-fixed-endpoint
path cover problem (kPC) [?]. Thus, the kFSPC problem generalizes the kPC problem and also the 1HP
and 2HP problems, which have been proved to be NP-complete in general graphs. We show that the
kFSPC problem can be solved in linear time on the class of cographs. The proposed linear-time algorithm
is simple and requires linear space.

The 2-terminal-set Path Cover Problem

We study the 2-terminal-set path cover problem, or 2TPC for short, which is a generalization of the path
cover problem. Given a graph G and two disjoint subsets 7! and 72 of V(G), a 2-terminal-set path cover
of G with respect to 7! and 7?2 is a set of vertex-disjoint paths P that covers the vertices of G such that
the vertices of 7' and 72 are all endpoints of the paths in P and all the paths with both endpoints in
T'UT? have one endpoint in 7' and the other in 72. The 2TPC problem is to find a 2-terminal-set path
cover of G of minimum cardinality; note that, if 7' U7?2 is empty, the stated problem coincides with the
classical path cover problem. The 2TPC problem also generalizes the 1THP and 2HP problems. We show
that the 2TPC problem can be solved in linear time on the class of cographs. The proposed linear-time
algorithm is simple, requires linear space, and also enables us to solve the THP and 2HP problems on
cographs within the same time and space complexity.

This work lead to the following publications:

e K. Asdre and S.D. Nikolopoulos, The 2-terminal-set path cover problem and its polynomial solution
on cographs, Frontiers of Algorithmics Workshop (FAW ’08), Changsha, China, 2008.

e K. Asdre and S.D. Nikolopoulos, The 2-terminal-set path cover problem and its polynomial solution
on cographs, submitted to Discrete Appl. Math.

The k(2)-terminal-set Path Cover Problem

The k(2)-terminal-set path cover problem, or k(2)TSPC for short, is also studied for the class of cographs.
Given a graph G and k disjoint subsets 71,72,..., 7" of V(G) each containing at most two vertices, a
k(2)-terminal-set path cover of G with respect to 7%, 72,...,T" is a set of vertex-disjoint paths P that
covers the vertices of G such that the vertices of 71',72,...,T" are all endpoints of the paths in P and
all the paths with both endpoints in 7! U772 U...U T have one endpoint in 7% and the other in 77,
i # jand i,j € [1,k]. The k(2)TSPC problem is to find a k(2)-terminal-set path cover of G of minimum
cardinality; note that, if 7¢, Vi € [1,k] is empty, the stated problem coincides with the classical path

vii



cover problem, while if |7¢| = 1, Vi € [1, k] the problem coincides with the k-fixed-endpoint path cover
problem [?]. The k(2)TSPC problem also generalizes the 1HP and 2HP problems. We show that the
k(2)TSPC problem can be solved in linear time on the class of cographs. It would be interesting to study
the complexity of the k-terminal-set Path Cover Problem on cographs, or kTSPC for short, which is a
generalization of the k(2)TSPC problem. The difference between the two problems is that for the kTSPC
problem there is no restriction to the size of the sets 71, 72,...,T".
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CHAPTER 1

INTRODUCTION

1.1 Preliminaries
1.2 Perfect Graphs
1.4 Complexity and Intractability

1.3 Path Cover and Coloring Problems

1.1 Preliminaries

We consider finite undirected graphs with no loops or multiple edges. For a graph G, we denote its vertex
and edge set by V(G) and E(G), respectively. A subgraph H of a graph G is said to be induced if, for
any pair of vertices x and y of H, xy is an edge of H if and only if zy is an edge of G. Let S be a subset
of the vertex set of a graph G. Then, the subgraph of G induced by S is denoted by G[S]. Moreover, we
denote by G — S the graph G[V(G) — S] and by G — v the graph G[V(G) — {v}]. The complement G of
a graph G has the same vertex set as G, and distinct vertices u,v are adjacent in G if and only if they
are not adjacent in G.

The neighborhood Ng(z) of a vertex x of the graph G is the set of all the vertices of G which are
adjacent to z. The closed neighborhood of x is defined as Nglx] := Ng(x) U {x}. The set of vertices in
V(G) — {z} that are not neighbors of x is its non-neighbors and is denoted by Ng(x). When it is clear
which the graph we refer to is, we use the notation N(z) and N|[z| for simplicity. The degree of a vertex x
in a graph G, denoted by d(z), is the number of edges incident on z; thus, d(z) = |N(z)|. A clique is
a set of pairwise adjacent vertices while a stable (or independent) set is a set of pairwise non-adjacent
vertices.

A sequence of vertices [vg, v1, ..., vx] is a walk from vy to vi of length & in G provided that v;_qv; €
E(G) for i =1,2,...,k. A walk in G is called a path if no vertex and no edge occurs more than once.
A path of length k is called t¢rivial if k = 0. A sequence of vertices [vg,v1, ..., vk, vp] is called a cycle
of length k + 1 if v;_1v; € E(GQ) for i = 1,2,...,k and vyvg € E(G). A cycle [vg,v1,...,vk,00] is a
simple cycle if v; # v; for i # j. A simple cycle [vg,v1, ..., vk, Vo] is chordless if v;v; ¢ E(G) for every
non-successive vertices v;, v; in the cycle. Throughout this work, a clique on n vertices is denoted by K,
a chordless cycle on n vertices is denoted by C,, and the chordless path on n vertices is denoted by P,.



In a chordless path P, = [v1,v2,...,Up_1,0,] the vertices va,...,v,_1 are called midpoints or internal
vertices and vy and v,, are called endpoints.

Let T be a graph with n vertices. Then, T is a tree if and only if it contains no cycles and has n — 1
edges; equivalently, T is a tree if and only if any two vertices of T' are connected by exactly one path.

Let T be a tree. The parent of a node x of T is denoted by p(z) and the set of nodes containing the
children of node z in T is denoted by ch(x). Furthermore, we denote by L; the set of nodes belonging to
level i in T for ¢ = 0 to i = h, where h is the height of the tree T'.

1.2 Perfect Graphs

A hole of G is an induced subgraph of G which is a cycle of length at least 4. An antihole of G is an
induced subgraph of G whose complement is a hole in G. A graph G is Berge if every hole and antihole
of G has even length.

The chromatic number x(G) of a graph G is the fewest number of colors needed to properly color the
vertices of G, or equivalently, the fewest number of stable sets needed to cover the vertices of G. The
clique number w(G) of a graph G is the size of the largest complete subgraph of G. Clearly, the chromatic
number of a graph G is greater than or equal to the clique number of G. The stability number a(G) of a
graph G is the size of the largest stable set of G while the clique cover number k(G) of a graph G is the
fewest number of complete subgraphs needed to cover the vertices of G.

The intersection of a clique and a stable set of a graph G can be at most one vertex. Thus, for any
graph G,
w(G) < X(@) and o(@) < K(G).

These equalities are dual to one another since a(G) = w(G) and k(G) = x(G). Let G(V,E) be an
undirected graph. The following three conditions are the perfection properties of a graph G.

G
=
£
Q
=
I

x(G[A]), vVACV(G)
(P2) a(GlA]) = w(G[A]), VACV(G)
(P3) w(G[A]) - o(G[A]) = |A], VACV(G)

Theorem 1.1 (The Perfect Graph Theorem [7]). For an undirected graph G the perfection properties
P1, P2 and P3 are equivalent.

A graph G is perfect if for every induced subgraph G[A] of G, the chromatic number of G[A] equals
the size of the largest clique of G[A]. The study of perfect graphs was initiated by Claude Berge, partly
motivated by a problem from information theory (finding the “Shannon capacity” of a graph; it lies
between the size of the largest clique and the chromatic number, and so for a perfect graph it equals
both). In particular, in 1961 Berge [6] proposed two celebrated conjectures about perfect graphs. Since

4

the second implies the first, they were known as the “weak” and “strong” perfect graph conjectures

respectively, although both are now theorems, the following;:
Theorem 1.2. The complement of every perfect graph is perfect.
Theorem 1.3. A graph is perfect if and only if it is Berge.

The first was proved by Lovdasz [65] in 1972. The second, the strong perfect graph conjecture, received
a great deal of attention over the past 40 years. In May 2002, Maria Chudnovsky and Paul Seymour



announced that they, building on earlier joint work with Neil Robertson and Robin Thomas, had com-
pleted the proof of the Strong Perfect Graph Conjecture which became the strong perfect graph theorem.
The four joint authors published the 178-page paper in 2006 [16]. As a result, holes and antiholes have
been extensively studied in many different contexts in algorithmic graph theory. Thus, finding a hole
or an antihole in a graph efficiently is an important graph-theoretic problem, both on its own and as a
step in many recognition algorithms. In 2004, Nikolopoulos and Palios [74] proposed a O(n + m?) time
algorithm for the problem of finding a hole or an antihole in a graph on n vertices and m edges, requiring
O(nm) space.

The class of perfect graphs has structural properties leading to polynomial time algorithms for opti-
mization problems which are NP-complete in arbitrary graphs, such as coloring and path cover problems
and the problems of finding Hamilton cycle or path. These problems find applications in many fields of
different sciences, from mathematics to philosophy [7, 41].

1.3 Complexity and Intractability

Besides providing a basis for comparing algorithms which solve the same problem, algorithmic analysis has
other practical uses. Most importantly, it affords us the opportunity to know in advance an estimate of the
computation or a bound on the storage and run time requirements. Let us refer to the differences between
computability and computational complexity [40]. Computability addresses itself mostly to questions of
existence: Is there an algorithm which solves problem II? Proving that a problem is computable usually
consists of demonstrating an actual algorithm which will terminate with a correct answer for every input.
The amount of resources (time and space) used in the calculation, although finite, is unlimited.

In contrast to this, computational complexity deals precisely with the quantitative aspects of problem
solving. It addresses the issue of what can be computed within a practical or reasonable amount of
time and space by measuring the resource requirements exactly or by obtaining upper and lower bounds.
Complexity is actually determined on three levels: the problem, the algorithm, and the implementa-
tion. Naturally, we want the best algorithm which solves our problem, and we want to choose the best
implementation of that algorithm.

A decision problem is one which requires a simple “yes” or “no” answer. An instance of a problem II
is a specification of particular values for its parameters. Usually we can rewrite an optimization problem
as a decision problem which at first seems much easier to solve than the original but turns out to be just
about as hard. Consider the following two versions of the graph coloring problem.

Graph Coloring (optimization version)
Instance: An undirected graph G.
Question: What is the smallest number of colors needed for a proper coloring of G?

Graph Coloring (decision version)
Instance: An undirected graph G and an integer k > 0.
Question: Does there exist a proper k coloring of G?

The optimization version can be solved by applying an algorithm for the decision version n times for
an n-vertex graph. If the n decision problems are solved sequentially, then the time needed to solve the
optimization version is larger than that for the decision version by at most a factor of n. However, if they
can be solved in parallel, then the time needed for both versions is essentially the same. Demonstrating
and analyzing the complexity of a particular algorithm for IT provides us with an upper bound on the
complexity of II. Determining the complexity of a problem II requires a two-sided attack:

(1) the upper bound —the minimum complexity over all known algorithms solving II.



(2) the lower bound—the largest function f for which it has been proved mathematically that all possible
algorithms solving II are required to have complexity at least as high as f.

Our ultimate goal is to make these bounds coincide. A gap between (1) and (2) tells us how much more
research is needed to achieve this goal. The biggest open question involving the gap between upper and
lower complexity bounds involves the so called NP-complete problems. For each of the problems in this
class only exponential-time algorithms are known, yet the best lower bounds proved so far are polynomial
functions. Furthermore, if a polynomial time algorithm exists for one of them, then such an algorithm
exists for all of them. Included among the NP-complete problems on graphs are finding a Hamiltonian
circuit, a minimum coloring, or a maximum clique.

1.3.1 Polynomial Transformations and NP-completeness

The state of an algorithm consists of the current values of all variables and the location of the current
instruction to be executed. A deterministic algorithm is one for which each state upon execution of the
instruction uniquely determines at most one next state. Virtually all computers run deterministically. A
problem II is in the class P if there exists a deterministic polynomial time algorithm which solves II.

A nondeterministic algorithm is one for which a state may determine many next states and which
follows up on each of the next states simultaneously. We may regard a nondeterministic algorithm as
having the capability of branching off into many copies of itself, one for each next state. Thus, while a
deterministic algorithm must explore a set of alternatives one at a time, a nondeterministic algorithm
examines all alternatives at the same time.

A problem II is in the class NP if there exists a nondeterministic polynomial time algorithm which
solves II. Clearly, P C NP. An important open question in the theory of computation is whether the
containment of P in NP is proper; i.e., is P # NP?

One problem II; is polynomially transformable to another problem IIs denoted ITy < Ils, if there
exists a function f mapping the instances of II; into the instances of IIs such that

(i) f is computable deterministically in polynomial time, and
(ii) a solution to the instance f(I) of Iy, gives a solution to the instance I of II, for all I.

Intuitively this means that II; is no harder to solve than II; up to added polynomial term, for we could
solve II; by combining the transformation f with the best algorithm for solving Ils. Thus, if I} < I3,
then

COMPLEXITY(II;) < COMPLEXITY (II;) + POLYNOMIAL.
If TI; has a deterministic polynomial time algorithm, then so does Ily; if every deterministic algorithm
solving II; requires at least an exponential amount of time, then the same is true for Il,.

The principal technique used for demonstrating that two problems are related is that of "reducing”
one to the other, by giving a constructive transformation that maps any instance of the first problem
into an equivalent instance of the second. Such a transformation provides the means for converting any
algorithm that solves the second problem into a corresponding algorithm for solving the first problem.

A problem II is NP-hard if any one of the following equivalent conditions holds:
(1) II' x I for all II" € NP;

(2) I € P = P=NP;



(3) the existence of a deterministic polynomial time algorithm for IT would imply the existence of a
polynomial time algorithm for every problem in NP.

A problem II is NP-complete if it is both a member of NP and it is NP-hard. The NP-complete
problems are the most difficult of those in NP. To prove that II is NP-complete we show that II € NP
and some known NP-complete problem II’ transforms to II.

The foundations for the theory of NP-completeness were laid in a paper of Stephen Cook [19], presented
in 1971, entitled “The complexity of theorem proving procedures”. He emphasized the significance of
“polynomial time reducibility”, that is, reductions for which the required transformation can be executed
by a polynomial time algorithm. If we have a polynomial time reduction from one problem to another, this
ensures that any polynomial time algorithm for the second problem can be converted into a corresponding
polynomial time algorithm for the first problem. Furthermore, he focused attention on the class of NP of
decision problems that can be solved in polynomial time by a nondeterministic computer, and he proved
that one particular problem in NP, called the “satisfiability” problem, has the property that every other
problem in NP can be polynomially reduced to it. If the satisfiability can be solved with a polynomial
time algorithm, then so can every problem in NP, and if any problem in NP is intractable (i.e. it is so
hard that no polynomial time algorithm can possibly solve it), then the satisfiability problem also must
be intractable. Thus, in a sense, the satisfiability problem is the “hardest” problem in NP.

Finally, Cook suggested that other problems in NP might share with the satisfiability this property of
being the “hardest” member of NP. He showed this to be the case for the problem “Does a given graph
G contain a complete subgraph on a given number k of vertices?”

Subsequently, Karp [56] presented a collection of results proving that indeed the decision versions of
many well known combinatorial problems, including the travelling salesman problem, are just as “hard”
as the satisfiability problem. Since then a wide variety of other problems have been proved equivalent
in difficulty to these problems, and this equivalence class, consisting of the “hardest” problems in NP,
has been given a name: the class of NP-complete problems; in their book [36], “A guide to the theory
of NP-completeness”, Garey and Johnson provide a list of NP-complete problems. However, a graph
theoretic or other type of problem II which is normally hard to solve in the general case may have an
efficient solution if the input domain is suitably restricted. The Hamiltonian circuit problem, for example,
is trivial if the only graphs considered are trees.

1.3.2 Number Problems and Strong NP-completeness
We refer to the PARTITION problem, which is NP-complete [36]:

PARTITION
Instance: A finite set A and a “size” s(a) € Z* for each a € A.
Question: Is there a subset A" C A such that ), s(a) = > ,c4_4 s(a)?

Consider now the following “dynamic programming” approach to solving the PARTITION problem.
Let A = {a1,az,...,a,} and let T'(,5), 1 <i <n, 0 < j < b, denote the truth value of the statement
“there exists a subset of {a1,as,...,a;} whose sum is exactly j”. To start with, we know that T'(1, j)
is false for all j except j = 0 and j = a;. Recursively, we have that T(i + 1,7), 1 <i <n, 0 <j <b,
is true if and only if either T'(i,j) is true or a;,41 < j and T'(¢,j — a;4+1) is true. The desired subset for
PARTITION exists if and only if T'(n, b) is true.

The obvious iterative algorithm based on this formulation can solve the PARTITION problem in O(nb)
time. Although this may appear to be a polynomial time algorithm, in fact it is not. For the purposes of
the theory of NP-completeness, as well as for most formal complexity theory, the time complexity of an
algorithm is expressed in terms of a single “instance size” parameter which reflects the number of symbols



that would be required to describe the instance in a “reasonable” and “concise” manner. The parameter
nb in the example does not do this. If an integer N is to be described “concisely”, it must be represented
using only O(logN) symbols, as would be the case using its binary or decimal representations. Thus, an
instance of PARTITION could be described with only O(nlogb) symbols, and nb is not bounded by any
polynomial function of this. For this reason, our O(nb) algorithm for PARTITION is not a polynomial
time algorithm; we shall refer to it as a “pseudo-polynomial” time algorithm. However, the existence of
such an algorithm does indicate that the NP-completeness of PARTITION depends strongly on the fact
that arbitrarily large values of the a; are allowed. If any upper bound were imposed on these numbers in
advance, even a bound which is a polynomial function of n, this algorithm would be a polynomial time
algorithm for the restricted problem. Thus, one must take care when interpreting an NP-completeness
result for a problem involving numbers not to infer intractability in a broader sense than is justified by the
theory. The ordinary NP-completeness results for such problems leave open the possibility of algorithms,
which are, for certain applications, suitably efficient to be used in practice.

However, not all NP-complete problems are like PARTITION. We say that a problem II is a number
problem if there exists no polynomial p such that Max[I] < p(Length[I]) for all instances I of I [36]. Note
that, the function Length is intended to map any instance I to an integer Length[I] that corresponds to a
number of symbols used to describe I under some reasonable encoding scheme for II. The function Max
is intended to map any instance I to an integer Max[I] that corresponds to the magnitude of the largest
number in /. Furthermore, an algorithm that solves a problem II will be called a pseudo-polynomial
time algorithm for II if its time complexity function is bounded above by a polynomial function of the
two variables Length[I] and Max[I] [35, 36]. Note that, even though an NP-completeness result for a
problem II rules out the possibility of solving II with a polynomial time algorithm (unless P=NP), it
does not rule out the possibility of solving IT with a pseudo-polynomial time algorithm.

As an immediate consequence of the above definition of a number problem, we can make the following
observation.

Observation 1.1. [36] If IT is NP-complete and II is not a number problem, then IT cannot be solved
by a pseudo-polynomial time algorithm unless P=NP.

Thus, assuming that P#NP, the only NP-complete problems that are potential candidates for being
solved by pseudo-polynomial time algorithms are those that are number problems.

For any decision problem II and any polynomial p (over the integers), let II,, denote the subproblem
of II obtained by restricting II to only those instances I that satisfy Max[I] < p(Length[I]). Then II,
is not a number problem. Furthermore, if II is solvable by a pseudo-polynomial time algorithm, then II,,
must be solvable by a polynomial time algorithm. Given any input string x, all we need to do is check
that = encodes an instance I satisfying Mazx[I] < p(Length[I]) and, if so, apply the pseudo-polynomial
time algorithm for IT to I. The required inequality can be checked in polynomial time. By the definition
of pseudo-polynomial time algorithm, the algorithm for IT will be a polynomial time algorithm for the
instances that satisfy this inequality. Thus, a decision problem II is NP-complete in the strong sense
if IT belongs to NP and there exists a polynomial p over the integers for which II, is NP-complete. In
particular, if IT is NP-complete and II is not a number problem, then II is automatically NP-complete in
the strong sense. We then have the following generalization of Observation 1.1.

Observation 1.2. [36] If II is NP-complete in the strong sense, then II cannot be solved by a pseudo-
polynomial time algorithm unless P=NP.

The second observation provides the means for applying the theory of NP-completeness to ques-
tions about the existence of pseudo-polynomial time algorithms. We know that PARTITION cannot
be NP-complete in the strong sense while TRAVELLING SALESMAN, 3-PARTITION, SEQUENCING



WITHIN INTERVALS and SUBFOREST ISOMORPHISM are problems which are NP-complete in the
strong sense.

1.4 Path Cover and Coloring Problems

We next describe the problems this work is concerned with, that is, path cover and coloring problems.
We also give the motivation of our work, mostly by describing the large amount of related work until
today.

1.4.1 Path Cover Problem and Variations

A well studied problem with numerous practical applications in graph theory is to find a minimum number
of vertex-disjoint paths of a graph G that cover the vertices of G. This problem, also known as the path
cover problem (PC), finds application in the fields of database design, networks, code optimization among
many others (see [2, 4, 61, 86]); it is well known that the path cover problem and many of its variants are
NP-complete in general graphs [36]. It is known to be NP-complete even when the inputs are restricted to
several interesting special classes of graphs, such as bipartite graphs [3], edge graphs [12], chordal graphs
[20] and several interesting classes of intersection graphs [9, 71]. A graph that admits a path cover of size
one is referred to as Hamiltonian. Thus, the path cover problem is at least as hard as the Hamiltonian
path problem (HP), that is, the problem of deciding whether a graph is Hamiltonian.

Several variants of the HP problem are also of great interest, among which is the problem of deciding
whether a graph admits a Hamiltonian path between two points (2HP). The 2HP problem is the same as
the HP problem except that in 2HP two vertices of the input graph G are specified, say, u and v, and we
are asked whether GG contains a Hamiltonian path beginning with u and ending with v. Similarly, the 1HP
problem is to determine whether a graph G admits a Hamiltonian path starting from a specific vertex u
of G, and to find one if such a path does exist. Both 1THP and 2HP problems are also NP-complete in
general graphs [36].

The path cover problem and several variants of it have numerous algorithmic applications in many
fields. Some that have received both theoretical and practical attention are in the content of communi-
cation and/or transposition networks [89]. In such problems, we are given a graph (network) G and

(Problem A) a set 7 of k = 2\ vertices of G, and the objective is to determine whether G admits a path
cover of size A that contains paths connecting pairs of vertices of 7, that is, G admits A\ vertex-disjoint
paths with both their endpoints in 7 (note that, the endpoints of a path P are the first vertex and the
last vertex visited by P), or

(Problem B) a set T of A = k/2 pairs of vertices of G (source-sink pairs), and the objective is to determine
whether G admits for each pair (a;,b;), 1 <i < A, a path connecting a; to b; such that the set of A paths
forms a path cover.

In the case where £ = 2, both problems A and B coincide with the 2HP. Usually a measure of
reliability (or fault-tolerance) of an interconnection network is given by the maximum number of nodes
which can fail simultaneously without prohibiting the ability of each fault-free node to communicate with
all other fault-free nodes. Connectivity of an interconnection graph corresponds to the reliability of the
interconnection network which is subject to node failures. It is well-known that connectivity of a graph
G was characterized in terms of disjoint paths joining a pair of vertices in G. Thus, one-to-many disjoint
paths joining a source s and k distinct sinks ¢1,¢2, ...tk are required. A related work was presented by
Park, in 2004 [77].

Another related problem is the disjoint paths problem (or DP, for short), which is defined as follows:



Disjoint Paths

Instance: A graph G and pairs (s1,t1),. .., (Sk, tr) of vertices of G.

Question: Do there exist paths Py, ..., P, of G, mutually vertex disjoint, such that P; joins s; and ¢;
(1<i<k)?

The problem was shown to be NP-complete by Karp [57] if k is a variable part of the input. For fixed
k, however, the problem is more tractable. For instance, in [83, 84, 90], there are polynomial algorithms
to solve DP with k& = 2. In contrast, the corresponding question for directed graphs G where we seek
directed paths P, ..., P, is NP-complete even with & = 2 [33]. In 1995, Robertson and Seymour showed
that for any fixed k there is a polynomial algorithm to solve DP. Furthermore, as a consequence of their
algorithm, there is a polynomial algorithm for the subgraph homeomorphism problem, which is one of
Garey and Johnson’ s open problems [36].

In [27], Damaschke provided a foundation for obtaining polynomial time algorithms for several prob-
lems concerning paths in interval graphs, such as finding Hamiltonian paths and circuits, and partitions
into paths. In the same paper, he stated that the complexity status of both 1HP and 2HP problems on
interval graphs remains an open question.

Motivated by the above issues, we define other path cover related problems, namely, the k-fixed-
endpoint path cover problem, the k-fixed-endpoint-set path cover problem, the 2-terminal-set path cover
problem and the k(2)-terminal-set path cover problem which are defined and solved for the class of
cographs in Chapters 5, 6, 7 and 8, respectively.

The cographs, short for complement reducible graphs, are defined as the class of graphs formed from
a single vertex under the closure of the operations of union and complementation, namely: (i) a single-
vertex graph is a cograph; (ii) the disjoint union of cographs is a cograph; (iii) the complement of a
cograph is a cograph. Cographs were introduced in the early 1970s by Lerchs [59] who studied their
structural and algorithmic properties. Along with other properties, Lerchs has shown that they admit a
unique tree representation, up to isomorphism, called a cotree. Cographs have arisen in many disparate
areas of applied mathematics and computer science and have been independently rediscovered by various
researchers under various names such as D*-graphs [54] and Py restricted graphs [22, 24]. They are
perfect and in fact form a proper subclass of permutation graphs and distance hereditary graphs; they
contain the class of quasi-threshold graphs and, thus, the threshold graphs [13, 40]. Furthermore, they
are precisely the graphs which contain no induced subgraph isomorphic to a Py (i.e., a chordless path on
four vertices). The study of cographs led naturally to constructive characterizations that implied several
linear-time recognition algorithms that also enabled the construction of the cotree in linear time [13].
Surprisingly, despite the structural simplicity of cographs, constructing linear-time recognition algorithms
has been challenging. The first linear-time recognition and cotree-construction algorithm was proposed
by Corneil, Perl, and Stewart [24] in 1985. Recently, Bretscher et al. [14] presented a simple linear-
time recognition algorithm which uses a multisweep LexBFS approach; their algorithm either produces
the cotree of the input graph or identifies an induced P;. Additionally, since the cographs are perfect,
many interesting optimization problems in graph theory, which are NP-complete in general graphs, have
polynomial sequential solutions [13, 40]; for example, for the problem of determining the minimum path
cover for a cograph, Lin et al. [61] presented a linear-time algorithm, which can be used to produce a
Hamiltonian cycle or path, if such a structure exists. Jung [54] studied the existence of a Hamiltonian
path or cycle in a cograph.

Hochstéttler and Tinhofer [46] presented a sequential algorithm for the path cover problem on Py-
sparse graphs, which runs in f(n) + O(n) time, where f(n) is the time complexity for the construction
of a tree representation of a Py-sparse graph. The class of Py-sparse graphs is defined as the class which
contains the graphs for which every set of five vertices induces at most one chordless path on four vertices
[45]. This class has been extensively studied and several sequential and/or parallel algorithms for the



recognition and classical optimization problems have been proposed [38]. Giakoumakis et al. in [3§]
studied hamiltonicity properties for the class of Py-tidy graphs (a proper superclass of Ps-sparse graphs);
see also [13].

For the class of quasi-threshold graphs (a proper subclass of cographs), the problem of recognizing
whether such a graph is a Hamiltonian graph and finding a Hamiltonian path (cycle) was solved in
O(log n) time with O(n+m) processors on the CREW PRAM model [72]; in the same work, the coloring
and other optimization problems was also solved in O(logn) time using a linear number of processors.
Recently, Hsieh et al. [49] presented an O(n + m)-time sequential algorithm for the Hamiltonian problem
on a distance-hereditary graph and also proposed a parallel implementation of their algorithm which
solves the problem in O(logn) time using O((n + m)/logn) processors on a PRAM model. A unified
approach to solving the Hamiltonian problems on distance-hereditary graphs was presented in [50], while
Hsieh [48] presented an efficient parallel strategy for the 2HP problem on the same class of graphs.
Algorithms for the path cover problem on other classes of graphs were proposed in [4, 51, 86].

Recently, Nakano et al. in [70] offered a time- and work-optimal parallel solution for the path cover
problem on the class of cographs. In particular, they first proved that any algorithm that solves the
path cover problem on a cograph of n vertices represented by its modular decomposition tree must take
Q(logn) time on the CREW PRAM model, and then showed that this time lower bound is tight for the
class of cographs by presenting an EREW algorithm that, given an n-vertex cograph G represented by its
cotree , finds and reports a minimum path cover of G in O(logn) time using O(n/logn) processors. It is
worth noting that it was open for more than 10 years to find a time- and work-optimal parallel solution
for this important problem.

Nakano et al. in [70] use novel techniques that combine in a clever way tree structures, called path
trees, and sequences of square and round brackets; their algorithm produces a minimum path cover of
a cograph by finding matchings of brackets in these sequences, constructing path trees, and converting
the path trees to a minimum path cover using the inorder traversal. In [70] they left open the problem
of applying their technique into other classes of graphs. Motivated by this issue we generalize their
technique and apply it to the class of Py-sparse graphs. We investigate the structure of the paths that
occur in a minimum path cover of a P,-sparse graph and the structure of the corresponding path trees,
and present a time- and work-optimal algorithm that runs in O(logn) time with O(n/logn) processors
on the EREW PRAM model. We also show that our results can be extended to a proper superclass of
P;-sparse graphs, namely the P,-tidy graphs.

The class of proper interval graphs has also been extensively studied in the literature [40, 80] and
several linear-time algorithms are known for their recognition and realization [21, 29, 75]. Both Hamilto-
nian Circuit (HC) and Hamiltonian Path (HP) problems are polynomially solvable for the class of proper
interval graphs. Bertossi [8] proved that a proper interval graph has a Hamiltonian path if and only
if it is connected. He also gave an O(nlogn) algorithm for finding a Hamiltonian circuit in a proper
interval graph. Panda and Pas [75] presented a linear-time algorithm to detect if a proper interval graph
is Hamiltonian.

Interval graphs form an important class of perfect graphs [40] and many problems that are NP-
complete on arbitrary graphs are shown to admit polynomial time algorithms on this class [4, 40, 58].
Both Hamiltonian Circuit (HC) and Hamiltonian Path (HP) problems are polynomially solvable for the
class of interval graphs. Keil introduced a linear-time algorithm for the HC problem on interval graphs
[58] and Arikati and Rangan [4] presented a linear-time algorithm for the minimum path cover problem
on interval graphs. Motivated by the above issues and by a work of Damaschke [27], where he stated
that the complexity status of both 1THP and 2HP problems on interval graphs remains an open question,
we solve the k-fixed-endpoint path cover problem and the 1-fixed-endpoint-path cover problem on proper
interval and on interval graphs, respectively.



In this work, we also study the k-path partition problem, a generalization of the path partition problem
[36]; the path partition problem is to determine the minimum number of paths in a path partition of a
simple graph G, while a path partition of G is a collection of vertex disjoint paths Pi, P5,..., P, in
G whose union is V(G). A path partition is called a k-path partition if none of the paths has length
more than k, for a given positive integer k. The k-path partition problem is to determine the minimum
number of paths in a k-path partition of a graph G. It is a natural graph problem with applications in
broadcasting in computer and communications networks [87, 92] and it is NP-complete for general graphs
[36]. Yan et al. [92] gave a polynomial time algorithm for finding the minimum number of paths in a
k-path partition of a tree , while Steiner [88] showed that the problem is NP-complete even for cographs
if k is considered to be part of the input, but it is polynomially solvable if k is fixed; he also presented a
linear-time solution for the problem, with any &, for threshold graphs. Quite recently, Steiner [87] showed
that the k-path partition problem remains NP-complete on the class of chordal bipartite graphs if & is
part of the input and on the class of comparability graphs even for £ = 3. Furthermore, he presented
a polynomial time solution for the problem, with any k, on bipartite permutation graphs and left the
problem open for the class of convex graphs.

1.4.2 Coloring Problems

A harmonious coloring of a simple graph G is a proper vertex coloring such that each pair of colors
appears together on at most one edge, while a pair-complete coloring of G is a proper vertex coloring
such that each pair of colors appears together on at least one edge; the harmonious chromatic number
h(G) of the graph G is the least integer k for which G admits a harmonious coloring with % colors and
its achromatic number ¢(G) is the largest integer k for which G admits a pair-complete coloring with k
colors.

Harmonious coloring developed from the closely related concept of line-distinguishing coloring which
was introduced independently by Frank et al. [34] and by Hopcroft and Krishnamoorthy [47] who showed
that the harmonious coloring problem is NP-complete on general graphs. The achromatic number was
introduced by Harary et al. [42, 43], while the pair-complete coloring problem was proved to be NP-hard
on arbitrary graphs by Yannakakis and Gavril [93]. The complexity of both problems has been extensively
studied on various classes of perfect graphs such as cographs, interval graphs, bipartite graphs and trees
[13, 40]. Bodlaender [11] provides a proof for the NP-completeness of the pair-complete coloring problem
for disconnected cographs and disconnected interval graphs, and extends his results for the connected
cases. His proof also establishes the NP-hardness of the harmonious coloring problem for disconnected
interval graphs and disconnected cographs. It is worth noting that the problem of determining the
harmonious chromatic number of a connected cograph is trivial, since in such a graph each vertex must
receive a distinct color as it is at distance at most 2 from all other vertices [15]. Bodlaender’s results
establish the NP-hardness of the pair-complete coloring problem for the class of permutation graphs and,
also, the NP-hardness of the harmonious coloring problem when restricted to disconnected permutation
graphs. Extending the above results, Asdre et al. [?] show that the harmonious coloring problem remains
NP-complete on connected interval and permutation graphs.

Concerning the class of bipartite graphs and subclasses of this class, Farber et al. [32] show that
the harmonious coloring problem and the pair-compete coloring problem are NP-complete for the class
of bipartite graphs. In addition, Edwards et al. [30, 31] show that these problems are NP-complete for
trees. Their results also establish the NP-completeness of these problems for the classes of convex graphs
and disconnected bipartite permutation graphs. However, the complexity of these problems for connected
bipartite permutation graphs and biconvex graphs is not straightforward.

Motivated by this issue we prove that the harmonious coloring problem and the pair-complete coloring
problem is NP-complete for connected bipartite permutation graphs, and thus, the same holds for the
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class of biconvex graphs. Moreover, based on Bodlaender’s results [11], we show that the pair-complete
coloring problem is NP-complete for quasi-threshold graphs and that the harmonious coloring problem is
NP-complete for disconnected quasi-threshold graphs. It has been shown that the harmonious coloring
problem is polynomially solvable on threshold graphs. In this chapter we show that the pair-complete
coloring problem is also polynomially solvable on this class by proposing a simple linear-time algorithm.
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CHAPTER 2

A TiME OPTIMAL PARALLEL
ALGORITHM FOR THE PAaTH COVER
PROBLEM ON Pj-SPARSE (GRAPHS

2.1 Introduction

2.2 Preliminaries

2.3 Path Cover in Ps-sparse Graphs
2.4 Path Trees of Py-sparse Graphs
2.5 Bracket Sequence on N-node
2.6 The Algorithm

2.7 Other Classes of Graphs

2.8 Concluding Remarks

2.1 Introduction

A well studied problem in graph theory with numerous practical applications is to find a minimum
number of vertex-disjoint paths of a graph G that cover the vertices of G. This problem, known as the
path cover problem, finds application in the fields of database design, networks, code optimization among
many others (see [2, 36]); it is well-known that the path cover and many of its variants are NP-complete
in general graphs [36]. A graph that admits a path cover of size one is referred to as Hamiltonian. Thus,
the path cover problem is at least as hard as the problem of deciding whether a graph has a Hamiltonian
path.

The study of graphs with few P;’s (chordless paths on four vertices) has practical applications related
to examination scheduling and semantic clustering of index terms [24, 59]. These applications have
motivated both the theoretical and algorithmic study of the class of cographs, which contain no induced
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Py’s. By extending the notion of a P,-free graph many classes have been obtained by relaxing in various
ways the absence of P,’s.

The class of Pj-sparse graphs is defined as the class which contains the graphs for which every set
of five vertices induces at most one chordless path on four vertices [45]. This class has been extensively
studied and several sequential and/or parallel algorithms for the recognition and classical optimization
problems have been proposed. Giakoumakis et al. in [38] solved the recognition problem and also the
problems of finding the clique number, the stability number and the chromatic number on Pj;-sparse
graphs in linear sequential time, i.e., in O(n + m) time, where n and m are the number of vertices and
edges of the input graph, respectively. Hochstéttler and Tinhofer [46] presented a sequential algorithm
for the path cover problem on this class of graphs, which runs in f(n)+ O(n) time, where f(n) is the time
complexity for the construction of a tree representation of a Ps-sparse graph. Sequential algorithms for
optimization problems on other related classes of graphs (proper subclasses or superclasses of Py-sparse
graphs) have been also proposed: Lin et al. in [61] proposed an optimal algorithm for the path cover
problem on cographs (a proper subclass of Pj-sparse graphs), while Giakoumakis et al. in [38] studied
hamiltonicity properties for the class of P,-tidy graphs (a proper superclass of Py-sparse graphs); see also
[13].

In a parallel environment, the recognition problem on the class of Py-sparse graphs was studied in [60]

and presented a recognition algorithm running in O(log? n) time with O(”T;g;m) processors on the EREW
PRAM model. The problem of finding maximum matching on P,-tidy graphs was examined in [76] and
proposed an optimal parallel algorithm for the problem; the algorithm optimally computes a maximum
matching of a Py-tidy graph given its modular decomposition tree. For the class of quasi-threshold graphs
(a proper subclass of cographs), the problem of recognizing whether such a graph is a Hamiltonian graph
and finding a Hamiltonian path (cycle) was solved in O(logn) time with O(n + m) processors on the
CREW PRAM model [72]; in the same work, the coloring and other optimization problems was also

solved in O(logn) time using a linear number of processors.

Recently, Nakano et al. in [70] offered a time- and work-optimal parallel solution for the path cover
problem on the class of cographs . In particular, they first proved that any algorithm that solves the
path cover problem on a cograph of n vertices represented by its modular decomposition tree must take
Q(logn) time on the CREW PRAM model, and then showed that this time lower bound is tight for the
class of cographs by presenting an EREW algorithm that, given an n-vertex cograph G represented by its
cotree , finds and reports a minimum path cover of G in O(logn) time using O(n/logn) processors. It is
worth noting that it was open for more than 10 years to find a time- and work-optimal parallel solution
for this important problem.

Nakano et al. in [70] use novel techniques that combine in a clever way tree structures, called path
trees, and sequences of square and round brackets; their algorithm produces a minimum path cover of
a cograph by finding matchings of brackets in these sequences, constructing path trees, and converting
the path trees to a minimum path cover using the inorder traversal. In [70] they left open the problem
of applying their technique into other classes of graphs. Motivated by this issue we generalize their
technique and apply it to the class of Ps-sparse graphs. We investigate the structure of the paths that
occur in a minimum path cover of a Ps-sparse graph and the structure of the corresponding path trees,
and present a time- and work-optimal algorithm that runs in O(logn) time with O(n/logn) processors
on the EREW PRAM model. We also show that our results can be extended to a proper superclass of
P,-sparse graphs, namely the P;-tidy graphs.

Our work is organized as follows. In Section 2.2 we establish the notation and related terminology
and we present background results. In Section 2.3 we investigate the paths that occur in a minimum path
cover of a P,-sparse graph, while in Section 2.4 we describe the path trees that efficiently produce such
paths in a parallel process environment. Section 2.5 describes the construction of the bracket sequences
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[70] and in Section 2.6 we describe our optimal parallel path cover algorithm. In Section 2.7 we extend
our results to a proper superclass of P,-sparse graphs, namely the Py-tidy graphs. Finally, in Section 2.8
we conclude the chapter and discuss possible future extensions.

2.2 Preliminaries

We consider finite undirected graphs with no loops or multiple edges. For a graph G, we denote its vertex
and edge set by V(G) and E(G), respectively.

2.2.1 Modular Decomposition

A subset M of vertices of a graph G is said to be a module of G, if every vertex outside M is either
adjacent to all vertices in M or to none of them. The emptyset, the singletons, and the vertex set V(G)
are trivial modules and whenever G has only trivial modules it is called a prime (or indecomposable)
graph. A non-trivial module is also called homogeneous set . A module M of the graph G is called a
strong module, if for any module M’ of G, either M’ N M = () or one module is included into the other.
Furthermore, a module in G is also a module in G.

The modular decomposition of a graph G is a linear-space representation of all the partitions of V(G)
where each partition class is a module. The modular decomposition tree T(G) of the graph G (or md-
tree for short) is a unique labelled tree associated with the modular decomposition of G' in which the
leaves are the vertices of G and the set of leaves associated with the subtree rooted at an internal node
induces a strong module of G. Thus, the md-tree T(G) represents all the strong modules of G. An
internal node is labelled by either P (for parallel module), S (for series module), or N (for neighborhood
module). It is shown that for every graph G the md-tree T'(G) is unique up to isomorphism and it can
be constructed sequentially in linear time [26, 68]. Dahlhaus in [25] suggests a parallel algorithm for
the modular decomposition of graphs that runs in O(log?n) on a CRCW PRAM with a linear number
of processors. The approach of Dahlhaus (1995) recursively develops the modular decomposition of two
induced subgraphs, which are then spliced together to produce the modular decomposition of the whole
graph. Moreover, using O(n +m) EREW processors the modular decomposition tree can be retrieved in
O(log® n) as shown in [26].

Let t be an internal node of the md-tree T(G) of a graph G. We denote by M(¢) the module
corresponding to ¢ which consists of the set of vertices of G associated with the subtree of T'(G) rooted at
node ¢; note that M (¢) is a strong module for every (internal or leaf) node ¢ of T(G). Let w1, ug, ..., up
be the children of the node ¢ of md-tree T(G). We denote by G(t) the representative graph of the
module M (t) defined as follows: V(G(t)) = {u1,us,...,up} and u;u; € E(G(t)) if there exists an edge
vpve € E(G) such that v, € M(u;) and ve € M (u;).

By the definition of a module, if a vertex of M(¢;) is adjacent to a vertex of M (t;) then every vertex
of M(t;) is adjacent to every vertex of M (¢;). Thus G(t) is isomorphic to the graph induced by a
subset of M (t) consisting of a single vertex from each maximal strong submodule of M (¢) in the modular
decomposition of G. It is easy to show that the following lemma holds (see also [39]):

Lemma 2.1. Let G be a graph, T(G) its modular decomposition tree, and t an internal node of T(G).
Then, G(t) is an edgeless graph if t is a P-node, G(t) is a complete graph if t is an S-node, and G(t) is
a prime graph if t is an N-node.
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2.2.2 Ps-sparse Graphs

Below, we review characterizations and properties of Py-sparse graphs and prove results which we use in
our algorithm for the solution of the problem of the path cover of a Py-sparse graph.

A graph G is called a spider if the vertex set V(G) of the graph G admits a partition into sets S, K,
and R such that:

P1: |S| = |K| > 2, the set S is a stable set, and the set K is a clique;
P2: all the vertices in R are adjacent to all the vertices in K and to no vertex in S;

P3: there exists a bijection f: S — K such that exactly one of the following statements holds:

(i) for each vertex v e S, N(v)NK = {f(v)};
(ii) for each vertex v e S, N(v)NK =K — {f(v)}.

The triple (S, K, R) is called the spider-partition. A graph G is a prime spider if G is a spider with
|R| < 1. If the condition of case P3(i) holds then the spider G is called a thin spider, whereas if the
condition of case P3(ii) holds then G is a thick spider; note that the complement of a thin spider is a
thick spider and vice versa. A prime spider with |S| = |K| = 2 is simultaneously thin and thick.

It turns out that a Pj-sparse graph contains prime spiders with special properties which will be
detailed later. Thus, we need to identify efficiently the spider partition of a prime spider graph G on
n vertices and m edges. Based on the structural properties of a prime spider graph G, we can determine
its degree sequence and partition its vertices according to the maximum and minimum degree of the
sequence. This approach, though, requires O((n + m)/logn) processors and, thus, it is not optimal.
Nevertheless, we prove the following lemma.

Lemma 2.2. Let G be a prime spider on n vertices. We can recognize whether G is a thin or a thick
spider in O(logn) time using O(n/logn) EREW PRAM processors.

Proof. We denote by (S, K, R) the spider-partition of G. Note that if n is an even number we know that
R = (; otherwise R = {r}. Let n = 2¢ + 1 (resp. n = 2¢), where £ > 3. We choose an arbitrary vertex
r € V(G) and compute the sets of its neighbors N(z) and non-neighbors N(z) in G. Based on the fact
that G is a prime spider we have the following cases:

(i.1 (

(i.2) [N(z)] =€+ 1 (resp. [N(z)] = £): G is a thin spider, since = € K.
(i.3) |[N(z)]=£€—1 (resp. [N(z)] =€ —1): G is a thick spider (z € 5).
i4) |N(

(

(i.5) |N(z)| = ¢: In this case, we can not immediately detect whether G is a thin or a thick spider, since
r € R, but we have that K = N(z) and S = N(x). Thus, we choose a vertex y of the set N(z) and
check the number |N(y)| by the cases (i.1) and (i.3).

) |N(z)| =1: G is a thin spider, since z € S.

) |N(x)| =2¢—1 (resp. |[N(z)| =2¢—2): G is a thick spider (z € K).

All the cases are verified by the definitions of a thin and a thick spider. Since the sets N(z) and N(z) of
an n-vertex graph G are computed in O(logn) time using O(n/logn) EREW PRAM processors, the five
cases can be checked within the same time and processor complexity on the same model of computation.
1
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Figure 2.1: A disconnected Pj-sparse graph G on 13 vertices and the corresponding modular decomposi-
tion tree T'(G).

Let us now return to general P;-sparse graphs. Let G be a graph and ¢ be an N-node of the md-
tree T(G); recall that the vertices of G(t) are the children of node ¢ in T'(G). Giakoumakis and Vanherpe
[39] showed the following result:

Lemma 2.3. Let G be a graph and let T(G) be its modular decomposition tree. The graph G is Py-sparse
iff for every N-node t of T(G), G(t) is a prime spider with a spider-partition (S, K, R) and no vertezx of
S UK is an internal node in T'(G).

The above lemma implies that every N-node ¢ of the md-tree T'(G) of a Py-sparse graph G has either 2k
or 2k + 1 children, where |S| = |K| =k > 2 and |R| < 1; the sets S, K, and R form the spider-partition
of the graph G(t). More precisely, the N-node ¢ has k children which correspond to S, k children which
correspond to K, and either no other child if R = §) or one more child if R # @ (in this case, |R| = 1
and this child is the root of a subtree of T'(G)). The children which correspond to S and K are leaves in
T(G) and, thus, they are vertices of G, while the child which corresponds to R, if R # ), is either a leaf
(i.e., a vertex of ) or an internal node labelled by either P, S, or N.

The md-tree T(G) depicted in Fig. 2.1 contains two N-nodes, that is, the nodes ¢ and t5. The
graph G(t2) is a prime spider on seven vertices with spider-partition S = {v1,vs,v3}, K = {ve,v7,v8},
and R = {t4}, while G(t5) is also a prime spider on four vertices with spider-partition S = {vy,vs},
K = {vg,v19}, and R = (. The graph G[M (¢2)] is a spider (non prime spider) with R = {v11,v12}, and
the graph G[M (t5)] is also a spider (prime spider) with R = §.

2.2.3 Number of Paths

Based on the techniques described in [62, 70], we modify the tree T(G): We binarize the tree T'(G) in
such a way that each of its internal nodes labelled by either P or S has exactly two children; we denote
by T3(G) the resulting tree. The left and right child of an internal P-node or S-node t of T;(G) will be
denoted by t; and t,, respectively. Note that if T'(G) has only N-nodes then T3(G) coincides with T'(G).

Let G[M (t)] denote the subgraph induced by the leaf descendants of ¢ in T(G), and let L(t) denote
the number of vertices of G[M (¢t)]. We say that T,(G) is leftist, denoted by Ty (G), if for every internal
node t labelled by either P or S, the condition L(t;) > L(t,) is satisfied, where ¢; and ¢, are the left
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and right child of ¢, respectively. For every S-node t of Ty (G), we replace the subtree rooted at node ¢,
with the L(¢,) leaves and call the resulting tree the reduced leftist binary tree of Ty (G); we denote it by
Ty (G).

Let A(t) denote the number of paths in the minimum path cover of the graph G[M (¢)]. It is easy to
see that, in order to construct the path cover using the tree Ty, (G), we need to know the number of
paths A(t) of each internal node ¢ € Ty, .(G). Recall that, if ¢ is a P-node or S-node then it has a left
child ¢; and a right child ¢,; otherwise, ¢ is an N-node and it has at least 4 children which induce a prime
spider G(t) = (S, K, R) with either R =0 or R = {r}, r € Ty,(G). Note that in the case where R = ()
we set A(r) = 0, otherwise A(r) > 1. Based on the results of [46, 62], we obtain the following formula for
the number of paths in a minimum path cover of a P,-sparse graph.

A(t) + A(tr) if ¢ is a P-node,
max{1, A(t;) — L(t,)} if ¢ is an S-node,
Alt) = |K|—2A(r) . . o (2.1)
A(r) + {max {0, f}—‘ if G(t) is a thin spider,
max {1, A\(r)} if G(t) is a thick spider.

We conclude with the following results.

Lemma 2.4. Let G be a Py-sparse graph on n vertices and let T'(G) be its modular decomposition tree.
The leftist binary tree Ty (G) and the reduced leftist binary tree Ty, (G) can be computed in O(logn) time
using O(n/logn) EREW PRAM processors.

Proof. Since we only binarize each subtree of T'(G) rooted at a P-node or an S-node and since T(G)
contains O(n) nodes, we can construct both the leftist binary tree Tp;(G) and the reduced leftist binary
tree Ty (G) in O(logn) time using O(n/logn) EREW PRAM processors; see [1] and Lemma 5.2 of [70].
1

Lemma 2.5. Let G be a Py-sparse graph on n vertices and Ty, (G) be its reduced leftist binary tree. For
every internal node t of Ty (G), the number of paths \(t) in a minimum path cover of G[M (t)] can be
computed in O(logn) time using O(n/logn) EREW PRAM processors.

Proof. By Eq. (2.1) and Lemma 2.4 of [70] it suffices to detect whether G(t) is a thin spider or a thick
spider for every internal N-node ¢ of Ty;,.(G). Let ¢ be the number of the N-nodes of Tj,;,-(G) and let ¢; be
an internal N-node of Ty, (G), 1 < i < ¢. By Lemma 2.2 it follows that each graph G(¢;) can be checked
in O(logn;) time using O(n;/logn;) EREW PRAM processors, where n; = V(G(t;)). Recall that for
every graph G(t;) at least n; — 1 vertices are leaves in T}, (G); see Lemma 2.3. Thus the overall time and
processor complexity are O(logn) time and O(n/logn) EREW PRAM processors, respectively. 1

2.2.4 Path Trees and Bracket Matching

In this section we review the path trees [70], which are the key ingredients of our algorithm and we show
that using bracket matching we can make the construction of path trees more efficient.

Let G be a graph and let P = [p,...,p'] be a path of a minimum path cover P of G. Note that, if
G is a hamiltonian graph then P = {P}. A path tree, denoted by T'(p,p’), is a rooted binary tree whose
nodes are exactly the vertices of a path P of the minimum path cover P of G and p, p’ are the endpoints
of P. The vertices of the path tree T'(p, p’) are placed in T'(p,p’) in such a way that the inorder traversal
of T'(p,p’) returns the path P. It follows that the path tree of a given path P, is not unique. Note that,
a path P can be constructed from its corresponding path tree T'(p, p’), optimally in parallel, by applying
the Euler tour technique [70].
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Let Ty (G) be the reduced leftist binary tree obtained from the md-tree T(G) of the graph G. In order
to construct the path trees efficiently in a parallel environment, we generate a sequence of square/round
brackets for each node of Tp;-(G). We use two types of brackets: Square brackets “[” and “]” and round
brackets “(” and “)”. The path trees are constructed by finding matching pairs of square brackets and
matching pairs of round brackets independently. Note that, given a bracket sequence corresponding to the
vertices of a graph G, the path trees and consequently the path cover of G can be constructed optimally.
These matchings correspond to the edges of a path tree. Specifically, for vertices a and b, we establish
an edge as follows:

aP b
e [ ] an edge connecting the vertex a to its parent b as a left child;

aP b"
e [ ] an edge connecting the vertex a to its parent b as a right child;

al bP
e () an edge connecting the vertex b to its parent a as a left child;

a” bP
e () an edge connecting the vertex b to its parent a as a right child.

2.2.5 Time and Work Optimality

Let G be a cograph on n vertices and let T'(G) be its representative cotree. For the minimum path cover
problem, Nakano et al. [70] have proved the following result:

Theorem 2.1. (Nakano et al. [70]): Every algorithm that determines the number of paths in a minimum
path cover or reports the minimum path cover of an n-vertex cograph represented by its cotree must take
Q(logn) CREW time even if an infinite number of processors is available.

To verify the time- and work-optimality of our algorithm note that the class of Py-sparse graphs is a
proper superclass of cographs and that the md-tree T(G) of a Py-sparse graph G contains P-nodes, S-
nodes and N-nodes; if T(G) has only P- or S-nodes then T'(G) coincides with the definition of a cotree
(see [13]). Thus, due to the following result, our algorithm is time- and work-optimal.

Corollary 2.1. Every algorithm that determines the number of paths in a minimum path cover or reports
the minimum path cover of an n-vertex Py-sparse graph G represented by its md-tree must take Q(logn)
CREW time even if an infinite number of processors is available.

2.3 Path Cover in P,-sparse Graphs

In this section we review some ideas for finding a minimum path cover of a Pj-sparse graph G. We
suppose that the reduced leftist binarized tree Ty;,-(G) of the input graph G is given. We focus on the
internal N-nodes since the cases of the P-nodes and S-nodes have already been studied in [61].

Let ¢ be an internal N-node of Tp;,-(G). Let P be the minimum path cover of the graph G[M (¢)] and
let A\(t) be the number of paths in P, i.e., A(t) = |P|; recall that, M (¢) is the module which corresponds
to node ¢t and consists of all the vertices of G associated with the subtree of T'(G) rooted at t.

Let G(t) = (S, K, R) be a prime spider and let S = {s1,s9,...,s¢} and K = {k1,ko,...,ke¢}, where
|S| = |K| = ¢; by definition, there exists a bijection f such that f(s;) = k;,1 < i <. If R = {r} then
let @ = {Q1,Q2,...,Qq4} be a minimum path cover of G[M (r)], where d = A(r), and let ¢; and ¢} be
the endpoints of the path Q;, 1 < i < d. Then, for the computation of the minimum path cover P of
G[M(t)] we distinguish the following two cases.
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Figure 2.2: Tllustrating the path cover of (a) a thin spider graph and (b) a thick spider.

Case 1. G(t) = (S, K, R) is a thin spider.

1.1 R = (. The graph G[M(t)] contains k = [£] paths. Thus, if ¢ is even then the ¢/2 paths in a
minimum path cover of G[M (t)] are the following:

P = {[SlkleSQ], [53k3k484], ey [Seflkeflkesd}. (22)

Note that the form of a path P of P can be arbitrary in terms of the order of the pair of adjacent vertices
sik;; that is, any path P of P can have the following form P = [s;k;k;s;], for i # j and 1 <14, j < {. For
simplicity we adopt the order of the vertices as shown in Eq. (2.2).

In the case where ¢ is odd, the (¢ + 1)/2 paths in a minimum path cover of G[M (t)] are:

P = {[s1k1kasa], [s3kakasa], ..., [se—2ke—2ke_150-1], [eke]}. (2.3)

1.2 R = {r}. The paths of G[M(t)] are obtained by joining the endpoints of some paths Q; of G[M(r)]
with the vertices of the k paths of G[S U K. Thus, if k < d (see Fig. 2.2(a)) and ¢ is even we have:

P =A{[sikiqr ... d1kasa), ..., [se—1ki—1qr - .- qpkese), Qrer, Qrta, - - - Qalts (2.4)
while if £ < d and ¢ is odd we have:

P ={[s1k1q1 ... q1kasa), ... [se—oke—oqr—1 ... @ _1ke—150-1], [sekeqn - . 1), Qry1, Qry2, - -, Qa}. (2.5)

If £ > d and ¢ is even then the paths that occur in a minimum path cover of G[M (¢)] are obtained by
joining d paths of G[S U K| with the d paths of G[M(r)]. Thus, we have:

P = {[sikiq1 ... q1kas2], ..., [s2a—1k2d-1Gd - - - @ykads2dl, - -, [Se—1ke—1kese]} (2.6)
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If £ > d and ¢ is odd, then the paths in a minimum path cover of G[M (¢)] are:

P ={[s1k1qr ... d kas2),. .., [s2a—1k2d—10d - - - Qyk2as2al, - - -, [Se—2ke—2ke—150-1], [seke]}. (2.7

Case 2. G(t) = (S, K, R) is a thick spider.

2.1 R = (). The graph G[M ()] is a hamiltonian graph and every edge in the Hamilton path has one
endpoint in S and the other endpoint in K (i.e., there exists no Hamilton path which contains an edge
with both endpoints in K; for example, see Fig. 2.2(b)). Thus, if £ is an odd number and ¢ > 3 we have:

P = {[51k253 PN kz,384,2k’4,184]43@,25@,1]{3@&,3]’64,4 N kl]} (2.8)

Note that, if £ = 3 the path is P = {[s1k3s2k153k2]}. In the case where ¢ is even and ¢ = 2 the graph
G[M (t)] is also a thin spider and thus the path that occurs is P = {[s1k2k152]}. Thus, if ¢ is even and
£ > 2 the paths that occur in a path cover of G[M (t)] are:

P = {[51k253 PN kz,QSZ,lkzsg,ng,1Sek4,38z,4k’4,5 N kl]} (2.9)

We note that in Eqs. (2.8)—(2.9) the order of the vertices can be obtained in many other ways. In fact, if
we assume that the set K is an independent set then the Hamilton path of S U K can be constructed by
any DFS traversal starting from an arbitrary vertex of S. More specifically in Eq. (2.8) (resp. Eq. (2.9))
the order between the vertices s; and sy (resp. k¢) can have the form k;s;;1kjs;jq1, for i # j, j #i+1,
and 1 < 4,5 < £. Similarly, between the vertices k; (resp. s¢) and k; we can have an arbitrary order of
the vertices of the form s;k;_1s;kj_1 (resp. k;si—1k;sj—1),fori#j,j#i—1,and 1 <4,j</¢—3. In
our study, for convenience we adopt the order shown in Eqgs. (2.8)—(2.9).

2.2 R = {r}. The Hamilton path of G[S U K] is connected to the path Q1 of G[M(r)]. Thus, the paths
that occur in a path cover of G[M (t)] are:

P = {[51k283 N k352k1ql N qll], QQ, Qg, ey Qd} (210)

Again, if ¢ = 2 the paths that occur are P = {[s1k2q1 ... ¢\ k152), Q2,Q3, ..., R4}, while if £ = 3 we have
P = {[s1kasak1s3kaqi ... q1],Q2,Q3, ..., Qa}.

In both cases, the paths in P form a minimum path cover of G[M(¢)]. Note that in a sequential
environment we can compute a minimum path cover in a P-node or an S-node ¢ of Ty, (G) by using
appropriate functions described in [61]. Similar results have appeared in [46].

2.4 Path Trees of P,-sparse Graphs

Although the sequential algorithm is quite simple, a naive parallelization of this algorithm needs time
proportional to the height of the tree Ty;,.(G), which in the worst case is O(n). In order to obtain an
efficient parallel algorithm, we make use of the path tree structures and a bracket matching technique
introduced in [70] (see Section 2.2).

According to the way that a path tree is constructed, a vertex can be characterized as insert or bridge
vertex . A detailed description of a path tree construction, corresponding to a subtree of Tj;,.(G) rooted
at a P-node or an S-node ¢ is presented in [70]. The construction of a path tree corresponding to a subtree
of Ty (G) rooted at a P-node or an S-node t is performed by taking the union of two path trees (in the
case where ¢ is a P-node) or by inserting a vertex v into a path tree or by using a vertex v to bridge two
path trees (in the cases where ¢ is an S-node).
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Figure 2.3: The corresponding path trees of Figure 2.2(a).

Let P, = [p1,...,p}] and Py = [po,...,p5] be two paths of a graph G and let T'(p1,p}) and T'(p2,ph)
be their path trees rooted at nodes p} € P, and p € Ps.

Suppose that a vertex v ¢ P; has to be inserted in the path P;. In this case, we seek for an appropriate
modification of the path tree T'(p1,p}). Let u be a node of T'(p1,p}), i-e., u € P, having at most one
child (either left or right) in T'(p1,p}). Then, the vertex v is inserted in the path tree T'(p1, p}) either (i)
as a left or right child of the node w of T'(p1,p}) or (ii) as the root of the path tree T'(p1,p}) (in this case,
pY becomes a left or right child of vertex v).

Suppose now that a vertex v ¢ P, U P, has to bridge the two paths P; and P, i.e., v is connected to
an endpoint, say, p}, of P; and to an endpoint, say, p5, of P». In this case, the vertex v merges the two
path trees T'(p1,p}) and T'(p2,py) into a new path tree having root v with children the roots p} and pf
of the path trees T'(p1,p}) and T'(p2, p}), respectively.

Next we describe a procedure which generates a path tree corresponding to a subtree of Ty;,.(G) rooted
at an N-node. In general, the paths P; = [p;,...,p}] of a path cover P of a prime spider are considered
to be path trees rooted at either p; or pj, 1 < i < |P|.

Let G be a Py-sparse graph and let Ty;,-(G) be its reduced leftist binary tree. Let ¢ be an N-node
and let G(t) = (S, K, R) be a prime spider with S = {s1,52,...,8¢} and K = {k1,ka,...,k¢}, where
|S| = |K| = ¢. In Section 2.8 we have described the form of the paths of a minimum path cover of G(t).
Every such path P; is considered as a path tree rooted at a vertex x € S U K, where x is the rightmost
vertex of the path P;, 1 <i < A(t). More specifically, we distinguish two cases:

Case 1. G(t) = (S, K, R) is a thin spider.

1.1 R=0. If £ is even then every path P;, 1 < i < k, of the path cover of G|S U K] has the following
form:
P, = [s9;—1kai—1kaise;], for 1 <i <k,

where k = [%] Then each of the k path trees T'(s2;-1, S2;) is rooted at vertex sq; and each internal node
has only a left child. If £ is odd then only the k-th path differs from the previous case; it has the form:
Py, = [s¢ke]. In this case the vertex s, is the root of the corresponding path tree T'(sy, k¢) and the root sy
has left child the vertex ky.
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1.2 R = {r}. Let ¢{,q5,...,q] be the roots of the path trees T'(q1,q}), T (g2, ) - --,T(qa,q};) of the
graph G[M(r)], where d = A(r). As described above, every vertex ¢/’ becomes the right child of vertex
k2i—1, 1 < i < d, in the path trees (see Fig. 2.3). Note that if ¢ is odd and d > k, then the root of the
corresponding path tree of G[M (r)] becomes the right child of vertex k.

Case 2. G(t) = (S, K, R) is a thick spider.

2.1 R = (. The paths described in Eqgs. (2.8)—(2.9) are path trees T'(s1, k1) rooted at vertex ki, which
is the rightmost vertex of the Hamilton path of G[S U K]. Each internal node u of T'(s1, k1) has only a
left child which is the previous node of u in the sequences of Egs. (2.8)—(2.9); that is, vertex s; is the
leftmost leaf of T'(s1, k1).

2.2 R = {r}. In this case, one path of a path cover of G[M (r)] is connected to vertex ki; see Eq. (2.10).
Let ¢f,q5, ..., ¢} be the roots of the path trees T'(¢1,¢1),T(g2, ¢5), - - -, T (qa, ¢};) of G[M ()], respectively,
where d = A(r). Then the resulting path tree T'(s1,q}) is similar to T'(s1, k1) of the previous case; the
only difference is that vertex g} becomes the right child of the root k1 of T'(s1,q;) (see Fig. 2.4).

In all the cases, the structure of the corresponding path trees is verified from the fact that the inorder
traversal of the path trees returns the paths described in Eqs. (2.2)—(2.10).

2.5 Bracket Sequence on N-node

Let ¢ be a node of Ty,-(G) and let T'(q1,q1), T(q2,45), - - -, T(qr () qi\(t)) be the path trees of G[M (t)]. We
denote by B(t) the bracket sequence of node t (see Section 2.4). Note that a bracket matching of B(t)
corresponds to an edge of a path tree T'(g;,q.), 1 < i < A(¢). Thus, all the bracket matchings of B(t)
generate the path trees of G[M (t)].

Let T'(p;, p;) be a path tree of G[M (t)] and let a be a vertex of T'(p;,p}). Then, we have: If a is the
root of T'(p;, p}) then there is an unmatched bracket [ in B(t). If a has only a right child in T'(p;, p})

al

then there is an unmatched bracket ( in B(t), while if a has no right child in T'(p;, p}) then there is an

unmatched bracket a( in B(t).

The cases where ¢ is a P-node or an S-node of Ty;,.(G) have been established in [70]. Here we study
the case where ¢ is an N-node of T}, (G) and we show the construction of an appropriate bracket sequence
B(t) using the above results.

Let t be an N-node of Ty;,-(G) and let G(t) = (S, K, R) be a prime spider with S = {s1, s2,..., s¢} and
K = {ki,ko,...,k¢}, where |S| = |K| = ¢. For simplicity, we associate a dummy node ¢ to each N-node
t and define B(f) to be the bracket sequence of the vertices of the set SU K. In the case where R = {r},
let B(r) be the bracket sequence of node r. For the bracket sequence B(t) of the N-node ¢, we have:

B(#) = {B(E) if R=0, 2.11)

B(r)- B(t) if R={r},

where B(r) - B(t) denotes the concatenation of B(r) and B(t). Thus, given the bracket sequence B(r),
we need to construct the bracket sequence B(%).

To simplify our description, for each path tree T'(p;, p;) of G[S U K], we denote by A(i) the bracket
sequence which has the property that its bracket matching generates the path tree T'(p;,p;). We also
denote by II(7) the bracket sequence of the unmatched brackets which correspond to the root of T'(p;, p;)
or to the vertices of T'(p;, p}) that do not have a child (left or right) in T'(p;, p}). For example, if T'(p;, p})

zP otz

contains only a vertex x, then A(7) = () since there is no edge in the path tree, and I1(i) = [ ( ( since x
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T(s1,q1):
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Figure 2.4: The corresponding path trees of Figure 2.2(b).

is the root of the path tree and has neither left nor right child. For the special case where G[M (¢)] is a
TPyl

prime spider with R = {r}, i.e., r is a leaf in Tj;,-(G), we associate the bracket sequence B(r) = [ ( (.
As before, we distinguish two cases for the prime spider G(t).

Case 1. G(t) = (S, K, R) is a thin spider.

1.1 R = . The graph G[S U K] contains k = [£] paths. Thus, if ¢ is even we associate to node ¢
an appropriate bracket sequence B(t) that generates k = % path trees T'(q1,41),T(q2,45), - -, T(qk, q},)-
Each path tree T'(g;,q;) should have the following structure: (i) it consists of four vertices, (ii) it has
root a vertex of S, and (iii) its internal vertices have only left children. Recall, that the inorder traversal
of T'(qi,q}) produces the path P; = [s;_1k2;—1k2is2;], which is the i-th path of P in Eq. (2.2) (see also
Section 2.4). The following two bracket sequences generate the path tree T'(¢;, ¢;):

D 1 P 1 Pl
Syi—1 ka1 Koy_1 kb, K5, sh;

AW = [ 1 [ 1 [],1<:i<

sy Kby
By definition, the matching pair [ ] in A(¢) makes vertex sq;_1 to be the left child of vertex ko;_1,
kgi—l le,,
the matching pair | ]| makes vertex ko;—1 to be the left child of vertex ky;, while the matching pair
k5, sh;
[ ] makes vertex ko; the left child of vertex so;. The bracket sequence II(7) consists only of left brackets

(round or square), because each vertex of the path tree T'(¢;, ¢}) should be able to have two children and a

1 r
S2i—1 S2i—1

parent. In detail, the brackets ( and ( mean that the vertex so;—; can have a left and a right child,

respectively, since it is the leftmost leaf of the path tree T'(g;, q}). The vertices ko;_1 and ko; already have
k;i—l kél

only left children in T'(g;,q}) and thus we add brackets ( and (. As the root sg; of the tree T'(¢;, ¢})

Sp

s
2i 524

can have a right child and a parent, we add brackets | and ( in II(7).

If ¢ is odd, there are k = e+71 paths in the graph G[M (t)]. Thus, e+71 path trees are generated by
B(t), which produce the paths in Eq. (2.3). As in the previous case, the K_Tl path trees T'(g;, q;) consist
of four vertices and the root of the path tree T'(gx, g;,) is the vertex s, which has vertex k; as a left child.

Thus, we now need to distinguish the bracket sequence that generates path tree T'(¢x, qj,) from the rest
(£-1)

5~ path trees T'(q;,q;). Therefore, the following bracket sequences generate the corresponding path
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trees:

5,1 kb1 k54 kb k3, sh, -1
Ay = [ ] [ 111 1=sis——,
0+1 K st
Ay =
=TT
shi_1 Shi_y kb1 kb, s, s5; -1
@ = ¢ ¢ C ([ ( 1<is——, and
4+ 1 kp ky s sy
n = T

1.2 R = {r}. Since the graph G[S U K] contains k paths, the paths of G[M (t)] are obtained by joining
the endpoints of the paths Q1,Qa,...,Qk of G[M(r)] with the endpoints of the k paths of G[S U K].
Thus, we need to connect the path trees T'(¢;, ¢}) corresponding to the paths Q; of G[M (r)] with the path
trees corresponding to the paths of G[SUK] in such a way that the inorder traversal of the resulting path
trees provides the correct paths. Thus, if £ < d and £ is even we have the following bracket sequences:

p L » I P 1 T
Spj_1 ko q Koy oy kb kY shy Koy

ap) = T T T TTT T, 1sisy, ad

R s s P s
S2i—1 S2i—1 kg, Sy; Sh;

n@ = ¢ C[( 1<i<

N~

Comparing A(i) and I1(i) with the corresponding sequences of the previous case where R = ), one
k“gifl
can observe that the round bracket ( does not appear in II(i) but it is appended to A(i) as square
k;i—l
bracket ] . This is because we need to connect the root of a path tree of G[M(r)] as a right child of
vertex ko;_1 of the i-th path tree.

Recall that, in the case where ¢ is odd there exists a path tree T, consisting of two vertices: The
root sy and its left child k,. Consequently, if k& < d, a path tree of G[M (r)] is connected as a left child of
vertex k; of Ty, and, thus, we have the following bracket sequences:

P 1 P Lopp Gl kT
S$5i-1 kai1 Koy 1 kb, kG, s, Ky

s = T isis s
IVEESuN

e = O 1<i< % and
m - (1T

If & > d then the paths that occur in a minimum path cover of G[M (t)] are obtained by joining d
paths of G[S U K] with the d paths of G[M(r)]. The rest k — d paths of G[S U K] remain the same. As
k3, _q
a result, if k£ > d and ¢ is even, the bracket ] appears only in A(i) where 1 < i < d. Recall that, the
k;‘ifl
bracket ] means that vertex ko;—1 can have a right child which is the root of a path tree corresponding
to a path of G[M (r)]; for example, see Fig. 2.5. Therefore, we have the following bracket sequences:
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T(q1,4q})

slé—l I\ Sy_1
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O/
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Figure 2.5: The brackets for the path trees T'(s1, s2) and T'(sy—1, s¢) of Figure 2.3.

5,1 kb1 KB,y kb, kS, shy K5y
[ 1 [ 101 ], 1<i<d
55,1 klm,fl k54 klzi k%, 312-;

L1 D 1], d<is<

N >

R s T v T
S2i—1 S2i—1 k3; 55; 53,

( ( ([ (,1<i<d and

R T T r P T
Spi—1 S2i—1 ki1 kY; 85, sb;

CTCTCUT asisl

In the case where k > d and / is odd, the sequence of brackets can be generated in a similar way;

that is, d paths trees corresponding to paths of G[S U K] are joined with the d path trees corresponding
to paths of G[M(r)]. The rest k — d path trees corresponding to paths of G[S U K| remain the same.
Recall that, when ¢ is odd there is a path tree generating a path of G[S U K] which consists of only two

vertices. In order to obtain the paths of G[M (¢)] we have the following bracket sequences:

P L P U 1 T
Spi_1 ko;_q kg, kb, kY, sh, kg

(1 [ 111 1,1<i<d
Shi_1 kl?i—l kg4 klzi k3, slzi /-1
G acic 2
kg sp

[],

Shi_1 Si_1 kb, s5; sb;

( [ 1<i<d,

N T T r P r
Spi—1 8251 ka1 ki, sb; sb;

C [<,d<igﬁgi and

L P o
ko kp s¢ sg

(L
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Collecting all the previous results in both Case 1.1 and Case 1.2, we have that for ¢ even the bracket
sequence that generates the path trees of G[S U K] is the following:
4 14 4 14

B(t) = A(1) - A(2) -- -A(§ —1)-A(z)-T(1) - TI(2) - - - TI(= — 1) - TI(2), (2.12)

and for ¢ odd the bracket sequence is the following:

B() = A1) A@) A ACED 1) 1) -1

. . ). (2.13)

We note that the order between any A(¢) and A(j) in Eqgs. (2.12)-(2.13) does not affect the correctness
of the construction of the corresponding path trees. The same holds for any bracket sequences II(7) and
I1(j). Furthermore the number of brackets of each A(7) and II(7) is at most seven and six, respectively.

Case 2. G(t) = (5, K, R) is a thick spider.

2.1 R = (. The graph G[SU K] is Hamiltonian and a Hamilton path can be constructed by edges which
have one endpoint in S and the other endpoint in K. Therefore, the sequence of brackets described below
result to a path tree. The first edge of the associated path is the one connecting the first vertex of .S,
say, s1, with the second vertex of K, say, k2. The second edge is that connecting the vertex ks with the
vertex sz, while the third edge connects the vertex sz with the vertex k4, and so on. Recall that, by
definition there is no edge from a vertex s; of S to a vertex k; of K. Also, note that the graph G[SU K]
does not have a unique Hamilton path; in fact every edge of a Hamilton path can have its endpoints in
two arbitrary vertices s; and k; aslong asi# jand 1 <i,j </ —3.

As described in Section 2.3, we need to distinguish two cases depending on the value of ¢. If £ is an
odd number, then we have the following bracket sequences:

sy K sy sy
A1) = [, A0 =], I = (G
KL KD Sé+1 Sii1 s; Ky
A(Z) = ] [ ] [, i1 =2,4,...0—5/{—3, H(Z) = ((, 2<¢ <l -1,
KL RD sty sty kP KT
ARy = 1] [, i=3,5...£4—6,0—4, mey = 1 (.
Ky k{4 s} ¥ ky oKy 5y 1) 4 KL kY Sh 550 3
Ama = ] [ 101 01 0101 [,
Aeven = A(2) ! A(4) o A(E - 5) ’ A(E - 3)a
Moas = Al—1)-AL—6)--A(5) - A3),

The sequences A(1) and A({) are used to identify the endpoints s; and k; of the Hamilton path. Each
A(4) consists of one matching pair of vertices k; and s;/, i’ # i, such that the vertex k; will become the
left child of the vertex s;; in the corresponding path tree as described in Section 2.4. By concatenating
two sequences A(%) - A(j) in the sequence Aeyen, where i and j are even numbers, the vertex s;; becomes
the left child of the vertex k; in the corresponding path tree. The same holds for the sequence Agqa,
where, in this case, i and j are odd numbers. In this way we eventually connect the two edges k;s;; and
k;s; by adding the edge s; k;.

Thus, the sequence A(1) - Aeven constructs a path consisting of the odd-labelled vertices s; and the
even-labelled vertices k;, 1 < ¢,j < ¢ — 2 (where i is even and j is odd). Let s; be the endpoint of the
path produced by the sequences A(1) - Aeven having an odd label, 1 < j < ¢ — 2. Then, we know that
we can append a closing square bracket ]| corresponding to the even-labelled vertex ky_; since there is
no bracket corresponding to the vertex s;_; in the sequence Aeven. Now there is a matching between
the bracket of the vertex k,_; and the bracket of the vertex s;. The five matching pairs of brackets in
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T(s1,4¢)):

Figure 2.6: The brackets for the path tree T'(s1,¢}) of Figure 2.4.

Amia construct the sequence of the corresponding vertices described in Eq. (2.8). In a similar manner the
sequence Agda - A(¢) constructs a path of the even-labelled vertices s; and the odd-labelled vertices k;,
1<1i,5 <€ —3 (where i is even and j is odd).

Note that the above sequences of brackets A(:) will eventually produce a path tree which has nodes
that have only a left child. In order to make each internal node able to connect with a right child we

append II(7) which contains right brackets (round or square). In addition, vertex s; which is the leftmost
sy 87
leaf of the path tree can obtain both a left and a right child and, therefore, we use the brackets ( ( in
kY
II(1). In addition, we use the square bracket [ in II(¢) because vertex k; is the root of the path tree and
it can become a child itself. Thus, the bracket sequence that generates the path trees of G[M(¢)] is the

following;:
B(t) = A(1) - Acven - Amid - Moaa - A(£) -TI(1) - TI(2) - - - TI(¢). (2.14)

In the case where ¢ is even, we have the following bracket sequences:

sy K. s} st
A1) = [, A@ =], I = (G
KL RY sit1 874 sy Ky
A = 11T =24 -2, n@ = (. 2<i<i-1,
kL kP si_yst kY kY
A@ = T[] [, i=35..0-5/[=3, me) = [ (
kb kY Sp_o 5p_o ky_1 K 150 5]
Ama = 101 [ 1 [ 110
Aeven = A(2)-A(4)-- A(L—4)-A(£ —2),
Aoaa = A(L—=3)-A(l—5)---A(5) - A(3),

The above sequences are similar to those of the case where ¢ is an odd number. The only difference is in
sequence Anig in which the three matching pairs can easily be verified by Eq. (2.9). As described above,
we need to make each internal node able to connect with a right child, and therefore we append to the
sequence A(1) - Aeven  Amid - Aoaa the bracket sequences II(7), 1 < i < £. Thus, the bracket sequence B(f)
of Eq. (2.14) generates the path trees of G[S U K].
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2.2 R = {r}. The Hamilton path of G[S U K] is connected to the path Q; of G[M (r)]. Consequently,

the bracket sequences A(4) and II(¢) are similar to those described above in the case where R is empty
k7

(for example, see Fig. 2.6). The only difference is that we need bracket ]1 in order to make the path

tree corresponding to the path @, of G[M(r)] be the right child of the root vertex, that is vertex ki, of

the path tree corresponding to the Hamilton path of G[S U K]. Hence, only the two following brackets

sequences are different from the previous cases:

Kb KT kY
A = 11, and  I(0) = [

Note that in the sequence of brackets II(¢) we now have one less bracket, compared with the case where
kT

R is empty. The missing bracket is ( because vertex ki already has a right child. As a result, we have

that the bracket sequence B(#) that generates the path trees of G[S U K] is described in Eq. (2.14).

We note that the sequences A(2), A(4), ..., A({{ —4), A({ —2) can appear in any order in the bracket
sequence Aeyen; similarly, the sequences A(¢ — 3), A(¢ —5), ..., A(5), A(3) can appear in any order in
Aoda. The same holds for the sequences II(i), 1 < i < /; that is, they can appear in any order in B(f)
after the sequence A(¢). Furthermore, the sequences A(1), Amig, A(¢), II(1) and II(¢) contain a constant
number of brackets.

2.6 The Algorithm

In this section we present an optimal parallel algorithm for the minimum path cover problem on P;-sparse
graphs. Our algorithm takes as input a Py-sparse graph G on n vertices and its modular decomposition
tree T'(G), and finds the paths of a minimum path cover in O(logn) time using O(n/logn) processors
on the EREW PRAM model.

Let us first sketch the workings of our algorithm. Initially, we compute the binarized md-tree T3,(G);
recall that we only binarize each subtree of T'(G) rooted at a P-node or an S-node. In order to make the
binarized tree leftist, we compute the number L(t) for each internal node ¢ of T;(G). We next compute
the number A(¢) of paths in the minimum path cover of G(M][t]) for each internal node ¢ of Ty, (G). Before
assigning any bracket sequence, we first compute the reduced leftist binarized tree Ty;.(G), and, then, for
every internal N-node ¢ of Ty;,-(G) we compute a bracket sequence B(t) based on the vertices of S U K
which are leaves and children of ¢ in T}, (G). Using this information, we generate a bracket sequence
B(troot) Of the 100t tr00t 0f Tyi(G). Finally, we construct the path trees by finding all matchings of
B(troot) and then we return vertex sequences produced by the inorder traversal of the path trees. Recall
that the latter corresponds to a minimum path cover of G. We next give the detailed description of the
algorithm.

We mention here that Step 4 needs a post-processing function. The bracket assignment procedure
for an S-node, as described in [70], may lead to path trees which result to paths having edges that do
not appear in the graph G. This post-processing function corrects any illegal path tree which has been
produced by the children of the S-node. The correct path trees are calculated with a detailed technique,
as a post-processing step, proposed in [70].

Time and Processor Complezity. Next, we analyze the time and processor complexity of the proposed

algorithm on the PRAM model; for details on PRAM techniques, see [52, 79]. We assume that the input
graph G and its modular decomposition tree T'(G) are given in adjacency list representations.
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Parallel_Minimum_Path_Cover

Input: A Ps-sparse graph G and its modular decomposition tree T'(G);

Output: A minimum path cover of the P-sparse graph G;

1. Compute the binarized tree Tj(G) of T(G) and the number L(t) for each internal node ¢ of T(G),
and then the leftist binarized tree Ty(G);

2. Compute the number of paths A(¢) in the minimum path cover of G[M (¢)] for each internal node ¢
of Ty (@), and then the reduced leftist binarized tree Ty, (G);

3. Generate the sequence of brackets B(t,o0t) of the root ¢t of Th-(G) based on [70] (for P-nodes
or S-nodes) and on Eqs (2.11)—(2.14) of Section 2.5 (for N-nodes);

4. Construct the path trees by finding all matchings of B(t,o0t);

5. Return a minimum path cover from the path trees;

Algorithm 1: Paralle] Minimum_Path_Cover

Steps 1 and 2 are executed in O(logn) time using O(n/logn) EREW processors (see Lemma 2.4
and Lemma 2.5). Step 3 computes the sequence of brackets B(t,o0t) Of the ro0t t,00t Of Tpi-(G). This
computation can be efficiently done by first computing the bracket sequence B(t) of each internal node
t of Ty (G) (see results of [70] and Eqgs (2.11)—(2.14)), and then contracting the tree Ty, (G) into a
three-node tree consisting of the root and two nodes. We use standard parallel techniques (i.e., prefix
sums, array packing, concatenation) to construct the bracket sequences in each internal node, and the
rake operation to reduce the tree Tp;,-(G) into a three-node tree (see [52, 79]). Thus, this step can be
computed in O(logn) time using O(n/logn) EREW processors. Step 4 can be performed in O(logn)
time using O(n/logn) EREW processors by finding the matching pairs of the sequence B(t,o0t), Where
troot 18 the root of Ty, (G). Note that B(tr00t) has O(n) brackets since the tree Ty, (G) has O(n) nodes,
and also that each assignment of bracket of an internal node u € Ty;,-(G) does not exceed the number of
its children in Ty;,-(G). Step 5 is accomplished with Euler-tours on the path trees. Since the nodes of the
path trees are the vertices of the input graph G, it follows that they contain n nodes, and, thus, Step 5
can be executed in O(logn) time using O(n/logn) processors on the EREW PRAM model.

By Corollary 2.1, the path cover problem of an n-vertex Pj-sparse graph represented by its md-tree
must take Q(logn) time on the CREW PRAM model. Our algorithm Parallel Minimum_Path_ Cover
shows that this time lower bound is tight for the class of Ps-sparse graphs. Summarizing, we obtain the
following result.

Theorem 2.2. Let G be a Py-sparse graph on n vertices and let T'(G) be its modular decomposition tree.
A minimum path cover of G can be computed time- and work-optimally in O(logn) time using O(n/logn)
EREW PRAM processors.

2.7 Other Classes of Graphs

In this section we extend our results to a proper superclass of P;-sparse graphs, namely the P;-tidy graphs.
The class of Ps-tidy graphs was introduced by I. Rusu in order to illustrate the notion of P,-domination
in perfect graphs; see [38].

30



A graph G is Py-tidy if for any induced Py, say, abed, there exists at most one vertex v € V(G) —
{a,b,c,d} such that the subgraph G[{a,b,c,d,v}] has at least two P,’s (i.e., the P, has at most one
partner). The Py-tidy graphs strictly contain the cographs, Ps-reducible, Py-sparse, Pj-extendible, and
Py-lite graphs. The Py-lite graphs were defined by Jamison and Olariu in [53]: A graph G is Py-lite if
every induced subgraph H of G with at most six vertices either contains at most two Py’s, or is a 3-sun,
or is the complement of a 3-sun (a 3-sun is a thick spider on six vertices with R = ). They remark
that every Pj-sparse graph is Pj-lite and prove that every Pjy-lite graph is brittle and, thus perfect. We
mention here that the Py-lite graphs coincide with the Cs-free Py-tidy graphs.

The modular decomposition of Ps-tidy graphs has a structural property, as in the case of Pj-sparse
graphs (Lemma 2.3), which is shown by the following result (Theorem 3.2 in [38]):

Theorem 2.3. (Giakoumakis et al. [38]): Let G be a graph and let T(G) be its modular decomposition
tree. The graph G is Py-tidy iff for every N-node t of T(G), G(t) is either

(i) a Ps, a Ps, or a Cs, and no vertex of G(t) is an internal node in T(G), or

(i) a prime spider (S, K, R) with at most one vertex of S U K which is an internal node having two
children which are leaves in T(G).

The above theorem implies that every N-node ¢ of the md-tree T'(G) of a Ps-tidy graph G has either five
vertices which are leaves in T(G) and G(t) € {Ps, P5,Cs} or G(t) = (S, K, R) is a prime spider with at
most one vertex, say, ¢, of S U K replaced by a 2K, or a Ky (i.e., t is a P- or S-node with two children
which are leaves in T'(G)). Based on this result, the path cover problem for the class of Py-tidy graphs
was solved in sequential linear time by describing the paths that occur in every internal node of T'(G)
[38].

Let G be a Py-tidy graph, T(G) be its md-tree and ¢ be an N-node of T'(G). Here we describe the
bracket sequence B(t) that generates the corresponding path trees which produce the paths of a minimum
path cover of G[M (t)]. According to Theorem 2.3 we distinguish the following cases.

Case Al. G(t)is a Ps, a Ps or a Cs.

It is easy to see that A(t) = 1, since a path on five vertices (not necessarily chordless) occurs in the
three possible graphs (see also [38]). Thus, A(t) can be computed optimally and, hence, it is possible to
construct optimally the tree Tp;,-(G). Let vivavsvavs be such a path of G[M(t)]. Then the corresponding
path tree T'(vy,v5) is constructed as in the case where we have a thick spider with R = @ (Section 2.4,
Case 2.1). Thus, it can be viewed as the Hamilton path of a thick spider and the corresponding bracket
sequence B(t) is given in details in Section 2.5, Case 2.1.

Case A2. G(t) = (S, K, R) is a prime spider.

In this case and if no vertex of SU K is replaced by an S or a K, the paths of a minimum path cover of
G[M (t)] are obtained by considering the cases of a prime spider of a Ps-sparse graph (Section 2.3). Here,
we also have to consider the fact that a vertex of S U K can be substituted by an Sy or a Ko which will
eventually change the value of A(¢). Notice that in any case we have to distinguish whether we have a
thin or a thick spider and whether the set R = ) or not. For example, if G(t) is a thick spider with R = ()
and a vertex of S is replaced by the two vertices of S, say, s; and s/, then the paths of a minimum path
cover of G[M(t)] are a Hamilton path (see Section 2.3) and an isolated vertex (one of the two vertices,
say, s, of the set S3). Thus, in this case, the value of A(t) is equal to the value of the case where G(t) is
a thick spider (see Eq. 2.1) plus one.
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In a similar manner, we can consider all the other cases and establish the corresponding paths of
a minimum path cover of G[M(t)]; details about the A(¢) and the paths in a minimum path cover of
G[M (t)] can be found in [38]. In order to obtain the paths of G[M (t)] we can construct the path trees
and the bracket sequence B(t) in a way similar to that described in Section 2.5.

Based on the above description, we can show the following result for the class of Py-tidy graphs: Given
a P,-tidy graph G on n vertices and its modular decomposition tree T'(G), a minimum path cover of G
can be optimally computed in O(logn) time using O(n/logn) processors on the EREW PRAM model.

2.8 Concluding Remarks

We have presented an optimal parallel algorithm for solving the minimum path cover problem on Py-
sparse graphs; our algorithm runs in O(logn) time with O(n/logn) processors on the EREW PRAM
model, and thus is time- and work-optimal due to the results of [70]. We also described the way we
can solve the same problem on the class of Py-tidy graphs, which forms a proper superclass of Py-sparse
graphs.

An interesting open question would be to see if similar techniques can be efficiently used for finding
a minimum path cover for other classes of graphs and solving other related algorithmic problems such as
the terminal path cover problem: Given a graph G and a subset S of its vertices, the terminal path cover
problem is to find a minimum path cover P of the graph G such that all the vertices of S are endpoints
of the paths in P.
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CHAPTER 3

NP-COMPLETENESS RESULTS FOR THE
k-PATH PARTITION PROBLEM

3.1 Introduction
3.2 Convex Graphs
3.3 Quasi-Threshold Graphs

3.4 Concluding Remarks

3.1 Introduction

We study the k-path partition problem, a generalization of the path cover problem [36]; recall that the
path cover problem is to determine the minimum number of paths in a path cover of a simple graph G,
while a path cover of G is a collection of vertex disjoint paths Py, Ps,..., P, in G whose union is V(G).
A path cover is called a k-path partition if none of the paths has length more than &, for a given positive
integer k. The k-path partition problem is to determine the minimum number of paths in a k-path
partition of a graph G. It is a natural graph problem with applications in broadcasting in computer and
communications networks [87, 92] and it is NP-complete for general graphs [36]. Yan et al. [92] gave
a polynomial time algorithm for finding the minimum number of paths in a k-path partition of a tree ,
while Steiner [88] showed that the problem is NP-complete even for cographs if k is considered to be part
of the input, but it is polynomially solvable if k is fixed; he also presented a linear-time solution for the
problem, with any k, for threshold graphs. Quite recently, Steiner [87] showed that the k-path partition
problem remains NP-complete on the class of chordal bipartite graphs if &k is part of the input and on
the class of comparability graphs even for k = 3. Furthermore, he presented a polynomial time solution
for the problem, with any k, on bipartite permutation graphs and left the problem open for the class of
convex graphs.

Motivated by Steiner’s work [87], we prove that the k-path partition problem is NP-complete on
convex graphs. Furthermore, we show that this problem is NP-complete for quasi-threshold graphs, and
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Figure 3.1: The complexity status of the k-path partition problem for some graph subclasses of compara-

bility and chordal graphs. A — B indicates that class A contains class B. (x): NP-complete, previously
known; (x*): NP-complete, new result; (P): polynomial, previously known; (?7): unknown.

thus, it is also NP-complete for interval and chordal graphs. For some graph classes, the complexity
status of the k-path partition problem is illustrated in Fig. 3.1'.

This chapter is organized as follows. In Section 3.2 we show that the k-path partition problem is
NP-complete on convex graphs, a superclass of bipartite permutation graphs. In Section 3.3 we present
structural properties of the class of quasi-threshold graphs and NP-completeness results on this class,
while Section 3.4 concludes the chapter and discusses open problems.

3.2 Convex Graphs

We next prove that the k-path partition problem is NP-complete for convex graphs; recall that a bipartite
graph G = (X,Y; E) is convex on the vertex set X if X can be ordered so that for each element y in the
vertex set Y the elements of X connected to y form an interval of X [63].

Theorem 3.1. The k-path partition problem is NP-complete for convex graphs.
Proof. The k-path partition problem is obviously in NP. In order to prove NP-hardness , we use a

transformation from Bin-Packing. The formulation of the Bin-Packing problem ([SR1] in [36]) is presented
below.

IFigure 3.1 shows a diagram of class inclusions for a number of graph classes, subclasses of comparability and chordal
graphs, and the current complexity status for the k-path partition problem on these classes; for definitions of the classes
shown, see [13, 40].
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Figure 3.2: Nllustrating the constructed convex graph G.

Bin-Packing

Instance: Finite set U of items, a size s(u) € Z+ for each u € U, a positive integer bin capacity B, and
a positive integer K.

Question: Is there a partition of U into disjoint sets Uy, Us, ..., Uk such that the sum of the sizes of the
items in each U; is B or less?

Let a set A = {ay,...,a,} of n elements, a size s(a;) € ZT for each a; € A, a positive integer bin
capacity B and a positive integer K.

We construct the following graph which is a convex graph: Consider an independent set S! =
{8185, -+, 8% (4, } Of s(a;) vertices and an independent set 7" = t{,t5,..., ¢}, ) , of s(a;) — 1 vertices for
every a; € A, 1 < i < n. We connect every t; € T? to vertices s; € S% and s§»+1 €85 1<j<s(a;)—1;
let P;, 1 <4 < n be the resulting disconnected graphs, each containing 2s(a;) — 1 vertices. Thus, we can
associate P; with a; € A, for every i € [1,n]. We add an independent set C = {c1,¢2,...,cn_x}of n—K
vertices and we connect each ¢j, 1 < j < n — K to every vertex of all sets S%, 1 < i < n; let G be the
resulting graph. The graph G is a connected graph and it is illustrated in Fig. 3.2.

One can easily verify that the graph G is a convex graph; we define the sets X and Y as follows:

_ 1 1 1 2 2 2 n .n n
X = {81752""788((11)751’827""Ss(a2)7"'781752""7Ss(an)}

_ 1 41 1 2 42 2 n 4n n
Y {tl’tQ""7ts(a1)717t1’t2""’ts(a2)717"" 19 27...,ts(an)71,01,02,...Cn_K}

Since X is ordered so that for each element y in the vertex set Y the elements of X connected to y form
an interval of X, the constructed bipartite graph G = (X,Y; E) of Fig. 3.2 is convex on the vertex set
X.

We now claim that the graph G has a k-path partition into K paths of length at most k = 2B — 2
if and only if A can be partitioned into K disjoint sets A;, Ao, ..., Ax such that the sum of the sizes of
the items in each A; is B or less.

(«<=) Suppose now there exists a partition of A in Ay,..., Ax such that the sum of the sizes of the
items in each A; is B or less. We show how to find a k-path partition of G into K paths of length at
most k = 2B — 2. Let a; be the number of items contained in each A;, 1 < i < K. We construct n
paths of length 2s(a;) —2, 1 < j < n, that is, the paths p; = [s{,t{, s%,t%, sé, ce sg(aj)il,tg(aj)il, sg(aj)],
1 < j < n. Note that each path p; corresponds to each subgraph P; of G. Then, we use a; — 1 vertices
of the set C' to connect the «; paths corresponding to the elements of the set A; into one path of length
@ —2—a; +23 04 8(a) <2B -2,

(=) We next suppose that G has a (2B — 2)-path partition into K paths. Since the set X contains
S, s(a;) vertices and the set Y contains ) ., s(a;) — K vertices, then a minimum path partition
cannot contain less than K paths. Moreover, since each vertex t; eT(1<i<n,1<j<s(a;)—1)
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sees only the vertices 33'» and s; 41 of X, a path containing vertices of the subgraph P; can be connected
to a path containing vertices of the subgraph P, only through a vertex of the set C, which contains
n — K vertices. We claim that, in order to obtain a path partition of no more than K paths, we first
have to construct n paths p; = [s%, ¢!, s5, 1}, s%, .. .,si(ai)_l,ti(%)_l, si(ai)], 1 < i < n, and then we have
to connect them using vertices of C' in such a way that no path contains more than 2B — 1 vertices;
note that both endpoints of each path p; are in X and each p; corresponds to a subgraph P;. Indeed,
let g; be a subpath of p; and let p; be the n — 1 paths corresponding to the n — 1 subgraphs P;, where
pj = [s{,t{,sé,té,sé, .. '7Si(a,~)—1’ti(a,~)—1’Si(aj)]’ 1 <j<mnandi#j. Then, there exist vertices of the
subgraph P; that are not included in the path g;, which form a path ¢;. Thus, we have to connect n + 1
paths using n — K vertices of the set C, which results to K + 1 paths, a contradiction. Consequently, in
order to obtain a path partition of no more than K paths, we first have to construct n paths p;, 1 <1i < n,
corresponding to the subgraphs P;, and then we have to connect them using vertices of C in such a way
that no path contains more than 2B — 1 vertices. Let P’ = {p},p},...,p} be the set of the paths of
the (2B — 2)-path partition of G. Each one of these K paths contains at most B vertices of X and if a
vertex s}, £ € [1,s(a;)] belongs to a certain path then all vertices s%, 1 < j < s(a;), belong to the same
path. Consequently, the set A can be partitioned into K disjoint sets A1, Aa, ..., Ax such that the sum
of the sizes of the items in each A; is B or less.

The theorem follows from the strong NP-completeness of Bin-Packing, since the transformation can
be done easily in polynomial time. 1

3.3 Quasi-Threshold Graphs

A graph G is called quasi-threshold, or QT-graph for short, if G contains no induced subgraph isomorphic
to Py or Cy4 (cordless path or cycle on 4 vertices); for definition and optimization problems on this class
see [40, 55, 66, 72, 73]. The class of quasi-threshold graphs is a subclass of the class of cographs and
contains the class of threshold graphs [18, 40]; see Fig. 3.1.

3.3.1 Structural properties

Let G be a QT-graph with vertex set V(G) and edge set E(G). The following lemma follows immediately
from the fact that for every subset S C V(G) and for a vertex x € S, we have Nggj[z] = N[z] NS and
that G — S is an induced subgraph.

Lemma 3.1. [55, 73]: If G is a QT-graph, then for every subset S C V(G), both G[S] and G[V (G) — 5]
are also QT -graphs.

The following theorem provides important properties for the class of QT-graphs. For convenience, we
define
cent(G) ={z € V(G) | N[z] = V(G)}.

Theorem 3.2. [55, 73]: The following three statements hold.

(i) A graph G is a QT -graph if and only if every connected induced subgraph G[S], S C V(G), satisfies
cent(G]S]) # 0.

(ii) A graph G is a QT-graph if and only if G[V(G) — cent(G)] is a QT -graph.

(iii) Let G be a connected QT -graph. If V(G) — cent(G[S]) # 0, then G|V (G) — cent(G)] contains at
least two connected components.
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Figure 3.3: The typical structure of the cent-tree T.(G) of a QT-graph.

Let G be a connected QT-graph. Then V; = cent(G) is not an empty set by Theorem 3.2. Let G; = G,
and G[V(G)—V1] = GoUG3U- - -UG,., where each G; is a connected component of G[V(G)—V;] and r > 3.
Then since each G; is an induced subgraph of G, G; is also a QT-graph, and so let V; = cent(G;) # 0 for
2 < ¢ < r. Since each connected component of G;[V (G;) — cent(G;)] is also a QT-graph, we can continue
this procedure until we get an empty graph. Then we finally obtain the following partition of V(G):

V(G)=V1+Va+---+ Vg, where V; = cent(G;).

Moreover we can define a partial order < on the set {V1, V4, ..., V;} as follows:
Vi 2V; it V; =cent(G;) and V; CV(Gy).

Tt is easy to see that the above partition of the vertex set V(G) of the QT-graph G possesses the following
properties.

Theorem 3.3. [55, 78]: Let G be a connected QT-graph, and let V(G) = Vi + Vo + -+ + Vj, be the
partition defined above; in particular, V1 := cent(G). Then this partition and the partially ordered set
({Vi}, %) have the following properties:

(P1) If V; XVj, then every vertex of V; and every vertex of V; are joined by an edge of G.
(P2) For every V;, cent(GH{UV: | Vi 2 V;}]) =V;.

(P3) For every two Vi and Vi such that Vs < Vi, G{UVi | Vs 2 Vi 2 V4}] is a complete graph. Moreover,
for every mazimal element Vi of ({V;}, =), G{UV: | Vi 2 V; X V4}] is a mazimal complete subgraph
of G.

The results of Theorem 3.3 provide structural properties for the class of QT-graphs. We shall refer to
the structure that meets the properties of Theorem 3.3 as cent-tree of the graph G and denote it by
T.(G). The cent-tree T.(G) (see Fig. 3.3) of a QT-graph is a rooted tree; it has nodes Vi, Vs, ..., Vi, root
V1 := cent(G), and every node V; is either a leaf or has at least two children. Moreover, Vi < V; if and
only if V; is an ancestor of V; in T.(G). Thus, we can state the following result.

Corollary 3.1. A graph G is a QT-graph if and only if G has a cent-tree T.(G).
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Observation 3.1. Let G be a QT-graph and let V = V; + V5 + --- + Vi be the above partition of
V(GQ); Vi = cent(G). Let S = {vs,Vs41,...,0¢,...,04} be a stable set such that v; € V; and V; is a
maximal element of (V;, <) or, equivalently, V; is a leaf node of T.(G), s < t < ¢. It is easy to see
that S has the maximum cardinality a(G) among all the stable sets of G. On the other hand, the sets
UV | i 2 V; X V41, for every maximal element V; of (V;, <), provide a clique cover of size x(G)
which is the smallest possible clique cover of G; that is «(G) = «(G). Based on the Theorem 3.3 or,
equivalently, on the properties of the cent-tree of G, it is easy to show that the clique number w(G) equals
the chromatic number x(G) of the graph G; that is, x(G) = w(G).

3.3.2 NP-completeness results

In order to prove that the k-path partition problem is NP-complete for quasi-threshold graphs, we use
the 3-PARTITION problem. The formulation of the 3-PARTITION problem ([SP15] in [36]) is presented
below.

3-PARTITION

Instance: Set A of 3m elements, a bound B € Z*, and a size s(a) € Z* for each a € A, such that
1B < s(a) < 3B, and such that }_ _, s(a) = mB.

Question: Can A be partitioned into m disjoined sets Aj, As,..., A, such that, for 1 < i < m,
D ac A s(a) = B (note that each A; must therefore contain exactly three elements from A)?

Theorem 3.4. The k-path partition problem is NP-complete for quasi-threshold graphs.

Proof. The k-path partition problem is obviously in NP. In order to prove NP-hardness, we use a
transformation from 3-PARTITION.

Let a set A = {ay,...,a3m} of 3m elements, a positive integer B and let positive integer sizes s(a;)
for each a; € A be given, such that iB < s(a;) < %B, and such that ZaieAs(ai) =mB,1<1i<3m.
We may suppose that, for each a; € A, s(a;) > m (if not, then we can multiply all s(a;) and B with
m+1).

We construct the following graph which is a quasi-threshold graph: Consider a graph G(V U C, E)
having a clique K,,(Va,, Eq,) on s(a;) vertices for each a; € A such that V,, NV,, = 0, i # j, and
V= a;ea Va;- There are no edges in G between vertices in different cliques. In addition, G has 2m
“connector” vertices C' = {v1,va, ..., vam } which form a clique in G. Every v; € C' is connected to every
u € V. It is clear that G is a quasi-threshold graph.

We now claim that A has a 3-PARTITION, that is, A can be partitioned into m disjoint sets
A1, Az, ..., Ay, such that 3 4 s(a) = B for 1 < i < m, if and only if G has a partition into m
paths of length £k = B 4 2. Notice that the constraints on the item sizes ensure that each S; must have
exactly three elements from A.

(=) If A has a 3-PARTITION A; = {z;,v:,2:}, 1 < i < m, then we can use the two elements
V2i—1,V2; € C to connect the corresponding subgraphs K, Ky, and K, into a path V;,,v2;_1, V,, v,
V., of length B + 2.

(«<=) We next suppose that G has a (B + 2)-path partition into m paths, Py, P, ..., P,,. Since G
has m(B + 2) vertices, each P; must contain exactly B + 2 vertices. Because of the size constraints, each
P; must contain at least two connector vertices from C.
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We claim that, in order to obtain a path partition of no more than m paths, we first have to construct
3m paths p1, ps, . . ., P3m corresponding to the 3m cliques, and then we have to connect them using vertices
of C' in such a way that each path P;, 1 < i < m, contains exactly B + 2 vertices. Indeed, let ¢ be a
subpath of path p;, corresponding to clique K,, and let p; be the 3m — 1 paths corresponding to the rest
3m — 1 cliques. Then, there exist vertices of clique K,, that are not included in the path g, which form
a path ¢;. Thus, we have to connect 3m + 1 paths using 2m vertices of the set C, which results to m + 1
paths, a contradiction. Consequently, in order to obtain a path partition of m paths, we first have to
construct 3m paths p;, 1 <¢ < 3m, corresponding to the cliques K,,, and then we have to connect them
using vertices of C' in such a way that each path contains exactly B + 2 vertices.

Since we have 3m paths, corresponding to 3m cliques, and 2m connectors, each P; must contain
exactly two connector vertices. We claim that none of the paths P; contains an edge between two vertices
of clique C. Indeed, let Py be a path containing an edge from clique C, that is, it contains two vertices
of C. Since s(a;) < g, 1 < i < 3m, if P, contains paths from two cliques, then its length is less than
B + 2. Thus, at least one more connector vertex from C' is needed in order to connect at least one more
path p; to the path Pj. Consequently, we have a path, that is, Py, using at least three connector vertices
of C, a contradiction. Therefore, none of the paths P; contains an edge between two vertices of clique C.

Since each P; must contain exactly two connector vertices, no path P; can have vertices from more
than three cliques K,,. Since the length of each P; is B + 2, each P; must cover the vertices of exactly
three cliques K, and the sizes of the corresponding three elements of A must add up to B. Consequently,
the set A can be partitioned into m disjoint sets A;, As, ..., A, such that the sum of the sizes of the
items in each A; is equal to B.

The theorem follows from the strong NP-completeness of 3-PARTITION, since the transformation
can be done easily in polynomial time. 1

Since the class of quasi-threshold graphs is a subclass of interval graphs, which is a subclass of chordal
graphs, the proof of the NP-hardness of the k-path partition problem for quasi-threshold graphs also
establishes the NP-hardness of this problem for the class of interval and chordal graphs. Thus, we can
state the following result.

Corollary 3.2. The k-path partition problem is NP-complete for interval and chordal graphs.

3.4 Concluding Remarks

We have studied the complexity of the k-path partition problem and proved that it is NP-complete for
the class of convex and quasi-threshold graphs. Given that this problem is polynomially solvable for
bipartite permutation graphs, we have sharpened the demarcation line between polynomially solvable
and NP-hard cases of the k-path partition problem. The status of the problem remains open for the class
of biconvex graphs; this class properly contains bipartite permutation graphs and is a proper subclass of
convex graphs.
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CHAPTER 4

NP-COMPLETENESS RESULTS FOR
COLORING PROBLEMS ON SUBCLASSES
OF CHORDAL AND BIPARTITE (GRAPHS

4.1 Introduction

4.2 Connected Interval and Permutation Graphs
4.3 Bipartite Permutation Graphs

4.4 Quasi-Threshold Graphs

4.5 Split Graphs

4.6 Threshold Graphs

4.7 Concluding Remarks

4.1 Introduction

A harmonious coloring of a simple graph G is a proper vertex coloring such that each pair of colors
appears together on at most one edge, while a pair-complete coloring of G is a proper vertex coloring
such that each pair of colors appears together on at least one edge; the harmonious chromatic number
h(G) of the graph G is the least integer k for which G admits a harmonious coloring with & colors and
its achromatic number ¢ (G) is the largest integer k for which G admits a pair-complete coloring with &
colors.

The harmonious coloring problem is NP-complete on general graphs [47], while the pair-complete
coloring problem was proved to be NP-hard on arbitrary graphs by Yannakakis and Gavril [93]. The
formulations of the harmonious coloring problem and the pair-complete coloring problem in [15] are
equivalent to the following formulations.
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Harmonious Coloring Problem

Instance: Graph G = (V| E), positive integer K < |V/|.

Question: Is there a positive integer k¥ < K and a proper coloring using k colors such that each pair of
colors appears together on at most one edge?

Pair-complete Coloring Problem

Instance: Graph G = (V, E), positive integer K < |V]|.

Question: Is there a positive integer £ > K and a proper coloring using k colors such that each pair of
colors appears together on at least one edge?

The complexity of both problems has been extensively studied on various classes of perfect graphs such
as cographs, interval graphs, bipartite graphs and trees [13, 40]; see Fig. 4.1 for their complexity status’.
Bodlaender [11] provides a proof for the NP-completeness of the pair-complete coloring problem for
disconnected cographs and disconnected interval graphs, and extends his results for the connected cases.
His proof also establishes the NP-hardness of the harmonious coloring problem for disconnected interval
graphs and disconnected cographs. It is worth noting that the problem of determining the harmonious
chromatic number of a connected cograph is trivial, since in such a graph each vertex must receive a
distinct color as it is at distance at most 2 from all other vertices [15]. Bodlaender’s results establish
the NP-hardness of the pair-complete coloring problem for the class of permutation graphs and, also, the
NP-hardness of the harmonious coloring problem when restricted to disconnected permutation graphs.
Extending the above results, we show that the harmonious coloring problem remains NP-complete on
connected interval and permutation graphs.

Concerning the class of bipartite graphs and subclasses of this class (see Fig. 4.1), Farber et al. [32]
show that the harmonious coloring problem and the pair-compete coloring problem are NP-complete for
the class of bipartite graphs. In addition, Edwards et al. [30, 31] show that these problems are NP-
complete for trees. Their results also establish the NP-completeness of these problems for the classes of
convex graphs and disconnected bipartite permutation graphs. However, the complexity of these problems
for connected bipartite permutation graphs and biconvex graphs is not straightforward.

Motivated by this issue we prove that the harmonious coloring problem and the pair-complete coloring
problem is NP-complete for connected bipartite permutation graphs, and thus, the same holds for the
class of biconvex graphs. Moreover, based on Bodlaender’s results [11], we show that the pair-complete
coloring problem is NP-complete for quasi-threshold graphs and that the harmonious coloring problem is
NP-complete for disconnected quasi-threshold graphs. It has been shown that the harmonious coloring
problem is polynomially solvable on threshold graphs. In this chapter we show that the pair-complete
coloring problem is also polynomially solvable on this class by proposing a simple linear-time algorithm.

This chapter is organized as follows. In Section 4.2 we show that the harmonious coloring problem is
NP-complete on connected interval and permutation graphs while in Section 4.3 we show that the prob-
lems are NP-complete on bipartite permutation graphs. In Section 4.4 we present structural properties
of the class of quasi-threshold graphs and NP-completeness results on this class, while in Section 4.5 we
show that the harmonious coloring problem is NP-complete on split graphs. In Section 4.6 we describe
a simple linear-time algorithm for the pair-complete coloring problem on threshold graphs, and, finally,
Section 4.7 concludes the chapter and discusses open problems.

IFigure 4.1 shows a diagram of class inclusions for a number of graph classes, subclasses of comparability and chordal
graphs, and the current complexity status for the harmonious coloring problem, the pair-complete coloring problem, and
the k-path partition problem on these classes; for definitions of the classes shown, see [13, 40].
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Figure 4.1: The complexity status of the coloring problems for some graph subclasses of comparability

and chordal graphs. A — B indicates that class A contains class B. The box to the left (resp. right) of
each class contains the status of the harmonious coloring (top), pair-complete coloring (bottom) problems
on connected (resp. disconnected) graphs. (x): NP-complete, previously known; (xx): NP-complete, new
result; (P): polynomial, previously known; (P): polynomial, new result.

4.2 Connected Interval and Permutation graphs

We next prove that the harmonious coloring problem is NP-complete for connected interval graphs; a
graph G is an interval graph if its vertices can be put in one-to-one correspondence with a family of
intervals on the real line such that two vertices are adjacent in G if and only if their corresponding
intervals intersect.

Theorem 4.1. Harmonious coloring is NP-complete when restricted to connected interval graphs.

Proof. Harmonious coloring is obviously in NP. In order to prove NP-hardness, we use a transformation
from a strongly NP-complete problem, that is, the 3-PARTITION problem. The formulation of the
3-PARTITION problem [36] is presented in Section 3.3.

Let aset A ={ay,...,asm} of 3m elements, a positive integer B and let positive integer sizes s(a;) for
each a; € A be given, such that 1B < s(a;) < 2B, and such that > ;e 8(a;) =mB. We may suppose
that, for each a; € A, s(a;) > m (if not, then we can multiply all s(a;) and B with m + 1).

Extending the result of Bodlaender [11], we construct the following connected graph which is an
interval and a permutation graph: Consider a clique with m vertices, a clique with B vertices, and add
a vertex v that is connected to every vertex in the two cliques; let G; be the resulting graph. Next
we construct for every a; € A a tree T; of depth one with s(a;) leaves and root z;, that is, every leaf
is adjacent to the root; note that there are 3m such trees T3,75,...,T5,,. Then we construct a path

43



3m—1, 3m—1,3m—1

1 2 i, i :
Yiys Ystar) YIU3 Ys(as) Y1Va Yoy U 0™ Yilagm 1) U

3m, 3m 3m
1 Ys Ys(azm)

Figure 4.2: Illustrating the constructed connected interval and permutation graph G.

P =[v1,va,...,03m] of 3m vertices, and we connect each vertex v; of the path P to all the vertices of the
tree T;, 1 < i < 3m. Additionally, for each vertex v; € P, we add m — 1+ B — s(a;) + i — 1 vertices and
connect them to vertex v;; let GGo be the resulting graph. Note that the graph G; U G5 is disconnected.
Finally, we add an edge to the graph G; U G2 connecting vertices v; and v and let G be the resulting
graph. The graph G is a connected graph and it is illustrated in Fig. 4.2.

One can easily verify that G is an interval graph. A clique can be represented as a number of intervals
that share at least one point in common. Two cliques sharing a vertex u can be represented as a number
of intervals such that one of them, which corresponds to u, shares at least one point with the intervals
corresponding to the vertices of each clique. It is easy to see that the vertices of G can be put in one-to-
one correspondence with a family of intervals on the real line such that two vertices are adjacent in G if
and only if their corresponding intervals intersect.

It is easy to see that the total number of edges in G is

3m
(m) +<B> +m+B+3m+mB+3m+mB+3m(m—2)+2mB+Zi:<

dm + B + 1>
2 2 _
=1

2

For every harmonious coloring of G and every pair of distinct colors i, j, ¢ # j, there must be at most
one edge with its endpoints colored with ¢ and j. Thus, it follows that the harmonious chromatic number
cannot be less than 4m + B + 1, and if it is equal to 4m + B + 1 then we have, for every pair of distinct
colors ¢,7, 1 <4,7 <4m+ B+ 1, a unique edge with its end-points colored with ¢ and j. Thus, we have
an exact coloring of G; an ezact coloring of G with k colors is a harmonious coloring of G with & colors
in which, for each pair of colors i, j, there is exactly one edge (a,b) such that a has color ¢ and b has
color j.

We now claim that the harmonious chromatic number of G is (less or equal to) 4m + B + 1 if and
only if A can be partitioned in m sets Ay, ..., A,, such that ZaeAj s(a) =B, forall j,1<j<m.

(<) Suppose now a 3-partition of A in A;,..., A, such that Vj : ZaeAj s(a) = B exists. We
show how to find a harmonious coloring of G using 4m + B + 1 colors. We color the vertices of the
first clique with colors 1,2, ..., m, the vertices of the second clique with m + 1,m + 2,...,m + B, and
vertex v with m + B 4+ 1. For convenience and ease of presentation, let M be the set containing colors
1,2,...,m, let B be the set containing colors m 4+ 1,m + 2,...,m + B, and let K be the set containing
colorsm+B+2,m+B+3,...,4m + B + 1. If a; € A; then we color the vertex x; with color j. Each
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color j € M is assigned to the three vertices corresponding to three a; that have together exactly B
neighbors of degree 2. We assign to each one of these B neighbors a different color from B, and next we
assign to each vertex v; of the path P a distinct color from C. Recall that each vertex v;, 1 < i < 3m,
is connected to two other vertices of P, i.e., v;_1 and v;11, and m + B + i — 1 more vertices, vertex v is
connected to vy, v and m + B other vertices, while vertex vs,, is connected to vs,,_1 and m+ B+3m —1
more vertices (see Fig. 4.2).

Next, we color the rest m — 1+ B — s(a;) + ¢ — 1 neighbors of each v;. We assign a distinct color
from the set M\¢; to m — 1 neighbors of v;, where ¢; is the color previously assigned to the vertex x;.
We next assign a distinct color from the set B\C; to B — s(a;) neighbors of v;, where C; is the set of the
colors previously assigned to s(a;) neighbors of the vertex x;. Finally, we assign a different color to the
rest 4 — 1 neighbors of v;, 3 <4 < 3m, using color m + b+ 1 and the colors assigned to the vertices v;,
1 < j <i—2. Note that, in order to color the m + B — s(a3) neighbors of vy, we only need to use color
m+ B+ 1 and colors from M and B, while for the m — 1+ B — s(a1) neighbors of v; we only use colors
from M and B. A harmonious coloring of G using 4m + B + 1 colors results, and thus, the harmonious
chromatic number of G is 4m + B + 1.

(=) We next suppose that the harmonious chromatic number of G is (less or equal to) 4m + B + 1.
Consider a harmonious coloring of G using 4m + B+ 1 colors. Without loss of generality we may suppose
that the m vertices of the first clique have distinct colors from M, while the B vertices of the second
clique have distinct colors from B. Also, without loss of generality, we color vertex v with color m+ B+ 1
since v is adjacent to all the vertices of the two cliques. Since vs,, is the vertex having the maximum
degree, that is, 4m + B, it has to take a color from K. Indeed, if it takes a color from M, then none of
its neighbors can take a color from M and we cannot color 4m + B vertices using only 4dm+ B +1—m
colors. Using similar arguments, we cannot color vertex vs,, using a color from 5 or the color m+ B + 1.
Thus, without loss of generality, we assign to vs,, the color 4m + B + 1. We color all its neighbors with
distinct colors from MUBU {m+ B+ 1}UK\{4m+ B +1}. Note that, vertex vz,,—1 takes a color from
K\{4m + B + 1}; let 4m + B be this color. Indeed, using similar arguments, it cannot take a color from
MUBU{m+ B+ 1}U{4m + B + 1}. Note that, color 4m + B + 1 cannot be assigned to any other
vertex of G since any pair of colors (4m+ B+ 1,j), 1 < j < 4m + B, already appears in the harmonious
coloring. Recall that, for every pair of distinct colors 7,7, 1 < i,j < 4m + B + 1, there is a unique edge
with its end-points colored with ¢ and j. Recursively, as can easily be proved by induction on i, the same
holds for all v; € P, 1 < i < 3m — 2, that is, v; takes a color from K\L, where £ is the set containing
colors m+B+1+i+1,m+B+1+1+2,....,4m + B + 1, which are the colors already assigned to
vertices v;, 1 < 7 < 3m.

Note that pairs (u,v), p € M, v € B, have not appeared yet. Since every pair of colors must appear,
we assign these pairs to the mB edges that have both endpoints uncolored. Note that these edges are
the edges (xi,y}), 1 < i < 3m, 1 < j < s(a;), where x; corresponds to a; and y} corresponds to the
j-th neighbor of z; having degree 2. The vertices z; cannot take a color from B, otherwise its s(a;) > m
uncolored neighbors y§ cannot be colored with m colors from M. Thus, vertices x; are assigned a color
from M and vertices y} are assigned a color from B (recall that B < s(a;) < £). Note that the only
uncolored vertices are m — 1 + B — s(a;) + ¢ — 1 neighbors of each v;, 1 < i < 3m. In order to color
m— 1+ B —s(a;) of the uncolored neighbors of v;, we use distinct colors from (MUB)\F, where F is the
set containing all colors already assigned to the s(a;) + 1 neighbors of v;. In order to color the last ¢ — 1
uncolored neighbors of v;, i > 1, we can only use colors from K\L\{m + B + 1 +4,m + B + i} because
the only unused pairs are (m+ B+ 1+14,5), where m+ B+1<j<m+B+1+i—2.

Finally, let a; € A; if and only if the vertex x; (with neighbors y;) is colored with color j € M. We
claim that for all j, ZaeAj s(a) = B. Indeed, each color j must be adjacent to some colors from B, and
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each color from B is assigned to exactly one vertex which is adjacent to all z; colored with j. Hence, a
correct 3-partition exists.

The theorem follows from the strong NP-completeness of 3-PARTITION, since the transformation
can be done easily in polynomial time. 1

We can easily show that the interval graph G illustrated in Fig. 4.2 is also a permutation graph. The
graph G is an interval graph if and only if it is a chordal graph and the graph G is a comparability graph
[40]. Moreover, one can easily verify that G admits an acyclic transitive orientation and, thus, it is a
comparability graph. Since G' and G are comparability graphs, it follows that G is a permutation graph
[40]. Consequently, we can state the following theorem.

Theorem 4.2. Harmonious coloring is NP-complete when restricted to connected permutation graphs.

4.3 Bipartite Permutation Graphs

We next prove that the harmonious coloring problem is NP-complete for connected bipartite permutation
graphs. A bipartite graph G = (X,Y; E) is a bipartite permutation graph if and only if it has a strong or-
dering of its vertices [85]; a strong ordering of the vertices of G = (X,Y’; F) is an ordering {x1,x2,...,2,}
of the vertices in X and an ordering {y1, y2, ..., ys} of the vertices in Y such that whenever z;y¢, ;ym € E
with ¢ < j and ¢ > m then we also have 2y, z;y¢ € E [85].

Theorem 4.3. The harmonious coloring problem is NP-complete when restricted to connected bipartite
permutation graphs.

Proof. Harmonious coloring is obviously in NP. In order to prove NP-hardness, we use a transformation
from 3-PARTITION.

Let a set A ={ay,...,asm} of 3m elements, a positive integer b and let positive integer sizes s(a;) for
each a; € A be given, such that %b < s(a;) < %b, > a,eas(@i) =mb, and 1 <i < 3m. We may suppose
that, for each a; € A, s(a;) > m (if not, then we can multiply all s(a;) and b with m + 1).

We construct the following connected graph which is a bipartite permutation graph: Consider a set
M = {mq,ma,...,my,} of m vertices, a set B = by, ba,...,b, of b vertices, and add a vertex v that is
connected to every vertex in the two sets. We add a set M’ = {m},m},...,m,,_;} of m — 1 vertices
and a set B = {b,b5,...,b,} of b—1 vertices. We connect M’ and B’ to the vertices of M and B as
follows: we connect each vertex m}, 1 <i <m — 1, to the vertices m;41, M2, ..., My, and each vertex
bi, 1 <i < b—1, to the vertices bj,bj,,,...,b,. Next we construct for every a; € A a tree T; of depth
one with s(a;) leaves, namely y%, 3, ... ,yi(ai), and root x;, that is, every leaf is adjacent to the root; note
that there are 3m such trees Th,T5, . .., T3y,. Then we add a set P = {p1,pa, ..., p3m} of 3m vertices, and
we connect each vertex p; to the root x; of the tree T;, 1 < i < 3m. We also connect p;, 2 < i < 3m, to
the s(a;—1) leaves of the tree T;_;. The vertex p; is also connected to the vertices of M’ and the vertex v.
Additionally, for each vertex p; € P, 2 < i < 3m, we add vertices v;'-, 1<j<m—-1+4b—s(a;—1)+14+3m—i
and connect them to vertex p;. We also add vertices vjl-, 1 <7 <b+3m—1 and connect them to the
vertex p1; let G be the resulting graph. The graph G is a connected graph and it is illustrated in Fig. 4.3.

One can easily verify that the graph G is a bipartite graph; let X and Y be its two stable sets. It
is easy to show that the graph G = (X,Y; F) admits a strong ordering of its vertices, and, thus, it is a
bipartite permutation graph. Let X and ) be the orderings of the vertices of X and Y, respectively. We
define X’ and ) as follows:

_ /o7 / ! / ! 1 1 1
X = {by,bs, ... by, v, MYy My, U, Vg Vg1, X1, X3, Xy A2, T3 )

y

3 3 3
{b17b2)' "7bb)m17m2)' .- 7mm,y1,y3,y57-- '7y3m—2)y1m7y2m)' "7ys(ma3m)}

46



b—s(ai—1) +4m —i b— s(asm-1) +m
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Figure 4.3: Nlustrating the constructed connected bipartite permutation graph G.

_ i+1 i+l i+l i+2  i+2 i+2 .
where X; = {zi,pit1,¥]" Vs ,...,ys(alﬂ),vi , Vg ""7U4m+b—s(a,,+1)—i—2}’ i =1,3,5,...,3m — 2,
_ i ; i+l il i+1 S
and V; = {z;, v}, 95, ... Ys(an)s V1 U5 ’Uéllm—i-b—s(ai)—i—l’ Tiy1}, 1 =1,3,5,...,3m — 2.

It is easy to see that the total number of edges in G is

3m—1

(T;) + (;) +m+ b+ 3m? + 3mb+ 3m + mb + Z; i= (4m+2b+1>
i—
For every harmonious coloring of G and every pair of distinct colors 7,7, i # j, there must be at most
one edge with its endpoints colored with 7 and j. Thus, it follows that the harmonious chromatic number
cannot be less than 4m + b + 1, and if it is equal to 4m + b + 1 then we have, for every pair of distinct
colors ¢,7, 1 <i,5 <4m+ b+ 1, a unique edge with its end-points colored with ¢ and j. Thus, we have
an exact coloring of G; an ezact coloring of G with k colors is a harmonious coloring of G with k colors
in which, for each pair of colors i, j, there is exactly one edge ab such that a has color 7 and b has color j.

We now claim that the harmonious chromatic number of G is (less or equal to) 4m + b+ 1 if and only
if A can be partitioned in m sets Ay, ..., A,, such that ZaeAj s(a) =b,forall j,1<j<m.

(«<=) Suppose now a 3-partition of A in Ay,...,A,, such that Vj : ZaeAj s(a) = b exists. We show
how to find a harmonious coloring of G using 4m + b+ 1 colors. We color the vertices of the sets M and
M’ with colors 1,2,...,m, the vertices of the sets B and B’ with colors m + 1,m +2,...,m + b, and
vertex v with m 4+ b + 1. For convenience and ease of presentation, let M be the set containing colors
1,2,...,m, let B be the set containing colors m + 1,m + 2,...,m + b, and let K be the set containing
colors m+b+2,m+b+3,....4m + b+ 1. If a; € A; then we color the vertex corresponding to a;
with color j. Each color j € M is assigned to the three vertices z; corresponding to three a; that have
together exactly b neighbors of degree 2. We assign to each one of these b neighbors a different color from
B, and next we assign to each vertex p; of the set P a distinct color from K. Recall that each vertex p;,
1 <4 < 3m, is connected to m + b+ 1 + 3m — i vertices (see Fig. 4.3).

Next, we color the rest m —1+b — s(a;—1) + 1 4+ 3m — i neighbors of each p;, 1 < i < 3m. We assign
a distinct color from the set M\{c¢;} to m — 1 neighbors of p;, where ¢; is the color previously assigned
to the vertex x; corresponding to a;. We next assign a distinct color from the set B\C; to b — s(a;_1)
neighbors of p;, where C; is the set of the colors previously assigned to s(a;—1) neighbors of the vertex
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x;—1 corresponding to a;,—1. Finally, we assign a different color to the rest 1 + 3m — i neighbors of p;,
using color m + b + 1 and the colors assigned to the vertices p;, i +1 < j < 3m. Note that, we have
assigned a color to m neighbors of p;, and, thus, in order to color the rest b + 3m — 1 neighbors of py,
we use colors from K and 5. A harmonious coloring of G using 4m + b + 1 colors results, and thus, the
harmonious chromatic number of G is 4m + b+ 1.

(=) We next suppose that the harmonious chromatic number of G is (less or equal to) 4m + b+ 1.
Consider a harmonious coloring of G using 4m + b+ 1 colors. Without loss of generality we may suppose
that the m vertices of the set M have distinct colors from M, while the b vertices of the set B have
distinct colors from B. Also, without loss of generality, we color vertex v with color m + b + 1, since
v is adjacent to all the vertices of the two sets, and vertex p; with color ¢,, = m + b+ 2. Note that
p1 is the vertex having the maximum degree, that is, 4m + b, and, thus, color m + b 4 2 is adjacent to
all colors, because we color all uncolored neighbors of p; with distinct colors from M U B U K\{¢,, }.
We claim that every vertex p;, 1 < ¢ < 3m, takes a color from K. Indeed, let ¢,, € M be a color
assigned to py. The degree of vertex po is equal to 4m + b — 1. However, color ¢,, can be adjacent to
(m—14b+3m+1)—(1+1) <4m+b— 1 other colors, and, thus, we need one more color in order to
color one more neighbor of p;. Using similar arguments, we show that vertex ps cannot take a color from
BU{m+b+1,m+0b+2}, and thus it takes a color from K\{¢,, }. Recursively, as can easily be proved by
induction on ¢, the same holds for all p; € P, 2 < i < 3m, that is, p; takes a color from K\L, where L is
the set containing colors ¢y, , ¢p,, ..., Cp,_,, Which are the colors already assigned to vertices p;, 1 < j < i.
Note that, if ¢k is a color from K U {m + b + 1}, then it cannot be assigned to any other vertex of G
since any pair of colors (cx,7), 1 < j <4m+ b+ 1, already appears in the harmonious coloring. Recall
that, for every pair of distinct colors 4,5, 1 <i,j < 4m+ b+ 1, there is a unique edge with its end-points
colored with ¢ and j.

We now show that all the vertices of the set B’ receive colors from B. Since each vertex u; € B’,
2 <4 < b, is adjacent to at least one vertex in B, none of them can take color m + b+ 1. Let u € B’
be one vertex taking a color from M, and let d, be its degree, while all the other vertices take colors
from B. The number of edges of G having one endpoint colored with a color from M that have not
appeared yet is mb — d,. Also, the number of edges of G having one endpoint colored with a color from
B that have not appeared yet is mb. Thus, the number of pais that have not appeared yet in G, is
mb—d,, +mb—mb = mb— d,, while the number of uncolored edges is mb, that is, the edges of the form
:cly;, 1<i1<3m,1<j<s(a;). This implies that we need more colors, and consequently, all the vertices
of the set B’ receive colors from B. Using similar arguments we can show that the vertices of the set M’
receive colors from M.

Note that pairs (u,v), n € M, v € B, have not appeared yet. Since every pair of colors must appear,
we assign these pairs to the mB edges that have both endpoints uncolored. Note that these edges are
the edges z;9%, 1 < i < 3m, 1 < j < s(a;), where z; corresponds to a; and y} corresponds to the j-th
neighbor of z; having degree 2. The vertices x; cannot take a color from B, otherwise the s(a;) > m
uncolored neighbors y; cannot be colored with m colors from M. Thus, vertices x; are assigned a color
from M and vertices y are assigned a color from B (recall that b < s(a;) < 2). Note that it is easy to
assign a distinct color to the 4m+b— s(a;—1) — i neighbors of each p;, 1 < i < 3m that have degree equal
to one; recall that m — 1 neighbors of p; belonging to the set M’ are already assigned a color from M.
If ¢,, is the color of vertex p;, we use distinct colors from M U B U K\{cs,, F, L, cp, }, where F is the set
containing all colors already assigned to the s(a;—1) 4+ 1 neighbors of p; and ¢,, € M is the color already
assigned to vertex x;.

Finally, let a; € A; if and only if the vertex x; (with neighbors y;) is colored with color j € M. We
claim that for all j, ZaeAj s(a) = b. Indeed, each color j must be adjacent to some colors from B, and
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each color from B is assigned to exactly one vertex which is adjacent to all z; colored with j. Hence, a
correct 3-partition exists.

The theorem follows from the strong NP-completeness of 3-PARTITION, since the transformation
can be done easily in polynomial time. 1

We have shown that the connected bipartite permutation graph G presented in this chapter, has

<4m +2b + 1) edges and h(G) = 4m + b+ 1. In [30] it was shown that if G is a graph with exactly (;)

edges, then a proper vertex coloring of G with k colors is pair-complete if and only if it is a harmonious
coloring. Thus, if G is a graph with (g) edges, then ¢(G) = k if and only if h(G) = k [15]. Consequently,

for the graph G, which is a bipartite permutation graph, we have that ¢¥(G) = 4m + b+ 1 and, thus,
our results also prove that the achromatic number is NP-complete for connected bipartite permutation
graphs. Consequently, we can state the following theorem.

Theorem 4.4. The pair-complete coloring problem is NP-complete when restricted to connected bipartite
permutation graphs.

We have shown that harmonious coloring and pair-complete coloring are NP-complete problems for the
class of bipartite permutation graphs. Consequently, the two problems are NP-complete for the class of
biconvex graphs, which properly contains bipartite permutation graphs. A bipartite graph G = (X,Y; E)
is convex on the vertex set X if X can be ordered so that for each element y in the vertex set Y the
elements of X connected to y form an interval of X; G is biconvex if it is convex on both X and Y.
Consequently, we can state the following result.

Corollary 4.1. The harmonious coloring problem and the pair-complete coloring problem are NP-
complete for biconvex graphs.

4.4 Quasi-Threshold Graphs

A graph G is called quasi-threshold, or QT-graph for short, if G contains no induced subgraph isomorphic
to Py or Cy (cordless path or cycle on 4 vertices). Structural properties of the class of quasi-threshold
graphs are presented in Section 3.3.

4.4.1 NP-completeness results

In order to prove the NP-completeness of the pair-complete coloring problem for cographs and interval
graphs, Bodlaender [11] constructs an instance of a disconnected graph which is simultaneously a cograph
and an interval graph and modifies it in order to obtain a connected instance of a graph which remains
a cograph and an interval graph. One can easily verify that the constructed graphs are also quasi-
threshold graphs. Thus, his proof also establishes the NP-hardness of the pair-complete coloring problem
for the class of quasi-threshold graphs, as well as the NP-hardness of the harmonious coloring problem
for disconnected quasi-threshold graphs. Consequently, we state the following result.

Corollary 4.2. The pair-complete coloring problem is NP-complete for quasi-threshold graphs; the har-
monious coloring problem is NP-complete for disconnected quasi-threshold graphs.
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4.5 Split Graphs

We next show that the harmonious coloring problem is NP-complete for split graphs, by exhibiting a
reduction from the chromatic number problem for general graphs, which is known to be NP-complete
[36].

Let G be an arbitrary graph with n vertices vy, vs,...,v, and m edges ey, es,...,en. We construct
in polynomial time a split graph @, where V(@) = K + I, as follows: the independent set I consists of
n vertices 01, Vs, ..., U, which correspond to the vertices vy, vs, ..., v, of the graph G and the clique K
consists of m vertices Uy, Us, . .., U, which correspond to the edges e, es, ..., ey, of G. A vertex uy € K,
1 <t <'m, is connected to two vertices U;,v; € I, 1 <1, j < n, if and only if the corresponding vertices v;
and v; are adjacent in G. Note that, every u; € K sees all the vertices of the clique K and two vertices
of the independent set I; thus, |E(G)| = W + 2m.

We claim that the graph G has a chromatic number x(G) if and only if the split graph G has a

~

harmonious chromatic number hA(G) = x(G) + m.

Let ¢; € {1,...,x(G)} be the color assigned to the vertex v; € G, 1 < i < n, in a minimum
coloring of G. We assign the color ¢; to the vertex v; of the set I and a distinct color from the set
{X(G) +1,....,x(G) + m} to each vertex of the clique K. Since two adjacent vertices of G receive
a different color, the neighbors of each u; € K belonging to the independent set have distinct colors.
Moreover, every vertex U; € I sees [Ng(v;)| vertices of the clique K, where N¢(v;) is the neighborhood
of the vertex v; in G. Thus, every pair of colors appears in at most one edge. In addition, the number
of colors assigned to the set I is equal to x(G) and the number of colors assigned to the clique is equal
to m. This results to a harmonious coloring of € using x(G) + m colors, which is minimum since the
vertices of the set I cannot receive a color assigned to a vertex of the clique K.

Conversely, a harmonious coloring of G using h(@) = x(G) +m colors assigns m colors to the vertices
of the clique K and x(G) colors to the vertices of the set I. Note that, x(G) is the minimum number of
colors so that vertices v;,v; having a neighbor in common are assigned different colors. Since v;,v; are
adjacent in G, it follows that we have a minimum coloring of G using x(G) colors.

Thus, we have proved the following result.

Theorem 4.5. Harmonious coloring is NP-complete for split graphs.

4.6 Threshold Graphs

In this section we study the pair-complete coloring problem on threshold graphs and describe a linear-time
algorithm based on structural properties of the class of threshold graphs.

The concept of threshold graph was introduced by Chvétal and Hammer in 1977 [17]. A graph G is a
threshold graph [17, 18, 40] if and only if G does not contain 2K5, P, or Cy4 as induced subgraphs. There
exists an alternative equivalent definition [67]: A graph is threshold if there exists a partition of V(G)
into disjoint sets K, I and an ordering {u;, ua, ..., u,} of the nodes in I such that K induces a clique in
G, I is a stable set of vertices and Ng(u1) € Ng(u2) C -+ C Ng(up). A partition of V(G) satisfying
the above definition will be called a (K, I) partition of G.

4.6.1 A tree structure

The class of threshold graphs is a subclass of quasi-threshold graphs; see Fig. 4.1. Consequently, for a
threshold graph G there is a tree structure which meets the properties of G, that is, the cent-tree T,.(G)
which is similar to the cent-tree of a QT-graph; see Fig. 3.3. Since a threshold graph G does not contain
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Figure 4.4: The typical structure of the cent-tree T.(G) of a threshold graph.

an induced subgraph isomorphic to 2K, each non-leaf vertex V; has k; > 2 children, where at most one
of them is a non-leaf child while the rest k; — 1 children are leaves containing only one vertex; see Fig. 4.4.
Note that the cent-tree T.(G) of a threshold graph G represents a (K, I) partition of G; equivalently,
given a (K, I) partition of G, we can construct the cent-tree T.(G).

4.6.2 Pair-complete coloring problem: a polynomial solution

The pair-complete coloring problem on a threshold graph G can be solved in linear time using its cent-tree
T.(G); see Fig. 4.4. The vertices V; of the leftmost path of the tree form a clique and thus each vertex
v; € V(QG) belonging to this path must receive a distinct color. If n’ is the number of the vertices of G
that belong to the leftmost path of T.(G), then we claim that the vertices of G take colors from the set
C ={1,2,...,n'} and the achromatic number (G) is ¥(G) = n’. Indeed, let C’ C C be the set of the
colors assigned to the leftmost leaf of T.(G) and let ¢, € C’. If we assign a new color, say, n’ + 1, to an
uncolored vertex of T;(G) then the pair (n’'+1, ¢}) cannot appear, which is a contradiction. Consequently,
we use the set C' to assign colors to the uncolored leaves of T.(G) in such a way that no vertex v; € V(G)
takes a color already assigned to an ancestor that belongs to the leftmost path.

Note that, if n’ is the number of the vertices of G that belong to the leftmost path of T.(G), then
n' equals the clique number w(G), and, thus, ¥(G) = w(G). Furthermore, based on the properties of
the cent-tree T.(G), it is easy to show that the clique number equals the chromatic number x(G) of the
graph G that is, x(G) = w(G). Thus, we propose a linear-time algorithm which holds for connected and
disconnected threshold graphs.

It is worth noting that a disconnected threshold graph includes only one connected component having
more than one vertex; each one of the rest of the connected components consists of only one vertex;
otherwise there would exist a subgraph isomorphic to 2K5. Consequently, we can color the isolated
vertices using one color we have already used. Thus, the fourth step of the algorithm is performed when
the graph is disconnected. In conclusion, we state the following theorem:

Theorem 4.6. Let G be a threshold graph. The pair-complete coloring problem is solved in linear time
on G and the achromatic number is (G) = w(G).

4.7 Concluding Remarks

We have studied the complexity of the harmonious coloring problem and the pair-complete coloring
problem on subclasses of bipartite graphs. Specifically, we have proved that both problems are NP-
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Algorithm Pair_Complete_Coloring

Input: a threshold graph G;

Output: a pair-complete coloring of G having ¥(G) = w(G);

1. Construct the cent-tree T,(G) of G;

2. Color the vertices of the leftmost path (clique) of T.(G) with distinct colors from the set C' =

{1,2,...,9(G)}.

3. Color each leaf vertex of T.(G) using a color already assigned to the sibling vertex that belongs to
the leftmost path of T(G) and contains a clique.

4. If there are any isolated vertices, color them using a color from the set C.

Algorithm 2: Algorithm Pair_Complete_Coloring

complete for the class of connected bipartite permutation graphs and, thus, they are NP-complete for
the class of biconvex graphs. Apart from the NP-completeness results, we have proposed a linear-time
algorithm for the pair-complete coloring problem on a subclass of chordal graphs namely threshold graphs.
Furthermore, we have shown that the connected interval graph G presented in Fig 4.2, which is also a

dm A+ Bt 1) edges and h(G) = 4m + B+ 1. In [30] it was shown that if G is a

permutation graph, has ( 9

graph with exactly <§) edges, then a proper vertex coloring of G with k colors is pair-complete if and
only if it is a harmonious coloring. Thus, if G is a graph with (;) edges, then ¥(G) = k if and only if

h(G) = k [15]. Consequently, for the graph G, which is simultaneously an interval and a permutation
graph, we have that ¥(G) = 4m 4+ B + 1 and, thus, our results could be also used to prove that the
achromatic number is NP-complete for connected interval and permutation graphs.
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CHAPTER 5

A LINEAR-TIME ALGORITHM FOR THE
k-FIXED-ENDPOINT PATH COVER
PrROBLEM ON COGRAPHS

5.1 Introduction

5.2 Theoretical Framework

5.3 The Algorithm

5.4 Correctness and Time Complexity

5.5 Concluding Remarks

5.1 Introduction

In this chapter, we study a variant of the path cover problem, namely, the k-fized-endpoint path cover
problem, or kPC for short. Given a graph G and a subset 7 of k vertices of V(G), a k-fixed-endpoint
path cover of G with respect to 7 is a set of vertex-disjoint paths P that covers the vertices of G such
that the k vertices of 7 are all endpoints of the paths in P. Note that, if 7 is empty, that is, kK = 0, the
stated problem coincides with the classical path cover problem. We show that the k-fixed-endpoint path
cover problem can be solved in linear time on the class of cographs. The proposed algorithm is simple,
requires linear space, and also enables us to solve some path cover related problems, such as the 1HP and
2HP, on cographs within the same time and space complexity. We next define the kPC problem.

Problem kPC. Let G be a graph and let 7 be a set of k vertices of V(G). A k-fized-endpoint path cover
of the graph G with respect to 7 is a path cover of G such that all vertices in 7 are endpoints of paths
in the path cover; a minimum k-fized-endpoint path cover of G with respect to 7 is a k-fixed-endpoint
path cover of G with minimum cardinality; the k-fized-endpoint path cover problem (kPC) is to find a
minimum k-fixed-endpoint path cover of the graph G.
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We show that the k-fixed-endpoint path cover problem (kPC) has a polynomial-time solution in the
class of complement reducible graphs, or cographs [24, 59]. The class of cographs is defined recursively
as follows: (i) a single vertex graph is a cograph; (ii) if G is a cograph then its complement G is also
a cograph; (iii) if G; and G are cographs satisfying V(G1) N V(G2) = 0, then their union G; U Gy is
also a cograph. Thus, cographs are formed from a single vertex under the closure of the operations of
union and complement. Cographs were independently discovered under various names and were shown to
have the following two remarkable properties: they are Py restricted graphs and they have a unique tree
representation (see [59]). This tree, called the co-tree, forms the basis for fast algorithms for problems
such as isomorphism, coloring, clique detection, clusters, minimum weight dominating sets [22, 23], and
also for the path cover problem [61, 70].

Contribution. In this chapter, we study the complexity status of the k-fixed-endpoint path cover
problem (kPC) on the class of cographs, and show that this problem can be solved in polynomial time
when the input is a cograph. More precisely, we establish a lower bound on the size of a minimum
k-fixed-endpoint path cover of a cograph G on n vertices and m edges. We then define path operations,
and prove structural properties for the paths of such a path cover, which enable us to describe a simple
algorithm for the kPC problem. The proposed algorithm runs in time linear in the size of the input
graph G, that is, in O(n 4+ m) time, and requires linear space. To the best of our knowledge, this is the
first linear-time algorithm for solving the kPC problem on the class of cographs.

The proposed algorithm for the kPC problem can also be used to solve the 1HP and 2HP problems on
cographs within the same time and space complexity. Moreover, we have designed our algorithm so that
it produces a minimum k-fixed-endpoint path cover of a cograph G that contains a large number of paths
with both their endpoints in 7 (we can easily find a graph G and a set 7 of k vertices of V(G) so that
G admits two minimum k-fixed-endpoint path covers with different numbers of paths having both their
endpoints in 7; for example, consider the graph G with vertex set V(G) = {a,b, ¢, d}, edge set E(G) =
{ab, be, ac, cd}, and T = {a,b}). Thus, we can also use our algorithm to solve problem A on cographs
within the same time and space complexity.

Related Work. The class of cographs has been extensively studied and several sequential and/or parallel
algorithms for recognition and for classical combinatorial optimization problems have been proposed.
Corneil et al. [24] proposed a linear-time recognition algorithm for cographs. Jung [54] studied the
existence of a Hamiltonian path or cycle in a cograph, while Lin et al. [61] proposed an optimal algorithm
for the path cover problem on cographs. Nakano et al. [70] proposed an optimal parallel algorithm which
finds and reports all the paths in a minimum path cover of a cograph in O(logn) time using O(n/logn)
processors on a PRAM model. Furthermore, quite recently Nikolopoulos [72] solved the Hamiltonian
problem on quasi-threshold graphs (a subclass of cographs) in O(logn) time using O(n + m) processors
on a PRAM model. Sequential algorithms for optimization problems on other related classes of graphs
(superclasses of cographs) have been also proposed: Giakoumakis et al. [38] solved the recognition
problem and also the problems of finding the clique number, the stability number and the chromatic
number for Py-sparse graphs [45] (a proper superclass of cographs) in linear sequential time. Hochstéttler
and Tinhofer [46] presented a sequential algorithm for the path cover problem on this class of graphs, which
runs in f(n)+O(n) time, where f(n) is the time complexity for the construction of a tree representation of
a Py-sparse graph. Also, Giakoumakis et al. [38] studied hamiltonicity properties for the class of Py-tidy
graphs (a proper superclass of Ps-sparse graphs); see also [13]. Recently, Hsieh et al. [49] presented an
O(n+ m)-time sequential algorithm for the Hamiltonian problem on a distance-hereditary graph and also
proposed a parallel implementation of their algorithm which solves the problem in O(logn) time using
O((n+m)/logn) processors on a PRAM model. A unified approach to solving the Hamiltonian problems
on distance-hereditary graphs was presented in [50], while Hsieh [48] presented an efficient parallel strategy
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for the 2HP problem on the same class of graphs. Algorithms for the path cover problem on other classes
of graphs were proposed in [4, 51, 86].

Road Map. The chapter is organized as follows. In Section 5.2 we establish the notation and related
terminology, and we present background results. In Section 5.3 we describe our linear-time algorithm for
the kPC problem, while in Section 5.4 we prove its correctness and compute its time and space complexity.
Finally, in Section 5.5 we conclude the chapter and discuss possible future extensions.

5.2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges. For a graph G, we denote its vertex
and edge set by V(G) and E(G), respectively. Let S be a subset of the vertex set of a graph G. Then,
the subgraph of G induced by S is denoted by G[S].

5.2.1 The co-tree

The cographs admit a tree representation unique up to isomorphism. Specifically, we can associate with
every cograph G a unique rooted tree T,,(G) called the co-tree (or, modular decomposition tree [68]) of
G having the following properties:

1. Every internal node of Ti,(G) has at least two children;

2. The internal nodes of T,,(G) are labelled by either P (P-node) or S (S-node) in such a way that
the labels alternate along every path in T,,(G) starting at the root;

3. Each leaf of T.,(G) corresponds to a vertex in V such that (x,y) € F if and only if the lowest
common ancestor of the leaves corresponding to x and y is an S-node.

It is shown that for every cograph G the co-tree T,.,(G) is unique up to isomorphism and it can be
constructed sequentially in linear time [22, 24].

For convenience and ease of presentation, we binarize the co-tree T.,(G) in such a way that each of
its internal nodes has exactly two children [61, 70]. Let ¢ be an internal node of T,,(G) with children
t1,t2,...,t, where k& > 3. We replace node t by k — 1 nodes t/,t5,...,t;,_, such that ¢} has children
t1 and ¢2 and each ¢/ (2 < ¢ < k) has children ¢;_; and t,41. We shall refer to the binarized version
of Teo(G) as the modified co-tree of G and will denote it by T(G). Thus, the left and right child of an
internal node t of T'(G) will be denoted by ¢, and ¢,., respectively.

Let t be an internal node of T(G). Then G[t] is the subgraph of G induced by the subset V; of the

vertex set V(G), which contains all the vertices of G that have as common ancestor in T'(G) the node ¢.
For simplicity, we will denote by V; and V, the vertex sets V(G[t¢]) and V(G]t,]), respectively.

5.2.2 Cographs and the kPC problem

Let G be a cograph, T be a set of k vertices of V(G), and let P7(G) be a minimum k-fixed-endpoint path
cover of G with respect to 7 of size Ar; note that the size of Pr(G) is the number of paths it contains.
The vertices of the set 7 are called terminal vertices, and the set 7 is called the terminal set of GG, while
those of V(G) — 7T are called non-terminal or free vertices. Thus, the set Pr(G) contains three types of
paths, which we call terminal, semi-terminal, and non-terminal or free paths:

(i) a terminal path P; consists of at least two vertices and both its endpoints, say, v and v, are terminal
vertices, that is, u,v € 7T;
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(ii) a semi-terminal path Ps is a path having one endpoint in 7 and the other in V(G)—T; if Ps consists
of only one vertex (trivial path), say, u, then v € 7T;

(iii) a non-terminal or free path Py is a path having both its endpoints in V(G) — T if Py consists of
only one vertex, say, u, then v € V(G) — 7.

Note that all the internal vertices of the paths of Pr(G) are free vertices. Moreover, a semi-terminal path
may consist of only one vertex which is a terminal vertex, while a terminal path contains at least two
vertices. The set of the non-terminal paths in a minimum kPC of the graph G is denoted by N, while S
and T denote the sets of the semi-terminal and terminal paths, respectively. Thus, we have

Ar = |N|+|S|+ T (5.1)

From the definition of the k-fixed-endpoint path cover problem (kPC), we can easily conclude that the
number of paths in a minimum kPC can not be less than the number of terminal vertices divided by two.
Furthermore, since each semi-terminal path contains one terminal vertex and each terminal path contains
two, the number of terminal vertices is equal to |S| + 2|T'|. Thus, the following proposition holds:

Proposition 5.1. Let G be a cograph and let T be a terminal set of G. Then |T| = |S| + 2|T| and
A= [

Clearly, the size of a kPC of a cograph G, as well as the size of a minimum kPC of G, is less than or
equal to the number of vertices of G, that is, Ay < |V(G)|. Let F(V(G)) be the set of the free vertices
of Gj hereafter, (V) = F(V(G)). Then we have the following proposition:

Proposition 5.2. Let G be a cograph and let T be a terminal set of G. If At is the size of a minimum
kPC of G, then A\ < |F(V)|+|T|.

Let ¢ be an internal node of the tree T'(G). Then Az (t) denotes the number of paths in a minimum
kPC of the graph G|[t], and let t; and ¢, be the left and the right child of node ¢, respectively. We denote
by 7; and 7, the terminal vertices in V; and V., respectively, where V; = V(G[t(]) and V, = V(G[t,]).
Let Ny, Sy and Ty be the sets of the non-terminal, semi-terminal and terminal paths in a minimum kPC
of G[ts], respectively. Similarly, let N,, S, and T, be the sets of the non-terminal, semi-terminal and
terminal paths in a minimum kPC of G[t,], respectively. Obviously, Eq. (5.1) holds for G|t] as well, with
t being either an S-node or a P-node, that is,

AT (t) = [Ni| +|Se| + | T4 (5.2)

where N, S; and T; are the sets of the non-terminal, the semi-terminal and the terminal paths in a
minimum kPC of G[t], respectively. If ¢ is a P-node, then a minimum kPC Pz(¢) of G[t] is Pr(t) =
Pr(te) UPr(tr), where Pr(ty) and Pr(t,) are minimum kPCs corresponding to G|t¢] and G[t,], respec-
tively, and Az (t) = A7 (t¢) + A7 (¢). Furthermore, for the case of a P-node we have

INe| = [N+ [Ny
|St| == |S€| + |Sr|
| = |Tel+ T3

Thus, we focus on computing a minimum kPC of the graph G[t] for the case where ¢ is an S-node.

Before describing our algorithm, we establish a lower bound on the size Az (t) of a minimum kPC
Pr(t) of a graph G[t]. More precisely, we prove the following lemma.
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Figure 5.1: Illustrating (a) break, (b) connect, (c) bridge, (d) insert, and (e) connect-bridge operations.

Lemma 5.1. Let t be an internal node of T(G) and let Pr(te) and Pr(t.) be a minimum kPC of Gt]
and Glt,], respectively. Then Ar(t) > max{(lg—tl], A7 (te) = |F(V2)|, Ar(tr) — |[F(Va)|}.

Proof. Clearly, according to Proposition 5.1 and since G[t] is a cograph, we have Ay (t) > (%W We
will prove that Az (t) > Ar(t¢) — |F(V;)]. Assume that Az (t) < Ar(te) — |[F(Vy)].
from this path cover all the vertices in V,.. What results is a set of paths which is clearly a kPC for G[t].

Consider removing

Since the removal of a free vertex in F (V) will increase the number of paths by at most one, we obtain a
kPC of G[t,] of size at most A7 (t) + |F(V;)|. The assumption Ar(t) < Ar(t¢) — |F(V,)| guarantees that
Ar(t) + |F (Vi) < Ar(te), contradicting the minimality of Pr(t;). Using similar arguments we can show
that Az (t) > Ar(t,) — |F(V)|- Hence, the lemma follows. 1

We next define four operations on paths of a minimum kPC of the graphs G[t;] and G[t,], namely break,
connect, bridge and insert operations; these operations are illustrated in Fig. 5.1.

o Break operation: Let P = [p1,pa,...,px] be a path of Pr(t.) or Pr(t;) of length k. We say that
we break the path P in two paths, say, P; and P, if we delete an arbitrary edge of P, say the edge
pipi+1 (1 <14 < k), in order to obtain two paths which are P, = [p1,...,p;] and Py = [pit1, ..., Pkl
Note that we can break the path P in at most k trivial paths.

o Connect operation: Let P, = [p1,...,p}] be a non-terminal or a semi-terminal path of Pr(t)
(resp. Pr(t,)) and let P> = [po,. ..

Pr(te)). We say that we connect the path P; with the path Ps, if we add an edge which joins two

,p5] be a non-terminal or a semi-terminal path of Pr(t,) (resp.

free endpoints of the two paths.
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o Bridge operation: Let P, = [p1,...,p}] and Py = [pa, ..., ph] be two paths of the set N, U .Sy (resp.
N, US,) and let P35 = [ps,...,p5] be a non-terminal path of the set N, (resp. Ny). We say that
we bridge the two paths P; and P, using path Pjs if we connect the free endpoint of P; with one
endpoint of P; and the free endpoint of P, with the other endpoint of P;. The result is a path
having both endpoints in Gt¢] (resp. G[t,]).

o Insert operation: Let P, = [t1,p1,...,p},t}] be a terminal path of the set T, (resp. T;) and let
Py = [pa,...,p5] be a non-terminal path of the set N, (resp. Ny). We say that we insert the path
P, into Py, if we replace the first edge of Py, that is, the edge ¢1p1, with the path [t1,pa, ..., ph, p1]-
Thus, the resulting path is Py = [t1,po, ..., ph, D1, ..., D], th].

Note that we can replace every edge of the terminal path so that we can insert at most |F({P; })|+1
non-terminal paths, where F'({P;}) is the set of the free vertices belonging to the path P;. If the
terminal path P, = [ty,py,...,p%, pt,...,p},t}] is constructed by connecting a semi-terminal path
of Sy, say, Py = [t1,p1,-..,p}] with a semi-terminal path of S,, say, P. = [p],...,p},t}], then it
obviously has one endpoint in G[t;] and the other in G[t,]. In this case, if P, € Ny (resp. N,)
we can only replace the edges of P; that belong to G[t,] (resp. Gl[t¢]). On the other hand, if P,
has one endpoint, say, ps, in N; and the other, say, p), in N,, we insert P, into P; as follows:

Pl = [t17p17" '7p§apl2)' o 7p2apIa' 7p117tll]

We can combine the Connect and Bridge operations to perform a new operation on paths which we call
a connect-bridge operation; such an operation is depicted in Fig. 5.1(e) and is defined below.

o Connect-Bridge operation: Let Py = [t1,p1, ..., pk, t;] be a terminal path of the set T, (resp. T,.) and
let Ps, Ps, ..., Ps be semi-terminal paths of the set S, (resp. S¢), where s is odd and 3 < s < 2k+3.
We say that we connect-bridge the paths Ps, Ps, ..., Ps using vertices of Pj, if we perform the
following operations:

(i) connect the path P, with the path [t1];

s—

23 pairs of semi-terminal paths using vertices p1,p2, ..., Dr;

(ii) bridge r =
(iii) connect the path [p,y1,...,pk,t]] with the last semi-terminal path Ps.
We point out that the Connect-Bridge operation produces two paths having one endpoint in G[t,] (resp.

G[t,]) and the other endpoint in G[t,] (resp. G[t,]) and 52 paths having both endpoints in G[t,] (resp.
Glte]).

5.3 The Algorithm

We next present an optimal algorithm for the kPC problem on cographs. Our algorithm takes as input
a cograph G and a subset 7 of its vertices, and finds the paths of a minimum kPC of G in linear time;
it works as follows:

where the description of the subroutine process( ) is as follows:

process (node t)
Input: node t of the modified co-tree T'(G) of the input graph G.
Output: a minimum kPC Pz (t) of the cograph GIt].
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Algorithm Minimum kPC

Input: a cograph G and a set of vertices 7

Output: a minimum kPC Pr(G) of the cograph G;

1. Construct the co-tree T,,(G) of G and make it binary; let T'(G) be the resulting tree;

2. Execute the subroutine process(root), where root is the root node of the tree T(G); the minimum
kPC Pr(root) = Pr(G) is the set of paths returned by the subroutine;

Algorithm 3: Algorithm Minimum_kPC_Cograph

1. if tis a leaf
then return({u}), where w is the vertex associated with the leaf ¢;
else {t is an internal node that has a left and a right child denoted by t; and ¢,, resp.}
Pr(te) « process(te);
Pr(t,) — process(t,);

2. if t is a P-node
then return(Pr(t;) U Pr(t));

3. if tis an S-node
then if |Ny| < |N,.| then swap(Pr(te), Pr(t));

case 1: |S¢| > |S,]
call kPC_1;

case 2: |5y < |Sy|
it |N|+ |E55) < |p(s,u )|
then call kPC 2 q;
else call kPC_2.b;

We next describe the subroutine process( ) in the case where ¢ is an S-node of T'(G). Note that, if
|N¢| < |N;|, we swap Pr(t¢) and Pr(t,) and thus we have |Ny| > |N,|. Consequently, we distinguish the
following two cases: (1) |S¢| > |S;|, and (2) |Se| < |Sr]-

Case 1: S| > |S;]

Let SN, be the set of non-terminal paths obtained by breaking the set S, U N, into [Ny —1+ LMQ‘ST'J
non-terminal paths; in the case where |N, — 1 + LLJST'J > F(S, UN,), the paths of SN, are trivial
(recall that F'(S, U N,.) is the set of free vertices belonging to the set S, U N,.). The paths of SN, are
used to bridge at most 2[%J semi-terminal paths of S, and, if |SN,.| — L%J > 0, at most | N
non-terminal paths of N,. Note that |[SN,| < |F(S, U N;)|. We can construct the paths of a kPC using
the following procedure:

Procedure kPC_1

1. connect the |S,| paths of S, with |S,| paths of Sy;

2. bridge QLL;ST'J semi-terminal paths of S, using LMJ paths of SN, ;
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3. bridge the non-terminal paths of Ny using |N;| — 1 non-terminal paths of SN,; this produces non-
terminal paths with both endpoints in G[t,], unless Ny < |F (S, UN,.)|— LMQ‘ST'J where we obtain
one non-terminal path with one endpoint in G[t;] and the other in G[t,];

4. if |[Ny| < |F(S,UN,)|— L%J insert the non-terminal path obtained in Step 3 into one terminal
path which is obtained in Step 1;

5. if |T;| = |S¢| = 0 and |F(S,UN,)| > |N¢| construct a non-terminal path having both of its endpoints
in G[t,] and insert it into a terminal path of Ty;

6. if |T-| = |Sr| = 0 and |F(N,)| > |Ne| + L%J construct a non-terminal path having both of its
endpoints in G[t,] and use it to connect two semi-terminal paths of Sy;

7. if |Sp| — |Sr| is odd and there is at least one free vertex in S, U N, which is not used in Steps 14,
or there is a non-terminal path having one endpoint in GJt;] and the other in GJt.]|, connect one
non-terminal path with one semi-terminal path of Sy;

8. connect-bridge the rest of the semi-terminal paths of S, (at most 2(|F(T})| + |T;])) using vertices
of T;

9. insert non-terminal paths obtained in Step 3 into the terminal paths of T}

Based on the procedure kPC_1, we can compute the cardinality of the sets Ny, S; and T}, and thus, since
N (t) = | N¢|+|St| +|T¢|, the number of paths in the kPC constructed by the procedure at node ¢t € T(G).
In this case, the values of |N¢|, |S:| and |T3| are the following:

|IN)| = max{y—a, 0}
|S:| = min{oy, max{o, — 2(|F(T,)| + |T+]), 6(ce)}} (5.3)
T = [S,|+min{[ B | |F(S, UNY + |Tel + T + 2554
where
1 1Sel = |Sk
o = 15 ~18] ~ 2min{ P s, v
uw = max{|Ny| — m., max{1 — |S¢|, 0}} — min{max{min{|N,| — 7., §(|Se| —|S:])}, 0},
— 1S, 1
macc{min{F(5, UN,) — (P12 0y oy = L wasa( @)+ 1)~ . 0)
a = min{max{min{m, — |Ne|, 1}, 0}, max{|T¢|, 0}}
and
m = max{|F (S, UN,)| — ’—ML 0}.

In Eq. (5.3), o is the number of semi-terminal paths of S, that are not connected or bridged at Steps 1
and 2. Furthermore, 7, is the number of free vertices in the set S, U IV, that are not used to bridge
semi-terminal paths of S, at Step 2 and § is a function which is defined as follows: §(z) = 1, if  is odd,
and 0(z) = 0 otherwise. Note that at most |F(T})| + |T,| non-terminal paths can be inserted into the
terminal paths of T, or the terminal paths can connect-bridge at most 2(|F(T;.)| + |T,|) semi-terminal
paths.
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Case 2: S| < |S/]

In this case, we need |N,| + LWJ paths of G[t¢] in order to bridge |N,| non-terminal paths of N,
and 2LWJ semi-terminal paths of S,. If |Ny| < |N,|+ LWJ we break the non-terminal paths
of Ny into at most |F(Ng)| paths; in the case where |F(Ny)| < |N;| + LL;‘S”J we also use (at most
|F'(Se)|) vertices of S¢. Let p = min{|N,| + LWJ, |F'(S¢ U Ng)|}. We distinguish two cases:

2.a |N,|+ [Z18 ) < |p(S, U Ny

In this case, p = |N,| + LWJ and the number of non-terminal paths (or free vertices) of G[t,] is
sufficient to bridge non-terminal paths of N,. and semi-terminal paths of 5.

In detail, let SNy be the set of non-terminal paths obtained by breaking the set Sy, U N, into p non-
terminal paths. If p < |N;| then SN; = N,. The paths of SNy are used to bridge 2LWJ semi-terminal
paths of S, and all the non-terminal paths of N,.. Obviously, |SN;| < |F(S¢UNy)|. Note that, if p < |Ny|
then the non-terminal paths of N, are used to bridge the paths of Ny,. More precisely, we use paths of the
set SN, (it is the set of non-terminal paths that we get by breaking the set S, U N;.) in order to obtain
| N¢| — LL;‘S”J non-terminal paths. If p > | N,| we set SN,, = N, and we use at most |F(S;UN;)| paths
obtained by S; U Ny in order to bridge non-terminal paths of N, and semi-terminal paths of S, that is,
we use the set SN;. As a result, we construct LWJ terminal paths having both of their endpoints
in G[t,] and we have at least one non-terminal path, if p < |Ny|, and exactly one non-terminal path,
otherwise. Note that, in the second case, we can construct the non-terminal path in such a way that one
endpoint is in SN, and the other is in N,.. Consequently, we can connect the path to a semi-terminal
path of S,, in the case where |S,| —|S¢| is an odd number, or we can insert it into a terminal path which
is obtained by connecting |S¢| paths of Sy with |S| paths of S,. We construct the paths of a kPC at
node t € T(G) using the following procedure:

Procedure kPC_2_a
1. connect the |Sy| paths of S, with |S¢| paths of S,;

2. if |Ty| = |T] = 0 and p > |Ng|, use N, to bridge p — LWJ + 1 paths of SN, and use the
constructed non-terminal path having both of its endpoints in G[t,] to bridge two semi-terminal
paths of S;;

3. bridge semi-terminal paths of S, using paths of SNy;

4. if |T,| = 0,|T¢| # 0, p > |N¢| and |F(S, U N,)| > |SNe| — LWJ construct a non-terminal
path having both of its endpoints in G[t,] and use a terminal path of T to insert the constructed
non-terminal path;

5. bridge the remaining paths of SN, using the paths of SN,.. This produces non-terminal paths one
of which has one endpoint in G[t;] and the other in G[t,[;

6. if |.S,| — |Se| is odd, we connect one non-terminal path with one semi-terminal path of S;

7. insert at most |F(T})| 4+ |T;| non-terminal paths obtained in Step 5 into the terminal paths of Ty

Based on the path operations performed by procedure kPC_2_a, we can show that the sets V;, S; and
T}, have the following cardinalities:

IN:| = max{p—a, 0}
1S = 501 - |Se]) (5.4)
T = 1Sl + 25| |7 + |7
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where

= max{|N| - F(5,0N,), 0y - Py s s - el - )

a = min{max{min{F(S, UN,) — |N¢|, 1}, 0}, max{|Ty|, 0}}
Recall that §(x) = 1, if = is odd, and §(z) = 0 otherwise.
2.b N[+ [P5E | > |F (S, U N,

In this case, p = |F(S¢ U Ng)| and the number of non-terminal paths (or free vertices) of G[ts] (either in
Ny or in Sy) is not sufficient to bridge non-terminal paths of N,. and semi-terminal paths of S,..

In detail, let SNy be the set of the trivial, non-terminal paths, obtained by breaking the set Sy U Ny
into |F'(S¢ U N;)| non-terminal paths. Note that SN, = F(S; U N;). Similar to Case 1, we can construct
the paths of a kPC at node ¢t € T(G) using the following procedure:

Procedure kPC_2_b
1. connect the |S¢| paths of Sy with |S¢| paths of S, ;
2. bridge QLWJ semi-terminal paths of S, using LL;‘S”J paths of SNy;

3. bridge the non-terminal paths of N, using the rest of the non-terminal paths of SN,. This produces
non-terminal paths such that both endpoints belong to G[t.];

4. connect-bridge the rest of the semi-terminal paths of S, (at most 2(|F(T¢)| + |T¢|)) using vertices
of Tz;

5. insert non-terminal paths obtained in Step 3 into the terminal paths of Ty;

After computing the number of non-terminal, semi-terminal and terminal paths produced by procedure
kPC_2_b, we conclude that:

IN:| = max{p, 0}
[S:| = min{o,, max{o, — 2(|F(T¢)| + |T¢|), 6(or)}} (5.5)
T, = |Se| + min{ [ IS RS, U NG|} + [Tl + T3] + 25154
where
. Sy — 1S
o = 150~ 15— 2minf By s, U v
— o —mi ~ IS =15
= |Ny| —m — min{max{min{|F(S¢ U N¢)| — | 5 |, 1}, 0},
) 1
max{min{[N,| = e, 8(,| - |Se)}, 03} = 5 max{2(|F(T0)| +|Te) - or, 0}
and
Syl — 1S,
Ty = I’Ila,X{|F(SgUN[)|* ’VLNL 0}

In Eq. (5.5), 0, is the number of semi-terminal paths of S, that are not connected or bridged at Steps 1
and 2. Moreover, 7, is the number of free vertices that belong to the set Sy, U Ny and are not used to
bridge semi-terminal paths of S, (at Step 2). Again, é(x) = 1, if z is odd, and §(z) = 0 otherwise.
Note that at most |F(T)| + |T¢| non-terminal paths can be inserted into the terminal paths of Ty or the
terminal paths can connect-bridge at most 2(|F(T})| + |T¢|) semi-terminal paths.
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5.4 Correctness and Time Complexity

Let G be a cograph, T(G) be the modified co-tree of G, and let 7 be a terminal set of G. Since our
algorithm computes a kPC PZL(t) of G[t] of size N(¢) for each internal node ¢ € T(G), and thus for
the root ¢ = tro0t of the tree T(G), we need to prove that the constructed kPC PZ(t) is minimum.
Obviously, the size A7 (t) of a minimum kPC of the graph G[t] is less than or equal to the size A (t) of
the kPC constructed by our algorithm. According to Proposition 5.1, if the size of the kPC constructed
by our algorithm is M (t) = [@], then it is a minimum kPC. After performing simple computations
on Egs. (5.3)—(5.5), we get four specific values for the size N-(¢) of the path cover constructed by our
algorithm, that is, by the kPC procedures 1, 2_a, and 2_b. More precisely, our algorithm returns a kPC of
size N (t) equal to either |€—t| +1, [@1, Ar(te) — |F(V)|, or Ar(ty) — |F(Ve)|; see Table 5.4. Recall that
T; denotes the set of terminal vertices in V; = V(G[t]), while F(V;) (resp. F(V;)) denotes the set of free
vertices in Vp = V(G|[t(]) (vesp. V.. = V(G]t,])); te and t, are the left child and right child, respectively,
of node .

Let ¢ be an internal node of T(G) and let Ny, Sy and Ty (resp. N,, S, and T,) be the sets of
non-terminal, semi-terminal and terminal paths, respectively, in G[t;] (resp. G[t.]). For the case where
|Se| = |T| = |Sr| = 0 and |Ng| = |V;| our algorithm (procedure kPC_1) returns a kPC of the graph G]t]
of size N (t) = |T" + 1. We prove the following lemma:

Lemma 5.2. Let t be an S-node of T(G) and let Pr(te) and Pr(t,) be a minimum kPC of Glte] and
Glt,], respectively. If |Se| = |T,| = |S-| = 0 and |N¢| = |V;|, then the procedure kPC_1 returns a minimum
kPC of G[t] of size Ar(t) = ml + 1.

|Tt‘ +1, then the size A7 (t) of a minimum kPC is at
most @ + 1. We will show that we can not construct a minimum kPC of size less than |T" + 1, that is,
we w111 show that Az (t) > |T" +1e A (t) > ‘T‘ . Thus, we only need to prove that Az (¢ ) # |€". Note
that by the assumption we have m‘ = |Ty|. We assume that A7 (t) = |Tt , and, thus, A7 (t) = |Ty|. There

exists at least one non-terminal path in G[t¢]; for otherwise |Ny| = 0, and thus V,. = (), a contradiction.

Proof. Since we can construct a kPC of size N (t) =

We ignore the terminal paths from the minimum kPC of G[t;] and apply the algorithm described in
[61] to G[t]. The resulting minimum kPC contains only one (non-terminal) path which either has both
endpoints in GJty] or it has one endpoint in G[t;] and the other in GJ[t,]. This non-terminal path can
not be inserted into a terminal path of GJt;] because it does not have both endpoints in G[t.]. Thus,
M1 (t) = |Te|] + 1, a contradiction. 1

The previous lemma shows that if the size of the kPC returned by our subroutine process(t) for the
graph G[t] is M-(¢) = |T" + 1 (procedure kPC_1), then it is a minimum kPC. Moreover, if the size of the
|7 ]

kPC returned by the process(t) is [+57] (all the procedures), then it is obviously a minimum kPC of G[t].

We will prove that the size N (¢) of the kPC PZ(t) that our subroutine process(t) returns is minimum.

Lemma 5.3. Let t be an S-node of T(G) and let Pr(t;) and Pr(t,) be a minimum kPC of G[t;] and
Glty], respectively. If the subroutine process(t) returns a kPC of G[t] of size N (t) = (lm] then N (t) >
max{ Az (te) = [F(V;)], Ar(tr) = [F(Ve)[}.

Proof. Since N (t) = [@], we have M (t) = Ar(t), that is, the kPC that the subroutine process(t)
returns is minimum. Thus, the proof follows from Lemma 5.1. 1

Let t be an S-node of T'(G) and let Pz (¢;) and Pr(t,) be a minimum kPC of G[t;] and G[t,], respectively.
Furthermore, we assume that the conditions |S¢| = |T;.| = |S;| = 0 and |N¢| = |V,.| do not hold together.
We consider the case where the subroutine process(t) returns a kPC PZL(t) of the graph G[t] of size
MNr(t) = Ar(te) — |F(Vy)] (cases 1 and 2.a). We prove the following lemma.
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Procedures Size of k-fixed-endpoint PC

Procedure kPC_1 @ +1

All the procedures ('%”1

Procedure kPC_1 and Procedure kPC_2_a Ar(te) — |F (V)]
Procedure kPC_2_b A7 (tr) — |F(Va)|

Table 5.1: The size of the kPC that our algorithm returns in each case.

Lemma 5.4. Let t be an S-node of T(G) and let Pr(t;) and Pr(t,) be a minimum kPC of G[t;] and
Glty], respectively. If the subroutine process(t) returns a kPC of G[t] of size N(t) = Az (te) — |F(V;)],
then Np-(t) > max{[ 2, \r(t,) — |F(V)[}.

Proof. We consider the cases 1 and 2.a. In these cases, the size A(¢) of the constructed kPC is
computed using Eqgs. (5.3) and (5.4) and the fact that \-(t) = |N¢| + |S¢| + |T¢|. After performing simple
computations, we conclude that in these cases the subroutine process(¢) returns M- (t) = Az (¢,) — |F(V;)|
if the following condition holds:

5(1Sel = 15-1)

Se| — |Sr
S U5y 5 vy 4 g1y 4 2USE 1S, (5.6

We will show that (i) A\(t) > (%W and, (ii) M-(t) > Ar(t;) — |F(Vi)|. We first consider the case where
5(]Se| — |Sr]) = 0. In this case either the values of |S¢| and |S,| are both odd numbers or they are both
even numbers. In any case, |S¢| + |S,| is an even number and thus, |7¢| is also an even number. Thus,
according to Proposition 5.1 and since G[t] is a cograph, we have |T;| = |S¢| + |S,| + 2|T¢| + 2|1 |

(i) We first show that A-(t) = Ar(te) — |F(V2)] > (l%"] From Eq. (5.6) and, since 2|T,| + |S;| = | 7]
(see Proposition 5.1), we obtain

|Nel + T

2[F (V)| + 17| < 2|Ne| + [Sel. (5.7)
By Proposition 5.1 and Eq. (5.7) we have

2(|Nel + |Sel + [Te| = [F(Ve)]) > 2[F (Vo) + [ To + |Se] 4 2|Te| = 2|F (V)| = |Te| + |Tr| = |Te.

Since )\T(tg) — |F(V})| = |Ng| + |Sg| + |Tg| — |F(V})|, it follows that )\T(tg) — |F(VT)| > [@]

(i) We next show that N7 (¢t) = Ar(te) — |F(V2)| > Az (tr) — |F(Ve)]. According to Proposition 5.2, we
have Ar(t,) — |[F(Vo)| < |F (Vi) + |7-] — |F(Ve)|. From Eq. (5.7) and since

[Nel < [F(No)| & [Nel <[F (V)| & [Ne| = [F (V)| <0,
we obtain [F(Ve)[+[Z:| = [F(Ve)| < 2[Nel+|Sel = [F(V;) | = [F(Ve)| < 2[Ne|+[Se| +[Te| = |F(V;) | = [F(Ve)| =
Az (te) = [F(Ve)| + [Nel = [E(Ve)| < Ar(te) = [F(V2)]-

Similarly, we can prove that Az (t,) — |F(V;)| > (l%"] and A7 (t¢) — |[F(V;)| > Ar(ty) — |F(Vp)|, for
the case where 6(|S¢| —|Sr|) = 1, and, thus, Ar(t¢) — |F(V;)| > max{[@}, Ar(ty) = |[F(Ve)l}. 1
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Using arguments similar to those used to prove Lemma 5.4, we can show that if the subroutine

process(t) returns a kPC of G[t] of size N (t) = Az (¢,)—|F (V)| (case 2.b), then A-(¢) > max{ [‘LQ“], A7 (te)—
F(V,.)|}; note that, in this case we have |N,.| + Sel=lSely Vo)l + |Ty| + 3(Sr|=15el) Thus, we have
2 2

proved the following result.

Lemma 5.5. Let t be an S-node of T(G) and let Pr(t;) and Pr(t,) be a minimum kPC of G[t;] and
G[t,], respectively. The subroutine process(t) returns a kPC Pr(t) of G[t] of size

Bl 41 if |Se| =77 = 0 and |N¢| = |V,,

max{[ 21 A7 (te) — |[F(V,)|, A (t,) — |F(Vo)|}  otherwise.

Obviously, a minimum kPC of the graph GJ[t] is of size A7 (t) < N(¢). On the other hand, we have
proved a lower bound for the size A7 (¢) of a minimum kPC of the graph G[t] (see Lemma 5.1), namely,
A7 (t) > max{ (@], Ar(te) — |[F(Vo)|, Ar(ty) — |F(Ve)|}. It follows that A-(t) = Ar(t), and, thus, we
can state the following result.

Lemma 5.6. Subroutine process(t) returns a minimum kPC Pz (t) of the graph G[t], for every internal
S-node t € T(G).

Since the above result holds for every S-node ¢ of the modified co-tree T(G), it also holds when ¢ is the
root of T(G) and 7; = 7. Thus, the following theorem holds:

Theorem 5.1. Let G be a cograph and let T be a terminal set of G. Let t be the root of the modified
co-tree T'(G), and let Pr(te) and Pr(t;) be a minimum kPC of G[t;] and Glt,], respectively. Algorithm
Minimum_kPC correctly computes a minimum kPC of G = G[t] with respect to T = Ty of size Ay = A7 (t),

where
A (tr) + Az (te) if t is a P-node,
Ar(t) = ll?f‘ +1 if t is an S-node and

|Se| = |7-| = 0 and |[N,| = V|,
max{ (@],)\T(tz) —|F(V)|,A\r(t.) = |F(Ve)|} otherwise.

Let G be a cograph on n vertices and m edges, 7 be a terminal set, and let ¢ be an S-node of the
modified co-tree T'(G). From the description of the algorithm we can easily conclude that a minimum
kPC Pr(t) of G[t] can be constructed in O(E(GJ[t])) time, since we use at most |V (G[te])| - |[V(Gtr])]
edges to connect the paths of the minimum kPCs of the graphs G[t;] and G[t,]; in the case where ¢ is a
P-node a minimum kPC is constructed in O(1) time. Thus, the time needed by the subroutine process(t)
to compute a minimum kPC in the case where ¢ is the root of the tree T(G) is O(n + m); moreover,
through the execution of the subroutine no additional space is needed. The construction of the co-tree
Teo(G) of G needs O(n + m) time and it requires O(n) space [22, 24]. Furthermore, the binarization
process of the co-tree, that is, the construction of the modified co-tree T'(G), takes O(n) time. Hence, we
can state the following result.

Theorem 5.2. Let G be a cograph on n vertices and m edges and let T be a terminal set of G. A
minimum k-fized-endpoint path cover Pr of G can be computed in O(n + m) time and space.
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5.5 Concluding Remarks

This chapter presents a simple linear-time algorithm for the k-fixed-endpoint path cover problem on
cographs. Given a cograph G and a set of vertices 7, our algorithm constructs a minimum k-fixed-
endpoint path cover of G that contains a large number of terminal paths.

Thus, it is worth investigating the existence of a linear-time algorithm for finding a minimum k-fixed-
endpoint path cover on cographs such that it contains a large number of semi-terminal paths; we pose it
as an open problem.

It would also be interesting to define a variant of the k-fixed-endpoint path cover problem, which
would include a pair of terminal sets 77 and 75. In this variant, we want to compute a minimum path
cover such that all the terminal paths have one endpoint in 7; and the other in 75. Then, we could use
this extended k-fixed-endpoint path cover problem to solve problem B (see Section 5.1). This problem is
defined and solved for the class of cographs in Chapter 7.

Finally, an interesting open question would also be to see if the k-fixed-endpoint path cover problem
can be polynomially solved on other classes of graphs; an interesting next step would be to consider the
class of interval graphs. This promises to be an interesting area for further research.
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CHAPTER 6

THE k-FIXED-ENDPOINT-SET PATH
COVER PROBLEM AND ITS POLYNOMIAL
SOLUTION ON COGRAPHS

6.1 Introduction

6.2 Theoretical Framework

6.3 The Algorithm

6.4 Correctness and Time Complexity

6.5 Concluding Remarks

6.1 Introduction

In this chapter, we study a generalization of the path cover problem, namely, the k-fixed-endpoint-set
path cover problem, or kFSPC for short. Given a graph G and k disjoint subsets 71, 72,..., 7% of V(G),
a k-fixed-endpoint-set path cover of G is a set of vertex-disjoint paths P that covers the vertices of G
such that the vertices of 7 = 7' U772 U...UT" are all endpoints of the paths in P and two vertices
u,v € T belong to the same path of P if both u,v belong to the same set 7¢, i € [1,k]. Note that, if
T, Vi € [1,k] is empty, the stated problem coincides with the classical path cover problem, while the
1-fixed-endpoint-set path cover problem coincides with the k-fixed-endpoint path cover problem (kPC).
Thus, the kFSPC problem generalizes the kPC problem and also the 1HP and 2HP problems, which
have been proved to be NP-complete even for small classes of graphs. We show that the kKFSPC problem
can be solved in linear time on the class of cographs. The proposed linear-time algorithm is simple and
requires linear space. We next define the kFSPC problem.

Problem kFSPC. Let G be a graph and let 71,72 ..., 7% be disjoint sets of vertices of V(G). A
k-fized-endpoint-set path cover P of the graph G with respect to 7', 72,..., 7" is a path cover of G
such that all vertices in 7 = 7' U7Z2U...UTF are endpoints of paths in P and two vertices u,v € T
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Figure 6.1: The complexity status (NP-complete, unknown, polynomial) of the kFSPC problem for some
graph subclasses of comparability and chordal graphs. A — B indicates that class A contains class B.

belong to the same path of P if both u,v belong to the same set 7%, i € [1,k]; a minimum k-fized-
endpoint-set path cover of G with respect to 71,72,...,T" is a k-fixed-endpoint-set path cover of G
with minimum cardinality; the k-fized-endpoint-set path cover problem (kKFSPC) is to find a minimum
k-fixed-endpoint-set path cover of the graph G.

Contribution. In this chapter, we show that the k-fixed-set path cover problem (kFSPC) has a
polynomial-time solution in the class of complement reducible graphs, or cographs [24]. More precisely,
we establish a lower bound on the size of a minimum k-fixed-set path cover of a cograph G on n vertices
and m edges. We then define path operations, and prove structural properties for the paths of such
a path cover, which enable us to describe a simple algorithm for the kFSPC problem. The proposed
algorithm runs in time linear in the size of the input graph G, that is, in O(n + m) time, and requires
linear space. Figure 6.1 shows a diagram of class inclusions for a number of graph classes, subclasses
of comparability and chordal graphs, and the current complexity status of the kFSPC problem on these
classes; for definitions of the classes shown, see [13, 40].

The proposed algorithm for the kFSPC problem can also be used to solve the 1HP and 2HP problems
on cographs within the same time and space complexity. Moreover, we have designed our algorithm so
that it produces a minimum k-fixed-set path cover of a cograph G that contains a large number of paths
with both endpoints in 7%, i € [1,k] (we can easily find a graph G so that G admits two minimum
k-fixed-set path covers with different numbers of paths having both endpoints in 7¢, i € [1, k]).

6.2 Theoretical Framework

The cographs admit a tree representation unique up to isomorphism. Specifically, we can associate with
every cograph G a unique rooted tree T,.,(G) called the co-tree (or, modular decomposition tree [68]),
which we can construct sequentially in linear time [22, 24]. The co-tree forms the basis for fast algorithms
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for problems such as isomorphism, coloring, clique detection, clusters, minimum weight dominating sets
[13, 22], and also for the path cover problem [61, 70].

For convenience and ease of presentation, we binarize the co-tree T,,(G) in such a way that each of
its internal nodes has exactly two children [61, 70]. We shall refer to the binarized version of T,(G) as
the modified co-tree of G and will denote it by T'(G). Thus, the left and right child of an internal node ¢
of T(G) will be denoted by t, and t,, respectively. Let ¢ be an internal node of T(G). Then G[t] is the
subgraph of G induced by the subset V; of the vertex set V(G), which contains all the vertices of G that
have as common ancestor in T'(G) the node ¢. For simplicity, we will denote by V; and V. the vertex sets
V(Glte]) and V(G[t,]), respectively.

Let G be a cograph, 71, 72,..., T* be k disjoint sets of vertices of V(G) and let Py (G) be a minimum
k-fixed-set path cover of G with respect to 71,72, ..., T" of size A\x7; note that the size of Pr7(G) is the
number of paths it contains. The vertices of the sets 77, 1 < i < k are called terminal vertices , and the
sets 71,72 ..., T* are called the terminal sets of G, while those of V(G) — (T1,72,...,T*) are called
non-terminal or free vertices. Furthermore, we say that a vertex u is a terminal vertex and denote it by
u € 7T if it belongs to any 7%, 1 < i < k. Thus, the set Pr7(G) contains three types of paths, which we
call terminal, semi-terminal, and non-terminal or free paths:

(i) a terminal path P; consists of at least two vertices and both its endpoints, say, v and v, are terminal
vertices belonging to the same set, that is, u € 7¢ and v € 7%, i € [1,k];

(ii) a semi-terminal path Ps is a path having one endpoint in 7%, 1 < i < k and the other in V(G) —
(T'U...uTk); if P, consists of only one vertex (trivial path), say, u, then v € 7%, 1 <i < k;

(iii) a mon-terminal or free path Pj is a path having both its endpoints in V(G) — (7' U...UTFk); if
Py consists of only one vertex, say, u, then u € V(G) — (T*U...UTk).

The set of the non-terminal paths in a minimum kFSPC of the graph G is denoted by N, while S and
T denote the sets of the semi-terminal and terminal paths, respectively. Furthermore, we denote by .S;
(resp. T;) a set of semi-terminal (resp. terminal) paths having a terminal endpoint (resp. both endpoints)
that belongs to the terminal set 7°¢. The following equation holds.

e = |N|+|S| + |T (6.1)

From the definition of the k-fixed-set path cover problem (kFSPC), we can easily conclude that the
number of paths in a minimum kFSPC cannot be less than the number of the terminal vertices divided
by two. Furthermore, since each semi-terminal path contains one terminal vertex and each terminal
path contains two, the number of terminal vertices is equal to |S| 4 2|T'|. Thus, we have the following
proposition, which also holds for general graphs:

Proposition 6.1. Let G be a cograph and let T',... , T" be disjoint subsets of V(G). Then \per >
R

Clearly, the size of a kFSPC of a cograph G, as well as the size of a minimum kFSPC of G, is less
than or equal to the number of vertices of G, that is, \pr < |V(G)|. Let F(V(G)) be the set of the free
vertices of G; hereafter, F(V) = F(V(G)). Furthermore, let P be a set of paths and let Vp denote the
set of vertices belonging to the paths of the set P; hereafter, F(P) = F(Vp). Then, if T1,... 7" are
disjoint subsets of V(G), we have \pr < [F(V)| + [T + ...+ |TF|.

Let t be an internal node of the tree T'(G), that is, ¢ is either an S-node or a P-node [68]. Then A\p7(t)
denotes the number of paths in a minimum kFSPC of the graph G[t] with respect to 7,},..., 7, where
7,5, 1 < i < k are the terminal vertices of 7 of the graph G[t]. Let t;, and ¢, be the left and the right child
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of node ¢, respectively. We denote by 7,/ and 7,° the terminal vertices of 7% in V; and V., respectively,
where V;, = V(G[t;]) and V. = V(GJt,]). Furthermore, we denote by 7; and 7, the set containing the
terminal vertices belonging in any 7% in V; and V., respectively. Let Ny, S; and T; be the sets of the
non-terminal, semi-terminal and terminal paths in a minimum kFSPC of G[t,], respectively. Similarly, let
N,., S, and T, be the sets of the non-terminal, semi-terminal and terminal paths in a minimum kFSPC of
G|t,], respectively. Clearly, Si and T} (resp. S: and T7) denote the sets of the semi-terminal and terminal
paths in a minimum kFSPC of G[t;] (resp. G[t,]) with terminal vertices belonging to 7, respectively.
Obviously, Eq. (6.1) holds for G[t] as well, with ¢ being either an S-node or a P-node, that is,

Akt (8) = [Ne| + [ Se] + [ T3] (6.2)

where N, S; and T; are the sets of the non-terminal, the semi-terminal and the terminal paths, respec-
tively, in a minimum kFSPC of G[t], that is in Pz (¢). If ¢ is a P-node, then Pyr (t) = Prr(te) U Prr (tr),
where Pyr(t¢) and Pjr(t,) are minimum kFSPCs corresponding to G[t;] and G[t,], respectively, and
AT (8) = Az (t¢) + A7 (t). Furthermore, in the case where ¢ is a P-node, we have

INe| = [Ne| + [N |
[Sel = |Sel + 5]
|Tt| - |Té| + |Tr|

Thus, we focus on computing a minimum kFSPC of the graph G[t] for the case where ¢ is an S-node. We
next define four operations on paths of a minimum kFSPC of the graphs G|t;] and G[t,.]|, namely break,
connect, bridge and insert operations; these operations are illustrated in Fig. 6.2.

o Break operation: Let P = [p1,pa,...,ps| be a path of Prr(t,) or Prr(ts) of length s. We say that
we break the path P in two paths, say, P; and P», if we delete an arbitrary edge of P, say the edge
pipi+1 (1 <14 < ), in order to obtain two paths which are P, = [py,...,p;] and P> = [piq1,...,Ds)-
Note that we can break the path P in at most s trivial paths.

o Connect operation: Let P; be a non-terminal or a semi-terminal path of Py (t¢) (resp. Prr(tr))
and let P, be a non-terminal or a semi-terminal path of Py (t.) (resp. Prr(t¢)). We say that we
connect the path P; with the path Ps, if we add an edge which joins two free endpoints of the two
paths. Note that if P, € Sy (resp. Py € S,) with a terminal endpoint belonging to 7 then, if P»
is also a semi-terminal path, P> € S, (resp. P, € Sy) with a terminal endpoint belonging to 77,
1 7.

o Bridge operation: Let Py and P be two paths of the set N, U S} US? (resp. N, US}!US?) and let
P; be a non-terminal path of the set N, (resp. Ny). We say that we bridge the two paths P; and
P; using path Pj if we connect a free endpoint of P; with one endpoint of P; and a free endpoint of
P, with the other endpoint of Ps;. The result is a path having both endpoints in G[ts] (resp. G[t,]).
Note that if P, € Sy (resp. Py € S,.) with a terminal endpoint belonging to 7 then, if P, is also a
semi-terminal path, P, € Sy (resp. P» € S,) with a terminal endpoint belonging to 77, i # j.

o Insert operation: Let P, = [t1,p1,...,p],t]] be a path in Prr(te) (resp. Prr(tr)) and let Py =
[p2,...,ph] be a non-terminal path of the set N, (resp. Ny). We say that we insert the path P,
into P, if we replace the first edge of P;, that is, the edge t1p;1, with the path [t1,pa,. .., D5, p1]-
Thus, the resulting path is P, = [t1,p2, ..., D5, p1,- .., P}, t1]. Note that we can replace every edge
of P; so that we can insert at most |F’({P1})| + 1 non-terminal paths, where F’({P;}) is the set of
the free internal vertices belonging to the path P;. If the path P; = [ty,py,...,p%, P}, ..., Py, t)] is
constructed by connecting a path of Pz (t¢), say, Pr = [t1,p1,- - -,pi] with a path of Pz (), say,
P. = [p7,...,p},t}], then it obviously has one endpoint in G[t;] and the other in G[t,]. In this case,
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Figure 6.2: Tllustrating (a) break, (b) connect, (c) bridge, (d) insert, and (e) connect-bridge operations;
the vertices denoted by black-circles belong to 77, while the vertices denoted by black-squares belong to

T3, i 43

if P, € Ny (resp. N,) we can only replace the edges of P, that belong to G[t,] (resp. G[t¢]). On
the other hand, if P, has one endpoint, say, ps, in Ny and the other, say, p}, in N,., we insert P,

into Py as follows: P, = [t1,p1,...,05, Db, .., 02,0}, ..., 0}, th].

We can also combine the operations connect and bridge to perform a new operation which we call a
connect-bridge operation; such an operation is depicted in Fig. 6.2(e) and is defined below.

o Connect-Bridge operation: Let P, = [t1,p1,...,D:,t]] be a terminal path of the set Ty (resp. T;.),

where t; € 7" and t} € 77, i # j, and let Py, Ps, ... , P=y1 be semi-terminal paths of the set S,
410+ Ps be
semi-terminal paths of the set S, (resp. S¢) with terminal endpoints belonging to pairwise disjoint

(resp. S¢) with terminal endpoints belonging to pairwise disjoint sets 7?7 and Pep

sets ’Tp/, where s is odd and 3 < s < 2z + 3. Let P, have a terminal endpoint belonging to ’T"/,
i’ # 1, and let P; have a terminal endpoint belonging to T3 4§ # j. We say that we connect-bridge
the paths P, Ps, ..
path P, with the path [¢1]; (ii) bridge r = 553 pairs of different semi-terminal paths using vertices
P1,p2;--

., Ps using vertices of Py, if we perform the following operations: (i) connect the

., pr; and (iii) connect the path [py41,...,p., t]] with the last semi-terminal path P;.
The Connect-Bridge operation produces two paths having one endpoint in G[t,] and the other endpoint

in G[t,] and £52 paths having both endpoints in G[t,] (resp. G[t(]).
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6.3 The Algorithm

We next present an optimal algorithm for the kFSPC problem on cographs. Our algorithm takes as input
a cograph G and k disjoint subsets 7!,..., 7" of its vertices, where |7¢| < 2, Vi € [1,k], and finds the
paths of a minimum kFSPC of G in linear time; it works as follows:

Algorithm Minimum kFSPC

Input: a cograph G and k disjoint subsets 7%, ..., 7% of V(G);

Output: a minimum kFSPC Py7(G) of the cograph G;

1. Construct the co-tree T.,(G) of G and make it binary; let T(G) be the resulting tree;

2. Execute the subroutine process(root), where root is the root node of the tree T'(G); the minimum
kFSPC Pj1(root) = Prr(G) is the set of paths returned by the subroutine;

Algorithm 4: Algorithm Minimum _kFSPC

where the description of the subroutine process( ) is as follows:

process (node t)
Input: node t of the modified co-tree T(G) of the input graph G.
Output: a minimum kFSPC Py (¢) of the cograph G[t].

1. if ¢ is a leaf
then return({u}), where u is the vertex associated with the leaf ¢;
else {t is an internal node that has a left and a right child denoted by ¢, and ¢,, resp.}
Prr(te) « process(te);
Prr(t,) < process(ty,);

2. if t is a P-node
then return(Prr (te) U Prr(tr));

3. if t is an S-node
then call procedure kFSPC;

We next describe procedure kF.SPC. Let b, (resp. by) be the number of vertices needed to bridge the
semi-terminal paths of Sy (resp. S,) that cannot be connected to semi-terminal paths of S,.. Thus,

b, = Zle Lmax{s;fsi’O}J and by = Zle LmaX{Séfsqy’O}J. Let SN, (resp. SNg) be the set of non-terminal

paths obtained by breaking paths of the set S, U N, (resp. S, U N,). We can construct the paths of a
kFSPC using the following procedure:

Procedure kFSPC
1. if |[N,| — b, > |N¢| — by then

1.1 break the paths of Ny U S, in order to obtain a set SN, of min{b; + |N,| — b, F(S¢ U N¢)}
paths;

1.2 break the paths of N, U .S, in order to obtain a set SN, of min{b,, F(S, U N,.)} paths;
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1.3 connect paths of S, with paths of S,;
1.4 bridge semi-terminal paths of S, (resp. S,.) using paths of SN, (resp. SNy);

1.5 bridge non-terminal paths of V. using non-terminal paths of V; and, if we obtain one path
connect the last non-terminal path of V; to a non-terminal path of V,.. The resulting path p
has one endpoint in V; and the other in V,;

1.6 if 3 a non-terminal path p with one endpoint in V,. and the other in V; and if there exist paths

created at Step 1.3, insert p into one of them; else insert p into a path created at Step 1.4;
2. if |NT| — b, < |Nz| — by then

2.1 break the paths of N, U S, in order to obtain a set SN, of min{b, + |Ny| — be, F(S, U N,.)}
paths;

2.2 break the paths of Ny U Sy in order to obtain a set SN, of min{by, F'(Sy U Ny)} paths;

2.3 connect paths of Sy with paths of S,;

2.4 bridge semi-terminal paths of S, (resp. S,.) using paths of SN, (resp. SNy);

2.5 bridge non-terminal paths of V; using non-terminal paths of V,. and, if we obtain one path
connect the last non-terminal path of V,. to a non-terminal path of V. The resulting path p
has one endpoint in V; and the other in V,;

2.6 if 3 a non-terminal path p with one endpoint in V,. and the other in V} and if there exist paths
created at Step 2.3, insert p into one of them; else insert p into a path created at Step 2.4;

3. if |NT| — b, = |Nz| — by then

3.1 break the paths of N, U S, in order to obtain a set SN, of min{b,, F(S, U N,.)} paths;
3.2 break the paths of N, U S, in order to obtain a set SN, of min{bs, F'(S; U Ny)} paths;
3.3 connect paths of S, with paths of S,;

3.4 bridge semi-terminal paths of Sy (resp. S,) using paths of SN, (resp. SNy);

3.5 bridge non-terminal paths of V. using non-terminal paths of V; and connect the last non-
terminal path of V; to a non-terminal path of V.. The constructed path p has one endpoint in
Ve, and the other in V..

3.6 if there exist paths created at Step 3.3, insert p into one of them; else insert p into a path

created at Step 3.4;

4. Vi € [1, k] find the longest path p; = [t1,v1,...,v],t}] of T} and the longest path ps = [ta, va, ..., v}, )]
of T
4.1 break p; and py to obtain the paths py = [t1], p} = [v1,...,0],t]], p2 = [t2] and p) =
[1)2, cee 7vl2ﬂt/2];
4.2 connect p; to po;

4.3 break p| and p} in order to obtain free vertices to bridge semi-terminal paths of Sy or S,.. Let
pY and p} be the resulting paths;

4.4 connect p] and pj;
5. connect-bridge semi-terminal paths of Sy (resp. S,) with paths of T,. (resp. Ty);

6. use the free vertices of the paths of T/ (resp. T}) to bridge semi-terminal paths of SJ (resp. S7),
i # j. Let Y% (resp. T%) be the number of used terminal paths of 17 (resp. T});

7. insert non-terminal paths of V; (resp. V;.) into paths of T, (resp. T});
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6.4 Correctness and Time Complexity

Let G be a cograph, T(G) be the modified co-tree of G, and let 7¢ i € [1,k] be the terminal sets of G.
Since our algorithm computes a kFSPC P, (t) of G[t] of size A, (t) for each internal node t € T'(G),
and thus for the root ¢ = t,40; Of the tree T(G), we need to prove that the constructed kFSPC P;.(t)
is minimum. Obviously, the size Ag7(t) of a minimum kFSPC of the graph G[t] is less than or equal to
the size A}, (t) of the kFSPC constructed by our algorithm. After performing simple computations we
get four specific values for the size A}, (t) of the kFSPC constructed by our algorithm, that is, by the
procedure kKFSPC. More precisely, if ¢ is an internal S-node of T'(G), our algorithm returns a kKFSPC of size
0 caual o max{o () [PV @) =PV, S5 RISV T VAT S I v

SE A= [F(V)| + X, Ti}, where 79,1 < i < v (resp. v+ 1 < i < k) denotes the terminal set
T for Wthh |7} > || (vesp. |T/}| < |T]) and Zi:y-i—l Y% (resp. Y ._, T}) denotes the number of
paths of T? (resp. Tj) that Algorithm Minimum _kFSPC breaks into semi-terminal paths. For the case
where |S;| = |T}| = |S;| = 0 and |N¢| = |V;| our algorithm returns a kFSPC of the graph G[t] of size
M (t) = ‘Ttl + 1. We prove the following lemma:

Lemma 6.1. Let t be an S-node of T(G) and let Pr(t¢) and Pr(t,) be a minimum kFSPC of Gt
and G[t,], respectively. If |S¢| = |7, = 0 and |Ng| = |V;|, then Algorithm Minimum_kFSPC returns a
minimum kFSPC of G[t] of size A1 (t) = |L2t‘ + 1

‘Ttl + 1, then the size Ay (¢) of a minimum

Proof. Since we can construct a kFSPC of size N (t) =
kFSPC is at most ‘Ttl + 1. We will show that we can not construct a minimum kFSPC of size less than
|Tt‘ + 1, that is, we W111 show that Ar(t) > @ +1e A (t) > @ Thus, we only need to prove that

Ar(t) # ‘7; . Note that by the assumption we have |€—t| = |Ty|. We assume that A7 (t) = @, and,
thus, Ar(t) = |T¢|- There exists at least one non-terminal path in G[t,]; for otherwise |N;| = 0, and thus
V, = 0, a contradiction. We ignore the terminal paths from the minimum kFSPC of G[t,] and apply
the algorithm described in [61] to G[¢t]. The resulting minimum kFSPC contains only one (non-terminal)
path which either has both endpoints in GJt¢] or it has one endpoint in GJt,] and the other in G[t,].
This non-terminal path can not be inserted into a terminal path of G[t;] because it does not have both

endpoints in G[t,]. Thus, A7 (t) = |T¢| + 1, a contradiction. 1

We next establish a lower bound on the size A7 (t) of a minimum kFSPC Pz (t) of a graph G[t]. More
precisely, we prove the following lemma.

Lemma 6.2. Let t be an internal node of T(G) and let Pyr(t¢) and Prr(t,) be a minimum kFSPC of
G[te] and Glt,], respectively. Let N, = |Si| + |T;| and \. = |S%| + |T}|. Then )\kT( ) > max{ A7 (t¢) —
POl N (t) = [F VDL, S [, 2,8 = [F(V) [+ 505, Ti B, X = [F(V)|+ X, T,
where T¢, 1 < i < v (resp. v+ 1 < i < k) denotes the terminal set T* for whz'ch |7/ > |7} (resp.
|7}| < |7}|) and Zf:y-u Yi (resp. Y.i_, Y.) denotes the number of paths of T)' (resp. T}) that Algorithm
Minimum_kFSPC breaks into semi-terminal paths.

Proof. Clearly, according to Proposition 6.1 and since G[t] is a cograph, we have Az (t) > Xk_, [@1 We
prove that A\i7(t) > A\er(te) — |F(V;)|- Assume that A\g7 () < Ap7(t¢) — |F(V,.)|. Consider removing from
this path cover all the vertices in V.. What results is a set of paths which is clearly a kFSPC for G[t].
Since the removal of a free vertex in F'(V,.) will increase the number of paths by at most one, we obtain a
kFSPC of Glt] of size at most A7 (t) + |F(V;)]. The assumption A\p7 () < Agr(te) — |F(V;)| guarantees
that Az () + |F(V)| < Akr(te), contradicting the minimality of Pr7(t¢). Using similar arguments we
can show that A7 (t) > A\er (t) — |F(‘/g)|

We now show that A\gr(t) > X N — [F(V,)| + S5 V+1 Ti4Sh A= [F(Ve)|+ >, Th. Assume
that A7 (t) < TN\ — [F(V,)| + Zz ppr T+, AL — [F(V)] + Zz 1 Ti. Consider removing from
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this path cover all the free vertices. What results is a set of paths which is clearly a kFSPC for G[t].
Since the removal of a free vertex in will increase the number of paths by at most one, we obtain a
kFSPC of G[t] of size at most A7 () + |F(Ve)| + |F(V;)|. The assumption A\g7 () < XV, N — |F(V,)| +
S T SN — [F(V)| + Y0, T} guarantees that Az (8) + [F(Ve)| + [F(V,)] < S2, X +
Y Th+Th N+ 1) S S N+ ST 4 2, AL+ S [T7], where T} denotes the
set of the terminal paths of 77 containing at least one free vertex. However, if G[t,] and G[t,] contain no
free vertices then Aoz (t) > Si_y |T| + B4 [Sy| + By [T)'] + B, | TH| + B, 4 [S)] + B, [T =
SN 4+ S8, T+ 3E, AL+ B2, [T}, a contradiction. Hence, the lemma follows. 8

According to Lemma 6.2 the size A\p7(t) of a minimum kFSPC of the graph G[t] is greater than
or equal to the size A, (t) of the kFSPC constructed by our algorithm. Thus, the size of a minimum
kFSPC of the graph G[t] is equal to X}, (¢) and, consequently, the kFSPC constructed by our algorithm
is a minimum kFSPC of G[t]. Thus, we can state the following result.

Lemma 6.3. Subroutine process(t) returns a minimum kFSPC Pyr(t) of the graph G[t], for every in-
ternal S-node t € T'(G).

Since the above result holds for every S-node ¢ of the modified co-tree T'(G), it also holds when ¢ is
the root of T(G) and 7, = T, i € [1,k]. Thus, the following theorem holds:

Theorem 6.1. Let G be a cograph and let T, i € [1,k] be k disjoint subsets of V(G). Let t be the
root of the modified co-tree T'(G), and let Pyr(t¢) and Prr(t,) be a minimum kFSPC of G[t¢] and Glt,],
respectively. Algorithm Minimum_kFSPC correctly computes a minimum kFSPC of G = G[t] with respect
to TP =T, i € [1,k], of size \pr = A7 (t), where

et (tr) + A (te) if t is a P-node,

by — i
7 (1) max{\er(te) — [F(V,)l, Az (8:) — |F(Ve)l, =k, 51,

SN, [FV)l + X0, Th S, A = [F(V)| + 02, Y3} if tis an S-node

where T', 1 < i < v (resp. v+ 1 < i < k) denotes the terminal set T* for which |I}| > |T}| (resp.
|7/} < |T}|) and Z'Ij:u+1 Yi (resp. Y_._, Yi) denotes the number of paths of T} (resp. T}) that Algorithm
Minimum_kFSPC breaks into semi-terminal paths.

Let G be a cograph on n vertices and m edges, 7°, i € [1, k] be k terminal sets, and let ¢ be an S-node of
the modified co-tree T'(G). From the description of the algorithm we can easily conclude that a minimum
kFSPC Prr(t) of G[t] can be constructed in O(E(GJt])) time, since we use at most |V (G[te])| - |V (Gtr])]
edges to connect the paths of the minimum kFSPCs of the graphs G[t;] and G[t,]; in the case where ¢
is a P-node a minimum kFSPC is constructed in O(1) time. Thus, the time needed by the subroutine
process(t) to compute a minimum kFSPC in the case where ¢ is the root of the tree T(G) is O(n + m);
moreover, through the execution of the subroutine no additional space is needed. The construction of
the co-tree T,o(G) of G needs O(n + m) time and it requires O(n) space [22, 24]. Furthermore, the
binarization process of the co-tree, that is, the construction of the modified co-tree T(G), takes O(n)
time. Hence, we can state the following result.

Theorem 6.2. Let G be a cograph on n vertices and m edges and let T, i € [1,k], be k disjoint subsets
of V(G). A minimum k-fized-set path cover Pyrr of G can be computed in O(n + m) time and space.
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6.5 Concluding Remarks

In this chapter, we introduce the k-fixed-set path cover problem (kFSPC) and propose a polynomial-
time solution on the class of cographs. Our algorithm produces a minimum k-fixed-set path cover of
a cograph G that contains the largest number of terminal paths. It would be interesting to see if the
k-fixed-set path cover problem can be polynomially solved on other classes of graphs; an interesting
next step would be to consider the class of interval graphs. This promises to be an interesting area for
further research since the complexity status of simpler problems, such as the 2HP problem, is unknown
for interval graphs.
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CHAPTER 7

THE 2-TERMINAL-SET PATH COVER
PROBLEM IS POLYNOMIAL ON
COGRAPHS

7.1 Introduction

7.2 Theoretical Framework

7.3 The Algorithm

7.4 Correctness and Time Complexity

7.5 Concluding Remarks

7.1 Introduction

In this chapter, we study a generalization of the path cover problem, namely, the 2-terminal-set path
cover problem, or 2TPC for short. Given a graph G and two disjoint subsets 71 and 72 of V(G), a
2-terminal-set path cover of G with respect to 7' and 7?2 is a set of vertex-disjoint paths P that covers
the vertices of G such that the vertices of 7' and 7?2 are all endpoints of the paths in P and all the paths
with both endpoints in 7' U 72 have one endpoint in 7! and the other in 72. Note that, if 7' U772 is
empty, the stated problem coincides with the classical path cover problem. The 2TPC problem generalizes
some path cover related problems, such as the 1HP and 2HP problems, which have been proved to be
NP-complete even for small classes of graphs, and also Problem B described in Section 5.1. We show
that the 2TPC problem can be solved in linear time on the class of cographs. The proposed linear-time
algorithm is simple, requires linear space, and also enables us to solve the 1THP and 2HP problems on
cographs within the same time and space complexity. We next define the 2TPC problem.

Problem 2TPC. Let G be a graph and let 7' and 72 be two disjoint sets of vertices of V(G). A
2-terminal-set path cover of the graph G with respect to 7' and 72 is a path cover of G such that all
vertices in 7' U 72 are endpoints of paths in the path cover and all the paths with both endpoints in
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71 UT? have one endpoint in 71 and the other in 72; a minimum 2-terminal-set path cover of G with
respect to 7' and 772 is a 2-terminal-set path cover of G with minimum cardinality; the 2-terminal-set
path cover problem (2TPC) is to find a minimum 2-terminal-set path cover of the graph G.

Contribution. In this chapter, we show that the 2-terminal-set path cover problem (2TPC) has a
polynomial-time solution in the class of complement reducible graphs, or cographs [24]. More precisely,
we establish a lower bound on the size of a minimum 2-terminal-set path cover of a cograph G on n
vertices and m edges. We then define path operations, and prove structural properties for the paths of
such a path cover, which enable us to describe a simple algorithm for the 2TPC problem. The proposed
algorithm runs in time linear in the size of the input graph G, that is, in O(n + m) time, and requires
linear space.

The proposed algorithm for the 2TPC problem can also be used to solve the 1HP and 2HP problems
on cographs within the same time and space complexity. Moreover, we have designed our algorithm so
that it produces a minimum 2-terminal-set path cover of a cograph G that contains a large number of
paths with one endpoint in 7' and the other in 72 (we can easily find a graph G and two sets 7' and
T2 of vertices of V(G) so that G admits two minimum 2-terminal-set path covers with different numbers
of paths having one endpoint in 7' and the other in 72; for example, consider the graph G with vertex
set V(G) = {a,b,c,d}, edge set E(G) = {ab, bc, ac, cd}, and T1 = {a}, T? = {b}).

Road Map. The chapter is organized as follows. In Section 7.2 we establish the notation and related
terminology, and we present background results. In Section 7.3 we describe our linear-time algorithm
for the 2TPC problem, while in Section 7.4 we prove its correctness and compute its time and space
complexity. Finally, in Section 7.5 we conclude the chapter and discuss possible future extensions.

7.2 Theoretical Framework

For convenience and ease of presentation, we binarize the co-tree T,.,(G) of a cograph G in such a way
that each of its internal nodes has exactly two children [61, 70]. We shall refer to the binarized version
of Teo(G) as the modified co-tree of G and will denote it by T'(G). Thus, the left and right child of an
internal node ¢ of T'(G) will be denoted by t; and ¢,, respectively. Let ¢ be an internal node of T'(G).
Then G[t] is the subgraph of G induced by the subset V; of the vertex set V(G), which contains all the
vertices of G that have as common ancestor in T'(G) the node ¢. For simplicity, we will denote by V; and
V. the vertex sets V(G[t;]) and V(G[t,]), respectively.

Let G be a cograph, 71 and 7?2 be two sets of vertices of V(G) such that 7' N7?2 = (), and let Pa7(G)
be a minimum 2-terminal-set path cover of G with respect to 7' and 72 of size Aa7; note that the size
of Pa7(G) is the number of paths it contains. The vertices of the sets 71 and 7?2 are called terminal
vertices, and the sets 7! and 72 are called the terminal sets of G, while those of V(G) — (Tt U T?) are
called non-terminal or free vertices. Thus, the set Pa7(G) contains three types of paths, which we call
terminal, semi-terminal, and non-terminal or free paths:

(i) a terminal path P, consists of at least two vertices and both its endpoints, say, u and v, are terminal
vertices belonging to different sets, that is, v € 7' and v € T?;

(ii) a semi-terminal path P is a path having one endpoint in 7! or 72 and the other in V(G)— (7 *UT?);
if P, consists of only one vertex (trivial path), say, u, then v € 7' U 7 ?;

(iii) a non-terminal or free path Py is a path having both its endpoints in V(G) — (71 U T?); if Py
consists of only one vertex, say, u, then v € V(G) — (T*UT?).
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The set of the non-terminal paths in a minimum 2TPC of the graph G is denoted by N, while S and T'
denote the sets of the semi-terminal and terminal paths, respectively. Furthermore, let S and S? denote
the sets of the semi-terminal paths such that the terminal vertices belong to 7' and 72, respectively.
Thus, |S| = |S!| + |S?| and the following equation holds.

Xotr = |N|+|S| +|T| = |N| + |S*| + |S?| + |T| (7.1)

From the definition of the 2-terminal-set path cover problem (2TPC), we can easily conclude that the
number of paths in a minimum 2TPC can not be less than the number of the terminal vertices of
the terminal set having maximum cardinality. Furthermore, since each semi-terminal path contains
one terminal vertex and each terminal path contains two, the number of terminal vertices is equal to
IS| + 2|T| = |S| + |S?| + 2|T|. Thus, we have the following proposition, which also holds for general
graphs:

Proposition 7.1. Let G be a cograph and let T' and T? be two disjoint subsets of V(G). Then |T| =
(S + 1T, 1T? = |92 + T and Aor = max{|T"|,|T?}.

Clearly, the size of a 2TPC of a cograph G, as well as the size of a minimum 2TPC of G, is less
than or equal to the number of vertices of G, that is, Ao < |V(G)|. Let F(V(G)) be the set of the free
vertices of G; hereafter, F(V) = F(V(G)). Furthermore, let P be a set of paths and let Vp denote the
set of vertices belonging to the paths of the set P; hereafter, F(P) = F(Vp). Then, if 7! and 7?2 are two
disjoint subsets of V(G), we have Aoz < |F(V)| + |T1| + |T2|.

Let ¢t be an internal node of the tree T'(G), that is, ¢ is either an S-node or a P-node [68]. Then Aa7(t)
denotes the number of paths in a minimum 2TPC of the graph G[t] with respect to 7,;' and 7,2, where
7' and 7,2 are the terminal vertices of 7' and 7?2 of the graph G[t], respectively. Let t;, and ¢, be the
left and the right child of node ¢, respectively. We denote by 7,! and 7,! (resp. 7,2 and 7,%) the terminal
vertices of 7! (resp. 72) in V; and V;., respectively, where V;, = V(G[t;]) and V,. = V(G[t,]). Let Ng, S¢
and T; be the sets of the non-terminal, semi-terminal and terminal paths in a minimum 2TPC of G[t],
respectively. Similarly, let N,, S, and T, be the sets of the non-terminal, semi-terminal and terminal
paths in a minimum 2TPC of G[t,], respectively. Note that S} and S} (resp. S7 and S?) denote the sets
of the semi-terminal paths in a minimum 2TPC of G[t;] and G[t,], respectively, containing a terminal
vertex of 7! (resp. 72). Obviously, Eq. (7.1) holds for G[t] as well, with ¢ being either an S-node or a
P-node, that is,

Xor (t) = [Ne| + |Se| + |T2| = [Ne| + |S; |+ [S7| + | T3] (7.2)

where Ny, S; and T; are the sets of the non-terminal, the semi-terminal and the terminal paths, re-
spectively, in a minimum 2TPC of G[t], that is in P27 (¢), and S} and S? denote the sets of the semi-
terminal paths in Pa7(t) containing a terminal vertex of 7! and 7?2, respectively. If ¢ is a P-node, then
Par(t) = Par(t¢) UPar(t,), where Par(ty) and Por(t,) are minimum 2TPCs corresponding to G[t,] and
Glt,], respectively, and A7 (t) = Aar(t¢) + a7 (¢). Furthermore, in the case where t is a P-node, we

have
INe| = [Nl + [Ny
1Se] = ISel +1Se| = |S7]+[SFI + S} + |S?
T = |Te|l + |7

Thus, we focus on computing a minimum 2TPC of the graph G[t] for the case where ¢ is an S-node.
Before describing our algorithm, we establish a lower bound on the size A7 (t) of a minimum 2TPC
Par(t) of a graph G[t]. More precisely, we prove the following lemma.

Lemma 7.1. Let t be an internal node of T(G) and let Par(t;) and Par(t,) be a minimum 2TPC of
G[te] and G[t,], respectively. Then Aot (t) > max{max{|7Z}|, |T2|}, Aoz (te)—|F V)|, Aoz (t,) —|F(V2)|}.
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Proof. Clearly, according to Proposition 7.1 and since G[t] is a cograph, we have \a7(t) > max{|7}|,
|7.2}. We will prove that A\o7(t) > Aor(t7) — |F(V;)|. Assume that Aor(t) < Aoz (te) — |F(V;)]. Consider
removing from this path cover all the vertices in V.. What results is a set of paths which is clearly a 2TPC
for G[te]. Since the removal of a free vertex in F(V,) will increase the number of paths by at most one,
we obtain a 2TPC of GJt] of size at most Aa7 (t) + |F(V,)|. The assumption Aor(t) < Aoz (te) — |F'(V,)]
guarantees that Aoz (t) + |F(V,)| < Aar(te), contradicting the minimality of Par(t¢). Using similar
arguments we can show that Aoz (t) > Aor(t-) — |F(V2)|. Hence, the lemma follows. 1

We next define four operations on paths of a minimum 2TPC of the graphs G[t,] and G[t,], namely break,
connect, bridge and insert operations; these operations are illustrated in Fig. 7.1.

o Break operation: Let P = [p1,pa,...,px] be a path of Par(t,) or Par(ts) of length k. We say that
we break the path P in two paths, say, P; and Ps, if we delete an arbitrary edge of P, say the edge
pipi+1 (1 <i < k), in order to obtain two paths which are P, = [p1,...,p;] and P» = [pit1,. .., pk|.
Note that we can break the path P in at most k trivial paths.

o Connect operation: Let P; be a non-terminal or a semi-terminal path of Par(ts) (resp. Par(tr))
and let P, be a non-terminal or a semi-terminal path of Par(t.) (resp. Par(ts)). We say that we
connect the path P; with the path Ps, if we add an edge which joins two free endpoints of the two
paths. Note that if P € S} (resp. Pi € S}) then, if P is also a semi-terminal path, P, € S? (resp.
P, € S?). Similarly, if P, € S? (resp. P; € S?) then, if P, is also a semi-terminal path, P, € S}
(resp. P, € 5}).

o Bridge operation: Let Py and P be two paths of the set N, U S} US? (resp. N, US}!US?) and let
P; be a non-terminal path of the set N, (resp. Ny). We say that we bridge the two paths P; and
P; using path Pj if we connect a free endpoint of P; with one endpoint of P and a free endpoint
of P, with the other endpoint of P;. The result is a path having both endpoints in G[ts] (resp.
G[t,]). Note that if P, € S} (vesp. Pi € S}) then, if P, is also a semi-terminal path, P> € S7 (resp.
P, € S?). Similarly, if P, € S? (resp. Pi € S?) then, if P, is also a semi-terminal path, P, € S}
(resp. P, € S1).

o Insert operation: Let Py = [t1,p1,...,p},t1] be a terminal path of the set T, (resp. T,) and
let P, = [pa,...,p5] be a non-terminal path of the set N, (resp. N;). We say that we insert
the path P, into P;, if we replace the first edge of Pj, that is, the edge t1p;, with the path
[t1,p2,-..,P5,p1]. Thus, the resulting path is P, = [t1,p2,...,p5,p1,...,D1,t1]- Note that we
can replace every edge of the terminal path so that we can insert at most |F({P1})| + 1 non-
terminal paths, where F'({P;}) is the set of the free vertices belonging to the path P;. If the
terminal path P, = [ty,py1,...,p%, pt,...,p},t}] is constructed by connecting a semi-terminal path
of Sy, say, P, = [t1,p1,...,p}] with a semi-terminal path of S, say, P. = [p},...,p},t}], then it
obviously has one endpoint in G[t;] and the other in G[t,]. In this case, if P, € Ny (resp. N,)
we can only replace the edges of P; that belong to G[t,] (resp. G[t¢]). On the other hand, if P,
has one endpoint, say, pa, in N, and the other, say, p}, in N,, we insert P into P; as follows:

Pl = [tlapla"'7p€ap/2a"'7p2ap7£a"'7p/17t/1]'

We can also combine the operations connect and bridge to perform a new operation which we call a
connect-bridge operation; such an operation is depicted in Fig. 7.1(e) and is defined below.
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Figure 7.1: Tllustrating (a) break, (b) connect, (c) bridge, (d) insert, and (e) connect-bridge operations;
the vertices of 7' are denoted by black-circles, while the vertices of 72 are denoted by black-squares.

o Connect-Bridge operation: Let Py = [t1,p1,...,Dpk, t7] be a terminal path of the set Ty (resp.
T,.), where t; € 7% and t} € T*, and let P, Ps, ... , P41 be semi-terminal paths of the set St
(resp. S}) and Pug1y,..., Py be semi-terminal paths of the set S2 (resp. S%), where s is odd
and 3 < s < 2k + 3. We say that we connect-bridge the paths Py, Ps,..., Ps using vertices of
Py, if we perform the following operations: (i) connect the path P» with the path [t1]; (ii) bridge
r = 553 pairs of different semi-terminal paths using vertices p1,ps,...,p,; and (iii) connect the
path [py41,...,Dpk, t]] with the last semi-terminal path P;.

The Connect-Bridge operation produces two paths having one endpoint in G[t,] and the other endpoint
in G[t,] and £52 paths having both endpoints in G[t,] (resp. G[t,]).

7.3 The Algorithm

We next present an optimal algorithm for the 2TPC problem on cographs. Our algorithm takes as input
a cograph G and two subsets 7' and 7?2 of its vertices, where 7' N'72 = (), and finds the paths of a
minimum 2TPC of G in linear time; it works as follows:
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Algorithm Minimum 2TPC

Input: a cograph G and two subsets 7! and 72 of V(G) such that 7' N7?2 = ();
Output: a minimum 2TPC Pa7(G) of the cograph G;

1. Construct the co-tree T.,(G) of G and make it binary; let T(G) be the resulting tree;

2. Execute the subroutine process(root), where root is the root node of the tree T'(G); the minimum
2TPC Par(root) = Par(G) is the set of paths returned by the subroutine;

Algorithm 5: Algorithm Minimum_2TPC
where the description of the subroutine process( ) is as follows:

process (node t)
Input: node t of the modified co-tree T'(G) of the input graph G.
Output: a minimum 2TPC Par(t) of the cograph G[t].

1. if ¢t is a leaf
then return({u}), where u is the vertex associated with the leaf ¢;
else {t is an internal node that has a left and a right child denoted by ¢, and ¢, resp.}
Par(te) «— process(ty);
Par(t;) < process(t,);

2. if t is a P-node
then return(Paz (t¢) U Par(t,));

3. if t is an S-node
then if |Ny| < |N,| then swap(Par(te), Por(tr));

st = |87 = IS7I;

s? =S¢ = ISy ];

case 1: s!>0and s2>0
call procedure 27T PC_1;

case 2: s'<0and s?2<0
it [N, |+ min|s], s3]} < [F(S} U S2UN)|
then call procedure 2T PC_2_a;
else call procedure 2T PC_2_b;

case 3: (s!>0and s <0)or (s! <0and s? >0)
call procedure 27 PC_3;

We next describe the subroutine process( ) in the case where ¢ is an S-node of T'(G). Note that, if
|N¢| < |N,|, we swap Par(ts) and Par(t.). Thus, we distinguish the following three cases: (1) s! >0
and s2 >0, (2) s! < 0and s <0, and (3) (s* > 0 and s? < 0) or (s! <0 and s% > 0).

Case 1: s'! >0and s2 >0

Let SN, be the set of non-terminal paths obtained by breaking the set SIUS2UN,. into | Ny|—1+min{s!, s?}
non-terminal paths; thus, |SN,| < |F(S} U S?2 U N,)|. In the case where |Ny| — 1 + min{s!, s?} >
F(S! U S2 U N,), the paths of SN, are trivial (recall that F(S} U S? U N,) is the set of free vertices
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belonging to the set S! U S? U N,.). The paths of SN, are used to bridge at most 2min{s', s>} semi-
terminal paths of S} U S? and, if |[SN,| — min{s', s*} > 0, at most |N;| non-terminal paths of N;,. We
can construct the paths of a 2TPC using the following procedure:

Procedure 2TPC_1

1.

2.

9.

connect the |S?| paths of S? with |S?| paths of S}, and the |S}| paths of S} with |S}| paths of SZ;
bridge 2 min{s', s?} semi-terminal paths of S} U S? using min{s', s>} paths of SN,;

bridge the non-terminal paths of N, using |Ny| — 1 non-terminal paths of SN,; this produces non-
terminal paths with both endpoints in G[t], unless |N,| < |F (S} U S? U N,.)| — min{s!, s?} where
we obtain one non-terminal path with one endpoint in G[t;] and the other in G[t,];

if |[Ny| < |F(S}US?2UN,)| —min{s!, s?} insert the non-terminal path obtained in Step 3 into one
terminal path which is obtained in Step 1;

if |7.] = |S;| = |S?] = 0 and |F(S} U S2UN,)| > |N¢| 4+ 1 construct a non-terminal path having
both of its endpoints in G[¢t,] and insert it into a terminal path of Ty;

if || = S} = |S2| = 0 and |F(N,)| > |Ne| + min{s!, s} construct a non-terminal path having
both of its endpoints in G[t,] and use it to connect two semi-terminal paths of S} U S%;

if s1 — min{min{s!, s?}, |F(S}US2UN,)|} (resp. s? — min{min{s!, s?}, |F(S} U S2UN,)|}) is
odd and there is at least one free vertex in S} U S2 U N, which is not used in Steps 1-6, or there is
a non-terminal path having one endpoint in G[t;] and the other in G[t,], connect one non-terminal
path with one semi-terminal path of S} (resp. S7);

connect-bridge the rest of the semi-terminal paths of S} U S? (at most 2(|F(T})| + |T;|)) using
vertices of T;

insert non-terminal paths obtained in Step 3 into the terminal paths of T;

Based on the procedure 2TPC_1, we can compute the cardinality of the sets N;, S}, S? and T}, and thus,
since Ny (t) = |N¢| + |St| +|T%| and |S;| = S} + SZ, the number of paths in the 2TPC constructed by the
procedure at node ¢t € T(G). In this case, the values of |N¢|, |S¢| and |T%| are the following:

[N:| = max{p—a, 0}
1St] = min{o}, max{o; — |F(T;)| — |T;|, max{o} —o7,0}}}
1S7] = min{o7, max{o} — |F(T;)| — |T;|, max{o} —oy,0}}} (7.3)
S = ISt +s? -
Tyl =[S} + |52+ min{min{s!, s?}, |F(S} US2UN,)|} + |Ty| + |T;| + L2158
where
of = |S¢| =187 — min{min{s', s*}, |[F(S; USUN,)|},
o? = |87 —|S} — min{min{s', s?}, |F(S}uUS?UN,)|},
p = max{|Ng| — 7., max{l — max{|S}|,|S7|},0}} — max{|F(T})| + |T,| — min{o},c?},0} —
min{max{min{|Ny| — 7, 8(c}),5(c?)},0}, max{min{ F(S} US> U N,) — min{s', s?},1},0}},
a = min{max{min{m, — |Ng|, 1}, 0}, max{|T¢|, 0}}, and
7, = max{|F(S}US?UN,)| —min{s!, s}, 0}.
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In Eq. (7.3), o} (resp. o7) is the number of semi-terminal paths of S} (resp. S7) that are not connected
or bridged at Steps 1-3. Furthermore, 7, is the number of free vertices in the set S} U S? U N, that are
not used to bridge semi-terminal paths of S} US? at Step 3 and d is a function which is defined as follows:
d(z) =1, if x is odd, and §(x) = 0 otherwise. Note that at most |F(T}.)| +|T,| non-terminal paths can be
inserted into the terminal paths of 7). or the terminal paths can connect-bridge at most 2(|F(T,)| + |T+|)
semi-terminal paths.

Case 2: s' <0and s2 <0

In this case, we need |N,| + min{|s*|,|s?|} paths of G[t,] in order to bridge |N,| non-terminal paths of
N, and 2min{|s'|, |s?|} semi-terminal paths of S} US2. If [N;| < |N,| + min{|s'|,|s?|} we break the non-
terminal paths of N, into at most |F(N;)| paths; in the case where |F(Ny)| < |N,| + min{|s!|, |s?|} we
also use (at most |F(S}US?)|) vertices of S} USZ. Let p = min{|N,|+min{|s'|,|s?|}, |F(S}USZUN,)|}.
We distinguish two cases:

2.a |N,|+ min{|s'|, |s?|} < |F(S}USZUNy)|.

In this case, p = |N,.| + min{|s!|, |s?|} and the number of non-terminal paths (or free vertices) of G[t/] is
sufficient to bridge non-terminal paths of N,. and semi-terminal paths of S} US2. In detail, let SN, be the
set of non-terminal paths obtained by breaking the set S} U SeQ U Ny into p non-terminal paths in order to
bridge 2 min{|s!|, |s?|} semi-terminal paths of S} U S? and all the non-terminal paths of N,.. If p < |N|
then SN; = N,. Obviously, |SNy| < |F(S}US?UN,)|. Note that, if p < |N| then the non-terminal paths
of N, are used to bridge the paths of N,. More precisely, we use paths of the set SN, (it is the set of
non-terminal paths that we get by breaking the set S! US?UN,.) in order to obtain |Ny| — min{|s!|,|s?|}
non-terminal paths. If p > |N;| we set SN, = N, and we use at most |F(S} US? UNy)| paths obtained by
S} USZU N in order to bridge non-terminal paths of N, and semi-terminal paths of S! U S2, that is, we
use the set SNy. As a result, we construct min{|s!|,|s?|} terminal paths having both of their endpoints
in G[t,] and we have at least one non-terminal path, if p < |Ny|, and exactly one non-terminal path,
otherwise. Note that, in the second case, we can construct the non-terminal path in such a way that one
endpoint is in SN, and the other is in N,.. We construct the paths of a 2TPC at node t € T(G) using the
following procedure:

Procedure 2TPC_2_a

—

. connect the |S}| paths of S} with |S}| paths of S2, and the |S?| paths of S7 with |S7| paths of S};

2. if |Ty| = |T;:| = 0 and p > |Ny|, use N, to bridge p — min{|s!|, |s?|} + 1 paths of SN, and use the
constructed non-terminal path having both of its endpoints in G[t;] to bridge two semi-terminal
paths of St U S2;

3. bridge semi-terminal paths of S} U S? using paths of SNy;

4. if |T,.| = 0,|Ty| # 0, p > |N¢| and |F(SLUS2UN,.)| > |SN¢|—min{|s!|,|s%|} construct a non-terminal
path having both of its endpoints in G[t,] and use a terminal path of T to insert the constructed
non-terminal path;

5. bridge the remaining paths of SN, using the paths of SN,.. This produces non-terminal paths one
of which has one endpoint in G[t;] and the other in G[t,];

6. if |s%| — min{|s|,[s?|} (resp. |s'| — min{|s?|,|s?|}) is odd, we connect one non-terminal path with
one semi-terminal path of S} (resp. S2);

7. insert at most |F(T})| + |T;| non-terminal paths obtained in Step 5 into the terminal paths of T};
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Based on the path operations performed by procedure 2TPC_2_a, we can compute the cardinalities of
the sets Ny, S; and T;:

|Nt| = max{,u—a, 0}
S| = max{|s*| —[s'[, 0}
1S?] = max{]s'| —|s], 0} (7.4)
1Sel =[S} +[S7]
Til = IS¢+ [SFI+min{|s!|, |s?[} + |Te| + | T
where
po= max{|Ng| - F(S; USFUN,), 0} —min{|s'|, [s*[} — [F(T})| = |T7] —
max{5(Js"| — min{|s'], [s}),6(/5%| — min{|s'], |s|})}, and
a = min{max{min{F(S} US?UN,) — [N, 1}, 0}, max{|T,|, 0}}.

2.b |N,| +min{|s'|,[s2[} > |[F(S} USZUN,)|.

In this case, p = |F(S} U S? U Ny)| and the number of free vertices of G[t,] (that is, in S} U S? U Ny)
is not sufficient to bridge non-terminal paths of N, and semi-terminal paths of S} U S2. In detail,
let SNy be the set of the trivial, non-terminal paths, obtained by breaking the set S} U S? U N, into
|F(S} US? U Ny)| non-terminal paths. We can construct the paths of a 2TPC at node ¢ € T(G) using
the following procedure:

Procedure 2TPC_2 b
1. connect the |S}| paths of S} with |S}| paths of S2, and the |S?| paths of S? with |S?| paths of S};
2. bridge 2 min{|s?|,|s?|} semi-terminal paths of S} U S? using min{|s|, |s?|} paths of SN;

3. bridge the non-terminal paths of NV, using the rest of the non-terminal paths of SN,. This produces
non-terminal paths such that both endpoints belong to G[t,];

4. connect-bridge the rest of the semi-terminal paths of S! U S? (at most 2(|F(1;)| + |T¢|)) using
vertices of Tp;

5. insert non-terminal paths obtained in Step 3 into the terminal paths of Ty;

Based on the procedure 2TPC_2_b, we can compute the cardinalities of non-terminal, semi-terminal and
terminal sets:

N = max{s, 0}
1Si| = min{o;, max{o; — [F(T})| - [T¢], max{o, —o7,0}}}
|S2|] = min{o2, max{o? — |F(T})| — |T|, max{o? —o},0}}} (7.5)
|St] IS¢+ 15|
T = 183+ |82 + minfmin{]s!], [s2[}, [F(S}USZUN[} + [Te] + [T, + 222571
where
op = |8} = |S7| — min{min{[s'|, [s*[}, [F(S; US; UNoI},
op = |57 —|S¢| — min{min{|s'|, [s°[}, [F(S; USFU NI},
@ = |N.| =7 —min{max{min{|F(S} US? U Ny)| — min{|s'|, |s*|}, 1}, 0},
max{min{|N,| — m, §(|s'|), §(|s*])}, 0}} — max{|F(T%)| + |T;| — min{c}, %}, 0}, and
m = max{|F(S} US?UN,)| —min{|s'|, |s?|}, 0}.
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In Eq. (7.5), o} (resp. ¢2) is the number of semi-terminal paths of S} (resp. S?) that are not connected
or bridged at Steps 1-3. Moreover, m, is the number of free vertices that belong to the set S} U S? U N,
and are not used to bridge semi-terminal paths of S! U S? (at Step 3). Again, 6(z) = 1, if = is odd, and
d(z) = 0 otherwise. Note that at most |F(T;)| +|T¢| non-terminal paths can be inserted into the terminal
paths of Ty or the terminal paths can connect-bridge at most 2(|F(T)| + |T¢|) semi-terminal paths.

Case 3: (s! > 0and s? < 0) or (s* <0 and s? > 0)

Let SN, be the set of non-terminal paths which are used to bridge at most |N¢| non-terminal paths of
Ny; it is obtained by breaking the set S! U S? U N, into |N;| — 1 non-terminal paths. In the case where
|Ng| — 1 > F(S}US? U N,), the paths of SN, are trivial. We can construct the paths of a 2TPC using
the following procedure:

Procedure 2TPC_3

1. connect min{|S}|,|S?|} paths of S} with min{|S}|,|S2|} paths of S?, and min{|S?|,|S}|} paths of
S? with min{|S?|, |S}|} paths of S};

2. bridge the non-terminal paths of N, using |Ny| — 1 non-terminal paths of SN,.; this produces non-
terminal paths with both endpoints in G[t,], unless |N;| < |F(S} U S? U N,.)| where we obtain one
non-terminal path with one endpoint in G[ts] and the other in G[t,];

3. if [Ny| < |F(S} U S2U N,)| insert the non-terminal path obtained in Step 2 into one terminal path
which is obtained in Step 1;

4. if there is at least one free vertex in S} U S2 U N, which is not used in Steps 1-3, or there is a
non-terminal path having one endpoint in GJt¢] and the other in G[t,], connect one non-terminal
path with one semi-terminal path of Sl} U Sg;

5. if there is a non-terminal path having at least one endpoint in G[t;], connect it with one semi-
terminal path of S! U S2;

6. insert non-terminal paths obtained in Step 2 into the terminal paths of T ;

Based on the procedure 2TPC_3, we can compute the values of |N¢|, | S| and |T3|:

INt| = max{|N¢| — |[F(V;)| = |T;,| = max{oy, o7}, 0}
ISi1 = oz +o;
IS7| = of+o7 (7.6)
1S:| =[S} +S7]
Ty = wmin{[S}|, [S?|} +min{|S?|, |S}} + |Te| + ||
where
o = max{[S;| - [S7], 0},
o; = max{[S7| - [S;], 0},
op = max{[S}| - [57], 0}, and
op = max{|S?| - [5;], 0},

In Eq. (7.6), o} (resp. o7) is the number of semi-terminal paths of S} (resp. S7) that are not connected
at Step 1 (resp. Step 2) and o) (resp. o2) is the number of semi-terminal paths of S} (resp. S?) that are
not connected at Step 2 (resp. Step 1).
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7.4 Correctness and Time Complexity

Let G be a cograph, T(G) be the modified co-tree of G, and let 7! and 72 be the two terminal sets of
G. Since our algorithm computes a 2TPC P.(t) of G[t] of size Ay, (¢) for each internal node ¢t € T'(G),
and thus for the root t = #,40 of the tree T(G), we need to prove that the constructed 2TPC P (t)
is minimum. Obviously, the size Ay7(t) of a minimum 2TPC of the graph G[t] is less than or equal
to the size A, (t) of the 2TPC constructed by our algorithm. According to Proposition 7.1, if the
size of the 2TPC constructed by our algorithm is A\, (t) = max{|Z;'|,|Z;|}, then it is a minimum
2TPC. After performing simple computations we get four specific values for the size N, (t) of the 2TPC
constructed by our algorithm, that is, by the 2TPC procedures 1, 2_a, 2_b and 3. More precisely, if ¢ is an
internal S-node of T'(G), our algorithm returns a 2TPC of size A\, (¢) equal to either max{|T;}|,|Z2|} +1,
max{| 7|, | 72|}, Aot (te) — |F(V,)|, or Aoz () — |F(Ve)|; see Table 7.1. Specifically, in the case where
IS} = |S7| = |T;| = |S}| = |S?] = 0 and |Ny| = |V;| procedure 2TPC_1 returns a 2TPC of the graph
Gt] of size Ny7(t) = max{|ZT;'|,|Z;2|} + 1. We prove the following lemma, which shows that if the size
of the 2TPC returned by our subroutine process(t) for the graph G[t] is Aoy (t) = max{|Z;}|, |2} + 1
(procedure 2TPC_1), then it is a minimum 2TPC.

Lemma 7.2. Lett be an S-node of T(G) and let Par(ty) and Par(t.) be a minimum 2TPC of G[ti] and
Gt,], respectively. If |S}| = |SZ| = |T| = |SH = |S?| = 0 and |N,| = |V,|, then the procedure 2TPC-1
returns a minimum 2TPC of G[t] of size Ny (t) = max{|Z.}|,| 7|} + 1.

Proof. Since we can construct a 2TPC of size A\, (t) = max{|Z;*|,|Z;2|} + 1, then the size A\a7(t) of a
minimum 2TPC is at most max{|7;'|,|7?|} + 1. We will show that we can not construct a minimum
2TPC of size less than max{|7Z;}|,|7;?|} + 1, that is, we will show that Aoz () > max{|T}|,|Z2|} + 1 &
o7 (t) > max{|Z;}|,|7;?|}. Thus, we only need to prove that \ar(t) # max{|Z;}|,|7%|}. Note that by
the assumption we have max{|7;!|,|7;%|} = |T;|. We assume that \o7(t) = max{|7;'|,|7;?|}, and, thus,
Xor(t) = |T¢|. There exists at least one non-terminal path in GJts]; for otherwise |Ny| = 0, and thus
V., = 0, a contradiction. We ignore the terminal paths from the minimum 2TPC of GJt;] and apply
the algorithm described in [61] to G[t]. The resulting minimum 2TPC contains only one (non-terminal)
path which either has both endpoints in G[t¢] or it has one endpoint in G[t;] and the other in GJt,].
This non-terminal path can not be inserted into a terminal path of G[t;] because it does not have both
endpoints in G[t,]. Thus, Ao7(t) = |T¢| + 1, a contradiction. 1

Moreover, if the size of the 2TPC returned by the process(t) is max{|Z;!|,|Z;?|} (all the procedures),
then it is obviously a minimum 2TPC of G[t]. We prove that the size A, (¢) of the 2TPC PL-(¢) that
our subroutine process(t) returns is minimum.

Lemma 7.3. Lett be an S-node of T'(G) and let Par(ty) and Par(t.) be a minimum 2TPC of G[ti] and
G[t], respectively. If the subroutine process(t) returns a 2TPC of G[t] of size Nyr(t) = max{|T;}|, | 72|},
then Ayr(t) > max{Aor (te) — [F(V2)l, Aoz (tr) — [F(Vo)[}-

Proof. Since Nyr(t) = max{|7;!|,|Z;?|}, we have N, (t) = Ao7(¢), that is, the 2TPC that the subroutine
process(t) returns is minimum. Thus, the proof follows from Lemma 7.1. 1

Let ¢ be an S-node of T(G) and let Par(t¢) and Par(t,) be a minimum 2TPC of G[t,] and G[t,],
respectively. Furthermore, we assume that the conditions |S}| = |S?| = |T,| = |S}| = |S?| = 0 and
|N¢| = |V;| do not hold together. We consider the case where the subroutine process(t) returns a 2TPC
Pl (t) of the graph G[t] of size A7 (t) = Aoz (t7) — |F(V;)| (cases 1, 2.a and 3). We prove the following
lemma.
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Procedures Size of 2-terminal-set PC

Procedure 2TPC_1 max{|7;}|, |72} + 1
All the procedures max{|T;'|,|T?[}
Procedures 2TPC_1, 2TPC_2_a and 2TPC_3 Aot (te) — |F (V)]
Procedure 2TPC_2b Aot (tr) — |F (V)]

Table 7.1: The size of the 2TPC that our algorithm returns in each case.

Lemma 7.4. Let t be an S-node of T(G) and let Paz(te) and Par(t-) be a minimum 2TPC of G[ts] and
Glt,], respectively. If the subroutine process(t) returns a 2TPC of G[t] of size Nyr(t) = Xar (te) — |F(Vy)l,
then Xy (t) > max{max{|T'|, 7|}, Aoz (tr) — [F(Ve)[}-

Proof. We consider the cases 1, 2.a and 3. In these cases, the size A, ,(¢) of the constructed 2TPC is
computed using Eqgs. (7.3), (7.4) and (7.6) and the fact that Xy (t) = |N¢| + |S¢| +|T%|. After performing
simple computations, we conclude that in these cases the subroutine process(t) (cases 1, 2.a) returns
Aor (t) = A7 (te) — |F(V;)] if the following condition holds:

|Ne| = max{[s'|, |s*[} > [F(V)] + [T . (7.7)

In case 3 subroutine process(t) returns Ny (t) = Aoz (t¢) — |F(V;)| if the following condition holds:

|N,| + min{s*, s*} > |[F(V;.)| + |T»|. (7.8)

We will show that (i) Aoy (t) > max{|Z;}],|Z2|} and, (i) Moz (t) > Xor(t.) — |F(Ve)]. According to
Proposition 7.1 and since G[t] is a cograph, we have:

T = 18i] + 1S} + |Te| + |Tv| and |T?| = [S7| + [S7] + [ Te| + |T].

(i) We first show that A, (t) = Xar(t¢) — |F(V;)| > max{|7;}|,|Z;?|}. Consider the case where s! > 0 and
52 >0, and let s' < s?; equivalently,

|Se] = 1871 < ISE1 = |Sp] & |Sg| + |Sp| + | Tel + Ty | < ISP + 1S + | Tel + | T| & || < |T2.

By Proposition 7.1 and Eq. (7.7) we obtain |Ny| +|S¢|+ |SZ|+ |Te| — |F(V;))| > |T |+ max{s', s?} +|S}| +
S71+[Tel = |72 = [S2] + 1S} + max{s', s?} = |T?[ + s' + s* > |T?| = max{|Z,}|, |7°[}.

Since Aoz (te) — [F(Vi)| = [Ne| + |S}| + |S2| + |Tu| — [F(V;)l, it follows that oz (t) — |[F(V;)| >
max{|7[,|7[}-

Now let s' > s?; equivalently,

|Sel = 1871 = 1871 = |S: ] & | T = | T2].
By Proposition 7.1 and Eq. (7.7) we obtain |Ny| +|S¢|+ |SZ| +|Te| — | F(V;)| > |T| + max{s', s?} + |S}| +
SE1+[Tel = |TH = [SH + 187 + max{s', s*} = |T'[ + s* + s' > | T = max{|T!|, | 7|}
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Similarly, we can show that A, (t) = Aoz (t7) — |F(V,.)| > max{|7;}|, |Z;?|} for the cases where s' < 0
and s2 <0, s' >0and s2 <0, and s' < 0 and s > 0.

(ii) We next show that \yr(t) = Ar(te) — |F(Vi)| > Xar(t.) — |F(Ve)|. Consider the case where s' >0
and s? > 0. From Eq. (7.7) and since

INw| < [Ne| < [F(Ne)| & [Ny < [F(Ve)| < [Ne| = [F(Ve)] <0,
we obtain [Ny|+ [ S| +[S7|+ | T = [F(Vo)| < [N +[Sp|+|S2] = [F (Vo) + [Ne| — max{s', s?} — [F (V)| <
|Se| + 187 + [Ne| = max{s', s2} — [F(V)| <[S7| + [S¢] + [Ne| = [F(Ve)| < Az (te) = [F(V2)].

Similarly, we can show that A, (t) = Az (te) — |F(Vi)| > Xar(t.) — |F(V2)] for the cases where s < 0
and 52 <0, s' > 0and s> <0, and s' <0 and s2>0. 1

Similarly we can show that if the subroutine process(t) returns a 2TPC of G[t] of size M,,(t) =
Aot (t:) — [F(V)| (case 2.b), then Nor(t) > max{max{|Z}|, |72}, Aoz (te) — |F(V;)|}. Thus, we can
prove the following result.

Lemma 7.5. Lett be an S-node of T'(G) and let Par(ts) and Par(t.) be a minimum 2TPC of G[ti] and
Glt,], respectively. The subroutine process(t) returns a 2TPC Par(t) of G[t] of size

max{|Z'], |72} + 1 if |N¢| = |V,| and
1Si1 =187l =T = |T?| = 0,
ar(t) =
max{max{|Z'|, | T2[}, her (te) — [F(V2)],
Aot (t) — [F(Ve)[} otherwise.

Obviously, a minimum 2TPC of the graph G[t] is of size Aa7(t) < AL+ (). On the other hand, we have
proved a lower bound for the size Aa7(t) of a minimum 2TPC of the graph G[t] (see Lemma 7.1), namely,
o7 (t) > max{max{|T'|,|Z2|}, Aoz (te) — |F(V,)|, Xaz(tr) — |F(Vp)|}. It follows that Ay (t) = Aar (1),
and, thus, we can state the following result.

Lemma 7.6. Subroutine process(t) returns a minimum 2TPC Par(t) of the graph Glt], for every internal
S-node t € T(G).

Since the above result holds for every S-node ¢ of the modified co-tree T'(G), it also holds when ¢ is
the root of T(G) and 7,' = 7' and 7,2 = T?2. Thus, the following theorem holds:

Theorem 7.1. Let G be a cograph and let T and T? be two disjoint subsets of V(G). Let t be the
root of the modified co-tree T(G), and let Por(t;) and Par(t,) be a minimum 2TPC of G[t;] and G[t,],
respectively. Algorithm Minimum_2TPC correctly computes a minimum 2TPC of G = G[t] with respect
to T' = T,' and T? = T2 of size Ao = Mar (t), where

Aot (tr) + a7 (t0) if t is a P-node,
max{|7;}|, | 72|} + 1 if t is an S-node and
[Ne| = |Vr| and

IS¢l = |S7| = |T' = |72 = 0,
max{max{| |, |T2|}, Aoz (te) — [F(V2)],
Aot (tr) — [F'(Va)|} otherwise.
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Let G be a cograph on n vertices and m edges, 7' and 72 be two terminal sets, and let ¢ be an S-node of
the modified co-tree T'(G). From the description of the algorithm we can easily conclude that a minimum
2TPC Par(t) of G[t] can be constructed in O(E(G[t])) time, since we use at most |V (G[t(])| - |V (G[tr])]
edges to connect the paths of the minimum 2TPCs of the graphs G[t;] and G[t,]; in the case where ¢
is a P-node a minimum 2TPC is constructed in O(1) time. Thus, the time needed by the subroutine
process(t) to compute a minimum 2TPC in the case where ¢ is the root of the tree T(G) is O(n + m);
moreover, through the execution of the subroutine no additional space is needed. The construction of
the co-tree T,o(G) of G needs O(n + m) time and it requires O(n) space [22, 24]. Furthermore, the
binarization process of the co-tree, that is, the construction of the modified co-tree T(G), takes O(n)
time. Hence, we can state the following result.

Theorem 7.2. Let G be a cograph on n vertices and m edges and let T' and T2 be two disjoint subsets
of V(GQ). A minimum 2-terminal-set path cover Par of G can be computed in O(n + m) time and space.

7.5 Concluding Remarks

In this chapter, we introduce the 2-terminal-set path cover problem (2TPC) and propose a polynomial-
time solution on the class of cographs. Our algorithm produces a minimum 2-terminal-set path cover of a
cograph G that contains the largest number of terminal paths. It is worth investigating the existence of a
linear-time algorithm for finding a minimum 2-terminal-set path cover on cographs that contains a large
number of semi-terminal paths; we pose it as an open problem. It would also be interesting to see if the
2-terminal-set path cover problem can be polynomially solved on other classes of graphs; an interesting
next step would be to consider the class of interval graphs. This promises to be an interesting area for
further research since the complexity status of simpler problems, such as 1HP and 2HP, is unknown for
interval graphs.
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CHAPTER 8

SOLVING THE k(2)-TERMINAL-SET PATH
CoVER PrROBLEM ON COGRAPHS

8.1 Introduction

8.2 Theoretical Framework

8.3 The Algorithm

8.4 Correctness and Time Complexity

8.5 Concluding Remarks

8.1 Introduction

Another path cover related problem that has received increased attention in recent years is in the context
of communication networks. The only efficient way to transmit high volume communication, such as in
multimedia applications, is through disjoint paths that are dedicated to pairs of processors. To efficiently
utilize the network one needs a simple algorithm that, with minimum overhead, constructs a large number
of edge-disjoint paths between pairs of two given sets of requests. Motivated by this issue, we state
a variant of the path cover problem, namely, the k-terminal-set path cover problem (kTSPC), which
generalizes both 1HP and 2HP problems.

Problem kTSPC. Let G be a graph and let 7',72,... 7% be disjoint sets of vertices of V(G). A
k-terminal-set path cover of the graph G with respect to 7',72,...,7" is a path cover of G such that
all vertices in 7' U 72 U...UT* are endpoints of paths in the path cover and all the paths with both
endpoints in 7! U 72 U...U 7" have one endpoint in 7% and the other in 77, i # j and 4,5 € [1,k];
a minimum k-terminal-set path cover of G with respect to 71, 72,...,T" is a k-terminal-set path cover
of G with minimum cardinality; the k-terminal-set path cover problem (kTSPC) is to find a minimum
k-terminal-set path cover of the graph G.

Note that, if 7¢, Vi € [1, k] is empty, the stated problem coincides with the classical path cover problem,
while if |7%| = 1, Vi € [1, k] the problem coincides with the k-fixed-endpoint path cover problem. In this
chapter, we introduce a special case of the k(2)TSPC problem, namely, the k(2)-terminal-set path cover
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problem (k(2)TSPC). Since the complexity status of the k(2)TSPC problem on the class of cographs is
unknown, we propose a polynomial-time solution for the k(2)TSPC problem on cographs. We next state
the k(2)TSPC problem.

Problem k(2)TSPC. Let G be a graph and let 7', 72,..., 7% be disjoint sets of vertices of V(G)
each containing at most two vertices. A k(2)-terminal-set path cover of the graph G with respect to
T', 72 ..., T% is a path cover of G such that all vertices in 7' U7Z72 U...UT* are endpoints of paths
in the path cover and all the paths with both endpoints in 7' U 72 U...UT* have one endpoint in 7*
and the other in 77, i # j and i,j € [1,k]; a minimum k(2)-terminal-set path cover of G with respect
to 71, 72,...,T" is a k(2)-terminal-set path cover of G’ with minimum cardinality; the k(2)-terminal-set
path cover problem (k(2)TSPC) is to find a minimum k(2)-terminal-set path cover of the graph G.

Contribution. We show that the k(2)-terminal-set path cover problem (k(2)TSPC) has a polynomial-
time solution in the class of complement reducible graphs, or cographs [24]. More precisely, we establish
a lower bound on the size of a minimum k(2)-terminal-set path cover of a cograph G on n vertices and m
edges. We then define path operations, and prove structural properties for the paths of such a path cover,
which enable us to describe a simple algorithm for the k(2)TSPC problem. The proposed algorithm runs
in time linear in the size of the input graph G, that is, in O(n + m) time, and requires linear space.

The proposed algorithm for the k(2)TSPC problem can also be used to solve the 1THP and 2HP
problems on cographs within the same time and space complexity. Moreover, we have designed our
algorithm so that it produces a minimum k(2)-terminal-set path cover of a cograph G that contains a
large number of paths with one endpoint in 7, i € [1,k] and the other in 77, j € [1,k] and i # j (we
can easily find a graph G so that G admits two minimum k(2)-terminal-set path covers with different
numbers of paths having one endpoint in 7¢ and the other in 77, i # j).

8.2 Theoretical Framework

We binarize the co-tree T,,(G) of a cograph G in such a way that each of its internal nodes has exactly
two children [61, 70]. We shall refer to the binarized version of T,,(G) as the modified co-tree of G and
will denote it by T(G). Thus, the left and right child of an internal node ¢ of T'(G) will be denoted by
ty and t¢,, respectively. Let ¢ be an internal node of T(G). Then G[t] is the subgraph of G induced by
the subset V; of the vertex set V(G), which contains all the vertices of G that have as common ancestor
in T(G) the node t. For simplicity, we will denote by V; and V. the vertex sets V(GJt¢]) and V(G]t,]),
respectively.

Let G be a cograph, 71,72 ... T* be disjoint sets of vertices of V(@) such that each one contains
at most one vertex, and let Pr7(G) be a minimum k(2)-terminal-set path cover of G with respect to
T, 72,...,TF of size A\y7; note that the size of Pr7(G) is the number of paths it contains. The vertices
of the sets 77, 1 < i < k are called terminal vertices, and the sets 7+, 72,...,T* are called the terminal
sets of G, while those of V(G) — (T1,72,...,T%) are called non-terminal or free vertices. Furthermore,
we say that a vertex u is a terminal vertex and denote it by u € T if it belongs to any 7%, 1 < i < k. Thus,
the set Pr7(G) contains three types of paths, which we call terminal, semi-terminal, and non-terminal
or free paths:

(i) a terminal path P, consists of at least two vertices and both its endpoints, say, u and v, are terminal
vertices belonging to different sets, that is, v € 7° and v € 77, i # j;

(ii) a semi-terminal path P; is a path having one endpoint in 7%, 1 < i < k and the other in V(G) —
(T'U...UTk); if P, consists of only one vertex (trivial path), say, u, then u € 7%, 1 <4 < k;
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(iii) a non-terminal or free path Py is a path having both its endpoints in V/(G) — (7' U...UTF); if Py
consists of only one vertex, say, u, then u € V(G) — (T U...UTFk).

The set of the non-terminal paths in a minimum k(2)TSPC of the graph G is denoted by N, while S and
T denote the sets of the semi-terminal and terminal paths, respectively. Furthermore, we denote by .S;
a set of semi-terminal paths having a terminal endpoint belonging to the terminal set 7°¢. The following

equation holds.
e = [N+ [S]+ [T (8.1)

From the definition of the k(2)-terminal-set path cover problem (k(2)TSPC), we can easily conclude
that the number of paths in a minimum k(2)TSPC cannot be less than the number of the terminal
vertices divided by two. Furthermore, since each semi-terminal path contains one terminal vertex and
each terminal path contains two, the number of terminal vertices is equal to |S| + 2|T'|. Thus, we have
the following proposition, which also holds for general graphs:

Proposition 8.1. Let G be a cograph and let T',... , T* be disjoint subsets of V(G). Then \er >
(|Tlu...uT’“\-|
.

Clearly, the size of a k(2)TSPC of a cograph G, as well as the size of a minimum k(2)TSPC of G, is
less than or equal to the number of vertices of G, that is, A\gr < |V(G)|. Let F(V(G)) be the set of the
free vertices of G; hereafter, F(V) = F(V(G)). Furthermore, let P be a set of paths and let Vp denote
the set of vertices belonging to the paths of the set P; hereafter, F(P) = F(Vp). Then, if T!,..., 7" are
disjoint subsets of V(G), we have \pr < |[F(V)| + [T + ...+ |TF|.

Let ¢t be an internal node of the tree T'(G), that is, ¢ is either an S-node or a P-node [68]. Then Ay (t)
denotes the number of paths in a minimum k(2)TSPC of the graph G[t] with respect to 7;},..., 7.F,
where 7;', 1 < i < k are the terminal vertices of 7 of the graph G[t]. Let ¢, and ¢, be the left and
the right child of node ¢, respectively. We denote by 7, and 7, the terminal vertices of 7% in V; and
V., respectively, where V; = V(GJt¢]) and V,, = V(G]t,]). Furthermore, we denote by 7; and 7, the
set containing the terminal vertices belonging in any 7° in V; and V., respectively. Let N, S; and Ty
be the sets of the non-terminal, semi-terminal and terminal paths in a minimum k(2)TSPC of G[t/],
respectively. Similarly, let N,, S, and T, be the sets of the non-terminal, semi-terminal and terminal
paths in a minimum k(2)TSPC of G[t,|, respectively. Obviously, Eq. (8.1) holds for G[t] as well, with ¢
being either an S-node or a P-node, that is,

Akt (8) = [Ne| + [Se] + [T (8.2)

where N, S; and T; are the sets of the non-terminal, the semi-terminal and the terminal paths, respective-
ly, in a minimum k(2)TSPC of G[t], that is in Prr(¢). If t is a P-node, then Prr(t) = Prr(te) U Prr(tr),
where Pr7(t¢) and Prr(t,) are minimum k(2)TSPCs corresponding to G[t¢] and G|t,], respectively, and
At (8) = Az (te) + Ag7 (t). Furthermore, in the case where t is a P-node, we have

INe| = [Ne + [N
|St| = |SZ| + |Sr|
|Tt| - |Té| + |Tr|

Thus, we focus on computing a minimum k(2)TSPC of the graph G[t] for the case where ¢ is an S-node.
Before describing our algorithm, we establish a lower bound on the size A\p7(¢) of a minimum k(2)TSPC
Prr(t) of a graph G[t]. More precisely, we prove the following lemma.
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Lemma 8.1. Let t be an internal node of T(G) and let Py (te) and Prr(t,) be a minimum k(2)TSPC of
1 k

Glte) and Glt,), respectively. Then Mgz (t) > max{[ 29T e Npr () — |[F(V;)], Mz (t0) = [F(Vo)|},

where ¢ is defined as follows:

1 if|Sel=1and|S,|=1and |Ty|=|7T;| =1 and k =1,

1 if T = S0 =2 and |T,| = 0 (resp. |To| =0 and |T| = [S,| = 2) and k = 1,

1 if |Se| =S| =2 and |T;| =0 and F(V;) <2 and |Ty| > 0 (resp. |S,| = |St| =2 and
|7¢| =0 and F(Vy) <2 and |T,| > 0)

1 if |Se| =0 and || =0 and |N¢| = |V,| (resp. |Sr| =0 and |Ty| =0 and |N,| = |Vi|)

0 otherwise.

Proof. Clearly, according to Proposition 2.1 and since G[t] is a cograph, we have \pr(t) > [LQUTH]

Suppose that |S¢| =1 and |S,| = 1 and the two semi-terminal paths have terminal endpoints belonging
to the same terminal set and |7;| = |7;| = 1. There cannot exist a minimum k(2)TSPC of G[t] of size
[LQUT”] = 1, since the two terminal vertices cannot belong to the same path. Suppose now that
|7¢| = |S¢| = 2 and |7,] = 0 and k = 1. Again, there cannot exist a minimum k(2)TSPC of G[t] of size
[LQUTICW = 1, since the two terminal vertices cannot belong to the same path. The same holds when
|7¢| = 0 and |7,| = |S;| = 2 and k = 1. Now let |S¢| =2 and |7;| = 0 and F(V;) < 2 and |T¢| > 0 and
the two semi-terminal paths have terminal endpoints belonging to the same terminal set. Clearly, since
the two semi-terminal paths have terminal endpoints belonging to the same terminal set, the size of a
minimum k(2)TSPC of G[t] cannot be less than (Ulufuﬂw + 1. The same holds when |7;| = 0 and
|Sr| =2 and F(V;) < 2 and |T,| > 0 and the two semi-terminal paths have terminal endpoints belonging
to the same terminal set. Finally, it is easy to see that there cannot exist a minimum k(2)TSPC of size less
than [Z22971 41 when |S,| = 0 (resp. |S,| = 0) and |7;] = 0 (resp. |T¢| = 0) and |N;| = [V, | (resp.
IN,| = [V4]). Indeed, we will show that Az (t) > [TeVTH] 41 A () > [Z%9T0 Thus, we
only need to prove that A\g7(t) # (M] M] = |Ty|.
We assume that \pr(t) = "M‘I’
path in G[t,]; for otherwise |N;| = 0, and thus V;. = ), a contradiction. We ignore the terminal paths
from the minimum k(2)TSPC of Gt,] and apply the algorithm described in [61] to G[¢]. The resulting
minimum k(2)TSPC contains only one (non-terminal) path which either has both endpoints in G[t,] or

. Note that by the assumption we have [

and, thus, Ag7(t) = |T¢|. There exists at least one non-terminal

it has one endpoint in GJt;] and the other in G[t,]. This non-terminal path can not be inserted into
a terminal path of G[t;] because it does not have both endpoints in G[t,]. Thus, A\pr(t) = |T¢| + 1, a
contradiction.

We will prove that Ag7(t) > Apr(te) — |F(V;)]. Assume that A\p7(t) < Az (¢¢) — |F(V4)|. Consider
removing from this path cover all the vertices in V,.. What results is a set of paths which is clearly
a k(2)TSPC for G[te]. Since the removal of a free vertex in F(V;) will increase the number of paths
by at most one, we obtain a k(2)TSPC of G[t,] of size at most A\p7(t) + |F(V,)|. The assumption
AT () < Az (te) — |F(Vy)| guarantees that A\pr(t) + |F(Vy)| < Awr(te), contradicting the minimality
of Prr(te). Using similar arguments we can show that Ap7(¢t) > g7 (¢.) — |F(V2)|. Hence, the lemma
follows. 1

We next define four operations on paths of a minimum k(2)TSPC of the graphs G[t;] and G[t,], namely
break, connect, bridge and insert operations; these operations are illustrated in Fig. 8.1.

o Break operation: Let P = [p1,pa, ..., ps] be a path of Prr(t,) or Prr(te) of length s. We say that
we break the path P in two paths, say, P; and Ps, if we delete an arbitrary edge of P, say the edge
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Figure 8.1: Illustrating (a) break, (b) connect, (c) bridge, (d) insert, and (e) connect-bridge operations;

the vertices denoted by black-circles (resp. grey-circles) belong to 7°¢ (resp. 77), while the vertices

denoted by black-squares belong to 7P, i # j # p.

pipi+1 (1 <1 < s), in order to obtain two paths which are P; = [p1,...,p;] and P> = [pit1,...,Ds)-
Note that we can break the path P in at most s trivial paths.

Connect operation: Let P; be a non-terminal or a semi-terminal path of Prr(¢;) (resp. Prr(t,))
and let P, be a non-terminal or a semi-terminal path of Py (t,) (resp. Prr(t¢)). We say that we
connect the path P; with the path P;, if we add an edge which joins two free endpoints of the two
paths. Note that if P, € Sy (resp. P; € S,) with a terminal endpoint belonging to 7 then, if P,
is also a semi-terminal path, P> € S, (resp. P, € Sy) with a terminal endpoint belonging to 77,
1% .

Bridge operation: Let P; and P be two paths of the set N, U S} US? (resp. N, US} U S?) and let
P; be a non-terminal path of the set N, (resp. N;). We say that we bridge the two paths P; and
P; using path P if we connect a free endpoint of P; with one endpoint of P; and a free endpoint, of
P, with the other endpoint of Ps;. The result is a path having both endpoints in G[t,] (resp. G[t,]).
Note that if P, € S (resp. P, € S,.) with a terminal endpoint belonging to 7 then, if P; is also a
semi-terminal path, P, € Sy (resp. P» € S,) with a terminal endpoint belonging to 77, i # j.

Insert operation: Let Py = [t1,p1,...,0},t1] be a path in Prr(te) (resp. Prr(t,)) and let Py =
[p2, ..., ph] be a non-terminal path of the set N, (resp. N;). We say that we insert the path P,
into Py, if we replace the first edge of P, that is, the edge t1p1, with the path [¢t1,po,..., 05, p1]-
Thus, the resulting path is Py = [t1,p2,. .., D5, D1, .., p},t1]. Note that we can replace every edge
of Py so that we can insert at most |F’({P;})| + 1 non-terminal paths, where F’({P;}) is the set of
the free internal vertices belonging to the path P;. If the path Py = [t1,py,...,p%, ph, ..., Py, 1] is
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constructed by connecting a path of Pz (t), say, Pr = [t1,p1,- - -,pi] with a path of Prr(t,), say,
P.=1[pY,...,p},t}], then it obviously has one endpoint in G[t;] and the other in G[t,]. In this case,
if P, € Ny (resp. N,) we can only replace the edges of P; that belong to G[t,] (resp. G[t¢]). On
the other hand, if P, has one endpoint, say, ps, in Ny and the other, say, p}, in N,., we insert P,
into Py as follows: P, = [t1,p1,...,05, Dby ..., 02, D%, ..., D), th].

We can also combine the operations connect and bridge to perform a new operation which we call a
connect-bridge operation; such an operation is depicted in Fig. 8.1(e) and is defined below.

o Connect-Bridge operation: Let P, = [t1,p1,...,D.,t]] be a terminal path of the set Ty (resp. T),
where t; € 7' and t} € 77, i # j, and let P, Ps, ... , Py be semi-terminal paths of the set S,
(resp. S¢) with terminal endpoints belonging to pairwise disjoint sets 77 and Pi21+17 ..., P, be
semi-terminal paths of the set S, (resp. S¢) with terminal endpoints belonging to pairwise disjoint
sets T”', where s is odd and 3 < s < 2z 4+ 3. Let P, have a terminal endpoint belonging to Ti/,
i’ # i, and let Ps have a terminal endpoint belonging to yEA # j. We say that we connect-bridge
the paths Py, Ps, ..., Ps using vertices of P, if we perform the following operations: (i) connect the
path P, with the path [t1]; (ii) bridge r = % pairs of different semi-terminal paths using vertices
P1,D2,- -, Pr; and (iii) connect the path [py41,...,p.,t;] with the last semi-terminal path Ps.

The Connect-Bridge operation produces two paths having one endpoint in G[t,] and the other endpoint
in G[t,] and 252 paths having both endpoints in G[t,] (resp. G[t(]).

8.3 The Algorithm

We next present an optimal algorithm for the k(2)TSPC problem on cographs. Our algorithm takes as
input a cograph G and k disjoint subsets 7!,..., 7" of its vertices, where |7¢| < 2, Vi € [1, k], and finds
the paths of a minimum k(2)TSPC of G in linear time; it works as follows:

Algorithm Minimum k(2)TSPC

Input: a cograph G and k disjoint subsets 771, ..., 7% of V(G) such that |77 < 2, Vi € [1, k];
Output: a minimum k(2)TSPC Py 7(G) of the cograph G;

1. Construct the co-tree T.,(G) of G and make it binary; let T(G) be the resulting tree;

2. Execute the subroutine process(root), where root is the root node of the tree T'(G); the minimum
k(2)TSPC Pyr(root) = Prr(QG) is the set of paths returned by the subroutine;

Algorithm 6: Algorithm Minimum k(2)TSPC

where the description of the subroutine process( ) is as follows:

process (node t)
Input: node t of the modified co-tree T'(G) of the input graph G.
Output: a minimum k(2)TSPC Py (t) of the cograph G[t].
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1.

if tis a leaf

then return({u}), where u is the vertex associated with the leaf ¢;

else {t is an internal node that has a left and a right child denoted by ¢, and ¢,, resp.}
Prr(te) < process(te);
Prr(tr) < process(ty);

. if ¢t is a P-node

then return(Prr(te) U Prr (t));

if t is an S-node
then s = |Sy| — |Sy];
case 1: s>0
call procedure k(2)T'SPC_1;
case 2: s<0
call procedure k(2)TSPC_2;
case 3: s=0and Jp € S} and p’ € S such that i # j
call procedure k(2)TSPC_3;
case 4: s=0and fp € S and p’ € S/ such that i # j
call procedure k(2)TSPC 4;

We next describe the subroutine process( ) in the case where ¢ is an S-node of T'(G). Thus, we distinguish
the following four cases: (1) s >0, (2) s <0, (3) s =0 and Jp € S} and p’ € S such that i # j, and (4)
s=0and fip € S} and p’ € SJ such that i # j.

Case 1: s >0

Let n, be the number of vertices needed to bridge the semi-terminal paths of S, that cannot be connected

to semi-terminal paths of S,.. Let SN, be the set of non-terminal paths obtained by breaking the set
Sy UN, into min{|N¢|+n,, |F(N,US,)|} non-terminal paths. We can construct the paths of a k(2)TSPC
using the following procedure:

Procedure k(2)TSPC_1

1.

2.

break the paths of NV, U S, in order to obtain a set SN, of min{|N,| + n,, |F(N,US,)|} paths;
connect paths of S, with paths of S,;

bridge paths of Ny using at most |SN,| — n, vertices of SN, and if we obtain one path and
|SN;| — (]N¢| — 1) > n, connect its endpoints to paths of SN, so that it has both endpoints in V.
Let p be the resulting path;

bridge the rest of the paths in Sy using paths from SN, and also path p;
connect-bridge paths of Sy using vertices of the paths belonging to T;;
insert non-terminal paths of V,. into non-terminal paths of V; through vertices belonging to Vy;

if 3 a non-terminal path (created at Step 3) with one endpoint in V,. and the other in V; use a path
created at Step 2 to insert it;

insert non-terminal paths of V; (resp. V;.) into paths of T (resp. Ty U Sy); (if p € T, was used at
Step 5 then only free vertices of p belonging to V. are used)
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We next describe Step 2 of the above procedure in detail. We first connect a semi-terminal path of
the set S, 1 < i < k, with a semi-terminal path of the set S7, 1 < j < k and i # j. We then mark
the sets S* and S7 as used sets. Next, we connect another semi-terminal path of Sé’, 1<b<k, with a
semi-terminal path of S¢, 1 < ¢ < k and b # ¢, where S¢ is an unmarked set. Note that if there does
not exist an unmarked set of semi-terminal paths, we use a marked set as long as b # ¢. The procedure
continues until all semi-terminal paths of S, are connected with paths of Sy.

Case 2: s <0

Let n, be the number of vertices needed to bridge the semi-terminal paths of S, that cannot be connected
to semi-terminal paths of Sy. Let SN, be the set of non-terminal paths obtained by breaking the set, S;UN,
into min{|N,| + ny, |F(N¢U S;)|} non-terminal paths. We can construct the paths of a k(2)TSPC using
the following procedure:

Procedure k(2)TSPC_2
1. break the paths of N, U S, in order to obtain a set SNy of min{|N,| + n,, |F(N;U S¢)|} paths;
2. connect paths of S, with paths of Sy;

3. bridge paths of N, using at most |SNy| — n, vertices of SN, and if we obtain one path and
|SNll| — (]Ny| — 1) > n, connect its endpoints to paths of SN, so that it has both endpoints in
Vi. Let p be the resulting path;

4. bridge the rest of the paths in S, using paths from SN, and also path p;
5. connect-bridge paths of S, using vertices of the paths belonging to Ty;
6. insert non-terminal paths of V; into non-terminal paths of V,. through vertices belonging to V,;

7. if 3 a non-terminal path (created at Step 3) with one endpoint in V,. and the other in V; use a path
created at Step 2 to insert it;

8. insert non-terminal paths of V. (resp. V;) into paths of T, (resp. T, U S,.); (if p € Ty was used at
Step 5 then only free vertices of p belonging to V7 are used)

We next describe Step 2 of the above procedure in detail. As described in Procedure k(2)TSPC_1,
we first connect a semi-terminal path of the set S}, 1 < i < k, with a semi-terminal path of the set
S7,1<j<kandi#j We then mark the sets S* and S’ as used sets. Next, we connect another
semi-terminal path of Sé’, 1 < b < k, with a semi-terminal path of SZ, 1 < ¢ < k and b # ¢, where S°¢
is an unmarked set. Note that if there does not exist an unmarked set of semi-terminal paths, we use a
marked set as long as b # c¢. The procedure continues until all semi-terminal paths of Sy are connected
with paths of S,.

Case 3: s=0and Jp € S} and p’ € SJ such that i # j

Let SN, be the set of non-terminal paths obtained by breaking the set S, UN,. into min{|N,|, |F'(N,US;)|}
non-terminal paths. We can construct the paths of a k(2)TSPC using the following procedure:

Procedure k(2)TSPC_3
1. if F(N,«) > F(Ng) swap(PkT(tg),’PkT(t,«));

2. break the paths of N, U S, in order to obtain a set SN, of min{|Ny|, |F(N, US,)|} paths;
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3. connect paths of Sy with paths of S;;

4. bridge paths of Ny using vertices of SN, and if we obtain one path connect an endpoint to a path
of SN, so that it has one endpoint in V,. and the other in Vp;

5. insert paths of SV, into paths of N, through vertices belonging to Vp;

6. if 3 a non-terminal path (created at Step 4) with one endpoint in V,. and the other in V; use a path
created at Step 2 to insert it;

7. insert paths of Ny into paths of T;;
Step 3 of the above procedure is similar to Step 2 of Procedures k(2)TSPC_1 and k(2)TSPC_2. The

difference is that when Step 3 is finished all semi-terminal paths of S, are connected with all semi-terminal
paths of Sy.

Case 4: s =0 and fip € S and p’ € SJ such that i # j

Similarly to Case 3, let SN, be the set of non-terminal paths obtained by breaking the set S, U N,
into min{|Ny|, |F(N, U S,)|} non-terminal paths. We can construct the paths of a k(2)TSPC using the
following procedure:

Procedure k(2)TSPC_4
1. if F(N,) > F(Ny) swap(Prr(te), Per(t:));
2. break the paths of N, U S, in order to obtain a set SN, of min{|N|, |F(N, U S,)|} paths;

3. bridge paths of N, using vertices of SN, so that if we obtain one path and |T;| # 0 (resp. |T¢| # 0)
it has both its endpoints in V; (resp. V,.);

4. insert paths of SN, into paths of N, through vertices belonging to V;;
5. insert paths of Ny into paths of T};

6. if |:S,| # 0 connect a path of Ny to the path of S,;

8.4 Correctness and Time Complexity

Let G be a cograph, T(G) be the modified co-tree of G, and let 7¢ i € [1,k] be the terminal sets of G.
Since our algorithm computes a k(2)TSPC P;.,(t) of G[t] of size A, (¢) for each internal node ¢t € T'(G),
and thus for the root ¢ = t,40 of the tree T'(G), we need to prove that the constructed k(2)TSPC P} (t)
is minimum. Obviously, the size A\g7(¢) of a minimum k(2)TSPC of the graph GJ[t] is less than or equal
to the size X}, (t) of the k(2)TSPC constructed by our algorithm. After performing simple computations
we get four specific values for the size A}, (t) of the k(2)TSPC constructed by our algorithm, that is, by
the k(2)TSPC procedures 1, 2, 3 and 4. More precisely, if ¢ is an internal S-node of T'(G), our algorithm
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returns a k(2)TSPC of size Al (¢) equal to max{ [M} +e, ez (te) — |F(Vi)|, Aer(te) — |[F(Vo)|},
where c is defined as follows:
1 if |Sel=1and |S;|=1and |Ty|=|7;|=1and k=1,
1 if |7¢| = |S¢| =2 and |7;| = 0 (resp. |7¢| =0 and |7;| = |S,| = 2) and k =1,
1 if |Se| =S}l =2 and |7;] = 0 and F(V;) < 2 and |Ty| > 0 (resp. |S,| =|S%| =2 and
|7¢| = 0 and F'(V;) < 2 and |T,| > 0)
1 if |[S¢| =0 and |7;| = 0 and |N;| = |V;| (resp. |S,| =0 and |Z¢| = 0 and |N,.| = |V,|)

0 otherwise.

According to Lemma 8.1 the size A\pr(t) of a minimum k(2)TSPC of the graph G|[t] is greater than or
equal to the size A, (t) of the k(2)TSPC constructed by our algorithm. Thus, the size of a minimum
k(2)TSPC of the graph G[t] is equal to A} (t) and, consequently, the k(2)TSPC constructed by our
algorithm is a minimum k(2)TSPC of GJ[t]. Thus, we can state the following result.

Lemma 8.2. Subroutine process(t) returns a minimum k(2)TSPC Prr(t) of the graph G[t], for every
internal S-node t € T(G).

Since the above result holds for every S-node ¢ of the modified co-tree T'(G), it also holds when ¢ is
the root of T(G) and 7, = T*, i € [1,k]. Thus, the following theorem holds:

Theorem 8.1. Let G be a cograph and let T, i € [1,k] be k disjoint subsets of V(G) such that |T?| < 2.
Let t be the root of the modified co-tree T(G), and let Pyr(tr) and Prr(t,) be a minimum k(2)TSPC of
Glte] and Glt,], respectively. Algorithm Minimum_k(2)TSPC correctly computes a minimum k(2)TSPC
of G = Gt] with respect to T" =T}, i € [1,k], of size \e = M7 (1), where

At (tr) + AT (80) if t is a P-node,

)\kT(t) =
| 7. UTF| s
max{[—5——1+¢, Az (te) = [F(V2)|, Mz (t:) — |F(Ve)|} if t is an S-node

and c is defined as follows:

1 if|Sel=1and |S.|=1 and |Ty| =|7;| =1 and k =1,

1 if [T = 1Si] = 2 and |T;| = 0 (resp. |Ti| =0 and |T;| = |S,| =2) and k =1,

L if|Se| = |Si| =2 and |T;| = 0 and F(V,) <2 and |Ty| > 0 (resp. |S,| = |Si| =2 and
|7¢| =0 and F(Vy) <2 and |T,| > 0)

1 if |Se| =0 and |7;| =0 and |N;| = |V,| (resp. |Sy| =0 and |Ty| = 0 and |N,| = |V¢|)

0 otherwise.

Let G be a cograph on n vertices and m edges, 7°, i € [1, k] be k terminal sets, and let ¢ be an S-node of
the modified co-tree T'(G). From the description of the algorithm we can easily conclude that a minimum
k(2)TSPC Pyr(t) of G[t] can be constructed in O(E(G[t])) time, since we use at most |V (G[te])|-|V (G[t-])]
edges to connect the paths of the minimum k(2)TSPCs of the graphs G[t;] and G[t,]; in the case where ¢
is a P-node a minimum k(2)TSPC is constructed in O(1) time. Thus, the time needed by the subroutine
process(t) to compute a minimum k(2)TSPC in the case where ¢ is the root of the tree T(G) is O(n+m);
moreover, through the execution of the subroutine no additional space is needed. The construction of
the co-tree T,,(G) of G needs O(n + m) time and it requires O(n) space [22, 24]. Furthermore, the
binarization process of the co-tree, that is, the construction of the modified co-tree T(G), takes O(n)
time. Hence, we can state the following result.
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Theorem 8.2. Let G be a cograph on n vertices and m edges and let T*, i € [1, k], be k disjoint subsets of
V(G) such that |T¢| < 2, Vi € [1,k]. A minimum k(2)-terminal-set path cover Pyt of G can be computed
in O(n +m) time and space.

8.5 Concluding Remarks

In this chapter, we introduce the k(2)-terminal-set path cover problem (k(2)TSPC) and propose a
polynomial-time solution on the class of cographs. Our algorithm produces a minimum k(2)-terminal-set
path cover of a cograph G that contains the largest number of terminal paths. The complexity status of
the kTSPC problem on cographs is unknown, we pose it as an open problem. It would be interesting to
see if the k(2)-terminal-set path cover problem can be polynomially solved on other classes of graphs; an
interesting next step would be to consider the class of interval graphs. This promises to be an interesting
area for further research since the complexity status of simpler problems, such as the 2HP problem, is

unknown for interval graphs.
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CHAPTER 9

A POLYNOMIAL SOLUTION TO THE
k-FIXED-ENDPOINT PATH COVER
PROBLEM ON PROPER INTERVAL

(GRAPHS

9.1 Introduction

9.2 Theoretical Framework

9.3 The Algorithm

9.4 Correctness and Time Complexity

9.5 Concluding Remarks

9.1 Introduction

The path cover problem is known to be NP-complete even when the input is restricted to several inter-
esting special classes of graphs; for example, it is NP-complete on planar graphs [37], bipartite graphs
[40], chordal graphs [40], chordal bipartite graphs [69] and strongly chordal graphs [69]. Bertossi and
Bonuccelli [9] proved that the Hamiltonian Circuit problem is NP-complete on several interesting classes
of intersection graphs.

Several variants of the HP problem are also of great interest, among which is the problem of deciding
whether a graph admits a Hamiltonian path between two points (2HP). Recall that the 2HP problem
is the same as the HP problem except that in 2HP two vertices of the input graph G are specified, say,
u and v, and we are asked whether G contains a Hamiltonian path beginning with v and ending with
v. Similarly, the 1THP problem is to determine whether a graph G admits a Hamiltonian path starting
from a specific vertex u of GG, and to find one if such a path does exist. Both 1HP and 2HP problems
are also NP-complete in general graphs [36]. Some path cover related problems that have received both
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theoretical and practical attention are in the content of communication and/or transposition networks
[89] (see Section 5.1).

Motivated by the above issues we state a variant of the path cover problem, which is also described
in Section 5.1, namely, the k-fixed-endpoint path cover problem (kPC), which generalizes both 1HP and
2HP, and also problem A described in Section 5.1.

(Problem kPC) Let G be a graph and let 7 be a set of k vertices of V(G). A k-fized-endpoint path cover
of the graph G with respect to 7 is a path cover of G such that all vertices in 7 are endpoints of paths
in the path cover; a minimum k-fized-endpoint path cover of G with respect to 7 is a k-fixed-endpoint
path cover of G with minimum cardinality; the k-fized-endpoint path cover problem (kPC) is to find a
minimum k-fixed-endpoint path cover of the graph G.

Contribution. In this chapter, we study the complexity status of the k-fixed-endpoint path cover prob-
lem (kPC) on the class of proper interval graphs, and show that this problem can be solved in polynomial
time when the input is a proper interval graph [5, 13, 21, 29]. A proper interval graph is an interval graph
that has an interval representation where no interval is properly contained in another. Proper interval
graphs arise naturally in applications such as DNA sequencing [44]. The proposed algorithm runs in time
linear in the size of the input graph G on n vertices and m edges, that is, in O(n +m) time, and requires
linear space. To the best of our knowledge, this is the first linear-time algorithm for solving the kPC
problem on the class of proper interval graphs. The proposed algorithm for the kPC problem can also
be used to solve the 1HP and 2HP problems on proper interval graphs within the same time and space
complexity. Figure 9.1 shows a diagram of class inclusions for a number of graph classes, subclasses of
comparability and chordal graphs, and the current complexity status of the kPC problem, and thus, of
1HP and 2HP as well, on these classes; for definitions of the classes shown, see [13, 40]. Note that, if
the problem is polynomially solvable on interval graphs, then it is also polynomially solvable on convex
graphs [69].

Related Work. The class of proper interval graphs has been extensively studied in the literature
[40, 80] and several linear-time algorithms are known for their recognition and realization [21, 29, 75].
Both Hamiltonian Circuit (HC) and Hamiltonian Path (HP) problems are polynomially solvable for the
class of interval and proper interval graphs. Keil introduced a linear-time algorithm for the HC problem
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on interval graphs [58] and Arikati and Rangan [4] presented a linear-time algorithm for the minimum
path cover problem on interval graphs. Bertossi [8] proved that a proper interval graph has a Hamiltonian
path if and only if it is connected. He also gave an O(nlogn) algorithm for finding a Hamiltonian circuit
in a proper interval graph. Panda and Pas [75] presented a linear-time algorithm to detect if a proper
interval graph is Hamiltonian. Furthermore, Lin et al. [61] proposed an optimal algorithm for the path
cover problem on cographs while Nakano et al. [70] proposed an optimal parallel algorithm which finds
and reports all the paths in a minimum path cover of a cograph in O(logn) time using O(n/logn)
processors on a PRAM model. Hsieh et al. [49] presented an O(n + m)-time sequential algorithm for
the Hamiltonian problem on a distance-hereditary graph and also proposed a parallel implementation
of their algorithm which solves the problem in O(logn) time using O((n + m)/logn) processors on a
PRAM model. A unified approach to solving the Hamiltonian problems on distance-hereditary graphs
was presented in [50], while Hsieh [48] presented an efficient parallel strategy for the 2HP problem on
the same class of graphs. Moreover, recently Nikolopoulos [72] solved the Hamiltonian problem on quasi-
threshold graphs (a subclass of cographs) in O(logn) time using O(n+ m) processors on a PRAM model.
Algorithms for the path cover problem on other classes of graphs were proposed in [51, 86].

Road Map. The chapter is organized as follows. In Section 9.2 we establish the notation and related
terminology, and we present background results. In Section 9.3 we describe our linear-time algorithm for
the kPC problem, while in Section 9.4 we prove its correctness and compute its time and space complexity.
Finally, in Section 9.5 we conclude the chapter and discuss possible future extensions.

9.2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges. Let G be a graph; we denote its
vertex set by V(G) and its edge set by E(G). Let N(v) = {w € V(G)|vw € E(G)} be the set of neighbors
of v and N[v] = N(v) U{v}. Let S be a subset of the vertex set of a graph G. Then, the subgraph of G
induced by S is denoted by G[S]. If G[N(v)] is a complete subgraph, then v is called a simplicial vertex
of G.

9.2.1 Structural Properties of Proper Interval Graphs

A graph is a proper interval graph if and only if it is an interval graph with no induced subgraph
isomorphic to the claw, which is the graph K 3 consisting of one vertex adjacent to three pairwise non-
adjacent vertices [80]. The graph classes of proper interval graphs, interval graphs, and chordal graphs
are hereditary: if G is in the class, then every induced subgraph of G is in the same class.

Let G be an interval graph and let {I, = [a,, b,]} be an interval representation of G; here, a, and b,
(ay, < by) are referred to as the left and right endpoint of the interval I,. The graph G is called a unit
interval graph if all the intervals in the representation have unit length [64]. The family {Iy },cv (¢) is the
interval representation of a proper interval graph if no interval is properly contained in another. Clearly,
unit interval graphs are proper interval graphs. Roberts [81] has proved the following fundamental result
that shows that unit interval graphs, proper interval graphs, and indifference graphs are synonyms.

Proposition 9.1. [81]: For a graph G, the following statements are equivalent:
(i) G is a unit interval graph;

(ii) G is a proper interval graph;

(#1i) G is an interval graph with no induced claw;

(w) G is an indifference graph.

Proper interval graphs are characterized by an ordering of their vertices [64]:
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Theorem 9.1. [6/]: A graph G is a proper interval graph if and only if there exists a linear order ™ on
V(G) such that for every choice of vertices u,v,w,

U=<z0=<rw, and uww€ E(G) implies wv,vw € E(G). (9.1)

Let G be a proper interval graph on n vertices and m edges; an ordering 7 of the vertices of G satisfying
(9.1) is referred to as canonical and it can be constructed in O(n + m) time [64]. Theorem 9.1 implies
the following result.

Corollary 9.1. Let G be a proper interval graph and let © be a linear order on the vertex set of G
satisfying (9.1). For every choice of subscripts i,j with (1 < i < j < n) and v;v; € E(G), the vertices
Vi, Vitd, ..., V; are pairwise adjacent.

9.2.2 Proper Interval Graphs and the kPC Problem

Let G be a proper interval graph with vertex set V(G) and edge set E(G), T be a set of k vertices of
V(G), and let Pr(G) be a minimum k-fixed-endpoint path cover of G with respect to 7 of size Ar; note
that the size of Pr(G) is the number of paths it contains. The vertices of the set 7 are called terminal
vertices, and the set 7 is called the terminal set of G, while those of V(G) — T are called non-terminal or
free vertices. Thus, the set Pr(G) contains three types of paths, which we call terminal, semi-terminal,
and mon-terminal or free paths:

(i) a terminal path P; consists of at least two vertices and both its endpoints, say, u and v, are terminal
vertices, that is, u,v € 7;

(ii) a semi-terminal path Ps is a path having one endpoint in 7 and the other in V(G)—T; if Ps consists
of only one vertex (trivial path), say, u, then v € 7T;

(iii) a non-terminal or free path Py is a path having both its endpoints in V(G) — T if Py consists of
only one vertex, say, u, then v € V(G) — 7.

Note that all the internal vertices of the paths of Pr(G) are free vertices. Moreover, a semi-terminal path
may consist of only one vertex which is a terminal vertex, while a terminal path contains at least two
vertices. The set of the non-terminal paths in a minimum kPC of the graph G is denoted by N, while S
and T denote the sets of the semi-terminal and terminal paths, respectively. Thus, we have

Ar = |N|+ S|+ T (9.2)

From the definition of the k-fixed-endpoint path cover problem (kPC), we can easily conclude that the
number of paths in a minimum kPC cannot be less than the number of terminal vertices divided by two.
Furthermore, since each semi-terminal path contains one terminal vertex and each terminal path contains
two, the number of terminal vertices is equal to |S| 4+ 2|T'|. Thus, the following proposition holds:

Proposition 9.2. Let G be a proper interval graph and let T be a terminal set of G. Then |T| = |S|+2|T|

and A\t > (l—gw

Clearly, the size of a kPC of a proper interval graph G, as well as the size of a minimum kPC of G,
is less than or equal to the number of vertices of G, that is, Az < |V(G)|. Let F(V(G)) be the set of the
free vertices of G. Then we have the following proposition:

Proposition 9.3. Let G be a proper interval graph and let T be a terminal set of G. If A1 is the size of
a minimum kPC of G, then Ay < |[F(V(Q®))| + |T]|.
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Vs+1

Vs+1

(a) (b)

Figure 9.2: Tllustrating (a) connect and (b) insert operations; P € Pr(G[{v1,va,...,vs}]).

Our algorithm is based on a greedy principle, visiting the intervals according to the canonical ordering.
From now on, by v;, 1 < i < n, we mean the vertex of G that is numbered with integer i. We say
that v; < v; if i < 5,1 < 4,5 < n. Let G[S] be the induced subgraph of G consisting of vertices
S = {v1,v2,...,v5}, 1 < s < n and let Pr(G[S]) be a minimum kPC of G[S]. Before describing our
algorithm, we define two operations on paths of a minimum kPC Pz (G[S]) of a proper interval graph
G[S] and a vertex vs41 € V(G), namely connect and insert operations; these operations are illustrated
in Fig. 9.2.

o Connect operation: Let P be a non-terminal or a semi-terminal path of Pz (G[S]), where G[S] is
the induced subgraph of G consisting of vertices S = {v1,v9,...,vs}, 1 < s < n, and let vsy1 be
a free or a terminal vertex. We say that we connect vertex v, to the path P, if we add an edge
which joins vertex vs41 with a free endpoint of P.

o Insert operation: Let P = [t,p,...,p’,t'] be a terminal or a semi-terminal path of Py (G[S]), where
G[S] is the induced subgraph of G consisting of vertices S = {v1,v9,...,vs}, 1 < s < n, and let
vs+1 be a free vertex. We say that we insert vertex vy into P, if we replace an edge of P, say,
the edge tp, with the path [t, vs41,p]. Thus, the resulting path is P = [t, vs41,p,...,p ,t'].

Let P be a path of P7(G) and let v; and v; be its endpoints. We say that v; is the left (resp. right)
endpoint of the path and v; is the right (resp. left) endpoint of the path if v; < v; (resp. v; < v;).
Furthermore, we say that v; is an awvailable endpoint of P if (i) v; € V(G) — 7T, that is, v; is a free
endpoint, or (ii) v; € 7 and P = [v;].

9.3 The Algorithm

We next present an algorithm for the kPC problem on proper interval graphs. Our algorithm takes as
input a proper interval graph G and a subset 7 of its vertices and finds the paths of a minimum kPC
of G in linear time; it is based on the following greedy principle to extend a path P = [p1,pe,...,Ds],
s > 1, in a proper interval graph. Specifically, we start from a single vertex path P; = [v1] and continue
by visiting the next vertex, that is, vo. If vy is adjacent to v1, we extend path P; to wve, that is, we
connect vy to the path P;. Hence, path P; now consists of two vertices, that is, P; = [v1,v2], and v; and
vy are its left and right endpoints, respectively. It is worth pointing out that if a vertex is adjacent to
both endpoints of a non-terminal path, we connect it to the left endpoint of the path. Suppose now that
v1,v2 € T and N(v3) = {v2}. Then, we start a new single vertex path P> = [v3]. On the other hand, if
v1,v2 € T and N(v3) = {v1,v2}, we insert vs into Py; the resulting path is P, = [v1,v3, v2]. Specifically,
the algorithm works as follows:
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Algorithm Minimum kPC

Input: a proper interval graph G on n vertices and m edges and a set 7 C V(G);

Output: a minimum kPC Pz (G) of the proper interval G;

1. Construct the canonical ordering 7 of the vertices of G;

2. Execute the subroutine process(w); the minimum kPC Pr(G) is the set of paths returned by the
subroutine;

Algorithm 7: Algorithm Minimum_kPC_ProperInterval

where the description of the subroutine process(m) is presented at Fig. 9.3.

Let P be a path in the kPC P7(G) constructed by Algorithm Minimum_kPC and let v; and v; be its
left and right endpoints, respectively. Then, there is no path P’ € Pr(G) having an endpoint between
vertices v; and v;. Hence, we prove the following lemma:

Lemma 9.1. Let P;, 1 < s < A7 be a path in the kPC Pr(G) of G constructed by Algorithm Mini-
mum_kPC and let v; and v; be its left and right endpoints, respectively. Then, there is no path P, € Pr(G),
1<t <A, t#s, such that v; < v, < vj orv; <wve < vy, where vy and v are the left and right endpoints
of Py, respectively.

Proof. Let Ps, 1 < s < Ay be a path in the kPC Pz (G) constructed by Algorithm Minimum _kPC and
let v; and v; be its left and right endpoints, respectively. Let P, € Pr(G), 1 <t < A7, t # s, and
let v, and v, be its left and right endpoints, respectively. Suppose that v; < v, < v;. Since v; and v;
are the endpoints of P, and v; < v, < vj, the path P, contains at least one edge, say, v,vp, such that
Ve < v < vp. Clearly, vertices v, and v, are free vertices. Since v,v, € E(G), we also have v v, € E(G)
and vgvy € E(G). Then, according to Algorithm Minimum _kPC, when vertex vy, is processed, it is either
connected to the subpath of Ps; which is already constructed having v, as an endpoint or it is included
to Ps through an edge v, v,. If v, is an endpoint when vy, is processed, it was also an endpoint when vy,
was processed, and thus the edge v,vr would appear to the path Ps, a contradiction. On the other hand,
if v, is included to P through the edge v, v,, we have vy < vy, and, thus, vy vr € E(G); then v, would
appear to the path P;, a contradiction. Similarly, we can prove that v, < v; or vo > v;. 1

Similarly, we can prove that, if P is a path in the kPC Pz (G) constructed by Algorithm Minimum kPC
with v; and v; being its leftmost and rightmost vertices, respectively, there is no vertex between vertices
v; and v; belonging to another path P’ € Pr(G). Hence, we have the following lemma:

Lemma 9.2. Let P;, 1 < s < Ar be a path in the kPC Pr(G) of G constructed by Algorithm Mini-
mum_kPC and let v; and v; be its leftmost and rightmost vertices, respectively. Then, there is no vertex
v belonging to another path P, € Pr(G), 1 <t < A, t # s, such that v; < vy < v;.

If S = {vi,ve,...,v,_1}, then Pr(G[S]) is the kPC of G[S] constructed by the algorithm after
processing i — 1 vertices; let s be its size, where 1 < s < Az. It is easy to see that, if vertex v; can be
connected to the path P, having the rightmost endpoints, then it is the only path it can be connected
to. Thus, we prove the following lemma:
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process ()
Input: the canonical ordering of the vertices of G.
Output: a minimum kPC Pr(G) of G.
Pi=unji=2Ar=1
pe = v1; {the left endpoint of the path Px,}
Dr = V1 {the right endpoint of the path P}
while 7 < n do
if vips € E(G) then
case 1: if py =p, or py ¢ 7 then
connect v; to Py, through vertex py;
Pe = pr; Pr = Vi
case 2: if py €7 and p, ¢ 7 then
connect v; to Py, through vertex p,;
Pr = Vi;
else-if v;p, € E(G) and p, ¢ 7 then
connect v; to Py, through p,;
Pr = Vi;
else-if vs,v: (s <4, t < i) are the rightmost successive
neighbors of v; in Py, then
insert v; into Py, through the edge p.p:;
else
Ar =Ar +1;
Py, =g
Pe = vi; pr = vi;
=1+ 1;
endwhile;

P’T(G) = {Pl,. . '7P)\T}'

Figure 9.3: The subroutine process(w) of the Algorithm Minimum_kPC.

Lemma 9.3. Let Pr(GI[S]) be the kPC of G[S] constructed by Algorithm Minimum_kPC, where S =
{v1,v2,...,vi—1}; let s be its size, where 1 < s < Ay. If vertex v; can be connected to the path Ps having
the rightmost endpoints, then P; is the only path that v; can be connected to.

Proof. Let Pr(G[S]) be the kPC of the graph G[S] constructed by Algorithm Minimum kPC after
processing ¢ — 1 vertices, and let P, be the path having the rightmost endpoints, say vy and v, k < /.
Let P,_; be the path with the rightmost endpoints in Pr(G[S]) — {Ps}, say v, and v, r < t. Then,
according to Lemma 9.1, v, < v; < v, < vp and vertex v; sees vy and/or vy. Suppose that v; can also
be connected to the path P,_q. If v;u; € E(G) and v, ¢ 7, then vgvy € E(G) and vy is connected to
the path Ps_1, a contradiction. If v, € 7 and v;v, € E(G) and v, ¢ T, then viv, € E(G) and vy is
connected to the path P,_1, a contradiction. Thus, the lemma follows. 1

Furthermore, as it is easy to see by induction, when vertex v; is processed according to the algorithm,
unless vertices v;_o,v;,—1 € T, they are successive in a path in Pz (G[S]) and/or at least one of them is
an available endpoint. Hence, we prove the following lemma.

Lemma 9.4. Let Pr(GI[S]) be the kPC of G[S] constructed by Algorithm Minimum_kPC, where S =
{v1,v2,...,vi_1}; let s be its size, where 1 < s < Ar. Unless vertices v;_2,v;—1 € T, they are successive
in a path in Pr(G[S]) and/or at least one of them is an available endpoint.
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Proof. We use induction on i, ¢ > 3. The basis ¢ = 3 is trivial. Suppose that the hypothesis holds for i —1:
let Pz (G[S’]) be the kPC of G[S’] constructed by Algorithm Minimum_kPC, where S" = {v1,v2,...,v;_2}
and let s’ be its size, where 1 < s’ < A\7; then, unless vertices v;_3,v;_o € 7, they are successive in a
path in P7r(G[S']) and/or at least one of them is an available endpoint. We show that, if Pz (G[S]) is
the kPC of G[S] constructed by Algorithm Minimum kPC, where S = {v1,v9,...,v;,-1}, and s is its size,
where 1 < s < Az, then, unless vertices v;_o,v;—1 € 7, they are successive in a path in P7(G][S]) and/or
at least one of them is an available endpoint.

Clearly, v;_ov;_1 € E(G), otherwise G[S] is disconnected. We distinguish the following cases:

Case 1: When vertex v;_s was processed, it was connected to a path or it constructed a new one;
let P be the path containing v;_s. Then, vertex v;_; is either connected to the path P or it is inserted
to P, or a new path is constructed containing only vertex v;_;. If v;_; is connected to the path P or
a new path is constructed containing only v;_1, then v;_o,v;_1 are successive in P and/or v;_1 is an
available endpoint. Consider the case where v;_; is inserted into P, that is, v;_o is not an available
endpoint; then, unless v;_3,v;_o € 7, by the induction hypothesis, v;_3 and v;_o are successive into P
and/or v;_3 is an available endpoint. If v;_3,v;_2 € T, they are either successive in P, or, according
to Lemma 9.2, v;_s,v;_4 are successive in P. Thus, if v;_; is inserted into P, then v; o and v;_; are
successive. Consequently, vertices v;_o,v;—1 are successive in the path P and/or at least one of them is
an available endpoint.

Case 2: When vertex v;_o was processed, it was inserted into a path, say, P. Consequently, v;_o €
V(G) — T and it has at least two neighbors. Vertex v;_; does not see any endpoint since, if it did, v;_»
would also see it. Thus, v;_1 either constructs a new path or it is inserted into the path P. By the
induction hypothesis, v;_3 and v;_5 are successive into P or v;_3 is an available endpoint. Thus, vertices
v;—2,v;—1 are successive in the path P and/or at least one of them is an available endpoint. Thus, the
lemma, follows. 1

Generalizing the above lemma, we obtain the following:

Lemma 9.5. Let Pr(G[S]) be the kPC of G[S] constructed by Algorithm Minimum_kPC, where S =
{v1,v2,...,v;—1}; let s be its size, where 1 < s < Az, and let |N(v;)| > 2. There exists a neighbor of v;
being an available endpoint of a path in Pr(G[S]) and/or there exist two vertices v,, vy € N(v;) that are
successive in a path in Pr(G[S)).

Proof. We use induction on i, i« > 4. The basis i = 4 is trivial. Suppose that the hypothesis holds
for i — 1: let Pr(G[S’]) be the kPC of G[S’] constructed by Algorithm Minimum kPC, where S’ =
{v1,v2,...,v;—2}, let s’ be its size, where 1 < s’ < Az, and |N(v;—1)| > 2; then, there exists a neighbor of
v;—1 being an available endpoint of a path in Pz (G[S’]) and/or there exist two vertices vg/, vy € N(v;-1)
that are successive in a path in Pr(G[S’]). We show that, if Pz (G[S]) is the kPC of G[S] constructed by
Algorithm Minimum kPC, where S = {v1,v2,...,v;—1}, s is its size, where 1 < s < Az, and |N(v;)| > 2,
then, there exists a neighbor of v; being an available endpoint of a path in Pz (G[S]) and/or there exist
two vertices vq, vy € N(v;) that are successive in a path in Pz (G[S]).

If v;_1 and v;_5 are not both terminal vertices, according to Lemma 9.4, the lemma holds. If
vi—1,V;—2 € T, we distinguish the following cases:

Case 1: Vertices v;_1,v;_2 belong to different paths. According to Lemma 9.1, vertex v;_o belongs to
a path consisting of only one vertex; thus, the lemma holds.

Case 2: Vertices v;_1,v;—2 belong to a path consisting of only two vertices; then, the lemma holds.

Case 3: Vertices v;_1,v;_2 belong to a path P consisting of more than two vertices; then, vertex
v;—3 belongs to P (see Lemma 9.2), that is, v;_3 € V(G) — 7, and, according to Lemma 9.4, when v;_;
is processed, v;_3 is an available endpoint or v;_3,v;_o are successive in P. Consequently, the lemma
follows. 1
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The above lemma also shows that, when vertex v; is inserted into a path P, it is inserted through the
edge V;j—2V;—1 O Vj_3V;_1.

9.4 Correctness and Time Complexity

Let G be a proper interval graph on n vertices and m edges and let 7 be a subset of V(G). In order to
prove the correctness of Algorithm Minimum_kPC, we use induction on n. We also prove a property of
the minimum kPC Pz (G) of G constructed by our algorithm: if v; € N[v,], 1 < i < n is the rightmost
available endpoint of a path in P7(G), then there is no other minimum kPC P, (G) having v; € N|v,],
1 < j < n as the rightmost available endpoint such that v; < v;. Hence, we prove the following theorem.

Theorem 9.2. Let G be a proper interval graph on n vertices and m edges and let T be a subset of
V(G). Algorithm Minimum_kPC computes a minimum k-fized-endpoint path cover Pr(G) of G, having
v; € Nlv,], 1 <i < n as the rightmost available endpoint of its paths, such that there is no other minimum
k-fixed-endpoint path cover P4 (G) having a rightmost available endpoint v; € Nv,|, 1 < j < n such that
v; < 5.

Proof. We use induction on n. The basis n = 1 is trivial. Assume that Algorithm Minimum kPC
computes a minimum kPC Pr(G[S]) of every proper interval graph G[S], S = {v1,va,...,v,—1}, with at
most n — 1 vertices having v; € Nv,_1], 1 <i < n — 1, as the rightmost available endpoint of its paths,
such that there is no other minimum kPC P%(G[S]) having a rightmost available endpoint v; € Nv,_1],
1 < j <n—1, such that v; < v;; let A7 (G[S]) be the size of Pr(G[S]). We show that the algorithm
computes a minimum kPC Pz (G) of every proper interval graph G with n vertices having vy € N[v,],
1 < k < n, as the rightmost available endpoint of its paths, such that there is no other minimum kPC
PL(G) having a rightmost available endpoint v, € Nv,], i < £ < n, such that vy < vg; let A7 (G) be the
size of Pr(G).

Clearly, the size M(G) of a minimum kPC of G is Ar(G) or Ar(G) + 1. Suppose that, when
the algorithm processes vertex vy, it connects it to an existing path, and, thus, A7 (G) = A7 (G[S]);
consequently, P7(G) is a minimum kPC of G, that is, A -(G) = A7 (G). Furthermore, if v, ¢ 7 then
P7r(G) contains a path having vertex v,, as an available endpoint, which is clearly the rightmost available
endpoint in N[v,] that any other minimum kPC PZ(G) can contain. Consider the case where v, € 7.
Suppose that the rightmost available endpoint in N[v,] of Pr(G) is the same as the rightmost available
endpoint in Nv,] of Pr(G][S]), that is, vertex v;. Let P7-(G) be a kPC of G having a rightmost available
endpoint vy € N[v,], i < ¢ < n, such that v; < ve. Clearly, vy # v,,. Removing v,, from P%(G) results
to a minimum kPC of G[S] having vy € Nv,] as an available endpoint; a contradiction since v; is the
rightmost endpoint of any minimum kPC of G[S]. Now suppose that vertex v,, is connected to vertex v;.
Then, according to the algorithm, there exists no available endpoint in N[v,] in P7(G). We show that
there is no other minimum kPC P%(G) containing an available endpoint in N[v,]. Indeed, let PL(G)
be a minimum kPC containing an available endpoint in Nlv,], say v.. Clearly, v, belongs to path P
containing more than one vertex; let P = [vy,vg,...]. Removing v,, from P47 (G), and since vyve € E,
results to a kPC of size A7 (G][S]) — 1, a contradiction.

Suppose now that, when the algorithm processes vertex vy, it inserts it into an existing path, and,
thus, Ar(G) = Ar(G]S]); consequently, Pr(G) is a minimum kPC of G, that is, N (G) = A (G).
Furthermore, there exists no available endpoint in N[v,] in Pr(G). Let P2(G) be a minimum kPC of
G having an available endpoint v, € Nv,], i < ¢ < n. Clearly, v,, belongs to path P containing more
than one vertex. If v, = vy, then removing v, from P (G) results to a minimum kPC of G[S] having a
neighbor of v,,, say v¢, as an available endpoint, a contradiction. If v, is an internal node of a path, let
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ve and v, be the vertices it is connected to. Clearly, vovy € E(G) and, thus, removing v, from PZL(G)
results to a minimum kPC of G[S] having v, as an available endpoint, a contradiction.

Finally, suppose that, when the algorithm processes vertex vy, it creates a new path, that is, Py, (q) =
[vs], and, thus, A7 (G) = Ar(G[S]) + 1. Since the algorithm creates a new path, there is no path in
Pr(G[S]) having an available endpoint v, € N(v,) or containing an edge v,vp such that v,, vy € N(vy,).
Let P, (G) be a minimum kPC of size N (G) = Ar(G[5]). If vy, is the only vertex of a path in P4 (G), then
removing vy, from PZ(G) results to a kPC of G[5] of size A7 (G[S])—1, a contradiction. If v, is an endpoint
of a path in P%(G), then removing v,, from P, (G) results to a minimum kPC of G[S] having a neighbor
of v, say v, as an available endpoint; a contradiction. On the other hand, if v,, is an internal node of
a path in PL(QG), then it has at least two neighbors, that is v,—1,v,-2 € N(v,) and v,—1v,—2 € E(QG).
According to Lemma 9.4, unless vertices v,_; and v,_o are terminal vertices, they are successive in a
path in Pr(G[S]) and/or at least one of them is an available endpoint. Since the algorithm constructs
a new path, v,_1,v,—2 € 7 and they are endpoints at the same path (see Lemma 9.3) which contains
at least one more vertex, that is, v, 2 is the left endpoint of Py, (g[s)) and v,—1 is its right endpoint.
Consequently, if we apply the algorithm to G[S] — {vn—1,Vn—2} = G — {vn_1, Un, Un_2}, we obtain a kPC
of size A7 (G[S]), which, by the induction hypothesis, is minimum. Suppose that N(v,) = {vn-1,Vn—2}.
Then, the minimum kPC P%(G) contains the path P’ = [v,_1,vn, vy—2]. Consequently, removing the
vertices vp_1, U, Up—2 from PL(G) results to a kPC of G — {v,_1,vpn,vp—2} of size A\r(G[S]) — 1, a
contradiction. Now let |N (v, )| > 2. In this case, according to Lemma 9.5, the algorithm either connects
vp, to a path or inserts it into a path and thus, A7 (G) = Ar(G[S]), a contradiction.

Consequently, Pr(G) is a minimum kPC of G, that is, A7 (G) = Ar(G) = A7 (G[S]) + 1. Finally, the
rightmost available endpoint in N[v,] of the kPC constructed by the algorithm is vertex v,, and, clearly,
it is the rightmost available endpoint in N[v,] that any other minimum kPC P (G) can contain. 1

Let G be a proper interval graph on n vertices and m edges and let 7 be a terminal set. Then,
Algorithm Minimum_kPC computes a minimum kPC Pz (G) of G. Both time and space complexities are
O(n +m) since vertices p, and p, of the algorithm can be maintained and obtained in constant time and
the paths are implemented as linked lists. Furthermore, the canonical ordering is constructed in O(n+m)
time [64]. Hence, we can state the following result.

Theorem 9.3. Let G be a proper interval graph on n vertices and m edges and let T be a subset of V(G).
A minimum k-fized-endpoint path cover Pr(G) of G can be computed in O(n + m) time and space.

9.5 Concluding Remarks

An interesting open question would be to see if the k-fixed-endpoint path cover problem can be polyno-
mially solved on other classes of graphs; an interesting next step would be to consider the class of interval
graphs. Recall that the complexity status of simpler problems, such as 1HP and 2HP, is unknown for
interval graphs.
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CHAPTER 10

THE 1-FIXED-ENDPOINT PATH COVER
PROBLEM IS POLYNOMIAL ON INTERVAL
(GRAPHS

10.1 Introduction

10.2 Theoretical Framework

10.3 The Algorithm

10.4 Correctness and Time Complexity
10.5 Related Results

10.6 Concluding Remarks

10.1 Introduction

We consider a variant of the path cover problem, namely, the k-fixed-endpoint path cover problem, or
kPC for short, on interval graphs. Recall that, given a graph G and a subset T of k vertices of V(G),
a k-fixed-endpoint path cover of G with respect to 7 is a set of vertex-disjoint paths P that covers the
vertices of GG such that the k vertices of 7 are all endpoints of the paths in 7. The kPC problem is to find
a k-fixed-endpoint path cover of G of minimum cardinality; note that, if 7 is empty the stated problem
coincides with the classical path cover problem. In this chapter, we study the 1-fixed-endpoint path cover
problem on interval graphs, or 1PC for short, generalizing the 1HP problem which has been proved to
be NP-complete even for small classes of graphs. Motivated by a work of Damaschke [27], where he left
both 1HP and 2HP problems open for the class of interval graphs, we show that the 1PC problem can be
solved in polynomial time on the class of interval graphs. The proposed algorithm runs in O(n?) time,
requires linear space, and also enables us to solve the 1HP problem on interval graphs within the same
time and space complexity. We next define the 1PC problem.
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Figure 10.1: The complexity status (NP-complete, unknown, polynomial) of the 1HP problem for some
graph subclasses of comparability and chordal graphs. A — B indicates that class A contains class B.

Problem 1PC. Given a graph G and a vertex u € V(G), a I-fized-endpoint path cover of the graph G
with respect to u is a path cover of G such that the vertex u is an endpoint of a path in the path
cover; a minimum 1-fized-endpoint path cover of G with respect to w is a 1-fixed-endpoint path cover
of G with minimum cardinality; the I-fized-endpoint path cover problem (1PC) is to find a minimum
1-fixed-endpoint path cover of the graph G.

Contribution. In this chapter, we study the complexity status of the 1-fixed-endpoint path cover
problem (1PC) on the class of interval graphs [13, 40], and show that this problem can be solved in
polynomial time. The proposed algorithm runs in O(n?) time on an interval graph G on n vertices and m
edges and requires linear space. The proposed algorithm for the 1PC problem can also be used to solve the
1HP problem on interval graphs within the same time and space complexity. Using our algorithm for the
1PC problem and a simple reduction described by Miiller in [69], we solve the HP problem on a X-convex
graph G = (X,Y, E) with |Y'| — | X| = 1, which was left open in [91]. We also show that the 1HP problem
on a convex graph G is solvable in time quadratic in the number of its vertices. Figure 10.1 shows a
diagram of class inclusions for a number of graph classes, subclasses of comparability and chordal graphs,
and the current complexity status of the 1HP problem on these classes; for definitions of the classes
shown, see [13, 40].

Related Work. Interval graphs form an important class of perfect graphs [40] and many problems
that are NP-complete on arbitrary graphs are shown to admit polynomial time algorithms on this class
[4, 40, 58]. Both Hamiltonian Circuit (HC) and Hamiltonian Path (HP) problems are polynomially
solvable for the class of interval and proper interval graphs. Keil introduced a linear-time algorithm for
the HC problem on interval graphs [58] and Arikati and Rangan [4] presented a linear-time algorithm for
the minimum path cover problem on interval graphs. Bertossi [8] proved that a proper interval graph
has a Hamiltonian path if and only if it is connected. He also gave an O(nlogn) algorithm for finding
a Hamiltonian circuit in a proper interval graph. Furthermore, Lin et al. [61] proposed an optimal
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algorithm for the path cover problem on cographs while Nakano et al. [70] proposed an optimal parallel
algorithm which finds and reports all the paths in a minimum path cover of a cograph in O(logn) time
using O(n/logn) processors on a PRAM model. Hsieh et al. [49] presented an O(n + m)-time sequential
algorithm for the Hamiltonian problem on a distance-hereditary graph and also proposed a parallel
implementation of their algorithm which solves the problem in O(logn) time using O((n + m)/logn)
processors on a PRAM model. A unified approach to solving the Hamiltonian problems on distance-
hereditary graphs was presented in [50], while Hsieh [48] presented an efficient parallel strategy for the
2HP problem on the same class of graphs. Algorithms for the path cover problem on other classes of
graphs were proposed in [51, 72, 86].

Road Map. The chapter is organized as follows. In Section 10.2 we establish the notation and related
terminology, and we present background results. In Section 10.3 we describe our algorithm for the
1PC problem, while in Section 10.4 we prove its correctness and compute its time and space complexity.
Section 10.5 presents some related results and in Section 10.6 we conclude the chapter and discuss possible
future extensions.

10.2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges. For a graph G, we denote its vertex
and edge set by V(G) and E(G), respectively. Let S be a subset of the vertex set of a graph G. Then,
the subgraph of G induced by S is denoted by G[S].

10.2.1 Structural Properties of Interval Graphs

A graph G is an interval graph if its vertices can be put in a one-to-one correspondence with a family F
of intervals on the real line such that two vertices are adjacent in G if and only if their corresponding
intervals intersect. F is called an intersection model for G [4]. Interval graphs find applications in genetics,
molecular biology, archaeology, and storage information retrieval [40]. Interval graphs form an important
class of perfect graphs [40] and many problems that are NP-complete on arbitrary graphs are shown to
admit polynomial time algorithms on this class [4, 40, 58]. The class of interval graphs is hereditary,
that is, every induced subgraph of an interval graph G is also an interval graph. We state the following
numbering for the vertices of an interval graph proposed in [78].

Lemma 10.1. (Ramalingam and Rangan [78]): The vertices of any interval graph G can be numbered
with integers 1,...,|V(QG)| such that if i < j < k and ik € E(G) then jk € E(G).

As shown in [78], the numbering of Lemma 10.1, which results from numbering the intervals after sorting
them on their right ends [4], can be obtained in linear time, that is, O(m + n) time. An ordering of the
vertices according to this numbering is found to be quite useful in solving many problems on interval
graphs [4, 78]. Throughout the chapter, the vertex numbered with ¢ will be denoted by v;, 1 < i < n,
and such an ordering will be denoted by 7. We say that v; < wv; if i < 7,1 <4,7 < n.

10.2.2 Interval Graphs and the 1PC Problem

Let G be an interval graph with vertex set V(G) and edge set F(G), T be a set containing a single vertex
of V(@), and let Pr(G) be a minimum 1-fixed-endpoint path cover of G with respect to T of size A7 (G)
(or Az for short); recall that the size of P7(G) is the number of paths it contains. The vertex belonging to
the set 7 is called terminal vertex, and the set 7 is called the terminal set of G, while those of V(G) —T
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Figure 10.2: Tllustrating (a) connect, (b) insert, and (c) bridge operations; P, P1, P, € Pr(G[S5]).

are called non-terminal or free vertices. Thus, the set Pz (G) contains two types of paths, which we call
terminal and non-terminal or free paths: a terminal path P, is a path having the terminal vertex as an
endpoint and a non-terminal or free path Py is a path having both its endpoints in V/(G) — 7. The set
of the non-terminal paths in a minimum 1PC of the graph G is denoted by N, while T' denotes the set
containing the terminal path. Clearly, |T'| =1 and Ay = |N| + 1.

Our algorithm for computing a 1PC of an interval graph is based on a greedy principle, visiting the
vertices according to the ordering m = (vi,va,...,v,...,v,), and uses three operations on the paths of
a 1PC of G[S], where S = {v1,va,...,v5}, 1 <k < n. These three operations, namely connect, insert
and bridge operations, are described below and are illustrated in Fig. 10.2.

o Connect operation: Let v; be a free endpoint of a path P of Pr(G[S]) and let vi41 be a free or
a terminal vertex such that v, sees v;. We say that we connect vertex vy to the path P, or,
equivalently, to the vertex v;, if we extend the path P by adding an edge which joins vertex vy
with vertex v;.

o Insert operation: Let P = (..., v;,vj,...), i # J, i,j € [1,k], be a path of Pr(G[S]) and let vgt1
be a free vertex such that vy sees v; and v;. We say that we insert vertex viy; into P, if we
replace the path P with the path P’ = (..., v;, V41, v5,...).

o Bridge operation: Let P, and P; be two paths of P7(G[S]) and let vi41 be a free vertex that sees
at least one free endpoint of P; and at least one of P,. We say that we bridge the two paths P; and
P; using vertex vgy1 if we connect vi1 with a free endpoint of P; and a free endpoint of Ps.

Let P be a path of Pr(G) and let v; and v; be its endpoints. We say that v; is the left (resp. right)
endpoint of the path and v; is the right (resp. left) endpoint of the path if v; < v; (resp. v; < v;).
Throughout the chapter, a trivial path (i.e. a path consisting of one vertex) is considered to have two
endpoints, while a trivial path consisting of the terminal vertex v € 7 is considered to have one terminal
endpoint and one free endpoint.

Let G be an interval graph on n vertices and let Pr(G) be a minimum 1PC of size Ay. Since a
trivial path is considered to have two endpoints, the number of endpoints in P7r(G) is 2A7. For each
vertex v; we denote by d(v;) the number of neighbors of v; in Pr(G); that is, d(v;) € {0,1,2}. We call
d-connectivity of Pr(G) the sum of d(v1),d(vs),...,d(v,). It is easy to see that Y .- | d(v;) = 2(n — Ar).
Clearly, any minimum 1PC P7(G) has d-connectivity equal to 2(n — Ar).
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10.3 The Algorithm

We next present an algorithm for the 1PC problem on interval graphs. Our algorithm takes as input an
interval graph G on n vertices and m edges and a set 7 = {u} containing the terminal vertex u € V(G),
and computes a minimum 1PC Pz (G) of G in O(n?) time; it is based on a greedy principle to extend
a path of a minimum 1PC using operations on the left and right endpoints of its paths and properties
of the graph G[{v1,va,...,v;} — {u}], 1 <i < n. We point out that, if a vertex sees the two endpoints
of only one non-terminal path P, it is connected to the left endpoint of the path P. Furthermore, for
each vertex v;, 1 <1i < j, we denote by EZ(-j ) the number of endpoints v, belonging to different paths in
Pr(Glv1, ... ,v;]) with index k € (7, j]. We also define aﬁ.“ =0 and Eéi) = A (Gluy, ..., v]), 1 <i<n.

Before describing our algorithm, we show that, if A7 (G) is the size of a minimum 1PC of G with
respect to 7 = {v;} then the size of a minimum 1PC of G — {v;} is either Ar(G) or A\r(G) — 1.

Lemma 10.2. Let G be an interval graph and Ay (G) be the size of a minimum 1PC of G with respect
to T = {v;}. The size of a minimum PC of G — {v} is either A\r(G) or Ar(G) — 1.

Proof. Suppose that the size of a minimum PC of G — {v;} is at least A7 (G)+ 1. Since a terminal vertex
cannot decrease the size of a minimum 1PC, we have A7 (G) > A7 (G — {v:}). Thus, A\r(G) > Ar(G) +1,
a contradiction. Suppose now that the size of a minimum PC Pr(G — {v:}) of G — {v;} is at most
Ar(G) — 2. Then, adding a trivial path containing vertex v; to Pr(G — {v:}) results to a 1PC of G of
size A7 (G) — 1, a contradiction. 1

The algorithm works as follows:

Algorithm Minimum_1PC

Input: an interval graph G on n vertices and m edges and a vertex u € V(G);

Output: a minimum 1PC Pz (G) of the interval graph G;

1. Construct the ordering = of the vertices of G;

2. Execute the subroutine process(w); the minimum 1PC Pr(G) is the set of paths returned by the
subroutine;

Algorithm 8: Algorithm Minimum_1PC

where the description of the subroutine process(m) is presented below.
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process ()
Input: the ordering 7 of the vertices of G and the index t of the terminal vertex u;
Qutput: a minimum 1PC Pz of G}
M =1 Py = ()i ey =1
i =1 Pl = w1 {the left and right endpoints of the path Py}
for i =2 ton do
> if ¢ # ¢ then
o if N'(v;) # ) and 551'_—11) > 2 then {N'(v;)={v; € N(v;):j < i}, v; is the leftmost neighbor of
v € N'(vi)}
if at least two endpoints are free vertices then bridge; A7 = A7 — 1;
else {eg-i:ll) = 2 and one endpoint is the terminal vertez v, and the other, say, vy, is a free
vertez. }
if process({vi,...,vi—1} — {v:}) returns a 1PC Pr(G[{v1,...,vi—1} — {v:}]) of Ax — 1 paths
then
connect v; to the leftmost endpoint of Pr(G[{v1,...,vi—1} — {v¢}]); connect v; to vy;
Ar =21 — 1
else-if flag = 0 and process({v1,...,vi—1} — {v:}) returns a 1PC of A7 paths
then
flag =1;
if process({v1,...,v;}) returns a 1PC Pr(G[{v1,...,v:}]) of Az — 1 paths then
flag=0; A\ = A\r — 1;
else connect_break;
o if N'(v;) # () and sy:ll) = 1 and the endpoint vy, j < f <i—1, is a free vertex then
if v; sees an internal vertex vs then connect_break;
else connect v; to the leftmost free endpoint;
o if N'(v;) =0 or sg.i:ll) =0or (s;i:ll) = 1 and the endpoint v, j < t <i— 1, is the terminal vertex)
then
if v; has two consecutive neighbors into a path then insert v; into the path;
else-if v; sees an internal vertex vs; then
if vsv, is an edge of a path Py and v, sees an endpoint v, of a path Py, k # k' then
remove the edge vsv, of P; connect v, to vp; connect v; to v;;
else new_path; A\x = A7 + 1;
else-if v, € N(v;) and flag =1 then
break v; from its path; connect v; to vi; A\r = Ar + 1;
else A\r = A7 + 1; Py, = (v);

endif;
> if ¢ =t then
if s;i:ll) > 1 then connect v; to the leftmost endpoint of Pr(G[{v1,...,vi—1}]);
else \y = A7+ 1; P, = (v);
endif;

for kK =0 to ¢ do update z—:,(f); update_endpoints;

endfor;

PT(G) = {Pl, .. .,PAT}.

We next describe the operation bridge in detail. Note that in most cases we bridge two paths that

have the leftmost free endpoints. Suppose that when vertex v; is processed it sees at least one free

endpoint of a non-terminal path Pj, say, v;, and at least the free endpoint of the terminal path Ps, say,

vg, and both endpoints of a non-terminal path Ps, say, v, and vs. Let v,, v; and v, be the left endpoints

and v;, v, and v, be the right endpoints of the paths P;, P» and P, respectively. There exist three
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Figure 10.3: Illustrating some cases of the bridge operation.

l(-j ), we do not bridge two paths
through the leftmost free endpoints (see Fig. 10.3(a)-(c)). In these three cases the bridge operation works

as follows:

cases where, in order to obtain the maximum possible value for every e

(a) v, <v; < v <wvg < v <vg: we bridge Py and Ps through v, (or, v; if v, ¢ N(v;)) and v,.

(b) vy < v < vy <wj <vp < vyt if v, ¢ N(v;) we bridge P, and P3 through vy and v,; otherwise, we
bridge P, and P» through v, and v,.

(€) v: <v <vj <vg < vy <vg: we bridge Py and Ps through v, (or, v; if v, ¢ N(v;)) and v,.

Suppose now that P; is a non-terminal path having v, and v; as its left and right endpoints, respec-
tively, P; is the terminal path with left endpoint v; and right endpoint vy. Also, let Ps be a non-terminal
path with left and right endpoints v, and v, respectively, and P, a non-terminal path with left and right
endpoints vy and vy, respectively (see Fig. 10.3(d)-(e)). We distinguish the following two cases:

(d) v: <v; < < <vg < Vs <V <y if v, € N(v;) or v; € N(v;) we bridge paths Py and P
through v, (v; if v, ¢ N(v;)) and v,. If v, € N(v;) and v, ¢ N(v;) we bridge P, and P, through
ve and vy.

(€) v, <vVj < v <V <V <V <Vf <y if v, € N(v;) or v; € N(v;) we bridge paths Py and P
through v; (v; if v, ¢ N(v;)) and v,; otherwise, we bridge P; and Py through v, (vs if v, ¢ N(v;))
and vy.

Figure 10.3 presents cases (a)-(e). Suppose that we have the two paths P, and P5 of case (e) and vertex v;
sees both v, and vs, that is, Py = (v, ..., Va, Ub, Ve, - - ., U¢) and P3 = (vp, ..., vs), where v, < vy < v, and
vs < v.. Then, the bridge operation constructs the path P = (v, ..., Va0, Vb, Vs, -+, U, Vg, gy - - ., V). SUP-
pose now that we have the two paths P; and P, of case (c) and vertex v; sees all vertices with index greater
or equal to z, that is, P1 = (v,,...,v;) and Py = (v, ..., Ve, Vb, Ve, - - -, V), Where v, < v; < v, and v; <
ve. Then, the bridge operation constructs the path P = (v, ..., Vq, b, ¥, ..., Vz, Uiy Vg, - . ., Ug). SUPPOSE
that there exist two paths P, and P; as in case (d) and vertex v; sees all vertices with index k, d < k, where
r <d </ that is, P, = (vs,...,Vq,Up, Ve, ...,0¢) and Py = (Vp,...,vs), where v, < v, < vp and v, < v,.
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Figure 10.4: Illustrating some cases of the new_path operation.

If d < ¢ then the bridge operation constructs the path P = (vi, ..., Ua, Vb, Upy ..., Vs, Uiy Ve, v, Up);
otherwise, it constructs the path P = (v,..., 04, Vb, Op, ..., Vs, Vi, Vp,...,0:). If there exist two path-
s P, and P, as in case (b) and vertex v; sees all vertices with index greater or equal to z, that is,
P = (Vs 0,00,V Vey...,0;) and Po = (vg,...,v), where v, < vy < v, and vy < v, then the
bridge operation constructs the path P = (v4,..., 0, Vp, Vg, -+, Vs, Uiy Ve, - - -, U5), if ¢ < j, or the path
P =(ve,...,00,0,Va,...,0z,0;,05,...,0), if j <ec

We next describe the operation new_path which creates a new path when the vertex v; is processed.
There exist three cases where operation new_path creates a new non-trivial path while in all other
cases it creates a new trivial path. Suppose that v; sees an internal vertex v; belonging to a path

P = (vs,...,0r,05,0,...,0) such that v, < vy < v; < vy < v;. We remove the edge vjv; from
P and we obtain P, = (vs,...,vr,v;) and P, = (v,...,v¢). Then, we connect v; to v;. The case
where v;vs € E(G) and vjv, ¢ E(G) is similar. If v; sees an internal vertex v; belonging to a path
P = (vp,...,vs,05,0,...,v¢) such that v, < v, < v < vs < vj, we remove the edge vsv; from P and we
obtain P = (vp,...,vs) and Py = (v¢,...,v¢,v;). Then, we connect v; to vj. Suppose now that v; sees
an internal vertex v; belonging to a path P = (v, ..., vs, v}, Vs, ..., v) such that v, < v < vs < v, < vj.
We remove the edge vjv, from P and we obtain P; = (vp,...,vs,v;) and P» = (v4,...,v,). Then, we

connect v; to v;. The above cases, where the operation new_path creates a new non-trivial path, are
described below:

a) v < vs < v < vp <wi: We create paths Py = (v, ...,v.,v5,v;) and P, = (vy,...,vs). The case
j j
where v;vs € E(G) and v;v, ¢ E(G) is similar.

(b) vr < v < vy <ws < wv;: We create paths Py = (vy,...,vs) and Po = (vg,..., 0,05, ;).
(c) ve < v < wvs <vp <wvj: We create paths Py = (v, ..., 0s,05,v;) and Py = (v, ..., 0p).
Note that, the rightmost endpoint of a path in Pz (G[{v1,...,v;—1}]) is v; and, thus, sffl) =0. The

1PC P7(G) of the graph G in each of the above cases contains two new endpoints, vertices v; and vy
such that ¢ < k’; thus, sﬁ” = 2. Figure 10.4 presents the above cases.

The operation connect_break is similar to the operation new_path. Specifically, suppose that in the
above cases (a)-(c) there exists a path P = (vg, ..., v) such that v; < v, < vp < v;. Then, the operation
connect_break works similarly to the operation new_path; the only difference is that v; is also connected

t0 Vg
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Concerning the ordering of the endpoints of the paths of the 1PC constructed by Algorithm Mini-
mum_1PC, we prove the following lemma.

Lemma 10.3. Let G be an interval graph with no terminal vertex. Let P, 1 < s < Az, be a path in
the 1PC P (G) of the graph G constructed by Algorithm Minimum_1PC and let v; and v; be the left and
right endpoints of Ps, respectively. Then, there is no path P, € Pr(G), 1 <t < Ar, t # s, such that
vy < v <y or vy < v <vj, where vy and ve are the left and right endpoints of Py, respectively.

Proof. Let Ps, 1 < s < Ay be a path in the 1IPC Pz (G) constructed by Algorithm Minimum_1PC and
let v; and v; be its left and right endpoints, respectively. Let P, € Pr(G), 1 <t < Ar, t # s, and
let v, and v, be its left and right endpoints, respectively. Suppose that v; < v < v;. Since v; and v;
are the endpoints of P and v; < v, < vj, the path P, contains at least one edge, say, vqvp, such that
Vg < v < vp. Clearly, vertices v, and v}, are free vertices. Since v v, € E(G), we also have viv, € E(G).
Then, according to Algorithm Minimum_1PC, when vertex vy, is processed, vertex vy, is an endpoint of the
path P;, and, thus, v, bridges the paths P; and P; through vertices v, and v, a contradiction. Similarly,
we can prove that v, < v; or vg > v;. 1

Using similar arguments we can prove the following lemma:

Lemma 10.4. Let G be an interval graph containing a terminal vertex. Let Py, 1 < s < Ay, be a non-
terminal path in the 1PC P7(G) of the graph G constructed by Algorithm Minimum_1PC and let v; and
vj be the left and right endpoints of Ps, respectively. Then, there is no non-terminal path P, € Pr(G),
1<t < Ar, t#s, such that v; < v < v; orv; < v < v;, where vy, and ve are the left and right endpoints
of Py, respectively.

10.4 Correctness and Time Complexity

Let G be an interval graph on n vertices and m edges and let 7 be a subset of V(G) containing a
single vertex. In order to prove the correctness of Algorithm Minimum_1PC, we use induction on n.
We also prove a property of the minimum 1PC Pz (G) of G constructed by our algorithm: Algorithm

(n
different paths with index s € (i,n], 1 <i < n, such that there is no other minimum 1PC PZ(G) having
E;(n) n)a 1 S 1< 0,
where p is the index of the rightmost endpoint of a path in Pz (G). Furthermore, one of the following
holds:

(i) EZ(") < El(-n), 0<i<n,or

(ii) if 5;(") = 55”) +1,0<i< ¢ and 52(”) =™ o/ < i < n, where ¢ is the index of the rightmost

K3
endpoint of a path in P, (G), then there exists a vertex v, such that el > slz("), 1 < z < p and there

s e,

Recall that a trivial path has two endpoints that coincide. Hence, we prove the following theorem.

Minimum_1PC computes a minimum 1PC Pr(G) of the graph G having ¢ ) endpoints v,, belonging to

endpoints v, belonging to different paths with index ' € (i,n] such that sg(") > ¢,

exists no vertex v,., 1 <z’ < p, such that ¢

Theorem 10.1. Let G be an interval graph on n vertices and m edges and let v € V(G). Algorithm
Minimum_1PC computes a minimum 1PC Pr(G) of the graph G having sgn) endpoints v, belonging to
different paths with indezx k € (i,n], 1 <1 < n, such that there is no other minimum 1PC PL(G) having
g™ s M <<,
where o is the index of the rightmost endpoint of a path in Pr(G). Furthermore, one of the following

holds:

endpoints v, belonging to different paths with index &' € (i,n] such that &

(i) Ei(n) < s(n), 0<i<n, or

%
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(i) if Ei(n) = EZ(-n) +1,0<i< o and Ei(n) = E(n), o < i< n, where ¢ is the index of the rightmost

i
endpoint of a path in Py(G), then there exists a vertex v, such that SRS Elz(n), 1<2z2<pand

SRS

there exists no vertex v,., 1 < 2’ < o, such that ¢
Proof. We use induction on n. The basis n = 1 is trivial. Assume that Algorithm Minimum_1PC
computes a minimum 1PC Pr(G[S]) of every interval graph G[S], S = {v1,v2,...,vp_1}, with at most
n—1 vertices having 51(-”71) endpoints v, belonging to different paths with index x € (i,n—1],1 < i < n-—1,
such that there is no other minimum 1PC P4 (G[S]) having g;(”‘” endpoints v,/ belonging to different
paths with index k' € (i, n— 1] such that sg(n_l) > sgn_l), 1 < i < d, where d is the index of the rightmost
endpoint of a path in P7r(G[S]). Furthermore, one of the following holds:

(1) 62("_1) < sgn_l), d<i<n-—1,or

(ii) if 62("_1) = Egn_l) +1,d<i<d and sg("_l) = sgn_l), d <i<mn-—1, where d’ is the index of the
rightmost endpoint of a path in P/ (G[S]), then there exists a vertex v, such that e\ % > )"~

1 < g < d and there exists no vertex vy, 1 < ¢’ < d, such that sf](,nfl) > E((;,%l).

Let A7 (G[S]) be the size of Pr(G[S]). We show that the algorithm computes a minimum 1PC Pz (G) of
the graph G having sgn) endpoints v, belonging to different paths with index & € (i,n], 1 <i <n, such
that there is no other minimum 1PC P/, (G) having sg(") endpoints v, belonging to different paths with
index ' € (i,n] such that sg(n) > sgn), 1 < i < g, where p is the index of the rightmost endpoint of a
path in P7(G). Furthermore, one of the following holds:

(i) 5;(") < EZ(-"), 0<i<mn,or

(ii) if g;(”) = EZ(-") +1,0<i< ¢ and 52(”) = 55”), o < i < n, where ¢ is the index of the rightmost

endpoint of a path in P, (G), then there exists a vertex v, such that e s M 1 <2 < pand

there exists no vertex v,., 1 < z’ < g, such that EIZ(/n) > E(ZT/L).

Case A: Vertex v, is not the terminal vertex. Let Ay (G) be the size of Pr(G). Clearly, the size
M- (G) of a minimum 1PC of G is equal to Ar(G[S]) — 1 or Ar(G]S]) or Ar(G[S]) + 1. We distinguish
the following cases:

Case A.1: When the algorithm processes vertex v,,, it uses v,, to bridge two paths (operation bridge),
that is, A7 (G) = A7 (G[S]) — 1; consequently, Pr(G) is a minimum 1PC of G, that is, A (G) = A7 (G).
Case A.1.a: Suppose that sg(n_l) < sgn_l), d <1 <n—1. We show that the algorithm computes a
(n
% € (iy,n], 1 < i < n, such that there is no other minimum 1PC P4 (G) having ¢}
belonging to different paths with index x’ € (i,n] such that ;™ > (™

) endpoints v, belonging to different paths with index

(n

minimum 1PC Pz (G) of the graph G having e
) endpoints v
, 1 <i < n. Clearly, vertex v, is
an internal vertex of a path in any other minimum 1PC PZ(G), otherwise removing it from P (G) would

result to a 1PC of G[S] of size < A7r(G[S]) — 1, a contradiction. Assume that there exists a minimum

1PC PZL(G) having an index, say, k — 1, for which we have E;C(f)l endpoints v, belonging to different paths

with index k' € (k — 1,n] such that sgf)l > 52"_)1. Suppose that 5;(7_1)1 — s,(:_)l = 1. Note that 5(1") > 511(").
Indeed, let P, (G) be a minimum 1PC of G having &/™ = £{™ + 1 endpoints v, belonging to different

paths with index ' > 1. Suppose that vertex v; is an internal vertex in Pz (G). Then, the algorithm

constructs 5(1") paths while P2 (G) contains at least 5(1") + 1 paths, a contradiction. Suppose that vertex

v1 is an endpoint in P7(G). Note that, according to the algorithm, if v; has degree greater or equal

to one, then it belongs to a path containing more than one vertex. Consequently, the other endpoint

of the path containing vy is one of the e§”> endpoints, and, thus, the algorithm constructs ai”’ paths

while P, (G) contains at least ™ + 1 paths, a contradiction. Since £\ > £/™ there exists a vertex v;,
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1 <j < k-1, such that sg-") = e;(”). This implies that vertex v;4; is the right endpoint of a path P
in the minimum 1PC Pz (G) constructed by the algorithm. Without loss of generality, we assume that
MM j+1<i<k-L

Let P' = (...,Vq,Vn, b, ...) be the path of P2(G) containing vertex v,. Then, j+1 < aand j+1 < b.
Indeed, suppose that at least one of v, and v, has index less or equal to j + 1, say, a < j + 1. Since
vaUn € E(G) we have vj1v, € E(G). Let P = (...,0,Vn,vq,...) be the path of Pr(G) containing
vertex v,. Suppose that v, < vjy1 and vg < v;j41. Then, due to the induction hypothesis, both of the
endpoints of P have index greater than j + 1. However, according to the algorithm (operation bridge),
such an ordering of the endpoints cannot exist, a contradiction. Suppose that v, > v;11 and vq > vj41.
Then, due to the induction hypothesis, at least one of the endpoints of P should have index greater than
j -+ 1. Again, according to the algorithm (operation bridge), such an ordering of the endpoints cannot
exist, a contradiction. Suppose now that v, < vj4; and vq > v;41. Then, due to the induction hypothesis,
computing a 1PC of G[S] we had case (e) which is described in Section 3 and v;j+1 = vs. However, in
this case, vertex v;y1 would not be the right endpoint of a path in Pr(G[S]), a contradiction.

Consequently, 7+ 1 < a and j+ 1 < b. Then, both endpoints of P have indexes less than j + 1. This
implies that vertex v, has bridged two non-terminal paths for which we have an endpoint of one path
between the endpoints of the other, which is a contradiction according to Lemma 10.4.

Consequently, we have shown that there does not exist a minimum 1PC P/ (G) having an index, say,

k — 1, for which we have sgf)l endpoints v, belonging to different paths with index " € (k — 1, n], where

e > e

O =tV 4 d<i<d and e ="V, @' <i <n—1, where

d’ is the index of the rightmost endpoint of a path in P, (G[S]), and there exists a vertex v, such that
5((1"_1) > sg(n_l), 1 < ¢ < d and there exists no vertex vy, 1 < ¢’ < d, such that sfz("_l) > 5((1"_1). We

Case 1.b: Suppose that 52

(n

show that the algorithm computes a minimum 1PC Pz (G) of the graph G having ¢ ) endpoints v,

belonging to different paths with index x € (i,n], 1 < i < n, such that there is no other minimum 1PC
P (G) having sg(") endpoints v, belonging to different paths with index ' € (i,n], 1 <1 < g, such that
AR
one of the following holds:

, 1 <i < g, where g is the index of the rightmost endpoint of a path in Pz (G). Furthermore,

(i) Ei(n) < El(-n), 0<i<n,or
(i) i £ = e 11, p < i< of and &™) = &M o < < n, where ¢ is the index of the rightmost

endpoint of a path in P, (G), then there exists a vertex v, such that e s M 1< 2 < pand

there exists no vertex v, 1 < 2’ < p, such that PAQENEON

Suppose that there exists a minimum 1PC P4 (G) such that £ = ™ = 0. Then, similarly to

Case A.l.a, we show that there is no other minimum 1PC P4 (G) such that /™ > &™ 1 <i<n.

Suppose now that there exists a minimum 1PC PL(G) such that 5;(") = EZ(-") +1,0<i< ¢ and
/(n) (n)
Ei = £

1 b

o' < i <mn, where ¢’ is the index of the rightmost endpoint of a path in P, (G). We show

that there exists a vertex v, such that sé”’ > slz(")

such that s'z(,") > sgf).

Note that, there cannot exist a minimum 1PC P/, (G) such that sg(n) = s§") +2, 0<1i< (. Indeed,
suppose that there exists a minimum 1PC PZ(G) such that sg(n) = €§n) +2, 0 <i< . Consider the case

, 1 < z < p and there exists no vertex v,/, 1 < 2/ < p,

where v, belongs to a path in P2 (G) and it is connected to vertices v, and vy such that o < o’ and g < b'.
Then, removing v, from P4 (G) we obtain a minimum 1PC of G[S] such that ep" " = ™ +1 =" 43
or "V =™ L9 = M 4 4 If v, belongs to a path in Pr(G) and it is connected to vertices v, and

vy, then removing v, from Pr(G) we obtain a minimum 1PC of G[S] such that sg,n_l) < s(;” + 2. Thus,
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there exist three paths in P7(G) such that there are no left endpoints between their right endpoints in
7, a contradiction. Consider now the case where v, belongs to a path in P, (G) and it is connected to
vertices v, and vy such that ¢ < o’ and ¢ > V. Then, v,v, € E(G). Note that v, belongs to a path P
in Pr(G) and it is connected to vertices v, and v, such that a < ¢ and ¢ < b. Removing v, from Pr(G)
should result to a minimum 1PC of G[S] such that s(gn D= (n) + 1. Consequently, both endpoints of P
have index less than o, which implies that there exists a spec1ﬁc ordering of the endpoints of the paths in
Pr(G]S]), which, according to the algorithm, is not possible, a contradiction. The case where v,, belongs

to a path in P2 (G) and it is connected to vertices v, and vy such that ¢ > a’ and ¢ > b’ is similar.

Using similar arguments with Case A.l.a, we show that there exists no vertex v, 1 < 2/ < p,
such that E/Z(,”) > 537). Suppose that 55”) = 5;("), 1 <4 < o. Note that v, belongs to a path P =
(Vey -y Vay Uy Uby -« ., 0) € Pr(G) such that @ > ¢ and b > p. Thus, v, belongs to a path P’ =
(Very oy Vary Uy Vpry o« .y U ) € PH(G) such that a’ > g and b’ > p. If we remove v,, from P57 (G) then
M=) — ) 4 1. This implies that 7' > b'. Furthermore, if we

remove v, from Pr(G) and we obtain zsg nl) (") + 1, which implies that b = ¥’, then e( b _ (” 1),

1 < i < g, a contradiction. If we remove v, from P, (G) and we obtain e = &M 4o, then there

exists a specific ordering of the endpoints of the paths in P7(G[S]) which, according to the algorithm, is

there exists a vertex v, = vy _1 such that e

not possible, a contradiction. Consequently, there exists a vertex v, such that sé”’ > sl(n) 1<z<op.

Case A.2: When the algorithm processes vertex v, it constructs a 1PC of size A7 (G[S]) — 1 of
Pr(G[S] — vt) of G[S] — vs, where v; is the terminal vertex, and then connects the path (v, v,) to
an existing path. This operation is performed when vertex v,, sees the endpoints of at least one non-
terminal path, say P; = (v,,...,vs), the terminal vertex v; and no other endpoint of the terminal path,
say, P» = (vt,...,ve). Then, the terminal path, P, has the same endpoints as in Pz (G[S]), the vertices
of P; become internal vertices of P», while all the other paths in P7(G) remain the same as in P7r(G[S5]).
It is easy to see that there exists a path P in P7r(G[S] — v;) having an endpoint, say, vy, with index
greater than ¢, and thus, vy € N(v,). Note that when the connect operation is performed, it may use a
vertex of the terminal path in order to increase the value of an 51(-"71), 1 <i < n-—1, and, in this case,

E((infl) < E:i(n 1)

. Then, for the endpoints of the terminal path, say, v; € 7 and vy, we have vy < vy.
Consequently, since vertex v, sees the endpoints of P;, the terminal vertex v; and no other endpoint
of the terminal path P, if operation connect was called previously, it cannot have used a vertex of the
() < sd( ™) cannot hold. Consequently, €; fn=1) < s(n 2 ,d<i<n-—1.
The above procedure results to a 1PC of G of size A7 (G) = Ar(G[S]) — 1; consequently, Pr(G) is a
minimum 1PC of G, that is, A (G) = Ar(G).
(n)

We show that the algorithm computes a minimum 1PC Pz (G) of the graph G having ¢;

terminal path and, thus, ¢,

endpoints
v, belonging to different paths with index k € (i,n], 1 < i < n, such that there is no other minimum
1PC PL(G) having 52(”) endpoints v, belonging to different paths with index x’ € (i,n] such that
S ),
1PC P42 (G), otherwise removing it from P, (G) would result to a 1PC of G[S] of size less or equal to

1 < ¢ < n. Clearly, vertex v, is an internal vertex of a path in any other minimum

Ar(G[S]) — 1, a contradiction. Suppose that there exists a minimum 1PC PZ(G) having an index, say,
k — 1, such that 5/(")1 > 5,(;1)1 and 1 <k—1<t—1. This implies that 5%") (") and there exists
a vertex vi_1 such that ¥ —1 < k —1 and sg,")l = sk, 1. Clearly, vpv, ¢ E(G). Removing v,, from
PL(G) results to a minimum 1PC of G[S] having at least two free neighbors of v,, as endpoints belonging
to different paths, say, vy and vy; suppose that at least one of them has index greater than k. Then,
=1 o E(nfl)
k—1 k—1
path that they belong, has also index less than k. Thus, s'(" D= ;f(/n) +1= (n) +14+1= sgf Yi1or
;c(," D — k(,”) +2= 5(") +14+2= E;c, Y 1 92 a contradiction. Suppose now that t <k—1<n. Since
there cannot exist a vertex vy such that 1 < /¢ <t—1 and 5;(") > sén), there exists a vertex vg_1 such
that ¥ —1 < k—1 and sg,")l = 8,(:) 1 and t < k. Clearly, vi v, € E(G). If v, is the right endpoint of P,

a contradiction. Thus, vy < vy < v; and v < v4 < v and the right endpoint of the
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then k — 1 < s and thus ¥’ — 1 < s. However, according to the algorithm, there cannot exist an endpoint
between vertices v; and v, a contradiction.

Case A.3: When the algorithm processes vertex wv,, it constructs a 1PC of size Ay (G[S]) of
Pr(G[S] — vt) of G[S] — v, where v; is the terminal vertex, it connects v; to the leftmost left end-
point it sees, and it uses v, to bridge two paths. This operation is performed when vertex v, sees the
endpoints of at least one non-terminal path, say P; = (v,,...,vs), the terminal vertex v; of the terminal
path, say, P, = (vs,vj,...,v,) and an internal vertex v; of P», and it does not see vy. Then, the terminal
path, P», has the same endpoints as in Pz (G[S]), the vertices of P; become internal vertices of P,
while all the other paths remain the same. Recall that, when the connect operation is performed, it may
("_1), 1 <i<n-—1,and, in

use a vertex of the terminal path in order to increase the value of an ¢;
. Then, for the endpoints of the terminal path, say, v; € 7 and v;, we have

this case, sgn_l) < Efi(n_l)
v < vp. Consequently, since vertex v, sees the endpoints of P;, the terminal vertex v; and not vy, if
operation connect was called previously, it cannot have used a vertex of the terminal path and, thus,

gl < inml) D <D g <i<n— 1.

cannot hold. Consequently, €

Consider the case where vertex v,, sees the endpoints of only one non-terminal path, that is, of P;. If
applying the algorithm to G[S] — v results to a 1PC of size A7 (G[S]) — 1 then it contains a path with
one endpoint vy such that ¢ < k. Indeed, suppose that there does not exist such a path and P, consists
of more than one vertex. This implies that all vertices of P; have bridged two paths and therefore we
obtain a 1PC of size less than A7 (G[S]) — 1, a contradiction. Suppose now that the algorithm does not
construct a path in the 1PC of G[S] — v; with one endpoint vy, such that ¢ < k and let the path P; consist
of one vertex, say, vg/. This implies that vertex vy has bridged two paths and the same holds for every
vertex v;, t <i < n—1. Thus, if vy is removed from G[S] — v, the algorithm would construct a minimum
1PC of size A7 (G[S]). Since the size of Pr(G[S]) constructed by the algorithm is A7 (G[S]), removing v,
and vy results to a 1PC of size A7 (G[S]) — 1. Consequently, v cannot be used for bridging two paths
in P7(G[S] — vi). This implies that the 1PC of G[S] — v; constructed by the algorithm contains a path
with an endpoint vy such that ¢t < k. It is easy to see that if vertex v, sees the endpoints of more than
one non-terminal path, applying the algorithm to G[S] — v; results to a 1PC of size A7 (G[S]) — 1 having
a path with one endpoint v, such that t < k.

The above procedure results to a 1PC of G of size A7 (G) = A7 (G[S]) — 1; consequently, Pr(G) is a
minimum 1PC of G, that is, M7 (G) = A7 (G).

Using similar arguments as in Case A.2, we show that the algorithm computes a minimum 1PC Pr(G)
of the graph G having "

%

) endpoints v,, belonging to different paths with index k € (i,n], 1 < i < n,
such that there is no other minimum 1PC P (G) having 5;(") endpoints v, belonging to different paths
with index &’ € (¢,n] such that sg(") > 51(-”), 1<i<n.

Case A.4: When the algorithm processes vertex vy, it connects v, to a path, that is, Ar(G) =
A1 (G[S]). Suppose that there exists a 1IPC PZ(G) of size A7 (G[S]) — 1, that is, vertex vy, is an internal
vertex of a path P in PL(G). We distinguish the following cases:

(i) P = (Vky.-.,0p,Upn,0s,...,0). Removing v, from P results to a minimum 1PC of G[S] having
two (free) neighbors of v,, as endpoints belonging to different paths. Since the algorithm does not use v,
to bridge two paths, the constructed minimum 1PC of G[S] does not have two (free) neighbors of v,, as
endpoints belonging to different paths. Consequently, there is a minimum 1PC of G[S] for which there
exists an index ¢ such that sg(n) > sgn), a contradiction.

(ii) P = (vt,Un, ..., ), where v; is the terminal vertex. Removing v, and v; from P results to a
minimum 1PC of G[S] of size A7 (G[S]) — 1, a contradiction. Indeed, since the algorithm does not use v,

to bridge two paths, removing v; from G[S] results to A7 (G[S]) paths.

Consequently, there does not exist a 1IPC P4~ (G) of size A7 (G[S]) — 1, and, thus, the 1PC constructed
by the algorithm is minimum.
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Case A.4.a: Suppose that e/(”fl) < e("fl) d < i< n—1. We show that the algorithm computes a

(n)

minimum 1PC Pz (G) of the graph G having €, endpoints v,, belonging to different paths with index

/(n)

k € (i,n|, 1 < i < n, such that there is no other minimum 1PC P%(G) having ¢; "’ endpoints v,

belonging to different paths with index &’ € (i, n] such that sg(") > 51(-"), 1 <i < p. Furthermore, one of
the following holds:

(i) EZ(") < ef-”), 0<i<n,or

(ii) if e;( n s(") +1,0<i< o and 5/(") = 5(”) o' < i < n then there exists a vertex v, such that

Egn) ( ) /(n) (n)

, 1 <z < p and there exists no vertex v./, 1 < 2’ < p, such that €, > ¢,,".

Suppose that v, is not an endpoint in Pr(G); let P = (..., 04, Vn,vp,...). According to operation
connect, we break the terminal path of Pz (G[S]), which has the terminal vertex, vy, as its right endpoint.
Note that the terminal vertex is the second rightmost endpoint in Pz (G[S]) (see Section 3). The second

rightmost endpoint of Pz (G) has index greater than ¢, and v; becomes a left endpoint of a path in Pr(G).

Assume that there exists a minimum 1PC P4 (G) having an index, say, k — 1, for which we have E;(ni

endpoints v, belonging to different paths with index &’ € (k — 1,n], where 5%(")1 > E;c 1- Similarly, to

Case A.1, there exists a vertex v;, 1 < j < k — 1, such that 5§") = s;(").
Suppose that v, is an endpoint of a path P’ = (v,,vq,...) € PL(G). Then, since ¢ = n, s'(")
(n) +1, o < i < n. Note that, there cannot exist a minimum 1PC P%(G) such that ¢, (n) = En) + 2,

0 S i < n. Indeed, suppose that there exists a minimum 1PC PZ-(G) such that ¢, ) = s(") +2,0<i<n.

If we remove v, from P, (G) we obtain e," " = i™ or "V = 4™ — 1. However, e,™ = £{" 42

(n) _ (" ) _

and €, = 0, a contradiction. According to the connect operation, v,vj+1 ¢ E(G ), thus

. —1 —1
Vg > Vj41- If we remove v, from P4 (G) we obtain 5;(_21 ) = Eg(ﬂ = Eﬁ)l + 1. However, 5311 = 5§11 )

or €(+)1 = 55111) + 1, a contradiction. Consequently, there exists no vertex v,, 1 < 2z’ < p, such
that EZ(,n) > 527). Suppose that 52(”) = 55”), 1 <i < o. Let v, be the new endpoint created by the

connect operation. Again, since v,v,—1 ¢ E(G), vy > v,_1 and if we remove v,, from PL(G) we obtain

'("_1) = '(") i")l However, s( )1 = 5(" Y 41, a contradiction. Consequently, if £; = (n) +1,

/(n) (n) (n) I(n)
l Z

o < < i< and €; o' < i < n then there exists a vertex v, such that e , 1 § z <

and there exists no vertex v,, 1 < 2’ < p, such that EIZ(/n) > si/). Suppose that the second rightmost
endpoint in Pr(G), say, vy, has index less than the second rightmost endpoint in P4 (G), say, vy, that

is, vy < vy. Then, 5}” 1= 5} V1= /f(") —2 and sfnll) = f( ") —1, a contradiction.

Suppose that v, is not an endpoint in P47 (G); let P’ = (..., 04, Un, v, ...). Clearly, one of vg, vy
is a vertex that could not be an endpoint in P2 (G). We show that ¢’ < p. Suppose that ¢’ > o. Since

(n—1) _ _(n) _ _1(n) (n— 1) /(n)
Q

€p =€y =€ —1 =0, then we have ¢, — 1, which implies that the new endpoint

in P4 (G) has index greater than the new endpoint created in Pr(G), a contradiction. It is easy to see

that there cannot exist a a minimum 1PC PZ(G) having an index, say, k — 1, for which we have E;(ni

endpoints v, belonging to different paths with index ' € (k — 1,n] such that 5%(")1 = /(" D19 Let
v; be the terminal vertex. We have s( )1 = 52("1 Yo It s easy to see that there cannot ex1st a minimum
1PC P (G) having an index, say, k — 1, k — 1 < ¢ — 1, for which we have sgf)l endpoints v,/ belonging
to different paths with index ' € (k — 1,n], such that 5%(")1 > el

Suppose that v, is the right endpoint of a path P = (v, va,...) € Pr(G). Then, there cannot exist
a minimum 1PC P4 (G) such that 1 = 5(9”)1 < 5/(") We show that the algorithm computes a minimum
1PC Pz (G) of the graph G having EZ(- endpoints v,, belonging to different paths with index x € (i, n],
1 < i < n, such that there is no other minimum 1PC P, (G) having 5;(") endpoints v, belonging to
different paths with index k' € (i,n] such that sg(") > 51(-”), 1 < i < n. Assume that there exists a

minimum 1PC P/, (G) having an index, say, k — 1, for which we have sgf)l endpoints v, belonging to
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different paths with index ' € (k — 1,n], where )"} > &\

v;, 1 <7 <k —1, such that sg”) = g;(")_

)1. Similarly, to Case 1, there exists a vertex

Suppose that v, is an endpoint of a path P’ = (vp,ve,...) € P7(G). Note that if vy < v;j11, then
vj+1Vn € E(G) and vy should be the terminal vertex belonging to a non-trivial path, otherwise Pr(G)
would not be minimum. Thus, if v;41 is not the terminal vertex, v, < vj11 or vq = vj41. Then, if we

remove vy, from P4 (G) and Pr(G), we obtain 55_111) = 5;1)1 —1= 5;-(}:{ —2 and 5;-(}:; D= s;(ﬁ —1; thus,
eﬁzl) = e;(]:l_l) —1, a contradiction. On the other hand, if ver > v;41, then, if we remove v,, from Pr(G)
and P2 (G), we obtain sﬁ_}l) = €§1)1 —-1= sg(ﬁ —2or sﬁzl) = 55‘1)1 = sz(ﬂ — 1. Also, sg(fl_l) = sg(fi;
thus, e?ﬁl) = 5;(}:17 Y _ 1, a contradiction.

Suppose that v, is not an endpoint in PL(G); let P! = (..., v4, 0, 0, ...). If vgvpy € E(G) then if

/ / s (n=1) _ (m) 4 _ _/(n) (n=1) _ (n) _ _1(n)_
we remove v, from Pr(G) and Pr(G), weobtaine; ;' =¢, ', —1=¢; 1 —20re; =, =¢;,.1— 1L
Also, 5;-(}:; - E;-(j:i; thus, e?ﬁl) = 5;-(}:; D' _ 1, a contradiction. Consequently, vy vy ¢ E(G); however,
we have shown that v,, becomes an endpoint in Pz (G) only when a new right endpoint cannot be created

by making v,, an internal vertex, a contradiction.

Case A.4.b: Suppose that eg(”fl) = 51(-”71) +1,d<i<d and eg(”fl) = 55"71), d <i<n-—1and
there exists a vertex v, such that 5((1"_1) > sg(n_l), 1 < ¢ < d and there exists no vertex vy, 1 < ¢’ < d,
such that 611(,"_1) > 5517_1)
En) endpoints v, belonging to differezn‘)u paths with index k € (i,n], 1 < i < n, such that
(n

i

. We show that the algorithm computes a minimum 1PC Pz (G) of the graph
G having ¢
there is no other minimum 1PC P/ (G) having e
k' € (i,n] such that sg(n) > 51(-"), 1<i<n.

endpoints v, belonging to different paths with index

Assume that there exists a minimum 1PC PZ(G) having an index, say, k — 1, for which we have sgf)l

endpoints v, belonging to different paths with index x’ € (k — 1,n], where E;C(f)l > s,g"

Case A.1, there exists a vertex v;, 1 < j < k— 1, such that 5§") = E;(n)
Case A.4.a, we show that v, is an endpoint of a path P’ = (v, ve,...) € PX(G) and that there cannot

exist a minimum 1PC PZ(G) having an index, say, k — 1, for which we have E;C(f)l endpoints v, belonging

to different paths with index " € (k — 1, n|, where sgf)l > 5,2"_)1.

). Similarly, to

. Using similar arguments as in

Case A.5: When the algorithm processes vertex wv,, it inserts v, into a path, that is, A7 (G) =
Ar(G[S]). This implies that Vi > d we have sin_l) < 1. Suppose that there exists a 1PC PL(G) of size
Ar(G[S]) — 1, that is, vertex v, is an internal vertex of a path P in P2 (G). Then, removing vertex v,

from PZL(G) results to a 1PC of G[9] of size A7 (G[S]), and, thus, minimum, such that there exists an
/(n—1)

Consequently, there does not exist a 1IPC P4~ (G) of size A7 (G[S]) — 1, and, thus, the 1PC constructed
by the algorithm is minimum.

index 4, i > d, for which ¢ = 2, a contradiction.

(n—1) < E(nfl), d <1i<mn—1. We show that the algorithm computes a

[
(n
[

Case A.5.a: Suppose that 52
) endpoints v, belonging to different paths with index

(n

minimum 1PC Pr(G) of the graph G having e
& € (i,n], 1 < i < n, such that there is no other minimum 1PC P4 (G) having ¢, ) endpoints v,
belonging to different paths with index ' € (i,n] such that sg(") > sgn), 1<i<n.

Assume that there exists a minimum 1PC P/, (G) having an index, say, k — 1, for which we have 5;:)1
endpoints v, belonging to different paths with index s’ € (k — 1, n], where 5;(7_1)1 > 52"_)1. Similarly, to
Case A.1, there exists a vertex v;, 1 < j < k — 1, such that 55.”) = g;(n).

Suppose that v, is an endpoint of a path P’ = (v, v:) € P5(G), such that v, € 7. Then, vv, € E(G)
and the size of a minimum 1PC of G[S] — v; is A7 (G) — 1, a contradiction.

Suppose that v, is an endpoint of a path P’ = (vy, vy, ..., 0 ) € P7(G), such that v, ¢ 7. Then,
removing vertex v, from PZL(G) results to a 1PC of G[5] of size A7 (G[S]), and, thus, minimum, such
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‘=1 _ 1§ > d. Then, d = d’, which is equal to the index of

the terminal vertex, and P’ is the terminal path such that its left endpoint in P2 (G[S]), that is, vertex

that there exists an index ¢ for which ¢;

Vg, has index greater than the index of the left endpoint of the terminal path in Pr(G[S]). Note that,
Vg, cannot be an endpoint in P2 (G[S]) since sg("_l) < sgn_l), d <i<mn-—1,and, thus, a 1PC of G[S]
having v, as an endpoint cannot be minimum. However, removing v,, from P4 (G) results to a 1PC of
G|[S] of size A7 (G[S]) having v, as an endpoint, a contradiction.

Suppose now that v, is not an endpoint in P7(G); let P' = (..., 04,00, V,...). If vyvp € E(G)
then if we remove v,, from P4 (G) and P (G), we obtain s,(:__ll) = s,(:)l = '(") —lande I(n D= sg")l,
a contradiction. Consequently, vy vy ¢ E(G). Suppose that the value of d- connect1v1ty of PT( [S]) is
¢; then the value of d-connectivity of Pr(G) is ¢ + 2. However, the corresponding value of P%(G) is not
increased by vertices v,/, v, and vy, since v, and vy, are internal vertices not successive into a path in a
1PC of G[S] and there exist two vertices connected to v, and vy in P7(G[S]), say, vy and vy, respectively,
for which d(vs) and d(v,) are reduced, and, thus, they reduce the d-connectivity by two. In order to
obtain ¢ + 2 for P2 (G) the vertices of V(G) — {vq/,vpr, v} must increase the d-connectivity by two.
However, the size of P2 (G) is also A7 (G) and vertices v,/ , vy and vy, are also internal in Pz (G). Thus,
increasing the d-connectivity by two is not possible and we have a contradiction. Note that vsv, ¢ E(G);
otherwise we would have also v,v; € E(G) and v,v, € E(G) and there would exist a 1PC having the same
endpoints as P7(G) and containing a path P = (..., vf,vn,vg,...) with vfv, € E(G), a contradiction.

Case A.5.b: Suppose that €; =) - (" D4 1,d<i<d and s'(" D= En_l), d <i<mn-—1and
there exists a vertex v, such that s(n 1) ;(n 1), 1 < ¢ < d and there exists no vertex vy, 1 < ¢’ < d,
such that 5/(" DS 5(" D Using 51mllar arguments as in Case A.4.a where v, is not an endpoint in

Pr(G[S]), we show that the algorithm computes a minimum 1PC Pz (G) of the graph G having s( n)

endpoints v,; belonging to different paths with index x € (i,n], 1 < i < n, such that there is no other
minimum 1PC P%(G) having 5/(
that 5'(") > E(n) 1 <i < o. Furthermore, if €]

() o )

endpoints v, belonging to different paths with index &’ € (¢, n] such
=M 1 p<i< g and €™ = ¢ <i < nthen
there exists a vertex v, such that ¢; 1 < z < p and there exists no vertex v,, 1 < z’ < g, such
that £/ > {7,

Case A.6: When the algorithm processes vertex v, it creates a new path having vertex v, as an
endpoint, that is, A7 (G) = Ar(G[S]) + 1. This implies that Vi > d we have 55-"71) < 1. Suppose that
there exists a 1PC PL(G) of size A7 (G[S]) — 1, that is, vertex v, is an internal vertex of a path P in
PL(G). Then, removing vertex v, from P2 (G) results to a 1PC of G[S] of size Ar(G[S]), and, thus,

/(n—1)

minimum, such that there exists an index ¢ for which ¢; = 2, a contradiction.

Suppose now that there exists a 1PC PL(G) of size Ar(G[S]). Let vy, be an endpoint of a path P in
PL(G). We distinguish the following cases:

(i) P = (vn,vr,...,0s). Removing vertex v, from P4 (G) results to a 1PC of G[5] of size Ar(G[S]),
=1 — 1, i >d. Then, d = d’, which
is equal to the index of the terminal vertex, and P is the terminal path such that its left endpoint in

and, thus, minimum, such that there exists an index ¢ for which ¢;

PL(G]S]), that is, vertex v,, has index greater than the index of the left endpoint of the terminal path in
Pr(G[S]). Note that, v, cannot be an endpoint in P4 (G[S]) since /""" < "™ d <i<n—1, and,
thus, a 1PC of G[S] having v, as an endpoint cannot be minimum. However, removing v,, from P, (G)
results to a 1PC of G[S] of size A7 (G[S]) having v, as an endpoint, a contradiction.

(ii) P = (v, vy), where v, is the terminal vertex. Removing v,, and v; from P results to a 1PC of
G[S] — v of size A7 (G[S]) — 1, a contradiction. Indeed, since the algorithm does not use v,, to bridge two
paths, removing v; from G[S] results to Ar(G[S]) paths.

Now let v, be an internal vertex of a path P = (v,,...,v;, 0y, 0,...,0s) in PL(G). Suppose that
N(v,) > 0 (the case where N(v,) = 0 is trivial) and v; ¢ N(vy,,), where v; is the terminal vertex. Since
the algorithm constructs Az (G[S]) + 1 paths, at least |N(v,)| — 1 neighbors of v, have bridged paths
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reducing the size of the 1PC and at most one of them was inserted; otherwise there would exist at least
two successive neighbors into a path or at least one of them would be an endpoint. Suppose that v; and
vj have both bridged paths. Then, applying the algorithm to G — {v;, v;, v, } would result to a minimum
1PC of G — {v;,v;, v, } of size A7 (G[S]) +2. However, if we remove vertices v;, v; and v, from P4 (G) we
obtain a 1PC of G — {v;, v}, v, } of size A7 (G[S]) + 1, a contradiction. Suppose now that v; was inserted
and v; has bridged paths. We distinguish the following cases:

(i) j < i. Clearly, applying the algorithm to G’ = G — {v;, v, } results to a minimum 1PC of G’ of
size A7 (G[S]). Furthermore, applying the algorithm to G’ — {v;} results to a minimum 1PC P”;(G) of
G’ —{v;} of size A7 (G[S]) + 1 such that no free neighbor of v; is an endpoint and if v; sees the terminal
vertex vy, it is not a trivial path in P”;(G). Indeed, any neighbor v, of v; such that ¢ < a < n cannot be
an endpoint in P (G) since every vertex v, such that ¢ < a < n is also a neighbor of v,,. Note that, t < j.
Furthermore, since v; is inserted, when vertex v;,1 was processed, no neighbor of v; was an endpoint
and if v;u; € E(G) vertex v; does not belong to a trivial path. Indeed, let vy € N(v;) be an endpoint
when the algorithm processes vertex v;y1 or v; belongs to a trivial path. This implies that, when we
apply the algorithm to G[S], we have one neighbor of v, say, vy, bridging through vertex vy or vertex
vy; then v; would be inserted through the edge vgve or vive, which is a contradiction since this results to
two neighbors of v, being successive. Additionally, no neighbor of v; becomes an endpoint and vertex v;
does not belong to a trivial path until vertex v, _; is processed, since all vertices with index greater than
j + 1 are neighbors of v,, and, thus, they are used to bridge paths reducing the size of the 1PC. Note
that, according to the algorithm, vertex v; cannot belong to a trivial path until vertex v, _1 is processed,
since no bridge operation results to v; belonging to a trivial path. Consequently, applying the algorithm
to G' — {v;} results to a minimum 1PC P";(G’" — {v;}) of size Ay (G[S]) + 1 such that no free neighbor
of v; is an endpoint and if v; sees the terminal vertex vy, it is not a trivial path in P”1(G" — {v,}).

(i) 4 < j. Similarly to case (i), applying the algorithm to G’ — {v,} results to a minimum 1PC
P"1(G" — {v;}) of size Ar(G[S]) + 1 such that no free neighbor of v; is an endpoint and if v; sees the
terminal vertex vy, it is not a trivial path in P”1(G’ — {v;}). Indeed, when vertex v;11 is processed, no
neighbor of v; is an endpoint and if v; sees the terminal vertex v, it is not a trivial path. Furthermore,
since no neighbor of v, can be an endpoint, no vertex with index greater than ¢ 4+ 1 is an endpoint.
Additionally, no neighbor of v; becomes an endpoint and if v;v; € E(G), vertex v; does not belong to a
trivial path until vertex v, _; is processed, since all vertices with index greater than 7 4+ 1 are neighbors
of v, and, thus, they are used to bridge paths reducing the size of the 1PC. Note that, according to
the algorithm, vertex v; cannot belong to a trivial path until vertex v,_; is processed. Consequently,
applying the algorithm to G’ — {v;} results to a minimum 1PC P”;(G" —{v,}) of size A7 (G[S]) + 1 such
that no free neighbor of v; is an endpoint and if v; sees the terminal vertex vy, it is not a trivial path in
PG = {v;}).

Since v, is an internal vertex of a path P = (v,,...,0;,Un,0j,...,0s) in P7(G) which has size
A7 (G[S]), if we remove vertices v;, v; and v, from P we obtain a 1PC of G’ — {v,} of size A7 (G[S]) +1
such that a free neighbor of v; is an endpoint, a contradiction; the same holds when P = (v, ..., v;, Up,
vj,vr). If P = (v,05,0p,0),...,0s) then vy belongs to a trivial path in P”;(G), a contradiction. If
P = (v;,vp,vj,...,05) or P = (vr,...,0;,Un,0;), then removing vertices v;, v; and v, from P results to
a 1PC of G’ — {v,} of size Ar(G[S]), a contradiction.

Now let vy € N(v,), where v; is the terminal vertex. The case where v,, is an internal vertex of a
path P = (vy,...,0;,Un,vj,...,0s) in P2(G) which has size A7 (G[S]) leads to a contradiction similarly
to the case where v, ¢ N(vy,). Suppose that v, is an internal vertex of a path P = (vy, vp,vj,...,0s) in
P (G) which has size A7 (G[S]). According to the algorithm, no neighbor of v, is inserted until vertex v;
is processed. Also, it is easy to see that, no neighbor of v, with index greater than ¢ is inserted, either.
Indeed, let v,, t < a < n, be a neighbor of v,, which is inserted into the terminal path. Since the algorithm
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results to A7 (G[S]) + 1 paths, v, is inserted through an edge viv, such that vg, vy ¢ N(v,) and vy is
connected to a vertex v, such that v, ¢ N(v,). This implies that the ordering of the vertices v, vy, ve and
vq of the terminal path is as follows: vy < v < v¢ < vy or Vg < vp < Vi < vg; Without loss of generality
suppose that vy < v, < ve < vy. Let vy be the other endpoint of the terminal path. Clearly vy < vy. Also,
without loss of generality, suppose that v, < v,. Consequently, when vertex v, is processed, the algorithm
has constructed a path having two successive vertices, vy and vy, which have indexes greater than those
of the endpoints of the path, that is, v, and v,. This is a contradiction, since it implies that there exists
at least one vertex with index greater than ¢ which sees vg; in this case the algorithm could not result to
a path having v, as an endpoint. Consequently, we have shown that if we apply the algorithm to G[S],
no neighbor of v, is inserted into the terminal path. Furthermore, since there are no neighbors of v,
successive into a path, all neighbors of v,, bridge paths reducing the size of the 1PC. This implies that,
if we apply the algorithm to G[S] — {v;}, we obtain a minimum 1PC of G[S] — {v:} of size Ar(G[S]).
Furthermore, if we apply the algorithm to G[S] — {v¢, v;}, we obtain a minimum 1PC of G[S] — {v¢, v;}

of size Ar(G[S]) + 1. However, removing v;, v, and v; from P = (v¢, v, ;,...,vs) which is a path in
PL(G), we obtain a 1PC of G[S] — {v, v;} of size at most A7 (G[S]), a contradiction; thus, v, cannot be
an internal vertex of a path P = (v, vp,vj,. .., vs) in PZ2(G) which has size A7 (G[5]).

We have shown that there does not exist a 1PC PL(G) of size Ay (G[S]), and, thus, Pr(G) is a
minimum 1PC of G, that is, M- (G) = A7 (G) = A7 (G[S]) + 1.

Using similar arguments as in Case A.4.a where v,, is an endpoint in Pz (G[S]), we show that the algo-
rithm computes a minimum 1PC Pz (G) of every interval graph G with n vertices having 55”) endpoints
v,; belonging to different paths with index « € (i,n], 1 <14 < n, such that there is no other minimum 1PC
P (G) having sg(n) endpoints v, belonging to different paths with index k' € (i, n] such that sg(n) > sgn),
1< <n.

Case B: vertex v, is the terminal vertex. Clearly, the size \-(G) of a minimum 1PC of G is equal
to A7 (G[S]) or Ar(G[S]) + 1. We distinguish the following cases:

Case B.1: When the algorithm processes vertex vy, it connects v, to a path, that is, Ar(G) =
Ar(G[S]). Since v, is the terminal vertex, the 1PC P7(G) is a minimum 1PC of G, that is, N (G) =
A (G) = A7 (GS]).

We show that the algorithm computes a minimum 1PC Pz (G) of the graph G having
v, belonging to different paths with index x € (i,n], 1 <1 < n, such that there is no other minimum 1PC

") endpoints
P (G) having sg(n) endpoints v, belonging to different paths with index k' € (i, n] such that sg(n) > sgn),
1< <n.

Suppose that v, € P = (vn,q,...) € Pr(G). Then, there cannot exist a minimum 1PC P%(G)

such that 1 = 5(@1 < slg(f)l. Assume that there exists a minimum 1PC P%(G) having an index, say,

0
k — 1, for which we have 5;(7_1)1 endpoints v, belonging to different paths with index «’ € (k — 1, n|, where

5%@1 > 5,(;1)1. Similarly, to Case A.1, there exists a vertex v;, 1 < j < k — 1, such that 5;”) = 5;(").
Suppose that v, € P’ = (vn,Vq,...) € PH(G). If vy < vjt1, then vj11v, € E(G), and, thus,

Vg < Vj+1. Then, if we remove v,, from Pr(G) and PL(G), we obtain el

n—1 n /(n
i1 ) :55-431—1:5]-&% —2and
/(n—1) /(n) (n—1) /(n—1)

€1 =€ —Lithus, e, =€, —1, a contradiction. On the other hand, if var > vj41, then, if we
remove v, from P (G) and P4 (G), we obtain syj_}l) = 5§z)1 —-1= sg(ﬂ —2or sﬁzl) = 5§z)1 = sg(ﬂ - 1.
Also, 5;(}:; D= g;(f:i; thus, 5?}51) = g;(f:f Y _ 1, a contradiction.

Case B.2: When the algorithm processes vertex v,,, it constructs a new trivial path, that is, A7 (G) =
A (G[S]) +1. Suppose that there exists a 1IPC P~ (G) of size A7 (G[S]). Clearly, vertex v,, cannot belong
to a trivial path in P/ (G), since removing it results to a 1PC of G[S] of size A7 (G[S]) —1, a contradiction.
Thus, let P = (vp, vy, ...) € PL(G) be the path containing v,,. Removing vertex v,, from PZ(G) results
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to a 1PC of G[S] of size A7 (G[S]), and, thus, minimum, having a neighbor of v,,, that is, vertex v,, as an
endpoint of a path. Since G[S] does not contain the terminal vertex this is a contradiction. Consequently,
the 1PC Pr(G) is a minimum 1PC of G, that is, M- (G) = A7 (G) = A7 (G[S]) + 1.

We show that the algorithm computes a minimum 1PC Pz (G) of the graph G having

") endpoi
i points
v, belonging to different paths with index x € (i,n], 1 <1i < n, such that there is no other minimum 1PC

P (G) having 52(") endpoints v, belonging to different paths with index &’ € (7, n| such that 52(") > sE”’,
1< <n.

Since P = (vy,) there cannot exist a minimum 1PC PZ(G) such that 1 = 5(971)1 < slg(f)l.

there exists a minimum 1PC P/, (G) having an index, say, k — 1, for which we have 52@1 endpoints v,

belonging to different paths with index ' € (k — 1,n], where sgf)l > 5,(:_)1. Suppose that s,(:_)l =z and

5;(:1)1 = 2 + 1. Similarly, to Case A.1, there exists a vertex v;, 1 < j < k — 1, such that sg.") = 5;(n).

Assume that

Suppose that v, € P’ = (vy,0q,...) € P2(G); the case where P’ = (v,,) is trivial. If vy < vjy1,
then vjtqv, € E(G), and, thus, vertex v, would be connected, a contradiction. If vy > v;41q, then, if
we remove v, from Pr(G) and P, (G), we obtain 5?@1) = 55‘1)1 -1= sg(ﬁ —2 and 5;‘(:1_ D= 5;(_2, a

contradiction. 1

Let G = (V, E) be an interval graph on n vertices and m edges and let 7 be a terminal set containing
a vertex v € V(G). Then, Algorithm Minimum_1PC computes a minimum 1PC Pz (G) of G in O(n?)
time and requires linear space. Recall that the ordering 7 of the vertices is constructed in linear time
[78]. Hence, we can state the following result.

Theorem 10.2. Let G be an interval graph on n vertices and let T be a subset of V(G) containing a
single vertex. A minimum I-fived-endpoint path cover of G with respect to T can be computed in O(n?)
time.

10.5 Related Results on Convex and Biconvex Graphs

Based on the results for the 1PC problem on interval graphs, and also on the reduction described by
Miiller in [69], we study the HP and 1HP problems on convex and biconvex graphs. A bipartite graph
G = (X,Y; E) is called X-convez (or simply convex) if there exists an ordering < so that for all y € Y
the set N(y) is <-consecutive [69]; G is biconvez if it is convex on both X and Y.

In this section, we solve the HP and 1HP problems on a biconvex graph G = (X,Y’; E). Moreover, we
show that the HP problem on a X-convex graph G(X,Y; E) on n vertices can be solved in O(n?) time
if | X|=|Y|or|X|—|Y|=1and a 1HP starting at vertex u, if there exists, can be computed in O(n?)
time if (|X|=|Y]andu€eY) or | X|—|Y]|=1.

We next describe an algorithm for the HP problem on a biconvex graph G = (X,Y; E). Note that
the operation Algorithm_HP corresponds to the algorithm for computing a minimum path cover of an
interval graph described in [4].
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Algorithm HP _Biconvex

Input: a biconvex graph G = (X,Y; F) on n vertices;

Output: a Hamiltonian path of G, if one exists;

1. if ||X|—[Y|| > 1 then return(G does not have a Hamiltonian path);
2. if |X| =Y then
construct the interval graph G': V(G') = X UY, E(G') = EU Ey, where Ey is as follows:
{y1y2 € By} iff y1,y2 € Y and N(y1) N N(y2) # 0;
if Jy; € Y : [N(y;)| = 1 then
P7(G) =Minimum 1PC(G’,y;);
if A7(G) =1 then return(Pr(G));
else return(G does not have a Hamiltonian path);
else
fori=1to |Y|do
P7(G) = Minimum 1PC(G’, y;);
if A7(G) =1 then return(P7(G));
end-for;
return(G does not have a Hamiltonian path);
3. if |X| —|Y| =1 then
Pr(G) =Algorithm HP(G');
if A7(G) =1 then return(P7(G));
else return(G does not have a Hamiltonian path);
4. if |Y]| — |X| =1 then
construct the interval graph G': V(G') = X UY, E(G') = EU Ex, where Ex is as follows:
{z122 € Ex} iff 21,22 € X and N(z1) N N(z2) # 0;
Pr(G) =Algorithm HP(G);
if A7(G) =1 then return(P7(G));
else return(G does not have a Hamiltonian path);

Algorithm 9: Algorithm HP _Biconvex

Observation 10.1. Uehara and Uno in [91] claim that the HP problem on a biconvex graph G(X,Y’; E)
on n vertices can be solved in O(n?) time even if | X| = |Y]|. Specifically, they claim that G has an HP if
and only if the interval graph G’ has an HP, where G’ is an interval graph such that V(G’) = X UY and
E(G@) = EUEy, where Ey is as follows: {y1y2 € Ey }iff y1,y2 € Y and N(y1)NN(y2) # 0. However, this
is not true, since there exists a counterexample, which is presented at Figure 10.5. Indeed, the biconvex
graph G of Figure 10.5 does not have an HP while for G’ we have P = (x1, Y2, T2, Y1, Y4, T3, Y3, Ta)-
Suppose that we construct an interval graph G’ such that V(G’') = X UY and E(G’) = E U Ex, where
Ex is as follows: {z125 € Ex} iff 1,29 € X and N(z1) N N(z3) # 0. Then, G’ has an HP, that is,
P = (y4,73,Y3, T4, 1, Y2, T2,%1). Thus, there exists no algorithm with time complexity O(n?) and we
can state the following result.

Theorem 10.3. The Hamiltonian path problem on a biconver graph G on n vertices can be solved in
O(n?) time.

Similarly, we show that the Hamiltonian path problem on a X-convex graph G(X,Y’; E) on n vertices
can be solved in O(n3) time when |X| = |Y| or | X| —|Y| = 1. It is easy to see that if |Y| — |X| = 1 then
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Figure 10.5: A biconvex graph G.

the X-convex graph G(X,Y’; E') has a Hamiltonian path if and only if the interval graph G’ has a 2HP
between any two vertices of Y. Thus, we can state the following result.

Corollary 10.1. The Hamiltonian path problem on a X-convex graph G(X,Y; E) on n vertices can be
solved in O(n3) time if | X|=|Y]| or | X| —|Y|=1.

We next describe an algorithm for the 1HP problem on a biconvex graph G = (X,Y; E).

Algorithm 1HP _Biconvex

Input: a biconvex graph G = (X,Y; E) on n vertices and a vertex y: € Y);

Output: a Hamiltonian path of G starting at vertex y:, if one exists;

1. if ||X|—|Y|| > 1 then return(G does not have a 1HP);
2. if |X| =Y| then
construct the interval graph G': V(G') = X UY, E(G') = EU Ey, where Ey is as follows:
{y1y2 € Ev}iff y1,y2 € Y and N(y1) N N(y2) # 0;
P7(G) =Minimum_1PC(G’, y:);
if A7(G) =1 then return(P7(G));
else return(G does not have a 1HP);
3. if |X| —|Y| =1 then return(G does not have a 1HP);
4. if |Y]| — |X| =1 then
construct the interval graph G': V(G') = X UY, E(G’') = EU Ex, where Ex is as follows:
{z122 € Ex} iff 21,22 € X and N(x1) N N(z2) # 0
Pr(G) =Minimum_1PC(G’, y1);
if A7(G) =1 then return(P7(G));
else return(G does not have a 1HP);

Algorithm 10: Algorithm 1HP _Biconvex

Since Algorithm Minimum_1PC requires O(n?) time to compute a 1HP of an interval graph on n
vertices and the graph G’ can be constructed in O(|X UY|?) time [69], Algorithm 1HP_Biconvex returns
a 1HP, if there exists, of a biconvex graph on n vertices in O(n?) time. Hence, we can state the following
result.

Theorem 10.4. Let G be a biconvex graph on n vertices and let u be a vertex of V(G). The 1HP problem
on G can be solved in O(n?) time.
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Let G(X,Y; E) be a X-convex graph on n vertices and let u be a vertex of V(G). Similarly, we show
that the 1HP problem on G can be solved in O(n?) time when (| X|=|Y| and u € Y) or |X| —|Y]| = 1.
Clearly, if |Y| — |X| =1 and u € X then G does not have a 1HP. It is easy to see that if (|Y|— |X|=1
and u € Y) or (| X| = |Y]| and u € X) then the X-convex graph G(X,Y; E) has a Hamiltonian path
if and only if the interval graph G’ has a 2HP between u and a vertex of Y. Thus, we can state the
following result.

Corollary 10.2. Let G(X,Y; E) be a X -convex graph on n vertices and let u be a vertex of V(G). The
1HP problem on G can be solved in O(n?) time if (|X| =1|Y| andu €Y ) or | X|—|Y|=1. If|Y|-|X| =1
and u € X then G does not have a 1HP.

10.6 Concluding Remarks

This chapter presents an O(n?) time algorithm for the 1PC problem on interval graphs. Given an interval
graph G and a vertex v of G, our algorithm constructs a minimum path cover of G such that v is an
endpoint. Thus, if the graph G is Hamiltonian, our algorithm constructs a 1HP. It would be interesting
to see if the problem can be solved in linear time. Furthermore, an interesting open question is whether
the k-fixed-endpoint path cover problem (kPC) can be polynomially solved on interval graphs. Given a
graph G and a subset T of k vertices of V(G), a k-fixed-endpoint path cover of G with respect to 7 is a
set of vertex-disjoint paths P that covers the vertices of G such that the k vertices of 7 are all endpoints
of the paths in P. The kPC problem is to find a k-fixed-endpoint path cover of G of minimum cardinality.
Note that, the kPC problem generalizes the 2HP problem; the complexity status of the 2HP problem on
interval graphs remains an open question.
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CHAPTER 11

CONCLUSIONS-FURTHER RESEARCH

11.1 Coloring Problems
11.2 Path Cover Problems

11.3 Further Research

11.1 Coloring Problems

The complexity of the pair-complete coloring problem and the harmonious coloring problem has been
extensively studied on various classes of perfect graphs such as cographs, interval graphs, bipartite graphs
and trees. Chapter 4 of our work is also concerned with these problems.

Bodlaender [11] provides a proof for the NP-completeness of the pair-complete coloring problem for
disconnected cographs and disconnected interval graphs, and extends his results for the connected cases.
His proof also establishes the NP-hardness of the harmonious coloring problem for disconnected interval
graphs and disconnected cographs. Bodlaender’s results establish the NP-hardness of the pair-complete
coloring problem for the class of permutation graphs and, also, the NP-hardness of the harmonious
coloring problem when restricted to disconnected permutation graphs. Extending the above results,
we have shown that the harmonious coloring problem remains NP-complete on connected interval and
permutation graphs. Furthermore, we also show that the problem is also NP-complete on split graphs.

Concerning the class of bipartite graphs and subclasses of this class Farber et al. [32] show that the
harmonious coloring problem and the pair-compete coloring problem are NP-complete for the class of
bipartite graphs. In addition, Edwards et al. [30, 31] show that these problems are NP-complete for
trees. Their results also establish the NP-completeness of these problems for the classes of convex graphs
and disconnected bipartite permutation graphs. We have shown that the harmonious coloring problem
and the pair-complete coloring problem is NP-complete for connected bipartite permutation graphs, and
thus, the same holds for the class of biconvex graphs. Moreover, based on Bodlaender’s results [11],
we showed that the pair-complete coloring problem is NP-complete for quasi-threshold graphs and that
the harmonious coloring problem is NP-complete for disconnected quasi-threshold graphs. We have also
showed that the pair-complete coloring problem is polynomially solvable on threshold graphs by proposing
a simple linear-time algorithm.
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11.2 Path Cover Problems

Nakano et al. in [70] use novel techniques that combine in a clever way tree structures, called path
trees, and sequences of square and round brackets; their algorithm produces a minimum path cover of
a cograph by finding matchings of brackets in these sequences, constructing path trees, and converting
the path trees to a minimum path cover using the inorder traversal. In [70] they left open the problem
of applying their technique into other classes of graphs. We generalized their technique and applied it to
the class of Py-sparse graphs. We investigated the structure of the paths that occur in a minimum path
cover of a Ps-sparse graph and the structure of the corresponding path trees, and presented a time- and
work-optimal algorithm that runs in O(logn) time with O(n/logn) processors on the EREW PRAM
model. We also showed that our results can be extended to a proper superclass of Pj-sparse graphs,
namely the Py-tidy graphs.

Steiner [87] showed that the k-path partition problem remains NP-complete on the class of chordal
bipartite graphs if k is part of the input and on the class of comparability graphs even for k = 3. Fur-
thermore, he presented a polynomial time solution for the problem, with any k, on bipartite permutation
graphs and left the problem open for the class of convex graphs. In Chapter 3 we proved that the k-path
partition problem is NP-complete on convex graphs, quasi-threshold graphs, and thus, it is also NP-
complete for interval and chordal graphs. Given that this problem is polynomially solvable for bipartite
permutation graphs, we have sharpened the demarcation line between polynomially solvable and NP-hard
cases of the k-path partition problem.

In Chapter 5 we presented a simple linear-time algorithm for the k-fixed-endpoint path cover problem
(kPC) on cographs. Given a cograph G and a set of vertices 7, our algorithm constructs a minimum
k-fixed-endpoint path cover of G that contains a large number of terminal paths. Furthermore, we studied
the complexity status of the k-fixed-endpoint path cover problem on the class of proper interval graphs,
and showed that this problem can be solved in polynomial time when the input is a proper interval graph.

A generalization of the (kPC) problem has been defined and also solved for the class of cographs,
namely, the k-fixed-set path cover problem (kFSPC). Recall that, given a graph G and k disjoint subsets
TYL,T2,...,Tk of V(Q), a k-fixed-endpoint-set path cover of G is a set of vertex-disjoint paths P that
covers the vertices of G such that the vertices of 7 = 7' U7Z?U...UT" are all endpoints of the paths in
P and two vertices u,v € 7 belong to the same path of P if both u, v belong to the same set 7¢, i € [1, k].
The proposed algorithm produces a minimum k-fixed-set path cover of a cograph G that contains the
largest number of terminal paths.

Furthermore, generalizing the disjoint paths problem, we have introduced the 2-terminal-set path
cover problem (2TPC) and we have proposed a polynomial-time solution on the class of cographs. Given
a graph G and two disjoint subsets 71 and 72 of V(G), a 2-terminal-set path cover of G with respect to
7' and 772 is a set of vertex-disjoint paths P that covers the vertices of G such that the vertices of 71
and 7?2 are all endpoints of the paths in P and all the paths with both endpoints in 7' U 72 have one
endpoint in 7' and the other in 72. Our algorithm produces a minimum 2-terminal-set path cover of a
cograph G that contains the largest number of terminal paths. The k(2)-terminal-set path cover problem
(k(2)TSPC) is presented in Chapter 8 along with a polynomial-time solution on the class of cographs.
Let G be a graph and let 71, 72,..., 7% be disjoint sets of vertices of V(G) each containing at most two
vertices. Recall that, a k(2)-terminal-set path cover of the graph G with respect to 71,72%,...,7" is a
path cover of G such that all vertices in 7' U772 U...UT* are endpoints of paths in the path cover
and all the paths with both endpoints in 7> U 72 U...U T* have one endpoint in 7% and the other in
T7,i+# jand i,j € [1,k]. Again, our algorithm produces a minimum k(2)-terminal-set path cover of a
cograph G that contains the largest number of terminal paths.

Finally, motivated by a work of Damaschke [27], where he left both 1HP and 2HP problems open for
the class of interval graphs, we have presented an O(n?) time algorithm for the 1PC problem on interval
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graphs. Given an interval graph G and a vertex v of G, our algorithm constructs a minimum path cover
of G such that v is an endpoint. Thus, if the graph G is Hamiltonian, our algorithm constructs a 1HP.

11.3 Further Research

In Chapter 2 we presented an optimal parallel algorithm for solving the minimum path cover problem on
Py-sparse graphs. An interesting open question would be to see if similar techniques can be efficiently
used for finding a minimum path cover for other classes of graphs and solving other related algorithmic
problems such as the k-fixed-endpoint path cover problem.

Concerning the k-path partition problem, we have sharpened the demarcation line between polyno-
mially solvable and NP-hard cases of the problem. However, the status of the k-path partition problem
remains open for the class of biconvex graphs; this class properly contains bipartite permutation graphs
and is a proper subclass of convex graphs.

It would be interesting to see if the problems introduced in this work, that is the kPC, the kFSPC,
the 2TPC and the k(2)TSPC can be polynomially solved on other classes of graphs; an interesting next
step would be to consider the class of interval graphs. This promises to be an interesting area for further
research since the complexity status of a simpler problem, that is, the 2HP problem, is unknown for
interval graphs. Note that, the complexity status of the kTSPC problem on cographs is unknown, we
pose it as an open problem.

Finally, we have presented an O(n?) time algorithm for the 1PC problem on interval graphs. It would
be interesting to see if the problem can be solved in linear time. Furthermore, an interesting open question
is whether the k-fixed-endpoint path cover problem (kPC) can be polynomially solved on interval graphs.
Note that, the kPC problem generalizes the 2HP problem; the complexity status of the 2HP problem
on interval graphs remains an open question. As a first step, it is worth checking if the 1PC algorithm
proposed in Chapter 10 can be extended to solve the 2PC problem on interval graphs.
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