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ABSTRACT  

Giannis Chantas, K. S. 

PhD, Computer Science Department, University of Ioannina, Greece. October, 2008.  

Title: Bayesian Restoration and Reconstruction of High-Resolution Images from Low-

Resolution Images with Unknown Degradations.  

Thesis Supervisor:  Aristidis Likas. 

 

The research topic of this dissertation is the development of stochastic non-stationary image 

models as image priors used for regularization in restoration and super-resolution problems. 

The proposed non-stationary image models lead to spatially adaptive regularization, or in 

other words, non-uniform regularization along the image which depends on the local spatial 

activity. Furthermore, working in the stochastic framework we employ the Bayesian 

methodology to solve these inverse problems and in parallel to estimate the model parameters. 

Thus, development of Bayesian restoration and reconstruction algorithms is another major 

issue of this dissertation.  

First, we introduce a new hierarchical (two-level) Gaussian non-stationary image prior.  This 

prior assumes that the residuals of the first order differences of the image, in four different 

directions, are Gaussian random variables with zero mean and variance that is spatially 

varying. In this way, the variances manifest the spatial adaptivity mechanism. In order to deal 

with the resulting over-parameterization of this model, the spatially varying variances are 

considered random variables (not parameters) and a Gamma hyper-prior is imposed on them, 

which is conjugate to the Gaussian. To learn this model and infer the image we propose two 

iterative algorithms. The first is based on the maximum a posteriori estimation (MAP) 

principle and computes explicitly both the image and the spatially varying variances in all 

four directions. The second is a Bayesian algorithm that marginalizes the “hidden variables”. 

Also, the marginalization of the hidden variables produces a Student’s-t distribution.  



 xii

Next, we propose a new Bayesian inference framework for image restoration using a prior in 

product form. This prior assumes that the outputs of local high-pass filters, (their number is 

arbitrary), follow again the Student’s-t distribution.  Then, a Bayesian inference methodology 

is proposed that bypasses the difficulty of evaluating the normalization constant of product 

type priors. The methodology is based on a constrained variational approximation that uses 

the outputs of all the local high-pass filters to produce an estimate of the original image. In 

this manner the use of improper priors is avoided and all the parameters of the prior model are 

estimated from the data.  

As a next step, we extend the total-variation prior by introducing a new prior which has a 

number of novel features. More specifically, we introduce a total-variation (TV) prior with 

spatially varying regularization parameters. In order to avoid the over parameterization, we 

introduce a Gamma hyperprior for the spatially adaptive regularization parameters of the local 

TV priors. We also use this prior in a product form, which means that we assume that the 

outputs of an arbitrary number of high-pass filters are distributed according to this prior. This 

gives two novel features to the new prior. First, it is explicitly spatially adaptive and thus it is 

better suited to capture the salient features of the image. Second, it is in product form and has 

the ability to enforce simultaneously a number of different properties to the image. If the 

hidden variables of the second layer are marginalized, the resulting density function has a 

form similar to a Student's-t distribution; thus, we label it as Generalized Student's-t. Due to 

the complexity of this model, we resort to the variational approximation for Bayesian 

inference. 

Finally, we present our contribution to the super-resolution problem. We utilize for the first 

time in the super-resolution problem a hierarchical two-level image prior. Using this non-

stationary prior, it is possible to reconstruct high-resolution images without smoothed edges 

or ringing artifacts in the vicinity of edges. Another contribution to the super-resolution 

problem is a novel two-step reconstruction algorithm. The first stage of this algorithm is a 

preprocessing step that approximately registers the degraded low-resolution observations. 

These “almost-registered” low-resolution observations are used subsequently by an iterative 

algorithm which simultaneously reconstructs the high-resolution images and finds their 

registration parameters. 
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Το ερευνητικό αντικείμενο της διατριβής αυτής σχετίζεται με την ανάπτυξη πρωτότυπων 

μεθοδολογιών για τα προβλήματα της ανόρθωσης εικόνων (image restoration) και της υπερ-

ανάλυσης εικόνων (image super-resolution). Πιο συγκεκριμένα, η διατριβή επικεντρώνεται 

στη μελέτη χωρικά μεταβαλλόμενων στοχαστικών μοντέλων κατάλληλων για να 

χρησιμοποιηθούν ως εκ των προτέρων κατανομές (priors) προκειμένου να επιτευχθεί 

κανονικοποίηση (regularization) στα προβλήματα της ανόρθωσης και της υπερ-ανάλυσης 

εικόνων. Με τα προτεινόμενα μη-στατικά μοντέλα εικόνας επιτυγχάνεται τοπικά 

προσαρμοζόμενη κανονικοποίηση, δηλαδή ανομοιόμορφη κανονικοποίηση της εικόνας 

εξαρτώμενη από την τοπική χωρική δραστηριότητα. Χρησιμοποιώντας τη στοχαστική 

προσέγγιση για τη μοντελοποίηση των εικόνων, εφαρμόζεται η Μπεϋζιανή μεθοδολογία για 

τη λύση των αντίστροφων παραπάνω προβλημάτων καθώς και για την εκτίμηση των 

παραμέτρων του μοντέλου. Κατά συνέπεια, η ανάπτυξη Μπεϋζιανών αλγορίθμων ανόρθωσης 

και υπερ-ανάλυσης είναι ένα ακόμη βασικό πεδίο έρευνας της διατριβής.  

Στη διατριβή αυτή προτείνεται καταρχήν μια νέα ιεραρχική (δύο επιπέδων) εκ των προτέρων 

κατανομή που είναι Γκαουσιανή και μη-στατική. Αυτή η κατανομή θεωρεί ότι οι πρώτες 

διαφορές των εικόνων, σε τέσσερις διαφορετικές διευθύνσεις, είναι Γκαουσιανές τυχαίες 

μεταβλητές με χωρικά μεταβαλλόμενη διακύμανση. Με τον τρόπο αυτό, οι διακυμάνσεις 

υλοποιούν το μηχανισμό της χωρικής μεταβλητότητας. Για να αντιμετωπιστεί το ζήτημα της 

υπερ-παραμετροποίησης αυτού του μοντέλου, οι χωρικά μεταβαλλόμενες διακυμάνσεις 

θεωρούνται τυχαίες μεταβλητές (όχι παράμετροι) που ακολουθούν μια κοινή κατανομή 
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Γάμμα. Για την εκπαίδευση του μοντέλου και την εκτίμηση της εικόνας προτείνονται δύο 

επαναληπτικοί αλγόριθμοι. Ο ένας βασίζεται στην αρχή της maximum a posteriori (MAP) 

εκτίμησης και υπολογίζει άμεσα και την εικόνα και τις χωρικά μεταβαλλόμενες 

διακυμάνσεις. Ο άλλος είναι ένας Μπεϋζιανός αλγόριθμος που βασίζεται στην 

περιθωριοποίηση των ενδιάμεσων «κρυμμένων» μεταβλητών. 

Στη συνέχεια, προτείνεται μια νέα Μπεϋζιανή προσέγγιση για ανόρθωση εικόνων στην οποία 

χρησιμοποιείται μια εκ των προτέρων κατανομή για την εικόνα η οποία έχει μορφή 

γινομένου. Παρουσιάζεται μια μεθοδολογία που ξεπερνά τη δυσκολία της εκτίμησης της 

σταθεράς κανονικοποίησης των κατανομών τύπου γινομένου και βασίζεται σε μια variational 

προσέγγιση με περιορισμούς (constrained variational approximation). Με τον τρόπο αυτό 

αποφεύγεται η χρήση μη κανονικοποιημένων (improper) κατανομών και όλες οι παράμετροι 

του μοντέλου εκτιμώνται από τα δεδομένα.  

Ως επόμενο βήμα, προτείνεται μια επέκταση της total-variation (TV) εκ των προτέρων 

κατανομής για την εικόνα μέσω της εισαγωγής χωρικά μεταβαλλόμενων παραμέτρων 

κανονικοποίησης. Για την αποφυγή της υπερ-παραμετροποίησης, επιβάλλουμε μια Γάμμα 

κατανομή για τις χωρικά μεταβαλλόμενες παραμέτρους των τοπικών TV κατανομών. 

Επιπλέον, χρησιμοποιούμε την κατανομή αυτή σε μορφή γινομένου. Αν περιθωριοποιηθούν 

οι ενδιάμεσες μεταβλητές, η συνάρτηση πυκνότητας πιθανότητας που προκύπτει έχει μορφή 

όμοια με της Student's-t κατανομής και την ονομάζουμε Γενικευμένη Student's-t. Για το 

παραπάνω στοχαστικό μοντέλο προτείνεται μια Μπεϋζιανή μεθοδολογία για την εκτίμηση 

της εικόνας και των παραμέτρων του μοντέλου. 

Τέλος, παρουσιάζεται μια νέα προσέγγιση στο πρόβλημα της υπερ-ανάλυσης εικόνων, 

χρησιμοποιώντας για πρώτη φορά μια ιεραρχική χωρικά προσαρμοζόμενη εκ των προτέρων 

κατανομή. Το γεγονός αυτό οδηγεί σε ανακατασκευασμένες εικόνες υψηλής ανάλυσης χωρίς 

ομαλοποιημένες ακμές ή ringing artifacts στην γειτονιά των ακμών. Μια άλλη συνεισφορά 

στο πρόβλημα της υπερ-ανάλυσης είναι ένας καινοτόμος αλγόριθμος ανακατασκευής δύο 

σταδίων. Το πρώτο στάδιο του αλγορίθμου είναι ένα βήμα προ-επεξεργασίας όπου γίνεται 

υπέρθεση (registration) μεταξύ των εικόνων χαμηλής ανάλυσης. Οι προκύπτουσες εικόνες 

χρησιμοποιούνται στη συνέχεια από έναν επαναληπτικό αλγόριθμο που ταυτόχρονα 

ανακατασκευάζει την εικόνα υψηλής ανάλυσης και βρίσκει τις παραμέτρους της υπέρθεσης.
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1.1. Image restoration and super-resolution 

1.2. Imaging model for image restoration 

1.3. Image restoration: an ill-posed problem 

1.4. Regularization in image restoration 

1.5. Super-resolution: reconstructing a high-resolution image from low-resolution images 

1.6. Thesis contribution 

 

1.1 Image restoration and super-sesolution 

Digital image restoration is the problem of estimating the original scene of a digital image 

given a degraded version of it. It is a problem with a long history and emerged when the first 

imaging systems appeared. The imperfections of the imaging systems and the artifacts that are 

created when the images are produced motivated the study of methods to restore degraded 

images. Restoration can be applied to both analog and digital systems. However, the 

development of digital imaging systems has made digital image restoration more popular than 

the analog and provoked even more research for this field. 

Applications of image restoration are numerous. For example, astronomical images from 

spacecrafts and telescopes are usually degraded due to atmospheric turbulence and imperfect 

optics. Photography is another field where image restoration can be useful when the focus is 

not good or there is motion. Also, because image restoration is strongly related to image 

reconstruction (where the observations are multiple projections of the image), advances in the 

first area lead to improvements in the latter. Magnetic Resonance Imaging (MRI), f-MRI, 

Positron Emission Tomography (PET) and super-resolution are examples of imaging 

modalities where reconstruction is the goal. 
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Super-resolution is the problem of reconstructing a high-resolution image from low-resolution 

images of the same scene. The desire for images with high resolution without the cost of 

using expensive optical imaging systems has led to the development of image processing 

techniques that produce a high-resolution image from multiple under-sampled images of the 

same scene, taken with cheaper optical systems. The key idea of super-resolution is to fuse in 

one image the information included in multiple low-resolution images. Reconstruction 

techniques for high-resolution images are very similar to image restoration methodologies. 

Thus, development of efficient restoration algorithms provides automatically efficient super-

resolution algorithms. For this reason, in this dissertation we deal with these problems in 

parallel. 

More specifically, image restoration and super-resolution problems are formulated using the 

linear equation 

g = Hf + n , 

where g  are the observations f  is the original image and n  is the noise. In image restoration 

H  is the blurring operator that blurs the image [5]. In super-resolution it is the operator that 

produces the degraded low-resolution observations g , [105]. In tomographic reconstruction 

(or computed tomography, CT), the matrix H  is the Radon transfom operator [7] and g  are 

the projections that the image is reconstructed from. 

In this dissertation we deal with the restoration and super-resolution problems and in the next 

sections we present an introduction of these problems. Techniques for image restoration make 

use of models for the degradation mechanism (imaging models) as well as for the images. The 

assumption of a particular image model corresponds to introduction of prior knowledge of the 

image structure. This prior knowledge is also needed for super-resolution. Thus, realistic and 

efficient image models for the restoration problem can also be adapted and applied to super-

resolution. Of course, super-resolution is a different problem because there are different 

parameters in the imaging model that have to be estimated along with the reconstruction of 

the high-resolution image. 

  

1.2    Imaging model for image restoration 
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Degradation of images is usually caused by two successive operations [1]. The first operation 

is a spatial degradation which is caused from various factors, i.e. atmospheric turbulence, out 

of focus camera and/or motion. The result is a blurred version of the original scene. The 

second operation is a point degradation according to which noise affects the individual pixel 

gray level. This is caused by various types of noise (shot, thermal) in the detector systems and 

errors in the recording process due to quantization.  

In this dissertation we will assume, as in many other works, space-invariant blurring and 

additive white Gaussian noise (AWG). Thus, formally, the imaging model is linear and for 

pixel ( ),i j  it is given by: 

( ) ( ) ( ) ( )
1 1

, , , ,
N N

k l
g i j h i k j l f k l n i j

= =

= − − +∑∑ , 

which can also be written as: 

g = h**f + n .              (1.1) 

The observed image g , is an N N×  matrix, and is produced first by a convolution of the 

original image f , also an N N×  matrix, with a linear shift-invariant (LSI) low-pass filter h . 

This is also called the point spread function (PSF), since it spreads an impulse to many pixels, 

and models the spatial degradation mechanism. The operation denoted by **  is the two-

dimensional convolution. Then, AWG noise is added, represented by the vector n , for which 

it is assumed that ( )1~ ,N β −n 0 I  where 0  and I  are the N N×  zero and identity matrices 

respectively. The noise variance β  is assumed unknown, in contrast to the PSF h , which will 

be assumed known in this dissertation. 

 To use a more convenient notation we express the convolution as a matrix-vector 

multiplication of the 2 2N N×  matrix H  (representing a linear convolution operator) by the 

vector h . The equivalent equation is:  

g = Hf + n ,       (1.2) 

where ,g f  and n  denote 2 1N ×  vectors ordered lexicographically.  

Due to the spatially invariant nature of the PSF, the matrix H  is block-Toeplitz. However, in 

order to make the multiplication of the matrix with a vector fast, we approximate it by a block 

circulant matrix [1]. The larger the dimension N is, the better the approximation becomes 
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[68]. The use of this approximation is the same with the assumption that the convolution in 

Eq. (1.1) is circular. However, one can avoid the approximation by padding the vectors in the 

convolution with zeros, and convert any linear convolution to a circular one. The padding will 

result in a different block-circulant matrix, but will abolish the approximation. 

Padding or not, the block-circulant matrix H  is formed as follows: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

0 1 1
1 0 1

1 2 0

H H N H
H H H N

H N H N H

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

H

"
"

# # % #
"

, 

where each sub-matrix is a circulant matrix, formed by h (padded or  not), the LSI filter: 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

,0 , 1 ,1
,1 ,0 , 1

, 1 , 2 ,0

h i h i N h i
h i h i h i N

H i

h i N h i N h i

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

"
"

# # % #
"

. 

The circulant form leads to more tractable equations and an easy to handle model in the 

discrete Fourier transform (DFT) domain. This is because the eigenvalues of all circulant 

matrices are obtained by the DFT of the filter h  [1]. In other words, the eigenvectors of 

circulant matrices correspond to the complex exponentials basis functions of the DFT. 

Precisely, a circulant N N×  matrix A  is diagonalized as follows: 

1N − -1A = WΛW  

where Λ  is diagonal with elements (the eigenvalues of A ) the DFT coefficients of the filter 

that corresponds to this matrix. Also, 1/2N − W  is the DFT operator matrix and 1/2 1N − −W  its 

inverse [1]. In the case of a block circulant matrix the same equations hold. The only 

difference is that instead of the one-dimensional DFT transform, two-dimensional DFT is 

used. In this dissertation the notation that will be used for simplicity is one-dimensional. 

 

1.3   Image restoration: an ill-posed problem 
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Given the imaging model, we are faced with the problem of estimating the original image f, 

denoted by f̂ , from the degraded observation g . Inverse filtering using the degradation 

matrix H  is the most direct but naive way for restoration: 

1ˆ −=f H g . 

In the DFT domain, using the diagonalization of the previous section we get: 

1 1 1 1 -1 -1 11ˆ ˆ ˆ ˆ
h h hN

− − − − −= ⇒ = ⇒ = ⇒ =f H g f WΛ W g W f Λ W g F Λ G , 

where, hΛ  is a diagonal matrix with the eigenvalues of H  (the DFT coefficients of h ), and 

ˆ ,F G  are the images in the DFT domain. According to the imaging model, noise has been 

added to the observed image, so using Eq.(1.2) the estimated image will be: 

1ˆ −= +f f H n .        (1.3) 

Therefore, because of the ill-conditioned nature of H, the noise in the estimated image will be 

greatly amplified. To make this clearer, Eq. (1.3) can be written in the frequency domain: 

( ) ( ) ( ) ( )ˆ , 1...
( , ) ( , )h h

i i
i i i N

i i i i
= = + =

G N
F F

Λ Λ
,                           (1.4) 

where F  and N  are the DFT of the image and noise vectors respectively. Notice that the 

eigenvalues ( , )h i iΛ  must not be zero for the inversion to be possible. However, a disastrous 

but usual situation appears when large levels of noise correspond to high frequencies, in 

which case the eigenvalues ( , )h i iΛ  are close to zero. This results in restored images that 

contain amplified high frequency noise. 

The direct estimate of the image through inverse filtering of the observations using H  leads 

to noise amplification. In Figure 1.1(c) the result of this operation to the degraded image of 

Figure 1.1(b) is illustrated. In the literature, inverse problems similar to this are called “ill-

posed”. Loosely speaking, this means that small changes to the observed data can cause very 

large changes to the estimated solution, or in the worst case the original data cannot be 

recovered (restored in our case), even in the absence of noise (i.e. H is not invertible). In order 

to ameliorate the difficulties of ill-posed problems, the theory of regularization has been 

introduced which converts an ill-posed problem to a well-posed [1], [127]. This is achieved 

by constraining the set of admissible solutions using a priori knowledge about the image. The 
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quality of the solution depends highly on the regularization mechanism that the image model 

provides. This is why the image model must be accurate and realistic in order to obtain 

solutions as close as possible to the original image. 

 

 (a)  (b) 

 

(c) 

Figure 1.1 (a) ‘Lena’ original image, (b) degraded image and (c) the result of direct inverse 

filtering to the degraded image (without regularization). 

 

1.4 Regularization in image restoration 

1.4.1 Stochastic regularization 

Let us now present a method to enforce regularization to the solution of the restoration 

problem. According to this, a regularized estimate of the image is the linear minimum mean 



 7

square error (LMMSE) estimate [1]. This is based on second order statistics of the image and 

noise. More specifically, let E ⎡ ⎤= ⎣ ⎦
T

ffR ff  and E ⎡ ⎤= ⎣ ⎦
T

nnR nn  (where [ ]E ⋅  is the expectation 

operator) the image and noise covariances, respectively. The covariances can be estimted 

from the degraded image for ffR  and from a flat region of the image for nnR . The LMMSE 

estimate which is also called Wiener filter [1] minimizes the expectation: 

{ }2

ˆ
ˆmin E ⎡ ⎤

⎢ ⎥⎣ ⎦f
f - f . 

Thus, the estimated image is given by: 

( ) 1ˆ −
= T T

ff ff nnf R H H R H + R g .                      (1.5) 

In this case the inversion is better conditioned, and the ill-posed problem is avoided. This can 

be better seen in the case where the noise has simple covariance and it is circulant: 

2 1 2σ σ−= =nnR I W IW . 

Thus, the power spectrum nnS  is easily computed: 

( ) 2 , 1,...,i i Nσ= =nnS . 

If the process is assumed zero mean, the covariance equals to the correlation matrix. Also, if 

the covariance matrix is assumed circulant, the equivalent of Eq. (1.5) in the DFT domain is 

expressed as: 

( ) ( ) ( )
( )

( )
*

2 2

,ˆ , 1,...,
( , )

h

h

i i i
i i i N

i i i σ
= =

+
ff

ff

S Λ
F G

Λ S
,                            (1.6) 

where ( )S iff  is the power spectrum of the image [1]. The quantity that multiplies the 

observed image ( )iG  to obtain the restored ( )ˆ iF  is the inverse filter. This filter does not 

amplify the noise because there are small values in the high frequencies. In this way, a 

regularized solution is obtained.  

This convenient formulation in the DFT domain is possible because the image and the noise 

covariances were assumed circulant, or in other words, they represent stationary processes. 

The main benefit of a stationary model is the ease of solution in the DFT domain. 

Unfortunately, these models usually cannot describe efficiently the real world phenomena.  
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1.4.2 Deterministic regularization 

At this point we present how deterministic regularization can be used to solve ill-posed 

problems. In deterministic approaches the criterion used to find the restored image is the 

minimization of the Euclidian norm:  

2

2
g - Hf . 

However, this alone yields the pseudo-inverse solution  

( ) 1ˆ T T−
=f H H H g ,  

which is ill-posed [127].  To ameliorate this situation, Tikhonov regularization can be used 

with an addition of a penalty (regularization) term [127]: 

{ }2 2

2 2
min a+

f
g - Hf Qf .                (1.7) 

The regularization parameter a  is a scalar and Q  is a N N×  matrix. The penalty term tries to 

bias the solution obtained by minimizing the first norm, towards to a different solution, which 

is constrained to have some properties common in images. In most cases this property is that 

the image must have small energy at high-frequencies and thus be rather smooth [59].  The 

Laplacian operator could be used as the regularization matrix Q.  Using one-dimensional 

notation, it is given by  

2 1 0 1
1 2 1 0

0 1 2 0

1 0 1 2

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

Q

"
"
"

# # # % #
"

. 

Application of this operator to each pixel yields: 

[ ] [ ] [ ] [ ] [ ]' 1 2 1 , 1,...,i i i i i i N= = − − + − + =Qf f f f f .                 (1.8) 

Circularity implies that: [ ] [ ] [ ] [ ]1 , 1 1N N− = + =f f f f  and it is assumed for the same reasons 

as in the case of the PSF operator H and the covariance matrices ffR  and nnR . If Q is viewed 

as a filter, its frequency response is ( ) ( )2 1 cosQ w w= − , which is clearly a high-pass filter.  
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Bounding the term [ ]iQf  given by Eq. (1.8) to take small values, imposes that neighboring 

pixels of the image must have similar values. From a mathematical point of view, the 

Laplacian operator is the discrete analogous of the second derivative operation. Thus, 

introducing this derivative as a penalty term automatically constrains the restored image to 

have bounded discontinuities. The solution of the minimization problem of Eq. (1.7) is 

obtained as: 

( ) 1ˆ a
−

= T T Tf H H + Q Q H g .                      (1.9) 

Due to the properties of circulant matrices, Eq. (1.9) can be written in the DFT domain as: 

( ) ( )
( ) ( )

( )
( ) ( )

( ) ( )
( )

2 **

2 22 2

, ,,ˆ , 1,...,
, , , ,

i i i ii i
i i i i N

i i a i i i i i i a

−

−= = =
+ +

hh Q

h hQ Q

Λ ΛΛ
F G G

Λ Λ Λ Λ
. 

It is very interesting to notice that Eq. (1.6) is identical to the above equation if the inverse 

image covariance equals to TQ Q , or setting the inverse of the image power spectrum equal to 

the Laplacian operator’s inverse eigenvalues: 

( ) ( ) 1, , 1,...,i i i i N−= =ff cS Λ . 

From this relation the close connection between stochastic and deterministic approaches 

becomes obvious. More specifically, the deterministic method can be derived from a 

corresponding stochastic, by incorporating a prior for the image, based on the simultaneously 

auto-regressive (SAR) prediction model [94]: 

( ) 21
1 2

1exp
2

p Z a− ⎧ ⎫= −⎨ ⎬
⎩ ⎭

f Qf , 

and following the maximum a posteriori (MAP) approach. Due to the additive Gaussian noise 

in the degradation model, the conditional distribution of the observed image is: 

( ) 21
2 2 2

1| exp
2

p Z
σ

− ⎧ ⎫= −⎨ ⎬
⎩ ⎭

g f g - Hf . 

In the above equations, 1Z  and 2Z  are normalizing constants. According to Bayes’ rule the 

posterior distribution is: 
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( ) ( ) ( )
( )

|
|

p p
p

p
=

g f f
f g

g
, 

where ( )p g  is the marginal distribution of g . It is very convenient to estimate the image by 

the mode of this density and obtain the maximum a posteriori (MAP) estimation: 

( ) ( ) ( )ˆ max | max |MAP arg p arg p p= =
f f

f f g g f f . 

This is equivalent to minimizing the negative log-likelihood of the posterior: 

( ) ( ){ } 2 2
2 2 2

1ˆ min log | minMAP arg p p arg a
σ
⎧ ⎫= − = +⎨ ⎬
⎩ ⎭f f

f g f f g - Hf Qf . 

The variance parameters can be merged to one, since this has no effect to the solution: 

 { }2 2

2 2
ˆ arg minMAP a′= +

f
f g - Hf Qf ,                                  (1.10) 

where 2'a aσ= . This equation is identical to Eq. (1.7). This demonstrates that regularization 

in a stochastic framework is achieved with the introduction of an image prior. 

 

1.4.3 Estimation of the regularization parameter 

Various ways for estimation of the regularization parameter a  have been proposed in [59]. 

The simultaneously auto-regressive (SAR) model provides a way to obtain a regularized 

solution for the restoration problem [59],  [94], [58] and [92]. Using this model the image and 

the regularization parameter can be estimated in the maximum likelihood framework utilizing 

the expectation-maximization EM algorithm, described in Chapter 2. In this way, the 

parameter is estimated in a rigorous manner. 

As it has been shown above, independently of the use of a deterministic or stochastic method, 

the parameter a  controls the tradeoff between the data fidelity term 2

2
g - Hf  and the 

regularization term 2

2
Qf . Thus, large values of a  give over-regularized images with over-

smoothed edges, and small values of a  leads to under-regularized solutions with amplified 

noise, especially in flat areas. This is illustrated in Figure 1.2, where in Figure 1.2.(c) the 

over-regularized restored image is shown for large a  and in  Figure 1.2.(d) the under-

regularized restored image with small a . It is obvious that in the over-regularized image, the 
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noise has been suppressed, but unfortunately the same holds for the edges. In the under-

regularized case the edges has been preserved but with the disadvantage of noise 

amplification in the smooth areas. The best value of a  lies between these two extremes. In 

Figure 1.2.(e) the restored image with average a  is shown.  In view of this, it would be 

desirable for a restoration filter to be spatially adaptive: more regularization in smooth areas 

of the image and less at the edges. One of the goals of this dissertation is to develop spatially 

adaptive regularization algorithms.  

 (a)  (b) 

 (c)  (d) 

 (e)  

Figure 1.2  (a) ‘Lena’ original image, (b) degraded image, (c) over-regularized restored 
image, (d) under-regularized restored image and (e) restored image with average 

regularization. 
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1.5 Super-resolution: reconstructing a high-resolution image from low-resolution images 

Super-resolution is the problem of reconstructing a high-resolution image from low-resolution 

images of the same scene ([105], [48] and [32]). The key idea of super-resolution is to fuse in 

one image with higher resolution the information included in the multiple low-resolution 

images. For that, it is required that sub-pixel motion exists between the low-resolution images 

so as to avoid a redundancy of the information contained in them [67]. The motion can be 

translation as well as rotation. The imaging model of super-resolution incorporated in this 

dissertation assumes that the low-resolution images are translated and rotated under-sampled 

versions of a high resolution image. The problem formulation of super-resolution in this 

dissertation is similar to that of image restoration [105], in the sense that the imaging model is 

again linear and similar to that of Eq. (1.2). To present the model we denote as d the integer 

decimation factor. In other words, the imaging model assumes a high resolution image of size 

1HN × , where HN dN=  and N  is the size of the low-resolution images. Hence, P  low-

resolution images of size 1N ×  are produced by applying the HPN N×  degradation operator 

B  to the high-resolution image. Then, white Gaussian noise is added at each observation. Let 

y  be a 1PN ×  vector, containing the P low resolution images iy : 

TT T T
1 2 P⎡ ⎤= ⎣ ⎦y y y y" , 

where iy  is a 1N ×  vector, representing a low-resolution image. Using this notation, the 

observations are given by: 

( ) ( )i i i i i i iδ θ= + =y B x n DH S R x + n , 

or in one vector  

y = Bx + n , 

where x  the (unknown) original 1HN ×  high-resolution image to be estimated, B  is the 

HPN N×  degradation matrix and 
TT T T

1 2 P⎡ ⎤= ⎣ ⎦n n n n"  the 1PN ×  vector consisting of P  

1N ×  additive white noise vectors. This equation has the physical meaning that a low-

resolution image is produced by rotating, translating, blurring and decimating the original 

image x . The degradation operator B  is given by: 
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TT T
1 ,P⎡ ⎤= ⎣ ⎦B B B"  

where ( ) ( )i i i iδ θ=B DH S R  for 1,...i P= . The matrix D  is the known HN N×  decimation 

matrix. iH , 1... ,i P=  are the shift-invariant H HN N×  blurring convolutional operators, and 

( )iδS , for 1,..., ,i P=  are the H HN N×  shift-invariant shifting operators. Each iδ  is a scalar 

which represents translation. The shift-invariant operators ( )iδS  and iH  can be assumed 

circulant. As in the restoration problem, this is very useful for computational purposes 

because such matrices can be easily diagonalized in the DFT domain.  Finally, the H HN N×  

matrix ( )iθR  represents the rotation with angle iθ  of each observation relative to the 

unknown high-resolution image x . 

Super-resolution is an ill-posed inverse problem [48], in the sense that solution of  

2

2
ˆ arg min= −

x
x y Bx               (1.11) 

leads to a linear system with ill an conditioned matrix B . Inversion of this matrix amplifies 

the noise in the data, something that happens also in the image restoration. The problem is ill-

posed because of the blurring matrices iH  and the decimation matrix D . The effect of iH  is 

discussed in the previous section. The decimation matrix in the frequency domain is a low-

pass ‘sub-folding’ operator [32]. Thus, inverting both matrices leads to high-pass filtering that 

amplifies the noise. 

As in image restoration, the problem of super-resolution can be converted to a well-posed. 

This is achieved by constraining the solution of Eq. (1.11) by adding a penalty term, for 

example the Tikhonov regularization term [127]:  

( )2 2

2 2
ˆ arg min a= − +

x
x y Bx Qx . 

where Q  is the high-pass Laplacian operator. This method can be viewed from a Bayesian 

perspective as assuming a SAR image prior [133]. Of course, there are other methodologies 

applying different regularization criteria. The result of this algorithm is shown in Figure 1.3. 

This makes super-resolution and image restoration related problems, since the regularization 

criteria are applicable to both. For that reason, in this dissertation the two problems are 

considered in parallel since the image priors proposed in the literature for the restoration 
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problem are also applied to super-resolution. However, the difficulty of estimating the 

registration parameters in super-resolution model makes the latter a more challenging task. 

 

 (a)  (b) 

 (c)  (d) 

 (e) 

Figure 1.3 (a)-(d) Low resolution observations, (e) 2x super-resolved image regularized under 

the SAR image model [133]. 
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1.6 Thesis contribution  

The image restoration and super-resolution problems can be treated in the Bayesian 

framework, in order to convert both ill-posed inverse problems to well-posed. In a stochastic 

framework, regularization of the solution is achieved by defining an image prior 

( ) ( ){ }expp aC∝ −f f  and taking the maximum a posteriori (MAP) solution using Bayes’ 

rule: 

( ){ } ( ) ( ){ } ( ){ }2

2
ˆ min log | min log | minarg p arg p p arg Caβ= − = − = +

f f f
f f g g f f g - Hf f , 

where ( )C f  is a function that works as a constraint to the solution. From a Bayesian 

perspective, using ( )p f  we incorporate prior knowledge for the image and we constrain the 

solution to follow some specific properties common in real word images, such as large 

smooth areas and few edges. Consequently, a realistic image prior should be non-stationary in 

order to adapt to the image local characteristics; for example, large variances at edges and 

small at smooth areas. In regularization terms, this means that this type of prior leads to 

spatially adaptive regularization. 

The contribution of this dissertation is the development of stochastic non-stationary image 

models as image priors ( )p f  needed for regularization in the restoration and super-resolution 

problems. The proposed non-stationary image models lead to spatially adaptive 

regularization, or in other words, non-uniform regularization along the image which depends 

on the local spatial activity. Furthermore, working in the stochastic framework we employ the 

Bayesian methodology to solve these inverse problems and in parallel to estimate the model 

parameters. Thus, development of Bayesian restoration and reconstruction algorithms is 

another contribution of this dissertation. It must be noted here that, according to the Bayesian 

methodology, the image is inferred, which means that a distribution is obtained for it and not 

just a single point estimate as in the MAP approach. This implies that the image is treated as a 

random variable rather than a parameter. 

In Chapter 2 we present the variational Bayesian (VB) methodology for approximate 

inference that is used in this dissertation. Inference means computing the posterior 

distribution of the model’s hidden random variables. To make that clear, the term ‘hidden’ is 
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analyzed extensively. Also, the expectation-maximization (EM) algorithm is presented as a 

special case of the variational methodology, where the inference is exact.  

In Chapter 3 we provide a survey of state-of-the-art spatially adaptive restoration methods and 

pinpoint some properties and similarities between them. More specifically, it is pointed out 

that the EM algorithm is a special case of the majorization-minimization (MM) class of 

optimization algorithms, and this explains the fact that stochastic and deterministic methods 

that employ the EM and the MM algorithms respectively, happen to provide very similar 

restoration algorithms. To demonstrate this connection, example restoration algorithms are 

given. Half-quadratic regularization is also presented, which also coincides, under some 

specific circumstances, with the EM and MM algorithms. 

 In Chapter 4 we introduce a new hierarchical (two-level) Gaussian non-stationary image 

prior, as a natural extension of the SAR model presented in section 1.4.  This prior assumes 

that the residuals of the first order differences of the image, in four different directions, are 

Gaussian random variables with zero mean and variance that is spatially varying. As a result, 

these local directional variances capture the image discontinuities with a continuous value 

model. In this way, the variances manifest the spatial adaptivity mechanism. In order to deal 

with the resulting over-parameterization of this model, the spatially varying variances are 

considered as random variables (not parameters) and a Gamma hyper-prior is imposed on 

them, which is conjugate to the Gaussian. The parameters of the imposed hyper-prior control 

the degree of non-stationarity of the imposed image prior. To learn this model and infer the 

image we propose two iterative algorithms. The first is based on the maximum a posteriori 

estimation (MAP) principle and computes explicitly both the image and the spatially varying 

variances in all four directions. The second is a Bayesian algorithm that marginalizes the 

“hidden variables”. It is interesting that the resulting MAP algorithm is similar with the 

algorithms proposed in [80], [84], and [78] which are based on heuristic arguments. Also, the 

marginalization of the hidden variables produces a Student’s-t distribution. Thus, the 

proposed restoration algorithms are Student’s-t based. Finally, numerical experiments are 

presented that demonstrate the superiority of the proposed algorithms with respect to other 

state-of-the-art methods [27], [26], [28].  

In Chapter 5 we propose a new Bayesian inference framework for image restoration using a 

prior in product form [24]. This prior assumes that the outputs of local high-pass filters, (their 

number is arbitrary), follow the Student’s-t distribution. This means that they are distributed 
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according to the hierarchical prior of Chapter 4.  The main contribution of this chapter is a 

Bayesian inference methodology that bypasses the difficulty of evaluating the normalization 

constant of product type priors. The methodology is based on a constrained variational 

approximation that uses the outputs of all the local high-pass filters to produce an estimate of 

the original image. More specifically, a constrained expectation step is used to capture the 

relationship of the filter outputs of the prior to the original image. In this manner the use of 

improper priors is avoided and all the parameters of the prior model are estimated from the 

data. Thus, the “trial and error” parameter “tweaking” required in state-of-the-art restoration 

algorithms (including that of Chapter 4), which makes their use difficult use for non-experts, 

is avoided. Furthermore, numerical experiments show that the proposed restoration algorithm 

provides competitive performance compared with previous methods.  In this chapter we also 

propose an efficient Lanczos-based computational framework tailored to the calculations 

required in our Bayesian algorithm. More specifically, a very large linear system Ax b=  is 

solved iteratively and the diagonal elements of a matrix 1tQ A Q−  are simultaneously estimated 

in an efficient manner [24], [25]. 

In Chapter 6 we extend the TV prior and the related work to estimate the regularization 

parameter in [8] by introducing a new prior which has a number of novel features. The 

extension of the TV prior is performed in analogous way with that used to derive the non-

stationary prior of Chapters 4 and 5. More specifically, we introduce a TV prior with spatially 

varying regularization parameters. In order to avoid the over parameterization due to the 

spatially varying nature of this prior, we introduce a Gamma hyperprior for the spatially 

adaptive regularization parameters of the local TV priors. Also, we use this prior in a product 

form, which means that we assume that the outputs of an arbitrary number of high-pass filters 

are distributed accroding to this prior. This gives two novel features to the new prior. First, it 

is explicitly spatially adaptive and thus it is better suited to capture the salient features of the 

image. Second, it is in product form and has the ability to enforce simultaneously a number of 

different properties to the image. This prior can use arbitrary linear operators, not just first 

order differences as TV. Thus, a prior similar to the one in [8] with an exactly calculated 

partition function is just a special case of it. If the hidden variables of the second layer are 

marginalized, the resulting density function has a form similar to a Student's-t distribution; 

thus, we label it as Generalized Student's-t. Due to the complexity of this model, we resort to 

the variational approximation for Bayesian inference. However, we use two modifications. 
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First, we derive a quadratic bound to the variational bound, in a manner similar to the 

methodology used in [8], to bypass the difficulties due to the non-quadratic form of the new 

prior. Second, we use the constrained variational framework in a manner similar to that 

proposed in Chapter 5 in order to bypass the problem of computing the partition function of 

the new prior. In this chapter we also suggest an iterative numerical method to compute the 

diagonal elements of very large inverse matrices that are necessary to apply the proposed 

Bayesian algorithm. This numerical method is similar in spirit to the one employed in Chapter 

5. However, it is based on conjugate-gradients and not on the Lanczos methodology, and was 

found empirically to converge faster in this application. 

 In Chapter 7 we present our contribution to the super-resolution problem. We utilize for the 

first time in the super-resolution problem the hierarchical two-level image prior presented in 

Chapters 4 and 5. Using this non-stationary prior, it is possible to reconstruct high-resolution 

images without smoothed edges or ringing artifacts in the vicinity of edges. Another 

contribution to the super-resolution problem is a novel two-step reconstruction algorithm. The 

first stage of this algorithm is a preprocessing step that approximately registers the degraded 

low-resolution observations. These “almost-registered” low-resolution observations are used 

subsequently by an iterative algorithm which simultaneously reconstructs the high-resolution 

images and finds their registration parameters. We propose this sub-optimal two-stage 

approach in order to speed up the super-resolution algorithm. Thus, the MAP functional is 

maximized based on coarse estimation of rotation and translation between image pairs. 

Furthermore, the registration sub-task is based on the Newton-Raphson (NR) algorithm that 

utilizes analytically calculated first and second order derivatives and exhibits quadratic 

convergence. Lastly, experiements with both real and synthetic data are conducted that 

demonstrate the efficacy of the proposed algorithm [29], [30]. 
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CHAPTER 2. APPROXIMATE BAYESIAN INFERENCE 

2.1. Expectation Maximization (EM) algorithm: a variational point of view 

2.2. Approximate Bayesian inference with variational bound maximization 

2.3. Constrained variational optimization 

2.4. Bayesian inference for restoration with the SAR prior model 

 

In this chapter we present the Bayesian inference methodology used to learn stochastic 

models. In statistical modeling we assume that the observed data (signals, images, etc.) are 

produced through a generation process that is modeled using statistical models. Such models 

are used in image restoration when the problem is formulated in a stochastic framework and 

the image model is included in the form of a prior distribution ( )p f . Furthermore, another 

stochastic model, represented by the distribution ( )p g | f , is assumed for the imaging model 

that produces the observed degraded image g . Thus, the stochastic model 

( , ) ( ) ( )p p p=g f g | f f  of the restoration problem is hierarchical and contains the imaging and 

the image model. Based on this joint stochastic model, the image f  is treated as random 

variable and Bayesian algorithms can be employed to infer it, i.e. to obtain a posterior 

( )p f | g . In addition, estimation of the parameters of the image model, as well as of the 

imaging model, is simultaneously performed. 

Stochastic models include parameters that should be estimated in order to fit the model to the 

observations. A very popular method to estimate these parameters is the maximum likelihood 

(ML) approach [129], defined by: 

ˆ arg max ( ; )ML p=
θ

θ y θ ,                                  (3.1) 

where y  is the vector of the observations (data generated according to the stochastic model 

mechanism), θ  is the vector consisting of the parameters and ( ; )p y θ  is the likelihood of the 
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data. It must be noted that ( ; )p y θ  is different from ( | )p y θ . In the first case, θ  are just the 

parameters of the likelihood, while in the latter case θ  are assumed random variables and y  

is conditioned on them.  

 

2.1  Expectation Maximization (EM) algorithm: a variational point of view 

A very popular and successful algorithm to obtain the ML solution is the expectation-

maximization (EM) algorithm, which maximizes the likelihood iteratively by taking 

advantage of the hidden variables in the model, see [99] and [41]. More specifically, the 

values of the observed random variables y  are the outcome of a stochastic process. Usually 

this process depends on the outcome of another preceding process that is not observed 

(hidden). The outcome of this ‘hidden’ process is represented by random variables that are 

called hidden. Thus, in this case, the generation of y  contains two levels/steps and it is 

described by the joint distribution (complete likelihood) of the hidden x  and the observed 

variables y : 

( , ) ( | ) ( )p p p=y x y x x , 

where ( )p x  is the prior distribution on the hidden variables x  and ( | )p y x  is the conditional 

distribution of the observations given x . Note that these distribution may contain parameters 

that have been omitted for brevity. The above equation shows that the data generation process 

is hierarchical and contains two steps. In the first step, the variables x  take values drawn from 

the distribution ( )p x . Then in the second step, using x , values for y  tare drawn from the 

conditional distribution ( | )p y x . 

Herein, we present the EM algorithm using its variational interpretation [10]. The EM 

algorithm exploits the existence of hidden variables an the difficult problem of direct 

optimization of ( ) ( )log ;L p=θ y θ  is transformed to convenient successive optimizations of a 

lower bound ( )( ),F q x θ , which is defined by: 

( )( ) ( ) ( ) ( )( ) ( ), || | ;F q L KL q p L= − ≤x θ θ x x y θ θ , 

where 
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( ) ( )( ) ( ) ( )
( )

| ;
|| | ; log

;
p

KL q p q d
q

= ∫
x y θ

x x y θ x x
x θ

 

is the Kullback-Leibler (KL) divergence between an arbitrary function ( )q x  and the posterior 

of the hidden ( )| ;p x y θ . Inequality holds because KL is always non-negative, and inequality 

becomes an equality when ( ) ( )| ;q p=x x y θ , i.e. when KL becomes zero. The bound 

( )( ),F q x θ  is a functional of the function ( )q x  and the parameters θ .  

The EM algorithm iterates between two steps, the expectation step (E-step) and the 

maximization step (M-step). In the E-step, maximization of F  is performed with respect to 

( )q x , and in the M-step with respect to θ . The bound is maximized with respect to ( )q x , 

when ( ) ( )| ;q p=x x y θ  and the bound becomes tight. Thus, the E-step and M-step at iteration 

( 1)t +  are 

E-step: ( ) ( )( 1) ( )| ;t tq p+ =x x y θ ,                     (2.1) 

M-step:  ( )( )( 1) ( 1)arg max ,t tF q+ +=
θ

θ x θ .                     (2.2) 

In the E-step, a posterior distribution is inferred for x , using the model parameters calculated 

from the previous iteration ( )tθ . At this point we must note that in the Bayesian inference 

methodology the hidden random variables are inferred and the parameters are estimated. In 

the M-step, the parameters θ  are updated by maximizing ( )( )( 1) ,tF q + x θ , which can be 

written as: 

( )( ) ( ) ( ) ( ) ( )( 1) ( 1) ( 1) ( 1), log | ; logt t t tF q q p d q q d+ + + += −∫ ∫x θ x x y θ x x x x . 

Using the above equation the M-Step of Eq. (2.2) can be written also as such: 

M-Step: ( )( 1) ( )arg max ;t tQ+ =
θ

θ θ θ ,  

where  ( ) ( )
( )

( | ; )
; log ( , ; ) t

t
p

Q p=
x y θ

θ θ y x θ  is the expectation of the logarithmic complete 

likelihood with respect to the posterior of the hidden given the observations. This posterior is 

given by the Bayes’ rule 
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( ) ( ) ( )
( )

( ) ( )

( , ; ) ( ; ) ( ; )( ; )
( ; ) ( ; )

t t t
t

t t

p p pp
p p

= =
y x θ y | x θ x θx | y θ
y θ y θ

.                       (2.3) 

This equation shows that, in order to apply EM, it is necessary to know explicitly the form of 

( ; )p y θ , by integrating out the hidden variables. If the function  ( )( ); tQ θ θ  is considered as a 

minorizer of the likelihood, since 

( ) ( )( ); tQ L≤θ θ θ , and ( ) ( )( ) ( ) ( );t t tQ L=θ θ θ , 

then, the EM algorithm can be considered to belong to the general class of the majorization-

minimization (MM) algorithms [85]. Hence, the iterative maximization of the minorizer 

converges to a maximum of the likelihood. In most applications, the ultimate goal is to infer 

the hidden variables.  

Note that the parameters in the posterior are considered fixed when the function ( )( ); tQ θ θ  is 

maximized in the M-step. Thus, the EM algorithm maximizes the marginal likelihood by 

incorporating the hidden variables in the iterative scheme, although they are not explicitly 

apparent in the likelihood. This leads to a more convenient optimization scheme than the 

direct optimization of the likelihood, and also to inference of the hidden variables. A 

reasonable estimate of the hidden variables may be the mode of the posterior probability: 

         ˆ max ( ; )arg p=
x

x x | y θ .                          (2.4) 

 

2.2  Approximate Bayesian inference with variational bound maximization  

In many cases, the likelihood  

( ; ) ( , ; )p p d= ∫y θ y x θ x , 

is not directly known, because the integral is intractable. Without the explicit form of the 

marginal likelihood the E-step (Eq. (2.2)) of the EM algorithm is not applicable [129]. 

However, there are cases where the integral can be calculated analytically with respect to a 

subset of the hidden variables. For example, the set of the hidden variables { }1 2,=x x x  

consists of the subsets 1x  and 2x  that are jointly distributed,  

1 2( , ) ( , , )p p=y x y x x , 
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but the double integral  

1 2 1 2( ; ) ( , , )p p d d= ∫ ∫y θ y x x x x , 

can be only evaluated with respect to 1x  or 2x , but not both simultanesouly. 

A number of approximations have been used to compute this integral, see for example [90], 

[99] and [10]. Herein, we focus on the variational methodology, according to which the 

marginal likelihood can be approximately maximized, by maximizing iteratively an 

approximate bound instead of the exact bound F  used in the EM algorithm. This can be 

achieved by altering the EM algorithm, as described in the previous section, with the 

assumption that the inferred posteriors are independent:  

( ) ( )( )1 2 1 2,q q=x x x x . 

This is the mean-field approximation [10] and makes the bound approximate: 

( ) ( ) ( ) ( )( )1 2 1 1 1 2 1 2ˆ ˆ( ), ( ), log | ; ; ( ) ( ) || , | ;F q q p p KL q q p= +x x θ y x θ x θ x x x x y θ , 

( ) ( )1 2 1 2( ), ( ), ( , ),F q q F q≈x x θ x x θ . 

The variational algorithm contains two steps. In the first step, the VE-step, the bound is 

maximized with respect to 1( )q x  and 2( )q x ,  

( )
1 2

( 1) ( 1) ( )
1 2 1 2( ), ( )

( ), ( ) arg max ( ), ( ),t t t

q q
q q F q q+ +⎡ ⎤ =⎣ ⎦ x x

x x x x θ . 

In the VM-step, the bound is maximized with respect to the parameters: 

( )( 1) ( 1) ( 1)
1 2arg max ( ), ( ),t t tF q q+ + +=

θ
θ x x θ . 

The closed form solutions for the posteriors in the VE-step are: 

( ){ }
( ){ }

( )
2

( )
2

1 2 ( )( 1)
2

1 2 1( )

exp log , , ;
( )

exp log , , ;

t

t

qt

q

p
q

p d
+

−
=

−∫
x

x

y x x θ
x

y x x θ x
, 

and 

 
( ){ }
( ){ }

( )
1

( )
1

1 2 ( )( 1)
2

1 2 2( )

exp log , , ;
( )

exp log , , ;

t

t

qt

q

p
q

p d
+

−
=

−∫
x

x

y x x θ
x

y x x θ x
. 
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where 
q

⋅  denotes the expectation with respect to an arbitrary distribution q . The VM-step 

can be written in more detail: 

( ) ( ) ( )
1 2

( 1)
1 2 ( ) ( )

arg max log , , ; t t
t

q q
p+ =

x xθ
θ y x x θ . 

This algorithm maximizes approximately the marginal likelihood with respect to the 

parameters. The approximation depends on the accuracy of the posterior independence 

assumption. The EM algorithm is a special case of the variatonal methodology, in which there 

is no approximation (for example independence assumption) and the bound is tight in the VE-

step, i.e.  

( ) ( )( 1) ( 1) ( ) ( )
1 2( ), ( ),t t t tF q q L+ + =x x θ θ . 

The result for two sets of hidden variables can be generalized for M  hidden variables 

1,..., Mx x , [10]. The updates in this case are: 

( )

( )

( )

( )

1 ( )
( 1)

1 ( )

exp log , ,..., ;
( )

exp log , ,..., ;

t
k

k i

t
k

k i

M q
t

i

M iq

p
q

p d

≠

≠

+

⎧ ⎫⎪ ⎪−⎨ ⎬∏⎪ ⎪⎩ ⎭=
⎧ ⎫⎪ ⎪−⎨ ⎬∏⎪ ⎪⎩ ⎭

∫

x

x

y x x θ
x

y x x θ x
, 

( ) ( )
( 1)

1 ( )
arg max log , ,..., ; t

k
k

t
M q

p+ =
∏ xθ

θ y x x θ . 

 

2.3  Constrained variational optimization 

There are cases where it is convenient to have functions ( ; )i iq λx  , 1,...,i M= , in a particular 

parametric form (e.g. Gaussian) with parameters iλ . Doing this, we constrain the inferred 

posteriors to follow the form of these functions. In this way, the parameters iλ  of the 

approximate posteriors are amenable to estimation. In this case, in the VE-step the 

maximization is performed with respect to the parameters iλ  instead of the function ( )iq x . 

Also, this methodology leads to closed form updates in the VB algorithm that work as 

constraints to the approximate posteriors. 
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2.4  Bayesian inference for restoration with the SAR prior model 

At this point, it is interesting to present the EM algorithm as an example, that is employed to 

solve the SAR prediction model [94] for the restoration problem. Under this, the image is 

assumed as the hidden variable f  of the model with Gaussian prior: 

( )
1

22
2

1exp
2

N

p a a
− ⎧ ⎫∝ −⎨ ⎬

⎩ ⎭
f Qf , 

where a  is the precision (inverse variance) of the Gaussian, and Q  is the Laplacian operator. 

The observation is the degraded image g  with conditional  

( ) 22
2

| exp
2

N

p ββ ⎧ ⎫= −⎨ ⎬
⎩ ⎭

g f g - Hf , 

where β  is the precision of the Gaussian noise distribution. 

The EM algorithm performs i) the inference of the posterior of the image (E-step) and ii) 

estimation of the parameters (M-Step). Thus, the E-step update at iteration t is given by: 

( ) ( ) ( ) ( )
( ) ( )( )1( ) ( ) ( )|

|t t tp p
q p N

p
−

= = =
g f f

f f g m , C
g

. 

This result shows that the posterior is a Normal distribution with mean ( ) ( ) ( )t t t Tβ=m C H g  and 

covariance ( ) 1( ) ( ) ( )t t T t Taβ
−

= +C H H Q Q .  

In the M-step the parameters ( )ta  and ( )tβ  are estimated by maximizing the expectation of the 

complete likelihood with respect to the posterior:  

[ ]
( ) ( ) ( )( )

( ) ( )

,
, max | t

t t
qa

a arg p p
β

β⎡ ⎤ =⎣ ⎦ f
g f f  

This results in the following the updates: 

{ }
( )

( )
t

t T

N
trace

β =
C H H

, and 
{ }

( )
( )

t
t T

Na
trace

=
C Q Q

. 

The traces of the matrices can be calculated conveniently in the DFT domain. When the 

algorithm converges, the restored image is taken to be the mean m  of the posterior ( )|p f g . 
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Finally, note that the similarity between the linear equation solved to obtain ( )tm  in the E-step 

and that of Eq. (1.9) obtained in a deterministic framework is obvious. 
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CHAPTER 3. SPATIALLY ADAPTIVE IMAGE 

RESTORATION  

3.1. Visibility based non-stationary restoration 

3.2. Half-quadratic regularization 

3.3. Markov Random Fields 

3.4 Total-variation regularization 

3.5. Regularization in the Wavelet Domain 

3.6. Other image priors 

3.7. Super-resolution methods 

3.8. Conclusions 

 

In this chapter, we review the literature and the efforts for development of realistic image 

models and methods for adaptive regularization that preserves edges and also eliminates noise 

in smooth image areas. The methods that have been proposed are based either on a stochastic 

or a deterministic formulations. It must be noted here that the deterministic formulation is 

equivalent to the stochastic, because, as it was shown in section 1.4, the roughness penalty of 

the image in the deterministic framework can be interpreted in a stochastic framework as the 

assignment of a particular image prior. However, the stochastic formulation offers the great 

advantage of a rigorous way to estimate the model parameters. An example of this is the EM 

algorithm that solves the simultaneously auto-regressive (SAR) prediction model [94] 

presented in section 1.4.3. However, the SAR model is not a spatially adaptive and cannot 

model efficiently the image local characteristics.  

First, in section 3.1 we present a heuristic method for adaptive regularization. Then, a very 

popular methodology for deterministic regularization will be presented in section 3.2 which is 
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the half-quadratic regularization methodology. Markov-random fields (MRFs) are also very 

popular for probabilistic image modeling and they have been applied successfully in image 

restoration, as we will see in section 3.3. TV-based regularization is also a very successful and 

popular methodology and it is presented in 3.4. In section 3.5 regularization methods in the 

wavelet domain are presented. Lastly, conclusions and remarks about the similarities and 

differences of the reviewed methodologies are given, as well as their merits and drawbacks. 

 

3.1  Visibility based non-stationary restoration 

In [1] a measure of spatial detail is defined by a noise masking function ( )( )M if  at pixel i  

which depends on f . The visibility function ( )v i  which expresses the relationship between 

the noise visibility and the masking function, , is defined experimentally. In [76] the masking 

function is set to be the local variance of the pixel and according to [1] the visibility function 

v  is defined as: 

( ) ( )
1 , 1,..., ,

1
i i N

M i
ν

θ
= =

+
 

where θ  is a scale parameter that depends on the image. This function goes to zero when the 

local variance goes to infinity (pixel belongs to an edge) and to one when the variance is close 

to zero (pixel belongs to a smooth region). Finally, as a result of an extended analysis [76] in 

contrast to Euclidean norm as in Eq. (1.7), a weighted norm is introduced for the penalty term: 

a a= T T
Λ

Qf f Q ΛQf , 

where Λ  is a N N×  diagonal matrix with elements: ( ) ( )2, ,i i v i=Λ  1,...,i N= . The matrix 

Q  is recommended to be a high-pass filter and the example of the p-th order (discrete) 

derivative operator is given, for example for 2p =  it is the Laplacian operator.  

The resulting linear system ( ) ˆa =T T TH H + Q ΛQ f H g  is solved iteratively with a constraint 

gradient descent algorithm. Also, the visibility function is evaluated using the restored image. 

This leads to an iterative scheme of estimatiing the image f  and the elements of  Λ : 

( ) 1( 1) ( )t ta
−+ = T T Tf H H + Q Λ Q H g , 
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( ) ( )( )
( 1)

( 1)

1,
1

t
t

i i
M iθ

+
+

=
+

Λ
f

. 

Notice now that the restoration filter in a sense “adapts” to the image spatially via the 

different diagonal elements of Λ , which depend on the local characteristics of the image. The 

main drawback of this method is that its parameters a  and θ  must be specified in advance. 

Katsaggelos and Kang [82] proposed a similar methodology, with the estimation of the 

regularization parameter being a part of the restoration algorithm. They also incorporated 

spatial adaptivity for the data fidelity term, which corresponds to the noise, and the resulting 

iteration was  

( ) 1( 1) ( ) ( )
1

t t ta
−+ = T T Tf H Λ H + Q Λ Q H g , 

where now ( )
1
tΛ  is also a diagonal matrix that adapts to the noise local characteristics. Lastly, 

they provided an alternative method to estimate the diagonal matrices in every iteration. 

 

3.2  Half-Quadratic Regularization  

Half-quadratic (HQ) regularization has been developed with the goal to provide an edge-

preserving restoration method. Herein, we follow the demonstration of the HQ metodology in 

[62] and [31]. According to that, the image is estimated by minimizing a function analogous 

to the one in Eq. (1.10). The estimate is given by minimization of a non-quadratic function: 

( ){ }1
ˆ minarg J=

f
f f ,           (3.1) 

where ( ) ( )2
1 2

J aJ= +f g - Hf f  and ( )J f  is a function of f  that enforces a regularized 

solution. In the MAP approach this implies the prior for the image to be 

( ) ( )exp{ }ap J∝ −f f . ( )J f  is computed as: 

( ) [ ]( ) ( )
1

N

x yi i
i

J ϕ ϕ
=

⎡ ⎤= + ⎣ ⎦∑f D f D f ,                       (3.2) 

where xD  and yD  are the horizontal and vertical difference operators. Thus, [ ]x i
D f  and 

y i
⎡ ⎤⎣ ⎦D f  are the horizontal and vertical difference of the image at location i . The function 
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( )tϕ  is called the potential function and is specified to penalize the gradient of the image and 

simultaneously to preserve the edges. In [31] necessary conditions about ( )tϕ  are given in 

order for the minimizater of ( )1J f  (Eq. (3.2)) to converge and in addition to provide an image 

where the edges are preserved. 

To make the half-quadratic regularization mechanism clear, we follow the demonstration of it 

in [31]. We first write the gradient  

( ) ( ) ( )( )1
T T T T

x x x y y yaJ = − − +∇ f H Hf H g D B f D D B f D f , 

where ( )xB f  and  ( )yB f  are diagonal matrices that depend on f  and their elements are 

given by 

( )( )
[ ]( )
[ ]

,
2

x i
x

x i

i i
ϕ′

=
D f

B f
D f

 and ( )( )
( )

,
2

y i
y

y i

i i
ϕ′ ⎡ ⎤⎣ ⎦=

⎡ ⎤⎣ ⎦

D f
B f

D f
. 

Finding the minimum by setting the gradient equal to zero ( ( )J =∇ f 0 ) leads to a non-linear 

equation. However, at the minimum minf  it holds that 

( ) ( )( )( ) 1

min min min
T T T T

x x x y y ya
−

= + +f H H D B f D D B f D H g . 

Based on this result, by fixing the matrices  xB  and  yB  ingoring their dependence on f , the 

following iterative scheme can be applied 

( ) ( )( )( ) 1
( 1) ( ) ( )t T T t T t T

x x x y y ya
−

+ = + +f H H D B f D D B f D H g ,                     (3.3) 

where ( )( )t
xB f  and ( )( )t

yB f  are the matrices formed using the image estimate ( )tf  of the 

previous iteration t . Note that the above equation is linear and the non-quadratic 

minimization problem turns into successive quadratic problems. What remains is to prove that 

this algorithm converges to a solution of problem (3.1). To do this, in [31] an “augmented” 

function of 1J  is introduced, using the function ( )* , ,x yJ f b b , where ,x yb b  are vectors of the 

auxiliary variables ( ) ( ),x yb i b i , 1,...,i N=  introduced to “augment” the function ( )J f . The 

exact form of  ( )* , ,x yJ f b b  depends on the form of ( )tϕ  and it is not presented here for the 
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moment. It has been shown that ( )* , ,x yJ f b b  shares the same minimum with ( )J f ; thus, 

minimization of the latter leads to minimization of the former. The steps for the iterative 

minimization algorithm of ( )* , ,x yJ f b b  are 

( ) ( )( ) 1( ) ( )( 1) * ( ) ( ) ( 1)arg min , ,
t tt t t t T T T T

x x x x x y y yaJ
−

+ += ⇒ = + +
f

f f b b f H H D B D D B D H g ,  (3.4) 

( )( 1) ( 1) * ( 1), , ,t t t
x y x yJ+ + +⎡ ⎤ = ⇒⎣ ⎦b b f b b  

( )
( )( )

( 1)
( )2

t
x it

x t
x i

b i
ϕ

+
′ ⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

D f

D f
 and ( )

( )( )

( 1)
( )2

t
y it

y t
y i

b i
ϕ

+
′ ⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

D f

D f
,                      (3.5) 

where 
( )t

xB  and 
( )t

yB  are the diagonal matrices with elements the vectors ( )t
xb  and ( )t

yb . This 

algorithm is identical to that of Eq. (3.3) and it is proven to converge to a solution of Eq. 

(3.1). The function that is minimized is called half-quadratic because if the auxiliary variables 

are kept fixed then ( )* , ,x yJ f b b  is quadratic with respect to f . Furthermore, it is 

straightforward to minimize the function with respect to the auxiliary variables. This leads to 

an algorithm containing linear equations. In [69] and [1] the convergence properties of the 

half-quadratic algorithm are studied. 

At this point an example of the potential function ( )tϕ  is provided. An interesting algorithm 

results when ( ) ( )2log 1t tϕ θ= +  [31]. In this case the auxiliary variables are updated 

according to 

( )
[ ]( )

( )
2

1

1
t

x

x i

b i
θ

=
+ D f

 and ( )
( )

( )
2

1

1
t

y

y i

b i
θ

=
⎡ ⎤+ ⎣ ⎦D f

. 

Moreover, if x y= =D D Q , where Q  the Laplacian operator, the algorithm would be similar 

to the empirical method of section 3.1. This result demonstrates that the auxiliary variables 

must not be considered simply as parameters introduced for the relaxation of the minimization 

problem, but in addition as the manifestation of the spatial adaptivity mechanism. Notice also 

that we obtain the same algorithm following two different paths, the empirical and the half-

quadratic. Next, we present a third path, the stochastic modeling approach.   
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In [22] Champagnat and Idier have shown that when half-quadratic regularization is viewed in 

a stochastic framework, the above minimization algorithm is equivalent to an EM algorithm. 

More specifically, if the function ( )1J f  to be minimized can be viewed as the negative 

logarithm of the posterior of the data given the observations: 

( ) ( ) ( ) ( )1 log | log |p p pJ ∝ − ∝ −f f g g f f , 

where ( ) 2

2
| exp

2
p β⎧ ⎫∝ −⎨ ⎬

⎩ ⎭
g f g - Hf  is the data likelihood with β  the noise precision and 

( ) ( ){ }expp Jα∝ −f f . Then, the auxiliary variables ,x yb b  can be viewed as hidden variables 

with prior ( ),x yp b b  and the minimum with respect to these variables function 

( )*
min

ˆ ˆ, ,x yJ f b b  can be viewed as the expectation: 

( ) ( ) ( )
*
min , |

ˆ ˆ, , log , , ,
x y

x y x y p
pJ ∝ −

b b f
f b b g f b b , 

where ( ), |x yp b b f  the posterior of the hidden variables given the image. Thus, evaluation of  

ˆ ˆ,x yb b  according to Eq. (3.5) is included in the E-step. In the M-step the above expectation is 

minimized with respect to f , which is achieved by application of Eq. (3.4). 

In light of the above, we can write the augmented half-quadratic function: 

( ) ( ) [ ]( ) ( )( ) ( )( ) ( )( )
222*

2
1

, ,
N

x y x x x y y yi i
i

a b i b i b i b iJ ψ ψ
=

⎛ ⎞⎡ ⎤= + + + +⎜ ⎟⎣ ⎦⎝ ⎠∑f b b g - Hf D f D f  

and note that ( )wψ  plays the role of the prior (the logarithm) for the variables ( )xb i  and 

( )yb i . Of course, the form ( )wψ  depends on ( )tϕ . It is interesting to see that the form of 

( )wψ  for ( ) ( )2log 1t tϕ θ= +  is ( ) log 1w w wψ = − − , and this is analogous to the logarithm 

of a Gamma prior. This result indicates that in this case ( )p f  is a Student’s-t distribution [19] 

(with 1,ν λ θ= = ) because it is given by the integral of a product of a Normal and a Gamma 

prior for the precision of the normal: 

( ) ( ) ( ) [ ]( )( ) ( )
11 22

| , , 1 1x y x y x y x yi i
p p d dp

−− ⎛ ⎞⎡ ⎤= ∝ + +⎜ ⎟⎣ ⎦⎝ ⎠∫f f b b b b b b D f D f . 
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This agrees with the conclusion in [22] that optimization with the EM algorithm in the 

Bayesian framework under a Student’s-t prior is equivalent to half-quadratic regularization for 

a certain potential function. This fact holds more generally for scale mixtures of Gaussians 

(SGM). Student’s-t, Laplace and hyperbolic distributions are just special cases of GSMs. 

Thus, it is not surprising that in Chapter 6 the use of the Student’s-t distribution as prior leads 

to a similar restoration algorithm. Also, in [22] it is shown that the auxiliary variables of the 

half-quadratic criteria can be interpreted as the line process of a CGMRF (see next section). 

The half-quadratic algorithm in [31] converges when the potential function is convex and the 

matrix H  in the term 2

2
g - Hf  is full-rank [39]. In [7] Delaney and Bresler propose a 

modified half-quadratic algorithm that converges even when the potential function is not 

convex and/or the matrix H  is not full-rank. They apply their algorithm to computed 

tomography (CT), a problem which shares an analogous linear imaging model with that of 

restoration (Eq. (1.2)) but the linear operator H  in this case represents the Radon transfom. 

Thus, the image is reconstructed from the projections g , with half-quadratic criteria used to 

constraint the solution. 

 

3.3  Markov Random Fields  

Markov random fields (MRF) are stochastic models that have been used extensively as image 

models in image processing and generally in computer vision [111], [20] and [86]. The main 

advantage of these models is the flexible mechanism that they provide to define image priors. 

For the image restoration problem this is achieved by the introduction of potential functions 

that provide a regularized solution, much in the same way with the half-quadratic 

regularization presented in section 3.2. This flexibility is mainly due to the fact that the 

stochastic optimization algorithms that are utilized do not depend much on the choice of the 

potential functions. Notice that this is not the case for half-quadratic deterministic 

minimization algorithms which can be applied only when the potential function meets some 

criteria and when the form of the function to be minimized is quadratic with the auxiliary 

variables fixed. However, the disadvantage of the stochastic algorithms is the large 

computational cost. 
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The work that introduced MRFs in image restoration was that of Geman & Geman [61]. The 

image f  is regarded as a two-dimensional N N×  MRF. This means that each pixel ( ),i jf  is 

a node with conditional probability given all the other nodes, 

( ) ( ) ( ) ( )( ), | , , , ,P i j m n m n i j∀ ≠f f , 

 equal to the conditional probability given only the neighboring nodes, i.e. 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ), | , , , , , | , , , ,P i j m n m n i j P i j m n m n N i j∀ ≠ = ∀ ∈f f f f , 

where ( ),N i j  is the set of nodes that are neighbors to ( ),i j . A typical such neighborhood 

may include the four pixels around the pixel ( ),i j . Thus, in order to define an MRF for the 

image, it is sufficient to define the local conditional probabilities. 

In [61] the overall probability for the image ( )p f  is written as follows using the 

Hammersley-Clifford theorem: 

( ) ( ) ( )1 1 1 1exp exp C
C

p U V
Z Z ∀ ∈

⎧ ⎫⎧ ⎫= − = −⎨ ⎬ ⎨ ⎬Τ Τ⎩ ⎭ ⎩ ⎭
∑f f f

S
, 

where  S  is the set of cliques of the image1, ( )CV f  is a function of the nodes that belong only 

to clique C  and it is called the potential function. The normalizing constant Z  is the partition 

function and the parameter Τ  is called temperature. This theorem provides a powerful tool to 

define MRFs in a straightforward manner through the definition of potential functions. For 

example, in [61] only cliques with neighboring pixels are used, i.e. ( ) 0CV =f  unless 

{ },C r s= , and the following potential is defined: 

,

1,
0,

r s
r s

r s

if
V

if
=⎧

= ⎨ ≠⎩

f f
f f

, 

where ,r s  denote neighboring pixels. The role of this potential is to enforce high probability 

for neighboring pixels to have similar values. 

                                                 
1Loosely speaking, a clique is a set of neighboring nodes. There is a hierarchy of cliques. At 
the first level, each clique consists of one node. At the second level, the clique contains a node 
and its neighbors. Cliques of higher levels seldom appear in applications of MRFs. 
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 However, this is not a realistic model in areas with edges. So, a line process has been 

included in the MRF with the introduction of the binary variables l , indicating whether there 

is an edge between neighboring pixels. To incorporate this property to the model the 

following Gibbs joint distribution has been proposed: 

( ) ( ) ( )1 1 1 1, exp , exp ,C
C

p U V
Z Z ∀ ∈

⎧ ⎫⎧ ⎫= − = −⎨ ⎬ ⎨ ⎬Τ Τ⎩ ⎭ ⎩ ⎭
∑f l f l f l

S
, 

where now ( ) ( ) ( ), |C C CV V V= +f l f l l . The first potential ( )|CV f l  defines the local 

dependencies between the pixels given information of the presence of ‘breaks’ between them. 

This information is provided by a binary valued line process variables: zero for no edge and 

one for edge. The term ( )CV l  works as a penalty on images with an excessive amount of 

edges. 

Given the observed image the goal is to find the restored image according to the rule: 

[ ]
( )

[ ]
( )

, ,
ˆ ˆ, max , | max , ,arg p arg p⎡ ⎤ = =⎣ ⎦ f l f l
f l f l g g f l . 

In [61] this is achieved with the a stochastic relaxation algorithm that uses the Gibbs sampler 

as a tool to draw samples from ( ), ,p g f l . A nice feature of the sampling procedure is that 

there is no need to know explicitly the partition function of the MRF.  

In the methods based on compound Gauss-Markov random fields (CGMRF) [72], [74], [73], 

[34] and [92], the potential function ( )|CV f l  is quadratic, which makes the distribution 

( )|p f l  Gaussian. Moreover, the line process parameters may be discrete or continuous. We 

give an example by defining the prior ( ),p f l  as in [92], but using one-dimensional notation 

for brevity: 

( ) ( ) ( )( ) ( )( ) ( )2

1
log , 1 1

N

i
p const f i f i l i l iβ

=

− = + − + − +∑f l , 

where β  is a scalar and ( )l i  is the line process parameter that is 0 if there is no edge between 

the ( )f i  and ( )1f i +  pixels and 1 if there is. The term ( )l iβ  works as a penalty and 

prohibits the parameter ( )l i  to be always one across the image, because otherwise the MAP 
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estimator would yield all these parameters equal to one. Given ( )l i , a Gaussian prior for the 

image is obtained:  

( ) ( )2

1| exp
2

Tp
σ

⎧ ⎫∝ −⎨ ⎬
⎩ ⎭

f l f A l f , 

where ( )A l  a matrix that depends on the values of the line process parameters. Simulated 

annealing is usually used to perform maximization of these models given the observed 

degraded image, which is usually time-consuming. This type of minimization algorithm does 

not require a closed form for the partition function of the prior something that would be 

necessary in a deterministic algorithm. 

In [72], [74], [73], [34] the line process is continuous. In this case, the minimization of the 

posterior ( ), |p f l g  reminds strongly the minimization of Eq. (3.1) in the half-quadratic 

regularization case. This indicates the relation that exists between the CGMRF models and the 

half-quadratic criteria as shown in [22].  

An interesting model is proposed in [21] where the Gaussian function of the CGMRF is 

replaced by a generalized Gaussian distribution (GGD). In this case, the line process is not 

incorporated to the model because of the edge preservation properties of the GGD. This 

distribution has also been used in other works for image restoration as it is mentioned in 

section 3.5. 

 

3.4  Total-variation regularization 

Total-variation (TV) regularization was first introduced by Rudin, Osher and Fatemi [102] for 

the image denoising problem. Later, the TV regularizer became popular in other image 

processing problems [3], [134], [103], [57], including restoration. According to TV-based 

image restoration, the restored image is obtained by the rule: 

( ){ }2

2
ˆ minarg aTV= +

f
f g - Hf f ,                       (3.6) 

where a  is the regularization parameter and ( )TV f  is the total-variation regularizer that is 

added to penalize the roughness of the image, and is defined as follows: 
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( ) [ ] 22

1

N

x yi i
i

TV
=

⎡ ⎤= + ⎣ ⎦∑f D f D f , 

where xD  and yD  are the horizontal and vertical first order difference operators. The TV 

penalty term has the ability to provide edge-preserving regularization, meaning that it 

constrains the solution of Eq. (3.6) to give images without amplified noise in smooth areas 

and simultaneously preserve their edges [46]. 

There have been many efforts to solve Eq. (3.6), especially in the continuous domain [23] 

using variational optimization theory where the estimated image is the solution of a non-linear 

partial differential equation (PDE). The PDE is the result of the application of the Euler-

Lagrange transformation to the optimization problem of minimizing an integral with respect 

to a function (the image). 

An interesting approach to solve Eq. (3.6) is that in [18]. The authors propose the 

majorization-minimization (MM) methodology [85], according to which the problem of 

minimizing a non-quadratic function is transformed to successive minimizations of quadratic 

surrogate functions, i.e. majorizers of the non-quadratic function that can be minimized 

linearly. The iterative scheme is described as follows: 

( ){ }( 1) ( )min |t targ Q+ =
f

f f f ,                       (3.7) 

where ( )
[ ]( )22

2( )
2 2 2( ) ( )1

|
2

N x yi it

t ti
x yi i

Q a
=

⎡ ⎤+ ⎣ ⎦
= +

⎡ ⎤ ⎡ ⎤+⎣ ⎦ ⎣ ⎦
∑

D f D f
f f g - Hf

D f D f
 is the majorizer of the function to 

be minimized. This means that 

( ) ( )2( )
2

| ,tQ aTV≥ +f f g - Hf f  and ( ) ( )2( ) ( ) ( ) ( )

2
| .t t t tQ aTV= +f f g - Hf f  

where these two equations can be verified by noticing that the inequality 

0
0

02
x xx x

x
−

≤ + , 

holds for every positive x  and 0x  and the equality holds when 0x x=  and we replace 

[ ]( )22
x yi i

⎡ ⎤+ ⎣ ⎦D f D f  for x  and 
2 2( ) ( )t t

x yi i
⎡ ⎤ ⎡ ⎤+⎣ ⎦ ⎣ ⎦D f D f  for 0x  (neglecting the constant terms). 
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Thus, ( )( )| tQ f f  meets the criteria to be a majorizer according to the MM methodology, and 

hence the iterative scheme described by Eq. (3.7) converges to a solution of (3.6). Solution of 

(3.7) corresponds to solution of the linear system: 

( )( ) 1( 1) ( ) ( )t T T t T t T
x x y ya

−
+ = + +f H H D W D D W D H g , 

where ( )tW  is a diagonal matrix with elements ( )( )

2 2( ) ( )

1,
2

t

t t
x yi i

i i =
⎡ ⎤ ⎡ ⎤+⎣ ⎦ ⎣ ⎦

W
D f D f

 and it 

manifests the spatially adaptive regularization mechanism that enforces less regularization at 

the edges (small ( )( ) ,t i iW ) and greater in smooth areas (large ( )( ) ,t i iW ). 

It is interesting to note that the MM methodology is very similar to the half-quadratic. Both 

transform the non-linear minimization problem to successive linear problems, because both 

( )( )| tQ f f  and ( )* , ,x yJ f b b  are quadratic with respect to f  when the rest variables are kept 

fixed. Also, taking into account that the EM algorithm belongs to the general category of MM 

algorithms, and that the half-quadratic algorithm is strongly connected with the EM [22], it 

can be also concluded that MM optimization is strongly related to the half-quadratic 

approach. 

To demonstrate this, let us give an example where the MM methodology is applied in order to 

minimize the function 

( ) ( )2
1 2

J aJ= +f g - Hf f  

where ( ) [ ]( ) ( )
1

N

x yi i
i

J ϕ ϕ
=

⎡ ⎤= + ⎣ ⎦∑f D f D f  and ( ) ( )2log 1t tϕ θ= + . Using the inequality [85] 

0
0

0

log log x xx x
x
−

≤ + , 

the majorizer of ( )1J f  is constructed: 

( )
[ ]( ) ( )

2
22( ) ( )

22 ( ), 1

| log 1 1
1

N l it t
l itl x y i l i

Q aθ θ
θ= =

⎛ ⎞
⎜ ⎟⎡ ⎤= + + + −⎣ ⎦⎜ ⎟⎡ ⎤⎜ ⎟+ ⎣ ⎦⎝ ⎠

∑ ∑
D f

f f g - Hf D f
D f

. 
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This majorizer is very similar to the function ( )* , ,x yJ f b b  in the half-quadratic case as 

demonstrated in section 3.2 for this potential ( )tϕ , when ( ) 12( )1 t
x i

θ
−

⎡ ⎤+ ⎣ ⎦D f  and 

( ) 12( )1 t
y i

θ
−

⎡ ⎤+ ⎣ ⎦D f  are replaced with ( )xb i  and ( )yb i , respectively. Moreover, MM 

minimization gives the same restoration algorithm as this half-quadratic example. 

In some methods, for example [3] and [57], a variant of the TV regularizer was used, based on 

the l1 norm: 

( ) [ ]( )
1

N

ni x yi i
i

TV
=

⎡ ⎤= + ⎣ ⎦∑f D f D f , 

which is called non-isotropic TV. In [3] and [57] linear and quadratic programming 

optimization methods are proposed to solve both equations: 

[ ]( )2

2
1

ˆ min ,
N

x yi i
i

arg a
=

⎧ ⎫⎡ ⎤= + +⎨ ⎬⎣ ⎦⎩ ⎭
∑f

f g - Hf D f D f  

[ ]( )1
1

ˆ min ,
N

x yi i
i

arg a
=

⎧ ⎫⎡ ⎤= + +⎨ ⎬⎣ ⎦⎩ ⎭
∑f

f g - Hf D f D f  

where in the second case 
1

g - Hf  denotes the l1 norm which can be used to model non-

Gaussian noise. 

It is interesting to see how we can perform the minimization of the first objective function (for 

Gaussian noise) using the MM methodology. First, we have to introduce a majorizer, which is 

achieved using the following inequality: 

2 2
2 2 0

0
02

x xx x x
x
−

= ≤ + . 

Thus, the resulting majorizer is: 

( )
[ ]( )2

2( )
2 ( ), 1

|
2

N l it

tl x y i
l i

Q a
= =

= +
⎡ ⎤⎣ ⎦

∑ ∑
D f

f f g - Hf
D f

, 

which is minimized by solving the linear system 
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( )
1

( 1) ( ) ( )

2
t T T t T t T

x x x y y y
a −

+ ⎛ ⎞= + +⎜ ⎟
⎝ ⎠

f H H D W D D W D H g , 

with the elements of the diagonal matrices ( )t
xW  and ( )t

yW  given by 

( ) ( )( ) ( )

( ) ( )

1 1, , ,t t
x x

t t
x yi i

i i i i= =
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

W W
D f D f

. 

Note also that this algorithm has a Bayesian interpretation and can be derived by assuming a 

Laplacian image prior and applying the EM algorithm, as in [52] where a Laplacian prior was 

used in order to obtain sparse solutions for supervised learning2. 

In order to estimate the TV regularization parameter a , Langrange multipliers are employed 

in [102]. In [17] a Bayesian method is proposed to estimate this parameter. According to this 

method the solution of Eq. (3.7) is equivalent to the MAP approach: 

( ) ( ){ }ˆ min log |arg p p= −
f

f g f f , 

where ( ) 2| exp
2

p β⎧ ⎫∝ −⎨ ⎬
⎩ ⎭

g f g - Hf  is (as usual) the data likelihood with noise variance β  

and ( ) ( ){ }expp aTV∝ −f f  is the TV prior for the image. In [18], β  is assumed known and 

a  is integrated out, thus it is not estimated. 

In [8] both the noise and regularization parameters are estimated in a Bayesian framework. 

Precisely, the variational EM (VEM) methodology is utilized where the image is treated as 

random variable and a distribution is inferred for the image. The parameters are estimated in 

the maximization step of the VEM algorithm. More details are given in Chapter 6, where 

VEM is also employed to solve an improved TV image model of [8]. 

 

3.5  Regularization in the Wavelet Domain 

Wavelet-based methods have been very successful for image denoising, see for example [96] 

and [119]. However, their application to the image restoration is not as straightforward 

because of the convolutional operator that appears when the restoration imaging model is 

                                                 
2 This corresponds to edge-preserving regularization in image restoration 
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formulated in the wavelet domain. This formulation is based on the representation of the 

image f via the wavelet transform coefficients θ , i.e. f = Wθ , where W  is a matrix 

representing the inverse discrete wavelet transform (DWT). Thus, if the wavelet basis is 

orthogonal, TW  represents the inverse of W . Then, the image is estimated by first 

minimizing the penalized log-likelihood: 

( ){ }2

2
ˆ minarg aC= +

θ
θ g - HWθ θ , 

where ( )C θ  is the penalty term on the coefficients, and then taking ˆ ˆf = Wθ . The function 

( )C θ  has a particular form to induce sparseness, which means that it enforces the majority of 

the coefficients to have small values. Using the terminology of spatially adaptive methods 

presented previously, this approach provides edge-preserving regularization. In a MAP 

framework, the prior for the coefficients is given by: 

( ) ( ){ }expp aC∝ −θ θ ,                   (3.8) 

and in most cases independence is assumed, i.e. ( ) ( )ii
C C=∑θ θ . 

This formulation is adopted in many early works on wavelet-based regularization; see for 

example [9], [10], [43], [100].  For a review of these works (and related works) the interested 

reader is referred to [16] and [55].   We focus here on recent works that have been introduced 

independently ([38], [55], [44], [45], [54], [88], [123], [119]) and they can be interpreted as 

MM algorithms, as shown in [53]. 

In [53] the MM methodology is applied to the term 2

2
g - HWθ  and the minimization problem 

of Eq. (3.8) is transformed to a sequence of  minimizations problems given by  

( ){ }2( 1) ( )

2
mint targ aC+ = +
θ

θ θ -φ θ ,                         (3.9) 

with ( )( ) ( ) ( )t t T T t= +φ θ W H g - HWθ . Notice that this vector is the previous estimate of ( )tθ  

minus the gradient of the term 
2( )

2

tg - HWθ . In this way, inversion of large matrices that 

include both H  and W  is avoided. This MM algorithm coincides with the iterative 

shrinkage/thresholding (IST) algorithm proposed in [38] and [54].  
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If ( )C θ  can be written as ( ) ( )ii
C C=∑θ θ , Eq. (3.9) can be solved independently for each 

coefficient iθ : 

( ){ }2( 1) ( )

2
min

i

t t
i i i iarg aC+ = +

θ
θ θ -φ θ . 

Furthermore, in case ( )iC θ  has a convenient form for optimization, such as ( ) p
i iC =θ θ  for  

1 2p≤ ≤  (notice that this corresponds to a Generalized Gaussian distribution), closed form 

solution of ( 1)t
i
+θ  can be obtained for some values of  p . For example, in the Gaussian case 

( 2p = ) the update rule takes the form: 

( )
( 1)

1

t
t i

i a
+ =

+
φθ . 

Solutions for other values of p  are presented in [33]. In [38] the convergence properties of 

the IST algorithm with GGD prior are analyzed. 

The distribution of each coefficient iθ  can be considered as a (univariate) Gaussian scale 

mixture (GSM) [6]  

( ) { } ( )2 1

0

1 exp
2i ip a z p z dz

zπ

+∞
−= −∫θ θ , 

where ( )p z  is the multiplier density. The integral represents the sum of infinite zero mean 

Gaussian densities with ( )p z  representing the weight of each Gaussian that is added. In [33], 

an MM approach to solve Eq. (3.9) under the GSM prior is presented. When the marginal 

density has the form ( ) ( ){ }expi ip aC∝ −θ θ  and belongs to the GSM family (for example 

GGD), then a (quadratic) majorizer of ( )log ip− θ  is  

( ) ( )
*

2
*

i
i i

i

const
C

a aC+ ≥
′ θ

θ θ
θ

. 

This can be plugged into Eq. (3.9) and obtain an MM algorithm. Notice that this majorizer is 

similar to that in the half-quadratic case (see section 3.2) where the auxiliary variables are 
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updated using the term ( )t
t

ϕ′
. This result is validated as follows. The majorizer can be 

written using the likelihood: 

( )
( ) ( )

*
2

* *
logi

i i
i i

p
a const p

p
− + ≥ −

′

θ
θ θ

θ θ
, 

and this is identical to Eq. (8) of [16], where an EM algorithm is derived for image restoration 

using GSM priors. Also, remember from section 3.2 that the half-quadratic methodology is 

actually an EM algorithm under GSM priors. Based on these observations, it is concluded that 

the MM algorithm with GSM prior is equivalent to the half-quadratic methods. 

In [33], an algorithm is also given where the data-likelihood term is not majorized, unlike the 

prior term. The result is a generalized MM algorithm in which a linear system is solved at 

each iteration.  

Alternatives to the MAP approach have been also used in image restoration and denoising, see 

for example [100], [64], [110] and [121]. An interesting work that employs GSM for image 

restoration is presented in [64]. In this, a multivariate GSM is used where the vector θ  of the 

coefficients being GSM distributed as 

( )
( )

( ){ } ( )1
1/2/2

0

1 exp
2

T
Np a z p z dz

zπ

+∞
−= −∫θ θ C θ

C
, 

where C  is the N N×  covariance matrix of θ . Instead of using the MAP approach, the 

authors propose the Bayesian Least Squares (BLS) estimator.  

There are problems that have similar formulation with restoration in the wavelet domain and 

can be expressed by the equation 

( ){ }2

2
ˆ minarg aC= +

θ
θ g - Aθ θ , 

where the matrix A  has replaced HW . The LASSO criterion (least absolute shrinkage and 

selection operator), for example, used for robust regression is similar to the above formulation 

with ( ) 1
C =θ θ  and A  is the design matrix of the regression problem. Furthermore, in [44] 

and [45] blurring is absent ( =H I ) and the columns of W  represent a redundant dictionary, 

i.e. a basis that forms the solution. Moreover, ( )C θ  leads to sparse representation, which 
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means it is desirable to make most of the coefficients of the dictionary as small as possible. 

For ( ) 1
C =θ θ  this problem is the basis pursuit denoising problem [35]. 

 

3.6  Other image priors 

The image priors presented so far are applied to the outputs of pre-selected filters, such as first 

order differences and the filters of the wavelet transform. There are works where the filters 

are learned from a large training set of images, for example the Fields of Experts (FOE) 

training algorithm [114]. In this dissertation we focus on methods that use a priori fixed 

filters. In [122] an application of the FOE is presented. 

Finally, image priors which are based on the Huber function: 

( ) ( )
2

2

,
2 ,T

x x T
x

T x T x T
ρ

⎧ ≤⎪= ⎨ + − >⎪⎩
, 

have been proposed, see for example [104]. Using such priors leads to the minimization of 

[ ]( ) ( )( )222
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1

N
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i

ρ ρ
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⎡ ⎤+ + ⎣ ⎦∑g - Hf D f D f  

in order to obtain an estimate of f . This can be achieved using the MM methodology by 

exploiting a quadratic bound for the Huber function: 
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2 ( )
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,
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tT T
t

x x T
x N x x T x x T T x T

x
ρ
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⎩
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where equality hold when ( )tx x= . 

 

3.7 Super-resolution methods 

Recent surveys and articles for super-resolution can be found in [105], [48] and the edited 

book [32]. Many methodologies have been applied to the super-resolution problem.  An 

important category of methods formulates this problem as an ill-posed image reconstruction 

problem [40] and introduces prior information (regularization) to reconstruct the high-

resolution image [105]. This renders the image model presented in this chapter, applicable 
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also to super-resolution. In this dissertation, this formulation is adopted and the development 

of effective image priors for the restoration problem leads inevitably to development of 

effective super-resolution algorithms. Super-resolution viewed as learning problem has also 

been recently considered in [56] and [75].  

Recent efforts based on the regularized reconstruction methodology for the super-resolution 

problem are described in [118]-[113]. In what follows, we will concentrate on the regularized 

reconstruction point of view. Regularized reconstruction can be also viewed as a maximum a 

posteriori (MAP) approach by assuming an appropriate probability density for the error in the 

assumed imaging model and an appropriate prior for the image [40]. Thus, in what follows we 

will not distinguish between these two approaches. 

In [118] the problem of reconstructing high-resolution frames from compressed video is 

examined using a Bayesian formulation based on a Gaussian simultaneously autoregressive 

(SAR) stationary image prior. In [1] a methodology is proposed based on the theory of 

projections onto convex sets [51]. In [48], color images and demosaicing are considered, and 

regularization (image priors) based on the  1L -norm is proposed in order to avoid the 

shortcomings of  2L -norm based regularization. Furthermore, non-Gaussian measurement 

errors are considered. It was shown that  1L -norm minimization yields better results in the 

case of inaccuracies in the imaging model.  In [48], a computationally fast method is proposed 

based on the 1L -norm assuming known integer pixel displacements between frames.    

However, in [48] and [48] the parameters that define the regularization term are chosen 

empirically. In [133] an expectation-maximization (E-M) algorithm and a maximum a 

posteriori algorithm (MAP) are presented for simultaneous registration, restoration and 

interpolation for super-resolution. Nevertheless, a stationary SAR prior is used in both 

formulations in [133]. In [65] different degradations are assumed in each low resolution 

observation. However, L2-norm based stationary regularization is used. In [113] an interesting 

statistical performance analysis is presented that offers insight into the fundamental 

bottlenecks limiting the performance of super-resolution algorithms. 

Kanemura et al [77] used a CGMRF to model the image and applied approximate Bayesian 

inference for the super-resolution problem to infer the high-resolution image. All the 

parameters of the model, including the registration parameters are estimated in a rigorous 
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manner. However, time-consuming techniques are used for the estimation of some parameters 

which are avoided in our method presented in Chapter 6. 

 

3.8  Conclusions 

From the literature survey on spatially adaptive image restoration, we first conclude that all 

the image priors lead to spatially adaptive restoration filters, which enforces spatially adaptive 

regularization. The only exception to this is the Gaussian prior which leads to spatially 

invariant filters. The spatial adaptivity mechanism is manifested by the auxiliary variables in 

the deterministic (half-quadratic) or the hidden variables in the stochastic framework (EM 

algorithm).  

As described in section 3.2, regularization based on half-quadratic criteria is equivalent to the 

EM algorithm under a GSM prior. Student’s-t and the Laplace distributions belong to the 

GSM family. We presented an example and showed that the EM algorithm with a Student’s-t 

prior coincides with an algorithm by applying the half-quadratic methodology with a specific 

potential function. Also, we obtained the same algorithm by applying the MM methodology 

to this potential. For the Laplace prior, we obtaind the same algorithms by applying EM and 

MM. From all these, we conclude that half-quadratic, EM and MM are very similar 

methodologies (at least for GSM–based prior) that view the problem from different 

perspectives.  

It is also clear that there is not sufficient work on the estimation of the proposed model 

parameters. The Bayesian methodology used herein provides an elegant way for statistical 

modeling and estimation. In this dissertation we employ the Bayesian inference methodology 

to both estimate the model parameters and infer the image.  

 



 47

CHAPTER 4. BAYESIAN IMAGE RESTORATION 

USING A HIERARCHICAL NON-STATIONARY PRIOR 

4.1. Introduction 

4.2. Imaging and image prior model 

4.3. Maximum a posterior (MAP) estimation 

4.4. Bayesian algorithm 

4.5. Numerical Experiments 

4.6. Conclusions and extensions 

 

In this chapter we present image restoration algorithms based on the Bayesian framework and 

a new hierarchical spatially adaptive image prior. The proposed prior has the following two 

desirable features. First, it models the image discontinuities in different directions with a 

model which is continuously valued. Thus, it generalizes the on/off (binary) line process idea 

used in previous image prior definitions within the context of Markov Random Fields (MRF). 

Second, the proposed Bayesian framework with the hierarchical prior has been shown to be 

successful in generating sparse representations in other signal processing problems. Using the 

proposed hierarchical prior, two restoration algorithms are derived. The first is based on the 

maximum a posteriori (MAP) principle, and the second on the Bayesian methodology. 

Numerical experiments are presented that compare the proposed algorithms among 

themselves and with previous stationary and non-stationary MRF-based algorithms. These 

experiments demonstrate the advantages of the proposed prior.  

 

4.1  Introduction 
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In this chapter we formulate the image restoration problem in the Bayesian framework 

because it offers many advantages, such as a systematic and flexible way for regularization, 

and a rigorous framework for estimation of the model parameters, as it was discussed in 

Chapter 3. The novel prior that we introduce for regularization ameliorates some of the 

disadvantages and difficulties of the methods presented in Chapter 3. In the next paragraphs 

we present these disadvantages. 

The disadvantage of an unrealistic stationary prior appears in many Bayesian formulations for 

the image restoration problem, where the image prior is based on a Gaussian stationary 

assumption for the residuals of the local image differences, see section 1.4.3. Such stationary 

models are seriously handicapped because they do not provide the flexibility to model the 

spatially varying structure of images in edge and texture areas. In other words, such priors 

enforce smoothness uniformly across the entire image and correspond to uniform 

“regularization”.  

Compound Gauss-Markov models provide a way to avoid uniform “regularization”, see 

section 3.3. In these models the image is assumed to be generated by a two-level process. The 

first level represents the correlations of adjacent pixels of the image. The second level 

contains a binary process used to capture the image variations (edges). In other words, when 

the line process between two pixels is “on” smoothness is not enforced between them while 

when it is “off” smoothness is enforced. From an image modeling point of view the binary 

(on/off) nature of the line process that is used is insufficient to capture the image variations of 

most natural images.  More specifically, edges of different strengths and “degrees of 

sharpness” are present in natural images and a binary model is limited since it inevitably 

introduces quantization in representing them.  

The methods based on the error visibility idea use a continuous (non-binary) model to capture 

the visibility of the image artifacts, see section 3.1. Since the visibility of the artifacts is 

related to the variation structure of the image, these methods use a continuous model for the 

image variations. However, their main shortcoming is that quantification of visibility is not 

rigorous but rather heuristic. Thus, the estimation of all the necessary parameters is not based 

on a systematic framework derived from a rigorous model. As a result such models are 

cumbersome to use, and suboptimal.  

In this chapter, we introduce a methodology that ameliorates the difficulties of the above 

mentioned methods. In particular, we propose a hierarchical (two-level) Gaussian non-



 49

stationary image prior [27].  This prior assumes that the residuals of the first order differences 

of the image in four different directions are Gaussian random variables with zero mean and 

variance that is spatially varying. As a result these local directional variances capture the 

image discontinuities with a continuous value model and can be thought as “continuous line 

processes”, in contrast to the CGMRFs models. In order to deal with the resulting over-

parameterization of this model, the spatially varying variances are considered as random 

variables (not parameters) and a Gamma hyper-prior is imposed on them. The parameters of 

the imposed hyper-prior control the mean and the variance of the residual variances and in a 

sense control the degree of non-stationarity of the imposed image prior.  

Another aspect of this image model is that it enforces sparse first order directional differences 

in the image using the same Bayesian mechanism as in sparse kernel based regression and 

basis selection; see for example [128] and [132]. Sparse signal representations have found 

extensive applications in inverse problems and are becoming very important area of research 

for many signal and image processing applications [132]. 

To learn this model and infer the image we propose two iterative algorithms. The first is based 

on the maximum a posteriori estimation (MAP) principle and computes explicitly both the 

image and the spatially varying variances in all four directions. The second is a Bayesian 

algorithm that marginalizes the “hidden variables”, see for example [12]. At this point we 

would like to make two observations. First, unlike MRF based models, the generative 

graphical model that stems from the proposed prior in this chapter does not contain cycles, 

thus, learning and inference based on it is easy. Second, we obtain as MAP estimates of the 

inverse local variances the spatially adaptive regularization weights in [80], [84], and [78] 

which were previous obtained based on heuristic arguments. 

We provide numerical experiments where we compared the proposed restoration algorithms 

with two different versions of the classical Wiener filter [70], the constrained least squares 

approach with spatially adaptive constraints, [76], [84], [78] and [80], previous Bayesian 

algorithms based on the stationary SAR model in [92], as well as on the CGMRF that use 

“binary line processes” [92]. We also compared the proposed algorithms among themselves in 

terms of both the bias and the variance of the inferred restored image using a Monte-Carlo 

simulation. Our experimental results are encouraging and demonstrate the advantages of both 

the proposed new prior and the employed Bayesian methodology.  
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The rest of this chapter is organized as follows: in section 4.2 we present the imaging model 

and the proposed image prior model. In section 4.3 we present the MAP-based restoration 

algorithm. In section 4.4 we derive the Bayesian marginalization based algorithm. In section 

4.5 we present our numerical experiments, and finally in section 4.6 we provide conclusions 

and directions for future research.  

 

4.2  Imaging and image prior model 

A linear imaging model is assumed. The 1N ×  vector g , represents the observed degraded 

image which is obtained by 

g = Hf + n ,                                                              (4.1) 

where f  is the (unknown) original image, H  is a N N×  known convolution matrix and n  is 

additive white noise. We assume Gaussian statistics for the noise given by ( )1~ ,N β −n 0 I  

where 0  is a 1N ×  vector with zeros and I  the N N×  identity matrix respectively, and 1β −  

the noise variance which is assumed unknown. 

For the image prior model we assume that the first order differences of the image f  in four 

directions, 00, 900, 450 and 1350 respectively, are given by: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 2

3 4

, , - , 1 , , , - 1, ,
, , - 1, 1 , and , , - -1, 1 ,

i j f i j f i j i j f i j f i j
i j f i j f i j i j f i j f i j
ε ε

ε ε
= + = +

= + + = +
 

  
        (4.2) 

with ( ),k i jε 1,2,3,4k = , the difference residuals for the image location ( ),i j . The above 

equations can be also written in matrix vector form for the entire image as k kQ f = ε , 

1, 2,3,4k =  where kQ  is the N N×  directional difference operators for 1N ×  images.  

Without loss of generality, in what follows, for convenience, we will use one dimensional 

notation, in other words, we assume 1 2 ,
Tk k k k

Nε ε ε⎡ ⎤= ⎣ ⎦ε … . We assume that the residuals have 

Gaussian statistics according to ( )( )1
~ 0, ,  k k

i iN aε
−

for 1,2i N= …  and 1,2,3,4k = , where 

k
ia  the inverse variance of k

iε  and N  the size of the image.  
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For the inverse variance k
ia we introduce the notation k =A diag { }1 2, ,k k k

Na a a…  an N N×  

diagonal matrix and =A� diag { }1 2 3 4, , ,A A A A  a 4 4N N×  diagonal matrix and 

1 2 3 4
, , ,

T
= ⎡ ⎤⎣ ⎦a a a aa�  a 4 1N ×  vector. Also for the errors we use the notation 

T1 2 3 4
, , ,⎡ ⎤= ⎣ ⎦ε ε ε ε ε� . 

We assume that the errors in each direction and at each pixel location are independent. This is 

based on the assumption that at each pixel location an edge can occur at any direction 

independently of what happens in adjacent pixels.  This assumption makes subsequent 

calculations tractable. Thus, the joint density for the errors is Gaussian and is given as 

( ) ( ) ( ) ( ) ( )( )1 2 1 24 4T T

1 1 1 1
; exp 0.5 exp 0.5

N N
k k k k k
i i

k i k i
p a a

= = = =

⎛ ⎞⎛ ⎞ =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∝ − −∏∏ ∏∏ε a ε A ε ε Aε��� � � . 

 To relate ε�  with the image f  we define the 4N N×  operator 

( ) ( ) ( ) ( )
TT T T T1 2 3 4, , ,⎡ ⎤= ⎢ ⎥⎣ ⎦

Q Q Q Q Q� . Then, the relation between the image and the residuals is 

=ε Qf�� .  Based on this relation and ( );p ε a��  we can define an improper prior for the image 

f . This prior is given by: 

( ) ( ) ( )

( ) ( )

4 T1 8

1 1
4 1 8 T

1 1

; exp 0.5

             = exp 0.5

N
k
i

k i
N

k k k k
i

k i

p a

a

= =

= =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∝ −

−

∏∏

∏∏

f a Qf AQf

Q f A Q f

� � ��
.                      (4.3) 

This prior is termed improper since it is not scaled to integrate to 1. For a proper Gaussian the 

normalizing constant as a function of the spatially varying variances k
ia  cannot be of the form 

in Eq. (4.3), since Q�  is not a square matrix, 

{ } ( )
1

4 8

1 1

N
T k

i
k i

Det C α
= =

≠ ∏∏Q AQ� � � , 

 where C is a constant, even though A�  is diagonal. However, improper priors are used on a 

routinely basis with success in Bayesian modeling [13]. More specifically, the prior in 

equation (4.3) is obtained by assuming that all the elements of the diagonal matrix A�  are 

equal to their geometric mean 
1/44

1 1

NN
n
i

i k

α
= =

⎛ ⎞
⎜ ⎟
⎝ ⎠
∏∏ . This implies, because 
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( )
4 T

1

T k k k

k=

= ∑Q AQ Q A Q� � �  is a N N×  matrix, that { }( )
1 841 2

1 1

det
N

T n
i

i k

α
= =

⎛ ⎞
∝ ⎜ ⎟
⎝ ⎠
∏∏Q AQ� � � . This 

assumption results in the improper prior in Eq. (4.3) and leads to tractable calculations. 

The role of the parameters k
ia  is to capture the directional variation structure of the image. 

More specifically, a large variance (small k
ia ) indicates the presence of a large variation along 

the direction of the difference, in other words an edge perpendicular to this direction. The 

introduction of the spatially varying k
ia  scales down the differences of adjacent pixels in 

regions of image discontinuities. As a result this prior maintains edges and suppresses noise in 

smooth areas of the image. This principle is identical to the one that motivated the use of the 

binary (0 or 1) line process idea; see for example [61], [20], [72], [74] and [92]. However, 

since the values of k
ia  are continuous our model can be considered as generalization of the 

MRF model with the on/off binary line process.  

The drawback of the proposed prior is that it introduces 4N  parameters k
ia  that have to be 

estimated from N  observations. This is clearly not a desirable situation from an estimation 

point of view.  For this purpose we employ the Bayesian paradigm and consider k
ia  as random 

variables (instead of parameters) and introduce Gamma hyper-priors for them. In the case of a 

stationary model where all k
ia ’s are equal the over parameterization problem does not exist 

and it is rather straightforward to obtain good estimates for the unknown parameters using 

even maximum likelihood (ML). 

The rationale for using a Gamma prior in the non stationary case is threefold. First, it is 

“conjugate” for the variance of a Gaussian and facilitates analysis of the Bayesian model [12]. 

Second, similar hierarchical models have been used successfully in Bayesian formulations of 

other statistical learning problems and produce sparse representations; see for example [128] 

and [132]. Sparse local differences encouraged by this model are a good model for image 

edges which are overall much less than the pixels in the image. Finally, as we shall see in 

what follows it produces update equations for k
ia ’s that were previously derived empirically. 

We consider the following parameterization for the Gamma hyper-prior:  

( ) ( ) ( ){ }
2

2; , exp 2 ,
kl

k k k
i k k i k k ip a m l a m l a

−

∝ − −                                 (4.4)  
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For such a representation the mean and variance of Gamma are given by 

( )( ) 12 2k
i kk kE a l m l −

= −⎡ ⎤⎣ ⎦ , and ( )( ) 1222 2k
i k k kVar a l m l

−
⎡ ⎤ = −⎣ ⎦ respectively, see [92] and [60]. 

This representation is used because the value of the parameter kl  can be also interpreted as the 

level of confidence to the prior knowledge provided by the Gamma hyper prior. More 

specifically, as kl →∞ , ( ) 12k
i kE ma −

→⎡ ⎤⎣ ⎦  and 0k
iVar a →⎡ ⎤⎣ ⎦ . In other words, the prior 

becomes very informative and restrictive resulting in ( ) 12k
i kma i−= ∀ . This also implies that 

the image model becomes stationary. In contrast, when 2kl →  then both k
iE a⎡ ⎤ →∞⎣ ⎦  and 

k
iVar a⎡ ⎤ →∞⎣ ⎦ , thus the prior becomes uninformative and does not influence at all the values 

of the k
ia ’s. In other words, the k

ia ’s are free from the moderating influence of the prior and 

are allowed to “vary wildly” following the data. In such case the image model becomes 

“highly non stationary”. As a result, the value of the parameter kl  can be also viewed as a way 

to adjust for the degree of non stationarity of the image model. 

The graphical model corresponding to the observations generation mechanism is shown in 

Figure 4.1 below. Random variables are represented as ellipses and parameters of the 

distribution of the random variables as rectangles. The variables a�  and f  are hidden, since 

they are not observed and relate the parameters with the observations.  In the MAP approach, 

point estimates are obtained for a�  and f . In the Bayesian approach, instead of using point 

estimates for a� , their average influence is taken into consideration by integrating them out 

(marginalization), therefore point estimates are used only for f .  

 

 

  

 

 

 

 

Figure 4.1: The graphical model of the observations. 
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4.3  Maximum a posteriori (MAP) estimation 

At first we propose a MAP approach to infer a�  and f . This is based on maximization of the 

posterior probability. Thus we have:  

( ) ( ) ( ) ( ) ( ), | ; , , , , ; , , | , ; | ; ; ,p p p p pβ β β∝ =f a g m l g f a m l g f a f a a m l� � � � � , 

where:  

[ ] [ ]T T
1 2 3 4 1 2 3 4,, , , , , ,m m m m l l l l= =m l . 

Maximizing the quantity ( ), , ; , ,p βg f a m l�  with respect to f  and a�  is equivalent to 

minimizing the negative logarithm 

( ) ( ) ( ) ( )
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, | ; , , log , , ; , , log | , ; log |

1 1log ; , , | ; , , log log
2 2 8

21 log 2 .
2 2

MAP

N
k
i

k i
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i k k i
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l a m l a

β β β

β β β
= =

= == = = =

∝ − = − − −

⇒ = − + − +

−⎛ ⎞+ − + −∑ ∑⎜ ⎟
⎝ ⎠

∑∑

∑∑ ∑ ∑

f a g m l g f a m l g f a f a

a m l f a g m l Hf - g

Q f A Q f

� � � �

� �  (4.5) 

To minimize the above function with respect to f  and a� , we adopt an iterative scheme that 

sets alternatively the gradient of f  and a�  equal to zero. Setting ( ), | ; , , 0MAPJ β∇ =a f a g m l� �  

yields 

( )
( )

( ) ( )

*

2

1 1 2
8 2

1 2
2

k
k
i

k
i k k

l
a

m lε

⎛ ⎞+ −⎜ ⎟
⎝ ⎠=

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

.                                  (4.6) 

Setting ( ), | ; , , 0MAPJ β∇ =f f a g m l�  yields: 

( )( ) 14 T* T 1 T

1

k k k

k
β

−
−

=
= + ∑f H H Q A Q H g .                        (4.7) 

However, equation (4.7) cannot be solved in closed form since analytical inversion of 

( )4 TT 1

1

k k k

k
β −

=

⎡ ⎤+ ∑⎢ ⎥⎣ ⎦
H H Q A Q  is not possible due to the non-circulant nature of matrices kA . 

Thus, we resort to a numerical solution using a conjugate gradient algorithm. The proposed 

MAP algorithm iterates between equations (4.6) and (4.7) till convergence, i.e. image estimate 

doesn’t differ much from the estimate of the previous iteration.  
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It is interesting to point out that a formula similar to Eq. (4.6) was used in previous works to 

compute spatially varying regularization weights. Such a formula was derived based on 

heuristic arguments and empirical observations, see  [76], [78], [80] and [84].  

In addition, the observation of the previous section that the parameters kl  control the degree 

of non-stationarity of the model can be verified from Eq. (4.6), the MAP estimates of the 

( )k
ia . More specifically, when kl →∞ , ( ) ( )* 12k

i ka m i−= ∀ , and the image model becomes 

stationary. In contrast, when 2kl → , ( ) ( )( ) 1* 2k k
i ia iε

−

= ∀ , thus the ( )k
ia

∗
’s are completely 

unaffected from the moderating effect of the Gamma hyper-prior and only follow the data. 

For example, in smooth areas of the image where the local residual in the denominator of Eq. 

(4.6) tend to zero, it holds that ( )k
ia

∗
→∞ .  

 

4.4  Bayesian algorithm 

In the Bayesian analysis of the proposed model, hidden variables are marginalized while 

parameters are estimated [12]. In our case, as explained in section 4.2, f  and a�  are 

considered “hidden” (latent) variables, while m , l  and β  are the unknown parameters. In the 

Bayesian inference paradigm, hidden variables are marginalized while parameters are 

estimated by maximizing the likelihood ( ); , ,p m lβg  of the observations g : 

              ( ; , , ) ( ; , , ) ( | ; ) ( | ) ( ; , )p m l p m l d d p p p m l d dβ β β= =∫ ∫ ∫ ∫g g,f,a f a g f f a a f a� � � � .     (4.8) 

The exact evaluation of this Bayesian integral is not possible since we cannot integrate in 

closed form with respect to both f  and a� .  Instead we marginalize in closed form only with 

respect to a� . We chose to marginalize a�  for two reasons. First, because the maximization 

with respect to f  that follows is tractable.  Second, because this approach requires explicit 

computation of f  as part of the Bayesian algorithm and we do not have to compute it 

separately. More specifically, we have: 

( ) ( ) ( ), ; , , | ; ,p p p dβ = ∫g f m l f a a m l a� � � .                             (4.9) 

The calculation of the integral can be made as follows 
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Observing the integrand in the above expression it is easy to notice it is of the form a bxx e− , 

i.e., it is similar to a Gamma PDF. Thus its integral is given by: 
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Replacing the integral of Eq. (4.10) in Eq. (4.9) gives: 
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      (4.11) 

Thus, the image is estimated by its value at the mode of ( ), ; , ,p βg f m l . To compute the 

mode, we minimize ( ), ; , ,BJ m lβg f  with respect to f , 

( )arg min , ; , ,BJ β=*

f
f g f m l , 

where: 
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The mode ∗f  is found by an iterative modified Newton algorithm with the following update 

equation 

21 1( ) ( )B B
k k k k kJ Jμ+ −∇ ∇= −

f f
f f f f ,                           (4.12) 
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where BJ∇
f

 and 2
BJ∇

f
 denote the Gradient and the Hessian matrix of the BJ  function 

respectively (with respect to f). The gradient and the Hessian can be computed analytically, 

and are given by: 
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and the matrix kΛ  is diagonal with diagonal elements ( )k iλ  equal to: 

( )
( ) ( )( )

( ) 2

2

1 , 1,...,12
2

k k
k

i i i N
m l i

λ = − =⎡ ⎤⎣ ⎦
⎡ ⎤− + ⎣ ⎦

v
Q f

. 

To find the step kμ  in (4.12) we adopted a backtracking line search method [97].  

 

4.5  Numerical experiments 

In this section we present numerical experiments to evaluate our algorithms. First, we 

compare the proposed methods with previous methods in terms of the quality of the images 

provided. Second, we compare the proposed MAP and Bayesian algorithms in terms of the 

bias and variance of the inferred restored images.  

The metrics used to quantify the quality of the degraded images, the noise levels in our 

degraded images and the quality of our restoration results are the peak signal to noise ratio 

(PSNR), the signal to noise ratio (SNR), and the improvement in signal to noise ratio (ISNR), 

respectively. These metrics are defined as: 

( )2

10 2 1

2 2

10 10 2
255

,  ,  and 10log 10log 10log
ˆ

N
N

PSNR SNR ISNR
β −

−
= = =

−f - g

f f g

f f
,  

where, 1β − , ,f  f̂  and g , are the noise variance, the original, restored and degraded images, 

respectively.  
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In our experiments we used the well-known 256 256×  “Lena” image, shown in Figure 4.2a. 

The image was blurred by a uniform 7 7×  PSF (normalized to sum to 1) and white Gaussian 

noise was added such that SNR=25,36dB. The degraded image is shown in Figure 4.2b with 

corresponding PSNR 27.08 and 23.22dB, respectively.  

In order to compare the proposed approaches with previous ones we implemented: (i) the 

classical Wiener filter in the DFT domain [70] using the degraded image to estimate the 

image power spectrum assuming that the additive noise variance is known. The resulting 

image is shown in Figure 4.2c. (ii) The classical Wiener filter in the DFT domain [70] using 

the original image to estimate the image power spectrum and assuming that the additive noise 

variance is known. Clearly this is not a realistic scenario; however, it compares our algorithm 

to the performance limit of the Wiener filter. The resulting image is shown in Figure 4.2d. (iii) 

The Bayesian approach using a stationary SAR prior [92]. The corresponding image and ISNR 

are shown in Figure 4.2e.  (iv) The iterative constrained least squares (CLS) approach with 

spatially adaptive regularization [76], [95], [92], [80]. The optimal parameters for this model 

were found in a trial and error fashion. The resulting image is shown in Figure 4.2f. (v) The 

non stationary CGMRF based approach that uses a binary line process to model the image 

edges in [92]. The resulting image is shown in Figure 4.2g. 

To facilitate learning the proposed image model we used the 1β −  (additive noise variance) 

and equal km  that was obtained by learning a stationary SAR model assuming a Laplacian 

operator Q  for the residuals [92]. The parameters km  were obtained as ( )1/ 2k STATm a=  

where STATa   the image model parameter of the stationary SAR model.  The parameters kl  

were selected to be equal to a value denoted by .l  Since, as explained previously they can be 

used to adjust, the degree of non-stationarity of the image model, values in the interval 

[ ]2.1 2.5l = −  were found using trial and error to provide the best restored images based on 

both visual criteria and the ISNR metric. Since both algorithms run very fast (1-3 minutes) 

and only one parameter is adjusted the trial and error procedure is feasible.   

In order to test the performance limits of the proposed model we implemented the MAP 

approach estimating the model parameters from the original image. The resulting image is 

shown in Figure 4.2h.  The resulting restored images using the proposed methods where all 

the unknowns are estimated from the observations are shown in Figure 4.2i  for MAP and 
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Figure 4.2j for the Bayesian approach. From the restored images shown in these figures is 

clear that the proposed non stationary restoration algorithms provide both higher ISNR and 

visually more pleasing results than all previous stationary and non-stationary based methods. 

It is interesting to point out that even when the original image is used to estimate the image 

statistics, as in the case of the Wiener filter, both proposed approaches outperformed it. 

We also tested the proposed algorithms with wavelet based approaches with respect to the 

ISNR metric using the three experiments described in [55]. Although the ISNR metric is not 

always an accurate measure of visual impression it is an objective metric of estimation 

performance. Our MAP algorithm for the first and third set of experiments in [55] gave better 

ISNR, as shown in Tables 4.1 and 4.2, respectively. In the first experiment the 256 256×  

“Cameraman” image was degraded by additive noise with β-1=0.308 or SNR= 38.64 dB, and 

uniform 9x9 blur shown in Figure 4.3a.  We also show and provide ISNRs for the following 

cases: i) the stationary restored image assuming an SAR prior [92], in Figure 4.3b. ii) The 

restored image obtained by the CLS spatially adaptive approach, [76] and [78], in Figure 4.3c 

and iii) the restored image by the proposed MAP algorithm in Figure 4.3d. In the third 

experiment described in [55] the 512 512×  “Lena” image was degraded 1 49β − =  or 

SNR=16.62 dB, and separable 5x5 blur implemented by blurring with a PSF given by [1, 4, 6, 

4, 1]/16 in each direction. For the second experiment in [55] the ISNR obtained by the 

proposed here MAP algorithm was approximately equal to the best one obtained by the 

methods presented in [55]. In all experiments the same termination criterion was used as in 

[55]. The proposed Bayesian algorithm in this set of experiments was not as competitive and 

gave slightly lower ISNR than the best case of the results reported in [55].  

Finally, in order to compare the properties of the proposed MAP and Bayesian algorithms we 

considered two metrics, the bias (BIAS) and the variance (VAR) of the restored images. These 

metrics were estimated by Monte-Carlo simulations using the following equations 

,BIAS = −f f  
2

1

1 ˆ ,
M

k
k

VAR
M =

= −∑ f f  with 
1

1 ˆ ,
M

k
kM =

= ∑f f   

where, f  is the original and ˆ
kf  for 1,..., ,k M=  the restored image, obtained from 10M =  

different restoration runs in which the degraded images were corrupted with different noise 

realizations. The results for three images (in addition to “Lena” and “Cameraman” a 

256 256×  segment of the “Barbara” image was also used) at 3 different noise levels are 
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shown in Tables 4.3 and 4.4, respectively. The blur used here was circular Gaussian shaped 

with shape parameter 2 2σ =  (normalized to mean equal to 1).  

The above experiments demonstrate that the Bayesian approach has a lower variance than the 

MAP approach, as expected since it marginalizes the directional variances, and does not use 

point estimates. However, in terms of bias, both MAP and Bayesian algorithms give 

comparable results. 

In terms of computational cost both proposed algorithms were very fast. Typically, our 

algorithms required about 20 iterations to converge using as criterion the change of the 

likelihood between successive iterations to be less than 0.1%. Our algorithms were 

implemented in MATLAB and take about 1-4 minutes on a Pentium 4 at 2.8 GHz personal 

computer for 256 256×  images. In contrast, a C implementation of the deterministic 

relaxation MAP algorithm in [92] required 10-15 minutes on a Xeon 3.2 GHz machine. The 

constrained least squares method with spatially adaptive constraints [76], [95], [92], [80] was 

implemented using a conjugate gradient algorithm and is of the same computational 

complexity, given that the correct parameters have been found, to the proposed methods. The 

Wiener filter and the Bayesian approach with the stationary SAR model are much faster since 

all calculations are done in the DFT domain and require 5-10” using MATLAB on a Pentium 

4 at 2.8 GHz personal computer. 

 

4.6  Conclusions and extensions 

The power of the proposed image prior model was clearly demonstrated with the MAP 

approach when the original image was used to estimate the model parameters.  Apart from the 

very high visual quality of the restored images, shown in Figure 4.2h , it outperforms in terms 

of ISNR by almost 5dB the one obtained by the Wiener filter shown in Figure 4.2d, when the 

original image was also used to estimate the power spectrum.  Furthermore, the proposed 

methods compared favorably with recent CGMRF and wavelet based methods [92] and [55], 

respectively.  

Since the parameters kl  of the proposed hyperpriors can be viewed as quantifying the degree 

of non-stationarity of the image model, developing an algorithm to estimate the parameters in 

a rigorous manner seems a natural extension to this work. Thus, a more efficient algorithm 

than the Bayesian algorithm presented in this chapter can be derived, using for example the 
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variational methodology for approximate Bayesian inference and estimate the parameters by 

maximizing (approximately) the marginal likelihood, obtained by integrating with respect to 

both the image and variances. In contrast, the proposed Bayesian algorithm of this chapter 

maximizes a likelihood obtained by marginalizing the variances and not the image. In Chapter 

5, we focus on estimating the model parameters using the VB methodology presented in 

Chapter 3.  

Finally, the four directional difference operators may not be able to capture the salient 

features of the image, and hence, additional operators should be included to the model. To this 

end, filters from known transforms, such as the wavelet discrete transform and other filter 

banks can be incorporated as operators.  

 

Table 4.1: ISNR comparisons with the experiments in Table I of [55]. 

Method ISNR 

Proposed MAP approach, l=2.1 8.78dB 

Rule (22), UDWT [55] 7.47dB 

Rule (22), Random shifts [55] 7.59dB 

Modified Laplacian, UDWT [55] 7.26dB 

Modified Laplacian, random shifts [55] 7.34dB 

Shoft-threshold, UDWT [55] 7.26dB 

Shoft-threshold, random shifts [55] 6.33dB 

Result by Neelamani et al [100]  7.3dB 

Result by Banham and Katsaggelos [9]  6.7dB 

 

 

Table 4.2: ISNR comparison with experiments in Table III of [55]. 
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Method ISNR 

Proposed MAP approach, l=2.1,  3.63dB 

Rule (22), UDWT [55] 2.94dB 

Rule (22), random shifts [55] 1.71dB 

Modified Laplacian, UDWT [55] 2.75dB 

Modified Laplacian, random shifts [55] 1.77dB 

Shoft-threshold, UDWT [55] 2.75dB 

Shoft-threshold, random shifts [55]  1.61dB 

Best result by Liu and Moulin [88]  1.078dB 

 

 

Table 4.3:  Bias metric for the MAP and the Bayesian algorithms. 

Noise Level SNR=65.34 dB SNR =25.36 dB SNR =14.91 dB 

Algorithm Bayesian MAP Bayesian MAP Bayesian MAP 

Cameraman 9.36 9.15 12.23 11.57 15.22 14.08 

Lena 5.31 5.31 6.92 7.44 9.29 10.71 

Barbara 5.33 6.97 13.42 11.94 16.42 14.25 

 

 

 

Table 4.4:  Variance metric for the MAP and the Bayesian algorithms. 
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Noise Level SNR =65.34 dB SNR =25.36 dB SNR =14.91 dB 

Algorithm Bayesian MAP Bayesian MAP Bayesian MAP 

Cameraman 1.77e-004 1.77e-004 1.64e-004 3.60e-004 2.37e-004 6.49e-004

Lena 6.47e-005 9.16e-005 1.04e-004 1.38e-004 1.71e-004 5.25e-004

Barbara 1.69e-004 2.89e-004 1.62e-004 6.02e-004 1.88e-004 8.95e-004

 

   

Figure 4.2a: Original “Lena” image. Figure 4.2b: Degraded “Lena” image with 

7 7×  uniform blur and additive noise 

SNR=25.36 dB. 
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Figure 4.2c: Wiener filter restoration, 

ISNR = 3.2 dB. 

 

Figure 4.2d: “Optimal” Wiener filter 

restoration, ISNR = 4.40 dB. 

Figure 4.2e: Stationary restoration, ISNR= 

4.25 dB. 

Figure 4.2f: CLS method (adaptive 

smoothness constraint) restoration, 

θ=1000, a=0.01, ISNR = 4.65 dB. 
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Figure 4.2g: Restoration with GMRF 

algorithm [92] , ISNR= 3.46 dB. 

 

Figure 4.2h: MAP “optimal” non 

stationary restoration, ISNR=10.43 dB, 

l=2.01. 

Figure 4.2i: MAP non stationary 

restoration, ISNR= 5.63 dB, l=2.2. 

 

Figure 4.2j: Bayesian non stationary 

restoration, ISNR=5.22 dB, l=2.2. 

Figure 4.2: Experiments with ‘Lena’ image, Gaussian blur and SNR=25,36dB. 
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Figure 4.3a: Degraded “cameraman” 

image with 9 9×  uniform blur and additive 

noise SNR=38.64 dB,             (β-1=0.308). 

Figure 4.3b: Stationary restoration, ISNR 

=6.44 dB. 

Figure 4.3c: CLS method (adaptive 

smoothness constraint) restoration, θ=0.05, 

a=0.003, ISNR =7.22 dB. 

Figure 4.3d: MAP non stationary 

restoration, ISNR= 8.78 dB, l=2.1. 

 

Figure 4.3: Experiments with ‘Cameraman’ image, uniform blur and SNR= 38.64 dB. 
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 CHAPTER 5. BAYESIAN IMAGE RESTORATION 

WITH A PRIOR BASED ON A PRODUCT OF t-

DISTRIBUTIONS  

5.1. Introduction 

5.2. Imaging and image model 

5.3. Variational Inference 

5.4. Computational implementation 

5.5. Experiments 

5.6. Conclusions and suggestions for improvement 

 

In this chapter we extend the image prior introduced in Chapter 4 and propose a variational 

Bayesian restoration algorithm that estimates the parameters of the image model and bypasses 

some major difficulties of the algorithms proposed in Chapter 4. The prior is extended to 

involve an arbitrary number of convolutional operators, and not just the directional 

differences operators. Thus, the image prior is defined by assuming Student’s-t densities on 

the outputs of local convolutional filters. The resulting prior is in product form similar to the 

prior of Chapter 4. Priors based on products have been recognized to offer many advantages 

because they allow for simultaneous enforcement of multiple constraints. However, they are 

inconvenient for Bayesian inference because it is hard to find their normalization constant in 

closed form. In this chapter, a new Bayesian algorithm is proposed for the image restoration 

problem which bypasses this difficulty. Another difficulty is the maximization of the marginal 

likelihood which is intractable to obtain. This difficulty is bypassed by employing the 

variational methodology for approximate inference, with a constrained expectation step, 
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which is used to infer the restored image. Numerical experiments are shown that compare this 

methodology to previous ones and demonstrate its advantages. [26]. 

 

5.1  Introduction 

Product-based image priors have been presented in section 443.6. Such priors combine in 

product form multiple probabilistic models. Each individual model gives high probability to 

data vectors that satisfy just one constraint. Vectors that satisfy only this constraint but violate 

others are ruled out by their low probability under the other terms of the product model. 

However, such priors are usually learned using a large training set of images and stochastic 

sampling methods and used in a number of image recovery problems based on “empirical” 

maximum a posteriori approaches and gradient descent minimization [114]. This differs from 

the herein proposed approach where the product prior is learnt only from the observations. 

The term “empirical” is used because the PoE priors used are not normalized; thus, the 

parameters of the recovery algorithm cannot be estimated or inferred rigorously but are 

adjusted rather empirically.  

Extending the work in Chapter 4, we propose in this chapter a new Bayesian inference 

framework for image deconvolution using a prior in product form. This prior assumes that the 

outputs of local high-pass filters are Student’s-t distributed.  The main contribution of this 

chapter is a Bayesian inference methodology that bypasses the difficulty of evaluating the 

normalization constant of product type priors. The methodology is based on a constrained 

variational approximation that uses the outputs of all the local high pass filters to produce an 

estimate of the original image. More specifically, a constrained expectation step is used to 

capture the relationship of the filter outputs of the prior to the original image. In this manner 

the use of improper priors is avoided and all the parameters of the prior model are estimated 

from the data. Thus, we avoid the “trial and error” parameter “tweaking” required in Chapter 

4 and other state-of-the-art recently proposed restoration algorithms, which makes their use 

difficult for non-experts. Furthermore, the proposed restoration algorithm provides 

competitive performance compared to other methods.  

In this chapter we also propose an efficient Lanczos-based computational framework tailored 

to the calculations required in our Bayesian algorithm. More specifically, a very large linear 
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system Ax b=  is solved iteratively and the diagonal elements of a matrix 1tQ A Q−  are 

simultaneously estimated in an efficient manner.  

The rest of this paper is organized as follows. In section 5.2 the imaging and image models 

are defined. In section 5.3 the variational restoration algorithm is derived. In section 5.4 we 

present the computational methodology used to implement our algorithm, while in section 5.5 

numerical experiments are demonstrated. Finally, section 5.6 contains conclusions and 

directions for future work. 

 

5.2  Imaging and Image Model 

A linear imaging model is assumed. For convenience but without loss of generality, we use 

one-dimensional notation. The 1N ×  vector g  represents the observed degraded image 

obtained by 

g = Hf + n ,                                                        (5.1) 

where f  is the (unknown) original image, H  is an N N×  known convolution matrix and n  is 

additive white noise. We assume Gaussian statistics for the noise given by  ( )1~ ,N β −n 0 I  

where 0  is an 1N ×  vector of zeros, I  is the N N×  identity matrix and β  is the noise 

precision (inverse variance), which is assumed unknown. 

Aiming at the definition of the image prior we first define P operators kQ  for 1,...,k P=  and 

use them to define P filter outputs:  

k kε = Q f , 1,...,k P= ,                                                   (5.2) 

where ( ) ( ) ( )1 , 2 ,...,
T

k k k k Nε ε ε= ⎡ ⎤⎣ ⎦ε . The matrices kQ  representing the operators are of size 

N N×  and the filter outputs kε  are of size 1N × . These operators are zero mean 

convolutional high-pass filters and each one of them is used to impose a particular constraint 

on the restored image. 

We assume that ( )k iε  for 1,...,i N=  are i.i.d zero mean Student’s-t distributed, with 

parameters kλ  and kν : 

( ) ( )( ),~ ;0, , , ,k k k ki St i i kε ε λ ν ∀ ∀                              (5.3) 
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where   

( ) ( )
( )

11/2
2

2
,

/ 2 1/ 2
;0, 1 .

/ 2

k

k k k
k k

k k k

St x x

ν

ν λ λλ ν
ν πν ν

+
−

Γ + ⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟Γ ⎝ ⎠ ⎝ ⎠

 

The Student’s-t implies a two-level generation process [19]. More specifically, ( )ka i  is first 

drawn from a Gamma distribution, ( )( ) ( ) ; ,
2 2
k k

k kp a i Gamma a i ν ν⎛ ⎞= ⎜ ⎟
⎝ ⎠

. Then, the ( )k iε  is 

generated from a zero-mean Normal distribution with precision ( )k ka iλ , according to 

( ) ( )( ) ( ) ( )( )( )1
| ;0,k k k k kp i a i N i a iε ε λ

−
= .  The probability density function of Eq. (5.3) can 

be written as an integral: 

( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ),

0

;0, |k k k k k k k kp i St i p i a i p a i da iε ε λ ν ε
+∞

= = ∫ . 

The variables ( )ka i  are called “hidden” (latent) because they are not apparent in Eq. (5.3), 

since they have been integrated out. There are two extremes in this generative model, 

depending on the value of the “degree of freedom” parameter kν . As this parameter goes to 

infinity, the pdf from which the ( )ka i ’s are drawn has its mass concentrated around 1. This in 

turn reduces the Student’s-t to a Normal distribution, because all ( )k iε  are drawn from the 

same Normal with precision kλ , since ( ) 1ka i = . The other extreme is when 0kν →  and the 

prior becomes uninformative. In general, for small values of kν  the probability mass of the 

Student’s-t pdf is spread, rendering the Student’s-t more “heavy-tailed”. 

The use of heavy-tailed priors on high-pass filters of the image is a characteristic of most 

modern “edge preserving” image priors used for regularization in a stochastic setting; see for 

example [21], [117], [104], [8], [66], [114] and [130]. The main idea behind this assumption 

is that at the few edge areas of an image the filter outputs ( )k iε  will be large in absolute 

value. Thus, it is important to model them with a heavy-tailed pdf in order to allow the prior 

to encourage formation of edges. The downside of many such models is that most heavy-

tailed pdfs are not amenable to Bayesian inference. For example the Generalized Gaussian 

and the Alpha Stable pdfs can be also heavy tailed. However, unlike the Student’s-t where 
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Bayesian inference is possible [89], moment-based estimators have to be used for their 

parameters; see for example [101] and [42]. 

We now define the following notation for the variables ( )ka i . We denote by [ ]T1,..., P=a a a�  a 

1PN ×  vector, where ( ) ( ) ( )1 , 2 ,...,k k k ka a a N= ⎡ ⎤⎣ ⎦a . Also, for the filter outputs we use the 

notation ( ) ( ) ( )
TT T T

,1 2, ..., P
⎡ ⎤= ⎣ ⎦ε ε ε ε� . We assume that the filter outputs are independent not 

only in each pixel location but also in each direction. This assumption makes subsequent 

calculations tractable. Thus, the cumulative density for the filter outputs conditioned on a�  is 

( ) ( )
1

| |
P

k k
k

p p
=

= ∏ε a ε a�� ,                                  (5.4) 

where ( ) ( )( )1| ,k k k kp N λ −=ε a 0 A  and kA  is a diagonal matrix with elements the 

components of the vector ka . 

At this point, the marginal distribution ( )p f  yearns for a closed form, using the relation 

between the image and the filter outputs, Eq. (5.2). However, this prior is analytically 

intractable because one cannot find in closed form its normalization constant. This problem 

stems from the fact that it is not possible to find the eigenvalues of the matrix T

1

P

k k k
k=
∑Q A Q  

because it is very large and the product T
k k kQ A Q  does not have a structure that is amenable to 

efficient eigenvalue computation. One contribution of this work is that we bypass this 

difficulty by exploiting the commuting property of convolutional operators and derive a 

constrained variational algorithm for approximate Bayesian inference. This algorithm is 

described in detail next. 

 

5.3  Variational Inference 

Since, as explained above, it is difficult to infer a solution for the image from the Bayesian 

model previously defined, a transformed imaging model is introduced in section 6.3.1. 

 

5.3.1 The Variational Algorithm for Equivalent Imaging Model 
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The imaging model of Eq. (2.1) can be written as 

k k kQ g = Q Hf + Q n  for 1,...,k P= .                                (5.5) 

Setting k k=y Q g  for 1,...,k P=  and using Eq. (5.2), we can utilize the commuting property 

of the convolutional operators and write the imaging model as  

k k ky = Hε + n  for 1,...,k P= ,                                            (5.6) 

where ky  are the observations of the newly defined model and the additive noise is  

( )1 T~ 0,k k kN β −n Q Q . 

In this model we assume that the filter outputs kε  of our filters kQ  are the unknowns. Thus, 

the algorithm will infer ε�  instead of f . In this manner we bypass the need to define a prior 

for f . For this reason, we must initially define the posterior of the observations y�  given ε� . 

This is equal to the product of P Normal distributions, since the observations are assumed 

indepedent: 

( ) ( )
1

| |
P

k k
k

p p
=

=∏y ε y ε� � , where ( ) ( ) ( )
T

1 2, ,...., P
Τ Τ Τ⎡ ⎤= ⎣ ⎦y y y y�  and 

( ) ( )( )1T| ,k k k k kp N β
−

y ε = Hε Q Q  for 1,...,k P= . 

The prior for the residuals has been already defined in Eq. (5.3).  

Working in the Bayesian framework, we define as latent (hidden) variables the residuals ε�  

and the inverse variances a� . Hence, the complete data likelihood is 

( ) ( ) ( ) ( ), , ; | ; | ; ;p p p pθ θ θ θ=y ε a y ε ε a a� � �� � � � � , 

where [ ]T1 1, ,..., , ,...,P Pθ β ν ν λ λ= . 

Estimation of the model parameters ideally could be obtained through maximization of the 

marginal distribution of the observations ( );p θy� : 

( )ˆ arg max , , ;p d d
θ

θ θ= ∫ ∫ y ε a ε a� �� � � .                                  (5.7) 
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However, in the present case this marginalization is not possible. Furthermore, since the 

posterior of the hidden variables given the observations ( ), |p ε a y�� �  is not known explicitly, 

inference via the Expectation-Maximization (EM) algorithm is not possible [10].  

For this reason, we resort to the variational methodology  [19], [10] and [87].  According to 

this methodology, we introduce a lower bound on the logarithm of the marginal likelihood, 

which is actually the expectation of the logarithm of the complete data likelihood with respect 

to an auxiliary function of the hidden variables ( ),q ε a��  minus the entropy of ( ),q ε a�� : 

( ) ( )log ; ( , ),p L qθ θ≥y ε a�� �  

( ) ( ) ( ) ( ) ( )( , ), , log , , ; , log , .L q q p d d q q d dθ θ≡ −∫ ∫ε a ε a y ε a ε a ε a ε a ε a� � � � � � �� � � � � � � �   (5.8) 

The inequality holds because the functional L  is also equal to the logarithm of the marginal 

likelihood minus the always non-negative Kullback-Leibler divergence between the true 

posterior distribution ( ), | ;p θε a y�� �  of the hidden variables and ( ),q ε a�� ; see for example [19]. 

Equality holds in Eq. (5.8) when ( ) ( ), , | ;q p θ=ε a ε a y� �� � � , or equivalently  

 ( ) ( ) ( )
1 1

, , , | ;
P P

k k k k k k
k k

q q p θ
= =

= =∏ ∏ε a ε a ε a y�� ,                          (5.9) 

because in this case the Kullback-Leibler divergence becomes zero. 

In the variational Bayesian framework, instead of maximizing the unobtainable marginal 

likelihood, we maximize the bound L , Eq. (5.8), with respect to both ( ),q ε a��  and θ  in the 

variational E and M steps, respectively. In other words, the unknown posterior ( ), | ;p θε a y�� �  is 

approximated by ( ),q ε a�� . One difficulty in this approach is that the maximization with respect 

to ( ),q ε a��  is hard to obtain in closed form, although, we can bypass it by using the so-called 

Mean Field approximation [10]. According to this approximation, if we assume that 

( ) ( ) ( ),k k k kq q q=ε a ε a , for 1,...,k P= ,                         (5.10) 

then unconstrained optimization of the functional ( )( , ),L q θε a��  with respect to all ( )kq ε  

yields P Normal distributions: 



 

 74 

( ) ( ), ,T
k k k k k kq N=ε Q μ Q Σ Q  for 1,...,k P= ,                                   (5.11)  

with parameters T
k kβ=μ Σ H g  and ( ) 1T T

k k k k kβ λ
−

= +Σ H H Q A Q . 

The difficulty that we encounter with the above posteriors, which were obtained by 

unconstrained optimization, is that they do not provide a method to infer f  from kε , and they 

do not capture their common origin from f , Eq. (5.2).  

In order to bypass this difficulty we make the assumption that each of the posteriors ( )kq ε  is 

Normal; however, it is constrained so that it captures the common origin of all kε  from f , as 

dictated by Eq. (5.2). In other words we assume that 

  ( ) ( )T; , , ,k k k kq N=ε m R Q m Q RQ  for 1,...,k P= ,                    (5.12) 

where m  and R  are actually parameters representing the mean and covariance of the image 

f , from which all kε  originate. In other words: 

[ ] [ ]k k kE E= =ε Q f Q m , [ ] [ ] T T
k k k k kCov Cov= =ε Q f Q Q RQ . 

Thus, m  and R  are parameters that are used in our model and estimated during the 

restoration algorithm. Actually, the restored image is taken to be the estimate of m . 

 

5.3.2 The Variational Update Equations  

 The general variational algorithm using the Mean Field approximation [10] for approximate 

inference of a statistical model with y  as observation, n hidden variables [ ]1,..., n=x x x  and 

parameters denoted by θ , aims to maximize the bound 

( ) ( ) ( ) ( ) ( )
1 1

( ), log , ; log
n n

i i i i i i
i i

L q q p d q q dθ θ
= =

≡ −∏ ∏∫ ∫x x y x x x x x . 

This is achieved by iterating between the two following steps, where ( )t  is the iteration 

index: 

( ) ( )
( )

( ) ( )( )1VE-step : arg max , , 1,..., ,i

i

t t

q
q L q i nθ+ = =

x
x x  
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( ) ( ) ( ) ( )( )1 1VM-step : arg max , .t tL q
θ

θ θ+ +=x x  

Thus, in the E-step of the variational algorithm, optimization of the functional is performed 

with respect to the auxiliary functions. However, in the present case, the functions 

( ) , 1,...,kq k P=ε , are assumed to be Normal distributions with partially common mean and 

covariance; see Eq. (5.12); therefore, this bound is actually a function of the parameters R  

and m  and a functional w.r.t. the auxiliary function ( )q a� . Using Eq.  (5.10), the variational 

bound in our problem becomes 

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 1 2
1

1 1
1 1

, , ; log , , ;

; log ; ,

P

k k
k

P P

k k k k
k k

L q q q p d d

q q q q d d

θ θ θ θ

θ θ

=

= =

=

−

∏∫

∏ ∏∫

a ε a y ε a ε a

ε a ε a ε a

� � �� � �

��
             (5.13) 

where [ ]1 ,θ = R m  and T
2 1 1[ , ,..., , ,..., ]P Pθ β λ λ ν ν= . Thus, in the VE-step of our algorithm the 

bound must be optimized with respect to R , m  and ( )q a� : 

( )
( )

( )( )
1

( 1) ( 1) ( )
1 1 2

,
VE-step : , arg max , ,t t t

q
q L q

θ
θ θ θ+ +

⎡ ⎤⎣ ⎦

⎡ ⎤ =⎣ ⎦
a

a a
�

� � . 

Taking the derivative of L w.r.t to m , R  and ( )q a�   (see Appendix), we find that the bound is 

maximized w.r.t. these parameters when  

( 1) ( ) ( ) Tt t tβ+ =m R H g ,                                                                  (5.14) 

1
( 1) ( ) T T ( )

1

1 ˆ
P

t t t
k k k k

kP
β λ

−
+

=

⎛ ⎞
= +⎜ ⎟
⎝ ⎠

∑R H H Q A Q ,                              (5.15) 

( )( ) ( ) ( )( ) ( )( )2( 1) ( ) ( )1 1; , , , ,
2 2 2 2

t t tk k
k k k k kq a i Gamma a i i i i k iν ν λ+ ⎛ ⎞= + + + ∀ ∀⎜ ⎟

⎝ ⎠
m C , (5.16) 

where ( ) ( )t t
k k=m Q m  and ( ) ( ) Tt t

k k k=C Q R Q . Notice that since each ( )( )1t
kq a i+  is a Gamma pdf 

of the form ( )( ) ( )( )1 ( 1) ( 1) ; ,t t t
k kq a i Gamma a i α β+ + += , its expected value is 

( ) ( )( ) ( ) ( )( ) ( )( )( )1

12( ) ( )1 ,t
k

t t
k k k k k kq a i

a i i i iα ν ν λ
β+

−

= = + + +m C ,   (5.17) 
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where ( )q ⋅
⋅  denotes the expectation w.r.t. an arbitrary distribution ( )q ⋅ . This is used in Eq. 

(5.14) and (5.15), where ( )ˆ t
kA  is a diagonal matrix with elements 

( ) ( )( )
( )

( )
ˆ ( , ) , 1,...,t

k

t
k k q a i

i i a i i N= =A . 

At the variational M-step the bound is maximized with respect to the model parameters: 

( )( )
2

( 1) ( 1) ( 1)
2 1 2VM-step : arg max , ,t t tL q

θ
θ θ θ+ + += a� , 

where ( )( ) ( ) ( ) ( )( 1) ( 1)
1

( 1) ( 1)
1 2 2 ; ,

, , log , , ; t t
t t

q q
L q p

θ
θ θ θ + +

+ + ∝
ε a

a y ε a
��

� �� �  is calculated using the results 

from Eq. (5.14)-(5.17). 

The update for β  is obtained after taking the derivative and equating to zero: 

{ }( ) 12( 1) ( 1) T ( 1)

2

t t tN traceβ
−

+ + += +Hm - g H HR .                       (5.18) 

In the same way the maximum is attained for kλ : 

( )( ) ( ) ( ) ( )( )
( 1) ( 1) ( 1)

( 1)

12

1
,

t t t

t
k

N
k k k ki q a i

N i i i a iλ
+ + +

+

−

=

⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ m C .              (5.19) 

Finally, taking the derivative with respect to kν  and equating to zero, we find the “degrees of 

freedom” parameter of the Student’s-t by solving the equation  

( ) ( )( )( 1) ( 1)
( )

( ) ( )1 1

1 1 1log
2 2t t

N N t
k k kq qi i

a i a i
N

ψ ν+ +
= =

⎛ ⎞− + + −∑ ∑ ⎜ ⎟
⎝ ⎠a a� �

 

( ) 1 1log log 1 0
2 2 2 2

t k k
k

ν νν ψ ⎛ ⎞ ⎛ ⎞⎛ ⎞− + − + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

                               (5.20) 

for kν , where 

( ) ( ) ( )
( )

log
xdx x

dx x
ψ

′Γ
= Γ =

Γ
 

is the digamma function and ( )t
kν   is the value of  kν  at the previous iteration ( )t  used to 

evaluate the expectations in Eq. (5.17) during the VE-step.  
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5.4  Computational Implementation 

In our implementation, the variance of the additive noise is estimated in a preprocessing step 

and is kept fixed. The EM algorithm with a stationary Gaussian prior [94] and one output (the 

Laplacian operator) was used for this purpose. Furthermore, the EM-restored image was used 

to initialize our algorithm. For all experiments, four filter outputs 4P =  were used for the 

prior. We show the magnitude of the frequency responses of these filters in Fig. 5.2. The 

operators 1Q  and 2Q  correspond to the horizontal and vertical first order differences. Thus, 

these filters are used to model the vertical and horizontal image edge structure, respectively. 

The other two operators 3Q  and 4Q  are used to model the diagonal edge component 

contained in the vertical and horizontal edges, respectively. These filters are obtained by 

convolving the previous horizontal and vertical first order differences filters with fan filters 

with vertical and horizontal pass-bands, respectively. In our experiments the fan filters in [37] 

were used. 

We solve equations (5.14) and (5.20) iteratively. For Eq. (5.20) we employ the bisection 

method, as also proposed in [89]. In the next few paragraphs we analyze how Eq. (5.14) is 

solved by a method based on the Lanczos process [107].  

Omitting the subscripts k and superscripts ( )t  for convenience, we regard (5.9) as the linear 

system Ax = b , where 1−=A R  is symmetric and positive definite, Tβ=b H g , =x m , and 

products Av  can be obtained efficiently for any given v . In addition, we have the linear 

algebra problem of estimating the diagonals of matrix 1 T−=C QA Q  in Eq. (5.17). The matrix 
1−=A R  is very large; for example for 256 256×  images it is of dimension N N×  with 

65,536N =  and clearly an iterative method must be used. 

The Lanczos process is an iterative procedure for transforming A  to tridiagonal form [63]. 

Given some starting vector b , it generates vectors { }nυ  and scalars { },n nα β  as follows:  

1. Set 1 1β =υ b   (meaning 1 2
β = b  and 1 1/ β=υ b  but exit if  1 0β = ). 

2. For 1,2,...,n =  set n=w Aυ , T
n nα = υ w , 1 1 1n n n n n nw aβ β+ + −= − −υ υ υ . 

After n  steps, the situation can be summarized as  

1 1
T

n n n n n nβ + ++AV = V T υ e ,                                 (5.17) 
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[ ]1 2 ,n nV = υ υ υ"         

1 2

2 2 3
n

n

α β
β α β

α

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

T
% % %

,                     (5.18) 

where ne  is the nth unit vector, nV  has theoretically orthonormal columns, and nT  is 

tridiagonal and symmetric. In practice T
n n ≠V V I  unless 1n+υ  is reorthogonalized with respect 

to previous vectors, but relation (5.14) remains accurate to machine precision. This permits 

nV  and nT  to be used to solve Ax = b  accurately in a manner that is algebraically equivalent 

to the conjugate-gradients method, as described in [107]. (It also leads to reliable methods for 

solving Ax = b  when A  is indefinite  [107].) Note that 1υ  must be proportional to b  as 

shown. 

When A  is positive definite, each nT  is also positive definite and we may form the Cholesky 

factorization T
n n n=T L L  (with nL  lower-triangular) by updating  1n−L . The conjugate-

gradient method computes a sequence of approximate solutions to Ax = b  in the form 

n n n=x V y , where ny  is defined by the equation 1 1n n β=T y e . Since ( )1 1n β =V e b  exactly for 

all n, we see from (6.17) that n n+Ax = b r , where the residual vector ( )1 1
T

n n n n nβ + +=r υ e y  

becomes small if either 1nβ +  is small (unlikely in practice) or the last element of  ny  is small.  

In practice, we do not compute ny  itself because every element differs from 1n−y . Instead, we 

compute two quantities nz  and nW  by applying forward substitution to the lower-triangular 

systems 1 1n n β=L z e  and T T
n n n=L W V , where  

1n
n

nζ
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

z
z ,    [ ]1

T
n n n n n

−
−= ≡W W w V L ,                              (5.19) 

so that nx  can be updated according to 1n n n n n n n nζ−= = = +x V y W z x w . Since nL  is 

bidiagonal, only the most recent columns of nV  need to be retained in memory. Thus, the 

previous equation is the update rule for the image estimate in the algorithm. 

In order to estimate elements of 1−A , we can make use of the same vectors nw  in Eq. (5.19). 

If we now assume that exact arithmetic holds, we see that  
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1 1 1T T T T T T
n n n n n n n n n n n n n

− − − − − − =W AW = L V AV L = L T L = L L L L I . 

If we further assume that the Lanczos process continues for N  iterations, we have 
T
N N =W AW I , so that 1T

N N
−=W W A . On this basis, if we define T

n n n=B W W , we have the 

sequence of estimates 1
1

T
n n n n

−
−= + ≈B B w w A . To estimate its ith diagonal, we form the sum 

2T
i n i in

n
=∑e B e w . Thus, we can obtain monotonically increasing estimates for all diagonals at 

very little cost3, in the manner of LSQR [106]. 

Similarly, for the matrix C , whose diagonals we wish to estimate, we have  

( ) ( )1 2T T T T T T T T
i i i i i n n i i n n i in

n n n

−= ≈ = =∑ ∑ ∑e Ce e QA Q e e Q w w Q e e q q e q , 

where n n=q Qw  can be formed at each Lanczos iteration and then discarded after use. This is 

how we evaluate ( )( ) ,t
k i iC  in (5.16).  

Element estimation of inverses of large matrices is also required in many other recently 

developed Bayesian algorithms (see for example [8], [77], and [128]) and presently to the best 

of our knowledge are handled either by inaccurate circulant or diagonal approximations of the 

matrix A  or by very time-consuming Monte-Carlo approaches. 

An iteration of the variational EM algorithm consists of the update steps given by Eq. (5.10-

16). In our implementation, the parameter β  is estimated in a preprocessing step, as described 

above. During the variational M-step the bisection method is used for the update of the 

parameters kν  with termination criterion 1 610m m
k kν ν − −− < , where m

kν  the value of kν  at the 

mth iteration of the bisection method. The linear system in Eq. (5.14) is solved by the iterative 

Lanczos procedure. The termination criterion for this algorithm is 

( )( ) ( ) ( )1T ( 1) ( 1) 9 10
t t tt t

n n n
fro

−− − −= − <r H g R m R m , 

where n  denotes the iteration index of the Lanczos process (hence ( )1, 2,..., tn M= ).  Thus, 
( )t

nm  is the image estimate at the n-th Lanczos iteration and at the t-th iteration of the overall 

variational algorithm. Lastly,   
fro

⋅  denotes the Frobenius norm. As criterion for termination 

                                                 
3 See http://www.stanford.edu/group/sol/software/cglanczos.html for Matlab code.  
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of the variational algorithm we used 
( 1) ( )

( 1) ( )

t t

t tM M

+

+ ≥r r . In other words, we terminate the overall 

algorithm when the residual of the Lanczos process at iteration 1t +  is larger than that of the 

iteration t .  

The overall algorithm is described is summarized in the following three-step procedure: 

1. Initialize 0m , β  using a stationary model [94]. 

2. Repeat until convergence:  

t –th iteration: 

• VE-step: Update tm , tR  and ( )t
kq a  using equations (5.14), (5.16) and (5.17) 

respectively. For the last equation, 
( )t

km  and 
( )t

kC  are needed also to be calculated. Also, 

calculate the expected value of  ( )( )t
kq a i  from (5.17), need for the VM-step and the next 

VE-step in the ( 1)t th+  iteration. 

• VM-step: Update t
kλ  using (5.19) and t

kν  by solving (5.20) for each k. 

3. Use tm  as the restored image estimate. 

 

5.5  Numerical Experiments 

We demonstrate the value of the proposed restoration approach by showing results from 

various experiments with three 256 256×  input images: “Lena”, “Cameraman” and “Shepp-

Logan” phantom. Every image is blurred with two types of blur; the first has the shape of a 

Gaussian function with shape parameter 9 , and the second is uniform with support a 

rectangular region of 9 9×  pixels. The blurred signal to noise ratio (BSNR) defined as follows 

was used to quantify the noise level: 

2

10 210 logBSNR
Nσ

=
Hf

, 

where 2σ  is the variance of the additive white Gaussian noise (AWGN). Three levels of 

AWGN were added to the blurred images with BSNR=40, 30 and 20 dB. Thus, in total 18 

image restoration experiments were performed to test the proposed algorithm. 
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As performance metric, the improvement in Signal to Noise Ratio (ISNR) was used: 

1020log ˆISNR =
f - g

f - f
, 

where f , g  and f̂  are the original, observed degraded and restored images, respectively.  

We present ISNR results comparing our algorithm with four total-variation (TV) based 

Bayesian algorithms in [17] abbreviated as BFO1, in [18] abbreviated as BFO2, and [8] 

bbreviated as BMK1 and BMK2. For comparison purposes we also implemented a restoration 

algorithm based on TV regularization [23]. This algorithm minimizes the function ( )J f  with 

respect to the image: 

( ) ( ) ( )2 2 2

1
k k

N

h v
k

J cλ
=

= + + +∑f g - Hf D f D f , 

where xD f  and yD f  are the directional differences vectors of the image along the horizontal 

and vertical direction respectively. A conjugate gradient algorithm is used to minimize ( )J f  

with a one-step-late quadratic approximation [23]. The parameters λ  and c  were kept fixed 

during the iterations of this algorithm and were selected by trial-and-error (TE) to optimize 

ISNR assuming knowledge of the original image. Since this algorithm assumes knowledge of 

the original it is not a realistic one. However, it provides the performance bound of the TV 

algorithm with fixed parameters. In Table 5.1 and 5.2 we present ISNR results comparing our 

algorithm with the above-mentioned methods in 18 experiments. The ISNR results for BFO1, 

BFO2, BMK1 and BMK2 were obtained from [18]. In these tables for reference purposes we 

also provide ISNR results for the stationary simultaneously autoregressive prior in [94].  

In Fig. 5.1 restoration results are shown for the “Cameraman” image BSNR=40 dB noise and 

uniform blur. In this experiment the restored image by the proposed algorithm, is superior in 

ISNR, and is visually distinguishable from the TV-TE approach, which was optimized using 

the original image.  

At this point we note that the proposed algorithm performed very well compared with the TV-

based methods in [17],[18] [18] and [8]. More specifically, for the high BSNR=40 dB case it 

gave the best results from all methods (excluding TV-TE since it is unrealistic) in 5 out of 6 

experiments. For the midlevel BSNR=30 dB case it gave the best performance in 5 out of 6 
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experiments. Finally, in the low BSNR=20 dB case it gave the best result in 3 out of the 6 

experiments. Overall the proposed algorithm gave the best ISNR results in 13 out of 18 

experiments, compared to 3 out of 18 for BF01 and 2 out of 18 for BF02.  

We also compared our method with BFO1 [17], which based on the above experiments was 

the most competitive TV based method. We used the same three images and noise levels as 

above. We also used a  5 5×  pyramidal blur with impulse response given by [1 4 6 4 1]T[1 4 6 

4 1]/256. The ISNR results for this experiment are given in Table 5.3. For the implementation 

we used the code provided by the authors4. The ISNR results from this experiment are 

consistent with the previous ones. 

 

5.6  Conclusions and suggestions for improvement 

We presented a new Bayesian framework for image restoration that uses a product-based 

Student’s-t type of priors. The main theoretical contribution is that by constraining the 

approximation of the posterior in the variational framework, we bypass the need for knowing 

the normalization constant of this prior. Thus, we avoid having to use improper priors, i.e. 

priors whose normalization constant is empirically selected, see for example [17], [18], [8], 

[26], [130] and [29]. Furthermore, the proposed methodology does not require empirical 

parameter selection as in the MAP methodology that uses a similar-in-spirit prior ([26] and 

[29]). We also presented a Lanczos-based computational scheme tailored to the computations 

required by our algorithm. 

We demonstrated by the ISNR results in Tables 5.1 and 5.2 that the proposed method is 

competitive with the very recently proposed TV-based Bayesian algorithms ([17], [18] and 

[8]). More specifically, it appears that this approach is more competitive in the higher BSNR 

cases. Thus, it seems that in such cases the proposed Student’s-t model has the ability to 

capture more accurately than TV-based priors the subtle features of the image present in the 

observations. However, in the presence of high levels of AWGN, this does not seem to be the 

case and the advantage of our proposed prior compared to TV priors seems to diminish. We 

believe that this is the case because high levels of noise “wipe out” the subtle features that our 

model can capture. 

                                                 
4 http://www.lx.it.pt/~jpaos 
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We found empirically that modeling explicitly the diagonal edge structure contained in the 

vertical and horizontal edge (the use of operators 3Q  and 4Q ) improved the performance of 

the proposed algorithm, for a wide range of images, blurs and SNRs. Selecting optimally such 

operators according to the image is a topic of further investigation. 

Another topic of further investigation is the use of generalized Student’s-t pdfs. These pdfs 

are produced by assuming spatial variation of the parameters of other densities than the 

Gaussian (spatial variation has been considered so far for the inverse variance of the 

Gaussian) and incorporating a Gamma hyperprior for each parameter. In Chapter 6 we make 

the TV prior spatially varying and in this way we obtain a generalized Student’s-t prior. 

Finally, the numerical method to estimate the diagonal elements of a very large matrix is 

amenable to further improvement with respect to speed and/or accuracy of the estimation. 



 

 84 

Table 5.1: ISNR results comparing the proposed algorithm with the algorithms in [17], [18] 
and [8] using 3 images, 3 noise levels and Gaussian shaped blur. The ISNR results for the 

BFO1, BFO2, BMK1 and BMK2 algorithms are obtained from [8]. 

Gaussian shaped blur with 
2 9σ =  

Lena Cameraman Shepp-Logan 

BSNR Method ISNR ISNR        ISNR 

40dB 

Stationary 

Proposed 

TV-TE 

BFO1 

BFO2 

BMK1 

BMK2 

3.33 

4.86 

4.87 

4.72 

4.50 

4.78 

4.49 

2.44 

3.45 

3.34 

3.51 

3.27 

3.39 

3.26 

3.56 

9.46 

8.30 

7.07 

5.88 

6.69 

5.63 

30dB 

Stationary 

Proposed 

TV-TE 

BFO1 

BFO2 

BMK1 

BMK2 

2.54 

3.89 

3.82 

3.87 

3.56 

3.87 

3.55 

1.89 

2.74 

2.82 

2.89 

2.47 

2.63 

2.41 

2.80 

5.94 

5.50 

5.15 

3.94 

4.31 

3.72 

20dB 

Stationary 

Proposed 

TV-TE 

BFO1 

BFO2 

BMK1 

BMK2 

2.23 

2.76 

3.20 

3.02 

2.47 

2.87 

2.42 

1.43 

1.86 

2.27 

2.13 

2.23 

1.72 

1.42 

2.14 

3.92 

3.75 

3.56 

2.20 

1.85 

2.05 
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Table 5.2: ISNR results comparing the proposed algorithm with the algorithms in [17], [18] 
and [8] using 3 images, 3 noise levels and uniform blur. The ISNR results for the BFO1, 

BFO2, BMK1 and BMK2 algorithms are obtained from [8]. 

Uniform 9 9×  blur Lena Cameraman Shepp-Logan 

BSNR Method ISNR ISNR       ISNR 

40dB 

Stationary 

Proposed 

TV-TE 

BFO1 

BFO2 

BMK1 

BMK2 

4.72 

8.49 

8.43 

8.34 

8.35 

8.42 

8.37 

4.57 

9.53 

9.07 

8.55 

8.25 

8.57 

8.46 

5.31 

15.08 

16.63 

14.22 

12.01 

13.69 

12.05 

30dB 

Stationary 

Proposed 

TV-TE 

BFO1 

BFO2 

BMK1 

BMK2 

4.06 

6.10 

5.93 

6.08 

5.64 

5.89 

5.58 

3.24 

6.29 

6.26 

5.68 

4.65 

5.41 

4.38 

3.56 

9.71 

10.66 

8.88 

6.91 

7.77 

6.50 

20dB 

Stationary 

Proposed 

TV-TE 

BFO1 

BFO2 

BMK1 

BMK2 

2.68 

3.98 

3.90 

4.09 

4.14 

3.72 

3.15 

2.19 

3.33 

3.33 

3.31 

2.12 

2.42 

1.94 

2.49 

6.10 

6.26 

5.57 

2.95 

3.01 

2.64 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.1: a) Degraded “Cameraman” image by uniform 9x9 blur and noise with 

BSNR=40dB, b) restored image using a stationary Gaussian prior [94] ISNR=5.76 dB, c) 

restored image using TV-TE ISNR = 9.07 dB, d) restored image using proposed algorithm 

ISNR = 9.53dB. 

    

(a) (b) (c) (d) 

Figure 5.2:  Magnitude of frequency responses of the filters used in the prior: 

(a) horizontal differences ( 1Q ), (b) vertical differences ( 2Q ),(c)  3Q   and (d) 4Q . 
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Table 5.3: ISNR results comparing the proposed algorithm with the algorithms in [17] using 3 

images, 3 noise levels and pyramidal blur. 

Pyramidal blur Lena Cameraman Shepp-Logan 

BSNR Method ISNR ISNR ISNR 

40dB 

Stationary 

Proposed 

BFO1 

4.82 

7.02 

5.56 

3.82 

6.40 

6.07 

2.68 

13.70 

10.87 

30dB 

Stationary 

Proposed 

BFO1 

3.03 

4.81 

4.52 

2.45 

4.25 

4.35 

1.55 

8.51 

7.91 

20dB 

Stationary 

Proposed 

BFO1 

1.57 

3.03 

3.01 

1.26 

2.75 

2.60 

1.01 

7.00 

5.91 

 

Appendix 

In the VE-step the bound must be optimized with respect to R , m  and ( )q a� . With the mean 

field approximation (Eq.  (5.10)) the bound becomes 

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 1 2
1

1 1
1 1

, , ; log , , ;

; log ; ,

P

k k
k

P P

k k k k
k k

L q q q p d d

q q q q d d

θ θ θ θ

θ θ

=

= =

= −

−

∏∫

∏ ∏∫

a ε a y ε a ε a

ε a ε a ε a

� � �� � �

��
 

where [ ]1 ,θ = R m  and T
2 1 1[ , ,..., , ,..., ]P Pθ β λ λ ν ν= . 

Because at this point we aim to optimize with respect to 1θ , we operate on the function L′ , 

which includes only the terms that depend on the parameters 1θ : 
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( )1L L θ′∝  

( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 2 2
1

1 1
1

; log | ; | ;

; log ; .

P

k k k k k k k k
k

P

k k k
k

L q q p p d d

q q d

θ θ θ θ

θ θ

=

=

′ = −

−

∑∫

∑∫

ε a y ε ε a ε a

ε ε ε
         (A.5.1) 

The first sum is further analyzed: 

( ) ( ) ( ) ( )1 2 2
1

; log | ; | ;
P

k k k k k k k k
k

q q p p d dθ θ θ
=

∝∑∫ ε a y ε ε a ε a

( ) ( )
( ) ( )1

T T 1 T

;1 k k

P

k k k k k k k k k k
q qk θ

β λ− −

=

∝ − − =∑
ε a

Hε - y Q Q Hε - y ε A ε  

2 T T T T
2

1 1

ˆ ˆ
P P

k k k k k k k k
k k

P trace Pβ λ β λ
= =

⎧ ⎫⎛ ⎞
= − − − +⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
∑ ∑Hm - g m Q A Q m H H Q A Q R , (A.5.2) 

where ˆ
kA  is a diagonal matrix with elements 

( )( )
ˆ ( , ) ( ) , 1,...,

k
k k q a i

i i a i i N= =A . 

The second integral is the entropy of a Gaussian function, which is proportional to 

( ) ( )1 1
1; log ; log det
2k k kq q dθ θ ∝∫ ε ε ε R .                                  (A.5.3) 

Setting the derivative of L′  w.r.t R  equal to zero using Eq. (A.5.1-3) yields 

( )
T T

11

ˆ log det
0 0

P

k k k k
k

trace P P
L

β λ
θ =

⎧ ⎫∂ + − ∂⎨ ⎬′∂ ⎩ ⎭= ⇒ =
∂ ∂

∑H HR Q A Q R R

R R
 

1
T T 1 T T

1 1

1ˆ ˆ0
P P

k k k k k k k k
k k

P P
P

β λ β λ
−

−

= =

⎛ ⎞⇒ + − = ⇒ = +⎜ ⎟
⎝ ⎠

∑ ∑H H Q A Q R R H H Q A Q . 

Similarly, using Eq. (A.5.2), we find that the optimum for the mean: 

( )1 0
L θ′∂

= ⇒
∂m

Tβ=m RH g . 

The final part of the VE-step is the optimization w.r.t. the function ( )q a� . It is straightforward 

to verify that this is achieved when 
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( )
( ) ( )( )
( ) ( )( ) ( )

1 1

exp log , ,
( )

exp log , ,

P N
q

k
i

q

p
q q a i

p d κ = =

= =∏∏
∫

ε

ε

y ε a
a

y ε a a

�

�

�� �
�

� �� �
. 

The product form is due to  

( ) ( )
exp log , ,

q
p ∝

ε
y ε a

�
�� �  

( ) ( )( ) ( )( )1 21
2 2

1 1

1( ) exp ( ) , ( )
2 2

kP N
k

k k k k k k
k i

a i a i i i i a i
ν ν λ+ −

= =

⎧ ⎫− − +⎨ ⎬
⎩ ⎭

∏∏ m C . 

Hence, each ( )( )kq a i  is a Gamma distribution: 

( ) ( )( ) ( )( )21 1( ) ( ); , ,
2 2 2 2
k k

k k k k kq a i Gamma a i i i iν ν λ⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

m C , 

where k k=m Q m  and T
k k k=C Q RQ . 
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CHAPTER 6. BAYESIAN IMAGE RESTORATION 

WITH A SPATIALLY ADAPTIVE TOTAL 

VARIATION PRIOR  

6.1. Introduction 

6.2. Imaging and image model 

6.3. Variational inference with the generalized Student's-t prior 

6.4. A Constrained Variational Inference Algorithm 

6.5. Computational Implementation 

6.6. Numerical Experiments 

6.7 Conclusions 

 

In this chapter a new image prior is introduced and is used for image restoration. This prior 

generalizes total-variation (TV) priors previously proposed, it is explicitly spatially adaptive, 

and it is based on a generalization of the Student's-t density function discussed in Chapter 5. 

Thus, similar to Chapter 5, Bayesian inference is used for image restoration with this new 

prior via the variational approximation. However, the variational approximation used herein is 

more complicated because of the non-quadratic terms involved in the TV prior. The proposed 

algorithm is fully automatic in the sense that all necessary parameters are estimated from the 

data. Numerical experiments are shown which demonstrate that image restoration based on 

this prior compares favorably with the algorithm of Chapter 5 and previous state-of-the-art 

restoration algorithms. 

 

6.1 Introduction 
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As discussed in section 3.4, the  TV prior has been used extensively and with great success 

for inverse problems due the ability to smooth noise in flat areas of the image and at the same 

time preserve edges. However, TV-based image restoration has certain shortcomings. One of 

them is the selection of the regularization parameter which to a large extent till recently was 

made in an ad-hoc way. Recently, a Bayesian inference framework based on the variational 

approximation was proposed to handle this problem [8]. However, in this work the partition 

function of the image prior is only approximated and the quality of the approximation is not 

analyzed. 

In this chapter we extend the work in [8] by introducing a new prior which has a number of 

novel features. The extension of the TV prior is performed in a way analogous with that used 

to derive the non-stationary prior of Chapters 4 and 5, where the Gaussian density is assumed. 

Precisely, we introduce a TV prior with spatially varying regularization parameters. In order 

to avoid the over parameterization due to the spatially varying nature of this prior, we 

introduce a Gamma hyperprior for the spatially adaptive regularization parameters of the local 

TV priors. Also, we use this prior in a product form, which means that we assume that the 

outputs of an arbitrary number of high-pass filters are distributed according to this prior. This 

gives two novel features to the new prior. First, it is explicitly spatially adaptive and thus it is 

better suited to capture the salient features of the image. Second, it is in product form and has 

the ability to enforce simultaneously a number of different properties to the image. With his 

prior arbitrary linear operators can be used, not just first order differences as TV. Thus, a prior 

similar to the one in [8] with an exactly calculated partition function is just a special case of it. 

In order to avoid the over parameterization due to the spatial adaptivity, a model with two 

layers of hidden variables is introduced, similar in spirit to the one used in Chapters 4 and 5. 

If the hidden variables of the second layer are marginalized, the resulting density function  

has similar form to a Student's-t pdf, thus we label it as  Generalized Student's-t. 

Due to the complexity of the prior, model we resort to the variational approximation for 

Bayesian inference [19]. However, we use two modifications. First, we determine a quadratic 

bound to the variational bound, in a manner similar to the methodology used in [8], to bypass 

the difficulties due to the non-quadratic nature of the new prior. Second, we use the  

constrained variational framework in a manner similar to that in Chapter 5, in order to bypass 

the problem of computing the partition function of the new prior. 



 

 92 

In this chapter we also propose an iterative method to compute the diagonal elements of very 

large inverse matrices that are necessary for the herein proposed Bayesian algorithm. This 

method is similar in spirit to the one employed in in Chapter 5. However, it is based on 

conjugate-gradients and not on the Lanczos and converges faster. 

The rest of this chapter is organized as follows. In section 6.2 we present the imaging and 

image models. In section 6.3 we present the variational algorithm for Bayesian inference and 

a brief analyis of the mechanisms that are introduced for spatial adaptivity by using TV and 

Student's-t based priors. In section 6.4 we present the details of the computational 

implementation of our algorithm. In section 6.5 numerical experiments are provided and in 

section 6.6 conclusions and future work. 

 

6.2 Imaging and image model 

In what follows we use one dimensional notation for simplicity. A linear imaging model is 

assumed. Let f  be the original image represented as a 1N ×  vector, blurred by a 

convolutional operator H , of size N N× . The degraded observation is given by  

 = +g Hf n                                                                (6.1) 

 where n  is the noise 1N ×  vector modeled as white Gaussian, i.e. 1( , )N β −n 0 I∼ , where 0  

and I  the N N×  zero and identity matrices, respectively.  

 

6.2.1 Generalized Student's-t image prior 

Image priors in product form are very attractive since they have the ability to enforce 

simultaneously many properties to an image. For this purpose we propose herein a prior in 

product form for the image. To define such a prior we introduce P  pairs of linear 

convolutional operators (filters) 1 2 3 4 2 1 2( , , ), ( , ), , ( , )P P−Q Q Q Q Q Q…  of size N N×  and 

assume that the filter outputs 1 2= ( , , )Pε ε ε…  are produced according to  

 = , = 1, , 2 .l l l Pε Q f …                                                       (6.2) 

 Then, for each pixel location i , it is assumed that each pair 2 ( )k iε  and 2 1( )k iε −  is jointly 

distributed with probability density function  
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 ( )
2 2

2 2
2 2 1 2 2 1

( )( ( ), ( ) | ( )) = exp ( ) ( ) ( ) .
2

k k
k k k k k k k

a ip i i a i a i i iλε ε λ ε ε
π− −− +  (6.3) 

 with = 1, ,k P… . 

Notice that for = 1P  and 1Q  and 2Q  the first order difference operators in the vertical and 

horizontal direction and ( ) =ka i a , the prior becomes identical in form to the total-variation 

(TV) based prior proposed in [17] and [8]. However, the prior proposed herein is more 

general because it can use any linear operator not just first order differences. Furthermore, 

( )ka i  varies for every pixel i  which makes it explicitly  spatially adaptive. 

In order to avoid the over-parameterization problem of this prior in a similar manner to the 

priors used in Chapter 4 and 5, we assume ( )ka i  to be Gamma distributed hidden random 

variable which can be marginalized according to:  

 ( ( )) = ( ( ); / 2, / 2).k k k kp a i Gamma a i ν ν  

The marginal distribution of 2 ( )k iε  and 2 1( )k iε −  can be computed in  closed form and is given 

by  

 2 2 1 2 2 1( )
( ( ), ( )) = ( ( ), ( ) | ( )) ( ( )) ( )k k k k k k ka ik

p i i p i i a i p a i da iε ε ε ε− −∫  (6.4) 

  

/2 1/21/2 2 2
2 2 1( ) ( )( / 2 1/ 2)= 1 ,

( / 2)

k
k k kk k

k k k

i i
ν

λ ε εν λ
ν πν ν

− −

−
⎛ ⎞+⎛ ⎞Γ + ⎜ ⎟+⎜ ⎟ ⎜ ⎟Γ ⎝ ⎠ ⎝ ⎠

 

for = 1,2, ,k P… . 

This density function is very similar in form to the Student's-t pdf. Thus, in the rest of this 

paper we label it as  generalized Student's-t. This prior combines the advantages of both TV-

based and Student's-t based priors. The former being the ability to suppress noise and 

maintain edges in an image and the latter explicit spatial adaptivity through the hidden 

random variables ( )ka i . 

At this point we note that we have not provided a prior for the image ( )p f . This was 

intentional, because we cannot compute it in closed form. More specifically, it is difficult to 

define a prior for the image f  based on the prior in Eq. (6.3) because we cannot compute the 
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partition function for such prior. First, the non-quadratic exponent in the pdf in Eq. (6.3) 

makes this calculation intractable even if our prior was not in product form. Furthermore, 

since we want to use a prior in product form even with a quadratic exponent it is not possible 

to compute the partition function. For this purpose, in the next section we bypass this 

difficulty by working in the domain of the filter outputs ε , in a similar fashion as in Chapter 5 

where the prior in (6.3) can be used directly and there is no need to define a prior for f . The 

downside of this choice is that it is not obvious how to merge the estimates of all the lε  

= 1, 2l P…  to generate one estimate for f . For this purpose we propose the  constrained 

variational approach which we also present in the following section. 

 

6.3  Variational inference with the generalized Student's-t prior 

We thus introduce an alternative imaging model, which is derived by applying the operators 

lQ  to the original imaging model in (6.1). This yields:  

 = , = 1, , 2 ,l l l l P+y Hε n …                             (6.5) 

 where =l ly Q g , =l ln Q n  and thus 1(0, ( ) )T
l l lN β −n Q Q∼ . 

This imaging model will be used in what follows and we treat 1 2= ( , , )Pε ε ε… , where 

= ( (1), , ( ))l l l Nε εε …  = 1, , 2l P…  and 1= ( , , )Pa a a… , where = ( (1), , ( ))k k ka a Na …  

= 1, ,k P… , as  hidden variables. 

Then, according to Bayesian inference we find the posterior distributions for the hidden 

variables and estimate the parameters 1 1= ( , , , , , )P Pθ λ λ ν ν… … . The marginal of the 

observations ( ; )p θy , where 1 2= ( , , )Py y y… , which is required to find the posteriors of the 

hidden variables is hard to compute [19]. More specifically, the integral  

 
,

( ) = ( , , )p p d d∫ε a
y y ε a ε a                        (6.6) 

 where  

 ( , , ) = ( | ) ( | ) ( )p p p py ε a y ε ε a a                            (6.7) 

 with  
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 ( )
2

1

=1

( | ) = ( | ), ( | ) = , ( )
P

T
l l l l l l l

l

p p p N β −∏y ε y ε y ε ε Q Q                    (6.8) 

  

 2 2 1
=1 =1

( | ) = ( ( ), ( ) | ( ))
P N

k k k
k i

p p i i a iε ε −∏∏ε a                             (6.9) 

 and  

 
=1 =1

( ) = ( ( ))
P N

k
k i

p p a i∏∏a                       (6.10) 

 is intractable. 

The variational algorithm that we describe in what follows, bypasses this difficulty and 

maximizes a  lower bound that can be found instead of the log-likelihood of the observations 

log ( ; )p θy  [19]. This bound is obtained by subtracting from log ( ; )p θy  the Kullback-Leibler 

divergence, which is always positive, between an arbitrary ( , )q ε a  and ( , | ; )p θε a y :  

 ( ( , ), ) = log ( ; ) ( ( , ) || ( , | ; )),L q p KL q pθ θ θ−ε a y ε a ε a y                   (6.11) 

 and is equal to  

 
, ,

( ( , ); ) = ( , ) log ( , , ; ) ( , ) log ( , ) ,L q q p d d q q d dθ θ −∫ ∫ε a ε a
ε a ε a ε a y ε a ε a ε a ε a  (6.12) 

 where we use the notation (.; )p θ  to denote that θ  is a set of hyperparameters which are not 

treated as random variables. We could also have used (.)pθ . 

When ( , ) = ( , | ; )q p θε a ε a y , this bound is maximized and ( ( , ); ) = log ( ; )L q pθ θε a y . Because 

the exact posterior ( , | ; ) = ( , , ; ) ( ; )p p pθ θ θε a y ε a y y  cannot be found we use an 

approximation of the posterior. The mean-field approximation is a commonly used approach 

to maximize the variational bound w.r.t. ( , ), )q θε a  [19]. According to this approach the 

hidden variables are assumed to be independent i.e. ( , ) = ( ) ( )q q qε a ε a . However, for the 

herein model this is still not sufficient to obtain in closed form ( )q ε  which is necessary for 

inference using this approach. More specifically, the square root in the joint ( , , ; )p θε a y  

which originates from the prior ( | )p ε a  makes the definition of ( )q ε  intractable. 
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6.3.1 A Lower Bound for ( ( , ), )L q θε a  

 For this purpose we use the methodology proposed in [10] and introduce a  lower bound also 

on L  also. More specifically, we use the inequality  

 ,
2
w uw

u
+

≤                  (6.13) 

 which holds for 0w ≥  and > 0u . Notice that equality holds when =w u . This inequality is 

used for every pixel i  by setting 2 2
2 2 1( ) = ( ) ( )k k kw i i iε ε −+ , for = 1, 2, ,k P… , where ( )ku i  are 

auxiliary variables used for this approximation. Using this and the prior in Eq. (7.3) we have  

 2 2 1 2 2 1( ( ), ( ) | ( )) ( ( ), ( ), ( ), ( )) =k k k k k k kp i i a i M i i u i a iε ε ε ε− −≥                  (6.14) 

2 2 2 2
2 2 1( ) ( ) ( ) ( ) ( )exp ,

2 2 ( )
k k k k k

k

a i a i i i u i
u i

λ ε ε
π

−
⎛ ⎞+ +
−⎜ ⎟⎜ ⎟
⎝ ⎠

 

for = 1, ,k P… . 

We also define = ( (1), , ( ))k k ku u Nu …  and 1 2= ( , , , )Pu u u u… . Let us now define  

 
,

( , , ; , )( ( ), ( ), , ) = ( ) ( ) log ,
( ) ( )

b FL q q q q d d
q q

θθ ∫ε a

y ε a uε a u ε a ε a
ε a

 (6.15) 

 where  

 2 2 1
=1 =1

( , , ; , ) = ( | ) ( ( ), ( ), ( ), ( )) ( ; ).
P N

k k k k
k i

F p M i i u i a i pθ ε ε θ−

⎡ ⎤
⎢ ⎥
⎣ ⎦
∏∏y ε a u y ε a  (6.16) 

 then, since ( , , ; , ) ( , , )F pθ ≤y ε a u y ε a  we have  

 ( ( ), ( ), , ) ( ( , ), ).bL q q L qθ θ≤ε a u ε a  (6.17) 

 and consequently the bound becomes tight when  

 ( ( ), ( ), , ) ( ( , ), ).max bL q q L qθ θ≤
u

ε a u ε a  (17.8) 

Notice that the new lower bound bL  is quadratic in the hidden variables ε , thus it is possible 

to find ( )q ε  that maximize it. In contrast the original bound L  was not quadratic in ε . 

 

6.4 A Constrained Variational Inference Algorithm 
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 As we have already explained, lε , for = 1, , 2l P… , are used instead of f  to avoid the 

computation of the normalization constant of the prior on f . Thus, a question that needs to be 

addressed is how one finds f  given the different ( )lq ε . 

Unconstrained maximization of the bound ( ( ), ( ), , )bL q q θε a u  using the mean field 

approximation results in ( ) = ( , )l l lq Nε μ Σ , where = T
l lβμ Σ H g  and 

( ) 11/2= T T
l l l l lβ

−−+ 〈 〉Σ H H Q A U Q , = 1, , 2l P…  and = { (1), , ( )}l l ldiag u u NU …  and 

= { (1) , , ( ) }l l a l adiag a a N〈 〉 〈 〉 〈 〉A … , where . a〈 〉  denotes the expectation w.r.t the distribution 

of a . 

Clearly each lμ  suggests a different estimate for f  given by 1ˆ = l l
−f Q μ . Thus, one needs to 

find a methodology to  merge the information from all ( )lq ε  into one estimate of f . 

For this purpose the  constrained variational approximation first proposed in [12] is applied. 

According to this approach, each ( )kq ε  is constrained to have the form:  

 ( ) = ( , ),T
l l l lq Nε Q m Q RQ  (6.19) 

 where m  is a 1N ×  vector, taken as mean of the image, and R  the N N×  image covariance 

matrix. This form is consistent with the equation =l lε Q f  for which 

[ ] [ ]= = =l l l lE Eε ε Q f Q m  

and  

( )( ) = ( )( ) =T T T T
l l l l l l l lE E⎡ ⎤ ⎡ ⎤− − − −⎣ ⎦ ⎣ ⎦ε ε ε ε Q f m f m Q Q RQ  

with = ( )( )TE ⎡ ⎤− −⎣ ⎦R f m f m . Using this approximation the parameters m  and R  are 

learned instead of ( )lq ε  according to the herein constraint variational methodology. 

We now present the maximization method by giving the updates for the variables of the 

bound bL  in the j -th iteration. In the VE-step, maximization is performed with respect to 

( )q a , m  and R . 

VE-step:  1 1

, , ( )
[ , , ( )] = arg ( ( ), ( ), , )maxj j j b j j

q
q L q q θ− −

m R a
m R a ε a u  (6.20) 



 

 98 

 

VM-step:  
,

[ , ] = arg ( ( ), ( ), , )maxj j b j jL q q
θ

θ θ
u

u ε a u  (6.21) 

 The updates for the VE-Step are derived in the Appendix. These are  

 ( ) = ( , ),j j j T
l l l lq Nε Q m Q R Q  (6.22) 

 where  

= ,j j Tβm R H g ,        (6.23) 

= (j TβR H H 1 1 1/2 1 1 1/2 1 1
2 2 2 1 2 1

=1

1 ( ( ) ( ) )) .
2

P
j T j j T j j

k k k k k k k k k
kP
λ − − − − − − − −

− −+ 〈 〉 + 〈 〉∑ Q A U Q Q A U Q  

 From the above equations it is clear that m  merges information from all filters lQ  to 

produce the estimate of m  which is used as the estimate of f . 

Finally, the approximate posterior of a  in the VE-step is given by  

 
1 1

1 1( ( )) = ( ); 2, ( )
2 2

j j
j j jk k

k k k kq a i Gamma a i u iν ν λ
− −

− −⎛ ⎞
+ +⎜ ⎟

⎝ ⎠
 (6.24) 

 for = 1, ,i N…  and = 1, 2, ,k P… . Thus, the expectation of ( )ka i  w.r.t ( ( ))j
kq a i  is  

 
1

1 1 1( )

4( ) =
2 ( )

j
k

k j j j jq
k k k

a i
u i

ν

ν λ

−

− − −

+
〈 〉

+a
 (6.25) 

 

In the VM-step, the bound is maximized w.r.t to the parameters. To find ju  we have to solve  

 
2 2

2 2 1 ( )

( )

( ) ( ) ( )
( ) = arg min

( )

k k j kqj
k

u ik k

i i u i
u i

u i

ε ε −〈 + 〉 +
ε  (6.26) 

 where 
( )

. jq
〈 〉

ε
 the expectation w.r.t. ( )jq ε , which produces  

 
1

2 2 2
2 2 1 2 2( )

=0

( ) = ( ) ( ) = (( ( )) ( , ))j j j
k k k j k r k rq

r

u i i i i i iε ε − − −〈 + 〉 +∑e
m C  (6.27) 

 for = 1, ,i N…  and = 1, 2, ,k P… , where  
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 2 2 2 2 2= , = .j j j j T
k r k r k r k r k r− − − − −m Q m C Q R Q  

For kλ  we have that  

 
( )

=1 =1 =1

( ( ), ( ), , ) = 2 log ( ) ( )
P P N

b j j j
k k k j kq

k k i

L q q N a i u i constantθ λ λ− 〈 〉 +∑ ∑∑ a
ε a u  

when this function is considered as a function of kλ  only. Thus, the update formula is  

 

( )
=1

2= .
( ) ( )

j
k N

j
k j kq

i

N

a i u i
λ

〈 〉∑ a

 (6.28) 

 Similarly, for kν , = 1,2, ,k P… , we have that  

 
( ) ( )

=1 =1

( ( ), ( ), , ) = log ( ) ( )
2 2 2

N N
b j j k k k

k j k jq q
i i

L q q a i a i Nν ν νθ ⎛ ⎞〈 〉 − 〈 〉 − Γ⎜ ⎟
⎝ ⎠

∑ ∑a a
ε a u  

 log
2 2
k kN constantν ν⎛ ⎞+ +⎜ ⎟

⎝ ⎠
 (6.29) 

 when this function is considered as a function of kν  only. Then j
kν  is the root of the function 

φ  which is proportional to derivative of ( ( ), ( ), , )b j jL q q θε a u  with respect to kν   

 
1

( ) ( )
=1 =1

1 1( ) = log ( ) ( ) 2
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jN N
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N N

νφ ν ψ
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〈 〉 − 〈 〉 + +⎜ ⎟
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∑ ∑a a
 

 
1

log 2 log 1,
2 2 2

j
k k kν ν νψ
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 (6.30) 

 where ψ  is the digamma function. We find ( ) = 0j
kφ ν  numerically using the bisection 

method. 

At this point it is worth noting that when a TV prior is used in a Bayesian framework [10] the 

prior introduces a mechanism for spatially adaptive regularization in the restoration filter. 

This is manifested by the diagonal matrices 1[ ( )] =k
ii k

iu
W u  Eq. (6.34) used in the 

restoration filters Eq.s (33) and (48) in [8]. These k
iu  appear also herein as the ( )ku i  in Eq. 

(6.27). When a Student's-t prior is used in a similar framework [12] spatial adaptivity is 
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introduced to the restoration filter via the diagonal matrices ˆ
kA  in Eq. (6.11) with elements 

( )ka i  given in Eq. (5.14) of Chapter 5. Similar ( )ka i  appear herein also in Eq. (6.25). 

Since the herein used prior integrates both the TV and Student's-t priors in [8] and in Chapter 

5, respectively, it contains simultaneously both previous mechanisms for spatial adaptive 

regularization as manifested by the product 1 1/2 1( )j j
k k

− − −〈 〉A U  in Eq. (6.23). 

 

6.5 Computational Implementation 

In our implementation = 4P  was used. In other words, four filter outputs were used for the 

prior and it is a product with two terms. We show the magnitude of the frequency responses 

of these filters in Fig. 6.3. The operators 1Q  and 2Q  correspond to the horizontal and vertical 

first order differences. Thus, these filters are used to model the vertical and horizontal image 

edge structure, respectively. The other two operators 3Q  and 4Q  are used to model the 

diagonal edge component contained in the vertical and horizontal edges, respectively. These 

filters are obtained by convolving the previous horizontal and vertical first order differences 

filters with fan filters with vertical and horizontal pass-bands, respectively. In our experiments 

the fan filters in [37] were used. In our prior lε  with = 1,2l  where used together in one term 

of the prior and = 3,4l  in the other. 

The fan filters combined with the difference filters were found empirically to provide better 

results than the use of the horizontal and vertical difference filters only. To explain the choice 

of the fan filters we note that ideally we expect from a filter when applied to an image to 

produce outputs as close to zero as possible. The first order differences filters have to some 

extent this property, but at the edges of the image this property is canceled. Thus, more filters 

are needed that produce outputs closer to zero. The motive to incorporate the fan filters to our 

algorithm is the use of them in the contourlet transform [37], which is shown to have more 

close to zero coefficients than the classical wavelet transform. Their ability to provide closer 

to zero outputs is interpreted as the ability to capture the correlations of the image edges. 

Hence, this renders the model more accurate. We must also note a key difference in our model 

with respect to [37]; in the contourlet transform the Laplacian pyramid is used as a first filter 

and the fan filters are applied on its output. Here, we have first order differences in the 

horizontal and vertical direction, something that has been found empirically to provide better 



 101

results in image resoration than the Laplacian operator. For this reason, the filters 3Q  and 4Q  

are the result of the vertical and horizontal fan filter applied to 1Q  (horizontal) and 2Q  

(vertical), respectively. The magnitude of the filters frequency response is shown in Fig. 5.3. 

One iteration of the proposed algorithm consists of the equations (6.23)-( 6.30). The image is 

taken to be equal to m  which is obtained by solving the linear system in Eq. (6.23). The 

dimensions of the matrices involved in Eq. (6.23) are N N×  where N  the number of pixels 

in the image. We solve this system iteratively by using the conjugate-gradient algorithm 

[116]. We also utilized this method to evaluate the diagonal elements of matrix kC  in Eq. 

(6.24). More specifically, we utilized the 1−R -conjugate vectors , = 1, , , < ,i i K K Np …  for 

which 1( = )T
i i ijδ

−p R p . Then according to the conjugate-gradient algorithm the image estimate 

is updated at every iteration as:  

 1=i i ia− +m m p  

where a  is a scalar [116]. If the method is allowed to iterate N  times we have 1 =T I−P R P , 

where 1= [ ]NP p p…  with , = 1, , ,i i Np …  all the 1−R -conjugate vectors. Then, = TR P P  and 

the diagonal elements of = T
k k kC Q RQ  can be computed by the formula  

 2 2

=1 =1
( )( , ) = ( ) ( )

N K
T ' '

k k j j
j j

i i i i≈∑ ∑Q RQ p p  (6.31) 

 where ='
j k jp Q p . In practice the number of iterations K  required for convergence of the 

conjugate-gradient method is much smaller than N  ( <<K N ). We found for 256 256×  

images where = 65,536N  that for 200K ≈  the conjugate-gradient algorithm converges. The 

obtained results using this approach are significantly better than using a circulant 

approximation for R  or omitting the elements ( , )k i iC  from Eq. (6.27). At this point it is 

worth noting that the similar in spirit Lanczos-based algorithm which was proposed in 

Chapter 5 required for similar size images 1000 2000K ≈ −  to converge. Thus, the herein 

proposed algorithm is faster than the algorithm in Chapter 5. 

As termination criterion we chose  

 1 1 1 1| ( ) |>| ( ) |j j T j j T− − − −− −R m H g R m H g  (6.32) 
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 where m  is the image estimate at the j th−  iteration and it is the solution of the linear 

system 1( ) =j T−R m H g  that the conjugate-gradients algorithm solves. 

The algorithm is initialized by the resulting image estimate of a Bayesian algorithm that uses 

a spatially invariant simultaneously autoregressive image prior [94]. In other words, we set 

the initial image estimate 0m  equal to the restored image by this algorithm. The noise 

precision β  is also estimated by the algorithm in [94] and we fix it to this value for the rest of 

our algorithm. Thus, the overall algorithm can be summarized in the following steps:   

    • Initialize 0m  and β  with the algorithm using a stationary prior  

    • Until convergence do 

1. Update the parameters u , λ  and ν  from equations (6.27), (6.28) and (6.30) 

2. Update the image estimate jm  from equation (6.23) along with the diagonal elements of 
jR  

3. Check for convergence using (6.32) 

 For 256 256×  images this algorithm implemented in Matlab requires 3-5 minutes on a 

Pentium 4 3.40GHz personal computer. This is 2-5 times faster than the algorithm in [12]. 

This difference in speed is attributed to the smaller number of iterations required by the 

conjugate-gradient based implementation used herein. 

 

6.6 Numerical Experiments 

 We demonstrate the value of the proposed restoration approach by testing it in experiments 

with two well known 256 256×  input images:  Lena and  Cameraman. Every image is blurred 

with three types of blur; the first blur has the shape of a Gaussian function with shape 

parameter 9 , the second is uniform with support a rectangular region of dimension 9 9×  and 

the third is pyramidal blur with PSF [1 4 6 41] [1 46 41] / 256T . The blurred signal to noise 

ratio ( BSNR ) defined as follows was used to quantify the noise level:  

 
2
2

10 2= 10 ,logBSNR
Nσ
Hf& &  
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where 2σ  is the variance of the additive white Gaussian nose (AWGN). Three levels of 

AWGN were added to the blurred images with = 40BSNR , 30  and 20  dB, respectively. 

Thus, in total 18 image restoration experiments were conducted. 

As performance metric, the improvement in Signal to Noise Ratio ( ISNR ) was used:  

 
2

2
10 2

2

= 10log
ˆ

ISNR
−

−

f g

f f
 

where f , g  and f̂  are the original, observed degraded and restored images, respectively. 

We compare our restoration method with four recent TV-based algorithms: the algorithms in 

[17] and [18] abbreviated by BFO1 and BFO2, respectively and the algorithms in [8] 

abbreviated as BMK1 and BMK2. We also used compared it with the variational Bayesian 

algorithm in Chapter 5 which is abbreviated as CGLS.  

The  ISNR results of this comparison are shown in Tables 6.1, 6.2 and 6.3 for the experiments 

with uniform, Gaussian an pyramidal blurs, respectively. The  ISNR results with algorithms 

abbreviated as BMK1, BMK2, BFO1 and BFO2 in Tables 6.1 and 6.2 are taken from [8]. We 

also show the restored images for 2 experiments in Figures 6.1 and 6.2. Looking carefully at 

the restored images by the herein proposed algorithm and comparing them to those in Chapter 

5 we observe that they seem less "cartoon-like". In other words, that textured areas seem to 

have been better preserved. We also compared the images in the Fig. 6.1 and 6.2 in terms of 

their perceived visual quality. For this purpose we used the Visual Information Fidelity ( VIF) 

metric in [120]. The comparisons based on the  VIF metric are also in favor of the herein 

proposed algorithm. 

We note that the proposed algorithm produces the highest  ISNR values for 6 out of 6 

experiments with the 9 9×  uniform blur. For Gaussian blur,  Gen-t provides the best result in 

2 out of 6 experiments. For the pyramidal blur the proposed method gave the best results in 4 

out of 6 experiments. Overall the proposed algorithm gave better  ISNR results in 12 out of the 

18 experiments we performed. Additionally, in the experiments where  Gen-t does not 

produce the best  ISNR results, the difference with the best  ISNR is small. It is also worth 

noting that unlike the CGLS algorithm in Chapter 5 which "showed a preference" (produced 

better  ISNR results) for the experiments with higher  BSNRs the herein proposed algorithm 

does not seem to have any such "preference". 
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6.7 Conclusions 

We presented a new promising image prior that is based on the generalized Student's-t pdf 

and a variational algorithm that estimates all the parameters of this model automatically and 

finds the restored image. We compared this restoration approach with that of Chapter 5 and 

previous state-of-the-art methods and found that it appears to be superior.  

This prior can be extended in a number of ways. For example, more operators can be used in 

order to capture more directional dependencies of the image edges. Another option is to 

investigate how to relax the independence assumption between the different filter outputs and 

adjacent pixels in our image model. 

 

Appendix 

In the VE-step the bound must be optimized with respect to R , m  and ( )q a . The mean field 

approximation and Eq. (6.15) yield 
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where [ ]1 = , Tθ R m  and T
2 1 1= [ , ,..., , ,..., ]P Pθ λ λ ν νu . 

Because at this point we aim to optimize with respect to 1θ , we operate on the function L′ , 

which includes only the terms that depend on the parameters 1θ :  

 ( )1
bL L θ′∝  

 

 ( ) ( ) ( ) ( ) ( )( )1 2 1 1 2 1 2
=1 =2 1,2

= ; ; log | ;
P

k k k l l l
k l k k

L q q q p dθ θ θ θ−
−

′ ∑ ∏∫ ε ε a y ε ε  
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The first sum is proportional to 
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( ) ( )
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where .⎡ ⎤  denotes the 'ceiling' of a real number and 
2
k
⎡ ⎤

Λ , 
2

ˆ
k
⎡ ⎤

Λ  are diagonal matrix with 

elements  

 ( )( )

2 2

( )( ) ˆ( , ) = , ( , ) = , = 1,..., .
( ) ( )

k q a ikk
k k

k k

a ia ii i i i i N
u i u i⎡ ⎤ ⎡ ⎤

Λ Λ  

The second integral is the entropy of a Gaussian function, which is proportional to  

 ( ) ( )1 1
1; log ; log det .
2k k kq q dθ θ ∝∫ ε ε ε R  (A.6.3) 

 Setting the derivative of L′  w.r.t R  equal to zero using Eq. (A.6.1)-( A.6.3) yields  
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Similarly, using Eq. (A.6.2), we find that the optimum for the mean: 
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The final part of the VE-step is the optimization w.r.t. the function ( )q a . It is straightforward 

to verify that this is achieved when 

 ( )
( ) ( )( )
( ) ( )( ) ( )

=1 =1

exp log , ,
= = ( ) .

exp log , ,

P N
q

k
i

q

F
q q i
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∫
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y ε a
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The product form is due to 

 ( ) ( )
exp log , ,

q
F ∝

ε
y ε a  

 ( ) 2 1
2
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( ) exp ( ) ( ) ( ) .
2

P N k
k

k k k k k
k i

a i a i u i a i
ν ν λ+ − ⎧ ⎫− −⎨ ⎬

⎩ ⎭
∏∏  

Hence, each ( )( )kq a i  is a Gamma distribution: 

( )( ) = ( ); 2, ( ) .
2 2
k k

k k k kq a i Gamma a i u iν ν λ⎛ ⎞+ +⎜ ⎟
⎝ ⎠
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Table 6.1: ISNR 's for the experiments using uniform blur 9 9× . 

Uniform blur 9 9×  Lena Cameraman 

( )BSNR dB  Method ISNR(dB) 

Gen-t 8.52 9.61 

CGLS  8.49 9.53 

1BMK  8.34 8.55 

2BMK  8.35 8.25 

1BFO  8.42 8.57 

 

 

= 40BSNR  

2BFO  8.37 8.46 

Gen-t 6.25 6.55 

CGLS  6.10 6.29 

1BMK  6.08 5.68 

2BMK  5.64 4.65 

1BFO  5.89 5.41 

 

 

 

= 30BSNR  

2BFO  5.58 4.38 

Gen-t 4.24 3.55 

CGLS  3.98 3.33 

1BMK  4.09 3.31 

2BMK  4.14 2.12 

1BFO  3.72 2.42 

 

 

= 20BSNR  

2BFO  3.15 1.94 
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Table  6.2: ISNR 's for the experiments using Gaussian blur with variance 9. 

  Gaussian blur variance 9 Lena Cameraman 

( )BSNR dB  Method ISNR(dB) 

Gen-t 4.64 3.49 

CGLS  4.86 3.45 

1BMK  4.72 3.51 

2BMK  4.50 3.27 

1BFO  4.78 3.39 

 

 

= 40BSNR  

2BFO  4.49 3.26 

Gen-t 4.08 2.81 

CGLS  3.89 2.74 

1BMK  3.87 2.89 

2BMK  3.56 2.47 

1BFO  3.87 2.63 

 

 

= 30BSNR  

2BFO  3.55 2.41 

Gen-t 3.09 2.07 

CGLS  2.76 1.86 

1BMK  3.02 2.13 

2BMK  2.47 2.23 

1BFO  2.87 1.72 

 

 

= 20BSNR  

2BFO  2.42 1.42 
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Table 6.3: ISNR 's for the experiments using pyramidal blur. 

  Pyramidal blur Lena Cameraman 

( )BSNR dB  Method ISNR(dB) 

Gen-t 6.81 6.80 

CGLS  7.02 6.40 

 

= 40BSNR  

1BFO  5.56 6.07 

Gen-t 4.67 4.60 

CGLS  4.81 4.25 

 

= 30BSNR  

1BFO  4.52 4.35 

Gen-t 3.12 2.97 

CGLS  3.03 2.75 

 

= 20BSNR  

1BFO  3.01 2.60 
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(a) 

 

(b) 

 

 

(c) 

 

 

(d) 

Figure  6.1:  Experiment on Cameraman image with uniform 9 9×  blur and = 30BSNR ; 

ISNR and VIF [120] comparisons: (a) Degraded image, = 2.01VIF  (b) restored with spatially 

invariant prior, [94], = 3.29ISNR  and = 2.22VIF , (c) restored image with method in Chapter 

5, = 5.88ISNR  and = 4.52VIF , (d) restored image with the proposed algorithm, 

= 6.55ISNR  and = 4.55VIF . 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure  6.2:  Experiment on  Lena image with Gaussian blur (variance 9 ) and = 20BSNR ; 

ISNR and VIF [120] comparisons: (a) Degraded image, = 0.04VIF , (b) Restored with 

spatially invariant prior, [94], = 2.32ISNR  and = 0.31VIF , (c) restored image with method 

in Chapter 5, = 2.76ISNR  and = 0.38VIF , (d) restored image with the proposed algorithm, 

= 3.14ISNR  and = 0.39VIF . 
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CHAPTER 7. SUPER-RESOLUTION BASED 

ON FAST REGISTRATION AND MAXIMUM A 

POSTERIORI RECONSTRUCTION 

7.1. Introduction 

7.2. Imaging model 

7.3. Image prior model 

7.4. Pre-processing step of the super-resolution algorithm 

7.5. Maximum a posteriori (MAP) reconstruction 

7.6. Experiments 

7.7. Conclusions and future work 

 

In this chapter we propose a maximum a posteriori (MAP) framework for the super-resolution 

problem. The main contributions of this method are two; first, the use of the locally adaptive 

edge preserving prior of Chapters 4 and 5 to the super resolution problem. Second, an 

efficient two-step reconstruction methodology is proposed that begins with an initial 

registration using only the low resolution degraded observations. This is followed by a fast 

iterative algorithm implemented in the discrete Fourier transform domain in which the 

restoration, interpolation and the registration subtasks of this problem are preformed 

simultaneously. We present examples with both synthetic and real data that demonstrate the 

advantages of the proposed framework. [29]. 

 

7.1  Introduction 

The first contribution presented in this chapter is that we utilize for the super resolution 

problem the prior presented in Chapters 4 and 5. With this prior the super-resolution problem 

is regularized in a spatially adaptive manner. The first level of this model captures the 
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correlations, while the second level provides a description of the local image edge structure in 

different directions. Thus, using this prior model it is possible to reconstruct the images 

without smoothed edges or ringing artifacts in the vicinity of edges, which is very usual in 

reconstruction of high-resolution image.  

The second contribution in this method is a new two-step reconstruction algorithm. In the 

work in [133] the imaging model assumes only shifts and does not incorporate rotations. 

Apart from this, the registration task was extremely slow, because registration was performed 

using the high-resolution image as it was gradually reconstructed. Furthermore, it is based on 

a method that uses only first order derivatives. The first stage of the herein proposed 

methodology is a preprocessing step that approximately registers the degraded low-resolution 

observations. These “almost-registered” low-resolution observations are used subsequently by 

an iterative algorithm which simultaneously reconstructs the high-resolution images and finds 

their registration parameters. We propose this sub-optimal two-stage approach in order to 

speed up the super-resolution algorithm. Thus, the MAP functional is maximized based on 

coarse estimation of rotation and translation between image pairs. We have found that such 

coarse estimation provides sufficient accuracy to effectively remove the rotational and coarse 

(super-pixel) translational motion between image pairs. This algorithm is implemented 

entirely in the discrete Fourier transform (DFT) domain. Furthermore, the registration sub-

task is based on the Newton-Raphson (NR) algorithm that utilizes analytically calculated first 

and second order derivatives and converges rapidly since NR algorithms exhibit quadratic 

convergence [97]. The purpose of the preprocessing step is to ameliorate one of the main 

difficulties of NR methods which are known to be effective only when they are initialized 

close to the solution.  

The rest of this paper is organized as follows. In sections 7.2 and 7.3 we present the imaging 

model and the proposed image prior models, respectively. In section 7.4 we describe the pre-

registration step and in section 7.5 the MAP based restoration algorithm is presented. In 

section 7.6 we provide experimental results with synthetic and real data that demonstrate the 

properties of our algorithm. Finally, in section 7.7 we provide conclusions and thoughts for 

future research. 

 

7.2  Imaging model 
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A linear imaging model is assumed. We denote as d the integer decimation factor. In other 

words, the imaging model assumes a high resolution image of size 1HN × , where HN dN= . 

This model also assumes as observations P  low resolution images of size 1N ×  by applying 

the HPN N×  degradation operator B  to the high resolution image. Then, white noise is added 

at each observation. Let y  be a 1PN ×  vector, containing the P low resolution images iy :  

TT T T
1 2 P⎡ ⎤= ⎣ ⎦y y y y" , 

where iy  is a 1N ×  vector, representing a low resolution image. Using this notation, the 

observations are given by: 

y = Bx + n ,      (7.1) 

where x  the (unknown) original 1HN ×  high-resolution image to be estimated, B  is a 

HPN N×  degradation matrix and 
TT T T

1 2 P⎡ ⎤= ⎣ ⎦n n n n"  a 1PN ×  vector consisting of 

P 1N ×  additive white noise vectors. We assume Gaussian statistics for the noise given by 

( )1~ ,i iN β −n 0 I , 1,..., ,i P=  where 0  is a 1N ×  vector with zeros, I  the N N×  identity 

matrix respectively, and 1
iβ
− , 1,... ,i P=  are the noise variances of the observations that are 

assumed unknown and statistically independent with each other. The degradation operator B  

is given by: 

TT T
1 ,P⎡ ⎤= ⎣ ⎦B B B"  

where ( ) ( )i i i iδ θ=B DH S R  for 1,...i P= . The matrix D  is the known HN N×  decimation 

matrix. iH , 1... ,i P=  are the shift-invariant H HN N×  blurring convolutional operators, and 

( )iδS , for 1,..., ,i P=  are the H HN N×  shift-invariant shifting operators. Each iδ  is a scalar 

which represents translation (with respect to the first image) and is assumed unknown. The 

shift operator, ( )iδS , is the Shannon interpolation operator which is shift-invariant [32]. The 

impulse response of the shift operator is given by: 

( )sin ( )
( ; )

( )
i

shift i
i

m
S m

m
π δ

δ
π δ

−
=

−
,    1, , .m N= …  
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The shift-invariant operators are assumed circulant. This is very useful for computational 

purposes because such matrices can be easily diagonalized in the DFT domain. One difficulty 

that arises in the super resolution problem is the decimation operator which is not square and 

thus not circulant. In this work we take advantage of the simple form of this matrix, and, 

despite its non-circulant nature, we obtain tractable calculations in the DFT domain.  

Lastly, the H HN N×  matrix ( )iθR  represents the rotation of each observation relative to the 

unknown ideal image x. The imaging model assumes that image i  is a rotated (as well as 

shifted) version of the first image, with angle iθ . Using all the above definitions, Eq. (7.1) can 

be rewritten as such: 

( ) ( )i i i i i i iδ θ= + =y B x n DH S R x + n , for  1,..., .i P=     (7.2) 

 

7.3  Image prior model 

Since we utilize a MAP algorithm, a prior for the image is necessary. The prior used here is 

non-stationary and has been used with success in other image processing problems [27] and 

[26]. This image prior model assumes that the first order differences of the image x  in four 

directions, 00, and 900 respectively, are given by: 

( ) ( ) ( ) ( ) ( ) ( )1 2, , , 1 ,  , , 1,i j i j i j i j i j i jε ε= − + = − +x x x x     (7.3) 

with ( ),k i jε  1, 2k = , the difference residuals for the image location ( ),i j . The above 

equations can be also written in matrix vector form for the entire image as k kQ x = ε , 1, 2k =  

where kQ  are the H HN N×  directional difference operators for 1HN ×  images.  Without loss 

of generality, in what follows, for convenience, we will use one dimensional notation; in other 

words, we assume 1 2 H

Tk k k k
Nε ε ε⎡ ⎤= ⎣ ⎦ε … . We also assume that the residuals have 

Gaussian statistics according to ( )( )1
~ 0, ,k k

i iN aε
−

 for 1, , Hi N= …  and 1, 2k =  where k
ia  is 

the inverse variance of k
iε .  

For the inverse variances (i.e. the k
ia ’s) we introduce the notation k =A diag { }1 2, ,k k k

Na a a…  a 

H HN N×  diagonal matrix, =A� diag { }1 2,A A  a 2 2H HN N×  diagonal matrix and 
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( ) ( )
TT T1 2

,= ⎡ ⎤
⎢ ⎥⎣ ⎦

a aa�  a 2 1HN ×  vector, consisting of four vectors 
T

1 2, ,
H

k k k
N

k a a a⎡ ⎤= ⎣ ⎦a … . Also 

for the errors we use the notation ( ) ( )T T1 2
T

⎡ ⎤= ⎢ ⎥⎣ ⎦
ε ε ε� . We assume that the errors in each 

direction and at each pixel location are independent. This is based on the assumption that at 

each pixel location an edge can occur at any direction independently of what happens in 

adjacent pixels.  This assumption makes subsequent calculations tractable. Thus, the joint 

density for the errors is Gaussian and is given as 

( ) ( ) ( )( )( ) ( ) ( )( )1 2 1 22 2T T

1 1 1 1

; exp 0.5 exp 0.5 .
H HN N

k k k k k
i i

k i k i

p a a
= = = =

=∝ − −∏∏ ∏∏ε a ε A ε ε Aε��� � �  

To relate ε�  with the image x  we define the 2 HN N×  operator ( ) ( )
TT T1 2,⎡ ⎤= ⎢ ⎥⎣ ⎦

Q Q Q� . Then, 

the relation between the image and the residuals is =ε Qx�� .  Based on this relation and 

( );p ε a��  we can define an improper prior (one that does not integrate to 1) for the image x  

[26]. This prior is given by: 

( ) ( ) ( )( ) ( ) ( )( )( )2 2T1 4 1 4 T

1 1 1 1

.; exp 0.5 = exp 0.5
H HN N

k k k k k
i i

k i k i

p a a
= = = =

⎛ ⎞∝ − −⎜ ⎟
⎝ ⎠∏∏ ∏∏x a Qx AQx Q x A Q x� � ��

  (7.4) 

The role of the parameters k
ia  is to capture the directional variation structure of the image. 

More specifically, a large variance (small k
ia ) indicates the presence of a large variation along 

the direction of the difference, in other words an edge perpendicular to this direction. The 

introduction of the spatially varying k
ia  scales down the differences of adjacent pixels in 

regions of image discontinuities. As a result this prior maintains edges and suppresses noise in 

smooth areas of the image.  

The drawback of this prior as described thus far is that it introduces 2 HN  parameters k
ia  that 

have to be estimated from PN  observations. This is clearly not a desirable situation from an 

estimation point of view.  To address this, we employ the Bayesian paradigm and consider k
ia  

as random variables (instead of parameters) and introduce Gamma hyper-priors for them. In 

the case of a stationary model where all k
ia  are equal, the over-parameterization problem does 
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not exist, and it is rather straightforward to obtain good estimates for the unknown parameters 

using even maximum likelihood (ML). 

We consider the following parameterization for the Gamma hyper-prior:  

( ) ( ) ( ){ }
2

2; , exp 2 .
kl

k k k
i k k i k k ip a m l a m l a

−

∝ − −    (7.5) 

For such a representation the mean and variance of the Gamma pdf are given by 

( )( ) 12 2k
i kk kE a l m l −

= −⎡ ⎤⎣ ⎦ , and ( )( ) 1222 2k
i k k kVar a l m l

−
⎡ ⎤ = −⎣ ⎦  respectively. This 

representation is used because the value of the parameter kl  can be also interpreted as the 

level of confidence to the prior knowledge provided by the Gamma hyper prior. More 

specifically, as kl →∞ , ( ) 12k
i kE ma −

→⎡ ⎤⎣ ⎦  and 0k
iVar a⎡ ⎤ →⎣ ⎦ . In other words, the prior 

becomes very informative and restrictive, resulting in ( ) 12k
i kma i−= ∀ . In contrast, when 

2kl →  then both k
iE a⎡ ⎤ →∞⎣ ⎦  and k

iVar a⎡ ⎤ →∞⎣ ⎦ , thus, in this case, the prior becomes 

uninformative and does not influence the values of the k
ia ’s.  

 

7.4  Pre-processing step of the super-resolution algorithm 

For this imaging model, the non-circulant nature of the rotation matrix R renders 

computationally impractical simultaneous registration and restoration for large images. In 

contrast, all other matrices used in both the imaging and image prior model have 

characteristics that can be exploited in the DFT domain to render both tasks computationally 

very efficient. Particularly, the blurring H  and shift matrices S  are circulant, hence diagonal 

in the DFT domain.  As mentioned before, the decimation matrix D, which is not circulant, 

has a convenient structure in the DFT domain that helps bypass computational difficulties. 

Finally, matrices kQ  and kA  of the image prior are circulant and diagonal, respectively.  For 

this combination one can exploit the diagonal structure by alternating calculations in the DFT 

and spatial domain.  

To bypass the problems with the rotation, a pre-processing step is performed before the super-

resolution algorithm. In this step we estimate the registration parameters between the low 

resolution observations. At this point it is important to notice that as far as the rotation is 
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concerned the rotations between the degraded low resolution and the high resolution images 

of the imaging model in Eq. (5.2) are the same. However, as far as the shifts are concerned 

they are not since the shifts of the low resolution images must be also multiplied by the 

decimation factor. Thus, these parameters in the preprocessing step will be called iδ ′  and iθ , 

2,..., ,i P=  for translation and rotation, respectively. Using this notation, we assume that 

image iy  resulted by applying both translation and rotation with respect to the first image 1y  

(or the reverse). In other words, we have 

( ) ( ) 1i i iδ θ′ ′ ′=y S R y   or  ( ) ( )1 i i iδ θ′ ′ ′= − −y S R y , 

where ′R  and ′S  are the N N×  rotation and shift matrices respectively, smaller than their 

respective H HN N×  matrices R and S . Thus, image 1y  is the reference image.  

We define the vector that represents the difference between the registered image i and the 

reference image to be 

( ) ( ) 1i i i iδ θ′ ′ ′= − −L S R y - y , for 2,..., .i P=  

Mathematically speaking, in this registration pre-processing step, we aim to estimate the 

registration parameters by minimizing the quantity in the following equation: 

[ ]

2

2
,

ˆ ˆ, arg min ,
i i

i i i
δ θ

δ θ
′

⎡ ⎤′ =⎣ ⎦ L    for 2,..., .i P=  

The minimization is achieved using the simplex search method [83]. Having computed the 

registration parameters iδ ′  and iθ , at the end of the pre-processing step the low resolution 

observations iy  are replaced by the “almost-registered” low resolution images given by  

( ) ( )ˆ ˆint 0.5 , 2,..., ,i i i i i Pδ θ⎡ ⎤′ ′ ′= + =⎣ ⎦z S R y  

where [ ]int ⋅  denotes the integer part of the real number. This is intentional because low 

resolution images that are shifted by a fraction of a pixel are required in order to achieve 

super-resolution reconstruction [32]. For the rest of the paper, we assume as observations the 

registered versions iz  of the initially observed images iy . We also define as z  the vector that 

contains all the iz  as  

TT T T
1 2 P⎡ ⎤= ⎣ ⎦z z z z" . 
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In this way, the rotation is removed from the observations. Thus, the rotation matrices can be 

omitted from the imaging model used for super–resolution reconstruction, described in the 

next section. 

 

7.5  Maximum a posteriori (MAP) reconstruction 

The super-resolution image x  is estimated from the observations z , (after the preprocessing 

step), utilizing a MAP approach in which we infer simultaneously a� , x  and 

[ ]T2 Pζ ζ=ζ "  where the registration parameters   have changed to according to 

i i iδ δ ζ′= + . At this point we must note that even in the absence of noise 

( ) ( )i i i i i i iζ ζ= + =z B x n DH S x + n ,     for  1,..., ,i P=  

To correct this, we make the assumption that the coarsely registered iz , using rotation and 

translation, satisfies the equation  ( )i i i iδ ′= +z DH S x n  where  i′n  is an error term. Thus, the 

imaging model that is finally solved by the MAP algorithm is 

( ) ,i i i iζ= +z DH S x w  for 1,...,i P= , 

where  i i i′= +w n n  the new error term  which is assumed WGN with precision ib . 

MAP estimation is based on maximization of the posterior probability. Thus, based on Bayes’ 

theorem we have: 

( ) ( ) ( ) ( ) ( ), | ; , , , , , ; , , , | , ; , | ; ; , ,p p p p p∝ =x a z b m l ζ z x a b m l ζ z x a b ζ x a a m l� � � � �  

where:  

[ ] [ ] [ ]T T
1 2 3 4 1 2 3 4 1,, , , , , , , .Pm m m m l l l l b b= = =m l b "  

Maximizing the quantity ( ), | ; , , ,p x a z b m l ζ�  with respect to x , a�  and ζ  is equivalent to 

minimizing the negative logarithm: 
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( ) ( ) ( ) ( ) ( ), , log , , ; , , , log | , ; , log | log ; ,MAPJ p p p p= − = − − − =x a ζ z x a b m l ζ z x a b ζ x a a m l� � � � �  

( ) ( )

( )( )

2 2 T2

2
1 1 1 1 1 1

2 2

1 11 1

1 1 1log log
2 2 4 2

2 log 2 .
2

P P N N
k k k k

i i i i i i
i i k i k i

N Nk kk
i k k i

i ik k

N b b a

l a m l a

= = = = = =

= == =

= − + − +

−⎛ ⎞− + −∑ ∑⎜ ⎟
⎝ ⎠

∑ ∑ ∑∑ ∑∑

∑ ∑

B ζ x - z Q x A Q x
 (7.6) 

To minimize the above function with respect to x ,a�  and ζ  we adopt an iterative scheme that 

sets alternatively the gradient with respect to x ,a�  and ζ  equal to zero. 

Setting ( ), , 0MAPJ∇ =a x a ζ� �  yields: 

( )
( )

( ) ( )

*

2

1 1 2
4 2

1 2
2

k
k
i

k
i k k

l
a

m lε

⎛ ⎞+ −⎜ ⎟
⎝ ⎠=

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

.    (7.7) 

The observation of the previous section that the parameters kl  express the degree of 

confidence to the prior can be viewed from another point when looking Eq. (7.7), the MAP 

estimates of the ( )k
ia . More specifically, when kl →∞ , ( ) ( )* 12k

i ka m i−= ∀ ; thus the ( )k
ia i

∗
∀  

are equal, and the image model becomes stationary. In contrast, when 2kl → , 

( ) ( )( ) 1* 2k k
i ia iε

−

= ∀ ; thus the ( )k
ia

∗
’s are completely unaffected from the moderating effect 

of the Gamma hyper-prior and only follow the data. In this case the image model can be 

viewed as the “most non-stationary”.  

Setting ( ), , 0MAPJ∇ =x x a ζ�  yields: 

( ) ( ) ( ) ( )
12 T* T T

1 1 1

P P
k k k

i i i i i i i i i
i k i

b bζ ζ ζ
−

= = =

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑ ∑ ∑x B B Q A Q B z .  (7.8) 

Eq. (5.8) cannot be solved in closed form since analytical inversion of 

( ) ( ) ( )
2 TT

1 1

P
k k k

i i i i i
i k

b ζ ζ
= =

+∑ ∑B B Q A Q  is not possible due to the non-circulant nature of the 

matrices iB  and kA . Thus, we resort to a numerical solution using a conjugate gradient 

algorithm [97].  In this algorithm, the space and DFT domains are alternated when 

expressions with circulant and diagonal matrices are computed. More specifically, 
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multiplications with circulant matrices (convolutions) are performed in the DFT domain while 

multiplications with diagonal matrices are performed in the space domain. 

In the case of the registration parameters, it is not possible to find in closed form the ζ  that 

make the gradient MAPJ∇ζ  equal to zero, or equivalently to minimize the quantity MAPJ  with 

respect to ζ : 

( )* arg min , , ,MAPJ=
ζ

ζ x a ζ�         

which can also be written as:  

( ) ( ) 2*
2

arg min arg min
ii

i MAP i i i iJ
δδ

ζ ζ ζ= = B x - z , for 2,..., ,i P=  (7.9) 

where ( )MAP iJ ζ  denotes the part of ( ), ,MAPJ x a ζ�  that depends on iζ . Since *
iζ  cannot be 

found in closed form we resort to the Newton-Raphson algorithm. This method is chosen due 

to its convergence speed [97]. Registration is equivalent to the minimization task in Eq. (7.9). 

By the definition of the matrix iB  with ( ) ,iθ =R I  in Eq. (7.9) is  

( ) T T T T T T2 ( ) ( ) ( ) .MAP i i i i i i i i i iJ ζ ζ ζ ζ= + +z DS H x x H S D DS H x z z   (7.10) 

The DFT domain is used to evaluate (7.10), since it allows easy analytic calculations of the 

first and second derivatives of the objective function. Since the shift parameters are 

independent with each other, it is sufficient to demonstrate the derivatives for one iζ . The 

details of the derivative calculation of ( )MAP iJ ζ  are given in the Appendix. With the 

derivatives calculated, the update scheme of the Netwon-Raphson algorithm is 

( ) ( ) 12
1

2

n n
MAP i MAP in n

i i
i i

J Jζ ζ
ζ ζ

ζ ζ

−

+
⎛ ⎞∂ ∂
⎜ ⎟= −
⎜ ⎟∂ ∂⎝ ⎠

.      (7.11) 

The shift parameters are initialized as ˆ
init d′= ⋅ζ δ , where 

T

2
ˆ ˆ ˆ,..., Pδ δ⎡ ⎤′ ′ ′= ⎣ ⎦δ  are the shift 

parameters estimated in the preprocessing step (section 5.4) and d is the decimation factor. 

This initialization provides starting values close to the solution, which is essential for the 

convergence of the Netwon-Raphson algorithm to the correct solution [97]. 
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7.6  Experiments 

In order to test the proposed methodology, we used both artificially generated and real data. 

We compared the new MAP super-resolution algorithm with the non-stationary prior with the 

E-M super-resolution algorithm in [133] that uses a stationary prior. We also compared our 

super-resolution algorithm with one that uses total variation (TV) regularization [48]. For this 

comparison a gradient descent algorithm was used given by 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ){ }1 1 2
1 2

T Tk k k k kTβ λ+ = − − + +x x B Bx z Q v Q v    (7.12) 

where the superscript ( )k  denotes the iteration number, ( ) ( )( )m
m i sign i=v ε , with 1 1=ε Q x  

and 2 2=ε Q x  the first order horizontal and vertical differences of the image, λ  the 

regularization parameter and β  the step of the algorithm. In the following experiments the λ  

and β  parameters were selected by trial and error to provide the best possible results. This is 

a difficult task. However, in general as λ  increases the image becomes blurrier and the 

algorithm converges for smaller step β . For all methods we used the same registration 

algorithm. The results generated by Eq. (7.12) are not a comparison with the methodology 

presented in [48] since although similar priors are used the other aspects of the super-

resolution algorithm (registration, chosen PSF) are different.  Nevertheless, the authors of [48] 

have published results with the herein used data sets in [51] and [47] where the interested 

reader can resort.  In the preprocessing step of the herein proposed algorithm the interpolation 

algorithm in [135] was used for rotation in order to handle boundary artifacts.  

In the first experiment, eight 128 128×  low resolution images were generated by performing 

translation and rotation to the well-known “Cameraman” image of size 256 256× , before 

blurring and then down-sampling by a factor of 2. The PSF of the blur was uniform 5x5. 

Lastly, noise was added, corresponding to SNR=20dB (the same for all images). This metric 

is defined as 
2

2
210 log

H

SNR
N σ

=
x

 where 2σ  is the variance of the additive noise and HN  is 

the size of the image x .  
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The Mean Square Error metric (MSE) between the restored image and the original was used to 

evaluate the performance of the algorithm. The MSE is defined as 
2

2
ˆ

H

MSE
N
−

=
x x

, where x  

and x̂  are the original and estimated images, respectively.  

Fig. 7.1.1.(a) shows one of the observed low resolution degraded image. In Fig. 7.1.2.(a), 

7.1.2.(b) and 7.1.(c) we show the super-resolved images and the corresponding MSE’s, using 

the stationary prior in [133], TV regularization as implemented in Eq. (7.12), and the new 

algorithm based on the non stationary prior, respectively. Also, to demonstrate the robustness 

of the proposed registration methodology, we show the true and the estimated registration 

parameters in Table 7.1. We observed in all the experiments we performed with simulated 

data that the proposed pre-processing step estimated the rotation parameters with an accuracy 

of almost four decimal digits in degrees. The reconstructed super-resolved images assuming 

knowledge of the registration parameters are almost identical to their reconstructed 

counterparts using the estimated parameters. From these experiments we can draw two 

conclusions. First, the proposed non-stationary prior improves the reconstruction of the high-

resolution images. Indeed, the MSE using the non-stationary model is significantly lower 

apart from the difference in the visual quality of the images. Second, the proposed two step 

registration methodology seems very accurate (when the image formation model is correct).  

We also used the proposed super-resolution algorithm on two real data sets. The first contains 

20 low resolution degraded images. In Fig. 7.2.1.(a) one of these images is shown. Their 

original size was slightly smaller than 64 64× , so they were padded with zeros, extending 

their size exactly to 64 64×  pixels. In this data set the low resolution images were only 

translated and did not contain any rotations. Super-resolved images of double size (2x) are 

shown in Fig. 7.2.2.(a) , 7.2.2.(b) and 7.2.2.(c) using the stationary, TV regularization and the 

non-stationary priors, respectively.  

The second set includes four low resolution degraded images that contain both translations 

and rotations and one of them is shown in Fig. 7.3.1.(a). Each low resolution image is of size 

128 128× . In order to test the ability of the proposed priors to reconstruct beyond the 

resolution of the available data, we quadrupled (4x) the size of the reconstructed super-

resolved images. The 4x, super-resolved images with the stationary, TV regularization, and 

non-stationary prior are shown in Fig. 7.3.2.(a), 7.3.2.(b), and 7.3.2.(c),  respectively.   
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In estimating the shape of the blur for the real data sets, a Gaussian-shaped blur was assumed. 

This choice was motivated by the observation that Gaussian shaped functions are smooth and 

have good approximation properties. The width of each blur was experimentally estimated 

using trial and error experiments. The width is captured by the variance of Gaussian PSF. For 

the first set, the values of the variances of the Gausian shaped PSFs were found in the range 

[2.5-4] pixels and for the second the variance was set equal to 4. 

To facilitate learning the proposed image model, we used equal 1
ib−  for all i  (additive noise 

variances) and equal km  for all k obtained by learning a stationary SAR model [133]. The 

parameters km  were obtained as ( )1/ 2k STATm a=  where STATa   the image model parameter of 

the stationary SAR model. The parameters kl  were selected to be equal to 2.1l =  for the 

reconstruction of both the real data and synthetic data. This value was found by trial and error 

experiments. We observed that as 2l →  the reconstructed images assume a “cartoon” like 

appearance where large edges are preserved and areas with small variations are flattened out. 

When l →∞ , as also explained previously, the reconstructed images assume the appearance 

of images that were reconstructed by a stationary prior model.  In other words, at the expense 

of ringing in edges and noise amplification in smooth areas, textured areas can be better 

reconstructed. The selection of 2.1l =  reflects our subjective choice between these two 

opposing trends. For the case of the TV regularization, the algorithm’s parameters were also 

found by trial and error. We set for the first experiment 0.05β = , 1λ = , for the second 

0.01β = , 1λ = , and for the last one 0.1β = , 2λ = . 

The super-resolution estimates of x , k
ia  and iζ  were found by iterating between Eq. (7.7), 

(7.8) and (7.11) till convergence. In the presented experiments, the convergence criterion was  

1 3
2

2

10 ,
t t

t b

+ −−
<

x x

x
 

where t denotes the iteration number and b  is the average of the inverse noise variances 

1

1 .
P

i
i

b b
P =

= ∑  

Finally, we would like to note that the MAP function in Eq. (7.6), although derived using a 

completely different principle, can be viewed as a half-quadratic function that is generated 
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using a HLϕ -like potential function (Table II, pp. 302 in [31]) with appropriate choice of 

parameters, for details see [26]. The convergence of alternating direction minimization of half 

quadratic functions has been rigorously shown in [31]. It has been shown that if the 

generating potential function is strictly convex, and the null spaces of matrices B  and kQ  do 

not intersect, the MAP function is convex. However, the HLϕ -like potential function is not 

convex thus the proposed alternating direction minimization converges to a local minimum. 

For this reason, good initialization of the algorithm is important. 

 

7.7  Conclusions and future work 

Inspection of the super-resolved images in Fig. 7.1.2.(a)-(c), 7.2.2.(a)-(c), and 7.3.2.(a)-(c) 

reveals that the resolution in every case has significantly been improved. The letters in the 

super resolved images (Fig. 7.2.2.(a)-(c) and7.3.2.(a)-(c)) are now easily legible. 

Furthermore, the images reconstructed using the proposed non-stationary prior, Fig. 7.1.2.(c), 

7.2.2.(c), and 7.3.2.(c), are visually more pleasant and display less ringing at the edges as 

compared to both stationary and TV based super-resolution reconstruction. The MSE for the 

reconstructed images using non-stationary prior is also smaller than both the stationary and 

the TV based models. It is worth noticing that for the first experiment, the MSE results when 

using the real registration parameters are almost identical to that when the registration 

parameters are estimated. This demonstrates the robustness of the proposed algorithm 

regarding the registration parameters. 

In what follows we report implementation times for the “Cameraman” experiment. 

Registration in the pre-processing step requires 26 minutes. One iteration of the stationary 

model based algorithm requires 4-5 seconds with almost 4 seconds the time for fast sub-pixel 

registration. One iteration of the non-stationary MAP algorithm requires about 38 seconds, 

out of which 4 seconds are required for fast sub-pixel registration, and the rest for 40 

iterations of the conjugate gradient algorithm in Eq. (7.8). The TV algorithm requires about 1 

second per iteration of the gradient algorithm in Eq. (7.12). These times we obtained using a 

Pentium 4 3.4GHz PC and a Matlab implementation. 

In the future we plan to include a PSF estimation step in the formulation of this problem. This 

can be achieved by blind-deconvolutions methodologies. Faster rotation estimation in the pre-
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processing step would be also desirable. In addition, it would be interesting to include the 

rotation matrix in the imaging model and estimate in parallel all the registration parameters. 

Furthermore, methodologies to better model the statistical errors if the imaging model is not 

accurate will be considered. 

 

Appendix 

Assume the H HN N×  DFT matrix 1W  and the N N×  DFT matrix 2.W  Then 1=X W x  and 

2i i=Z W z  are the DFTs of the vectors x  and iz , respectively. The matrices 

1
1 1( )iδ

−=SΛ W S W  and 1
1 1i

−=HΛ W H W  are diagonal due to the circulant nature of the 

matrices  ( )iδS  and iH . It can also be shown that  

[ ]1
2 1 1 2, , ..., /d d−= =DΛ W DW I I I    (A.7.1) 

is a HN N×  block matrix that contains d identity matrices of size N N× .  Then, we can 

write: 

( ) { }H H * * T H2 .MAP i i i iJ realζ = + +D S H H S D D S HZ Λ Λ Λ X X Λ Λ Λ Λ Λ Λ X Z Z    

 (A.7.2) 

where the symbols ‘H’ denote the Hermitian and ‘*’ the conjugate. For simplicity, the 

diagonal element of a matrix is denoted as [ ]m . Then we can write 

( ) [ ] [ ] [ ] [ ]* *

1 1

2 ,
N N

MAP i i i i i
m m

J real m m m mδ
= =

⎧ ⎫∝ +⎨ ⎬
⎩ ⎭
∑ ∑Z T T T     (A.7.3) 

where [ ]i mT  are the elements of the 1N ×  vector iT  and they are  
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1

0 .

d
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nN nN nNm m m
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d

−

=

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + +⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠≡
∑ S HΛ Λ X

T    (A.7.4) 

The evaluation of the first and second derivatives of Eq. (A.7.2) is very convenient in the DFT 

domain since the parameter iζ  is only in the diagonal elements of the matrix SΛ . These 

elements, see for example [32], are equal to: 
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[ ] { }exp 2 ( 1) /im j m Nπζ= − −SΛ , for 1,..., / 2,m N=  

where 2 1j = − . The remaining elements are a “mirrored” version of the previous ones; in 

other words: 

[ ] { }exp 2 ( 1) /im j N m Nπζ= − − +SΛ , for 1,..., .
2
Nm N= +  

The first and second derivatives for the first half are respectively: 
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∂ − −
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and for the second half: 
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The derivative of the terms in Eq. (A.7.2) is given by applying Eq. (A.7.5) - (A.7.8): 
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From the definition of iT , it is:  
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Similarly, the second derivative is: 
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To be precise, in our application we deal with 2-D signals where here are two translations 

parameters per image ( ),x y
i i iζ ζ ζ=
G

. Thus, in Newton-Raphson update equation, Eq. (7.10) 

( )n
MAP i

i

J ζ

ζ

∂

∂

G

G  is a 2 1×  gradient vector and 
( )2

2

n
MAP i

i

J ζ

ζ

⎛ ⎞∂
⎜ ⎟
⎜ ⎟∂⎝ ⎠

G

G  a 2 2×  Hessian matrix involved. 

However, the inversion of a 2 2×  matrix is easily found in closed form; hence the 2-D version 

of the registration algorithm is also very fast. 

 

 

 

 

 

Figure 7.1.1: Low resolution degraded observation 
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Figure 7.1.2: (a) Stationary 2x [133], (MSE=195.2), (b) Total Variation, Eq. 7.12 

(MSE=182.1), (c) Non-stationary MAP 2x super-resolved image (MSE=162.4).

 

(a) 

 

(b) 

 

(c) 
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Figure 7.2.1: Low resolution observation. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 7.2.2: Super-resolved images; (a) 2x stationary [133], (b) 2x Total Variation, Eq. 

(7.12), (c) 2x MAP non-stationary.
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Figure 7.3.1: Low 

resolution observation. 

 

(a) 

  

(b) 

 

[1] (c) 

Figure 7.3.2: Super-Rsolution experiment with real data; super-resolved images; (a) 4x 

stationary [133], (b) 4x Total Variation, Eq. (7.12), (c) 4x MAP non-stationary.
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Table 7. 1 Original and estimated parameters for the artificially generated images. 

 θ  θ̂  ( , )x yδ δ   ˆ ˆ( , )x yδ δ  

Im 2 1.00 0.99 (0.30, -0.20) (0.31,  -0.21) 

Im 3 2.00 2.00 (0.10, -0.30) (0.14, -0.32) 

Im 4 3.00 3.00 (-0.20, 0.10) (-0.15, 0.06) 

Im 5 1.50 1.50 (-0.15, 0.25) (-0.13, 0.23) 

Im 6 0.50 0.48 (0.00, 0.10) (0.00, 0.09) 

Im 7 -1.00 -1.00 (0.05, 0.12) (0.04, 0.14) 

Im 8 -2.00 -2.02 (0.14, 0.32) (0.13, 0.35) 
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CHAPTER 8. CONCLUSIONS AND FUTURE 

RESEARCH 

In this dissertation we presented novel Bayesian algorithms for image restoration and super-

resolution based on new edge-preserving image priors. More specifically, the Bayesian 

formulation of these problems enables the incorporation of hierarchical image priors with two 

levels, with the second level manifesting the spatial adaptive regularization mechanism. This 

mechanism leads to restored/reconstructed images for restoration and super-resolution, 

respectively, with preserved edges. Furthermore, working in a Bayesian framework, we have 

developed methodologies to infer the image and to estimate the model parameters, i.e. the 

noise variance and the prior parameters, in an iterative manner.  

In Chapter 4 we introduced a spatially adaptive image prior by extending the SAR model used 

in previous restoration algorithms. The extension was performed by making the precisions of 

a Gaussian prior, imposed on the local directional differences, spatially varying. Then, a 

conjugate Gamma hyperprior was imposed on the precision parameters. Integration with 

respect to the precisions results in a Student’s-t density. This density was also used as a prior 

in Chapter 5. However, the prior was imposed in the outputs of an arbitrary number of high-

pass filters. Thus, this prior is in product form and has the ability to enforce simultaneously 

multiple constraints to the solution of the model. Lastly, in Chapter 6, the prior was 

generalized by extending this time the TV prior instead of the Gaussian. The extension was 

made again by assuming spatially varying regularization parameters and then a Gamma 

hyperprior was imposed on them. 

Iterative algorithms were developed to learn the proposed models and to restore/reconstruct 

the image. First, in Chapter 4, the image is treated as a parameter and the precisions of the 

Gaussian prior as hidden variables. Then, both a MAP and a Bayesian algorithm were 

proposed to estimate the image and the precisions. Numerical experiments showed superiority 

of the MAP algorithm with respect to other state-of-the-art methodologies.  
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In Chapter 5, the image is treated as a hidden variable and a variational Bayesian algorithm is 

employed for inference, which means a posterior distribution is obtained for the image. In 

addition, the model parameters are estimated in a rigorous manner, in contrast to many 

popular methodologies for image restoration, in which they are selected empirically. 

Furthermore, apart from the first order differences, more high-pass operators are used. A 

Lanczos-based numerical method has also been developed to estimate the diagonal elements 

of the covariance matrix of the posterior distribution obtained for the image. Numerical 

experiments demonstrate that the proposed algorithm is superior to that of Chapter 4. 

In most of the experiments, the proposed algorithms produced the best results in terms of 

ISNR, compared to state-of-the-art methods. However, are not superior in high levels of noise, 

but they exhibit the same performance. A possible explanation of this is that high levels of 

noise diminish the subtle features of the images and the proposed model cannot capture these 

features. In this situation, all methods become equal in performance. 

In Chapter 7, the proposed image model was successfully incorporated in the super-resolution 

problem. The MAP framework algorithm was found to be superior of other state-of-the-art 

methodologies in terms both of MSE and visual quality. The high-resolution images have 

their edges-preserved, something which was the initial motivation for the incorporation of the 

proposed prior. As a result, in an illustrative experiment, letters that are illegible in the low-

resolution images become legible in the high-resolution image. 

Numerical methods to estimate the diagonal elements of an inverse matrix are prsented in 

Chapters 5 and 6. These methods are faster than other methodologies used to accomplish this 

type of calculation. Also, it would be interesting to conduct detailed experiments in order to 

test the performance of this approximate estimation when applied to a known matrix. The 

method in Chapter 6 was proven to be faster than that of Chapter 5. 

An interesting issue for future research is the relaxation of the independence assumption of 

the outputs of the filters. In most images the edges are formed in a continuous manner and this 

is an indication that the filter outputs are correlated.  A possible methodology to introduce 

correlations to the image model is to assume, for example, a tridiagonal covariance matrix for 

the Gaussian prior and impose a Wishart distribution on it, instead of the Gamma. This type 

of hyperprior has already been used successfully in Machine Learning problems [36]. 
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The incorporation of alternative and/or additional filters in the image prior is a topic for 

further investigation. The operators used in the image prior in Chapters 5 and 6 can be 

replaced by filters successfully employed in several problems, such as wavelets, filter banks, 

curvelets, or even filters learned from real images.  

The super-resolution algorithm could also be extended so as to avoid the pre-processing step 

and in this way to avoid the sub-optimal pre-registration procedure. The registration should be 

ideally performed as a step in the MAP algorithm. Also a Bayesian algorithm can be 

employed for the registration that treats the registration parameters as random variables and 

impose a hyperprior for them. 

An open issue for the super-resolution problem is the estimation of the blurring operator that 

is applied to the image before downsampling. Estimation of the point-spread-function (PSF) 

of the blurring operation can be achieved with methodologies borrowed from the blind image 

deconvolution research. 
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