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ABSTRACT

Giannis Chantas, K. S.

PhD, Computer Science Department, University of loannina, Greece. October, 2008.

Title: Bayesian Restoration and Reconstruction of High-Resolution Images from Low-
Resolution Images with Unknown Degradations.

Thesis Supervisor: Aristidis Likas.

The research topic of this dissertation is the development of stochastic non-stationary image
models as image priors used for regularization in restoration and super-resolution problems.
The proposed non-stationary image models lead to spatially adaptive regularization, or in
other words, non-uniform regularization along the image which depends on the local spatial
activity. Furthermore, working in the stochastic framework we employ the Bayesian
methodology to solve these inverse problems and in parallel to estimate the model parameters.
Thus, development of Bayesian restoration and reconstruction algorithms is another major

issue of this dissertation.

First, we introduce a new hierarchical (two-level) Gaussian non-stationary image prior. This
prior assumes that the residuals of the first order differences of the image, in four different
directions, are Gaussian random variables with zero mean and variance that is spatially
varying. In this way, the variances manifest the spatial adaptivity mechanism. In order to deal
with the resulting over-parameterization of this model, the spatially varying variances are
considered random variables (not parameters) and a Gamma hyper-prior is imposed on them,
which is conjugate to the Gaussian. To learn this model and infer the image we propose two
iterative algorithms. The first is based on the maximum a posteriori estimation (MAP)
principle and computes explicitly both the image and the spatially varying variances in all
four directions. The second is a Bayesian algorithm that marginalizes the “hidden variables”.

Also, the marginalization of the hidden variables produces a Student’s-t distribution.

Xi



Next, we propose a new Bayesian inference framework for image restoration using a prior in
product form. This prior assumes that the outputs of local high-pass filters, (their number is
arbitrary), follow again the Student’s-t distribution. Then, a Bayesian inference methodology
is proposed that bypasses the difficulty of evaluating the normalization constant of product
type priors. The methodology is based on a constrained variational approximation that uses
the outputs of all the local high-pass filters to produce an estimate of the original image. In
this manner the use of improper priors is avoided and all the parameters of the prior model are

estimated from the data.

As a next step, we extend the total-variation prior by introducing a new prior which has a
number of novel features. More specifically, we introduce a total-variation (TV) prior with
spatially varying regularization parameters. In order to avoid the over parameterization, we
introduce a Gamma hyperprior for the spatially adaptive regularization parameters of the local
TV priors. We also use this prior in a product form, which means that we assume that the
outputs of an arbitrary number of high-pass filters are distributed according to this prior. This
gives two novel features to the new prior. First, it is explicitly spatially adaptive and thus it is
better suited to capture the salient features of the image. Second, it is in product form and has
the ability to enforce simultaneously a number of different properties to the image. If the
hidden variables of the second layer are marginalized, the resulting density function has a
form similar to a Student's-t distribution; thus, we label it as Generalized Student's-t. Due to
the complexity of this model, we resort to the variational approximation for Bayesian

inference.

Finally, we present our contribution to the super-resolution problem. We utilize for the first
time in the super-resolution problem a hierarchical two-level image prior. Using this non-
stationary prior, it is possible to reconstruct high-resolution images without smoothed edges
or ringing artifacts in the vicinity of edges. Another contribution to the super-resolution
problem is a novel two-step reconstruction algorithm. The first stage of this algorithm is a
preprocessing step that approximately registers the degraded low-resolution observations.
These “almost-registered” low-resolution observations are used subsequently by an iterative
algorithm which simultaneously reconstructs the high-resolution images and finds their

registration parameters.

xii



EKTENHX IEPIAHYH XTA EAAHNIKA

[odvvng Xdavtag tov Kovotavtivou kot g Zoeiag.

Awaxtopikd Almiopa, Tunua ITAnpogopung, [avemompio loavvivav, OxtoBprog, 2008.
Tithog: Mmnevliav AvopBwon kor Avakotackevy] Ewovov YymAng Avdivong oamod
Ayvoomg YroPaduong Aedopévo Xauning Avéivonc.

Emprénovtag: Apioteidng Adkag.

To gpevvntikd avtikeipevo ¢ STpPng avTg oYeTIleTON PE TV AVATTVEN TPOTOTLIT®V
pefodoroyidv yio ta TpofAnpata g ovopbwong eikdvev (image restoration) ko Tng vLIEP-
avdivong ewkovov (image super-resolution). ITo cvykekpéva, 1 SoTpiPn ETKEVIPOVETOL
ot UEAETN YoPKE UETAPOAAOUEVOV OCTOYOCTIKOV HOVIEA®V KATOAANA®V Yy va
YPNOUOTOMOOVV MG €K TOV TPOTEPWV KATOVOUES (Priors) TPOKEWWEVOL Vo emiTevyDel
Kavovikomoinon (regularization) oto mpoPfAnpata ¢ avoplmong Kot g vVIEP-UVAALONG
ewovov. Me 10 TPOTEWVOUEVO UN-OTOTIKO HOVTEAD €KOVOC  EMTLYYXAVETOL TOTKE,
TPOGUPUOLOUEVT] KOVOVIKOTOINGT, ONANOY OVOUOIOHOPEN KOVOVIKOTOINGoT TNG €KOVaG
eCApPTOUEVN OO TNV TOMKN YOPIKN OpactnpdtTo. XPNCUYOTOIDOVINS TN GOTOYOOCTIKN
TPOGEYYLON YL TN HOVIEAOTOINGT TV €KOVAV, gpoppoletor 1 Mrebliovn pebodoroyia yio
™ ADON TOV aVTIGTPOP®V TOPATAV® TPOPANUATOV KOODC Kol Yoo TV EKTIUNOTM TOV
TopapETpOV Tov poviehov. Katd cvvéneia, n avantuén Mrebliovov alyopifumv avoépboong

KOl LITEP-0VAALONG etvan £va akOuUN Pactkd medio Epevvag TG daTpiprc.

2t SwtpPn) vt TpoteiveTol KaTapyny Hia vEa tepapytkt] (000 emmES®MV) €K TV TPOTEPOV
Katoavoun mov givor I'kaovolovny kot pun-ototiky. Avt 1 Kotavoun Bewpel 0TL o1 TPMTEG
JPOPES TV EIKOVDV, GE TECOEPLS OAPOPETIKEG dlevBuvoelg, eivan I'kaovolavég Tuyaieg
petaPAntég pe yopuwkd petafoiiopevn dwokdpavon. Me tov Tpomo avtd, ot JKVUAVGELS
VAOTTOL0VV TO UNYOVIGHO TNG Y®PKNS petapintomtog. o va aviipetomiotel to {ftnuo g
VIEP-TOPOAUETPOTOINCNG OLTOV TOV HOVTIEAOL, Ol YWPIKA UETOPAALOUEVEG OLUKVUAVOELS

Bewpovvtor tuyoieg HETAPANTES (Ot TOPAUETPOL) TOL AKOAOLOOVV W10 KOV KOTOVOUT
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Fappa. T v exnaidevon tov HOVTEAOL KOl TV €KTIUNOM TG €1KOVAG TTpoTeivovTol 600
emovoinmtikol adyopidpotl. O évag Paciletar oty apyn g maximum a posteriori (MAP)
extipnong kot vmoloyilel dueco kol TNV €KOVA Kol TG YOPIKE UETAPUAAOUEVES
dwkvpdvoels. O  dAloc eivon évag Mmebliavog alyopiBuog mov  Poaociletor otV

TEPOMPLOTOINCT TOV EVOLAUECOV «KPOUUEVOV» LETARANTOV.

21 ovvéyela, mpoteivetar pa véa Mredliovn tpocéyyion yia avopbwon ekdOvev oty omoia
YPNOOTOLEITOL O €K TMOV TPOTEPOV KOTOVOUN Yoo TNV €KOVE 1 Omoid €Yel Lopoen
ywopévov. Ilapovoibletar po peBodoroyia mov Eemepvd tn SLGKOAID TNG EKTIUNONG TNG
oTa0EPAG KAVOVIKOTOINGNG TOV KATAVOU®MY TOTTOV Yvouévov kot Paciletal o€ puo variational
TPocEyylon He meplopiopovg (constrained variational approximation). Me tov 1pdémo avtd
AmOPEVYETAL 1] YPNON U1 KOVOVIKOTOMUEVAOV (Improper) KATavVOU®MY Kot OAEG Ol TOPAUETPOL

TOV HOVTEAOV EKTILAOVTOL OTTO TOL OEOOUEVOL.

Qg emduevo Prua, mpoteivetar po eméktoon g total-variation (TV) ex tov mpotépmv
KATOVOUNG Yol TNV €KOVHL HECH NG E60YMYNG YOPWKE HETARBOAAOUEVOV TOUPAUETPOV
kavovikomoinone. o v amopuyn tng vrep-napapetponoinong, emPdriiovpe o 'appo
KOTOVOUT Yol TIS YOPIKE UETAPOAAOUEVES TAPAUETPOVS TOV TOTMIKOV TV KOTAVOUDV.
EmimAéov, ypnotpomotode v KoTovoun oty o€ Hoper| ywvopévov. Av mepifwpromonbovv
ot evolqpeces LeTaPANTEC, N cLVAPTNGN TLKVOTNTOS TOAVOTNTOS TOV TPOKVTTEL £XEL LOPPT|
opowo pe ¢ Student's-t xatovoung kot v ovopdlovpe I'evikeopévn Student's-t. T'a 10
TOPOTAVE® GTOXACTIKO HOVTEAD mpoteiveton po Mredliavr peBodoroyia yioo v extipnon

NG EKOVOG KOL TOV TAPAUETPMY TOV LOVTEAOVD.

Téhog, mapovcualetar o véo TPOGEYYIoT 610 TPOPANUO TG VEEP-AVAALGONG EKOVOV,
YPNOLOTOUDVTOG Y10 TPATY POPA U0l LEPAPYIKT] XOPIKA TPOGUPUOLOUEVT EK TOV TPOTEPOV
katoavoun. To yeyovog avtd odnyel 6€ AVAKOTACKEVACUEVES EIKOVEG VYNANG OVAAVOTG YOPIC
OMOAOTOMUEVEG OKUEC M Tinging artifacts otnv yertovid Tov akpudv. Mo GAAN cuvelspopd
0710 TPOPANUA TNG VIEP-AVAALONG Efvorl Evoc KovOTOROG alyOplOlog avaKaTaoKELNG 600
otadiov. To mpdT1o 6Tdd10 TOL aAyopiBuov eivar €va Prpa mpo-eneéepyaciog dnmov yivetal
vrépOeon (registration) peta&y TV EOVOV YOUNANG avdivong. Ot TpoKOTTOVCES EIKOVEG
YPNOUOTOOVVTOL OTN) CULVEYEW OO &VaV  EMOVOANTTIKO OAYOpOpO Tov  TavTOYpOVa

aVOKOTAOKEVALEL TV €KOVA VYNANG avdAivong kat Bpioket Tig mapapéTpous TG veepHeonc.
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CHAPTER 1. INTRODUCTION

1.1. Image restoration and super-resolution

1.2. Imaging model for image restoration

1.3. Image restoration: an ill-posed problem

1.4. Regularization in image restoration

1.5. Super-resolution: reconstructing a high-resolution image from low-resolution images

1.6. Thesis contribution

1.1 Image restoration and super-sesolution

Digital image restoration is the problem of estimating the original scene of a digital image
given a degraded version of it. It is a problem with a long history and emerged when the first
imaging systems appeared. The imperfections of the imaging systems and the artifacts that are
created when the images are produced motivated the study of methods to restore degraded
images. Restoration can be applied to both analog and digital systems. However, the
development of digital imaging systems has made digital image restoration more popular than

the analog and provoked even more research for this field.

Applications of image restoration are numerous. For example, astronomical images from
spacecrafts and telescopes are usually degraded due to atmospheric turbulence and imperfect
optics. Photography is another field where image restoration can be useful when the focus is
not good or there is motion. Also, because image restoration is strongly related to image
reconstruction (where the observations are multiple projections of the image), advances in the
first area lead to improvements in the latter. Magnetic Resonance Imaging (MRI), {-MRI,
Positron Emission Tomography (PET) and super-resolution are examples of imaging

modalities where reconstruction is the goal.



Super-resolution is the problem of reconstructing a high-resolution image from low-resolution
images of the same scene. The desire for images with high resolution without the cost of
using expensive optical imaging systems has led to the development of image processing
techniques that produce a high-resolution image from multiple under-sampled images of the
same scene, taken with cheaper optical systems. The key idea of super-resolution is to fuse in
one image the information included in multiple low-resolution images. Reconstruction
techniques for high-resolution images are very similar to image restoration methodologies.
Thus, development of efficient restoration algorithms provides automatically efficient super-
resolution algorithms. For this reason, in this dissertation we deal with these problems in

parallel.

More specifically, image restoration and super-resolution problems are formulated using the

linear equation
g=Hf+n,

where g are the observations f is the original image and n is the noise. In image restoration

H is the blurring operator that blurs the image [5]. In super-resolution it is the operator that

produces the degraded low-resolution observations g, [105]. In tomographic reconstruction
(or computed tomography, CT), the matrix H is the Radon transfom operator [7] and g are

the projections that the image is reconstructed from.

In this dissertation we deal with the restoration and super-resolution problems and in the next
sections we present an introduction of these problems. Techniques for image restoration make
use of models for the degradation mechanism (imaging models) as well as for the images. The
assumption of a particular image model corresponds to introduction of prior knowledge of the
image structure. This prior knowledge is also needed for super-resolution. Thus, realistic and
efficient image models for the restoration problem can also be adapted and applied to super-
resolution. Of course, super-resolution is a different problem because there are different
parameters in the imaging model that have to be estimated along with the reconstruction of

the high-resolution image.

1.2 Imaging model for image restoration



Degradation of images is usually caused by two successive operations [1]. The first operation
is a spatial degradation which is caused from various factors, i.e. atmospheric turbulence, out
of focus camera and/or motion. The result is a blurred version of the original scene. The
second operation is a point degradation according to which noise affects the individual pixel
gray level. This is caused by various types of noise (shot, thermal) in the detector systems and

errors in the recording process due to quantization.

In this dissertation we will assume, as in many other works, space-invariant blurring and
additive white Gaussian noise (AWGQG). Thus, formally, the imaging model is linear and for
pixel (i, /) itis given by:

2 (i) =SS h(i—k. j—1) (k1) n(i. ),

k=1 [=1
which can also be written as:
g=h**f+n. (1.1)

The observed image g, is an N x N matrix, and is produced first by a convolution of the

original image f, also an N x N matrix, with a linear shift-invariant (LSI) low-pass filter h.
This is also called the point spread function (PSF), since it spreads an impulse to many pixels,
and models the spatial degradation mechanism. The operation denoted by ** is the two-

dimensional convolution. Then, AWG noise is added, represented by the vector n, for which
it is assumed that n~ N (0, ,6"11) where 0 and I are the Nx N zero and identity matrices

respectively. The noise variance £ is assumed unknown, in contrast to the PSF h, which will

be assumed known in this dissertation.

To use a more convenient notation we express the convolution as a matrix-vector
multiplication of the N> x N* matrix H (representing a linear convolution operator) by the

vector h. The equivalent equation is:

g=Hf+n, (1.2)
where g, f and n denote N°x1 vectors ordered lexicographically.

Due to the spatially invariant nature of the PSF, the matrix H is block-Toeplitz. However, in
order to make the multiplication of the matrix with a vector fast, we approximate it by a block

circulant matrix [1]. The larger the dimension N is, the better the approximation becomes

3



[68]. The use of this approximation is the same with the assumption that the convolution in
Eq. (1.1) is circular. However, one can avoid the approximation by padding the vectors in the
convolution with zeros, and convert any linear convolution to a circular one. The padding will

result in a different block-circulant matrix, but will abolish the approximation.

Padding or not, the block-circulant matrix H is formed as follows:

H(0) H(N-1) -« H()
S| oHM H() e H (V=)
H(]\./—l) H(]\}—z) H‘(O)

where each sub-matrix is a circulant matrix, formed by h (padded or not), the LSI filter:

h(i,0)  h(L,N-1) - k(1)
H(i): h(l;l) h(zs,O) h(z,]s\f—l)'
h(i,N-1) h(i,N-2) -  h(i,0)

The circulant form leads to more tractable equations and an easy to handle model in the
discrete Fourier transform (DFT) domain. This is because the eigenvalues of all circulant
matrices are obtained by the DFT of the filter h [1]. In other words, the eigenvectors of
circulant matrices correspond to the complex exponentials basis functions of the DFT.

Precisely, a circulant N x N matrix A is diagonalized as follows:
A=N"WAW"

where A is diagonal with elements (the eigenvalues of A ) the DFT coefficients of the filter
that corresponds to this matrix. Also, N""*W is the DFT operator matrix and N">*W™' its
inverse [1]. In the case of a block circulant matrix the same equations hold. The only
difference is that instead of the one-dimensional DFT transform, two-dimensional DFT is

used. In this dissertation the notation that will be used for simplicity is one-dimensional.

1.3 Image restoration: an ill-posed problem



Given the imaging model, we are faced with the problem of estimating the original image f,
denoted by f, from the degraded observation g. Inverse filtering using the degradation

matrix H is the most direct but naive way for restoration:
f=H'g.
In the DFT domain, using the diagonalization of the previous section we get:

f=H'g=1f= %WAhIWIg SWf=A'Wig=F=A;'G,

where, A, is a diagonal matrix with the eigenvalues of H (the DFT coefficients of h), and

F,G are the images in the DFT domain. According to the imaging model, noise has been

added to the observed image, so using Eq.(1.2) the estimated image will be:
f=f+Hn. (1.3)

Therefore, because of the ill-conditioned nature of H, the noise in the estimated image will be

greatly amplified. To make this clearer, Eq. (1.3) can be written in the frequency domain:

.o GGH) o N@)
F(l)_Ah(i,i)_F(l)+Ah(i,i)’ P=1-N, (1.4)

where F and N are the DFT of the image and noise vectors respectively. Notice that the

eigenvalues A, (i,i/) must not be zero for the inversion to be possible. However, a disastrous

but usual situation appears when large levels of noise correspond to high frequencies, in

which case the eigenvalues A, (i,i) are close to zero. This results in restored images that

contain amplified high frequency noise.

The direct estimate of the image through inverse filtering of the observations using H leads
to noise amplification. In Figure 1.1(c) the result of this operation to the degraded image of
Figure 1.1(b) is illustrated. In the literature, inverse problems similar to this are called “ill-
posed”. Loosely speaking, this means that small changes to the observed data can cause very
large changes to the estimated solution, or in the worst case the original data cannot be
recovered (restored in our case), even in the absence of noise (i.e. H is not invertible). In order
to ameliorate the difficulties of ill-posed problems, the theory of regularization has been
introduced which converts an ill-posed problem to a well-posed [1], [127]. This is achieved

by constraining the set of admissible solutions using a priori knowledge about the image. The
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quality of the solution depends highly on the regularization mechanism that the image model

provides. This is why the image model must be accurate and realistic in order to obtain

solutions as close as possible to the original image.

(b)

(©)

Figure 1.1 (a) ‘Lena’ original image, (b) degraded image and (c) the result of direct inverse

filtering to the degraded image (without regularization).

1.4 Regularization in image restoration

1.4.1 Stochastic regularization

Let us now present a method to enforce regularization to the solution of the restoration

problem. According to this, a regularized estimate of the image is the linear minimum mean



square error (LMMSE) estimate [1]. This is based on second order statistics of the image and

noise. More specifically, let R, = E [ff T] and R, =E [nnT] (where E[-] is the expectation

operator) the image and noise covariances, respectively. The covariances can be estimted

from the degraded image for R;; and from a flat region of the image for R . The LMMSE

estimate which is also called Wiener filter [ 1] minimizes the expectation:

I}

min {E [Hf -f
f
Thus, the estimated image is given by:
f=R,H'(H'R,H+R,,) g. (1.5)

In this case the inversion is better conditioned, and the ill-posed problem is avoided. This can
be better seen in the case where the noise has simple covariance and it is circulant:

R, =0 1=W'c’IW.

Thus, the power spectrum S, is easily computed:

If the process is assumed zero mean, the covariance equals to the correlation matrix. Also, if
the covariance matrix is assumed circulant, the equivalent of Eq. (1.5) in the DFT domain is

expressed as:

o Sk (i)A; (i,i) . .
F(i)= Gl(i), =L...N, 1.6
(l) || h(i: l)||2 Sff (l) 0'2 (l) l ( )

where Sff(i) is the power spectrum of the image [1]. The quantity that multiplies the

observed image G (i) to obtain the restored F(i) is the inverse filter. This filter does not

amplify the noise because there are small values in the high frequencies. In this way, a

regularized solution is obtained.

This convenient formulation in the DFT domain is possible because the image and the noise
covariances were assumed circulant, or in other words, they represent stationary processes.
The main benefit of a stationary model is the ease of solution in the DFT domain.

Unfortunately, these models usually cannot describe efficiently the real world phenomena.



1.4.2  Deterministic regularization

At this point we present how deterministic regularization can be used to solve ill-posed
problems. In deterministic approaches the criterion used to find the restored image is the

minimization of the Euclidian norm:
|- Hf]l.
However, this alone yields the pseudo-inverse solution
i=(H'H) Hg,

which is ill-posed [127]. To ameliorate this situation, Tikhonov regularization can be used

with an addition of a penalty (regularization) term [127]:
min (|- B[ + aQf]; | (1.7)

The regularization parameter a is a scalar and Q is a N x N matrix. The penalty term tries to
bias the solution obtained by minimizing the first norm, towards to a different solution, which
is constrained to have some properties common in images. In most cases this property is that
the image must have small energy at high-frequencies and thus be rather smooth [59]. The
Laplacian operator could be used as the regularization matrix Q. Using one-dimensional

notation, it is given by

2 -1 0 -1
-1 2 -l 0
Q=|0 -1 2 0
-1 0 - -1 2]

Application of this operator to each pixel yields:
Qf[i]=f [i]=—f[i-1]+2f[i]-f[i+1], i=L1..N. (1.8)
Circularity implies that: f[—1]=f[N],f[N+1]=f[1] and it is assumed for the same reasons

as in the case of the PSF operator H and the covariance matrices R;; andR_ . If Q is viewed

as a filter, its frequency response is O(w)=2(1—cosw), which is clearly a high-pass filter.



Bounding the term Qf [z] given by Eq. (1.8) to take small values, imposes that neighboring

pixels of the image must have similar values. From a mathematical point of view, the
Laplacian operator is the discrete analogous of the second derivative operation. Thus,
introducing this derivative as a penalty term automatically constrains the restored image to
have bounded discontinuities. The solution of the minimization problem of Eq. (1.7) is

obtained as:
f=(H'H+aQ'Q) H'g. (1.9)
Due to the properties of circulant matrices, Eq. (1.9) can be written in the DFT domain as:

Ao (1) A, (021)

A, (i) _
A (20 A (10)]

F(i)= G(i)

Ay ()] +a|Ag (1)

—G(i), i=1..,N.

+a
It is very interesting to notice that Eq. (1.6) is identical to the above equation if the inverse
image covariance equals to Q"Q, or setting the inverse of the image power spectrum equal to

the Laplacian operator’s inverse eigenvalues:
Se()=A. (i)', i=1..N.

From this relation the close connection between stochastic and deterministic approaches
becomes obvious. More specifically, the deterministic method can be derived from a
corresponding stochastic, by incorporating a prior for the image, based on the simultaneously

auto-regressive (SAR) prediction model [94]:
_ 1
p(6)=2"exp -2 alr]:}

and following the maximum a posteriori (MAP) approach. Due to the additive Gaussian noise

in the degradation model, the conditional distribution of the observed image is:

- 1
p(e10)-2" o] 5L el

In the above equations, Z, and Z, are normalizing constants. According to Bayes’ rule the

posterior distribution is:



p(glf)p(f)

p(flg)= ()

9

where p(g) is the marginal distribution of g. It is very convenient to estimate the image by

the mode of this density and obtain the maximum a posteriori (MAP) estimation:
f,,= argmfaxp(f| g) = argmfaxp(g | f)p(f).

This is equivalent to minimizing the negative log-likelihood of the posterior:

A

i .1
f = argmin{-tog p(&11) (1)} =armin | -l alr]
The variance parameters can be merged to one, since this has no effect to the solution:

£, =argmin {|g- He]} + o’ |Qf|} (1.10)

where a =ac’. This equation is identical to Eq. (1.7). This demonstrates that regularization

in a stochastic framework is achieved with the introduction of an image prior.

1.4.3  Estimation of the regularization parameter

Various ways for estimation of the regularization parameter a have been proposed in [59].
The simultaneously auto-regressive (SAR) model provides a way to obtain a regularized
solution for the restoration problem [59], [94], [58] and [92]. Using this model the image and
the regularization parameter can be estimated in the maximum likelihood framework utilizing
the expectation-maximization EM algorithm, described in Chapter 2. In this way, the

parameter is estimated in a rigorous manner.

As it has been shown above, independently of the use of a deterministic or stochastic method,

the parameter a controls the tradeoff between the data fidelity term ||g-Hf ||§ and the

regularization term ||Qf ||§ Thus, large values of a give over-regularized images with over-

smoothed edges, and small values of a leads to under-regularized solutions with amplified
noise, especially in flat areas. This is illustrated in Figure 1.2, where in Figure 1.2.(c) the
over-regularized restored image is shown for large a and in Figure 1.2.(d) the under-

regularized restored image with small a . It is obvious that in the over-regularized image, the

10



noise has been suppressed, but unfortunately the same holds for the edges. In the under-
regularized case the edges has been preserved but with the disadvantage of noise
amplification in the smooth areas. The best value of a lies between these two extremes. In
Figure 1.2.(e) the restored image with average a is shown. In view of this, it would be
desirable for a restoration filter to be spatially adaptive: more regularization in smooth areas
of the image and less at the edges. One of the goals of this dissertation is to develop spatially

adaptive regularization algorithms.

NI

AR

(e)

Figure 1.2 (a) ‘Lena’ original image, (b) degraded image, (c) over-regularized restored
image, (d) under-regularized restored image and (e) restored image with average
regularization.
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1.5 Super-resolution: reconstructing a high-resolution image from low-resolution images

Super-resolution is the problem of reconstructing a high-resolution image from low-resolution
images of the same scene ([105], [48] and [32]). The key idea of super-resolution is to fuse in
one image with higher resolution the information included in the multiple low-resolution
images. For that, it is required that sub-pixel motion exists between the low-resolution images
so as to avoid a redundancy of the information contained in them [67]. The motion can be
translation as well as rotation. The imaging model of super-resolution incorporated in this
dissertation assumes that the low-resolution images are translated and rotated under-sampled
versions of a high resolution image. The problem formulation of super-resolution in this
dissertation is similar to that of image restoration [105], in the sense that the imaging model is
again linear and similar to that of Eq. (1.2). To present the model we denote as d the integer
decimation factor. In other words, the imaging model assumes a high resolution image of size

N, x1, where N, =dN and N is the size of the low-resolution images. Hence, P low-
resolution images of size N x1 are produced by applying the PN x N,, degradation operator

B to the high-resolution image. Then, white Gaussian noise is added at each observation. Let

y be a PN x1 vector, containing the P low resolution images vy, :
y=[y vi -~ vi].
where y, i1s a N x1 vector, representing a low-resolution image. Using this notation, the
observations are given by:
y, =Bx+n,=DH,S(5,)R(6)x+n,,
or in one vector
y=Bx+n,

where x the (unknown) original N, x1 high-resolution image to be estimated, B is the

T
PN xN,, degradation matrix and n = [an n, - n;] the PN x1 vector consisting of P

N x1 additive white noise vectors. This equation has the physical meaning that a low-
resolution image is produced by rotating, translating, blurring and decimating the original

image x. The degradation operator B is given by:

12



B=[B] - BI],

where B, =DH S(5,)R(6,) for i=1,..P. The matrix D is the known Nx AN, decimation
matrix. H,, i=1...P, are the shift-invariant N, x N, blurring convolutional operators, and
S(0,), for i=1,...,P, are the N, xN,, shift-invariant shifting operators. Each ¢, is a scalar
which represents translation. The shift-invariant operators S(J5,) and H, can be assumed
circulant. As in the restoration problem, this is very useful for computational purposes
because such matrices can be easily diagonalized in the DFT domain. Finally, the N, xN,,
matrix R(6,) represents the rotation with angle 6, of each observation relative to the

unknown high-resolution image x.

Super-resolution is an ill-posed inverse problem [48], in the sense that solution of
f(:argmin”y—Bx”i (1.11)

leads to a linear system with ill an conditioned matrix B. Inversion of this matrix amplifies
the noise in the data, something that happens also in the image restoration. The problem is ill-

posed because of the blurring matrices H, and the decimation matrix D. The effect of H, is

discussed in the previous section. The decimation matrix in the frequency domain is a low-
pass ‘sub-folding’ operator [32]. Thus, inverting both matrices leads to high-pass filtering that

amplifies the noise.

As in image restoration, the problem of super-resolution can be converted to a well-posed.
This is achieved by constraining the solution of Eq. (1.11) by adding a penalty term, for

example the Tikhonov regularization term [127]:
X =arg mxin (”y - Bx”z +a ||Qx||§ ) .

where Q is the high-pass Laplacian operator. This method can be viewed from a Bayesian
perspective as assuming a SAR image prior [133]. Of course, there are other methodologies
applying different regularization criteria. The result of this algorithm is shown in Figure 1.3.
This makes super-resolution and image restoration related problems, since the regularization
criteria are applicable to both. For that reason, in this dissertation the two problems are

considered in parallel since the image priors proposed in the literature for the restoration
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problem are also applied to super-resolution. However, the difficulty of estimating the

registration parameters in super-resolution model makes the latter a more challenging task.

(e)

Figure 1.3 (a)-(d) Low resolution observations, (e) 2x super-resolved image regularized under

the SAR image model [133].
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1.6 Thesis contribution

The image restoration and super-resolution problems can be treated in the Bayesian
framework, in order to convert both ill-posed inverse problems to well-posed. In a stochastic

framework, regularization of the solution is achieved by defining an image prior

p(f)e exp{—aC (f )} and taking the maximum a posteriori (MAP) solution using Bayes’

rule:
f= argmfin{—logp(f | g)} = argmfin{—logp(g|f)p(f)} = argmfin{ﬂ”g-Hf”j +aC(f)},

where C (f ) is a function that works as a constraint to the solution. From a Bayesian

perspective, using p(f ) we incorporate prior knowledge for the image and we constrain the

solution to follow some specific properties common in real word images, such as large
smooth areas and few edges. Consequently, a realistic image prior should be non-stationary in
order to adapt to the image local characteristics; for example, large variances at edges and
small at smooth areas. In regularization terms, this means that this type of prior leads to

spatially adaptive regularization.

The contribution of this dissertation is the development of stochastic non-stationary image

models as image priors p (f ) needed for regularization in the restoration and super-resolution

problems. The proposed non-stationary image models lead to spatially adaptive
regularization, or in other words, non-uniform regularization along the image which depends
on the local spatial activity. Furthermore, working in the stochastic framework we employ the
Bayesian methodology to solve these inverse problems and in parallel to estimate the model
parameters. Thus, development of Bayesian restoration and reconstruction algorithms is
another contribution of this dissertation. It must be noted here that, according to the Bayesian
methodology, the image is inferred, which means that a distribution is obtained for it and not
just a single point estimate as in the MAP approach. This implies that the image is treated as a

random variable rather than a parameter.

In Chapter 2 we present the variational Bayesian (VB) methodology for approximate
inference that is used in this dissertation. Inference means computing the posterior

distribution of the model’s hidden random variables. To make that clear, the term ‘hidden’ is
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analyzed extensively. Also, the expectation-maximization (EM) algorithm is presented as a

special case of the variational methodology, where the inference is exact.

In Chapter 3 we provide a survey of state-of-the-art spatially adaptive restoration methods and
pinpoint some properties and similarities between them. More specifically, it is pointed out
that the EM algorithm is a special case of the majorization-minimization (MM) class of
optimization algorithms, and this explains the fact that stochastic and deterministic methods
that employ the EM and the MM algorithms respectively, happen to provide very similar
restoration algorithms. To demonstrate this connection, example restoration algorithms are
given. Half-quadratic regularization is also presented, which also coincides, under some

specific circumstances, with the EM and MM algorithms.

In Chapter 4 we introduce a new hierarchical (two-level) Gaussian non-stationary image
prior, as a natural extension of the SAR model presented in section 1.4. This prior assumes
that the residuals of the first order differences of the image, in four different directions, are
Gaussian random variables with zero mean and variance that is spatially varying. As a result,
these local directional variances capture the image discontinuities with a continuous value
model. In this way, the variances manifest the spatial adaptivity mechanism. In order to deal
with the resulting over-parameterization of this model, the spatially varying variances are
considered as random variables (not parameters) and a Gamma hyper-prior is imposed on
them, which is conjugate to the Gaussian. The parameters of the imposed hyper-prior control
the degree of non-stationarity of the imposed image prior. To learn this model and infer the
image we propose two iterative algorithms. The first is based on the maximum a posteriori
estimation (MAP) principle and computes explicitly both the image and the spatially varying
variances in all four directions. The second is a Bayesian algorithm that marginalizes the
“hidden variables”. It is interesting that the resulting MAP algorithm is similar with the
algorithms proposed in [80], [84], and [78] which are based on heuristic arguments. Also, the
marginalization of the hidden variables produces a Student’s-t distribution. Thus, the
proposed restoration algorithms are Student’s-t based. Finally, numerical experiments are
presented that demonstrate the superiority of the proposed algorithms with respect to other

state-of-the-art methods [27], [26], [28].

In Chapter 5 we propose a new Bayesian inference framework for image restoration using a
prior in product form [24]. This prior assumes that the outputs of local high-pass filters, (their

number is arbitrary), follow the Student’s-t distribution. This means that they are distributed
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according to the hierarchical prior of Chapter 4. The main contribution of this chapter is a
Bayesian inference methodology that bypasses the difficulty of evaluating the normalization
constant of product type priors. The methodology is based on a constrained variational
approximation that uses the outputs of all the local high-pass filters to produce an estimate of
the original image. More specifically, a constrained expectation step is used to capture the
relationship of the filter outputs of the prior to the original image. In this manner the use of
improper priors is avoided and a// the parameters of the prior model are estimated from the
data. Thus, the “trial and error” parameter “tweaking” required in state-of-the-art restoration
algorithms (including that of Chapter 4), which makes their use difficult use for non-experts,
is avoided. Furthermore, numerical experiments show that the proposed restoration algorithm
provides competitive performance compared with previous methods. In this chapter we also
propose an efficient Lanczos-based computational framework tailored to the calculations

required in our Bayesian algorithm. More specifically, a very large linear system Ax =5 is
solved iteratively and the diagonal elements of a matrix Q' 4™'Q are simultaneously estimated

in an efficient manner [24], [25].

In Chapter 6 we extend the TV prior and the related work to estimate the regularization
parameter in [8] by introducing a new prior which has a number of novel features. The
extension of the TV prior is performed in analogous way with that used to derive the non-
stationary prior of Chapters 4 and 5. More specifically, we introduce a TV prior with spatially
varying regularization parameters. In order to avoid the over parameterization due to the
spatially varying nature of this prior, we introduce a Gamma hyperprior for the spatially
adaptive regularization parameters of the local TV priors. Also, we use this prior in a product
form, which means that we assume that the outputs of an arbitrary number of high-pass filters
are distributed accroding to this prior. This gives two novel features to the new prior. First, it
is explicitly spatially adaptive and thus it is better suited to capture the salient features of the
image. Second, it is in product form and has the ability to enforce simultaneously a number of
different properties to the image. This prior can use arbitrary linear operators, not just first
order differences as TV. Thus, a prior similar to the one in [8] with an exactly calculated
partition function is just a special case of it. If the hidden variables of the second layer are
marginalized, the resulting density function has a form similar to a Student's-t distribution;
thus, we label it as Generalized Student's-t. Due to the complexity of this model, we resort to

the variational approximation for Bayesian inference. However, we use two modifications.
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First, we derive a quadratic bound to the variational bound, in a manner similar to the
methodology used in [8], to bypass the difficulties due to the non-quadratic form of the new
prior. Second, we use the constrained variational framework in a manner similar to that
proposed in Chapter 5 in order to bypass the problem of computing the partition function of
the new prior. In this chapter we also suggest an iterative numerical method to compute the
diagonal elements of very large inverse matrices that are necessary to apply the proposed
Bayesian algorithm. This numerical method is similar in spirit to the one employed in Chapter
5. However, it is based on conjugate-gradients and not on the Lanczos methodology, and was

found empirically to converge faster in this application.

In Chapter 7 we present our contribution to the super-resolution problem. We utilize for the
first time in the super-resolution problem the hierarchical two-level image prior presented in
Chapters 4 and 5. Using this non-stationary prior, it is possible to reconstruct high-resolution
images without smoothed edges or ringing artifacts in the vicinity of edges. Another
contribution to the super-resolution problem is a novel two-step reconstruction algorithm. The
first stage of this algorithm is a preprocessing step that approximately registers the degraded
low-resolution observations. These “almost-registered” low-resolution observations are used
subsequently by an iterative algorithm which simultaneously reconstructs the high-resolution
images and finds their registration parameters. We propose this sub-optimal two-stage
approach in order to speed up the super-resolution algorithm. Thus, the MAP functional is
maximized based on coarse estimation of rotation and translation between image pairs.
Furthermore, the registration sub-task is based on the Newton-Raphson (NR) algorithm that
utilizes analytically calculated first and second order derivatives and exhibits quadratic
convergence. Lastly, experiements with both real and synthetic data are conducted that

demonstrate the efficacy of the proposed algorithm [29], [30].
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CHAPTER 2. APPROXIMATE BAYESIAN INFERENCE

2.1. Expectation Maximization (EM) algorithm: a variational point of view
2.2. Approximate Bayesian inference with variational bound maximization
2.3. Constrained variational optimization

2.4. Bayesian inference for restoration with the SAR prior model

In this chapter we present the Bayesian inference methodology used to learn stochastic
models. In statistical modeling we assume that the observed data (signals, images, etc.) are
produced through a generation process that is modeled using statistical models. Such models
are used in image restoration when the problem is formulated in a stochastic framework and

the image model is included in the form of a prior distribution p(f). Furthermore, another
stochastic model, represented by the distribution p(g|f), is assumed for the imaging model
that produces the observed degraded image ¢g. Thus, the stochastic model
p(g.f)= p(g|f)p(f) of the restoration problem is hierarchical and contains the imaging and

the image model. Based on this joint stochastic model, the image f is treated as random
variable and Bayesian algorithms can be employed to infer it, i.e. to obtain a posterior

p(f|g). In addition, estimation of the parameters of the image model, as well as of the
imaging model, is simultaneously performed.
Stochastic models include parameters that should be estimated in order to fit the model to the

observations. A very popular method to estimate these parameters is the maximum likelihood

(ML) approach [129], defined by:

A

9,, =argmax p(y;0), (3.1)

where y is the vector of the observations (data generated according to the stochastic model

mechanism), 0 is the vector consisting of the parameters and p(y;0) is the likelihood of the
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data. It must be noted that p(y;0) is different from p(y|0). In the first case, 0 are just the
parameters of the likelihood, while in the latter case @ are assumed random variables and y

is conditioned on them.

2.1 Expectation Maximization (EM) algorithm: a variational point of view

A very popular and successful algorithm to obtain the ML solution is the expectation-
maximization (EM) algorithm, which maximizes the likelihood iteratively by taking
advantage of the hidden variables in the model, see [99] and [41]. More specifically, the

values of the observed random variables y are the outcome of a stochastic process. Usually

this process depends on the outcome of another preceding process that is not observed
(hidden). The outcome of this ‘hidden’ process is represented by random variables that are

called hidden. Thus, in this case, the generation of y contains two levels/steps and it is

described by the joint distribution (complete likelihood) of the hidden x and the observed

variables y :

p(y,x) = p(y | x)p(x),

where p(x) is the prior distribution on the hidden variables x and p(y|x) is the conditional

distribution of the observations given x. Note that these distribution may contain parameters
that have been omitted for brevity. The above equation shows that the data generation process
is hierarchical and contains two steps. In the first step, the variables x take values drawn from

the distribution p(x). Then in the second step, using x, values for y tare drawn from the

conditional distribution p(y|x).

Herein, we present the EM algorithm using its variational interpretation [10]. The EM

algorithm exploits the existence of hidden variables an the difficult problem of direct

optimization of L(8)=1log p(y;8) is transformed to convenient successive optimizations of a

lower bound F (q (x),ﬂ), which is defined by:

F(4(x).9)= L(0)~KL(¢(x)]| p(x]y:0)) < L(0),

where
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(x]y;0)

—— 7
xﬁ) X

KL(q(x) 1 p(x]y:0)) = [ q(x)log?

is the Kullback-Leibler (KL) divergence between an arbitrary function ¢ (x) and the posterior
of the hidden p(x | y;G) . Inequality holds because KL is always non-negative, and inequality
becomes an equality when ¢ (x) =p (x | y;ﬂ) , 1.e. when KL becomes zero. The bound

F (q (x),0) is a functional of the function ¢(x) and the parameters 6 .

The EM algorithm iterates between two steps, the expectation step (E-step) and the

maximization step (M-step). In the E-step, maximization of F' is performed with respect to

¢(x), and in the M-step with respect to 0. The bound is maximized with respect to ¢(x),

when ¢(x)= p(x|y;0) and the bound becomes tight. Thus, the E-step and M-step at iteration

(t+1) are
E-step: ¢"*"(x) = p(x|y;9(’)) , (2.1)
. (t+1) _ (t+1)
M-step: 0 —argmgle(q (x),ﬂ). (2.2)

In the E-step, a posterior distribution is inferred for x, using the model parameters calculated

(1)

from the previous iteration 0"’ . At this point we must note that in the Bayesian inference

methodology the hidden random variables are inferred and the parameters are estimated. In

the M-step, the parameters 0 are updated by maximizing F (q(’“)(x),()), which can be

written as:
F (Hl) J‘q(zm logp x|y,9)dx Iq(m) logq(””(x)dx
Using the above equation the M-Step of Eq. (2.2) can be written also as such:

M-Step: 0" =arg max Q(B;G(” ),

where Q(O;B(”) = <log p(y, x;ﬂ))p (xy 0 is the expectation of the logarithmic complete

likelihood with respect to the posterior of the hidden given the observations. This posterior is

given by the Bayes’ rule
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p(X | y 0(1)) — p(ya X; 9(1)) — p(y | X; 9(1))p(x;9(t)) . (23)
’ p(y;0") p(y;0”)

This equation shows that, in order to apply EM, it is necessary to know explicitly the form of

p(y;0), by integrating out the hidden variables. If the function Q(B;G(”) is considered as a

minorizer of the likelihood, since
0(0;0")<L(6),and O(0”;0")=L(0"),

then, the EM algorithm can be considered to belong to the general class of the majorization-
minimization (MM) algorithms [85]. Hence, the iterative maximization of the minorizer
converges to a maximum of the likelihood. In most applications, the ultimate goal is to infer

the hidden variables.

Note that the parameters in the posterior are considered fixed when the function Q(G;G(’)) is

maximized in the M-step. Thus, the EM algorithm maximizes the marginal likelihood by
incorporating the hidden variables in the iterative scheme, although they are not explicitly
apparent in the likelihood. This leads to a more convenient optimization scheme than the
direct optimization of the likelihood, and also to inference of the hidden variables. A

reasonable estimate of the hidden variables may be the mode of the posterior probability:

X =arg max p(x|y;0). (2.4)

2.2 Approximate Bayesian inference with variational bound maximization

In many cases, the likelihood
p(y:0) = [ p(y,x;0)dx,

is not directly known, because the integral is intractable. Without the explicit form of the
marginal likelithood the E-step (Eq. (2.2)) of the EM algorithm is not applicable [129].

However, there are cases where the integral can be calculated analytically with respect to a

subset of the hidden variables. For example, the set of the hidden variables x ={x,x,}
consists of the subsets x, and x, that are jointly distributed,
p(y,x) = p(y,X;,X,),
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but the double integral
P(y;0) = [ [ p(y, x,,%,)dx,dx,
can be only evaluated with respect to x; or x,, but not both simultanesouly.

A number of approximations have been used to compute this integral, see for example [90],
[99] and [10]. Herein, we focus on the variational methodology, according to which the
marginal likelthood can be approximately maximized, by maximizing iteratively an
approximate bound instead of the exact bound F used in the EM algorithm. This can be
achieved by altering the EM algorithm, as described in the previous section, with the

assumption that the inferred posteriors are independent:
q(x.%,) =q(x,)(x,).
This is the mean-field approximation [10] and makes the bound approximate:
F(q(x)),q(x,),0) =log p(y |%,:0) p(%,;0)+ KL(q(x))q(x,) || p(x,.%, | y;0)),
F(q(x,),q(x,),08) =~ F(q(x,,x,),0).

The variational algorithm contains two steps. In the first step, the VE-step, the bound is

maximized with respect to ¢g(x,) and ¢(x,),

[q(’“) (xl),q(”l)(xz)] =arg max F(q(xl),q(x2 ),Bm).

q(x;),q(x;)

In the VM-step, the bound is maximized with respect to the parameters:

00 =argmax F (¢(x,), ¢ (x,).0).
The closed form solutions for the posteriors in the VE-step are:

exp{_<logp(y,xl,Xzée»quz)}

jeXp{—(10gp(yaxpxz;ﬁ))qm(w}dX1 ’

q(H])(Xz) =

and

exp {_<10gp (ya X5 X2;0)>q(’)("1)}

jexp{—(logp(y,xl,x2;0)>qm(x1)}dxz :

¢ =
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where <>q denotes the expectation with respect to an arbitrary distribution g. The VM-step

can be written in more detail:

0" =arg max <log p(y.x,x,; 9)>

7 (x)q" (%)

This algorithm maximizes approximately the marginal likelihood with respect to the
parameters. The approximation depends on the accuracy of the posterior independence
assumption. The EM algorithm is a special case of the variatonal methodology, in which there
is no approximation (for example independence assumption) and the bound is tight in the VE-

step, i.e.
F(g"(x).¢"" (x,),0) = L(6).

The result for two sets of hidden variables can be generalized for M hidden variables

X,,...,X,, , [10]. The updates in this case are:

exp {—<10gp (y7 Xl""’ XM ;e)>H‘I(1)(xk>}

Iexp {—<log (Y. X, Xy, ;9)>Hq"’(xk)}dx"

q(t+l) (Xl- ) —

e(t+l) — argm§X<10gP(y5X1v“>XM;9)>Hq"’(xk) :

2.3 Constrained variational optimization

There are cases where it is convenient to have functions ¢g(x;;4) , i=1,...,M , in a particular
parametric form (e.g. Gaussian) with parameters A,. Doing this, we constrain the inferred
posteriors to follow the form of these functions. In this way, the parameters A of the

approximate posteriors are amenable to estimation. In this case, in the VE-step the

maximization is performed with respect to the parameters A, instead of the function ¢(x,).

Also, this methodology leads to closed form updates in the VB algorithm that work as

constraints to the approximate posteriors.
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2.4 Bayesian inference for restoration with the SAR prior model

At this point, it is interesting to present the EM algorithm as an example, that is employed to
solve the SAR prediction model [94] for the restoration problem. Under this, the image is

assumed as the hidden variable f of the model with Gaussian prior:
N 1 2
p(f) ocq ? exp{—za”Qf”Z} ,

where a is the precision (inverse variance) of the Gaussian, and Q is the Laplacian operator.

The observation is the degraded image g with conditional

p(el0)=p° o] -Llg-nrl:}

where £ is the precision of the Gaussian noise distribution.

The EM algorithm performs 1) the inference of the posterior of the image (E-step) and ii)
estimation of the parameters (M-Step). Thus, the E-step update at iteration ¢ is given by:

‘](t) (f) = p(f | g) 2%: N(m(’),(C(’))l)_

This result shows that the posterior is a Normal distribution with mean m"’ = gC”H’g and

-1

covariance C" = (ﬁ(’)HTH + a(’)QTQ)

In the M-step the parameters ¢ and B are estimated by maximizing the expectation of the

complete likelihood with respect to the posterior:
I:ﬂ(t), a(t)} =arg r[l}ﬁe}l)]( <p (g | f)p(f)>ql,)(f)

This results in the following the updates:

N

) _ N
trace{CmQTQ} '

,and ¢ =
trace{C(’)HTH}

The traces of the matrices can be calculated conveniently in the DFT domain. When the

algorithm converges, the restored image is taken to be the mean m of the posterior p(f | g).
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Finally, note that the similarity between the linear equation solved to obtain m"’ in the E-step

and that of Eq. (1.9) obtained in a deterministic framework is obvious.
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CHAPTER 3. SPATIALLY ADAPTIVE IMAGE
RESTORATION

3.1. Visibility based non-stationary restoration
3.2. Half-quadratic regularization

3.3. Markov Random Fields

3.4 Total-variation regularization

3.5. Regularization in the Wavelet Domain
3.6. Other image priors

3.7. Super-resolution methods

3.8. Conclusions

In this chapter, we review the literature and the efforts for development of realistic image
models and methods for adaptive regularization that preserves edges and also eliminates noise
in smooth image areas. The methods that have been proposed are based either on a stochastic
or a deterministic formulations. It must be noted here that the deterministic formulation is
equivalent to the stochastic, because, as it was shown in section 1.4, the roughness penalty of
the image in the deterministic framework can be interpreted in a stochastic framework as the
assignment of a particular image prior. However, the stochastic formulation offers the great
advantage of a rigorous way to estimate the model parameters. An example of this is the EM
algorithm that solves the simultaneously auto-regressive (SAR) prediction model [94]
presented in section 1.4.3. However, the SAR model is not a spatially adaptive and cannot

model efficiently the image local characteristics.

First, in section 3.1 we present a heuristic method for adaptive regularization. Then, a very

popular methodology for deterministic regularization will be presented in section 3.2 which is
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the half-quadratic regularization methodology. Markov-random fields (MRFs) are also very
popular for probabilistic image modeling and they have been applied successfully in image
restoration, as we will see in section 3.3. TV-based regularization is also a very successful and
popular methodology and it is presented in 3.4. In section 3.5 regularization methods in the
wavelet domain are presented. Lastly, conclusions and remarks about the similarities and

differences of the reviewed methodologies are given, as well as their merits and drawbacks.

3.1 Visibility based non-stationary restoration
In [1] a measure of spatial detail is defined by a noise masking function M (f)(7) at pixel i

which depends on f. The visibility function v(i) which expresses the relationship between

the noise visibility and the masking function, , is defined experimentally. In [76] the masking
function is set to be the local variance of the pixel and according to [1] the visibility function

v 1s defined as:

1

v(7) oM@+

where € is a scale parameter that depends on the image. This function goes to zero when the
local variance goes to infinity (pixel belongs to an edge) and to one when the variance is close
to zero (pixel belongs to a smooth region). Finally, as a result of an extended analysis [76] in

contrast to Euclidean norm as in Eq. (1.7), a weighted norm is introduced for the penalty term:
a|Qf], =af"Q"AQf,

where A is a NxN diagonal matrix with elements: A(i,i) =y’ (i), i=1,...,N. The matrix

Q is recommended to be a high-pass filter and the example of the p-th order (discrete)

derivative operator is given, for example for p =2 it is the Laplacian operator.

The resulting linear system (HTH+aQTAQ)f’ =H"g is solved iteratively with a constraint

gradient descent algorithm. Also, the visibility function is evaluated using the restored image.

This leads to an iterative scheme of estimatiing the image f and the elements of A':

£ =(H'"H+aQ'A"Q) H'g,
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1

A (i) = v (f M) Bk

Notice now that the restoration filter in a sense “adapts” to the image spatially via the
different diagonal elements of A, which depend on the local characteristics of the image. The

main drawback of this method is that its parameters a and @ must be specified in advance.

Katsaggelos and Kang [82] proposed a similar methodology, with the estimation of the
regularization parameter being a part of the restoration algorithm. They also incorporated
spatial adaptivity for the data fidelity term, which corresponds to the noise, and the resulting

t+ I t I t 1 I

where now A!” is also a diagonal matrix that adapts to the noise local characteristics. Lastly,

they provided an alternative method to estimate the diagonal matrices in every iteration.

3.2 Half-Quadratic Regularization

Half-quadratic (HQ) regularization has been developed with the goal to provide an edge-
preserving restoration method. Herein, we follow the demonstration of the HQ metodology in
[62] and [31]. According to that, the image is estimated by minimizing a function analogous

to the one in Eq. (1.10). The estimate is given by minimization of a non-quadratic function:

f'zargmfin{Jl(f)}, (3.1

where J, (f ):”g-Hf”i +aJ(f) and J(f) is a function of f that enforces a regularized

solution. In the MAP approach this implies the prior for the image to be
p(f)xcexp{—aJ (f)}. J(f) is computed as:

J(f)= 2¢([Dxf]i)+¢([Dyfl), (3.2)

where D_ and D, are the horizontal and vertical difference operators. Thus, [Dxf ] and

i

[Dyf } are the horizontal and vertical difference of the image at location i. The function
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(p(t) is called the potential function and is specified to penalize the gradient of the image and
simultaneously to preserve the edges. In [31] necessary conditions about go(t) are given in
order for the minimizater of J, (f ) (Eq. (3.2)) to converge and in addition to provide an image
where the edges are preserved.

To make the half-quadratic regularization mechanism clear, we follow the demonstration of it

in [31]. We first write the gradient

VJ,(f)=H"Hf -H'g—a(D/B,(f)D,+D!B, (f)D,)f,
where B (f) and B, (f) are diagonal matrices that depend on f and their elements are
given by

B (f)(i,i)= 2[[1]))—,;f]].i) and B, (f)(i,i)= % .

Finding the minimum by setting the gradient equal to zero (VJ (f ) =0) leads to a non-linear

equation. However, at the minimum f_, it holds that

f,, =(HH+a(D]B,(f

min

)D_+DIB, (f,,,)D,)) H's.

min

Based on this result, by fixing the matrices B, and B ingoring their dependence on f, the

following iterative scheme can be applied
-1
£ =(H"H+a(D{B,(f)D, +D/B,(f")D,)) Hg, (3.3)

where B, (f (’)) and B, (f (’)) are the matrices formed using the image estimate f’ of the

previous iteration ¢. Note that the above equation is linear and the non-quadratic
minimization problem turns into successive quadratic problems. What remains is to prove that

this algorithm converges to a solution of problem (3.1). To do this, in [31] an “augmented”

function of J, is introduced, using the function J " (f ,b_,b y) , where b ,b  are vectors of the
auxiliary variables b, (i),b, (i), i=1,..,N introduced to “augment” the function J(f). The

exact form of J~ (f ,b_,b y) depends on the form of (o(t) and it is not presented here for the
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moment. It has been shown that J (f ,b_,b y) shares the same minimum with J (f ); thus,

minimization of the latter leads to minimization of the former. The steps for the iterative

minimization algorithm of J~ (f ,b_,b y) are
-1
£ =argminJ*(£,b,b") = £ = (HTH +a (Dfo:)Dx +D'B\'D, )) H'g, (3.4)
I:bit+l)’bfvt+l)j| _J (f(M),bx,by) —

(0, Dxf(t) A @' D f(t) )
biHl)(i)H and b;tﬂ)(l-)%, (3.5)
x i y i

where B? and B;) are the diagonal matrices with elements the vectors b'” and b(y’). This

algorithm is identical to that of Eq. (3.3) and it is proven to converge to a solution of Eq.

(3.1). The function that is minimized is called half-quadratic because if the auxiliary variables

are kept fixed then J~ (f,bx,by) 1s quadratic with respect to f. Furthermore, it is

straightforward to minimize the function with respect to the auxiliary variables. This leads to
an algorithm containing linear equations. In [69] and [1] the convergence properties of the

half-quadratic algorithm are studied.
At this point an example of the potential function go(t) is provided. An interesting algorithm

results when (0(t)=10g(1+9t2) [31]. In this case the auxiliary variables are updated
according to
1

1+6([D,6]) '

Moreover, if D, =D =Q, where Q the Laplacian operator, the algorithm would be similar

b (i) = and b\ (i)=

1+6([D.f])

to the empirical method of section 3.1. This result demonstrates that the auxiliary variables
must not be considered simply as parameters introduced for the relaxation of the minimization
problem, but in addition as the manifestation of the spatial adaptivity mechanism. Notice also
that we obtain the same algorithm following two different paths, the empirical and the half-

quadratic. Next, we present a third path, the stochastic modeling approach.
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In [22] Champagnat and Idier have shown that when half-quadratic regularization is viewed in

a stochastic framework, the above minimization algorithm is equivalent to an EM algorithm.

More specifically, if the function J,(f) to be minimized can be viewed as the negative

logarithm of the posterior of the data given the observations:

J,(f)oc—log p(f|g)oc—logp(g|f)p(f),

where p(g|f ) oc exp{—gng-Hf ||§} is the data likelihood with S the noise precision and

p(f)ocexp {—aJ (f )} . Then, the auxiliary variables b_,b, can be viewed as hidden variables

with prior p(bx,b y) and the minimum with respect to these variables function

J (f,f) f)y) can be viewed as the expectation:

A

J (f,Bx,by) o <—10g p(g.f.b..b, )>p(bx,hj,u)’

where p (bx,b I ) the posterior of the hidden variables given the image. Thus, evaluation of

A A

b_.b

x v

according to Eq. (3.5) is included in the E-step. In the M-step the above expectation is
minimized with respect to f, which is achieved by application of Eq. (3.4).

In light of the above, we can write the augmented half-quadratic function:
J(£,b,.b,)=]g-Hf| + aZ( (i)([D.1]) +v (b, (i) +0, (i)([Dyfl )2 +y (b, (i))j

and note that y (w) plays the role of the prior (the logarithm) for the variables b (i) and
b, (i). Of course, the form y (w) depends on ¢(z). It is interesting to see that the form of
w(w) for p(1)= 10g(1+6’t2) is y(w)=w—logw~-1, and this is analogous to the logarithm
of a Gamma prior. This result indicates that in this case p (f ) is a Student’s-t distribution [19]

(with v =1,4 =8) because it is given by the integral of a product of a Normal and a Gamma

prior for the precision of the normal:

=[p(fIb,.b,)p(b,.b,)db db, < (1+([Dxf]l_ ) )_l (1+([Dyfl)2 )_1.
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This agrees with the conclusion in [22] that optimization with the EM algorithm in the
Bayesian framework under a Student’s-t prior is equivalent to half-quadratic regularization for
a certain potential function. This fact holds more generally for scale mixtures of Gaussians
(SGM). Student’s-t, Laplace and hyperbolic distributions are just special cases of GSMs.
Thus, it is not surprising that in Chapter 6 the use of the Student’s-t distribution as prior leads
to a similar restoration algorithm. Also, in [22] it is shown that the auxiliary variables of the

half-quadratic criteria can be interpreted as the line process of a CGMRF (see next section).

The half-quadratic algorithm in [31] converges when the potential function is convex and the
matrix H in the term ||g-Hf||z is full-rank [39]. In [7] Delaney and Bresler propose a

modified half-quadratic algorithm that converges even when the potential function is not
convex and/or the matrix H is not full-rank. They apply their algorithm to computed
tomography (CT), a problem which shares an analogous linear imaging model with that of
restoration (Eq. (1.2)) but the linear operator H in this case represents the Radon transfom.

Thus, the image is reconstructed from the projections g, with half-quadratic criteria used to

constraint the solution.

3.3 Markov Random Fields

Markov random fields (MRF) are stochastic models that have been used extensively as image
models in image processing and generally in computer vision [111], [20] and [86]. The main
advantage of these models is the flexible mechanism that they provide to define image priors.
For the image restoration problem this is achieved by the introduction of potential functions
that provide a regularized solution, much in the same way with the half-quadratic
regularization presented in section 3.2. This flexibility is mainly due to the fact that the
stochastic optimization algorithms that are utilized do not depend much on the choice of the
potential functions. Notice that this is not the case for half-quadratic deterministic
minimization algorithms which can be applied only when the potential function meets some
criteria and when the form of the function to be minimized is quadratic with the auxiliary
variables fixed. However, the disadvantage of the stochastic algorithms is the large

computational cost.
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The work that introduced MRFs in image restoration was that of Geman & Geman [61]. The

image f is regarded as a two-dimensional N x N MRF. This means that each pixel f (i, J ) is

a node with conditional probability given all the other nodes,
P(f(i,j) |f(m,n),¥ (m,n)+ (i,j)) ,
equal to the conditional probability given only the neighboring nodes, i.e.
P(f(i,j) | f(m,n),‘v’(m,n) # (i,j)) = P(f(i,j) | f(m,n),V(m,n) € N(i,j)) ,
where N (i, i ) is the set of nodes that are neighbors to (i, Jj ) A typical such neighborhood
may include the four pixels around the pixel (i, j ) Thus, in order to define an MRF for the
image, it is sufficient to define the local conditional probabilities.

In [61] the overall probability for the image p(f ) is written as follows using the

Hammersley-Clifford theorem:

p(0)=gew|-zU (0] =S en| -1 X0},

VCeS

where S is the set of cliques of the image', V. (f) is a function of the nodes that belong only

to clique C and it is called the potential function. The normalizing constant Z is the partition
function and the parameter T is called temperature. This theorem provides a powerful tool to

define MRFs in a straightforward manner through the definition of potential functions. For

example, in [61] only cliques with neighboring pixels are used, i.e. V. (f ):0 unless

C= {r,s} , and the following potential is defined:

L, if f =f
y b =t
S0, if f =1

where r,s denote neighboring pixels. The role of this potential is to enforce high probability

for neighboring pixels to have similar values.

'Loosely speaking, a clique is a set of neighboring nodes. There is a hierarchy of cliques. At
the first level, each clique consists of one node. At the second level, the clique contains a node
and its neighbors. Cliques of higher levels seldom appear in applications of MRFs.
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However, this is not a realistic model in areas with edges. So, a line process has been
included in the MRF with the introduction of the binary variables 1, indicating whether there
is an edge between neighboring pixels. To incorporate this property to the model the

following Gibbs joint distribution has been proposed:

p(f,l)=%exp{—%U(f,l)}:%exp{—% 5 Vc(f,l)},

VCeS

where now V. (f,1)=V.(f|1)+V.(1). The first potential V. (f[l1) defines the local

dependencies between the pixels given information of the presence of ‘breaks’ between them.

This information is provided by a binary valued line process variables: zero for no edge and

one for edge. The term V. (l) works as a penalty on images with an excessive amount of
edges.

Given the observed image the goal is to find the restored image according to the rule:
[f,l] =argn[}§]Xp(f,l g)= argn[}'f}fip(g,f,l).

In [61] this is achieved with the a stochastic relaxation algorithm that uses the Gibbs sampler

as a tool to draw samples from p(g,f,1). A nice feature of the sampling procedure is that

there is no need to know explicitly the partition function of the MRF.

In the methods based on compound Gauss-Markov random fields (CGMRF) [72], [74], [73],

[34] and [92], the potential function V. (f|l) is quadratic, which makes the distribution
p(f | l) Gaussian. Moreover, the line process parameters may be discrete or continuous. We

give an example by defining the prior p(f ,l) as in [92], but using one-dimensional notation

for brevity:
—logp(f,l):const+iZ]::(f(i)—f(i+l))2(l—l(z'))+ﬂl(i),

where [ is a scalar and / (i ) is the line process parameter that is 0 if there is no edge between
the f(i) and f(i+1) pixels and 1 if there is. The term /(i) works as a penalty and

prohibits the parameter / (i ) to be always one across the image, because otherwise the MAP
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estimator would yield all these parameters equal to one. Given / (i ) , @ Gaussian prior for the

image is obtained:

p(F]1)ec exp{— 2;2 fTA(l)f},

where A(l) a matrix that depends on the values of the line process parameters. Simulated

annealing is usually used to perform maximization of these models given the observed
degraded image, which is usually time-consuming. This type of minimization algorithm does
not require a closed form for the partition function of the prior something that would be

necessary in a deterministic algorithm.

In [72], [74], [73], [34] the line process is continuous. In this case, the minimization of the
posterior p(f ,l\g) reminds strongly the minimization of Eq. (3.1) in the half-quadratic

regularization case. This indicates the relation that exists between the CGMRF models and the

half-quadratic criteria as shown in [22].

An interesting model is proposed in [21] where the Gaussian function of the CGMREF is
replaced by a generalized Gaussian distribution (GGD). In this case, the line process is not
incorporated to the model because of the edge preservation properties of the GGD. This
distribution has also been used in other works for image restoration as it is mentioned in

section 3.5.

3.4 Total-variation regularization

Total-variation (TV) regularization was first introduced by Rudin, Osher and Fatemi [102] for
the image denoising problem. Later, the TV regularizer became popular in other image
processing problems [3], [134], [103], [57], including restoration. According to TV-based

image restoration, the restored image is obtained by the rule:

A

f = argmin{|g- B[, +aTV (1)}, (3.6)

where a is the regularization parameter and 7' V(f ) is the total-variation regularizer that is

added to penalize the roughness of the image, and is defined as follows:
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N

TV (f)= z\/[Dxf]f +[Df] .

i=1
where D and D, are the horizontal and vertical first order difference operators. The TV

penalty term has the ability to provide edge-preserving regularization, meaning that it
constrains the solution of Eq. (3.6) to give images without amplified noise in smooth areas

and simultaneously preserve their edges [46].

There have been many efforts to solve Eq. (3.6), especially in the continuous domain [23]
using variational optimization theory where the estimated image is the solution of a non-linear
partial differential equation (PDE). The PDE is the result of the application of the Euler-
Lagrange transformation to the optimization problem of minimizing an integral with respect

to a function (the image).

An interesting approach to solve Eq. (3.6) is that in [18]. The authors propose the
majorization-minimization (MM) methodology [85], according to which the problem of
minimizing a non-quadratic function is transformed to successive minimizations of quadratic
surrogate functions, i.e. majorizers of the non-quadratic function that can be minimized

linearly. The iterative scheme is described as follows:

£ = grg mfin{Q(f £ )} , (3.7)

v (AT +[DrT)

where O(f |f)=|g-Hf]; 2y

23 \/I:Dxf(t):l.z+|:va(t)].2

be minimized. This means that

is the majorizer of the function to

O(fIf")>|g-Hf[, +aTV (), and O(f" |£¥)=|g-HF" i +aTV (7).

where these two equations can be verified by noticing that the inequality

X=X
Jx < x, + .

2%,
holds for every positive x and x, and the equality holds when x=x, and we replace

2
i

([Dxf]l_z+[Dyf] ) for x and [Dxf(’)lz+[Dyf(”l2 for x, (neglecting the constant terms).
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Thus, Q(f |f (’)) meets the criteria to be a majorizer according to the MM methodology, and

hence the iterative scheme described by Eq. (3.7) converges to a solution of (3.6). Solution of

(3.7) corresponds to solution of the linear system:

£ = (HTH+a(DTW<’>D +D’WD )) H'g,

where W is a diagonal matrix with elements W(’) z z and it
2 \/ f<t) fu)}
manifests the spatially adaptive regularization mechanism that enforces less regularization at

the edges (small W' (i,i)) and greater in smooth areas (large W (i,i)).

It is interesting to note that the MM methodology is very similar to the half-quadratic. Both

transform the non-linear minimization problem to successive linear problems, because both

Q(f |f (’)) and J" (f ,b_,b y) are quadratic with respect to f when the rest variables are kept

fixed. Also, taking into account that the EM algorithm belongs to the general category of MM
algorithms, and that the half-quadratic algorithm is strongly connected with the EM [22], it
can be also concluded that MM optimization is strongly related to the half-quadratic

approach.

To demonstrate this, let us give an example where the MM methodology is applied in order to

minimize the function

f) =[g-Hf], +a/ (f)

where J(f) = ﬁ:go([Dxf]i ) + (/)([Dyfl) and (o(t) = log(l +6r ) . Using the inequality [85]

i=l1

logx <logx, +

the majorizer of J, (f) is constructed:

o(f11")=|g-Hi[ +a8 Y Y o) e tog 14+0[ DAV T )1 |.

1=y i | 1+ Q[Df(’)]
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This majorizer is very similar to the function J~ (f ,bx,by) in the half-quadratic case as

-1

demonstrated in section 3.2 for this potential ¢(z), when (1+9[Dxf<’)}2) and

-1
(1 + H[D O ]2) are replaced with b (i) and b, (i), respectively. Moreover, MM
minimization gives the same restoration algorithm as this half-quadratic example.

In some methods, for example [3] and [57], a variant of the TV regularizer was used, based on

1))

which is called non-isotropic TV. In [3] and [57] linear and quadratic programming

the 1; norm:

=3l

1

D f] ‘[Df

optimization methods are proposed to solve both equations:

f= arg mfin {Ilg - Hf“z + ai(‘[Dxf]i ‘ + ‘[vafl ‘)}’
i=1

f=arg min {”g -Hf| + aﬁ: (‘[Dxf]l— ‘ + ‘[Dyfl ‘)} ’
i=1

where in the second case ||g-Hf ||l denotes the 1; norm which can be used to model non-

Gaussian noise.

It is interesting to see how we can perform the minimization of the first objective function (for
Gaussian noise) using the MM methodology. First, we have to introduce a majorizer, which is

achieved using the following inequality:

|x| = Jx? < x0+ | |
0

Thus, the resulting majorizer is:

o(f|1)=[g-Hf]; + IZyZ‘( m])‘

which is minimized by solving the linear system
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-1
(t+1) _ T A (S Tyxr(t) Tyx7(0) T
f —(H H+5(wax D, +DIW! Dy)j H'g,

with the elements of the diagonal matrices W, and W{" given by

1 1

[ps] [o]f

Note also that this algorithm has a Bayesian interpretation and can be derived by assuming a

W (i,i) = JWO (i) =

Laplacian image prior and applying the EM algorithm, as in [52] where a Laplacian prior was

. . . . .2
used in order to obtain sparse solutions for supervised learning”.

In order to estimate the TV regularization parameter a , Langrange multipliers are employed
in [102]. In [17] a Bayesian method is proposed to estimate this parameter. According to this

method the solution of Eq. (3.7) is equivalent to the MAP approach:

f = argmfin{—logp(g | f)p(f)} ’

where p(g |f ) oc exp{—gng-Hf ||2} is (as usual) the data likelihood with noise variance £

and p(f)e exp{—aTV(f)} is the TV prior for the image. In [18], S is assumed known and

a 1s integrated out, thus it is not estimated.

In [8] both the noise and regularization parameters are estimated in a Bayesian framework.
Precisely, the variational EM (VEM) methodology is utilized where the image is treated as
random variable and a distribution is inferred for the image. The parameters are estimated in
the maximization step of the VEM algorithm. More details are given in Chapter 6, where

VEM is also employed to solve an improved TV image model of [8].

3.5 Regularization in the Wavelet Domain

Wavelet-based methods have been very successful for image denoising, see for example [96]
and [119]. However, their application to the image restoration is not as straightforward

because of the convolutional operator that appears when the restoration imaging model is

* This corresponds to edge-preserving regularization in image restoration
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formulated in the wavelet domain. This formulation is based on the representation of the
image f via the wavelet transform coefficients 0, i.e. f=W0, where W is a matrix
representing the inverse discrete wavelet transform (DWT). Thus, if the wavelet basis is
orthogonal, W' represents the inverse of W. Then, the image is estimated by first
minimizing the penalized log-likelihood:

0 = arg min{|g- HWO|. +aC(0)},

where C (0) is the penalty term on the coefficients, and then taking f = W6. The function

C (0) has a particular form to induce sparseness, which means that it enforces the majority of

the coefficients to have small values. Using the terminology of spatially adaptive methods
presented previously, this approach provides edge-preserving regularization. In a MAP

framework, the prior for the coefficients is given by:
p(8)cexp{-aC(0)}, (3.8)

and in most cases independence is assumed, i.e. C(0)=>_ C(0,).

1

This formulation is adopted in many early works on wavelet-based regularization; see for
example [9], [10], [43], [100]. For a review of these works (and related works) the interested
reader is referred to [16] and [55]. We focus here on recent works that have been introduced
independently ([38], [55], [44], [45], [54], [88], [123], [119]) and they can be interpreted as
MM algorithms, as shown in [53].

In [53] the MM methodology is applied to the term ||g - HWB”j and the minimization problem

of Eq. (3.8) is transformed to a sequence of minimizations problems given by

0 —argmin{[0-0" [} +aC (o)}, (3.9)

with ¢ =0 + WH’ (g-HWO(’)) . Notice that this vector is the previous estimate of 0"

2

minus the gradient of the term Hg-HWB(” ) In this way, inversion of large matrices that

include both H and W is avoided. This MM algorithm coincides with the iterative
shrinkage/thresholding (IST) algorithm proposed in [38] and [54].
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If C(0) can be written as C(0) = ZiC (8,), Eq. (3.9) can be solved independently for each

coefficient 0, :

()

i

t+ . 2
0 = argn}gn{”ﬁi -9, +aC(0i )} .

Furthermore, in case C(0,) has a convenient form for optimization, such as C(8,)=10,|" for
1< p<2 (notice that this corresponds to a Generalized Gaussian distribution), closed form
9€t+l)

solution of can be obtained for some values of p . For example, in the Gaussian case

( p =2) the update rule takes the form:

or - 0
’ l+a
Solutions for other values of p are presented in [33]. In [38] the convergence properties of

the IST algorithm with GGD prior are analyzed.

The distribution of each coefficient @, can be considered as a (univariate) Gaussian scale

mixture (GSM) [6]

o T
p(ﬂi)—£ — exp{ a0’z }p(z)dz,

where p(z) is the multiplier density. The integral represents the sum of infinite zero mean

Gaussian densities with p (z) representing the weight of each Gaussian that is added. In [33],
an MM approach to solve Eq. (3.9) under the GSM prior is presented. When the marginal
density has the form p(9,) o exp{—aC (91.)} and belongs to the GSM family (for example

GGD), then a (quadratic) majorizer of —log p(,) is

c'(e;)

o 0; +const >aC(0,).

This can be plugged into Eq. (3.9) and obtain an MM algorithm. Notice that this majorizer is

similar to that in the half-quadratic case (see section 3.2) where the auxiliary variables are
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()

updated using the term ;

. This result is validated as follows. The majorizer can be

written using the likelihood:

r(6)

006

— 0; +const >—log p(9,),

and this is identical to Eq. (8) of [16], where an EM algorithm is derived for image restoration
using GSM priors. Also, remember from section 3.2 that the half-quadratic methodology is
actually an EM algorithm under GSM priors. Based on these observations, it is concluded that

the MM algorithm with GSM prior is equivalent to the half-quadratic methods.

In [33], an algorithm is also given where the data-likelihood term is not majorized, unlike the
prior term. The result is a generalized MM algorithm in which a linear system is solved at

each iteration.

Alternatives to the MAP approach have been also used in image restoration and denoising, see
for example [100], [64], [110] and [121]. An interesting work that employs GSM for image
restoration is presented in [64]. In this, a multivariate GSM is used where the vector 0 of the

coefficients being GSM distributed as

p(8)=]

Wexp{—a(f ((jZ)_1 9} p(Z)dZ R
0

where C is the NxN covariance matrix of 0. Instead of using the MAP approach, the

authors propose the Bayesian Least Squares (BLS) estimator.

There are problems that have similar formulation with restoration in the wavelet domain and

can be expressed by the equation

A

6 = arg min{|g- A0, +aC(0)],

where the matrix A has replaced HW. The LASSO criterion (least absolute shrinkage and

selection operator), for example, used for robust regression is similar to the above formulation

with C (9) = ||9||1 and A is the design matrix of the regression problem. Furthermore, in [44]

and [45] blurring is absent (H =1) and the columns of W represent a redundant dictionary,

i.e. a basis that forms the solution. Moreover, C (9) leads to sparse representation, which
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means it is desirable to make most of the coefficients of the dictionary as small as possible.

For C(8)=||, this problem is the basis pursuit denoising problem [35].

3.6 Other image priors

The image priors presented so far are applied to the outputs of pre-selected filters, such as first
order differences and the filters of the wavelet transform. There are works where the filters
are learned from a large training set of images, for example the Fields of Experts (FOE)
training algorithm [114]. In this dissertation we focus on methods that use a priori fixed

filters. In [122] an application of the FOE is presented.

Finally, image priors which are based on the Huber function:

3 X%, |x|ST
pr(x)= r*+2(-T), >7

have been proposed, see for example [104]. Using such priors leads to the minimization of

lg-Hf|} + ﬁ“( pr([DAT )+ o ([D},ff))

in order to obtain an estimate of f. This can be achieved using the MM methodology by

exploiting a quadratic bound for the Huber function:

X2, |x|ST
pT(.X)SNT(x|x(t))= %x2+‘x(t)
X

T-T, [x>T’

where equality hold when x = x.

3.7 Super-resolution methods

Recent surveys and articles for super-resolution can be found in [105], [48] and the edited
book [32]. Many methodologies have been applied to the super-resolution problem. An
important category of methods formulates this problem as an ill-posed image reconstruction
problem [40] and introduces prior information (regularization) to reconstruct the high-

resolution image [105]. This renders the image model presented in this chapter, applicable
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also to super-resolution. In this dissertation, this formulation is adopted and the development
of effective image priors for the restoration problem leads inevitably to development of
effective super-resolution algorithms. Super-resolution viewed as learning problem has also

been recently considered in [56] and [75].

Recent efforts based on the regularized reconstruction methodology for the super-resolution
problem are described in [118]-[113]. In what follows, we will concentrate on the regularized
reconstruction point of view. Regularized reconstruction can be also viewed as a maximum a
posteriori (MAP) approach by assuming an appropriate probability density for the error in the
assumed imaging model and an appropriate prior for the image [40]. Thus, in what follows we

will not distinguish between these two approaches.

In [118] the problem of reconstructing high-resolution frames from compressed video is
examined using a Bayesian formulation based on a Gaussian simultaneously autoregressive
(SAR) stationary image prior. In [1] a methodology is proposed based on the theory of
projections onto convex sets [51]. In [48], color images and demosaicing are considered, and

regularization (image priors) based on the L, -norm is proposed in order to avoid the
shortcomings of L,-norm based regularization. Furthermore, non-Gaussian measurement
errors are considered. It was shown that L, -norm minimization yields better results in the

case of inaccuracies in the imaging model. In [48], a computationally fast method is proposed

based on the L -norm assuming known integer pixel displacements between frames.

However, in [48] and [48] the parameters that define the regularization term are chosen
empirically. In [133] an expectation-maximization (E-M) algorithm and a maximum a
posteriori algorithm (MAP) are presented for simultaneous registration, restoration and
interpolation for super-resolution. Nevertheless, a stationary SAR prior is used in both
formulations in [133]. In [65] different degradations are assumed in each low resolution
observation. However, L,-norm based stationary regularization is used. In [113] an interesting
statistical performance analysis is presented that offers insight into the fundamental

bottlenecks limiting the performance of super-resolution algorithms.

Kanemura et al [77] used a CGMRF to model the image and applied approximate Bayesian
inference for the super-resolution problem to infer the high-resolution image. All the

parameters of the model, including the registration parameters are estimated in a rigorous
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manner. However, time-consuming techniques are used for the estimation of some parameters

which are avoided in our method presented in Chapter 6.

3.8 Conclusions

From the literature survey on spatially adaptive image restoration, we first conclude that all
the image priors lead to spatially adaptive restoration filters, which enforces spatially adaptive
regularization. The only exception to this is the Gaussian prior which leads to spatially
invariant filters. The spatial adaptivity mechanism is manifested by the auxiliary variables in
the deterministic (half-quadratic) or the hidden variables in the stochastic framework (EM

algorithm).

As described in section 3.2, regularization based on half-quadratic criteria is equivalent to the
EM algorithm under a GSM prior. Student’s-t and the Laplace distributions belong to the
GSM family. We presented an example and showed that the EM algorithm with a Student’s-t
prior coincides with an algorithm by applying the half-quadratic methodology with a specific
potential function. Also, we obtained the same algorithm by applying the MM methodology
to this potential. For the Laplace prior, we obtaind the same algorithms by applying EM and
MM. From all these, we conclude that half-quadraticc EM and MM are very similar
methodologies (at least for GSM-based prior) that view the problem from different

perspectives.

It is also clear that there is not sufficient work on the estimation of the proposed model
parameters. The Bayesian methodology used herein provides an elegant way for statistical
modeling and estimation. In this dissertation we employ the Bayesian inference methodology

to both estimate the model parameters and infer the image.
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CHAPTER 4. BAYESIAN IMAGE RESTORATION
USING A HIERARCHICAL NON-STATIONARY PRIOR

4.1. Introduction

4.2. Imaging and image prior model

4.3. Maximum a posterior (MAP) estimation
4.4. Bayesian algorithm

4.5. Numerical Experiments

4.6. Conclusions and extensions

In this chapter we present image restoration algorithms based on the Bayesian framework and
a new hierarchical spatially adaptive image prior. The proposed prior has the following two
desirable features. First, it models the image discontinuities in different directions with a
model which is continuously valued. Thus, it generalizes the on/off (binary) line process idea
used in previous image prior definitions within the context of Markov Random Fields (MRF).
Second, the proposed Bayesian framework with the hierarchical prior has been shown to be
successful in generating sparse representations in other signal processing problems. Using the
proposed hierarchical prior, two restoration algorithms are derived. The first is based on the
maximum a posteriori (MAP) principle, and the second on the Bayesian methodology.
Numerical experiments are presented that compare the proposed algorithms among
themselves and with previous stationary and non-stationary MRF-based algorithms. These

experiments demonstrate the advantages of the proposed prior.

4.1 Introduction
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In this chapter we formulate the image restoration problem in the Bayesian framework
because it offers many advantages, such as a systematic and flexible way for regularization,
and a rigorous framework for estimation of the model parameters, as it was discussed in
Chapter 3. The novel prior that we introduce for regularization ameliorates some of the
disadvantages and difficulties of the methods presented in Chapter 3. In the next paragraphs

we present these disadvantages.

The disadvantage of an unrealistic stationary prior appears in many Bayesian formulations for
the image restoration problem, where the image prior is based on a Gaussian stationary
assumption for the residuals of the local image differences, see section 1.4.3. Such stationary
models are seriously handicapped because they do not provide the flexibility to model the
spatially varying structure of images in edge and texture areas. In other words, such priors
enforce smoothness uniformly across the entire image and correspond to uniform

“regularization”.

Compound Gauss-Markov models provide a way to avoid uniform “regularization”, see
section 3.3. In these models the image is assumed to be generated by a two-level process. The
first level represents the correlations of adjacent pixels of the image. The second level
contains a binary process used to capture the image variations (edges). In other words, when
the line process between two pixels is “on” smoothness is not enforced between them while
when it is “off” smoothness is enforced. From an image modeling point of view the binary
(on/off) nature of the line process that is used is insufficient to capture the image variations of
most natural images. More specifically, edges of different strengths and “degrees of
sharpness” are present in natural images and a binary model is limited since it inevitably

introduces quantization in representing them.

The methods based on the error visibility idea use a continuous (non-binary) model to capture
the visibility of the image artifacts, see section 3.1. Since the visibility of the artifacts is
related to the variation structure of the image, these methods use a continuous model for the
image variations. However, their main shortcoming is that quantification of visibility is not
rigorous but rather heuristic. Thus, the estimation of all the necessary parameters is not based
on a systematic framework derived from a rigorous model. As a result such models are

cumbersome to use, and suboptimal.

In this chapter, we introduce a methodology that ameliorates the difficulties of the above
mentioned methods. In particular, we propose a hierarchical (two-level) Gaussian non-
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stationary image prior [27]. This prior assumes that the residuals of the first order differences
of the image in four different directions are Gaussian random variables with zero mean and
variance that is spatially varying. As a result these local directional variances capture the
image discontinuities with a continuous value model and can be thought as “continuous line
processes”, in contrast to the CGMRFs models. In order to deal with the resulting over-
parameterization of this model, the spatially varying variances are considered as random
variables (not parameters) and a Gamma hyper-prior is imposed on them. The parameters of
the imposed hyper-prior control the mean and the variance of the residual variances and in a

sense control the degree of non-stationarity of the imposed image prior.

Another aspect of this image model is that it enforces sparse first order directional differences
in the image using the same Bayesian mechanism as in sparse kernel based regression and
basis selection; see for example [128] and [132]. Sparse signal representations have found
extensive applications in inverse problems and are becoming very important area of research

for many signal and image processing applications [132].

To learn this model and infer the image we propose two iterative algorithms. The first is based
on the maximum a posteriori estimation (MAP) principle and computes explicitly both the
image and the spatially varying variances in all four directions. The second is a Bayesian
algorithm that marginalizes the “hidden variables”, see for example [12]. At this point we
would like to make two observations. First, unlike MRF based models, the generative
graphical model that stems from the proposed prior in this chapter does not contain cycles,
thus, learning and inference based on it is easy. Second, we obtain as MAP estimates of the
inverse local variances the spatially adaptive regularization weights in [80], [84], and [78]

which were previous obtained based on heuristic arguments.

We provide numerical experiments where we compared the proposed restoration algorithms
with two different versions of the classical Wiener filter [70], the constrained least squares
approach with spatially adaptive constraints, [76], [84], [78] and [80], previous Bayesian
algorithms based on the stationary SAR model in [92], as well as on the CGMREF that use
“binary line processes” [92]. We also compared the proposed algorithms among themselves in
terms of both the bias and the variance of the inferred restored image using a Monte-Carlo
simulation. Our experimental results are encouraging and demonstrate the advantages of both

the proposed new prior and the employed Bayesian methodology.
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The rest of this chapter is organized as follows: in section 4.2 we present the imaging model
and the proposed image prior model. In section 4.3 we present the MAP-based restoration
algorithm. In section 4.4 we derive the Bayesian marginalization based algorithm. In section
4.5 we present our numerical experiments, and finally in section 4.6 we provide conclusions

and directions for future research.

4.2 Imaging and image prior model

A linear imaging model is assumed. The N x1 vector g, represents the observed degraded

image which is obtained by
g=Hf+n, 4.1)

where f is the (unknown) original image, H isa Nx N known convolution matrix and n is
additive white noise. We assume Gaussian statistics for the noise given by n~ N (0, ,B_II)
where 0 is a N x1 vector with zeros and I the Nx N identity matrix respectively, and B~
the noise variance which is assumed unknown.

For the image prior model we assume that the first order differences of the image f in four

directions, 0°, 90°, 45° and 135° respectively, are given by:

& (1.7)= 1)) £ (i j+1). 6 ()= £ (i.))- (i +1. ),

=/ (i,
e (i,7)=f(i.j)- f(i+1,j+1),and &* (i, j)= [ (i, j)- £ (i-1,j +1), (4.2)

withe* (i, j) k=1,2,3,4, the difference residuals for the image location(i, j). The above

equations can be also written in matrix vector form for the entire image as Q‘f =¢g*,
k=1,2,3,4 where Q" is the NxN directional difference operators for N x1 images.

Without loss of generality, in what follows, for convenience, we will use one dimensional

. r :
notation, in other words, we assumeg" = [glk gf,...g]kvj . We assume that the residuals have

1

Gaussian statistics according to & ~ N(O,(a.k )1), for i=1,2...N and k=1,2,3,4, where

a’ the inverse variance of &' and N the size of the image.
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For the inverse variance a' we introduce the notation A* = diag {af,aé‘,...a;} an NxN

diagonal matrix and A = diag {AI,AZ,A3,A4} a 4Nx4N diagonal matrix and

. r L. T
a= [al,az,a3,a4} a 4N x1 vector. Also for the errors we use the notation & = [81,82,83,84] .

We assume that the errors in each direction and at each pixel location are independent. This is
based on the assumption that at each pixel location an edge can occur at any direction
independently of what happens in adjacent pixels. This assumption makes subsequent

calculations tractable. Thus, the joint density for the errors is Gaussian and is given as
o 4N 12 T 4 N 12
p(s;a)ocHH(aik) exp(—O.S((ak) Aksk)j=HH(aik) exp( —0. 5( TAS)).

To relate € with the 1image f we define the 4NxN  operator

Q= [(Q1 )T ,(Q2 )T ,(Q3 )T ,(Q4 )T T . Then, the relation between the image and the residuals is

£= Qf . Based on this relation and p(ﬁ;{l) we can define an improper prior for the image

f . This prior is given by:
p(f;a) ﬁﬁ(af )1/ ’ exp(—O.S((Qf)T Aéfj]

S . 4.3)
111! )" exp(—O.S((Qkf)T A"Q"fD

This prior is termed improper since it is not scaled to integrate to 1. For a proper Gaussian the
normalizing constant as a function of the spatially varying variances a' cannot be of the form
in Eq. (4.3), since Q is not a square matrix,

1

Det{Q'A }icﬁﬁ(af)g,

k=1 i=l

where C is a constant, even though A is diagonal. However, improper priors are used on a

routinely basis with success in Bayesian modeling [13]. More specifically, the prior in

equation (4.3) is obtained by assuming that all the elements of the diagonal matrix A are

N 4 1/4N
equal to their geometric mean (HHM’ j . This  implies, because
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4 2 N 4 8
QTAQ=Z(Q")T A*Q* is a NxN matrix, that (det{QTAQ})/ oc(HHa;’j . This

i=l k=1

assumption results in the improper prior in Eq. (4.3) and leads to tractable calculations.

The role of the parameters a is to capture the directional variation structure of the image.

More specifically, a large variance (small @) indicates the presence of a large variation along
the direction of the difference, in other words an edge perpendicular to this direction. The
introduction of the spatially varying a' scales down the differences of adjacent pixels in
regions of image discontinuities. As a result this prior maintains edges and suppresses noise in

smooth areas of the image. This principle is identical to the one that motivated the use of the

binary (0 or 1) line process idea; see for example [61], [20], [72], [74] and [92]. However,

. k . . . .
since the values of g; are continuous our model can be considered as generalization of the

MRF model with the on/off binary line process.

The drawback of the proposed prior is that it introduces 4N parameters a' that have to be
estimated from N observations. This is clearly not a desirable situation from an estimation
point of view. For this purpose we employ the Bayesian paradigm and consider a' as random
variables (instead of parameters) and introduce Gamma hyper-priors for them. In the case of a
stationary model where alla ’s are equal the over parameterization problem does not exist
and it is rather straightforward to obtain good estimates for the unknown parameters using

even maximum likelihood (ML).

The rationale for using a Gamma prior in the non stationary case is threefold. First, it is
“conjugate” for the variance of a Gaussian and facilitates analysis of the Bayesian model [12].
Second, similar hierarchical models have been used successfully in Bayesian formulations of
other statistical learning problems and produce sparse representations; see for example [128]
and [132]. Sparse local differences encouraged by this model are a good model for image

edges which are overall much less than the pixels in the image. Finally, as we shall see in

what follows it produces update equations for a ’s that were previously derived empirically.

We consider the following parameterization for the Gamma hyper-prior:

-2

p(a,.k;mk,lk)oc(ai")T exp{—mk (Zk—2)aik}, (4.4)
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For such a representation the mean and variance of Gamma are given by
-1
E[a]=1,(2m, (1,-2))", and Var[af] =1, (2m,f (1, —2)2) respectively, see [92] and [60].

This representation is used because the value of the parameter /, can be also interpreted as the
level of confidence to the prior knowledge provided by the Gamma hyper prior. More

specifically, as [, >, E[a' |->(2m,)" and Var[a']—o0. In other words, the prior
becomes very informative and restrictive resulting in a' = (2m, )_1 Vi. This also implies that

the image model becomes stationary. In contrast, when /, — 2 then both £ [ai"} — o0 and
Var[ai"] — oo, thus the prior becomes uninformative and does not influence at all the values

of the a’s. In other words, the a/ s are free from the moderating influence of the prior and

are allowed to “vary wildly” following the data. In such case the image model becomes

“highly non stationary”. As a result, the value of the parameter /, can be also viewed as a way

to adjust for the degree of non stationarity of the image model.

The graphical model corresponding to the observations generation mechanism is shown in
Figure 4.1 below. Random variables are represented as ellipses and parameters of the
distribution of the random variables as rectangles. The variables a and f are hidden, since
they are not observed and relate the parameters with the observations. In the MAP approach,
point estimates are obtained for a and f. In the Bayesian approach, instead of using point
estimates for a, their average influence is taken into consideration by integrating them out

(marginalization), therefore point estimates are used only for f .

o

Figure 4.1: The graphical model of the observations.
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4.3 Maximum a posteriori (MAP) estimation

At first we propose a MAP approach to infer a and f. This is based on maximization of the

posterior probability. Thus we have:
p(f.alg B ml)« p(g,f,a4,ml)=p(g|f.ap8)p(fla;)p(am,l),
where:
m =[m,my,my,m, ] V=[1,1,,1,,1,] .
Maximizing the quantity p(g.f,a;4,m,1) with respect to f and a is equivalent to
minimizing the negative logarithm
Juw (£.2]g Bm,1) o —log p(g.f,4; B,m,1) =—log p(g|f,a; 8)—log p(f|a)-

i i N 1 1 &L
1ogp(a;m,1):>J(f,ayg;ﬂ,m,l)=—?1ogﬂ+5ﬁ||ﬂf-g||2—5221ogaf+ (4.5)
k=1 i=1

+%Z4:i(Qkf)T Akaf_i(lk ;2 glogafj+z4:(mk (lk _z)gai’f )

k=1 i=1

To minimize the above function with respect to f and a, we adopt an iterative scheme that

sets alternatively the gradient of f and a equal to zero. Setting V_.J,, (f ,alg; ﬁ,m,l) =0

yields

(a) = (4.6)
((gf) e, (1, _z)j
Setting V,J,,,.» (f,a|g; 8,m,1)=0 yields:
£ = (HTH+ s kﬁ} (Q4) A'Q! )_1 H'g. 4.7)

However, equation (4.7) cannot be solved in closed form since analytical inversion of

4
[HTH+ ‘> (Qk )T Aka} is not possible due to the non-circulant nature of matrices A"*.
o

Thus, we resort to a numerical solution using a conjugate gradient algorithm. The proposed
MAP algorithm iterates between equations (4.6) and (4.7) till convergence, i.e. image estimate

doesn’t differ much from the estimate of the previous iteration.
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It is interesting to point out that a formula similar to Eq. (4.6) was used in previous works to
compute spatially varying regularization weights. Such a formula was derived based on
heuristic arguments and empirical observations, see [76], [78], [80] and [84].

In addition, the observation of the previous section that the parameters /, control the degree

of non-stationarity of the model can be verified from Eq. (4.6), the MAP estimates of the

(af ) More specifically, when /, — o, (al.k ) =(2m,) "' Vi, and the image model becomes

. -1 .
stationary. In contrast, when /, -2, (ai") :((gl," )2) Vi, thus the (al.") ’s are completely

unaffected from the moderating effect of the Gamma hyper-prior and only follow the data.

For example, in smooth areas of the image where the local residual in the denominator of Eq.

(4.6) tend to zero, it holds that () — .

i

4.4 Bayesian algorithm

In the Bayesian analysis of the proposed model, hidden variables are marginalized while
parameters are estimated [12]. In our case, as explained in section 4.2, f and a are
considered “hidden” (latent) variables, while m, 1 and £ are the unknown parameters. In the
Bayesian inference paradigm, hidden variables are marginalized while parameters are

estimated by maximizing the likelihood p (g; p,m,l ) of the observations g:

p(g: B.m.D) =] p(g,1,a; B,m,l)dfda =[] p(g|f; B)p(f|a) p(a;m,l)dfda. (4.8)

The exact evaluation of this Bayesian integral is not possible since we cannot integrate in
closed form with respect to both f and a. Instead we marginalize in closed form only with
respect to a. We chose to marginalize a for two reasons. First, because the maximization
with respect to f that follows is tractable. Second, because this approach requires explicit
computation of f as part of the Bayesian algorithm and we do not have to compute it

separately. More specifically, we have:
p(g.f;8.m1)=[p(f|a)p(a;m,1)da. (4.9)

The calculation of the integral can be made as follows

55



Observing the integrand in the above expression it is easy to notice it is of the form x“e™,

i.e., it is similar to a Gamma PDF. Thus its integral is given by:

by o
2

1=ﬁ{r(%jN<mk<zkz))N%r(%+§jNﬁ(mk<zkz)&(@wkorj“ ”} @10

i=1

Replacing the integral of Eq. (4.10) in Eq. (4.9) gives:

swasen-(] TS 4] )
(2;)} (4.11)

k=1 | i=l

xexp{_% ,B||Hf—g||2}li[{ﬂ(mk (1 —2)+%([Q"f}(i))2)

Thus, the image is estimated by its value at the mode of p(g,f;4,m,1). To compute the

mode, we minimize J, (g,f; 8, m,l) with respect to f,
f* =argminJ, (g.f; 5,m,1),
£

where:

To(g s pm 1) == p[Hr" g -log -

2
4
—Z[Nl
k=1
4
>

F(%‘J—Nlelog(mk(lk—2))—N10g1“(%‘+%ﬂ—
5 N

1 u% %jzk’g[mk (4 —2)+% [Q"f*](i)m_

=1

0g
+

The mode f* is found by an iterative modified Newton algorithm with the following update

equation

| A - kaiJB (f")*lvaB ("), (4.12)
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where V. Jp and Vi] , denote the Gradient and the Hessian matrix of the J, function

respectively (with respect to f). The gradient and the Hessian can be computed analytically,

and are given by:
V,J,=pH" (Hf—g)+i(%‘+%)(Qk ) v, Vi, :ﬂHTH+Z(%‘+%j(Qk )T A, Q"
=1 =1
Q')
m (1-2) (@70

where:

v, (z‘)=( i=12,..,N,
and the matrix A is diagonal with diagonal elements A, (i ) equal to:

1

m(l—2)+;([Qkf](i))

A (i) = —[v.()]. i=L..N.

To find the step #* in (4.12) we adopted a backtracking line search method [97].

4.5 Numerical experiments

In this section we present numerical experiments to evaluate our algorithms. First, we
compare the proposed methods with previous methods in terms of the quality of the images
provided. Second, we compare the proposed MAP and Bayesian algorithms in terms of the

bias and variance of the inferred restored images.

The metrics used to quantify the quality of the degraded images, the noise levels in our
degraded images and the quality of our restoration results are the peak signal to noise ratio
(PSNR), the signal to noise ratio (SNR), and the improvement in signal to noise ratio (ISNR),

respectively. These metrics are defined as:

2 2 2
PSNR :1010g10m, SNR =10log, ”f”_ , and ISNR =10log, ||f—g|| ,
r-ef "V le—if

where, S, f, f and g, are the noise variance, the original, restored and degraded images,

respectively.
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In our experiments we used the well-known 256x256 “Lena” image, shown in Figure 4.2a.
The image was blurred by a uniform 7x7 PSF (normalized to sum to 1) and white Gaussian
noise was added such that SNR=25,36dB. The degraded image is shown in Figure 4.2b with
corresponding PSNR 27.08 and 23.22dB, respectively.

In order to compare the proposed approaches with previous ones we implemented: (i) the
classical Wiener filter in the DFT domain [70] using the degraded image to estimate the
image power spectrum assuming that the additive noise variance is known. The resulting
image is shown in Figure 4.2c¢. (ii) The classical Wiener filter in the DFT domain [70] using
the original image to estimate the image power spectrum and assuming that the additive noise
variance is known. Clearly this is not a realistic scenario; however, it compares our algorithm
to the performance limit of the Wiener filter. The resulting image is shown in Figure 4.2d. (ii1)
The Bayesian approach using a stationary SAR prior [92]. The corresponding image and ISNR
are shown in Figure 4.2e. (iv) The iterative constrained least squares (CLS) approach with
spatially adaptive regularization [76], [95], [92], [80]. The optimal parameters for this model
were found in a trial and error fashion. The resulting image is shown in Figure 4.2f. (v) The
non stationary CGMRF based approach that uses a binary line process to model the image

edges in [92]. The resulting image is shown in Figure 4.2g.

To facilitate learning the proposed image model we used the £~ (additive noise variance)

and equal m, that was obtained by learning a stationary SAR model assuming a Laplacian

operator Q for the residuals [92]. The parameters m, were obtained as m, =1/(2ag,; )

where ag,,, the image model parameter of the stationary SAR model. The parameters /,
were selected to be equal to a value denoted by /. Since, as explained previously they can be
used to adjust, the degree of non-stationarity of the image model, values in the interval
/= [2.1—2.5] were found using trial and error to provide the best restored images based on

both visual criteria and the ISNR metric. Since both algorithms run very fast (1-3 minutes)

and only one parameter is adjusted the trial and error procedure is feasible.

In order to test the performance limits of the proposed model we implemented the MAP
approach estimating the model parameters from the original image. The resulting image is
shown in Figure 4.2h. The resulting restored images using the proposed methods where all

the unknowns are estimated from the observations are shown in Figure 4.21 for MAP and
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Figure 4.2 for the Bayesian approach. From the restored images shown in these figures is
clear that the proposed non stationary restoration algorithms provide both higher ISNR and
visually more pleasing results than all previous stationary and non-stationary based methods.
It is interesting to point out that even when the original image is used to estimate the image

statistics, as in the case of the Wiener filter, both proposed approaches outperformed it.

We also tested the proposed algorithms with wavelet based approaches with respect to the
ISNR metric using the three experiments described in [55]. Although the ISNR metric is not
always an accurate measure of visual impression it is an objective metric of estimation
performance. Our MAP algorithm for the first and third set of experiments in [55] gave better
ISNR, as shown in Tables 4./ and 4.2, respectively. In the first experiment the 256x256
“Cameraman” image was degraded by additive noise with #'=0.308 or SNR= 38.64 dB, and
uniform 9x9 blur shown in Figure 4.3a. We also show and provide ISNRs for the following
cases: 1) the stationary restored image assuming an SAR prior [92], in Figure 4.3b. ii) The
restored image obtained by the CLS spatially adaptive approach, [76] and [78], in Figure 4.3c
and 1iii) the restored image by the proposed MAP algorithm in Figure 4.3d. In the third
experiment described in [55] the 512x512 “Lena” image was degraded £'=49 or
SNR=16.62 dB, and separable 5x5 blur implemented by blurring with a PSF given by [1, 4, 6,
4, 1]/16 in each direction. For the second experiment in [55] the ISNR obtained by the
proposed here MAP algorithm was approximately equal to the best one obtained by the
methods presented in [55]. In all experiments the same termination criterion was used as in
[55]. The proposed Bayesian algorithm in this set of experiments was not as competitive and

gave slightly lower ISNR than the best case of the results reported in [55].

Finally, in order to compare the properties of the proposed MAP and Bayesian algorithms we
considered two metrics, the bias (BIAS) and the variance (VAR) of the restored images. These

metrics were estimated by Monte-Carlo simulations using the following equations

BIAS = Hf -f

VAR =S (-4, [, with =3¢
=L =

where, f is the original and f'k for k=1,..., M, the restored image, obtained from M =10

different restoration runs in which the degraded images were corrupted with different noise
realizations. The results for three images (in addition to “Lena” and “Cameraman” a

256x256 segment of the “Barbara” image was also used) at 3 different noise levels are
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shown in Tables 4.3 and 4.4, respectively. The blur used here was circular Gaussian shaped

with shape parameter o> =2 (normalized to mean equal to 1).

The above experiments demonstrate that the Bayesian approach has a lower variance than the
MAP approach, as expected since it marginalizes the directional variances, and does not use
point estimates. However, in terms of bias, both MAP and Bayesian algorithms give

comparable results.

In terms of computational cost both proposed algorithms were very fast. Typically, our
algorithms required about 20 iterations to converge using as criterion the change of the
likelihood between successive iterations to be less than 0.1%. Our algorithms were
implemented in MATLAB and take about 1-4 minutes on a Pentium 4 at 2.8 GHz personal
computer for 256x256 images. In contrast, a C implementation of the deterministic
relaxation MAP algorithm in [92] required 10-15 minutes on a Xeon 3.2 GHz machine. The
constrained least squares method with spatially adaptive constraints [76], [95], [92], [80] was
implemented using a conjugate gradient algorithm and is of the same computational
complexity, given that the correct parameters have been found, to the proposed methods. The
Wiener filter and the Bayesian approach with the stationary SAR model are much faster since
all calculations are done in the DFT domain and require 5-10” using MATLAB on a Pentium

4 at 2.8 GHz personal computer.

4.6 Conclusions and extensions

The power of the proposed image prior model was clearly demonstrated with the MAP
approach when the original image was used to estimate the model parameters. Apart from the
very high visual quality of the restored images, shown in Figure 4.2h , it outperforms in terms
of ISNR by almost 5dB the one obtained by the Wiener filter shown in Figure 4.2d, when the
original image was also used to estimate the power spectrum. Furthermore, the proposed
methods compared favorably with recent CGMRF and wavelet based methods [92] and [55],

respectively.

Since the parameters /, of the proposed hyperpriors can be viewed as quantifying the degree

of non-stationarity of the image model, developing an algorithm to estimate the parameters in
a rigorous manner seems a natural extension to this work. Thus, a more efficient algorithm

than the Bayesian algorithm presented in this chapter can be derived, using for example the
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variational methodology for approximate Bayesian inference and estimate the parameters by
maximizing (approximately) the marginal likelihood, obtained by integrating with respect to
both the image and variances. In contrast, the proposed Bayesian algorithm of this chapter
maximizes a likelihood obtained by marginalizing the variances and not the image. In Chapter
5, we focus on estimating the model parameters using the VB methodology presented in

Chapter 3.

Finally, the four directional difference operators may not be able to capture the salient
features of the image, and hence, additional operators should be included to the model. To this
end, filters from known transforms, such as the wavelet discrete transform and other filter

banks can be incorporated as operators.

Table 4.1: ISNR comparisons with the experiments in Table I of [55].

Method ISNR
Proposed MAP approach, /=2.1 8.78dB
Rule (22), UDWT [55] 7.47dB
Rule (22), Random shifts [55] 7.59dB
Modified Laplacian, UDWT [55] 7.26dB
Modified Laplacian, random shifts [55] 7.34dB
Shoft-threshold, UDWT [55] 7.26dB
Shoft-threshold, random shifts [55] 6.33dB
Result by Neelamani et al [100] 7.3dB
Result by Banham and Katsaggelos [9] 6.7dB

Table 4.2: ISNR comparison with experiments in Table III of [55].
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Method ISNR
Proposed MAP approach, /=2.1, 3.63dB
Rule (22), UDWT [55] 2.94dB
Rule (22), random shifts [55] 1.71dB
Modified Laplacian, UDWT [55] 2.75dB
Modified Laplacian, random shifts [55] 1.77dB
Shoft-threshold, UDWT [55] 2.75dB
Shoft-threshold, random shifts [55] 1.61dB
Best result by Liu and Moulin [88] 1.078dB

Table 4.3: Bias metric for the MAP and the Bayesian algorithms.

Noise Level SNR=65.34 dB SNR =25.36 dB SNR =14.91 dB

Algorithm Bayesian MAP Bayesian MAP Bayesian MAP

Cameraman 9.36 9.15 12.23 11.57 15.22 14.08
Lena 5.31 5.31 6.92 7.44 9.29 10.71
Barbara 5.33 6.97 13.42 11.94 16.42 14.25

Table 4.4: Variance metric for the MAP and the Bayesian algorithms.




Noise Level SNR =65.34 dB SNR =25.36 dB SNR =14.91 dB

Algorithm Bayesian MAP Bayesian MAP Bayesian MAP

Cameraman 1.77e-004 | 1.77e-004 | 1.64e-004 | 3.60e-004 | 2.37e-004 | 6.49e-004

Lena 6.47¢-005 | 9.16e-005 | 1.04e-004 | 1.38e-004 | 1.71e-004 | 5.25e-004

Barbara 1.69¢-004 | 2.89¢-004 | 1.62e-004 | 6.02e-004 | 1.88e-004 | 8.95e-004

Figure 4.2a: Original “Lena” image. Figure 4.2b: Degraded “Lena” image with

7x7 uniform blur and additive noise

SNR=25.36 dB.
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Figure 4.2c:  Wiener filter restoration, Figure 4.2d: “Optimal” Wiener filter
ISNR = 3.2 dB. restoration, ISNR = 4.40 dB.
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Figure 4.2e: Stationary restoration, ISNR= Figure 4.2f. CLS method (adaptive
4.25 dB. smoothness constraint) restoration,

0=1000,a=0.01, ISNR = 4.65 dB.



Figure 4.2g: Restoration with GMRF  Figyre 42h:  MAP  “optimal”  non
algorithm [92] , ISNR= 3.46 dB. stationary restoration, ISNR=10.43 dB,
[=2.01.

Figure4.2i:  MAP  non  stationary Figure 4.2j: Bayesian non stationary
restoration, ISNR= 5.63 dB, [=2.2. restoration, ISNR=5.22 dB, [=2.2.

Figure 4.2: Experiments with ‘Lena’ image, Gaussian blur and SNR=25,36dB.
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Figure 4.3a:  Degraded  “cameraman” Figure 4.3b: Stationary restoration, ISNR
image with 9x9 uniform blur and additive =6.44 dB.
noise SNR=38.64 dB, F'=0.308).

Figure 4.3c:  CLS method (adaptive Figure4.3d: MAP  non  stationary

smoothness constraint) restoration, §=0.05, restoration, ISNR= 8.78 dB, [=2.1.
a=0.003, ISNR =7.22 dB.

Figure 4.3: Experiments with ‘Cameraman’ image, uniform blur and SNR= 38.64 dB.



CHAPTER 5. BAYESIAN IMAGE RESTORATION
WITH A PRIOR BASED ON A PRODUCT OF t-
DISTRIBUTIONS

5.1. Introduction

5.2. Imaging and image model

5.3. Variational Inference

5.4. Computational implementation
5.5. Experiments

5.6. Conclusions and suggestions for improvement

In this chapter we extend the image prior introduced in Chapter 4 and propose a variational
Bayesian restoration algorithm that estimates the parameters of the image model and bypasses
some major difficulties of the algorithms proposed in Chapter 4. The prior is extended to
involve an arbitrary number of convolutional operators, and not just the directional
differences operators. Thus, the image prior is defined by assuming Student’s-t densities on
the outputs of local convolutional filters. The resulting prior is in product form similar to the
prior of Chapter 4. Priors based on products have been recognized to offer many advantages
because they allow for simultaneous enforcement of multiple constraints. However, they are
inconvenient for Bayesian inference because it is hard to find their normalization constant in
closed form. In this chapter, a new Bayesian algorithm is proposed for the image restoration
problem which bypasses this difficulty. Another difficulty is the maximization of the marginal
likelihood which is intractable to obtain. This difficulty is bypassed by employing the

variational methodology for approximate inference, with a constrained expectation step,
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which is used to infer the restored image. Numerical experiments are shown that compare this

methodology to previous ones and demonstrate its advantages. [26].

5.1 Introduction

Product-based image priors have been presented in section 443.6. Such priors combine in
product form multiple probabilistic models. Each individual model gives high probability to
data vectors that satisfy just one constraint. Vectors that satisfy only this constraint but violate
others are ruled out by their low probability under the other terms of the product model.
However, such priors are usually learned using a large training set of images and stochastic
sampling methods and used in a number of image recovery problems based on “empirical”
maximum a posteriori approaches and gradient descent minimization [114]. This differs from
the herein proposed approach where the product prior is learnt only from the observations.
The term “empirical” is used because the PoE priors used are not normalized; thus, the
parameters of the recovery algorithm cannot be estimated or inferred rigorously but are

adjusted rather empirically.

Extending the work in Chapter 4, we propose in this chapter a new Bayesian inference
framework for image deconvolution using a prior in product form. This prior assumes that the
outputs of local high-pass filters are Student’s-t distributed. The main contribution of this
chapter is a Bayesian inference methodology that bypasses the difficulty of evaluating the
normalization constant of product type priors. The methodology is based on a constrained
variational approximation that uses the outputs of all the local high pass filters to produce an
estimate of the original image. More specifically, a constrained expectation step is used to
capture the relationship of the filter outputs of the prior to the original image. In this manner
the use of improper priors is avoided and all the parameters of the prior model are estimated
from the data. Thus, we avoid the “trial and error” parameter “tweaking” required in Chapter
4 and other state-of-the-art recently proposed restoration algorithms, which makes their use
difficult for non-experts. Furthermore, the proposed restoration algorithm provides

competitive performance compared to other methods.

In this chapter we also propose an efficient Lanczos-based computational framework tailored

to the calculations required in our Bayesian algorithm. More specifically, a very large linear
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system Ax=b is solved iteratively and the diagonal elements of a matrix Q'4A'Q are

simultaneously estimated in an efficient manner.

The rest of this paper is organized as follows. In section 5.2 the imaging and image models
are defined. In section 5.3 the variational restoration algorithm is derived. In section 5.4 we
present the computational methodology used to implement our algorithm, while in section 5.5
numerical experiments are demonstrated. Finally, section 5.6 contains conclusions and

directions for future work.

5.2 Imaging and Image Model

A linear imaging model is assumed. For convenience but without loss of generality, we use

one-dimensional notation. The Nx1 vector g represents the observed degraded image

obtained by

g=Hf+n, (5.1)
where f is the (unknown) original image, H is an N x N known convolution matrix and n is
additive white noise. We assume Gaussian statistics for the noise given by n~ N (0, ,B*II)

where 0 is an Nx1 vector of zeros, I is the Nx N identity matrix and £ is the noise

precision (inverse variance), which is assumed unknown.

Aiming at the definition of the image prior we first define P operators Q, for £ =1,...,P and

use them to define P filter outputs:

e, =Qf, k=1,..,P, (5.2)

where £, =[ £, (1),£,(2),...6, (N )]T . The matrices Q, representing the operators are of size

NxN and the filter outputs g, are of size Nx1. These operators are zero mean

convolutional high-pass filters and each one of them is used to impose a particular constraint

on the restored image.
We assume that &, (i) for i=1,..,N are iid zero mean Student’s-t distributed, with
parameters A4, and v, :

&, (1')~St(gk(i);O,/lk,vk),Vi,Vk, (5.3)
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where

v+l

St(x:0,4,v )_F(vk/2+l/2) A, 112 1+ﬁx2 )
T v (v 2) v, v, '

The Student’s-t implies a two-level generation process [19]. More specifically, a, (z) is first

drawn from a Gamma distribution, p(ak (z)) = Gamma (ak (z)%,%) Then, the ¢, (i) is

generated from a zero-mean Normal distribution with precision 4,a, (i), according to
p(gk (i)l a, (z)) = N(gk (i);O,(lkak (i))fl). The probability density function of Eq. (5.3) can

be written as an integral:

~+00

p(e. (i) =5t(&():0,4,.v,) = J. p(e (i)l a, (i) p(a,(i))da, (i).

0

The variables a, (i ) are called “hidden” (latent) because they are not apparent in Eq. (5.3),

since they have been integrated out. There are two extremes in this generative model,

depending on the value of the “degree of freedom” parameter v,. As this parameter goes to
infinity, the pdf from which the a, (i ) ’s are drawn has its mass concentrated around 1. This in
turn reduces the Student’s-t to a Normal distribution, because all ¢, (i) are drawn from the
same Normal with precision 4, , since a, (i)=1. The other extreme is when v, — 0 and the
prior becomes uninformative. In general, for small values of v, the probability mass of the
Student’s-t pdf is spread, rendering the Student’s-t more “heavy-tailed”.

The use of heavy-tailed priors on high-pass filters of the image is a characteristic of most
modern “edge preserving” image priors used for regularization in a stochastic setting; see for

example [21], [117], [104], [8], [66], [114] and [130]. The main idea behind this assumption
is that at the few edge areas of an image the filter outputs &, (z) will be large in absolute
value. Thus, it is important to model them with a heavy-tailed pdf in order to allow the prior
to encourage formation of edges. The downside of many such models is that most heavy-

tailed pdfs are not amenable to Bayesian inference. For example the Generalized Gaussian

and the Alpha Stable pdfs can be also heavy tailed. However, unlike the Student’s-t where
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Bayesian inference is possible [89], moment-based estimators have to be used for their

parameters; see for example [101] and [42].

We now define the following notation for the variables a, (i). We denote by a=[a,,...,a,]" a

PN x1 vector, where a, =[ak (1),ak (2),...,ak(N)]. Also, for the filter outputs we use the

T
notation €= [(al )T (g, )T ceeer (£ )T} . We assume that the filter outputs are independent not
only in each pixel location but also in each direction. This assumption makes subsequent
calculations tractable. Thus, the cumulative density for the filter outputs conditioned on a is

P

p(é|5)znp(£k|ak)’ (54

k=1

where p(g,|a,)=N (0,(/1,{Ak)71) and A, is a diagonal matrix with elements the

components of the vector a, .

At this point, the marginal distribution p(f ) yearns for a closed form, using the relation

between the image and the filter outputs, Eq. (5.2). However, this prior is analytically

intractable because one cannot find in closed form its normalization constant. This problem

P
stems from the fact that it is not possible to find the eigenvalues of the matrix ZQIA,{Q ‘
k=1

because it is very large and the product Q,; A Q, does not have a structure that is amenable to

efficient eigenvalue computation. One contribution of this work is that we bypass this
difficulty by exploiting the commuting property of convolutional operators and derive a
constrained variational algorithm for approximate Bayesian inference. This algorithm is

described in detail next.

5.3 Variational Inference

Since, as explained above, it is difficult to infer a solution for the image from the Bayesian

model previously defined, a transformed imaging model is introduced in section 6.3.1.

5.3.1 The Variational Algorithm for Equivalent Imaging Model
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The imaging model of Eq. (2.1) can be written as

Q,g=Q,Hf+Q,n for k=1,..,P. (5.5)

Setting y, =Q,g for k=1,..., P and using Eq. (5.2), we can utilize the commuting property

of the convolutional operators and write the imaging model as

y, =Heg, +n, for k=1,..,P, (5.6)
where y, are the observations of the newly defined model and the additive noise is
n, ~N(0,57Q,Q;).

In this model we assume that the filter outputs €, of our filters Q, are the unknowns. Thus,

the algorithm will infer € instead of f. In this manner we bypass the need to define a prior

for f. For this reason, we must initially define the posterior of the observations y given €.

This is equal to the product of P Normal distributions, since the observations are assumed

indepedent:

. T
y|3 :Hp yk |8k Where y:|:(y|)T9(y2)T5--..9(yP)Tj| and
k=1

p(y.1&)= N(Hek,(ﬂQ{Qk)‘) for k=1,...P.

The prior for the residuals has been already defined in Eq. (5.3).

Working in the Bayesian framework, we define as latent (hidden) variables the residuals &

and the inverse variances a . Hence, the complete data likelihood is

p(3.828;0)=p(y1%0)p(E|a;0) p(a;0),
T

where @ =[B,V,,....Vp, Ao Ap ]

Estimation of the model parameters ideally could be obtained through maximization of the

marginal distribution of the observations p ()7; 9):

é:argmaxj.jp(y,é,ﬁ;ﬁ)dédﬁ. (5.7)
4

72



However, in the present case this marginalization is not possible. Furthermore, since the

posterior of the hidden variables given the observations p(£,a|¥) is not known explicitly,

inference via the Expectation-Maximization (EM) algorithm is not possible [10].

For this reason, we resort to the variational methodology [19], [10] and [87]. According to
this methodology, we introduce a lower bound on the logarithm of the marginal likelihood,

which is actually the expectation of the logarithm of the complete data likelihood with respect

to an auxiliary function of the hidden variables ¢(£,a) minus the entropy of ¢(&,a):
log p(¥:6)> L(q(%,2),0)
L(¢(&8).0)= [ q(2.8)log p (.8 50)dedd — [ ¢ (5.5)logq(£.3) ded.  (5.8)

The inequality holds because the functional L is also equal to the logarithm of the marginal

likelihood minus the always non-negative Kullback-Leibler divergence between the true

posterior distribution p(&,a|y;6) of the hidden variables and ¢(£,a); see for example [19].

Q
—
ag)
N
&
~
~
Il
—~

p(ak’ak |Yk;0k)a (5.9)

I
—_
=

I

1
because in this case the Kullback-Leibler divergence becomes zero.

In the variational Bayesian framework, instead of maximizing the unobtainable marginal

likelihood, we maximize the bound L, Eq. (5.8), with respect to both ¢(&,a) and 6 in the
variational E and M steps, respectively. In other words, the unknown posterior p(é, aly; 9) is
approximated by ¢ (é, 5) . One difficulty in this approach is that the maximization with respect

to q(é,ﬁ) is hard to obtain in closed form, although, we can bypass it by using the so-called

Mean Field approximation [10]. According to this approximation, if we assume that
q(g..a,)=q(g,)q(a,), for k=1,...P, (5.10)

then unconstrained optimization of the functional L(¢(£,a),0) with respect to all ¢ (&, )

yields P Normal distributions:

73



q(2)=N(Qn-Q,Z,Q;), for k=1,...,P, (5.11)
with parameters p, = SX,H'g and £, = (ﬂHTH+ﬂkQZAka)71,

The difficulty that we encounter with the above posteriors, which were obtained by

unconstrained optimization, is that they do not provide a method to infer f from g, and they

do not capture their common origin from f, Eq. (5.2).

In order to bypass this difficulty we make the assumption that each of the posteriors ¢ (s k) is
Normal; however, it is constrained so that it captures the common origin of all ¢, from f, as
dictated by Eq. (5.2). In other words we assume that

q(g,:m,R)=N(Qm,Q,RQ;), for k=1,...P, (5.12)

where m and R are actually parameters representing the mean and covariance of the image

f , from which all g, originate. In other words:

E[e,]=Q,E[f]=Q,m, Cov[e,]=Q,Cov[f]Q, =Q,RQ;.

Thus, m and R are parameters that are used in our model and estimated during the

restoration algorithm. Actually, the restored image is taken to be the estimate of m .

5.3.2  The Variational Update Equations

The general variational algorithm using the Mean Field approximation [10] for approximate

inference of a statistical model with y as observation, » hidden variables x = [xl,...,x ] and

n

parameters denoted by &, aims to maximize the bound
L(q(x),0)= _[qu. (x)log p(y,x;0)dx, —IHqi (x;)logg(x; jdx, -
i-1 =1

This is achieved by iterating between the two following steps, where (t) is the iteration

index:

VE-step: ¢ (x)=arg maxL(q(x),G(t)),i =1...,m,
;(x)
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VM-step : 0" (x)=argmax L (q(”l) (x), 0).

4

Thus, in the E-step of the variational algorithm, optimization of the functional is performed

with respect to the auxiliary functions. However, in the present case, the functions

q(ak),k =1,..., P, are assumed to be Normal distributions with partially common mean and

covariance; see Eq. (5.12); therefore, this bound is actually a function of the parameters R

and m and a functional w.r.t. the auxiliary function q(ﬁ) . Using Eq. (5.10), the variational

bound in our problem becomes
L(gq(a ﬂ‘[q a, )log p(¥.&,4;6,) déda

_ng(sk,ﬁ) q(a, loqu £,;0,)q(a, )dzda,

(5.13)

where 6, =[R,m] and 6, =[5, 4,...,4,,V,,...,v,]" . Thus, in the VE-step of our algorithm the

bound must be optimized with respect to R, m and ¢(a):

VE—step:[q(””(ﬁ) 0(”1)]—a{gma]XL( q(a), 91,6’(’))
L]

Taking the derivative of L w.r.tto m, R and ¢ ({1) (see Appendix), we find that the bound is

maximized w.r.t. these parameters when

m(Hl) — ﬂ(t)R(t)HTg , (5.14)

-1

P ~
R = (ﬂ(”HTH +%Zﬂ%QzA§:)Qk] , (5.15)
k=1

q(’“)(ak (1)) Gamma(ak( ); %‘+% V?k'i‘%/h ((my)(i))z +C§C’)(z',i))j,‘v’k,Vi, (5.16)

where m{” =Q,m" and C{” = Q,R"'Q; . Notice that since each ¢ (a, (i)) is a Gamma pdf

of the form q’”( V(i )) Gamma( (i), ,8) its expected value is

(000 =5 (D) 2 (m? () 020 (517)
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where (- denotes the expectation w.r.t. an arbitrary distribution ¢(-). This is used in Eq.
) p ry q q

q(

(5.14) and (5.15), where A" is a diagonal matrix with elements

A (i,1) = (a, (1)) i=L..,N.

7 (e (i)’
At the variational M-step the bound is maximized with respect to the model parameters:

VM-step: 4" = arg max L (q(”” (a),6"",0, ) ,

where L(q(’”) (?1),91(”1),92) o <logp(§7,§, a;0, )>q(§'9(,m) @) is calculated using the results

from Eq. (5.14)-(5.17).

The update for £ is obtained after taking the derivative and equating to zero:
-1
B0 = N(HHm<’“> : guj + tmce{HTHR(’“)}) . (5.18)

In the same way the maximum is attained for A, :

A= (Zﬁl((mf” (1)) +¢.” (l?")j(“k (i)>q~+‘><ak<i>>J | G-

Finally, taking the derivative with respect to v, and equating to zero, we find the “degrees of

freedom” parameter of the Student’s-t by solving the equation

| (n ' N _ a1l 1
N(Elog<ak (l)>q(/+l>(ﬁ) _E<ak (l)>q('“)(5) ) -H//(Vli ) E+Ej_
—log(v(’)l+lj—§”(v—kj+10g(v_kj+l:O (5.20)
“22 2 2

for v, , where

v (x)=-logT (x) -

is the digamma function and v\” is the value of v, at the previous iteration () used to

evaluate the expectations in Eq. (5.17) during the VE-step.
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5.4 Computational Implementation

In our implementation, the variance of the additive noise is estimated in a preprocessing step
and is kept fixed. The EM algorithm with a stationary Gaussian prior [94] and one output (the
Laplacian operator) was used for this purpose. Furthermore, the EM-restored image was used
to initialize our algorithm. For all experiments, four filter outputs P =4 were used for the
prior. We show the magnitude of the frequency responses of these filters in Fig. 5.2. The
operators Q, and Q, correspond to the horizontal and vertical first order differences. Thus,
these filters are used to model the vertical and horizontal image edge structure, respectively.
The other two operators Q, and Q, are used to model the diagonal edge component

contained in the vertical and horizontal edges, respectively. These filters are obtained by
convolving the previous horizontal and vertical first order differences filters with fan filters
with vertical and horizontal pass-bands, respectively. In our experiments the fan filters in [37]

were used.

We solve equations (5.14) and (5.20) iteratively. For Eq. (5.20) we employ the bisection
method, as also proposed in [89]. In the next few paragraphs we analyze how Eq. (5.14) is
solved by a method based on the Lanczos process [107].

Omitting the subscripts k& and superscripts (¢) for convenience, we regard (5.9) as the linear
system Ax=b, where A =R is symmetric and positive definite, b= #H'g, x=m, and
products Av can be obtained efficiently for any given v. In addition, we have the linear
algebra problem of estimating the diagonals of matrix C=QA'Q" in Eq. (5.17). The matrix

A=R" is very large; for example for 256x256 images it is of dimension NxN with

N = 65,536 and clearly an iterative method must be used.

The Lanczos process is an iterative procedure for transforming A to tridiagonal form [63].

Given some starting vector b, it generates vectors {v,} and scalars {«,,3,} as follows:
1. Set fv,=b (meaning f =||b||2 and v, =b/ g butexitif £ =0).

- — 2 _
2. Forn=12,.,setw=Av ,a =ow, B 0. =w-av —fv .

After n steps, the situation can be summarized as

AV, =V T, +p,.v,. e (5.17)

non n?o
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k (5.18)

where e, is the »™ unit vector, V has theoretically orthonormal columns, and T, is

tridiagonal and symmetric. In practice V'V, =1 unless v, ,, is reorthogonalized with respect

to previous vectors, but relation (5.14) remains accurate to machine precision. This permits

V_ and T, to be used to solve Ax=b accurately in a manner that is algebraically equivalent

I’

to the conjugate-gradients method, as described in [107]. (It also leads to reliable methods for

solving Ax=Db when A is indefinite [107].) Note that v, must be proportional to b as

shown.

When A is positive definite, each T, is also positive definite and we may form the Cholesky
factorization T,=L L (with L, lower-triangular) by updating L . The conjugate-
gradient method computes a sequence of approximate solutions to Ax=Db in the form

x,=V,y,, where y, is defined by the equation T,y, = fe,. Since V, (S )=b exactly for

all n, we see from (6.17) that Ax =b+r,, where the residual vector r, = , v, (eiyn)

n

becomes small if either S, is small (unlikely in practice) or the last element of 'y, is small.
In practice, we do not compute y, itself because every element differs from y, . Instead, we
compute two quantities z, and W, by applying forward substitution to the lower-triangular
systems L z, = Be, and L, W' =V  where

_ Zn—l _ _ -T
zn—[g } W, =[W,, w,]=VL, (5.19)

so that x, can be updated according to x,=V)y, =Wz =x, +{ w,. Since L, is

n—1
bidiagonal, only the most recent columns of V, need to be retained in memory. Thus, the

previous equation is the update rule for the image estimate in the algorithm.

In order to estimate elements of A™', we can make use of the same vectors w,_ in Eq. (5.19).

n

If we now assume that exact arithmetic holds, we see that
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If we further assume that the Lanczos process continues for N iterations, we have

W,AW, =1, so that W, W) = A™". On this basis, if we define B, =W W/, we have the

n 2

sequence of estimates B, =B, +w, w, ~ A™'. To estimate its ith diagonal, we form the sum

e Be = wan . Thus, we can obtain monotonically increasing estimates for all diagonals at

n

very little cost’, in the manner of LSQR [106].

Similarly, for the matrix C, whose diagonals we wish to estimate, we have
e/Ce, =¢/QA'Q"e, ~¢/Q) (W, w,) Q'e,=¢/ D (q,q) ) ¢, =Y q;,

where q, =Qw, can be formed at each Lanczos iteration and then discarded after use. This is

how we evaluate C{” (i,i) in (5.16).

Element estimation of inverses of large matrices is also required in many other recently
developed Bayesian algorithms (see for example [8], [77], and [128]) and presently to the best
of our knowledge are handled either by inaccurate circulant or diagonal approximations of the

matrix A or by very time-consuming Monte-Carlo approaches.

An iteration of the variational EM algorithm consists of the update steps given by Eq. (5.10-
16). In our implementation, the parameter £ is estimated in a preprocessing step, as described
above. During the variational M-step the bisection method is used for the update of the

m

parameters v, with termination criterion ‘vk v,:""l‘ <10, where v} the value of v, at the

m™ iteration of the bisection method. The linear system in Eq. (5.14) is solved by the iterative

Lanczos procedure. The termination criterion for this algorithm is

()
rn

(1)

m, (107,

e )

fro
where n denotes the iteration index of the Lanczos process (hence n=1,2,...,M”). Thus,
m' is the image estimate at the n-th Lanczos iteration and at the #-th iteration of the overall

n

variational algorithm. Lastly,

. || o denotes the Frobenius norm. As criterion for termination

? See http://www.stanford.edu/group/sol/software/cglanczos.html for Matlab code.
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.. . (1+1) (1) .
of the variational algorithm we used HrM(,ﬂ) H > HrM(,) H . In other words, we terminate the overall

algorithm when the residual of the Lanczos process at iteration ¢+1 is larger than that of the

iteration ¢.

The overall algorithm is described is summarized in the following three-step procedure:
1. Initialize m’, S using a stationary model [94].

2. Repeat until convergence:
t —th iteration:

e VE-step: Update m’, R’ and ¢'(a,) using equations (5.14), (5.16) and (5.17)
respectively. For the last equation, m:) and CZ) are needed also to be calculated. Also,

calculate the expected value of ¢’ (ak (z)) from (5.17), need for the VM-step and the next

VE-step in the (z+1)th iteration.
e VM-step: Update A, using (5.19) and v, by solving (5.20) for each £.

3.  Use m' as the restored image estimate.

5.5 Numerical Experiments

We demonstrate the value of the proposed restoration approach by showing results from
various experiments with three 256x256 input images: “Lena”, “Cameraman” and “Shepp-
Logan” phantom. Every image is blurred with two types of blur; the first has the shape of a
Gaussian function with shape parameter 9, and the second is uniform with support a
rectangular region of 9x9 pixels. The blurred signal to noise ratio (BSNR) defined as follows

was used to quantify the noise level:

e
c’N

BSNR =10log,,

2

2

where o~ is the variance of the additive white Gaussian noise (AWGN). Three levels of

AWGN were added to the blurred images with BSNR=40, 30 and 20 dB. Thus, in total 18

image restoration experiments were performed to test the proposed algorithm.
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As performance metric, the improvement in Signal to Noise Ratio (/SNR) was used:

£ -

A

f-f

ISNR =20log,,

b

where f, g and f are the original, observed degraded and restored images, respectively.

We present ISNR results comparing our algorithm with four total-variation (77) based
Bayesian algorithms in [17] abbreviated as BFOI, in [18] abbreviated as BFO2, and [8]

bbreviated as BMKI and BMK?2. For comparison purposes we also implemented a restoration

algorithm based on TV regularization [23]. This algorithm minimizes the function J(f) with

respect to the image:

J()=[lg-He[ + 23 (D8 + (D) +c.
k=1

where D f and D f are the directional differences vectors of the image along the horizontal

and vertical direction respectively. A conjugate gradient algorithm is used to minimize J (f )

with a one-step-late quadratic approximation [23]. The parameters 4 and ¢ were kept fixed
during the iterations of this algorithm and were selected by trial-and-error (7FE) to optimize
ISNR assuming knowledge of the original image. Since this algorithm assumes knowledge of
the original it is not a realistic one. However, it provides the performance bound of the TV
algorithm with fixed parameters. In Table 5.1 and 5.2 we present /SNR results comparing our
algorithm with the above-mentioned methods in 18 experiments. The ISNR results for BFOI,
BFO2, BMKI and BMK?2 were obtained from [18]. In these tables for reference purposes we

also provide ISNR results for the stationary simultaneously autoregressive prior in [94].

In Fig. 5.1 restoration results are shown for the “Cameraman” image BSNR=4(0 dB noise and
uniform blur. In this experiment the restored image by the proposed algorithm, is superior in
ISNR, and is visually distinguishable from the 7V-TE approach, which was optimized using

the original image.

At this point we note that the proposed algorithm performed very well compared with the 7V-
based methods in [17],[18] [18] and [8]. More specifically, for the high BSNR=40 dB case it
gave the best results from all methods (excluding 7V-TFE since it is unrealistic) in 5 out of 6

experiments. For the midlevel BSNR=30 dB case it gave the best performance in 5 out of 6
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experiments. Finally, in the low BSNR=20 dB case it gave the best result in 3 out of the 6
experiments. Overall the proposed algorithm gave the best ISNR results in 13 out of 18
experiments, compared to 3 out of 18 for BF(! and 2 out of 18 for BF(2.

We also compared our method with BFOI [17], which based on the above experiments was
the most competitive 7V based method. We used the same three images and noise levels as
above. We also used a 5x5 pyramidal blur with impulse response given by /1 46 4 1]'[1 4 6
4 1]/256. The ISNR results for this experiment are given in Table 5.3. For the implementation
we used the code provided by the authors®. The ISNR results from this experiment are

consistent with the previous ones.

5.6 Conclusions and suggestions for improvement

We presented a new Bayesian framework for image restoration that uses a product-based
Student’s-t type of priors. The main theoretical contribution is that by constraining the
approximation of the posterior in the variational framework, we bypass the need for knowing
the normalization constant of this prior. Thus, we avoid having to use improper priors, i.e.
priors whose normalization constant is empirically selected, see for example [17], [18], [8],
[26], [130] and [29]. Furthermore, the proposed methodology does not require empirical
parameter selection as in the MAP methodology that uses a similar-in-spirit prior ([26] and
[29]). We also presented a Lanczos-based computational scheme tailored to the computations

required by our algorithm.

We demonstrated by the ISNR results in Tables 5.1 and 5.2 that the proposed method is
competitive with the very recently proposed 7V-based Bayesian algorithms ([17], [18] and
[8]). More specifically, it appears that this approach is more competitive in the higher BSNR
cases. Thus, it seems that in such cases the proposed Student’s-t model has the ability to
capture more accurately than 7F-based priors the subtle features of the image present in the
observations. However, in the presence of high levels of AWGN, this does not seem to be the
case and the advantage of our proposed prior compared to 7V priors seems to diminish. We
believe that this is the case because high levels of noise “wipe out” the subtle features that our

model can capture.

* http://www.Ix.it.pt/~jpaos
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We found empirically that modeling explicitly the diagonal edge structure contained in the

vertical and horizontal edge (the use of operators Q, and Q,) improved the performance of

the proposed algorithm, for a wide range of images, blurs and SNRs. Selecting optimally such

operators according to the image is a topic of further investigation.

Another topic of further investigation is the use of generalized Student’s-t pdfs. These pdfs
are produced by assuming spatial variation of the parameters of other densities than the
Gaussian (spatial variation has been considered so far for the inverse variance of the
Gaussian) and incorporating a Gamma hyperprior for each parameter. In Chapter 6 we make

the TV prior spatially varying and in this way we obtain a generalized Student’s-t prior.

Finally, the numerical method to estimate the diagonal elements of a very large matrix is

amenable to further improvement with respect to speed and/or accuracy of the estimation.
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Table 5.1: ISNR results comparing the proposed algorithm with the algorithms in [17], [18]
and [8] using 3 images, 3 noise levels and Gaussian shaped blur. The ISNR results for the
BFOI, BFO2, BMKI and BMK? algorithms are obtained from [8].

Gaussian shaped blur with

o Lena Cameraman | Shepp-Logan

BSNR Method ISNR ISNR ISNR

Stationary 3.33 2.44 3.56

Proposed 4.86 3.45 9.46

TV-TE 4.87 3.34 8.30

40dB BFOI 4.72 3.51 7.07

BFO2 4.50 3.27 5.88

BMK1 4.78 3.39 6.69

BMK?2 4.49 3.26 5.63

Stationary 2.54 1.89 2.80

Proposed 3.89 2.74 5.94

TV-TE 3.82 2.82 3.50

30dB BFOI 3.87 2.89 5.15

BFO2 3.56 2.47 3.94

BMK1 3.87 2.63 4.31

BMK?2 3.55 241 3.72

Stationary 2.23 1.43 2.14

Proposed 2.76 1.86 3.92

TV-TE 3.20 2.27 3.75

20dB BFOI 3.02 2.13 3.56

BFO2 2.47 2.23 2.20

BMK1 2.87 1.72 1.85

BMK?2 242 1.42 2.05
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Table 5.2: ISNR results comparing the proposed algorithm with the algorithms in [17], [18]

and [8] using 3 images, 3 noise levels and uniform blur. The ISNR results for the BFOI,

BFO2, BMKI and BMK?2 algorithms are obtained from [8].

Uniform 9x9 blur Lena Cameraman | Shepp-Logan
BSNR Method ISNR ISNR ISNR
Stationary 4.72 4.57 5.31
Proposed 8.49 9.53 15.08
TV-TE 8.43 9.07 16.63
40dB BFOI 8.34 8.55 14.22
BFO2 8.35 8.25 12.01
BMK1 8.42 8.57 13.69
BMK?2 8.37 8.46 12.05
Stationary 4.06 3.24 3.56
Proposed 6.10 6.29 9.71
TV-TE 5.93 6.26 10.66
30dB BFOI 6.08 5.68 8.88
BFO2 5.64 4.65 6.91
BMK1 5.89 541 7.77
BMK?2 5.58 4.38 6.50
Stationary 2.68 2.19 2.49
Proposed 3.98 3.33 6.10
TV-TE 3.90 3.33 6.26
20dB BFOI 4.09 3.31 5.57
BFO2 414 2.12 2.95
BMKI 3.72 242 3.01
BMK?2 3.15 1.94 2.64
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Figure 5.1: a) Degraded “Cameraman” image by uniform 9x9 blur and noise with
BSNR=40dB, b) restored image using a stationary Gaussian prior [94] ISNR=5.76 dB, c)
restored image using TV-TE ISNR = 9.07 dB, d) restored image using proposed algorithm

ISNR = 9.53dB.

(a) (b) (c) (d)
Figure 5.2: Magnitude of frequency responses of the filters used in the prior:

(a) horizontal differences (Q, ), (b) vertical differences (Q,),(c) Q, and (d) Q,.




Table 5.3: ISNR results comparing the proposed algorithm with the algorithms in [17] using 3

images, 3 noise levels and pyramidal blur.

Pyramidal blur Lena Cameraman | Shepp-Logan

BSNR Method ISNR ISNR ISNR
Stationary 4.82 3.82 2.68

40dB Proposed 7.02 6.40 13.70
BFOI 5.56 6.07 10.87

Stationary 3.03 2.45 1.55

30dB Proposed 4.81 4.25 8.51
BFOI 4.52 4.35 7.91

Stationary 1.57 1.26 1.01

20dB Proposed 3.03 2.75 7.00
BFOI 3.01 2.60 591

Appendix

In the VE-step the bound must be optimized with respect to R, m and ¢ (5) . With the mean

field approximation (Eq. (5.10)) the bound becomes
P
L(q(3),6,0,)=[[14(:6)a(a,)log p(§.83: 0, ) déda—
k=1
—qu £:0,)q H (2,:6,)q(a, Jd&da,

where 6, =[R,m] and 6, =[S, 4,,.... 4,,V,,....V,]".

Because at this point we aim to optimize with respect to 6,, we operate on the function L',

which includes only the terms that depend on the parameters 6, :
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Lo L'(6)

P
L'(el)=Zj.q(8k;91)q(ak)logp(yk ‘Sk;ez)p(ak ‘ak;ez)dskdak -
1

P

‘ZJQ(%@)logq(sk;ﬁl)dak.

k=1

(A5.1)

The first sum is further analyzed:

DM~

IQ(Sk;el)q(ak)logp(yk |8k;02)p(8k |ak;92)d8kdak oC

1

<_IB( & Yk) Q. 'Q," ( k'Yk)_;tkazAkSk> A =
q(akﬂl)‘J(ak)

oC

M“Tr

=
1l

1

=—pP|Hm-g|; Z/im Q/A,Q,m- trace{(ﬂPH H+Z,1kQ;Akaj } (A.5.2)

k=1
where A, is a diagonal matrix with elements
A, (i,i)= <ak(1)> )i =L N
The second integral is the entropy of a Gaussian function, which is proportional to
1
Iq(ak;@)logq(sk;@)dsk ocalogdet|R|. (A.5.3)
Setting the derivative of L' w.r.t R equal to zero using Eq. (A.5.1-3) yields

P ~
, 8trace{ ﬁPHTHR+Z/1kQ{AkaR}—Pa log det R
aL (61) — 0 — k=1
OR oR

=0

P R 13 A )
= BPH'H+) 2,Q;A,Q,-PR"'=0=R= (ﬁHTH + ;ZﬂkQZAkaJ :
— k=1

Similarly, using Eq. (A.5.2), we find that the optimum for the mean:

oL'(6,)

=0=m=/SRH'g.
om

The final part of the VE-step is the optimization w.r.t. the function ¢ (ﬁ) . It is straightforward

to verify that this is achieved when
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exp|(log p(¥.£,2) PN

q(3)= (< ot ) =TI Te(a.®).
jexp(<logp(§7 g, 5)>q(£)) gl

The product form is due to

exp<log p(¥.8 ﬁ)>q(§) oc

1

[T T(a) exp{—%ak(o

k=1 i=l

Hence, each ¢(a,(i)) is a Gamma distribution:

q(a,(i)) = Gamma (ak (i);v—z"+%,V—2"+%/1,C ((mk (l'))z +C, (i,i))j ,

where m, =Q,m and C, =Q,RQ; .

> ((mk (i) +C, (i,i))ak(i)} .
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CHAPTER 6. BAYESIAN IMAGE RESTORATION
WITH A SPATIALLY ADAPTIVE TOTAL
VARIATION PRIOR

6.1. Introduction

6.2. Imaging and image model

6.3. Variational inference with the generalized Student's-t prior
6.4. A Constrained Variational Inference Algorithm

6.5. Computational Implementation

6.6. Numerical Experiments

6.7 Conclusions

In this chapter a new image prior is introduced and is used for image restoration. This prior
generalizes total-variation (TV) priors previously proposed, it is explicitly spatially adaptive,
and it is based on a generalization of the Student's-t density function discussed in Chapter 5.
Thus, similar to Chapter 5, Bayesian inference is used for image restoration with this new
prior via the variational approximation. However, the variational approximation used herein is
more complicated because of the non-quadratic terms involved in the TV prior. The proposed
algorithm is fully automatic in the sense that all necessary parameters are estimated from the
data. Numerical experiments are shown which demonstrate that image restoration based on
this prior compares favorably with the algorithm of Chapter 5 and previous state-of-the-art

restoration algorithms.

6.1 Introduction
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As discussed in section 3.4, the TV prior has been used extensively and with great success
for inverse problems due the ability to smooth noise in flat areas of the image and at the same
time preserve edges. However, TV-based image restoration has certain shortcomings. One of
them is the selection of the regularization parameter which to a large extent till recently was
made in an ad-hoc way. Recently, a Bayesian inference framework based on the variational
approximation was proposed to handle this problem [8]. However, in this work the partition
function of the image prior is only approximated and the quality of the approximation is not

analyzed.

In this chapter we extend the work in [8] by introducing a new prior which has a number of
novel features. The extension of the TV prior is performed in a way analogous with that used
to derive the non-stationary prior of Chapters 4 and 5, where the Gaussian density is assumed.
Precisely, we introduce a TV prior with spatially varying regularization parameters. In order
to avoid the over parameterization due to the spatially varying nature of this prior, we
introduce a Gamma hyperprior for the spatially adaptive regularization parameters of the local
TV priors. Also, we use this prior in a product form, which means that we assume that the
outputs of an arbitrary number of high-pass filters are distributed according to this prior. This
gives two novel features to the new prior. First, it is explicitly spatially adaptive and thus it is
better suited to capture the salient features of the image. Second, it is in product form and has
the ability to enforce simultaneously a number of different properties to the image. With his
prior arbitrary linear operators can be used, not just first order differences as TV. Thus, a prior
similar to the one in [8] with an exactly calculated partition function is just a special case of it.
In order to avoid the over parameterization due to the spatial adaptivity, a model with two
layers of hidden variables is introduced, similar in spirit to the one used in Chapters 4 and 5.
If the hidden variables of the second layer are marginalized, the resulting density function

has similar form to a Student's-t pdf, thus we label it as Generalized Student's-t.

Due to the complexity of the prior, model we resort to the variational approximation for
Bayesian inference [19]. However, we use two modifications. First, we determine a quadratic
bound to the variational bound, in a manner similar to the methodology used in [8], to bypass
the difficulties due to the non-quadratic nature of the new prior. Second, we use the
constrained variational framework in a manner similar to that in Chapter 5, in order to bypass

the problem of computing the partition function of the new prior.
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In this chapter we also propose an iterative method to compute the diagonal elements of very
large inverse matrices that are necessary for the herein proposed Bayesian algorithm. This
method is similar in spirit to the one employed in in Chapter 5. However, it is based on

conjugate-gradients and not on the Lanczos and converges faster.

The rest of this chapter is organized as follows. In section 6.2 we present the imaging and
image models. In section 6.3 we present the variational algorithm for Bayesian inference and
a brief analyis of the mechanisms that are introduced for spatial adaptivity by using TV and
Student's-t based priors. In section 6.4 we present the details of the computational
implementation of our algorithm. In section 6.5 numerical experiments are provided and in

section 6.6 conclusions and future work.

6.2 Imaging and image model

In what follows we use one dimensional notation for simplicity. A linear imaging model is
assumed. Let f be the original image represented as a Nx1 vector, blurred by a

convolutional operator H, of size N x N . The degraded observation is given by
g=Hf+n (6.1)

where n is the noise N x1 vector modeled as white Gaussian, i.e. n ~ N(0,87'T), where 0

and I the Nx N zero and identity matrices, respectively.

6.2.1 Generalized Student's-t image prior

Image priors in product form are very attractive since they have the ability to enforce
simultaneously many properties to an image. For this purpose we propose herein a prior in
product form for the image. To define such a prior we introduce P pairs of linear

convolutional operators (filters) (Q,,Q,,).(Q;,Q,),...,(Q,,,,Q,,) of size NxN and

assume that the filter outputs € =(g,,...,&,,) are produced according to
g, =Qf,[=1,..,2P. (6.2)

Then, for each pixel location i, it is assumed that each pair ¢, (i) and ¢,, (i) is jointly

distributed with probability density function
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O)

P50, ) = 2D exp( 0,0 50 ). (63)

with k=1,...,P.

Notice that for P=1 and Q, and Q, the first order difference operators in the vertical and
horizontal direction and a, (i) = a, the prior becomes identical in form to the total-variation

(TV) based prior proposed in [17] and [8]. However, the prior proposed herein is more
general because it can use any linear operator not just first order differences. Furthermore,

a, (i) varies for every pixel i which makes it explicitly spatially adaptive.

In order to avoid the over-parameterization problem of this prior in a similar manner to the

priors used in Chapter 4 and 5, we assume a, (i) to be Gamma distributed hidden random

variable which can be marginalized according to:
pla, (i) = Gamma(a, (i);v, /2,v, / 2).

The marginal distribution of &,,(7) and ¢,, ,(i) can be computed in closed form and is given

by
p(&,, (D), &,,(0) = Iak(i)p(gzk (D), &34 (D) | @, (D) p(a, (i))da, (i) (6.4)
_re2e) 4 )} Al @ ren @)
C(v,/2) \nv, v ,
for k=1,2,...,P.

This density function is very similar in form to the Student's-t pdf. Thus, in the rest of this
paper we label it as generalized Student's-t. This prior combines the advantages of both TV-
based and Student's-t based priors. The former being the ability to suppress noise and
maintain edges in an image and the latter explicit spatial adaptivity through the hidden

random variables a, (i) .

At this point we note that we have not provided a prior for the image p(f). This was

intentional, because we cannot compute it in closed form. More specifically, it is difficult to

define a prior for the image f based on the prior in Eq. (6.3) because we cannot compute the
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partition function for such prior. First, the non-quadratic exponent in the pdf in Eq. (6.3)
makes this calculation intractable even if our prior was not in product form. Furthermore,
since we want to use a prior in product form even with a quadratic exponent it is not possible
to compute the partition function. For this purpose, in the next section we bypass this
difficulty by working in the domain of the filter outputs €, in a similar fashion as in Chapter 5
where the prior in (6.3) can be used directly and there is no need to define a prior for f. The

downside of this choice is that it is not obvious how to merge the estimates of all the g,

[=1,...2P to generate one estimate for f. For this purpose we propose the constrained

variational approach which we also present in the following section.

6.3 Variational inference with the generalized Student's-t prior
We thus introduce an alternative imaging model, which is derived by applying the operators
Q, to the original imaging model in (6.1). This yields:

y,=Heg, +n,l=1,...,2P, (6.5)

where y, =Q,g, n, =Q,n and thus n, ~ N(0,(3Q,Q;)™").

This imaging model will be used in what follows and we treat €=(g,...,€,,), where
g =(0),...,(N)) [=1,...,2P and a=(a,...,a,), where a,=(q,(l),...,a,(N))
k=1,...,P,as hidden variables.

Then, according to Bayesian inference we find the posterior distributions for the hidden

variables and estimate the parameters 6=(4,...,4,,v,,...,V,). The marginal of the
observations p(y;€), where y =(y,,...,¥,,), which is required to find the posteriors of the

hidden variables is hard to compute [19]. More specifically, the integral
p(y)= Lap(y,s, a)deda (6.6)

where
p(y.¢,a)=p(y|e)p(e|a)p(a) (6.7)

with
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pyla=]Iptvil2). p@y,12)=N(z,(5QQ))") (6.8)

p(ela) =TT (e @), ()] 2 ) (69)
and
p@=]1] Ir(a, () (6.10)

k=1 i=l
1s intractable.
The variational algorithm that we describe in what follows, bypasses this difficulty and

maximizes a lower bound that can be found instead of the log-likelihood of the observations

log p(y; @) [19]. This bound is obtained by subtracting from log p(y;&) the Kullback-Leibler

divergence, which is always positive, between an arbitrary g(g,a) and p(g,a|y;0):

L(q(¢,2),0) =log p(y;0) - KL(q(s,2) || p(e,a]y;0)), (6.11)

and is equal to
L(g(z.2):0) = [ g(e.2)log p(e.a.y:0)deda~ [ q(e.a)logq(e.a)dsda, (6.12)

where we use the notation p(.;8) to denote that @ is a set of hyperparameters which are not

treated as random variables. We could also have used p,(.).

When ¢(g,a) = p(g,a|y;d), this bound is maximized and L(g(g,a);6) = log p(y; &) . Because
the exact posterior p(g,aly;0)= p(g,a,y;0)p(y;0) cannot be found we wuse an

approximation of the posterior. The mean-field approximation is a commonly used approach

to maximize the variational bound w.r.t. g(g,a),6) [19]. According to this approach the
hidden variables are assumed to be independent i.e. g(g,a)=gq(e)g(a). However, for the
herein model this is still not sufficient to obtain in closed form ¢(€) which is necessary for
inference using this approach. More specifically, the square root in the joint p(e,a,y;60)

which originates from the prior p(€|a) makes the definition of g(€) intractable.
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6.3.1 A Lower Bound for L(q(e,a),0)

For this purpose we use the methodology proposed in [10] and introduce a lower bound also

on L also. More specifically, we use the inequality

\/;S w+u’
2Ju

(6.13)

which holds for w>0 and u > 0. Notice that equality holds when w =u. This inequality is

used for every pixel i by setting w, (i) = &,, (i)’ +&,,_,(@)’, for k=1,2,..., P, where u, (i) are

auxiliary variables used for this approximation. Using this and the prior in Eq. (7.3) we have

P&, (D), &5, (D [ @, (1)) 2 M (£, (D), &5, (D)5 1, (D), @, (D) =

Aa (i)’ exp| — % (i) £ (D) + &5, (D)’ +14, (i)
2z b 2 AU 7
for k=1,...,P.

We also define u, = (#,(1),...,u4,(N)) and u=(u,,u,,...,u,). Let us now define

F(y,e,a;u,0) e

da,
q(g)q(a)

L'(q(e).q(a),u.0) = |, g(e)q(a)log

where

F(y,e,a;u,0) = p(y| 8)[HHM (&2 (D)s &34 (D)1 () (i))} p(a;0).

k=1 i=1
then, since F(y,&,a;u,0)< p(y,e,a) we have

L (q(e),q(a),u,0) < L(q(z,a),6).

and consequently the bound becomes tight when

maXLb (Q(a): Q(a): u, 0) < L(Q(aa a): 0)

(6.14)

(6.15)

(6.16)

(6.17)

(17.8)

Notice that the new lower bound L’ is quadratic in the hidden variables €, thus it is possible

to find ¢g(€) that maximize it. In contrast the original bound L was not quadratic in €.

6.4 A Constrained Variational Inference Algorithm
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As we have already explained, g, for /=1,...,2P, are used instead of f to avoid the

computation of the normalization constant of the prior on f . Thus, a question that needs to be

addressed is how one finds f given the different g(g,).

Unconstrained maximization of the bound I’(g(g),q(a),u,0) using the mean field
approximation results in q(g,)=N(p,X), where p=prH'g and
z, =(ﬂHTH+Q,T<A>,U;“2Q,)’1, [=1,...,2P and U, =diag{u,(1),...,u,(N)} and

(A), =diag{{a,(1)),,...,{a;(N)),}, where (), denotes the expectation w.r.t the distribution

of a.

Clearly each p, suggests a different estimate for f given by f= Q, 'n,. Thus, one needs to

find a methodology to merge the information from all g(g,) into one estimate of f .

For this purpose the constrained variational approximation first proposed in [12] is applied.

According to this approach, each g(g,) is constrained to have the form:

q(e,) = N(Qm,QRQ)), (6.19)

where m is a N x1 vector, taken as mean of the image, and R the N x N image covariance

matrix. This form is consistent with the equation g, = Q,f for which
g =E[g|=QE[f]=Qm
and
E|(g,-%)e -5) |=QE[(f-m)(f-m)" |Q] =QRQ]
with R=F [(f —m)(f —m)T] . Using this approximation the parameters m and R are
learned instead of g(g,) according to the herein constraint variational methodology.

We now present the maximization method by giving the updates for the variables of the
bound I’ in the j-th iteration. In the VE-step, maximization is performed with respect to

g(a), m and R.

VE-step: [m’/,R’,q’(a)]=arg max )L” (q(e),q(a),u’",0'™") (6.20)
m,R,g(a
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VM-step: [u’,6’]=argmaxl’ (¢’ (¢),q’ (a),u,0) (6.21)
u,l

The updates for the VE-Step are derived in the Appendix. These are
q'(g)=N(@Qm’,QR'Q)), (6.22)

where

m’ = fR'Hg,, (6.23)
. 1 P . . B . - _ - _
R’ =(SH'H +§sz" QLAY (UMY 'Qy + QL (ALY (U 'Q,, )
k=1

From the above equations it is clear that m merges information from all filters Q, to

produce the estimate of m which is used as the estimate of f .

Finally, the approximate posterior of a in the VE-step is given by

Jj-1

q’ (a,(i)) = Gamma (ak (l),VkT +2,

J=1
k

V2 +/1,g-u/u;-l(i)] (6.24)

fori=1,...,N and k=1,2,..., P. Thus, the expectation of a, (i) w.r.t ¢’(a,(i)) is

a Gy, =——— Yt (6.25)

d@ g [
vIT 247 \Ju!m (i)

In the VM-step, the bound is maximized w.r.t to the parameters. To find u’ we have to solve

(& (i)’ + Ly (i)2>qj(£) +u, (i)

uj(i) = arg min
¢ w () Ju, (@)

where (.) i the expectation w.r.t. ¢’(g), which produces
q’ (¢

(6.26)

uf ()= (2, )+, (), =DM @O +CL i) (627)

=0

fori=1,...,N and k=1,2,..., P, where
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) _ ) ) _ 7
mék—r - QZk—rmjﬂcék—r - Q2k7rRJQ2k7r'

For 4, we have that

) ) P P N -
L'(q’(e).q’ (a),u,0)=2N Y log A, - > > A (q, (i))q_/.(a)«/u,{ (i) +constant
k=1

k=1 i=1
when this function is considered as a function of A, only. Thus, the update formula is

A = 2N (6.28)

D {a @) ;N @)

Similarly, for v,, k=1,2,..., P, we have that

N N
b i j Y - Y ; _ A3
LG/’ @)= % Y lloga ), -2, VT[]
—i-NV?’C log (%"j +constant (6.29)

when this function is considered as a function of v, only. Then v/ is the root of the function

¢ which is proportional to derivative of L’(¢’(g),q’ (a),u,8) with respectto v,

¢(Vk) = %; log{a, (i)>qj(a) —%;«% (i»qj(a) n W[Vk_ n 2}

2
y/ v v
—log| X—+2 |—-yw| £ |+1og| £ |+1, 6.30
g( 5 j l//(zj g(zj (6.30)

where w is the digamma function. We find ¢(v/)=0 numerically using the bisection

method.

At this point it is worth noting that when a TV prior is used in a Bayesian framework [10] the

prior introduces a mechanism for spatially adaptive regularization in the restoration filter.

This is manifested by the diagonal matrices [W(u")]ii:L Eq. (6.34) used in the

restoration filters Eq.s (33) and (48) in [8]. These u appear also herein as the u, (i) in Eq.

(6.27). When a Student's-t prior is used in a similar framework [12] spatial adaptivity is
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introduced to the restoration filter via the diagonal matrices Ak in Eq. (6.11) with elements

a, (i) givenin Eq. (5.14) of Chapter 5. Similar a, (i) appear herein also in Eq. (6.25).

Since the herein used prior integrates both the TV and Student's-t priors in [8] and in Chapter

5, respectively, it contains simultaneously both previous mechanisms for spatial adaptive

regularization as manifested by the product (A, )" (U,"*)’™ in Eq. (6.23).

6.5 Computational Implementation

In our implementation P =4 was used. In other words, four filter outputs were used for the
prior and it is a product with two terms. We show the magnitude of the frequency responses

of these filters in Fig. 6.3. The operators Q, and Q, correspond to the horizontal and vertical

first order differences. Thus, these filters are used to model the vertical and horizontal image

edge structure, respectively. The other two operators Q, and Q, are used to model the

diagonal edge component contained in the vertical and horizontal edges, respectively. These
filters are obtained by convolving the previous horizontal and vertical first order differences
filters with fan filters with vertical and horizontal pass-bands, respectively. In our experiments

the fan filters in [37] were used. In our prior g with /=1,2 where used together in one term

of the prior and / = 3,4 in the other.

The fan filters combined with the difference filters were found empirically to provide better
results than the use of the horizontal and vertical difference filters only. To explain the choice
of the fan filters we note that ideally we expect from a filter when applied to an image to
produce outputs as close to zero as possible. The first order differences filters have to some
extent this property, but at the edges of the image this property is canceled. Thus, more filters
are needed that produce outputs closer to zero. The motive to incorporate the fan filters to our
algorithm is the use of them in the contourlet transform [37], which is shown to have more
close to zero coefficients than the classical wavelet transform. Their ability to provide closer
to zero outputs is interpreted as the ability to capture the correlations of the image edges.
Hence, this renders the model more accurate. We must also note a key difference in our model
with respect to [37]; in the contourlet transform the Laplacian pyramid is used as a first filter
and the fan filters are applied on its output. Here, we have first order differences in the

horizontal and vertical direction, something that has been found empirically to provide better
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results in image resoration than the Laplacian operator. For this reason, the filters Q, and Q,
are the result of the vertical and horizontal fan filter applied to Q, (horizontal) and Q,

(vertical), respectively. The magnitude of the filters frequency response is shown in Fig. 5.3.

One iteration of the proposed algorithm consists of the equations (6.23)-( 6.30). The image is
taken to be equal to m which is obtained by solving the linear system in Eq. (6.23). The
dimensions of the matrices involved in Eq. (6.23) are N xN where N the number of pixels
in the image. We solve this system iteratively by using the conjugate-gradient algorithm

[116]. We also utilized this method to evaluate the diagonal elements of matrix C, in Eq.
(6.24). More specifically, we utilized the R™'-conjugate vectors p.,i=1,...,K,K<N, for
which (p/R7'p, = 6;). Then according to the conjugate-gradient algorithm the image estimate
is updated at every iteration as:

m, =m,_, +ap,
where a is a scalar [116]. If the method is allowed to iterate N times we have P'R™'P =1,
where P=[p,...p,] with p,,i=1,..., N, all the R™'-conjugate vectors. Then, R=P"P and

the diagonal elements of C, = Q,RQ; can be computed by the formula
T SRPFCIIE I
(QRQ)(i:)) =D p ()" =~ X p,(i) (6.31)
-1 j=1

where p'j =Q,p,. In practice the number of iterations K required for convergence of the

conjugate-gradient method is much smaller than N (K << N ). We found for 256x256
images where N = 65,536 that for K =200 the conjugate-gradient algorithm converges. The
obtained results using this approach are significantly better than using a circulant

approximation for R or omitting the elements C, (i,i) from Eq. (6.27). At this point it is

worth noting that the similar in spirit Lanczos-based algorithm which was proposed in
Chapter 5 required for similar size images K ~1000—-2000 to converge. Thus, the herein

proposed algorithm is faster than the algorithm in Chapter 5.

As termination criterion we chose

|((R))"'m’ -H'g>(R")"'m"" —H'g| (6.32)
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where m is the image estimate at the j—th iteration and it is the solution of the linear

system (R’)"'m=H"g that the conjugate-gradients algorithm solves.

The algorithm is initialized by the resulting image estimate of a Bayesian algorithm that uses

a spatially invariant simultaneously autoregressive image prior [94]. In other words, we set

the initial image estimate m’ equal to the restored image by this algorithm. The noise

precision £ is also estimated by the algorithm in [94] and we fix it to this value for the rest of

our algorithm. Thus, the overall algorithm can be summarized in the following steps:
« Initialize m® and S with the algorithm using a stationary prior

* Until convergence do

1. Update the parameters u, 4 and v from equations (6.27), (6.28) and (6.30)

2. Update the image estimate m' from equation (6.23) along with the diagonal elements of
R.i
3. Check for convergence using (6.32)

For 256x256 images this algorithm implemented in Matlab requires 3-5 minutes on a
Pentium 4 3.40GHz personal computer. This is 2-5 times faster than the algorithm in [12].
This difference in speed is attributed to the smaller number of iterations required by the

conjugate-gradient based implementation used herein.

6.6 Numerical Experiments

We demonstrate the value of the proposed restoration approach by testing it in experiments
with two well known 256 x256 input images: Lena and Cameraman. Every image is blurred
with three types of blur; the first blur has the shape of a Gaussian function with shape

parameter 9, the second is uniform with support a rectangular region of dimension 9x9 and
the third is pyramidal blur with PSF [14641][14641]/256. The blurred signal to noise

ratio ( BSNR ) defined as follows was used to quantify the noise level:

| Hf |
No? ’

BSNR =10log,,
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where o is the variance of the additive white Gaussian nose (AWGN). Three levels of
AWGN were added to the blurred images with BSNR =40, 30 and 20 dB, respectively.

Thus, in total 18 image restoration experiments were conducted.

As performance metric, the improvement in Signal to Noise Ratio ( ISNR ) was used:

2
ISNR = 1010g10M

Al12

f-f

2
where f, g and f are the original, observed degraded and restored images, respectively.

We compare our restoration method with four recent TV-based algorithms: the algorithms in
[17] and [18] abbreviated by BFO1 and BFO2, respectively and the algorithms in [§]
abbreviated as BMK1 and BMK2. We also used compared it with the variational Bayesian
algorithm in Chapter 5 which is abbreviated as CGLS.

The ISNR results of this comparison are shown in Tables 6.1, 6.2 and 6.3 for the experiments
with uniform, Gaussian an pyramidal blurs, respectively. The ISNR results with algorithms
abbreviated as BMK 1, BMK2, BFO1 and BFO2 in Tables 6.1 and 6.2 are taken from [8]. We
also show the restored images for 2 experiments in Figures 6.1 and 6.2. Looking carefully at
the restored images by the herein proposed algorithm and comparing them to those in Chapter
5 we observe that they seem less "cartoon-like". In other words, that textured areas seem to
have been better preserved. We also compared the images in the Fig. 6.1 and 6.2 in terms of
their perceived visual quality. For this purpose we used the Visual Information Fidelity ( VIF)
metric in [120]. The comparisons based on the VIF metric are also in favor of the herein

proposed algorithm.

We note that the proposed algorithm produces the highest ISNR values for 6 out of 6
experiments with the 9x9 uniform blur. For Gaussian blur, Gen-t provides the best result in
2 out of 6 experiments. For the pyramidal blur the proposed method gave the best results in 4
out of 6 experiments. Overall the proposed algorithm gave better ISNR results in 12 out of the
18 experiments we performed. Additionally, in the experiments where Gen-t does not
produce the best ISNR results, the difference with the best ISNR is small. It is also worth
noting that unlike the CGLS algorithm in Chapter 5 which "showed a preference" (produced
better ISNR results) for the experiments with higher BSNRs the herein proposed algorithm

does not seem to have any such "preference".
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6.7 Conclusions

We presented a new promising image prior that is based on the generalized Student's-t pdf
and a variational algorithm that estimates all the parameters of this model automatically and
finds the restored image. We compared this restoration approach with that of Chapter 5 and

previous state-of-the-art methods and found that it appears to be superior.

This prior can be extended in a number of ways. For example, more operators can be used in
order to capture more directional dependencies of the image edges. Another option is to
investigate how to relax the independence assumption between the different filter outputs and

adjacent pixels in our image model.

Appendix
In the VE-step the bound must be optimized with respect to R, m and ¢ (a) . The mean field

approximation and Eq. (6.15) yield

2P P
L (q(a)°‘91=92) - IH‘](Sk;el)HQ(ak )10gF(y,8,a;492)dada—
2P P P
_J.Hq(sk’ Hq lOg(Hq ska Hq jdﬁda,
k=1 k=1 k=1

where 6, =[R,m]" and 6, =[u, ..., A,,V;,...,v, 1"

Because at this point we aim to optimize with respect to 6,, we operate on the function L',

which includes only the terms that depend on the parameters 6, :

LaL'(6)

L'(Hl): ijq(gzk—l;el)q(azk;gl)Q(ak)log H (p(YJ |81;02)d81)

k=1 1=2k-1,2k
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N 2P
HM (gzk (1), &5 (D), 4, (0); 6, ) da, - qu (es:6 ) logq/(e,;6 ) de,. (A.6.1)
i=l k=1
The first sum is proportional to
& T ~-T-1 T
oc Z _ﬂ(Hsk _yk) Q. Q; (Hgk _Yk) ifhskA(hsk -
k=1 (e

k12

= —pP|Hm—g| 2/1 mQZArk Qm- trace{,BPHTH+z/1 Q{A Qk] } (A.6.2)

where [.] denotes the 'ceiling' of a real number and Ar i AF , are diagonal matrix with

3 (3
2 2

elements

o oaq) A ()
A, (,))=——=—%=, A, (i,i)=——",i=1,...,N.
ST Ju @ Vi 0)
The second integral is the entropy of a Gaussian function, which is proportional to
1
[a(2.:0)logq(e,:6,) de, = E1ogc1et|R|. (A.6.3)

Setting the derivative of L' w.r.t R equal to zero using Eq. (A.6.1)-( A.6.3) yields

8trace{ﬂPHTHR+Z/1 QkL QR } Pologdet|R|
=0

R JR

-1
2P n 1 P R
PH'H+) A, Q/A , Q,-PR'=0=R=|H'H+—> 1, QA :
=/ +kZ‘ & rng" - [ﬂ ’ p; rngk rngkJ

2

Similarly, using Eq. (A.6.2), we find that the optimum for the mean:
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The final part of the VE-step is the optimization w.r.t. the function ¢ (a) . It is straightforward

to verify that this is achieved when

exp (<10g F (y,a, a)>q(£) )

IGXP(<10gF(y,£,a)>q(g))da et

q(a)=

The product form is due to

exp(logF(y,s, a)>q(£) oc

TIT( ak(l) - eXP{—V—zkak(i)—lk\/“k(i)ak(i)}-

k=1 i=1

Hence, each ¢ (a,(i)) is a Gamma distribution:

q(ak(i)) Gamma(ak(l) 2+2 £+ uk(i)j.

2
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Table 6.1: ISNR's for the experiments using uniform blur 9x9.

Uniform blur 9x9 Lena Cameraman
BSNR(dB ) Method ISNR(dB)
Gen-t 8.52 9.61
CGLS 8.49 9.53
BSNR =40
BMK1 8.34 8.55
BMK?2 8.35 8.25
BFO1 8.42 8.57
BFO?2 8.37 8.46
Gen-t 6.25 6.55
CGLS 6.10 6.29
BMK1 6.08 5.68
BSNR =30
BMK?2 5.64 4.65
BFO1 5.89 5.41
BFO?2 5.58 438
Gen-t 4.24 3.55
CGLS 3.98 3.33
BSNR =20
BMK1 4.09 3.31
BMK?2 4.14 2.12
BFO1 3.72 2.42
BFO?2 3.15 1.94
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Table 6.2: ISNR's for the experiments using Gaussian blur with variance 9.

Gaussian blur variance 9 Lena Cameraman
BSNR(dB) Method ISNR(dB)
Gen-t 4.64 3.49
CGLS 4.86 3.45
BSNR =40
BMK1 4.72 3.51
BMK?2 4.50 3.27
BFO1 4.78 3.39
BFO?2 4.49 3.26
Gen-t 4.08 2.81
CGLS 3.89 2.74
BSNR =30
BMK1 3.87 2.89
BMK?2 3.56 2.47
BFO1 3.87 2.63
BFO2 3.55 2.41
Gen-t 3.09 2.07
CGLS 2.76 1.86
BSNR =20
BMK1 3.02 2.13
BMK?2 2.47 2.23
BFO1 2.87 1.72
BFO2 2.42 1.42
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Table 6.3: ISNR's for the experiments using pyramidal blur.

Pyramidal blur Lena Cameraman
BSNR(dB) Method ISNR(dB)
Gen-t 6.81 6.80
BSNR =40 CGLS 7.02 6.40
BFO1 5.56 6.07
Gen-t 4.67 4.60
BSNR=30 1 cGLs 4.81 425
BFO1 4.52 4.35
Gen-t 3.12 2.97
BSNR =20 CGLS 3.03 2.75
BFO1 3.01 2.60
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(a) (b)

(©) (d)

Figure 6.1: Experiment on Cameraman image with uniform 9x9 blur and BSNR =30;
ISNR and VIF [120] comparisons: (a) Degraded image, VIF = 2.01 (b) restored with spatially
invariant prior, [94], ISNR =3.29 and VIF =2.22, (c) restored image with method in Chapter

5, ISNR =5.88 and VIF =4.52, (d) restored image with the proposed algorithm,
ISNR = 6.55 and VIF =4.55.
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(a) (b)

(©) (d)

Figure 6.2: Experiment on Lena image with Gaussian blur (variance 9) and BSNR =20 ;
ISNR and VIF [120] comparisons: (a) Degraded image, VIF =0.04, (b) Restored with
spatially invariant prior, [94], ISNR =2.32 and VIF =0.31, (c) restored image with method
in Chapter 5, ISNR =2.76 and VIF =0.38, (d) restored image with the proposed algorithm,
ISNR =3.14 and VIF =0.39.
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CHAPTER 7. SUPER-RESOLUTION BASED
ON FAST REGISTRATION AND MAXIMUM A
POSTERIORI RECONSTRUCTION

7.1. Introduction

7.2. Imaging model

7.3. Image prior model

7.4. Pre-processing step of the super-resolution algorithm
7.5. Maximum a posteriori (MAP) reconstruction

7.6. Experiments

7.7. Conclusions and future work

In this chapter we propose a maximum a posteriori (MAP) framework for the super-resolution
problem. The main contributions of this method are two; first, the use of the locally adaptive
edge preserving prior of Chapters 4 and 5 to the super resolution problem. Second, an
efficient two-step reconstruction methodology is proposed that begins with an initial
registration using only the low resolution degraded observations. This is followed by a fast
iterative algorithm implemented in the discrete Fourier transform domain in which the
restoration, interpolation and the registration subtasks of this problem are preformed
simultaneously. We present examples with both synthetic and real data that demonstrate the

advantages of the proposed framework. [29].

7.1 Introduction

The first contribution presented in this chapter is that we utilize for the super resolution
problem the prior presented in Chapters 4 and 5. With this prior the super-resolution problem

is regularized in a spatially adaptive manner. The first level of this model captures the
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correlations, while the second level provides a description of the local image edge structure in
different directions. Thus, using this prior model it is possible to reconstruct the images
without smoothed edges or ringing artifacts in the vicinity of edges, which is very usual in

reconstruction of high-resolution image.

The second contribution in this method is a new two-step reconstruction algorithm. In the
work in [133] the imaging model assumes only shifts and does not incorporate rotations.
Apart from this, the registration task was extremely slow, because registration was performed
using the high-resolution image as it was gradually reconstructed. Furthermore, it is based on
a method that uses only first order derivatives. The first stage of the herein proposed
methodology is a preprocessing step that approximately registers the degraded low-resolution
observations. These “almost-registered” low-resolution observations are used subsequently by
an iterative algorithm which simultaneously reconstructs the high-resolution images and finds
their registration parameters. We propose this sub-optimal two-stage approach in order to
speed up the super-resolution algorithm. Thus, the MAP functional is maximized based on
coarse estimation of rotation and translation between image pairs. We have found that such
coarse estimation provides sufficient accuracy to effectively remove the rotational and coarse
(super-pixel) translational motion between image pairs. This algorithm is implemented
entirely in the discrete Fourier transform (DFT) domain. Furthermore, the registration sub-
task is based on the Newton-Raphson (NR) algorithm that utilizes analytically calculated first
and second order derivatives and converges rapidly since NR algorithms exhibit quadratic
convergence [97]. The purpose of the preprocessing step is to ameliorate one of the main
difficulties of NR methods which are known to be effective only when they are initialized

close to the solution.

The rest of this paper is organized as follows. In sections 7.2 and 7.3 we present the imaging
model and the proposed image prior models, respectively. In section 7.4 we describe the pre-
registration step and in section 7.5 the MAP based restoration algorithm is presented. In
section 7.6 we provide experimental results with synthetic and real data that demonstrate the
properties of our algorithm. Finally, in section 7.7 we provide conclusions and thoughts for

future research.

7.2 Imaging model
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A linear imaging model is assumed. We denote as d the integer decimation factor. In other

words, the imaging model assumes a high resolution image of size N,, x1, where N, =dN .

This model also assumes as observations P low resolution images of size N x1 by applying

the PN x N,, degradation operator B to the high resolution image. Then, white noise is added

at each observation. Let y be a PN x1 vector, containing the P low resolution images y, :
T
v=lyi v v

where y, isa N x1 vector, representing a low resolution image. Using this notation, the

observations are given by:

y=Bx+n, (7.1)

where x the (unknown) original N, x1 high-resolution image to be estimated, B is a

. . T . .
PN xN,, degradation matrix and n:[an n, - nf,] a PNx1 vector consisting of

P Nx1 additive white noise vectors. We assume Gaussian statistics for the noise given by
n, ~N(O,,BZ._II), i=1,.,P, where 0 is a Nx1 vector with zeros, I the NxN identity

matrix respectively, and S, i=1,...P, are the noise variances of the observations that are

assumed unknown and statistically independent with each other. The degradation operator B
is given by:

B=[B/ - Bl],

where B, =DHS(5,)R(6,) for i =1,...P. The matrix D is the known N x N, decimation
matrix. H,, i =1...P, are the shift-invariant N, x N,, blurring convolutional operators, and
S(0,), for i=1,..., P, are the N, x N,, shift-invariant shifting operators. Each ¢, is a scalar

which represents translation (with respect to the first image) and is assumed unknown. The

shift operator, S(0,), is the Shannon interpolation operator which is shift-invariant [32]. The

impulse response of the shift operator is given by:

. s
thm(m;é;):w, m=1,...,N.
‘ n(m—0,)
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The shift-invariant operators are assumed circulant. This is very useful for computational
purposes because such matrices can be easily diagonalized in the DFT domain. One difficulty
that arises in the super resolution problem is the decimation operator which is not square and
thus not circulant. In this work we take advantage of the simple form of this matrix, and,

despite its non-circulant nature, we obtain tractable calculations in the DFT domain.

Lastly, the N, x N,, matrix R(6,) represents the rotation of each observation relative to the

unknown ideal image x. The imaging model assumes that image i is a rotated (as well as

shifted) version of the first image, with angle 8, . Using all the above definitions, Eq. (7.1) can

be rewritten as such:

y,=Bx+n, =DHS(5)R(6)x+n,, for i=1,..,P. (7.2)

7.3 Image prior model

Since we utilize a MAP algorithm, a prior for the image is necessary. The prior used here is
non-stationary and has been used with success in other image processing problems [27] and
[26]. This image prior model assumes that the first order differences of the image x in four

directions, 0°, and 90° respectively, are given by:
e'(i,j)=x(i,j)-x(i,j+1), € (i,j)=x(i, /) -x(i+1, ) (7.3)
with &°(i,j) k=12, the difference residuals for the image location (i,;). The above

equations can be also written in matrix vector form for the entire image as Q"x=¢", k=1,2
where Q" are the N,, x N,, directional difference operators for N, x1 images. Without loss

of generality, in what follows, for convenience, we will use one dimensional notation; in other

T .
words, we assumeg” =|:81k g .. 8§H] . We also assume that the residuals have

. . . -1 . .
Gaussian statistics according to &' ~ N(O,(a,.k) ), for i=1,...,N, and k=1,2 where a' is
the inverse variance of & .

For the inverse variances (i.e. the a! ’s) we introduce the notation A" = diag {af‘ s ,...a;‘v} a

N, xN, diagonal matrix, A = diag {Al,Az} a 2N,x2N, diagonal matrix and
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T
. . T
a 2N, x1 vector, consisting of four vectors a* =[alk ,a; ,...afvﬁ] . Also

a=[(0) ()
for the errors we use the notation éz[(sl )T (82 )T T. We assume that the errors in each

direction and at each pixel location are independent. This is based on the assumption that at
each pixel location an edge can occur at any direction independently of what happens in
adjacent pixels. This assumption makes subsequent calculations tractable. Thus, the joint

density for the errors is Gaussian and is given as

B T
To relate € with the image x we define the 2N, x N operator Q = [(Q1 )T ,(Q2 )T} . Then,

the relation between the image and the residuals is §=Qx. Based on this relation and
p(é;ﬁ) we can define an improper prior (one that does not integrate to 1) for the image x
[26]. This prior is given by:

T ke < \T o« 2
p(x;a) oc HH(al") exp(—O.S((Qx) AQX)):H |

k=1 i=1

(7.4)

(al.k )1/4 exp(—O.S((Qkx)T A"Q"x)).

The role of the parameters @ is to capture the directional variation structure of the image.

More specifically, a large variance (small a!) indicates the presence of a large variation along
the direction of the difference, in other words an edge perpendicular to this direction. The
introduction of the spatially varying a' scales down the differences of adjacent pixels in
regions of image discontinuities. As a result this prior maintains edges and suppresses noise in
smooth areas of the image.

The drawback of this prior as described thus far is that it introduces 2N, parameters a' that
have to be estimated from PN observations. This is clearly not a desirable situation from an
estimation point of view. To address this, we employ the Bayesian paradigm and consider a'
as random variables (instead of parameters) and introduce Gamma hyper-priors for them. In

the case of a stationary model where all a' are equal, the over-parameterization problem does
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not exist, and it is rather straightforward to obtain good estimates for the unknown parameters
using even maximum likelihood (ML).
We consider the following parameterization for the Gamma hyper-prior:
=
p(a,.k;mk,lk)oc(af) 2 exp{—mk (lk—2)af}. (7.5)
For such a representation the mean and variance of the Gamma pdf are given by

E [al.k] =1 (2mk (Ik — 2))_1 , and Var[a[k] =1/, (2m,f (lk — 2)2 )_1 respectively.  This

representation is used because the value of the parameter /, can be also interpreted as the
level of confidence to the prior knowledge provided by the Gamma hyper prior. More

specifically, as [, —» o0, E[a[k]—>(2mk)f1 and Var[aﬂ—)O. In other words, the prior

. . . . . . -1 .
becomes very informative and restrictive, resulting ina =(2m, )" Vi. In contrast, when

[, > 2 then both E [ai" ]—)oo and Var[ai" ]—>oo, thus, in this case, the prior becomes

b

. . . k
uninformative and does not influence the values of the a; ’s.

7.4 Pre-processing step of the super-resolution algorithm

For this imaging model, the non-circulant nature of the rotation matrix R renders
computationally impractical simultaneous registration and restoration for large images. In
contrast, all other matrices used in both the imaging and image prior model have
characteristics that can be exploited in the DFT domain to render both tasks computationally
very efficient. Particularly, the blurring H and shift matrices S are circulant, hence diagonal
in the DFT domain. As mentioned before, the decimation matrix D, which is not circulant,
has a convenient structure in the DFT domain that helps bypass computational difficulties.
Finally, matrices Q and A" of the image prior are circulant and diagonal, respectively. For
this combination one can exploit the diagonal structure by alternating calculations in the DFT

and spatial domain.

To bypass the problems with the rotation, a pre-processing step is performed before the super-
resolution algorithm. In this step we estimate the registration parameters between the low

resolution observations. At this point it is important to notice that as far as the rotation is
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concerned the rotations between the degraded low resolution and the high resolution images
of the imaging model in Eq. (5.2) are the same. However, as far as the shifts are concerned
they are not since the shifts of the low resolution images must be also multiplied by the

decimation factor. Thus, these parameters in the preprocessing step will be called 6, and 6,
i=2,..,P, for translation and rotation, respectively. Using this notation, we assume that
image y, resulted by applying both translation and rotation with respect to the first image vy,

(or the reverse). In other words, we have
v, =S(S)R(8)y, or v, =S (-5)R(-0)y.

where R' and S’ are the Nx N rotation and shift matrices respectively, smaller than their

respective N, x N,, matrices R and S. Thus, image y, is the reference image.

We define the vector that represents the difference between the registered image i and the

reference image to be
L, =S'(-6)R'(-6,)y,-y,, for i=2,...,P.

Mathematically speaking, in this registration pre-processing step, we aim to estimate the

registration parameters by minimizing the quantity in the following equation:

[éi', 9:} =argmin L]

[47.6]

2 , fori=2,..,P.

The minimization is achieved using the simplex search method [83]. Having computed the

registration parameters o, and 6, at the end of the pre-processing step the low resolution

observations y, are replaced by the “almost-registered” low resolution images given by
z, = s’(int[ci.’+ 0.5])12’(9} )y,  i=2...P,

where int[-] denotes the integer part of the real number. This is intentional because low

resolution images that are shifted by a fraction of a pixel are required in order to achieve
super-resolution reconstruction [32]. For the rest of the paper, we assume as observations the

registered versions z, of the initially observed imagesy,. We also define as z the vector that

contains all the z, as
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In this way, the rotation is removed from the observations. Thus, the rotation matrices can be
omitted from the imaging model used for super—resolution reconstruction, described in the

next section.

7.5 Maximum a posteriori (MAP) reconstruction

The super-resolution image x is estimated from the observations z, (after the preprocessing

step), utilizing a MAP approach in which we infer simultaneously a, x and
Qz[{z e g P]T where the registration parameters have changed to according to

0, =0, + ¢, . At this point we must note that even in the absence of noise

z,=B,({)x+n,=DHS({,)x+n,, for i=1,..,P,

1

To correct this, we make the assumption that the coarsely registered z,, using rotation and
translation, satisfies the equation z, = DH,S(8,)x+n, where n] is an error term. Thus, the

imaging model that is finally solved by the MAP algorithm is
z,=DHS({ )x+w,, fori=1,..,P,
where w, =n’+n, the new error term which is assumed WGN with precision b, .

MAP estimation is based on maximization of the posterior probability. Thus, based on Bayes’

theorem we have:
p(x.azb,m,1¢)x p(z,x,a;b,m,L5) = p(z|x,ab,5) p(x|a;) p(a;m,1),
where:

m =[my,my,my,m, ] V=[1,,1,,1,,1,] ;b =[b-b,].

Maximizing the quantity p(x,ﬁ|z;b,m,l,§) with respect to x, a and { is equivalent to

minimizing the negative logarithm:
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Jyr (X,8,8) =—log p(z,x,a;b,m,L§) = —log p(z|x,a;b,§)—log p(x|a)—log p(a;m,1) =

N P 1 P 1 2 N CNT
=——Zlogbi+—2biHBi )x- ZH ——ZZloga +§ZZ(QAX) A'Q*x

k=1 i=1 k=1 i=1

B0 et ) Elm -]

(7.6)

To minimize the above function with respect to x,a and { we adopt an iterative scheme that

sets alternatively the gradient with respect to x,a and { equal to zero.

Setting V,J,,,» (X,4,§) =0 yields:

(o) - aatd)
ey em-2)

(7.7)

The observation of the previous section that the parameters /, express the degree of

confidence to the prior can be viewed from another point when looking Eq. (7.7), the MAP

estimates of the( ) More specifically, when/, — oo, (af )* =(2m, )71 Vi; thus the (af )* Vi

are equal, and the image model becomes stationary. In contrast, when [ —?2,
2y )2

-1 %
(al. ) :((g,. ) ) Vi; thus the (a,.k ) ’s are completely unaffected from the moderating effect

of the Gamma hyper-prior and only follow the data. In this case the image model can be

viewed as the “most non-stationary”.
Setting V. .J,,,»(x,8,§) =0 yields:
2
(ZbBT B,(¢)+Y(Q") AQ j ZbBT (7.8)
k=1
Eq. (5.8) cannot be solved in closed form since analytical inversion of
P 2
Z:b[Bl.T (Q)Bi(([)JrZ(Qk )T A*Q" is not possible due to the non-circulant nature of the
i=l k=1

matrices B, and A". Thus, we resort to a numerical solution using a conjugate gradient

algorithm [97]. In this algorithm, the space and DFT domains are alternated when

expressions with circulant and diagonal matrices are computed. More specifically,
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multiplications with circulant matrices (convolutions) are performed in the DFT domain while

multiplications with diagonal matrices are performed in the space domain.

In the case of the registration parameters, it is not possible to find in closed form the { that

make the gradient V.J,,, equal to zero, or equivalently to minimize the quantity J,,, with

respect to {:
{ =argminJ,,, (x,a,(),
¢

which can also be written as:

fori=2,..P,  (19)

¢ :argminJMAP(é’i):argminHBi(é’i)x-zi
E2 S

where J,,,, () denotes the part of J,,,(x,4,() that depends on ¢, . Since ¢, cannot be

found in closed form we resort to the Newton-Raphson algorithm. This method is chosen due

to its convergence speed [97]. Registration is equivalent to the minimization task in Eq. (7.9).

By the definition of the matrix B, with R(6,)=1, in Eq. (7.9) is
Jour (&) =22/DS()H x+x HS'({,)D'DS(¢)H x+2]z,. (7.10)

The DFT domain is used to evaluate (7.10), since it allows easy analytic calculations of the
first and second derivatives of the objective function. Since the shift parameters are

independent with each other, it is sufficient to demonstrate the derivatives for one &,. The
details of the derivative calculation of J,,,(¢,) are given in the Appendix. With the

derivatives calculated, the update scheme of the Netwon-Raphson algorithm is

o (c,")[aZJMAP (¢ )] o
o¢, o} ' '

A A A ~ T
The shift parameters are initialized as ,, =9'-d, where 6':[52’,...,51’,] are the shift

init
parameters estimated in the preprocessing step (section 5.4) and d is the decimation factor.

This initialization provides starting values close to the solution, which is essential for the

convergence of the Netwon-Raphson algorithm to the correct solution [97].
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7.6 Experiments

In order to test the proposed methodology, we used both artificially generated and real data.
We compared the new MAP super-resolution algorithm with the non-stationary prior with the
E-M super-resolution algorithm in [133] that uses a stationary prior. We also compared our
super-resolution algorithm with one that uses total variation (TV) regularization [48]. For this

comparison a gradient descent algorithm was used given by
0 (=) 2 (@) i+ (@) 1) 712

where the superscript (k) denotes the iteration number, v, (i) = sign (s’" (i )), with &' =Q'x

and £ =Q’x the first order horizontal and vertical differences of the image, A the
regularization parameter and £ the step of the algorithm. In the following experiments the A4
and [ parameters were selected by trial and error to provide the best possible results. This is

a difficult task. However, in general as A increases the image becomes blurrier and the
algorithm converges for smaller step f. For all methods we used the same registration
algorithm. The results generated by Eq. (7.12) are not a comparison with the methodology
presented in [48] since although similar priors are used the other aspects of the super-
resolution algorithm (registration, chosen PSF) are different. Nevertheless, the authors of [48]
have published results with the herein used data sets in [51] and [47] where the interested
reader can resort. In the preprocessing step of the herein proposed algorithm the interpolation

algorithm in [135] was used for rotation in order to handle boundary artifacts.

In the first experiment, eight 128x128 low resolution images were generated by performing
translation and rotation to the well-known “Cameraman” image of size 256x256, before
blurring and then down-sampling by a factor of 2. The PSF of the blur was uniform 5x5.
Lastly, noise was added, corresponding to SNR=20dB (the same for all images). This metric

2
is defined as SNR = 1010g—||X||2

N o where o’ is the variance of the additive noise and N ;18
o
H

the size of the image x.
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The Mean Square Error metric (MSE) between the restored image and the original was used to

A 12
x—X
evaluate the performance of the algorithm. The MSE is defined as MSE = ”N—2 , where x

H

and X are the original and estimated images, respectively.

Fig. 7.1.1.(a) shows one of the observed low resolution degraded image. In Fig. 7.1.2.(a),
7.1.2.(b) and 7.1.(c) we show the super-resolved images and the corresponding MSE'’s, using
the stationary prior in [133], TV regularization as implemented in Eq. (7.12), and the new
algorithm based on the non stationary prior, respectively. Also, to demonstrate the robustness
of the proposed registration methodology, we show the true and the estimated registration
parameters in Table 7.1. We observed in all the experiments we performed with simulated
data that the proposed pre-processing step estimated the rotation parameters with an accuracy
of almost four decimal digits in degrees. The reconstructed super-resolved images assuming
knowledge of the registration parameters are almost identical to their reconstructed
counterparts using the estimated parameters. From these experiments we can draw two
conclusions. First, the proposed non-stationary prior improves the reconstruction of the high-
resolution images. Indeed, the MSE using the non-stationary model is significantly lower
apart from the difference in the visual quality of the images. Second, the proposed two step

registration methodology seems very accurate (when the image formation model is correct).

We also used the proposed super-resolution algorithm on two real data sets. The first contains
20 low resolution degraded images. In Fig. 7.2.1.(a) one of these images is shown. Their
original size was slightly smaller than 64x64, so they were padded with zeros, extending
their size exactly to 64x64 pixels. In this data set the low resolution images were only
translated and did not contain any rotations. Super-resolved images of double size (2x) are
shown in Fig. 7.2.2.(a) , 7.2.2.(b) and 7.2.2.(c) using the stationary, TV regularization and the

non-stationary priors, respectively.

The second set includes four low resolution degraded images that contain both translations
and rotations and one of them is shown in Fig. 7.3.1.(a). Each low resolution image is of size
128x128. In order to test the ability of the proposed priors to reconstruct beyond the
resolution of the available data, we quadrupled (4x) the size of the reconstructed super-
resolved images. The 4x, super-resolved images with the stationary, TV regularization, and

non-stationary prior are shown in Fig. 7.3.2.(a), 7.3.2.(b), and 7.3.2.(c), respectively.
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In estimating the shape of the blur for the real data sets, a Gaussian-shaped blur was assumed.
This choice was motivated by the observation that Gaussian shaped functions are smooth and
have good approximation properties. The width of each blur was experimentally estimated
using trial and error experiments. The width is captured by the variance of Gaussian PSF. For
the first set, the values of the variances of the Gausian shaped PSFs were found in the range

[2.5-4] pixels and for the second the variance was set equal to 4.

To facilitate learning the proposed image model, we used equal b ' for all i (additive noise
variances) and equal m, for all k obtained by learning a stationary SAR model [133]. The

parameters m, were obtained as m, =1/(2ag,,, ) where ag,, the image model parameter of

the stationary SAR model. The parameters /, were selected to be equal to /=2.1 for the

reconstruction of both the real data and synthetic data. This value was found by trial and error
experiments. We observed that as / — 2 the reconstructed images assume a “cartoon” like
appearance where large edges are preserved and areas with small variations are flattened out.
When [ — o, as also explained previously, the reconstructed images assume the appearance
of images that were reconstructed by a stationary prior model. In other words, at the expense
of ringing in edges and noise amplification in smooth areas, textured areas can be better
reconstructed. The selection of /=2.1 reflects our subjective choice between these two
opposing trends. For the case of the TV regularization, the algorithm’s parameters were also

found by trial and error. We set for the first experiment f=0.05, A =1, for the second
£ =0.01, A=1, and for the lastone #=0.1, A =2.

The super-resolution estimates of x, a and ¢, were found by iterating between Eq. (7.7),
(7.8) and (7.11) till convergence. In the presented experiments, the convergence criterion was

Xt _ Xt+1

z <

107
b_ 9

Xt

2

where ¢ denotes the iteration number and b is the average of the inverse noise variances
P

= 1
b—FZ@

i=1
Finally, we would like to note that the MAP function in Eq. (7.6), although derived using a
completely different principle, can be viewed as a half-quadratic function that is generated
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using a @, -like potential function (Table II, pp. 302 in [31]) with appropriate choice of

parameters, for details see [26]. The convergence of alternating direction minimization of half

quadratic functions has been rigorously shown in [31]. It has been shown that if the
generating potential function is strictly convex, and the null spaces of matrices B and Q" do
not intersect, the MAP function is convex. However, the ¢,, -like potential function is not

convex thus the proposed alternating direction minimization converges to a local minimum.

For this reason, good initialization of the algorithm is important.

7.7 Conclusions and future work

Inspection of the super-resolved images in Fig. 7.1.2.(a)-(c), 7.2.2.(a)-(c), and 7.3.2.(a)-(c)
reveals that the resolution in every case has significantly been improved. The letters in the

super resolved images (Fig. 7.2.2.(a)-(c) and7.3.2.(a)-(c)) are now easily legible.

Furthermore, the images reconstructed using the proposed non-stationary prior, Fig. 7.1.2.(c),
7.2.2.(c), and 7.3.2.(c), are visually more pleasant and display less ringing at the edges as
compared to both stationary and TV based super-resolution reconstruction. The MSE for the
reconstructed images using non-stationary prior is also smaller than both the stationary and
the TV based models. It is worth noticing that for the first experiment, the MSE results when
using the real registration parameters are almost identical to that when the registration
parameters are estimated. This demonstrates the robustness of the proposed algorithm

regarding the registration parameters.

In what follows we report implementation times for the “Cameraman” experiment.
Registration in the pre-processing step requires 26 minutes. One iteration of the stationary
model based algorithm requires 4-5 seconds with almost 4 seconds the time for fast sub-pixel
registration. One iteration of the non-stationary MAP algorithm requires about 38 seconds,
out of which 4 seconds are required for fast sub-pixel registration, and the rest for 40
iterations of the conjugate gradient algorithm in Eq. (7.8). The TV algorithm requires about 1
second per iteration of the gradient algorithm in Eq. (7.12). These times we obtained using a

Pentium 4 3.4GHz PC and a Matlab implementation.

In the future we plan to include a PSF estimation step in the formulation of this problem. This

can be achieved by blind-deconvolutions methodologies. Faster rotation estimation in the pre-
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processing step would be also desirable. In addition, it would be interesting to include the
rotation matrix in the imaging model and estimate in parallel all the registration parameters.
Furthermore, methodologies to better model the statistical errors if the imaging model is not

accurate will be considered.

Appendix

Assume the N, x N, DFT matrix W, and the NxN DFT matrix W,. Then X=Wx and
Z,=W,z. are the DFTs of the vectors x and z,, respectively. The matrices
A =WS(5)W,' and A, =WHW, ' are diagonal due to the circulant nature of the

matrices S(0,) and H, . It can also be shown that
Ap=W,DW'=[1,, 1,, .., 1,]/d (A.7.1)
is a NxN, block matrix that contains d identity matrices of size¢ NxN. Then, we can
write:
Ty (&) = 2real {Z] Ay A A X} + X" ALAAT A A A X+ Z)'Z,.
(A.7.2)

where the symbols ‘H’ denote the Hermitian and ‘*’ the conjugate. For simplicity, the

diagonal element of a matrix is denoted as [m] . Then we can write

Ty (8)) Zreal{i Z[m]|T [m]}+mzji;'l’i* [m]T,[m], (A.7.3)

m=1

where T,[m] are the elements of the N x1 vector T, and they are

I e i)

i d

(A.7.4)

The evaluation of the first and second derivatives of Eq. (A.7.2) is very convenient in the DFT
domain since the parameter £, is only in the diagonal elements of the matrix Ag. These

elements, see for example [32], are equal to:
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Ag [m] =exp{—2j77§i(m—1)/N} ,form=1,..,.N/2,

where j° =-—1. The remaining elements are a “mirrored” version of the previous ones; in

other words:
) N
Ag [m] = exp{—2]7r§[(N—m+1)/N} , for m =?+l,...,N.

The first and second derivatives for the first half are respectively:

OAs[m] _—2jm(m-1)

exp{-2jn¢,(m—-1)/ N}, for m=1,..,N /2,

o,
(A.7.5)
’Ag[m] —4x’ 2 .
—=——(m-1) exp{-2jng,(m-1)/ Ny, form=1,..,N/2,
o ) el ()
(A.7.6)

and for the second half:

OAg[m] 2jx(N-m+1)
oc N

exp{-2j,(N—-m+1)/ N}, forngﬂ,...,N

(A.7.7)

FA[m] _—ar’
(aé/,- )2 N2

(N-m+1) exp{-2jz,(N-m+1)/ N}, forng—i-l,...,N.

(A.5.8)
The derivative of the terms in Eq. (A.7.2) is given by applying Eq. (A.7.5) - (A.7.8):

(6] 1) T, 57 oy L]

=1 aé/, m=1 aé/z

o 0T, N OT,
v B

—+

N
m=

and:
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oc, & oc,

Similarly, the second derivative is:

N aZTi N aTi 2 N@ZT[*
+Z:;R,~ [m] ag[zm]+22§ 8£m]§ +Z—a§[2m]]1[m].

To be precise, in our application we deal with 2-D signals where here are two translations

parameters per imageci. :(4’ AN, ) Thus, in Newton-Raphson update equation, Eq. (7.10)

ot (S
% is a 2x1 gradient vector and

i i

azJMA}: (éjl” )

> a 2x2 Hessian matrix involved.

However, the inversion of a 2x 2 matrix is easily found in closed form; hence the 2-D version

of the registration algorithm is also very fast.

Figure 7.1.1: Low resolution degraded observation
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Figure 7.1.2: (a) Stationary 2x [133], (MSE=195.2), (b) Total Variation, Eq. 7.12
(MSE=182.1), (c) Non-stationary MAP 2x super-resolved image (MSE=162.4).
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Figure 7.2.1: Low resolution observation.

(b) (©)

Figure 7.2.2: Super-resolved images; (a) 2x stationary [133], (b) 2x Total Variation, Eq.
(7.12), (c) 2x MAP non-stationary.
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Figure 7.3.2: Super-Rsolution experiment with real data; super-resolved images; (a) 4x

stationary [133], (b) 4x Total Variation, Eq. (7.12), (c) 4x MAP non-stationary.
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Table 7. 1 Original and estimated parameters for the artificially generated images.

0 6 (5",8) (5%,0")

Im2 |[1.00 |0.99 |(0.30,-0.20) |(0.31, -0.21)

Im3 200 [2.00 |(0.10,-0.30) |(0.14,-0.32)

Im4 |3.00 3.00 (-0.20, 0.10) | (-0.15,0.06)

Im5 [1.50 |1.50 |(-0.15,0.25) |(-0.13,0.23)

Imé6 | 0.50 0.48 (0.00, 0.10) | (0.00, 0.09)

Im7 |-1.00 |-1.00 |(0.05,0.12) |(0.04,0.14)

Im8 |-2.00 |-2.02 |(0.14,0.32) |(0.13,0.35)
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CHAPTER 8. CONCLUSIONS AND FUTURE
RESEARCH

In this dissertation we presented novel Bayesian algorithms for image restoration and super-
resolution based on new edge-preserving image priors. More specifically, the Bayesian
formulation of these problems enables the incorporation of hierarchical image priors with two
levels, with the second level manifesting the spatial adaptive regularization mechanism. This
mechanism leads to restored/reconstructed images for restoration and super-resolution,
respectively, with preserved edges. Furthermore, working in a Bayesian framework, we have
developed methodologies to infer the image and to estimate the model parameters, i.e. the

noise variance and the prior parameters, in an iterative manner.

In Chapter 4 we introduced a spatially adaptive image prior by extending the SAR model used
in previous restoration algorithms. The extension was performed by making the precisions of
a Gaussian prior, imposed on the local directional differences, spatially varying. Then, a
conjugate Gamma hyperprior was imposed on the precision parameters. Integration with
respect to the precisions results in a Student’s-t density. This density was also used as a prior
in Chapter 5. However, the prior was imposed in the outputs of an arbitrary number of high-
pass filters. Thus, this prior is in product form and has the ability to enforce simultaneously
multiple constraints to the solution of the model. Lastly, in Chapter 6, the prior was
generalized by extending this time the TV prior instead of the Gaussian. The extension was
made again by assuming spatially varying regularization parameters and then a Gamma

hyperprior was imposed on them.

Iterative algorithms were developed to learn the proposed models and to restore/reconstruct
the image. First, in Chapter 4, the image is treated as a parameter and the precisions of the
Gaussian prior as hidden variables. Then, both a MAP and a Bayesian algorithm were
proposed to estimate the image and the precisions. Numerical experiments showed superiority

of the MAP algorithm with respect to other state-of-the-art methodologies.
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In Chapter 5, the image is treated as a hidden variable and a variational Bayesian algorithm is
employed for inference, which means a posterior distribution is obtained for the image. In
addition, the model parameters are estimated in a rigorous manner, in contrast to many
popular methodologies for image restoration, in which they are selected empirically.
Furthermore, apart from the first order differences, more high-pass operators are used. A
Lanczos-based numerical method has also been developed to estimate the diagonal elements
of the covariance matrix of the posterior distribution obtained for the image. Numerical

experiments demonstrate that the proposed algorithm is superior to that of Chapter 4.

In most of the experiments, the proposed algorithms produced the best results in terms of
ISNR, compared to state-of-the-art methods. However, are not superior in high levels of noise,
but they exhibit the same performance. A possible explanation of this is that high levels of
noise diminish the subtle features of the images and the proposed model cannot capture these

features. In this situation, all methods become equal in performance.

In Chapter 7, the proposed image model was successfully incorporated in the super-resolution
problem. The MAP framework algorithm was found to be superior of other state-of-the-art
methodologies in terms both of MSE and visual quality. The high-resolution images have
their edges-preserved, something which was the initial motivation for the incorporation of the
proposed prior. As a result, in an illustrative experiment, letters that are illegible in the low-

resolution images become legible in the high-resolution image.

Numerical methods to estimate the diagonal elements of an inverse matrix are prsented in
Chapters 5 and 6. These methods are faster than other methodologies used to accomplish this
type of calculation. Also, it would be interesting to conduct detailed experiments in order to
test the performance of this approximate estimation when applied to a known matrix. The

method in Chapter 6 was proven to be faster than that of Chapter 5.

An interesting issue for future research is the relaxation of the independence assumption of
the outputs of the filters. In most images the edges are formed in a continuous manner and this
is an indication that the filter outputs are correlated. A possible methodology to introduce
correlations to the image model is to assume, for example, a tridiagonal covariance matrix for
the Gaussian prior and impose a Wishart distribution on it, instead of the Gamma. This type

of hyperprior has already been used successfully in Machine Learning problems [36].
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The incorporation of alternative and/or additional filters in the image prior is a topic for
further investigation. The operators used in the image prior in Chapters 5 and 6 can be
replaced by filters successfully employed in several problems, such as wavelets, filter banks,

curvelets, or even filters learned from real images.

The super-resolution algorithm could also be extended so as to avoid the pre-processing step
and in this way to avoid the sub-optimal pre-registration procedure. The registration should be
ideally performed as a step in the MAP algorithm. Also a Bayesian algorithm can be
employed for the registration that treats the registration parameters as random variables and

impose a hyperprior for them.

An open issue for the super-resolution problem is the estimation of the blurring operator that
is applied to the image before downsampling. Estimation of the point-spread-function (PSF)
of the blurring operation can be achieved with methodologies borrowed from the blind image

deconvolution research.
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