

ΑΝΑΚΑΤΑΣΚΕΥΗ ΜΟΝΤΕΛΩΝ CAD ΜΕ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΒΑΣΙΣΜΕΝΗ ΣΤΗ ΜΟΡΦΟΛΟΓΙΑ

ΤΟΥ ΝΕΦΟΥΣ ΣΗΜΕΙΩΝ

Η

 ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Υποβάλλεται στην

ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης
του Τμήματος Πληροφορικής

Εξεταστική Επιτροπή

από την

Βασιλική Σταμάτη

ως μέρος των Υποχρεώσεων

για τη λήψη

του

ΔΙΔΑΚΤΟΡΙΚΟΥ ΔΙΠΛΩΜΑΤΟΣ

Οκτώβριος 2008

 ii

Τριμελής Συμβουλευτική Επιτροπή

• Ιωάννης Φούντος, Επίκουρος Καθηγητής, Τμήμα Πληροφορικής του

Πανεπιστημίου Ιωαννίνων (Επιβλέπων)

• Νικόλαος Σαπίδης, Καθηγητής, Τμήμα Μηχανικών Σχεδίασης Προϊόντων και

Συστημάτων του Πανεπιστημίου Αιγαίου

• Θεοχάρης Θεοχάρης, Αναπληρωτής Καθηγητής, Τμήμα Πληροφορικής και

Τηλεπικοινωνιών του ΕΚΠΑ

Επταμελής Εξεταστική Επιτροπή

• Ιωάννης Φούντος, Επίκουρος Καθηγητής, Τμήμα Πληροφορικής του

Πανεπιστημίου Ιωαννίνων (Επιβλέπων)

• Νικόλαος Σαπίδης, Καθηγητής, Τμήμα Μηχανικών Σχεδίασης Προϊόντων και

Συστημάτων του Πανεπιστημίου Αιγαίου

• Θεοχάρης Θεοχάρης, Αναπληρωτής Καθηγητής, Τμήμα Πληροφορικής και

Τηλεπικοινωνιών του ΕΚΠ

• Φίλιππος Αζαριάδης, Επίκουρος Καθηγητής, Τμήμα Μηχανικών Σχεδίασης

Προϊόντων και Συστημάτων του Πανεπιστημίου Αιγαίου

• Βασίλειος Δημακόπουλος, Επίκουρος Καθηγητής, Τμήμα Πληροφορικής του

Πανεπιστημίου Ιωαννίνων

• Ισαάκ Λαγαρής, Καθηγητής, Τμήμα Πληροφορικής του Πανεπιστημίου

Ιωαννίνων

• Πάνος Τραχανιάς, Καθηγητής, Τμήμα Επιστήμης Υπολογιστών του

Πανεπιστημίου Κρήτης

 iii

DEDICATION

To my husband, Thanasi

To my parents, Costa and Eugenia,

 and my sister, Tonia

 iv

ACKNOWLEDGMENTS

I would like to express my sincere thanks and gratitude to my advisor Ioannis Fudos,

who has guided me through my research with helpful suggestions, good advice,

encouragement and patience. Collaborating with him has been a pleasant and

memorable experience. I would also like to thank the members of my committee Prof.

Theohari and Prof. Sapidi for their suggestions and insight. Also, many thanks to

Prof. Trahania, Prof. Azariadi, Prof. Dimakopoulo and Prof. Lagari for their

suggestions and remarks. I would also like to thank all my friends and colleagues

who over the course of this research have provided me with helpful feedback.

I would also like to thank my husband, Thanasi, and my family for always being so

supportive and for believing in me. I could not have done this without them.

v

TABLE OF CONTENTS

 Pg
DEDICATION iii
ACKNOWLEDGMENTS iv

TABLE OF CONTENTS v
LIST OF TABLES vii
LIST OF FIGURES viii

ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ x
ABSTRACT xiii

CHAPTER 1. Introduction 1

1.1. Overview 1
1.2. Preliminaries 4

1.2.1. Scanning techniques 4
1.2.2. Triangulation methods 5
1.2.3. Point cloud preprocessing 6

CHAPTER 2. Overview – Reverse engineering and CAD 7

2.1. Introduction – Reverse Engineering and its applications 7
2.2. CAD model representation schemes used in reverse engineering 9
2.3. Using high-level model representation schemes for reverse engineering 13

CHAPTER 3. Feature detection and extraction 16

3.1. Introduction 16
3.2. Related Work 16
3.3. Deriving Point Concavity Intensity 18
3.4. Point cloud segmentation through region growing 26

CHAPTER 4.Contour Reconstruction 33

4.1. Introduction 33
4.2. Related Work 33
4.3. Curve approximation using cubic rational Bezier curves 36
4.4. Examples of curve fitting using rational Bezier curves 43

4.4.1. Example A 43
4.4.2. Example B 45

4.5. Evaluation of our method 46

vi

CHAPTER 5. Feature Reconstruction 48
5.1. Features in reverse engineering 48
5.2. Solid modeling techniques 49
5.3. Generating a feature assembly plan 52

5.3.1. Sweeping 53
5.3.2. Skinning 54
5.3.3. Covering 56
5.3.4. Assembling the features 56

5.4. Parameter definition and editability 60
5.4.1. Parameter definition 60
5.4.2. Editability 61

5.5. Persistent naming 62

CHAPTER 6.Examples 64

6.1. Feature detection and extraction examples 64
6.2. Contour Reconstruction 66
6.3. Feature Reconstruction 68

CHAPTER 7. Extensions of our approach 70

7.1. Custom design and redesign functionality 70
7.1.1. Constraint definition 71
7.1.2. Geometric Constraint Solving 72

7.2. Special applications 77
7.2.1. Pierced Byzantine Jewellery 77
7.2.2. An approach to designing pierced jewellery using feature elements 78
7.2.3. Reverse engineering point clouds of traditional pierced jewellery 88

CHAPTER 8. Conclusions 90

REFERENCES 92

PUBLISHED WORK 101

SHORT CV 103

vii

LIST OF TABLES

Table Pg
Table 4.1 Results of Curve Approximation 45
Table 4.2 Results of Curve Approximation 46
Table 5.1 Reconstructing feature regions with sweeping / skinning 55
Table 6.1 The results of contour reconstruction 68

viii

LIST OF FIGURES

Figure Pg.
Figure 1.1 Our Feature-based Reverse Engineering framework 3
Figure 3.1: Point cloud of a screwdriver with 27k points [23] 18
Figure 3.2: A point cloud of a screwdriver point cloud and its convex hull 19
Figure 3.3: The screwdriver point cloud concavity intensity map [23] 19
Figure 3.4: The Stanford bunny concavity intensity map [77] 20
Figure 3.5: Concavity intensitiy map of points representing a dinosaur [23] 20
Figure 3.6: The virtual sphere S(p,r) 22
Figure 3.7 Finding the closest edge to point p 24
Figure 3.8: An example of the local distance search algorithm 24
Figure 3.9: Point p and its first level neighbors q1,q2,q3,q4. The remaining nodes are

second levels neighbors of p 29
Figure 3.10 Feature regions detected by region growing 30
Figure 4.1 Virtual sphere containing border points. The green diamond corresponds to

the center of mass, whereas the red diamond is the border point closes to it. 37
Figure 4.2 A sequence of points to be approximated 37
Figure 4.3 Inner control point coordinates expressed in reference to the end control

points 40
Figure 4.4 (top) Points used for approximation (red) and corresponding points

computed on curve (black), (bottom) Cubic rational Bezier curve approximating
the sequence points (red) and the corresponding control points (turquoise). 42

Figure 4.5 (a) Region detected by region growing, (b) the border of the region to be
approximated, (c) a thinned-out border 44

Figure 4.6 (a) The thinned out border region (b) the curve segments to be
approximated (#1-green, #2=blue, #3=red), (c) the final approximating curve 44

Figure 4.7 . (a) The region created by region growing (b) the border of the region, (c)
the sample of points used for approximation, (d) the final curve approximation of
the border. 45

Figure 4.8 A sequence of points approximated by a curve C, under the constraints of
Eq.4.14 47

Figure 5.1 (left) A point cloud of a duck (right) a mesh representation of the duck 49
Figure 5.2 An example of translational sweeping 50
Figure 5.3 Example of skinning between two parallel circular curves to create

truncated cone 51
Figure 5.4 (left) Covering a boundary with a face, (right) adding a point to a solid by

covering. 51
Figure 5.5 An example of blending 52
Figure 5.6 Feature region corresponding to a screwdriver shaft 54
Figure 5.7 A feature representing the bottom of the screwdriver handle 55

ix

Figure 5.8 Top part of screwdriver handle and its corresponding boundary box 56
Figure 5.9 Feature Connectivity graph of screwdriver 57
Figure 5.10 Decomposition of the screwdriver model into its feature elements 57
Figure 5.11 Decomposition of the grip body of the handle 58
Figure 5.12 The feature connectivity graph after decomposition of node #3 59
Figure 5.13 Feature decomposition tree of the screwdriver after further decomposition

of the handle grip body 59
Figure 5.14 An example of the persistent naming problem [60]. 63
Figure 6.1 (top left) A point cloud of a monkey, (top right) the point concavity

intensity map, (bottom) the features detected by region growing. 65
Figure 6.2 (top left) The point cloud of a duck, (top right) the concavity intensity map

for the corresponding point cloud, (bottom) the regions detected by region
growing. 66

Figure 6.3 Curve approximation performed on the first curve segment 67
Figure 6.4 Curve approximation performed on the second curve segment 67
Figure 6.5 (left) The point cloud to be approximated (right) the reconstructed contour

 68
Figure 6.6 The top surface of the screwdriver 69
Figure 6.7 (left) The feature point cloud and its fitted surface and (right) the surface

obtained by covering 69
Figure 7.1 Using a chisel to create carvings around a hole. 77
Figure 7.2 (left) A pierced voxel, (right) a pierced plate displaying the letter k created

by combining pierced voxels 79
Figure 7.3 A complex solid plaque representing designs, i.e. letters or words, is sized

and modified appropriately to construct custom-designed jewellery (i.e. ring). 81
Figure 7.4 (left) An earring featuring the letter D, (right) a necklace featuring a solid

design and a pierced design 82
Figure 7.5 The letter B in its (left) scaled and (right) original form 83
Figure 7.6 Different scaled versions of the letter C 84
Figure 7.7 Datum positions are marked in the scaled design matrix and O is the center

of the coordinate system created by the datum axes 85
Figure 7.8 An example of (top) scaling a curve ending in a horizontal line and

(bottom) scaling a curve 86

x

ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ

Βασιλική Σταμάτη του Κωνσταντίνου και της Ευγενίας. PhD, Τμήμα Πληροφορικής,
Πανεπιστήμιο Ιωαννίνων, Οκτώβριος 2008.
Τίτλος Διατριβής: Ανακατασκευή μοντέλων CAD με χαρακτηριστικά βασισμένη στη
μορφολογία του νέφους σημείων
Επιβλέποντας: Ιωάννης Φούντος.

Η ανάστροφη μηχανική (reverse engineering) είναι μια διαδικασία μέσω της οποίας

ανακατασκευάζουμε ένα γεωμετρικό μοντέλο με βάση τον υπολογιστή (CAD) από

μετρήσεις που λαμβάνονται από την επιφάνεια ενός αντικειμένου, μέσω τεχνικών

σάρωσης, και έχουν τη μορφή ενός νέφους σημείων. Αυτή η διαδικασία

χρησιμοποιείται ευρέως σε διάφορες εφαρμογές, όπως στη παραγωγή, βιομηχανική

σχεδίαση και στη σχεδίαση και αναπαραγωγή κοσμημάτων. Μπορούν να

χρησιμοποιηθούν διάφορες μορφές αναπαράστασης για τα ανακατασκευασμένα

μοντέλα, όπως πολυγωνικά μοντέλα, μοντέλα CSG και μοντέλα υποδιαίρεσης χώρου

σε στοιχειώδη στερεά στοιχεία (voxel). Παραδοσιακά στις περισσότερες εφαρμογές

χρησιμοποιούνται μοντέλα αναπαράστασης ορίων (boundary representations).

Ωστόσο η σύγχρονη τάση, ειδικά στις εφαρμογές ανακατασκευής και αναπαραγωγής

αντικειμένων ελεύθερης σχεδίασης, είναι η χρήση αναπαράστασης βασισμένη σε

χαρακτηριστικά και περιορισμούς. Αυτό συμβαίνει διότι αυτό το μοντέλο

αναπαράστασης είναι ευέλικτο και ακριβές, επιτρέπει την τροποποίηση ή/και

επανασχεδιασμό του αρχικού αντικειμένου και μπορεί να εκφράσει την σχεδιαστική

πρόθεση του χρήστη-σχεδιαστή.

Στην εργασία αυτή παρουσιάζεται ένα σχήμα για την ανακατασκευή αντικειμένου

από νέφος σημείων με σκοπό την απόκτηση μιας παραμετρικής και επεξεργάσιμης

αναπαράστασης CAD με βάση χαρακτηριστικά και περιορισμούς (feature-based and

constraint-based) που να μπορεί να τροποποιηθεί και αναπαραχθεί. Σκοπός μας είναι

να εντοπίζονται και να εξάγονται χαρακτηριστικά του αντικειμένου από το νέφος

σημείων ώστε να είναι δυνατή η τροποποίηση ή ο επανασχεδιασμός του αρχικού

xi

αντικειμένου, σύμφωνα με τις προτιμήσεις του χρήστη-σχεδιαστή. Επίσης, δίδεται η

δυνατότητα στον χρήστη να μπορεί να εισάγει και να χρησιμοποιεί τα

χαρακτηριστικά στη σχεδίαση άλλου αντικειμένου.

Πιο συγκεκριμένα, στην εργασία αυτή παρουσιάζεται μια μέθοδος για τον εντοπισμό

και την εξαγωγή χαρακτηριστικών από ένα νέφος σημείων. Το νέφος σημείων πρέπει

να χωριστεί σε υποσύνολα τέτοια ώστε κάθε υποσύνολο να μπορεί να αντιστοιχηθεί

σε κάποιο χαρακτηριστικό (feature) του αρχικού αντικειμένου. Ορίζουμε ένα

χαρακτηριστικό μέγεθος για κάθε σημείο που ονομάζουμε «point concavity

intensity», το οποίο περιγράφει την ένταση κοιλότητας που εμφανίζει το αντικείμενο

στο συγκεκριμένο σημείο και ορίζεται ως η μικρότερη απόσταση του σημείου από

την κοντινότερη έδρα του convex hull. Αυτό το μέγεθος ουσιαστικά εντοπίζει τα

χαρακτηριστικά του νέφους που βρίσκονται ανάμεσα ή που σχηματίζονται από

κοιλότητες. Αναπτύξαμε έναν γρήγορο και αποδοτικό αλγόριθμο για τον υπολογισμό

αυτού του χαρακτηριστικού. Επίσης αναπτύχθηκε ένας αλγόριθμος για region

growing που υλοποιεί το διαχωρισμό του νέφους σημείων σε υποσύνολα που

αντιστοιχούν σε χαρακτηριστικά με βάση τις τιμές του point concavity intensity κάθε

σημείου και την μεταβολή του κάθετου διανύσματος της τοπικής επιφάνειας που

σχηματίζουν γειτονικά σημεία. Αυτή η μεθοδολογία οδηγεί στην εξαγωγή

υποσυνόλων σημείων που αντιστοιχούν σε ανεξάρτητα χαρακτηριστικά και σε

υποσύνολα σημείων που αποτελούν τα όρια των χαρακτηριστικών αυτών. Κατόπιν

αναπτύχθηκε ένας ικανοποιητικός, γρήγορος αλγόριθμος για την προσέγγιση των

ορίων από έναν αριθμό από κυβικές ρητές καμπύλες Bezier, που προσεγγίζει τα όρια

των χαρακτηριστικών με ομαλές καμπύλες που ικανοποιούν τις συνθήκες της

γεωμετρικής συνέχειας G1. Στη συνέχεια προσαρμόζονται επιφάνειες σε κάθε

υποσύνολο σημείων που αντιστοιχεί σε χαρακτηριστικό, παίρνοντας τομές του

υποσυνόλου και προσεγγίζοντας τα σημεία που βρίσκονται πάνω ή πολύ κοντά στην

τομή με τον αλγόριθμο μας για προσέγγιση καμπυλών με κυβικές ρητές Bezier

καμπύλες. Χρησιμοποιούμε τις καμπύλες που λαμβάνουμε με αυτό τον τρόπο ως

οδηγούς για να «καλύψουμε» τις καμπύλες και τα σημεία με επιφάνειες. Τελικά

λαμβάνουμε αυτόνομα χαρακτηριστικά σε 3Δ μορφή, στα οποία θέτουμε

περιορισμούς που αφορούν, για παράδειγμα, το μέγεθος ή τον τρόπο σύνδεσης με

άλλα χαρακτηριστικά. Επιπρόσθετα χρησιμοποιούμε συμμετρίες για να

ανιχνεύσουμε την σκοπιμότητα χρήσης άλλων τρόπων 3Δ ανακατασκευής όπως

xii

sweep, blending κα. Τέλος παρουσιάζουμε δύο εφαρμογές της μεθόδου μας στην

ανακατασκευή κοσμημάτων και στο ταίριασμα χαρακτηριστικών σε 3Δ μοντέλα.

xiii

ABSTRACT

Stamati Vasiliki, PhD, Computer Science Department, University of Ioannina,
Greece. October 2008.
Reconstructing feature-based CAD models based on point cloud morphology
Thesis Supervisor: Ioannis Fudos.

Reverse engineering, the process of obtaining a geometric CAD model from

measurements obtained by scanning an existing physical model, is widely used in

numerous applications, such as manufacturing, industrial design and jewellery design.

In this work we propose a framework for reverse engineering objects of mechanical or

freeform design to obtain fully editable feature-based CAD model that can be

reproduced or modified before production. We focus on the process of detecting

features on a point cloud and we present efficient methods for analyzing the

morphology of the surface defined by the point cloud. We compute a point wise

characteristic called point concavity intensity and we use this quantity along with the

variations in the surface normal to detect regions corresponding to object features.

The boundaries of the regions representing features are extracted and approximated

by a collection of piecewise cubic rational Bezier curves that best fit the detected

border point cloud and are G1 continuous. We present a fast and efficient linear curve

approximation approach to fit feature boundaries with such curves that can be used

along with the representative feature region points for feature reconstruction. Feature

reconstruction is implemented with solid modeling techniques (sweeping, skinning,

covering etc.) and parameters are defined to provide editability of the features. We

present examples and discuss extensions to our suggested framework.

1

CHAPTER 1. INTRODUCTION

1.1 Overview

1.2 Preliminaries

1.1. Overview

Reverse engineering is a general concept that can refer to various fields, such as

software management and product development [46]. In computer-aided design

(CAD), reverse engineering aims to analyze a real object to determine its

characteristics and mechanisms, with further focus on reconstruction and

manufacturability. The data concerning the physical object can be obtained by various

methods. A common method is using a 3D laser scanner or photogrammetry methods

to obtain a point cloud corresponding to points on the surface of the scanned object. In

the context of computer-aided design, reverse engineering is the process of obtaining

a geometric CAD model from measurements acquired by scanning an existing

physical model [89]. Reverse engineering is vital for various industries because the

computer models acquired help improve the quality and efficiency of designs and also

speed up the manufacturing and analysis process.

Reverse engineering techniques are traditionally used for the reengineering of

machined parts. They are widely used in mechanical part engineering and

manufacturing for re-engineering or replicating existing parts for which no CAD

models exist. Also, there are cases where the original CAD model no longer

corresponds to the physical part that was manufactured because of subsequent

undocumented modifications made after the initial design stage. In objects of

mechanical design, the geometric relationships of the component parts are well-

2

defined and many characteristics of the object can be used in the reconstruction

process. Properties of the object such as symmetries, parallelism and perpendicularity,

can be used as attributes and constraints to aid the reconstruction process. Mechanical

parts that are re-engineered must be accurate, robust and well-defined because they

are usually combined and fit together with other components in larger objects.

Reverse engineering objects of freeform design is a more difficult task. This can be

attributed to the fact that design intent and semantics cannot be strictly defined by

geometric rules and constraints, as in mechanical part design. Freeform designs are

often met in industrial design, such as automobile exterior parts design. Stylists and

artists very often create physical models of their concepts by using clay, plaster or

wood. These real-scale models are then used in re-engineering applications to create

CAD models for manufacturing the objects on an industrial scale.

An interesting application of reverse engineering objects of freeform design is that of

jewellery reconstruction. Jewellery design falls under the category of conceptual and

decorative design. We can distinguish two categories of jewellery: free form jewellery

and jewellery that conforms to certain patterns and constraints e.g. repeated patterns

or specific gem cuts. Reverse engineering jewellery requires that the CAD models

created are accurate and robust. These models should be parameterizable to support

custom jewellery design. Furthermore, the user-designers should have the capability

to modify the re-engineered CAD model according to their preferences, to create

novel designs.

The aim of this work is to introduce a framework for reverse engineering objects of

mechanical or freeform design to obtain fully editable feature-based 3D CAD models

that can be reproduced or modified before production. More specifically, our

approach aims to partition a 3D point cloud into components corresponding to the

features, so as to create an editable and parameterized CAD model described by its

various connected features. This type of model provides the user-designer with the

capability of editing, redesigning and reproducing the original object, depending on

his preferences and needs, by editing the features of the model [41].

3

The framework of our approach is summarized in Figure 1.1. We begin from a 3D

point cloud which we have preprocessed to remove duplicate points and an STL

(stereolithography) file of the point cloud. An STL file is a file describing the model

as a triangular mesh. This file format provides the vertices of each triangle of the

mesh and its corresponding normal vector. We perform segmentation of the point

cloud into subsets by detecting features using a point-wise characteristic called point

concavity intensity and a local surface normal vector. We apply a region growing

method based on variations of point concavity intensity and the surface normal to

divide the point cloud into feature regions and regions corresponding to their

boundaries. The boundary regions are approximated with cubic rational Bezier curves

through a fast and efficient linear curve approximation method that we have

developed. The resulting contours are used in combination with the feature regions to

reconstruct each feature using solid modeling operations. The resulting features are

then combined to construct the final 3D CAD model.

Figure 1.1 Our Feature-based Reverse Engineering framework

The feature-based reverse engineering approach presented in this thesis can be applied

to point clouds of objects of mechanical or freeform design. This thesis makes the

following technical contributions:

• Presents a segmentation method that partitions a point cloud into subsets that

will be refined to correspond to features of the object being re-engineered,

• Introduces the concept of point concavity intensity, which is used for feature

detection along with normal variance,

• Presents an efficient method for computing the concavity intensity of the point

cloud.

3D Point

Cloud

Point Cloud

Segmentation

Feature

Definition

Contour -

Surface

3D CAD

Model

4

• Introduces a fast linear curve approximation method for fitting cubic rational

Bezier curves to 3D points corresponding to the borders of features

• Describes a methodology for reconstructing the features of the object into an

editable 3D CAD model.

• Validates our approach using a real-world application (reconstruction of

pierced jewellery).

This thesis consists of eight chapters. The rest of this chapter provides some

preliminaries on scanning techniques and triangulation methods. In Chapter 2 an

overview on reverse engineering approaches is offered. Work on reverse engineering

is reviewed by focusing on the application scope and the type of CAD model

representation used. In Chapter 3 we present our approach to detecting and extracting

features from a 3D point cloud based on point concavity intensity and surface normal

variation. A fast and efficient curve approximation method for fitting cubic rational

Bezier curves to 3D points is presented in Chapter 4. Chapter 5 focuses on

reconstructing the features from the feature regions using the contours constructed by

the method provided in Chapter 4 and we discuss the editability of our features. In

Chapter 6 we present examples of our framework whereas in Chapter 7 we examine

extensions of our suggested framework and application to which our framework may

be applied. Chapter 8 provides conclusions.

1.2. Preliminaries

Reverse engineering typically consists of four phases: data acquisition and

preprocessing, data segmentation, surface fitting and CAD model construction. In the

context of our work we focus on point cloud segmentation and CAD model creation.

Therefore we will briefly present basic data acquisition techniques and triangulation

methods used for the initial processing the scanned data.

1.2.1. Scanning techniques

The first step in reverse engineering is the acquisition of the data. [89] provides an

analytical survey of data acquisition techniques. Data can be acquired from the

5

surface of an object meant for re-engineering either indirectly, with non-contact

methods, or directly, using contact methods. Non-contact methods use light, sound or

magnetic fields to obtain surface data information. On the other hand, tactile (contact)

methods use mechanical probes located on the end of a mechanical arm to actually

touch the surface of the scanned object. Coordinate measuring machines (CMM) are

the more popular tactile method because they can be programmed to follow specific

scanning paths and the data they produce are very accurate and practically noise-free.

Optical methods are the most frequently used non-contact method. There are various

approaches to using light sources for acquiring position data on an object’s surface. A

fast and common method is triangulation, where the locations and angles between

light sources and photo sensitive devices are used to determine positions on the

surface of the scanned object. A light source, i.e. laser, is projected onto the object’s

surface at a pre-specified angle and a photo sensitive device determines the angle of

reflection off the surface. Triangulation is then used to determine the position data.

Ranging methods are also frequently used, where the distance measurements are made

by sensing time-of-flight of light beams.

These scanning techniques produce raw data. By raw data we mean an unstructured

collection of geometric primitives such as a point cloud or a range image. The density

of the data sets produced by the various methods depends on the sampling rate used to

acquire information from the object’s surface. Also, very often the point clouds

obtained contain noisy data due to physical characteristics of the object, such as

topology and texture, or limitations and regulations of the acquisition method used

(i.e. accuracy limitations, calibration). However, processing methods have been

suggested that can handle and overcome this problem.

1.2.2. Triangulation methods

The initial data representation of a scanned object is the 3D point cloud. From this

form, models using other representation schemes can be constructed, depending on

the application’s aim and the intended use of the models. A standard data

representation model that can be generated and useful for applications is the

6

triangulated mesh. The triangulation of the point cloud provides basic connectivity

and neighborhood information for each point of the raw data set and is usually used as

an intermediate representation, before surface fitting and reconstruction is performed.

Many algorithms have been suggested for triangulating 3D point clouds [11]. [20]

presents an incremental approach to building a triangulation by adding points based

on specific criteria. [43] present an algorithm based on the idea of determining the

zero set of an estimated sign distance function. Work such as [5] deal with the

problem of point cloud triangulation from a computational geometry point of view,

basing their approaches on variations of the Delaunay triangulation. In [45] a surface-

based algorithm is suggested where for each point of the cloud, nearest neighbors and

their orientations (in the estimated local tangent plane) are determined and this

information is used in a growing process where a triangular mesh is constructed

incrementally starting from a seed triangle by adding points based on the neighbor

information.

1.2.3. Point cloud preprocessing

Point cloud preprocessing is often needed in the reverse engineering process to

remove noise from the acquired data [89]. [37] perform filtering on the point cloud

before using a curvature-based approach for data segmentation. Often smoothing

techniques are applied to smooth out noise from the point cloud. Algorithms have also

been developed for mesh smoothing and denoising [79]. These methods look to

preserve the features of the object while removing noise from the mesh. A classical

approach is to use some form of Laplacian smoothing [91].

Preprocessing is also used to detect symmetries that are helpful later on in the

reconstruction phase. Such work is presented in [61]. The authors find approximate

symmetries in a point cloud, since most of the time the data acquired by scanning

contains errors that prevent the detection of exact symmetries.

7

CHAPTER 2. OVERVIEW – REVERSE

ENGINEERING AND CAD

2.1 Introduction – Reverse engineering and its applications

2.2 CAD model representation schemes used in reverse engineering

2.3 Using high-level model representations for reverse engineering

2.1. Introduction – Reverse Engineering and its applications

Reverse engineering is the process of obtaining a geometric CAD model from

measurements obtained by scanning an existing physical model. The reverse

engineering process consists, in general, of four main phases: data capture and

preprocessing, segmentation, surface fitting, and the CAD model creation [89],

[46],[14]. The first phase concerns the object data collected by some kind of scanning

method and any type of preprocessing that may be carried out (e.g. noise removal).

The segmentation and surface fitting stages refer to the decomposition of the original

data set into smaller sets so as to fit surfaces to the points, thus leading to the last

phase of the process which concerns the CAD model creation.

Reverse engineering methods are used in various applications. They are widely used

in mechanical part engineering and manufacturing for re-engineering or replicating

existing parts for which no CAD models exist. Also, there are cases where the original

CAD model no longer corresponds to the physical part that was manufactured because

of subsequent undocumented modifications made after the initial design stage. Works

such as [84], [85] have concentrated on creating high accuracy models of

manufactured mechanical parts. A characteristic of the objects re-engineered is that

they are usually parts of larger objects and therefore have to fit and connect exactly

8

with other parts, like pieces in a puzzle. For this reason, the models created through

the reverse engineering process must be very accurate and well defined.

Reverse engineering is applied in industrial design, such as automobile exterior parts

design. Stylists and artists very often create physical models of their concepts by

using clay, plaster or wood. These real-scale models are then used to create CAD

models for manufacturing the objects on an industrial scale. Also the CAD models

provide the artists and stylists with the ability to re-evaluate their designs, especially

when they can easily re-design or modify them as needed. Reverse engineering

encourages conceptual design because the designer creates an initial prototype, scans

it and manipulates it as desired. Reverse engineering is needed for aesthetic design

because designing with CAD systems is quite challenging since many freeform

surfaces are involved.

In addition, reverse engineering is used for the generation of custom fits to human

surfaces and for mating parts. Examples of such applications are custom helmets,

space suits and prosthetic parts. An example of such an application is described in [6],

where generic models of mannequin torsos are fit to 3D point clouds of human torsos

for garment modeling applications.

Reverse engineering techniques are often applied to medicine and animation. An

example of a medical application is the creation of bone pieces to be used in

orthopaedic surgery for the substitution of a shattered bone. The bone supplement is

re-engineered to exactly fit with the neighboring bones of a specific patient. In

animation, a prototype of a character is drafted, scanned, recreated from the 3D point

cloud and finally used in an animated sequence.

Re-engineering objects of freeform design is essential for supporting custom design in

a CAD model reconstruction system. It provides user-designers with the capability to

modify re-engineered CAD models according to their preferences and to incorporate

in novel designs. For instance, in the case of jewellery re-engineering, the user-

designer might like to be able to modify the dimensions of a ring to produce one of

larger size, or be able to choose certain parts of the object to use them to create other

9

pieces of jewellery, e.g. a matching set of earrings. To this end, one needs to exploit

the features of the original model and the relationships and constraints that hold

among them.

2.2. CAD model representation schemes used in reverse engineering

Reverse engineering results in the creation of CAD models of physical objects. The

more information a CAD model contains and provides the better, especially in cases

of applications that demand accuracy and robustness. An appropriate CAD model

should be able to capture design intent. A means to achieve this is by parameterizing

dimensions and tolerances and defining constraints. Besides, a usable model need not

necessarily result from exact interpolation of the 3D point cloud, but usually results

from suitable approximations, since the point cloud most often contains noisy data.

Raw point data collected by 3D scanning techniques are usually rendered by building

an interpolating robust polygonal mesh. This approach is accurate and fast but

provides no means for large scale subsequent modifications. Only local interactive or

non-interactive tools are provided that are usually targeted to correcting small

imperfections and eliminating noise effects. CAD applications require robust and

editable CAD models to support processes such as reproduction, design modification

and redesign.

The type of representation scheme used for the model reconstruction in reverse

engineering is heavily linked to the intended application. Some of the most often

encountered CAD representation models are: point clouds, meshes, boundary

representations (B-reps), constructive solid geometry (CSG) models, volume models

and feature-based and constraint-based models. We will briefly refer to each model

representation from a reverse engineering point of view.

A point cloud is a collection of 3D points that are acquired during the scanning phase

of the reverse engineering process, and it is the initially obtained representation of the

object. The point cloud describes the object without providing any information about

the connectivity of the points, the geometry of the object or the design intent.

10

Therefore this type of representation model is inappropriate for applications where

editability is required. Such representations are also usually costly in reference to

system resources, especially in the case of large point clouds.

Meshes (e.g. polygons or triangles) lead to models that conform to the original

physical object. However, meshes that perfectly interpolate the 3D point cloud via

triangulation or similar methods do not capture design semantics, such as design

intent, functionality and behaviour. Therefore, this type of model representation is not

appropriate for objects with specific conceptual design and functionality, such as

mechanical and industrial parts. Higher level polyhedral representations are not

appropriate for describing complex and detailed objects. In this case, a large number

of polygons is needed to sufficiently approximate the initial object and this is costly

both time-wise and space-wise. Also, arbitrary shape manipulation is not efficient

when the object is represented with polygonal meshes. The creation of accurate

models is extremely difficult, especially when the object is small, complex and

curvaceous, such as jewellery. This type of representation is suitable for rendering,

not for interactive modifications and therefore very often other representation

schemes are converted to polyhedral representation for this purpose. However there

are reverse engineering approaches based on meshes. For instance in [88] the authors

present an approach for manipulating triangular meshes to segment the mesh into

feature regions and their connecting border sets. [11] presents an approach for using

alpha shapes and simplified meshes for object reconstruction.

Boundary representation models (Brep) describe the edges and facets of the boundary

of the object. It is the representation that naturally follows the point cloud phase

during reverse engineering. Many algorithms have been developed for creating a

boundary representation model from a 3D point cloud [10]. A Brep model may be

constructed using NURBS (Non-Uniform Rational B-splines) or other surface

patches. This type of representation is useful in applications where freeform surfaces

are part of the repertoire of primitives [94]. Brep is useful for representing any type of

object, such as mechanical parts and objects of aesthetic design. Surfaces can be

described using appropriate parametric representations. However, surface patches and

plain Brep models do not capture design aspects of the object that refer to

11

functionality and part relationships. Therefore, the information provided through this

type of model is limited and does not provide tools for modifying parts of the model

that affect the whole design (usually editing of local features is feasible by

interactively placing control points). However, Brep models are fundamental

representations which can be used in combination with other elements (e.g. features,

constraints) to achieve more flexible and useful models. For instance [53] creates a

surface representation from a point cloud. The surfaces are grouped into feature

objects and then the model is modified based on constraints derived from regularities

that exist in the Brep model, to achieve a more ideal representation of the original

object.

Constructive Solid Geometry (CSG) models are created by performing Boolean

operations on solid primitives e.g. spheres, cones, cylinders and cubes. From this

definition we can perceive that CSG models can only represent objects that can be

created from solid primitives, therefore this occludes the representation of free-form

surfaces and objects. In general, the CSG model representation can be used in

mechanical part engineering and manufacturing applications or in other applications

where the design history of the objects can be recorded as a sequence of Boolean

operations on geometric primitives. More abstract designs cannot be represented by

this type of model. Converting CSG models to render-able ones is extremely difficult

and therefore CSG is commonly used in conjunction to Brep. In this case a Brep

model is always maintained and every modification is transformed to an incremental

Brep editing operation.

Another scheme that can be used in reverse engineering is the voxel-based approach.

The object being reverse engineered does not necessarily pass through the 3D point

cloud phase, but can be initially represented directly as a volume model made up of

voxels. These models can be created using i.e. haptic shape modeling techniques such

as in [97]. This approach to reverse engineering is useful for avoiding the 3D point

cloud data phase, which is cumbersome because of the need to remove noise, and for

creating robust models. However, it is an approach feasible only in the case where we

are allowed to come into contact with the object being scanned and our probe is

appropriate for the level of complexity of the object. Voxel-based representations are

12

useful in representing solid objects, because they provide information about the

volume properties of the object. However, much like CSG models, they are not

appropriate for object models that are to be modified or manufactured because they

are not “flexible”. Editing specific parts of the model cannot be carried out unless the

model is transformed into a surface model first. Also, relationships between parts of

the object are not defined, nor is it clear how each part is connected to others. In our

context, voxel-based models are useful if they are combined with feature and

constraint properties. The voxel-based representation can also be used as an

intermediate representation during surface reconstruction such as in [92].

A model representation that is growing more and more popular is the feature-based

and constraint-based model. The model is described by its features and the

relationships between them [71]. Constraints are applied to the features to create more

accurate and robust models but also for beautification. This type of model

representation is known to be appropriate for manufacturing of mechanical parts,

where there are well defined relationships among the different elements of the model.

Also, feature-based models are well suited to industrial design and manufacturing

since the model can be easily modified. This is due to the knowledge provided by the

model concerning tolerances, constraints, relationships and connectivity among the

features. Therefore, feature-based methods are often characterized as knowledge-

based [31]. Their main objective is to exploit any knowledge and information that is

connected to design intent, functionality and construction process of the object being

re-engineered. We will examine these types of models more thoroughly in the

following section.

An object can also be represented by its skeleton. By skeleton we mean the closure of

all points that have more than one closest point on the shape boundary (for example

the medial axis transform). This representation provides the topology and shapes that

exist in the object and also reflects the symmetries of an object. Depending on the

type of application the skeleton is used for, it may be a 2D or 3D representation. For

instance, in 3D the medial axis transform produces a medial surface. The exact

computation of the 3D skeleton is a computationally intensive problem that returns a

skeleton as complex as the object itself. Therefore we usually seek for an

13

approximation. A skeleton representation scheme is used in various CAD applications

for object recognition and retrieval [22], animation [13] and other solid modeling

operations([72, 78]). It is widely used in feature-based modeling, where it can be

employed to describe the shape of features, in feature detection and extraction

applications and shape deformation, for instance refer to [58] and [99].

2.3. Using high-level model representation schemes for reverse engineering

Applications that call for an acceptable aesthetic result as well as the capturing of the

design intent, i.e. industrial and automobile design, make the use of constraints

mandatory for a satisfactory aesthetic result. These types of applications are well met

using higher- level representation schemes (i.e. constraint-based and feature based

models) that incorporate knowledge and constraints into the model to make it more

flexible and editable. Also complex applications, such as rapid prototyping, model

redesign and reproduction call for editable 3D CAD models that are smooth, robust,

and accurate. A characteristic of the objects re-engineered is that they are usually

parts of larger objects and therefore have to fit and connect exactly with other parts,

like pieces in a puzzle.

For editable models that can be used in redesign and custom design, feature-based

approaches in combination with constraints is preferred so that local and global

modifications can be made on the model. Also if the model is represented as a union

of features that are defined by parameters then these feature objects can be used in

other models. A simple representation of an object using surface patches makes it

very difficult to perform global or even local modifications on the object without

compromising the robustness of the model. Higher level representations such as

feature-based models allow modifications to be propagated throughout the model

without affecting its robustness and accuracy. We will briefly review the projects that

have focused on using this type of model representation for reverse engineering.

Research such as [84, 85] have concentrated on creating high accuracy models of

manufactured mechanical parts. The REFAB project [26, 85] uses a feature-based and

constraint-based method to reverse engineer mechanical parts. REFAB is a human

14

interactive system where the 3D point cloud is presented to the user, and the user

selects from a list a feature that exists in the cloud, specifies with the mouse the

approximate location of the feature in the point cloud, and the system then fits the

specified feature to the actual point cloud data using a least square means method

iteratively. The authors give emphasis on the fitting of pockets, where the user draws

a profile of the pocket on the point cloud and the system then fits the profile to the

data and the profile is then extruded to create the pocket. This feature-fitting process

is made more accurate by using constraints that are detected by the system, verified

by the user and then exploited to achieve a better fitting of the features according to

the data. The system supports constraints such as parallelism, concentricity,

perpendicularity and symmetry. The constraints defined and used in REFAB seek to

reduce the degrees of freedom associated with the object as much as possible, so as to

achieve high precision models in less time.

A feature-based reverse engineering method was also used by Au et. al [6] for reverse

engineering a mannequin for garment design. Generic models of mannequin torsos are

fit to 3D pint clouds of human torsos for garment modeling applications. The basic

concept in this method is to create a generic mannequin model of a human torso,

which is appropriately aligned with the 3D point cloud of the desired human torso

model, and the generic model is fit to the point cloud by matching up characteristic

points of the models e.g. peaks. This method creates parameterized models by

exploiting the features of the object and by using them to constrain the fitting process.

It is an automated approach to reverse engineering human torsos that creates

parameterized models with good accuracy.

Work such as [52, 53] concentrate on how constraints can be detected and efficiently

applied in the reverse engineering procedure to create more accurate and aesthetic

models. The authors analyze the type of symmetries and shape regularities that can be

observed and detected in a brep model and how they can be grouped into constraints

that can be applied on the model. [9] focus on constrained fitting and how constraint

systems can be more efficiently solved and applied to achieve a better model.

15

[88] presents a reverse engineering framework where a mesh is segmented based on

techniques derived from morse theory. The mesh created from the point cloud is

divided into separator sets which are combined with feature skeleton to detect primary

regions of the object which are finally fitted with surface patches.

In a nutshell, research on extracting and exploiting features from point clouds of

objects of both mechanical and freeform design for the purposes of redesign,

reproduction and custom design is still ongoing and a topic of current interest. In this

context, we present an approach that detects and defines features and combines them

with solid modeling techniques to achieve robustness and editability.

16

CHAPTER 3. FEATURE DETECTION AND

EXTRACTION

3.1 Introduction

3.2 Related Work

3.3 Deriving Point Concavity Intensity

3.4 Point cloud segmentation through region growing

3.1. Introduction

In this chapter we present a method for detecting and extracting features from point

clouds for the purpose of re-engineering. The objects that can be re-engineered by the

proposed approach can be either of mechanical or freeform design. Re-engineering

objects of freeform design is relatively more difficult and complex than reconstructing

mechanical parts. Mechanical parts usually have specific geometric characteristics,

such as symmetries and swept profiles that are fairly easy to detect and parameterize.

On the other hand, in the case of freeform objects, there are often features that are

difficult to extract. In the case of restricted mechanical parts, features libraries can be

defined and used for detecting features in the point cloud, whereas for freeform

objects this is not feasible.

3.2. Related Work

The first issue we face in creating robust feature-based CAD models from 3D point

clouds is that of segmenting the point cloud into individual subsets that correspond to

features. Much work has been done on segmenting a point cloud into feature-like

17

subsets for surface reconstruction. The usual approach is to exploit the changes in the

surface curvature and to follow a region growing approach. In [88] a method for

detecting and extracting feature regions in a point cloud is presented based on

hierarchical morse complex segmentation and feature skeleton. Primary regions and

separator sets (blending regions between primary regions) are detected and surfaces

are fit to these regions. Another approach to segmenting a point cloud is presented in

[27] where the authors detect closed sharp feature lines as borders of surfaces patches

by applying a region growing method with normal estimation to produce clusters of

points that, when represented as a graph, can reduce the problem size by representing

the point cloud. However this approach is limited to objects with sharp features, and

therefore it is not applicable to objects of freeform design. [45] focuses on a curvature

based approach to feature line extraction from meshes of point clouds of mechanical

parts.

On a different level, in the REFAB project [26], a user-computer interaction approach

is followed for data segmentation. Specifically, the end-user specifies modeling

characteristics in the point cloud, such as profile curve and points for pocket

construction, and the system fits the feature into the point cloud.

We propose a method that achieves a feature-based segmentation of the point cloud

by using the concavity intensity of the point cloud to decompose it into subsets

(components) that correspond to features of the physical object. With the term

“concavity intensity” we refer to the smallest distance of a point of the cloud from the

convex hull of the cloud. The sets of points are then fitted with curves and surfaces,

and feature attributes and constraints for each component are derived. The CAD

model is then built on these components by defining and applying constraints

concerning the features and their connectivity.

In the following we will present our point cloud decomposition method, which

combines point cloud concavity intensities with region growing.

18

3.3. Deriving Point Concavity Intensity

Throughout the following we assume that our point cloud has been pre-processed to

remove duplicate points (Figure 3.1). The first step in performing feature-based

reverse engineering is to divide the point cloud into individual components, such that

each component corresponds to one or more features.

Figure 3.1: Point cloud of a screwdriver with 27k points [23]

The work presented in this section employs a characteristic introduced in [57, 58].

The authors present a shape decomposition and skeletonization method for

polyhedrons that is based on approximate convex decomposition. The convex hull of

a polyhedron is computed and the concavity of the vertices of the polyhedron is

calculated and used as a criterion for the decomposition of the object [56]. The

concavity of a vertex is defined as the distance from the vertex to the convex hull

surface of the component/polyhedron. The polyhedron is split into components at

locations where the concavity of the vertices is high. An iterative method is then used

to simultaneously find the most efficient shape decomposition and the skeleton of

each decomposed component. We apply the principle of vertex concavity in

conjunction with normal variation to decompose point clouds into components that

represent features.

We compute the 3D convex hull of the point cloud using the Quickhull algorithm [7]

(Figure 3.3). We then calculate the concavity intensity of each point of the point

cloud.

19

Figure 3.2: A point cloud of a screwdriver point cloud and its convex hull

We define the concavity intensity I(p) of a point p as follows. Let pt be the track of the

point on the convex hull on some face f of the convex hull. Then I(p) is the smallest

distance ||ppt|| such that the line segment ppt does not cross the cloud point.

Figure 3.3: The screwdriver point cloud concavity intensity map [23]

20

Figure 3.4: The Stanford bunny concavity intensity map [77]

Figure 3.5: Concavity intensitiy map of points representing a dinosaur [23]

Figure 3.3, Figure 3.4 and Figure 3.5 display the concavity intensities of points

belonging to different point clouds, a screwdriver, a dinosaur [23] and the Stanford

bunny [77]. In the concavity intensity map the values are rendered using greyscale,

where black corresponds to points belonging to the convex hull, whereas white

corresponds to points that are farthest away from the convex hull. We can observe

that edges (rapid variations in concavity intensity), saddle points and extrema can be

used to partition the point cloud into components that can later be refined as the

features of the object.

21

A brute force approach to computing concavity intensity of each point of the point

cloud is to calculate the distance of each point from each facet belonging to the

convex hull of the point cloud. Then we check for intersection with the triangulated

point cloud and select the smallest distance derived by a projection that does not

intersect the cloud point. This however results in general in a time complexity of

O(n2), where n is the number of points in the point cloud. This is prohibitive for large

complex point clouds with convex hulls that consist of many facets. Therefore, we

have developed an algorithm for computing the intensity of each point without having

to examine all the polyhedra of the convex hull. More specifically, it is evident there

are convex hull facets for which it is meaningless to examine their distance from the

point cloud point, simply because topologically, in reference to the point, they are

located much farther away than other facets. For instance, suppose we would like to

measure the distance of a point close to the tip of the screwdriver from the convex

hull. Thus, the facets belonging to the convex hull that are located far away from the

point under consideration cannot contribute to the smallest distance from the convex

hull. The target facet will be located somehow close to the point.

The search algorithm starts by calculating distances from facets containing a specific

vertex v belonging to the convex hull. The vertex is chosen based on its distance from

the point p in one of the three coordinate directions x, y and z. Let S(p, r) be a virtual

sphere with radius r and center p and apply the search algorithm for each convex hull

vertex that is located inside this sphere (Figure 3.6). The radius r is calculated by

determining the smallest difference (px-vx ≠ 0) between coordinates along one of the

direction axes, e.g. along the x axis, and multiplying it by constant accuracy

parameter k, which defines the final size of the virtual sphere. A larger sized sphere

corresponds to more convex hull vertices for which the algorithm will be applied.

)(xx vpkr −=
(Eq. 3.1)

22

The radius r is estimated after a short pre-processing step applied to the convex hull

vertices. We sort the vertices individually for each coordinate direction x, y and z

(O(nlogn) pre-processing time) and locate the closest axis-wise neighbours in

logarithmic time (O(logn) using binary search).

To enforce the non-crossing requirement we apply an additional constraint for

choosing vertices of the convex hull. Specifically, for each of the points located inside

the virtual sphere with radius r, we only apply the algorithm for vertices belonging to

facets that are located on the correct “side” of the convex hull, in reference to point p.

The “correct side” of the convex hull is determined with the help of the normal vector

of the local surface at p, which is calculated from the adjacent facets to p (note that we

have performed a triangulation of the point cloud using Tight Cocone in O(nlogn)

expected time [28]. From the triangulated model T of point cloud we determine the

neighbouring points of each point p and the normal vector ni of each triangle adjacent

to p. By computing the vector sum of all the normal vectors of the neighbouring

triangles, we obtain an estimation of normal vector of the local surface at p. This is

then used to decide which points of the convex hull are on the appropriate side of the

surface.

Figure 3.6: The virtual sphere S(p,r)

The search algorithm is a recursive procedure that performs a local search around the

vertex v to locate the convex hull facet for which the distance from p is minimized.

For this facet the algorithm is repeated until no facets with smaller distances are

detected.

23

The algorithm takes as input the point cloud S, a triangulation T of the point cloud and

the convex hull H. For each point p of the point cloud, we first determine if it belongs

to the convex hull. In this case, the concavity intensity of the point is zero (I(p)=0). If

the point does not belong to the convex hull then we must find the facet f of the

convex hull for which the distance between point p and the track p′ of p on the plane f

is minimum (dmin(p,p′)). This minimum distance is determined by applying a recursive

local distance search which begins at a convex hull vertex v and, after determining the

distances of point p from each convex hull facet f that has v as a vertex, searches the

remaining vertices of the facet with the smallest distance. This process is repeated

every time a facet is found for which the minimum distance(s) is(are) smaller than the

previous detected.

Figure 3.8 displays an example of the local search algorithm. By applying the starting

point selection criteria, we determine that a possible starting point of the convex hull

for the algorithm is point #2. The minimum detection process begins by calculating

the distance of point p from each adjacent facet to point #2. From the calculated

distances we conclude that the smallest distance is located for facet (2, 4, 15). The

algorithm then continues by repeating the above process for vertices #4 and #15, for

which the smallest distance is returned for facet (4, 15, 16). The next repetition of the

algorithm returns that none of the remaining facets formed by #16 correspond to

distances smaller than that returned by facet (4, 5, 16). Therefore the algorithm

terminates and returns the intensity of point p which is I(p)=0.000014.

This approach to computing the concavity intensity of a point is guaranteed to

compute the correct distance since it is performed on the convex hull. The shortest

distance cannot correspond to a projected point outside the convex hull; the shortest

distance always corresponds to a projection that is located inside a polygonal facet of

the convex hull. This is demonstrated using an example in 2D space. Suppose a point

p of the point cloud is projected on edge f and let p’ be the closest point on the line

defined by f. Then, ||pp'|| is the corresponding distance (Figure 3.7). If p’ is outside the

line segment f then pp’ should intersect a neighbour edge f’ at point q. But then ||pp’||

is larger then ||pq|| which contradicts our initial assumption. Thus f is not the closest

24

edge to p and we continue by taking the projection of p on f’ finding k which in this

case is the closest point of the polygon to point p.

Figure 3.7 Finding the closest edge to point p

The point concavity intensity calculation is summarized in Algorithm 3.1 and

Algorithm 3.2.

Figure 3.8: An example of the local distance search algorithm

p

p'

q k

f

f’

25

Algorithm 3.1: Local Distance Search Algorithm

Local_distance_search (s, p, dpre)

Input: Starting point s, cloud point p, previous smallest distance dpre

Output: Minimum Distance dmin

1. For every facet fi (s,s1,s2) of s

2. find projection point p′ of p on the plane of facet fi

3. if d(p, p′) < dpre

4. dpre= d(p, p′), v1=s1, v2=s2

5. end

6. if dpre < dmin then dmin=dpre

7. d1=local distance search(v1, p, dpre)

8. d2=local distance search(v2, p, dpre)

9. if d1 < dmin dmin=d1

10. if d2 < dmin dmin=d2

11. return dmin

26

Algorithm 3.2 Point Concavity Intensity Computation

Algorithm 3.1 has been experimentally observed to run in constant time (worst case

being O(n)) whereas Algorithm 3.2 runs in O(nlogn) time, where n is the cardinality

of the point cloud.. The triangulation of the point cloud is obtained in O(nlogn) time,

using TightCocone, the sorting pre-processing takes time O(nlogn) and searching for

closest vertices of the convex hull is performed using binary search in O(logn) time.

Thus the overall expected time complexity is O(nlogn).

3.4. Point cloud segmentation through region growing

The point concavity intensity values calculated in the previous section are used to

segment the point cloud into feature components. A feature component is bounded by

areas where abrupt changes in the direction of the normal and/or rapid concavity

intensity variations are observed. After calculating the concavity intensities of all the

Point_concavity intensity ()

 Input: Point cloud S, triangulated mesh T of S

 Output: Concavity intensities Ii for every point pi ∈ S

1. For every point pi ∈ S

2. if pi ∈ convex hull

3. return I(pi)=0

4. else

5. find the starting vertices v of the convex hull that are located inside a

virtual sphere with radius r

6. for every vertex vj

7. initialize dmin and dpre

8. dj=local_distance_search(vj,p,dpre)

9. end

10. return I(pi)=min(dj)

11. end

12. end

27

points that form the point cloud, we apply a region growing method to divide the

point cloud into its components.

Our region growing method is based on two criteria:

i) the normal vectors of neighbouring points belonging to the same region should

form an angle smaller than a threshold t and

ii) the approximate gradients of the concavity intensity function in directions x, y and

z for neighboring points of the same region should maintain the same sign value,

meaning that there are no zero crossings observed between them.

From the triangulation of the point cloud we can derive a normal vector for every

triangle belonging to the mesh. For every point of the point cloud we compute a mean

normal vector by taking into account the normal vectors of all the triangles that have

the point as a vertex. This mean normal vector represents in general the direction of

the normal of the local surface area created by these facets at the specific point

location. By computing the angle between the normals of two points we can obtain

information about the object’s shape at that location. For instance, if the normal

vectors of two neighboring points form a sharp angle, then it is most probable that a

sharp feature is located at that position in the original object. If the angle formed by

the vectors is small, then the surface area is smooth, implying that the points belong to

the same shape feature. Therefore, the first region growing criteria can be summarized

in the following equation:

tnormnorm pi ≤),(α

where α is the angle formed by the normal vectors belonging to points i and p, and t is

a threshold value used to determine if the points belong to the same region or not. The

threshold t is an adaptive factor that can be used to define the number of regions that

the method will detect. Specifically, if the threshold is small, then the criteria takes on

a more strict nature that leads to the detection of more regions, than if a larger

threshold is used. A small threshold detects any anomalies and shape changes that

(Eq. 3.2)

28

may exist in the object, whereas a large threshold detects more intense changes in the

shape of the object, thus leading to fewer regions.

Before applying the region growing method to our point cloud we perform a pre-

processing step to calculate the variations in concavity intensity values (approximate

gradients) for all the points in the point cloud for coordinate directions x, y and z.

The variations in concavity intensity values are determined by examining the

concavity intensities of neighboring points. We will refer to neighbors directly

connected to a point p of the point cloud as its first-level neighbors, whereas with the

term second-level we will refer to the neighbors of p’s neighbors (points ri - Figure

3.9). We calculate an approximate gradient of the intensity for each point p in

coordinate directions x, y and z using the following equations:

n
xx
II

dI

n

i ip

ip

x

∑
= −

−

= 0

 n
yy
II

dI

n

i ip

ip

y

∑
= −

−

= 0

n
zz
II

dI

n

i ip

ip

z

∑
= −

−

= 0

where Ik is the concavity intensity of point k(xk,yk,zk) and n is the number of k’s

neighbors. However, since the neighbors of a point may be so close that the

coordinate difference in a direction is practically zero, i.e. xp-xi → 0, we calculate the

approximate gradients in respect to the second level neighbors of point p. Thus the

above equations are applied for the second level neighbors, meaning that Ik is the

concavity intensity of a second level neighbor k of p and n is the number of second

level neighbors of p. The approximate gradients reveal how the intensity function of

a point changes in every direction in reference to its neighboring points.

(Eq. 3.3) (Eq. 3.4)

(Eq. 3.5)

29

Figure 3.9: Point p and its first level neighbors q1,q2,q3,q4. The remaining nodes are
second levels neighbors of p

After computing the gradients we apply our region growing method. As seed points of

the method we choose points where the concavity intensity values are constant or

almost constant. Region growing is carried out by adding points to a region if the two

criteria are met. If a point does not satisfy the criteria, then it is most likely that it

belongs to a border area around the growing region.

More specifically, the region growing method begins by examining every first-level

neighbor of the seed. For each such neighbor q, we calculate the angle formed by the

normal vector of the seed and the normal vector of the neighbor q, using the dot

product. If the angle is smaller than a threshold t then we assume that the direction of

the normal in the local area is maintained, thus the neighbor is added to the region. If

the angle is larger than the threshold, we must take into account the concavity

intensity gradients of the seed and the neighbor to determine if the point belongs to

the same region, or if it belongs to a saddlepoint or extrema.

To ascertain the behaviour of the concavity intensity function in the area, we multiply

the gradients of the concavity intensity function of the seed and its neighboring point

in each coordinate direction. If dIsx·dIqx>0, dIsy·dIqy>0, dIsz·dIqz>0 this means that

there is no change in the direction of the intensity function in these coordinate

directions. Thus the neighbor belongs to the region and therefore it is added. If

dIsx·dIqx<0, dIsy·dIqy<0, and dIsz·dIqz<0 then the sign of the gradient of the seed is

different than the sign of the neighbor’s gradient in the specific coordinate direction,

p

q1

q2
q4

q3

r2

r3

r4

r5

r6

r7

r8
r9

30

implying that there is a zero crossing between the two. A zero crossing reveals the

existence of a saddlepoint or an extremum.

If neither of the region growing criteria is met for point q, then we take into

consideration the second level neighbors of q to ensure that q is a saddlepoint or

extrema. More specifically, the first level neighbors of the neighbor q are examined in

reference to the seed. The mean normal vector of the first level neighbors of q is

computed and the angle between this normal and the seed normal is calculated. If the

two vectors form an angle smaller than a more relaxed threshold t′ and the

approximate gradients of the first level neighbors of q is consistent with the behaviour

of the region, then the neighbor is added to the region. In the opposite case, the point

most possibly is a saddlepoint or extremum.

Figure 3.10 Feature regions detected by region growing

In Figure 3.10 the result of the region growing algorithm when applied to the

screwdriver point cloud is shown. The region growing method has been implemented

under the Microsoft Visual C++ programming environment using ACIS R18 solid

modeling libraries by Spatial and HOOPS 16.20 for the GUI .

31

 A short post-processing step on the feature regions may be performed manually after

region growing. Specifically, we can merge two regions together to form a single

region or we can split a region into two smaller regions. This is done manually by

specifying interactively points which can form a border between the two new regions.

Also we can create user-defined hardwired point-wise boundary contours to limit the

behaviour of the region growing method, when recalculating the regions on a portion

of the point cloud. Also border correction can be performed manually, in cases where

a feature’s border is not continuous, by defining connecting points that belong to the

border.

The criteria used by the region growing method to determine if a point belongs to a

region or not can be synopsized as follows:

The region growing method is summarized in Algorithm 3.3.

A point pi belongs to a region r, whose seed is point p, if:

1) the angle formed by the normal vectors of neighboring points p and pi is

smaller than a threshold t

tnormnorm pip ≤),(α

2) the gradients of the concavity intensity function in directions x, y and z

for p and pi maintain the same sign value, meaning that there is no zero

crossings observed between the two

,0>⋅ pxxp dIdI
i ,0>⋅ pyyp dIdI

i ,0>⋅ pzzp dIdI
i

32

Algorithm 3.3 Region Growing Method

Region_growing (s, r)

 Input: Seed s

 Output: Region r

1. For each neighbor i of s

2. If angle a(normi,norms) < t threshold then

3. add i to region r

4. else

5. if dIsx·dIix>0 and dIsy·dIiy >0 and dIsz·dIiz >0 then

6. add i to region r

7. else

8. for every neighbor i′ of i

9. if angle b(normi′,norms) < t′ and dIsx·dIi′x>0, dIsy·dIi′y >0, and dIsz·dIi′z

 >0 then

10. add i to region r

11. else i belongs to a border region/saddlepoint

12. end

13. end

14. end

15. end

16. end

33

CHAPTER 4. CONTOUR RECONSTRUCTION

4.1 Introduction

4.2 Related Work

4.3 Curve Approximation using cubic rational Bezier Curves

4.4 Examples of curve fitting using rational Bezier curves

4.5 Evaluation of our method

4.1. Introduction

In the previous chapter we presented an approach for discovering features on a point

cloud by detecting local variations in the morphology of the point cloud. This

approach results in a number of regions that represent object features and regions

representing the boundaries of the features. The boundaries of the features are

approximated by a collection of piecewise cubic rational Bezier curves that best fit the

detected border point cloud and are G1 continuous. In general, we present a fast curve

approximation method that approximates raw data with cubic rational Bezier curves.

Our approach combines linear least squares approximation with continuity constraints

to ensure G1 continuity between neighboring curves. We use the weights of the curve

to adjust its shape and parametric structure so as to construct curves that pass as

closely as possible between the data sets and join smoothly.

4.2. Related Work

The problem of constructing curves that approximate point cloud data has been

approached using different type and degrees of curves depending on the nature of the

application. The most straightforward approach to curve fitting is to fix some curve

34

parameters such as knots and weights (for Bsplines), and then use a least squares

fitting approach to compute the control points of the curve [65]. [93] provides a

thorough survey on curve fitting.

 [98] presents a method for fitting rational Bspline curves to point data for reverse

engineering applications. The authors suggest a linear least squares optimization

process where the control points and the weights of a rational Bspline curve of degree

n are iteratively refined until convergence is achieved. In [83] the authors focus on

constructing curves and surfaces from point clouds obtained by 3D scanning

techniques. The initial point cloud is triangulated and a method is introduced for

selecting appropriate points from the data set based on the triangulation. Then a curve

refinement process is performed which fits the Bspline curve to the points under

linear constraints related to the endpoints and tangent vectors. [66] proposes a method

based on squared distance minimization, which starts with an initial Bspline curve

that is iteratively fitted to the target curve. In [93] the authors suggest a method for

computing a planar Bspline curve to fit an unorganized, possibly noisy, point cloud

using an iterative squared distance minimization process based on [66] which

converges from an initial curve to the desired target shape using a squared distance

error objective quantity. [54] suggests a modified moving least squares method for

thinning out a point cloud and approximating it with a smooth curve. In [30] the

authors present an approximation method which constructs smooth curves from noisy

unordered data.

[87] discusses the pros and cons of constrained and unconstrained fitting in reverse

engineering applications. As noted by the authors, unconstrained fitting results in

root-mean-square distance minimization of the points, however fairness of the curve

is not taken into consideration, which is important in re-engineering applications.

Also, with noisy point cloud data, unconstrained curve fitting may lead to unwanted

results. The authors provide a general curve fitting approach which, depending on

what type of constraints are integrated into the process, achieves different fitting

results. Constraints to trim the search space of the curve fitting process are reported in

[33], where the authors use constraints to ensure that the curves lie on smooth

manifolds.

35

While the method proposed in [98] produces curves for the purpose of reconstructing

objects of freeform design, its drawback is that convergence is somewhat slow,

making it costly to use for re-engineering objects consisting of many complex

features. The curve fitting methods proposed in [66] and [93] are very accurate and

stable, however their performance depends on the initial curve specified interactively

by the user. [54] constructs a bspline curve to approximate a thinned out point cloud,

without providing an upper bound for the approximation error. In [83], even though

constraints are imposed on the curve fitting process, the curves obtained are not

sufficient for representing complex shapes often encountered in freeform objects. The

work in [30] is based on the assumption that no connectivity information is available,

however, in our case, the point cloud has been pre-processed and therefore we have

acquired topological information regarding the point cloud.

Software tools have been developed that can be used for curve reconstruction in

reverse engineering applications. An example of such software is SISL [73], a

NURBS software library that provides functionality for building applications handling

freeform geometry. SISL uses a global optimization approach to curve fitting that

returns very good results. We have implemented a global optimization for our

application problem and observed that is usually converging quite slowly, and

depending on the initial condition we may encounter accuracy issues and convergence

to local minima. Our application problem deals with a multitude of features resulting

from processing the 3D point cloud. The boundary regions of the features should be

approximated by piecewise curves for purposes of reverse engineering and therefore

require a effective and efficient method.

The work in this chapter focuses on re-engineering point clouds to construct feature-

based CAD models that can be used mainly in redesigning and reproduction. We look

to reconstruct not only mechanical parts but also objects of freeform design. For CAD

data representing objects of freeform design an approach that yields reasonable results

is the use of piecewise rational curves of low degree, because the weight factors allow

the shape of the curve to be better adjusted to the point data by determining the effect

the corresponding control point has on the curve.

36

4.3. Curve approximation using cubic rational Bezier curves

The region growing method mentioned in the previous chapter provides sets of points

corresponding to borders of feature regions. Suppose we have a region border

consisting of n 3D points. We would like to find the curve that best approximates this

data set to represent the general morphology of the border. We require that the

method used for fitting is of low computational complexity and of low degree.

Approaches in the literature did not meet these requirements either because of slow

convergence, or usage of curves of higher degree or no consideration of the fairness

of the curve.

Our approach is similar to the work in [98]. In this work the authors present an

optimization process through which rational b-spline curves are fit to point data. We

adopt this approach to fit cubic rational Bezier curves to sets of points corresponding

to feature boundaries and extend it to ensure that the curves created conform to the

conditions required for G1 continuity.

We use an equivalent instance of the general NURB, namely piecewise rational cubic

Bezier curves because the constraints we apply decrease the degrees of freedom of

our problem and our requirements are well met with this low degree simpler

representation resulting in fast converging optimization algorithm. Using piecewise

rational Bezier curves we basically follow an optimization approach which can

inherently rule out noisy data without affecting the shape of the boundary as a whole.

Rational curves are flexible curves that can approximate complex geometry more

accurately than pure polynomials. In general they are not preferred for reverse

engineering applications in the sense that their nonlinear multivariate format is not

computationally practical. However they are not as expensive and time consuming

when used to obtain a linear format.

Before applying our curve approximation method, we perform a small pre-processing

on the border region. We “thin out” the border region by representing neighboring

points with one representative point. More specifically we define a virtual sphere V,

detect all the border regions points located inside V (suppose n is the number of points

inside V) and calculate their center of mass, as shown in eq 4.1.

37

n

x
c

n

i
i

xi

∑
== 0 ,

n

y
c

n

i
i

yi

∑
== 0 ,

n

z
c

n

i
i

xi

∑
== 0

 We then find the border region point inside the sphere that is closest to the computed

center of mass. This point is used as a representative for the group of points inside V.

The virtual sphere is shifted to a new position (Figure 4.1(b)) and the process is

repeated until we have obtained a thinner version of the point cloud. The size of the

sphere determines the density of the thinned out cloud; the smaller the sphere, the

denser the acquired point cloud. This method of thinning also provides us with an

ordered sequence of points.

Figure 4.1 Virtual sphere containing border points. The green diamond corresponds to
the center of mass, whereas the red diamond is the border point closes to it.

The sequence of points representing the feature border is divided into subsets of

points and curve approximation is carried out on each curve segment.

Figure 4.2 A sequence of points to be approximated

(Eq. 4.1)

38

Curve approximation is carried out with a least squares optimization procedure.

Suppose Q={Q1,Q2,…Qm} (Figure 4.2) is a set of ordered border points and C is an

approximating rational Bezier curve given by the equation:

∑

∑

=

== n

j
ijj

n

j
ijjj

i

uBw

uBPw

uC

1

1

)(

)(

)(

where n=4 for a cubic rational Bezier curve, ui is the parameter value associated with

border point Qi, Pj are the control points, wj is the weight of each control point and Bj

is the corresponding Bernstein polynomial.

Assuming that all points of Q should be approximated by the curve, we would like to

minimize the error:

ei = Qi – C(ui), i=1..m.

We need to assign parameter values ui to each point Qi. We use chordal

parameterization [44] in which we express the parameter value of each point Qi in

reference to its position in the point sequence:

∑

∑

=

=

Δ

Δ

=
m

j
j

i

j
j

i

Q

Q

u

2

2

The least squares problem is then to minimize the error:

∑
=

=
m

i
ieE

1

2

∑
=

−=
m

i
ii uCQE

1

2))((

 →

(Eq. 4.2)

(Eq. 4.3)

(Eq. 4.4)

(Eq. 4.5)

(Eq. 4.6)

39

We consider the product wjPj as one variable and partially differentiate (Eq. 4.6 by

factor wkPk, k=1..4. This leads to equations (for k=1..4):

0
)(
=

∂
∂

kk Pw
E

⇒ 0)())()((2

1

4

1

4

1

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−∑ ∑∑

= ==

m

i j
ikijji

j
ijjj uBuBwQuBPw

from which we obtain the following linear system of equations:

[] [][] [] [][]wBQBwPBB x
T

x
T =

[] [][] [] [][]wBQBwPBB y
T

y
T =

[] [][] [] [][]wBQBwPBB z
T

z
T =

where (i.e. for coordinate x):

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

)()(

)()()()(

41

14131211

mm uBuB

uBuBuBuB
B

KK

MM

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

4

3

2

1

4

3

2

1

x

x

x

x

x

Pw
Pw
Pw
Pw

wP

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

)()(

)(
)()()()(

41

212

141131121111

mmmm

x

uBQuBQ

uBQ
uBQuBQuBQuBQ

BQ

KK

MMMM

Without affecting the shape of the curve or the parametrization we can assume that

one of the weights is 1. Therefore we assume that weight w2=1. We could eliminate

one more weight by reparametrizing u, but we need reparametrization to be a

parameter in the optimization process. Also to ensure G1 continuity between Bezier

curves we make sure the starting point of one curve coincides with the end point of

the previous curve and that the inner control points are located accordingly on the

tangents of the end points.

(Eq. 4.8)

(Eq. 4.7)

40

Figure 4.3 Inner control point coordinates expressed in reference to the end control
points

The unit vectors of the tangents at the end control points are estimated by expressing

each tangent of each point as a linear combination of its 4 closest neighbors [68].

Vectors wPx, wPy, wPz are modified by expressing the coordinates of inner control

points P2 and P3 in relation to the end points. In eqn. 4.9 we now have:

[] [][]
1 1

2 1

3 4

4 4

(0)
()
()
(0)

xT T
x

x

w x
w x n k

B B B Q B w
w x r t
w x

+⎛ ⎞
⎜ ⎟+⎜ ⎟⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦⎜ ⎟+
⎜ ⎟

+⎝ ⎠

Since we assume that w2=1, the system is transformed so that its final form is (e.g. for

direction x):

[] [][] [][]
1 1

3

4 4

xT T T
x x

x

w x
n k

B B B Q B w B B A
w r t
w x

⎛ ⎞
⎜ ⎟
⎜ ⎟⎡ ⎤ ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎜ ⎟
⎜ ⎟
⎝ ⎠ ,

[]

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0

0

43

1

xw
x

Ax

These systems of linear equations (for directions x, y and z) can be used to derive

values for variables w1, k, t, and w4 (all weights in vector [w] are initialized to 1),

(Eq. 4.9)

(Eq. 4.10)

41

therefore essentially determining the inner control points’ coordinates and

approximate values for two of the three weights. To achieve better curve

approximation, we proceed to a second step using the control points calculated above

to compute more appropriate weight values. However, for each system solution we

obtain a different set of variable values. Therefore the following weight optimization

procedure is carried out once for every solution set and we accordingly keep the

solution that best minimizes the least squares error.

Specifically, we express eq. 4.5 as follows:

∑
=

++=
m

i
zyxi iii

eeee
1

222)(

We partially differentiate by weights wk (k=1,3,4) and obtain a system of equations

from which we can substitute the control points and the weights found in the previous

step and optimize the weight vector. Specifically, for ∂E/ ∂wk =0, k=1,3,4, the

equations obtained are of the form:

∑ ∑∑∑

∑ ∑∑∑

= ===

= ===

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++

=
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++

m

i j
ijzjz

j
ijyjy

j
ijxjxik

m

i j
ijjzz

j
ijjyy

j
ijjxxik

uBPwQuBPwQuBPwQuB

uBwQQuBwQQuBwQQuB

iiiiii

iiiiii

1

4

1

4

1

4

1

1

4

1

4

1

4

1

)()()()(

)()()()(

Eventually we end up with the linear system:

[] [] [] [] [] []()[]
[] [][] [] [][] [] [][] [] []() [] []() [] []()()z

T
zy

T
yx

T
xz

T
zy

T
yx

T
x

z
T

zy
T

yx
T

x

CBQCBQCBQPwBBQPwBBQPwBBQ

wBQBQBQBQBQBQ

′+′+′−+′′′+′′′+′′′

=′′′+′′+′′

)1(

where (e.g. for x coordinate):

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=′

)()(

)()(

41

141111

mmmm

x

uBQuBQ

uBQuBQ
BQ

L

MOM

L

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′=
)(

)(

2

2

2

2

mx

ix

x

uBP

uBP
BQCx M

 .

(Eq. 4.11)

(Eq. 4.12)

(Eq. 4.13)

42

This procedure is carried out iteratively until the error function is minimized. An

example of the result of this method is shown in Figure 4.4. This method reaches the

best solution after 10 iterations. The red points correspond to points of the curve

segment whereas the black points are the respective points calculated on the rational

Bezier curve.

Figure 4.4 (top) Points used for approximation (red) and corresponding points

computed on curve (black), (bottom) Cubic rational Bezier curve approximating the

sequence points (red) and the corresponding control points (turquoise).

Generally this is a fast curve approximation approach that produces smooth

continuous curves that interpolate or pass close by the data points. A good

approximation is reached within a few iterations. In some cases, the minimal error is

reached after the first iteration, if the point cloud data is not noisy and the tangent

estimations are good. The accuracy of the approximating curve basically depends on

43

how well the tangents are estimated at the end points, since we restrict the inner

control points to be located on them. The weights are used not only to determine the

shape of the curve but also to adjust the parameterization of the curve. Chordal

parameterization works well, assuming that the points are given as a sequence in 3D

space.

4.4. Examples of curve fitting using rational Bezier curves

In this section we will present examples of our curve fitting method which was

implemented using Maple 11. The data sets used in the examples are areas

corresponding to feature boundaries returned by our region growing algorithm. For

each point in the border point cloud we have computed in a previous phase (feature

detection phase) its corresponding surface normal vector estimate. The boundary

point set is divided into subsets (curve segments) based on the progressive change in

the tangent vector. The point cloud is divided into as many sets needed, so that the

angle formed by the tangent vectors of the start and end point of each section is below

a threshold.

4.4.1. Example A

Figure 4.5 shows one of the region borders detected by our region growing method.

This border contains 450 3D points. We perform thinning on the border region and we

estimate the tangent vector at the each point using the nearest neighbors. Then we

divide the thinner version of the border into segments by comparing the starting

tangent vector of the segment with the sequence of points, until the angle formed by

the vectors is larger than a threshold angle value. In the following example, the border

region is divided into 3 segments. If a smaller threshold is used, then more curve

segments will be obtained.

44

Figure 4.5 (a) Region detected by region growing, (b) the border of the region to be
approximated, (c) a thinned-out border

We apply the curve fitting algorithm to each curve segment. The final curve

approximating the point cloud is shown in Fig. 4.6. The first set of points used for

approximation consists of m=40 points, with the distance between the end points

corresponding to 0.0279 and the average error is given by E/m=0.164·10-6. For the

second approximating curve, the set of points used consists of m=36 points with end

points distanced at 0.024 and average error is 0.708·10-6 after one iteration. The final

segment consists of m=34, the distance between the end points is 0.0229 and, after

one iteration, average error is 0.825·10-6. The results of the curve approximation are

summarized in table 4.1.

Figure 4.6 (a) The thinned out border region (b) the curve segments to be
approximated (#1-green, #2=blue, #3=red), (c) the final approximating curve

(a) (b) (c)

45

Curve segment # of points
Distance between

end points
Average error E/m

of

iterations

#1 40 0.0279 0.164 · 10-6 4

#2 34 0.0229 0.825 · 10-6 1

#3 26 0.024 0.708 · 10-6 1

Table 4.1 Results of Curve Approximation

4.4.2. Example B

 Fig. 4.7 shows another region detected with the region growing algorithm when

applied to the screwdriver point cloud. The border of this region consists of 498

points which is divided into three segments as show in figure 4.7(c). After thinning,

the tangents at each end point are estimated and the curve approximation method is

applied to each segment. The resulting curves are shown in fig. 4(d). The first

segment consists of m=33 points, with the Euclidean distance between the end points

corresponding approximately to 0.02. After 10 iterations the least squares error

function is minimized and the ratio average error E/m is 0.64·10-6. The second

segment consists of m=19 points, the distance between the end points is 0.014 and the

average error is 0.14·10-6 after 11 iterations (the sum of squared errors is 0.27·10-6).

Finally, the third segment consists of m=27 points, the distance between the end

points is 0.017 and after 30 iterations the average error is 0.46·10-6. These results are

summarized in Table 4.2.

Figure 4.7 . (a) The region created by region growing (b) the border of the region, (c)
the sample of points used for approximation, (d) the final curve approximation of the

border.

46

Curve segment # of points
Distance between

end points
Average error E/m

of

iterations

#1 (green) 33 0.02 0.64 · 10-6 10

#2 (red) 19 0.014 0.14 · 10-6 11

#3 (blue) 27 0.017 0.46 · 10-6 30

Table 4.2 Results of Curve Approximation

4.5. Evaluation of our method

To evaluate the result of our approximation method we performed an optimization to

compute the absolute optimal curve using the IpOpt software [47]. We perform

optimization treating ui, i=1..n, the weights and the control points as unknowns and

we minimize the objective function of eqn. 4.5 under the following constraints:

0)())((=′⋅− iii uCuCQ

where 0≤ti≤1 and i=1..n. After performing various experiments we observed that our

approach provides satisfactory results in significantly less time. In one case, for

example, the sum of the squared errors after convergence was 1.279·10-6 after

approximately 1000 iterations as opposed to 2.4·10-6 after 12 iterations as provided by

our approach. In general, from repeated experiments, we have determined that the

average error of the curve computed by our approach is about 0.5-2.5 times larger

than the average error of the optimal curve. Also the average error computed by our

method is larger than the actual error for the curve derived by our approach. Therefore

we can conclude that the curve constructed by our method is a satisfactory

approximation.

Eq. 4.14

47

Figure 4.8 A sequence of points approximated by a curve C, under the constraints of
Eq.4.14

In general, we have developed a fast curve fitting method which derives cubic rational

Bezier curves conforming to G1 continuity constraints. By imposing continuity

constraints into the least squares optimization process we ensure that the computed

control points respect the estimated tangents at the end points. We also adjust and

control points and weights until the error of the least squares is minimized. The

weights are used not only to affect the shape of the curve but also to adjust the

parametrization of the curve.

As compared to other curve approximation methods which perform curvature-based

fairness our method is effective and efficient with satisfactory accuracy. This is

important given that the application in which this method is employed calls for the

reconstruction of the borders of all features, which in the case of freeform objects,

may be a few hundreds and quite complex.

48

CHAPTER 5. FEATURE RECONSTRUCTION

5.1 Features in reverse engineering

5.2 Solid modeling techniques

5.3 Generating a feature assembly plan

5.4. Parameter definition and editability

5.5 Persistent naming

In this chapter we consider how feature components that consist of feature regions

and boundary curves can be used to reconstruct the complete CAD model of an

object. We apply solid modeling techniques to combine and obtain the entire 3D

model representation. Furthermore we introduce parameters and constraints on these

features to allow editing and capture design intent.

5.1. Features in reverse engineering

“Feature”, in computer-aided design, is a new term that is used to describe an entire

class of concepts. In general, features are generic shapes or characteristics which can

be associated with certain attributes and knowledge [71]. These attributes can describe

the morphology of the object, i.e. through parameters defining its size, shape and

orientation, and its behavior in a CAD model, i.e. connectivity issues and constraints.

The use of features in a model provides the user-designer with the ability to edit and

redesign the model [41]. A user-designer can even define his own feature components

to use in the design process [40]. Given this, various applications apply the concept of

features in a way compatible to the scope and aim of the respective application.

49

In reverse engineering applications, and specifically, in reconstructing mechanical

parts, features are shapes traditionally used in engineering designs such as slots, holes,

and bosses [85]. In reverse engineering objects of more freeform design, the term

“feature” is often used in the sense of feature lines [27], meaning edges/boundaries of

an object that can be detected by changes in the surface curvature of the object

[25],[39]. [88] use an intermediate data structure called a feature skeleton which is a

network of curves basically representing the boundaries of region sets. In Brep

models features can also be surfaces that can be grouped together based on certain

characteristics or properties. In this sense, we consider as a feature a group of points

that has a morphological meaning, from a design point of view. For example, in a

point cloud of a duck, a point set corresponding to the head can be considered a

feature. In a screwdriver, the points corresponding to the handle may be considered a

feature. But features can be even more specific. For example, the duck’s head can be

divided into more features i.e. beak and the rest of the head (Figure 5.1).

Figure 5.1 (left) A point cloud of a duck (right) a mesh representation of the duck

5.2. Solid modeling techniques

Features, as used from our perspective, can be reconstructed from their regions either

by surface fitting or solid modeling functions. Surface fitting would provide us with a

reconstructed surface model that would conform to the initial object from both a

morphological and aesthetic point of view, however its editing capabilities would be

limited. Therefore we choose to apply solid modeling techniques to our feature

50

regions so that the reconstructed features are more easily edited and modified. The

modeling techniques we focus on are sweeping, skinning, covering and blending.

Sweeping is a modeling function in which a closed planar domain is translated

(translational sweeping) along a trajectory curve (figure 5.2) or rotated (rotational

sweeping or swinging) around an axis to form a solid. If an open domain is swept

accordingly then a surface model is formed. [55]. Work on reverse engineering point

clouds using sweeping techniques has been done by [49]. The author performs slicing

on a point cloud using the bounding box as a guide and reconstructs a boundary curve

conforming to the points retrieved from slicing. The boundary curve is swept

accordingly to reconstruct and obtain the CAD model.

Figure 5.2 An example of translational sweeping

Skinning is a modeling function where a closed volume or solid is formed by creating

a skin surface over prespecified cross-sectional planar surfaces (figure 5.3) whereas

covering is a function that covers (that is, fits a surface onto) closed boundary curves

in solid or wireframe objects (figure 5.4).

51

Figure 5.3 Example of skinning between two parallel circular curves to create
truncated cone

Figure 5.4 (left) Covering a boundary with a face, (right) adding a point to a solid by
covering.

Blending is a function used to modify a model so that a sharp edge or vertex is

replaced by a smooth surface whose normal vectors are continuous with those of the

surfaces that originally meet at the edge or vertex. This function is used mainly for

aesthetic reasons, to make the model look smoother.

52

Figure 5.5 An example of blending

Covering, skinning and blending are techniques where surfaces are fitted accordingly

to boundary curves or other primitives. The type of modeling function used during the

reconstruction process depends on the types of curves and symmetries detected in our

feature regions, as is described in the following section.

5.3. Generating a feature assembly plan

We consider how features can be reconstructed from the subsets of points produced

by our point cloud segmentation approach using solid modeling techniques to capture

the design intent and semantics of the model. Our main focus is to reconstruct each

feature as a solid entity, preserving the shape morphology and semantics, without

necessarily interpolating the point cloud exactly. We apply symmetry detection

methods to determine what modeling technique is more appropriate in each case.

Initially we calculate the oriented bounding box (OBB) that is aligned accordingly

with the feature region point cloud [38]. This is carried out by using principal

component analysis (PCA) [29] [49] to find the axes of the oriented bounding box.

The dimensions of the OBB axes are determined by projecting the point cloud onto

each axis and using the extreme values as the axis dimension values. The PCA

provides the most significant axes of the point cloud and basically expresses the way

the point cloud is distributed by looking at the covariance of the points. To compute

the PCA, first we find the average position M(mx,my,mz) (center of mass) of all the

points of the feature region and then we compute the covariance matrix of the point

53

cloud. The covariance matrix for every point P of the feature region is expressed by

eq. 5.1 and is a symmetric 3×3 matrix. The eigenvectors of the covariance matrix give

the directions along which the point cloud is most and lest spread out.

∑
=

−−=
n

i

T
ii MPMP

n
C

1
))((1

By this method we derive the principal axis of the feature point cloud and the OBB.

The next step is to determine for each feature region which solid modeling technique

is more appropriate for reconstruction. This depends heavily on the distribution and

the geometry of the point cloud.

5.3.1. Sweeping

If the point cloud is distributed distinctly along one of the principal axes forming i.e. a

long feature, such as the screwdriver shaft, then reconstruction is initiated by slicing

the feature point cloud. A slicing plane is moved along the main principal axis of the

OBB and cross sections of the point cloud are obtained. Points of the point cloud not

on but close to the plane are projected onto it. The points derived from slicing are

used in our contour reconstruction method (as a 2D curve approximation problem) for

curve fitting. The slicing plane S is moved along the main principal axis, used as the

slicing path, until the length of the bounding box is traversed. Sequential cross-

sections of the feature point cloud derived by this method are compared to determine

if any similarities or symmetries exist and in what form. Reconstructed cross-section

curves with that can be considered identical imply the application of sweeping for

reconstruction.

For example, cross-sections of the upper half of the screwdriver shaft result in round

circular curves that, when compared, match. This implies that reconstruction at that

part of the feature should be carried out with translational sweeping. Before carrying

out reconstruction, we examine all sequential cross-sections to define the limits of the

sweeping function. Sweeping is performed on the trajectory up to the point where the

other end of the OBB is reached or the cross-section contour changes. In the example

(Eq. 5.1)

54

of the screwdriver shaft, this occurs up to the point where the tip of the shaft starts to

form. This type of sweeping, along a linear trajectory path, is also referred to as

extruding.

Figure 5.6 Feature region corresponding to a screwdriver shaft

5.3.2. Skinning

In the case where two cross-section curves are different, in size or shape,

reconstruction is performed through skinning techniques. In the previous example of

the shaft reconstruction, from the point where the sweep function ends, up to the tip of

the shaft, where we reach a feature boundary curve, sequential cross-sections cannot

be matched, thus leading to the application of skinning techniques to create surface

patches between the two cross-section curves. In general, if a network of different

cross-section curves is provided, then skinning is performed using the intermediate

curves as guides for the skinning operation.

In some cases features can be reconstructed in more than one ways. Let us consider

for example the bottom surface of the screwdriver that is connected with screwdriver

shaft (figure 5.7). This feature has 2 border curves, the outer and the inner boundary.

This feature can easily be reconstructed using skinning between the two boundary

curves. However it can also be reconstructed using rotational sweeping. By creating

the OBB of the feature region we also obtain the principal axes. The axis that passes

through the hole can be used as an axis of rotation for sweeping. The profile curve for

sweeping is obtained by slicing the point cloud with a plane that originates from the

55

rotation axis and is parallel to one of the faces of the bounding box. The points on and

very near to the slicing plane are used for the profile curve reconstruction, which is

then swept around the axis accordingly.

Figure 5.7 A feature representing the bottom of the screwdriver handle

Reconstructing features using sweeping and skinning is summarized in Table 5.1

Table 5.1 Reconstructing feature regions with sweeping / skinning

Feature Reconstruction with sweeping and skinning

1. Compute the PCA of the feature region

2. Find OBB based on principal axes

3. Create slicing plane S parallel to OBB and perpendicular to selected PA

4. Until path T (length of OBB axis) is traversed

 4.1. Move S on T

 4.2.Find all points Pi of feature region located on or close to S

 4.3 Apply curve approximation on S to construct curve c

5. Detect similarities/characteristics of curves

6 Apply appropriate modeling function for feature reconstruction

 6.1 If cross sections are identical → perform translational sweeping

 6.2 If cross section differ → perform skinning

56

5.3.3. Covering

Some feature regions can easily be reconstructed using covering techniques. This

holds for point cloud regions that are fairly flat, spread out and/or freeform. Suppose

we have the feature region shown in Figure 5.8 and its corresponding boundary box.

Figure 5.8 Top part of screwdriver handle and its corresponding boundary box

The specific feature point cloud is very thin and spread out, similar to an overturned

plate. Using the feature’s boundary curve and a sample of points located on the top of

the feature (on and very close to the upper face of the OBB) we create a surface that

interpolates the points providing a smooth result. In general, covering techniques can

be applied to cover points or other guide contours.

5.3.4. Assembling the features

A point cloud is reconstructed based on a feature assembly plan. A feature assembly

plan provides a logical structure for determining the feature parts to be reconstructed

and how they are connected. The feature assembly plan of a point cloud can be

derived based on a decomposition of an object into its features. We consider the

screwdriver point cloud as our example case. We construct a feature connectivity

graph G(v,e) where v are the nodes of the graph and e are the edges. Every node of the

graph corresponds to a feature in the point cloud, whereas an edge between two nodes

means that the two features are connected. An initial, if not final, estimation of the

feature connectivity graph is provided by our region growing feature detection and

extraction algorithm.

57

Figure 5.9 Feature Connectivity graph of screwdriver

A feature decomposition tree (Figure 5.10) of the screwdriver is derived from the

feature connectivity graph. The screwdriver’s features can be decomposed into the

following parts:

Figure 5.10 Decomposition of the screwdriver model into its feature elements

The connectivity graph is augmented with data structures for each feature node

containing information relevant to their corresponding features, such as number of

screwdriver

handle Shaft (1)

Base surface (2) Grip body Top surface (11)

Slots (# = 6) (4…9) Connecting surfaces (3)

4

3 2 1

5

10

7 9

6

8

1 2 8

1

1

1

1 1

1

1

58

points, average normal vector, average intensity value. The edges of the graph also

have corresponding data structures describing information such as the number of

points in the border, the connected features etc.

The second number (in red) in every node describes the degree of the node. From the

graph in Figure 5.9 we determine that all the nodes except for node 3 have a low

degree of 1 or 2. Node 3 however has a degree of 8. Also nodes 1, 10 and 4-9 have

one boundary contour each, whereas node 2 has two boundary contours and node 3

has eight boundary contours. Node 3 has two boundary connections with nodes 2 and

10 and 6 distinct border regions around the slots (one for each slot).

If a node in the connectivity graph is of high degree or has a large number of

boundary contours, such as node 3 in Figure 5.9, then further decomposition is

performed on the feature corresponding to the node. For example, the grip body of the

screwdriver can be decomposed into smaller regions of a reduced degree with less

boundary contours (Figure 5.11). This results in more feasible solid modeling steps

for the reconstruction of the point cloud.

Figure 5.11 Decomposition of the grip body of the handle

Specifically, the grip body is divided into the base of the grip, the six slots and six

intermediate connecting surfaces which surround the slots. The corresponding feature

connectivity graph is as follows:

connecting surfaces

(#10-15)

slots (#4-9)

base of grip (#3)

59

Figure 5.12 The feature connectivity graph after decomposition of node #3

Each feature entity in this graph contains one or two at the most continuous border

contours. Specifically, the nodes 1, 4-9, 10-15 and 16 have one boundary contour

each, whereas nodes 2 and 3 have 2 boundary contours. Also the highest degree of a

node is seven, in contrast to the previous graph where the highest degree was eight.

Therefore, the highest degree of the nodes and the number of boundary contours per

node has been reduced.

Figure 5.13 Feature decomposition tree of the screwdriver after further decomposition
of the handle grip body

screwdriver

handle Shaft (1)

Base surface (2) Grip body Top surface (11)

Bottom half of grip (3) top half of grip

Slots (# = 6) (4…9) Connecting surfaces (#10-15)

9 8 7 6 5 4

15 14 13 121110

163 2 1
1 2 7

2 2 2 2 2 2

6 6 6 6 6
6

6

60

5.4. Parameter definition and editability

The major advantage of feature based modeling is that by defining parameters on the

features, the user-designer can more easily and efficiently modify the specific feature

without necessarily affecting the rest of the solid model. While a feature is a physical

entity that makes up the physical part, an attribute (property) is a characteristic or a

quality of a feature [71]. The parameters (attributes) defined on a feature may refer to

a number of things. Some attributes may refer to the geometry or topology of the

feature shape, its dimensions, location, orientation and construction method.

Attributes may even describe properties such as material or texture of the feature.

Usually parameter definition is accompanied by the definition of constraints to which

the model must conform. We look to define parameters and constraints on our

features that determine the main functionality and behaviour of the features in the

model, i.e. dimension limitations, basic connectivity, to provide basic editing

capabilities.

5.4.1. Parameter definition

The parameters and constraints we define on our reconstructed features refer to the:

Position and alignment in the point cloud

Neighbour connectivity

Construction method

Position and alignment

The position of all the features in a point cloud A can primarily be defined in

reference to the center of mass of the whole point cloud cm(A). The OBB of a point

cloud A is calculated, providing the principal axes and the center of mass cm(A). For

each feature fi in the point cloud that is reconstructed we define:

 - the distance of the center of mass of fi from cm(A), d(cm(fi),cm(A))

 - the alignment of the feature in reference to A. We compute the angle formed

by the normal vectors of the planes passing through the middle of the bounding boxes

that contain the principal axes.

 - the size of the feature can be defined by the size of the OBB

61

Neighbour connectivity

For each feature we define parameters that refer to the neighbors of the feature and

their point of connectivity. Specifically for each feature i and its neighbor fj we define

 - the distance d(cm(fi), cm(fj))

 - the boundary curve of fi that connects with neighbor fj

Construction Method

Each solid modeling technique requires its own set of parameters that define how the

function is performed. Specifically we define:

 - Translational sweeping: profile curve and the trajectory curve.

 - Rotational sweeping: profile curve and the axis of rotation.

 - Skinning: network of cross-section curves used for skinning

 - Covering: boundary curve and any guide primitives used (i.e. points, other

curves)

5.4.2. Editability

By defining parameters on our features, we provide the capability of editing the

feature. Changing a parameter of a feature means that the model has to be re-

evaluated and reconstructed to conform to the new parameter values. Depending on

the parameter that is changed, the new feature model may be slightly or completely

different from its previous state. For example, if one of the intermediate curves used

in skinning a feature is made larger, then the resulting model will be different from its

previous instant. However, if the guide curve is changed dramatically, i.e. the shape of

the curve changes, then the edited model will be very different.

Editing functions are closely linked to constraint definition. Most often, parameter

values should be constrained with upper and/or lower bounds, so as to make sure that

the model’s design intent and functionality is not compromised. Suppose we change

the length parameter value of the screwdriver shaft. If this parameter is left

unconstrained, then a value may be provided that makes the shaft too long to be of

any practical use. Therefore, in cases like this, the parameter values must be bounded.

62

Inter-feature constraints are defined to prevent inconsistent neighboring components.

For example, the shaft of the screwdriver connects with the bottom surface of the

handle. If the diameter of the shaft is modified (scaled up or down), then the boundary

hole of the handle bottom has to be modified appropriately, so that the model is

accurate. Also, inter-feature constraints such as parallelism and perpendicularity aid

the reconstruction process by setting standards that may overcome noise problems or

anomalies that may exist in the point cloud.

Intra-feature constraints are used to define and change the morphology of the feature.

Constraints are defined on parameters such as the length between cross sections (i.e.

for skinning), the dimension of the feature, the trajectory path used for skinning and

sweeping and any other properties that contribute to the resulting constructed model.

Also constraints can be applied to the points used to reconstruct contours to allow

more difficult modifications, such as skewing.

5.5. Persistent naming

When editing parametric feature based models there are some issues that can emerge

that concern the robustness and correctness of the modeling process and its result. An

interesting problem that can arise during parametric modeling is that of persistent

naming. Persistent naming concerns the characterization of geometric and topological

entities of a parametric model so that they can be identified at any time of the redesign

process. The entities of a parametric model may be modified and re-evaluated at any

time in the design process. It is important that every modification or re-evaluation is

performed on the correct instant of an entity. So persistent naming refers to naming

the entities in such a way that reevaluation of the model leads to correct and

consistent results. An insightful state of the art survey is provided by [60], which

presents various approaches to the persistent naming problem. An example of the

persistent naming problem is provided in figure 5.12. Specifically, an initial model is

constructed by sweeping. A horizontal slot is created on F1 resulting in two feature

region f2 and f3. A rounding function is applied to edge e of feature f3. When re-

evaluating the model, a horizontal slot is created in such a way that edge e basically

63

now corresponds to edges e1 and e2. Therefore, in some way, edge e has to be

mapped to edges e1 and e2 so that rounding can be performed on both edges.

Figure 5.14 An example of the persistent naming problem [60].

Work on this problem has been done by [19, 41], who provide a scheme for storing

feature information regarding topology and geometry (E-rep) and matching the

information efficiently to deal with the naming issue. A mapping technique using

topological ids for topological entities in a parametric model is suggested by [50]. [1]

presents a naming scheme to identify entities used in parametric modeling by

apprehending design intent. In [67] persistent naming is examined in reference to

boundary representation deformation in solids.

64

CHAPTER 6. EXAMPLES

6.1 Feature Detection and Extraction

6.2 Contour Reconstruction

6.3 Feature Reconstruction

In this chapter we will present a few examples from the implementation of our

different approaches.

6.1. Feature detection and extraction examples

In this section we will present examples of applying our feature detection and

extraction algorithm on different point clouds [2, 12, 23, 77]. The algorithms for point

concavity intensity computation and region growing have been implemented and

tested under the Microsoft Visual C++ programming environment using ACIS R18

solid modeling libraries by Spatial. The GUI of the application has been implemented

using HOOPS 16.20.

- Example A

We apply our feature detection and extraction algorithm on a point cloud of a monkey

containing 2807 points. Region growing detects approximately 12 regions:

• Head body

• 2 regions for each ear (inner and outer areas)

• Brow area (2-3 regions)

• Eyes

• Nose

• Mouth-chin area

65

• Mouth

Figure 6.1 (top left) A point cloud of a monkey, (top right) the point concavity
intensity map, (bottom) the features detected by region growing.

- Example B

Our algorithm is performed on a point cloud of a duck consisting of 965 points. Six

regions are detected:

• Head

• Upper part of the beak,

• Lower part of the beak,

• Body,

• Surface under the body and

66

• a circular region on the model’s bottom surface

Figure 6.2 (top left) The point cloud of a duck, (top right) the concavity intensity map
for the corresponding point cloud, (bottom) the regions detected by region growing.

6.2. Contour Reconstruction

The contour reconstruction approach is implemented and tested using Maple 11. This

method has been tested in 2D and 3D.

-Example A

Suppose we have a cross-section from the screwdriver shaft derived by slicing the

region with a plane. We reconstruct curves that best fit the points on the plane. For the

67

means of this example, we choose a small angle for cutting the point cloud into curve

segments and retrieve four curve segments. We perform approximation on each curve

segment and retrieve the results summarized in table 6.1.

Figure 6.3 Curve approximation performed on the first curve segment

Figure 6.4 Curve approximation performed on the second curve segment

68

Curve segment # of points
Distance between

end points
Average error E/m

of

iterations

#1 7 0.0029348555 8.573 · 10-9 1

#2 7 0.002959652851 2.336 · 10-9 1

#3 6 0.002539316640 8.618 · 10-10 1

#4 6 0.003147043215 1.1816 · 10-8 1

Table 6.1 The results of contour reconstruction

Figure 6.5 (left) The point cloud to be approximated (right) the reconstructed contour

From this table of results we observe that curve approximation works extremely well

when the scanned data is not noisy. Approximation on all curve segments is reached

in only one iteration and the average error is very small. The final reconstructed curve

is shown in Figure 6.5. The reconstructed contour is smooth and approximates almost

all of the sample points.

6.3. Feature Reconstruction

Feature reconstruction is implemented and tested under the Microsoft Visual C++

programming environment using ACIS R18 solid modeling libraries by Spatial. The

GUI of the application has been implemented using HOOPS 16.20.

69

- Example

The feature region corresponding to the top of the screwdriver is fairly flat and spread

out. Reconstruction of this feature is best carried out with covering, since it is simple

to fit a surface to this feature. We first reconstruct the boundary curve of the feature

region. Using this curve, we also slice the top of point cloud with a plane parallel to

the boundary of the feature to obtain some points on the tip of the region.

Figure 6.6 The top surface of the screwdriver

We perform covering using the points at the top as guides for the fitted surface. The

resulting feature is shown is Figure 6.4.

Figure 6.7 (left) The feature point cloud and its fitted surface and (right) the surface

obtained by covering

70

CHAPTER 7. EXTENSIONS OF OUR APPROACH

7.1 Custom Design and redesign functionality

7.2 Special Applications

In this work we have presented a reverse engineering scheme that detects and extracts

features from a point cloud, reconstructs the boundaries of each feature region by

fitting the borders with smooth piecewise rational curves and reconstructs the features

using solid modeling functions to obtain parameterized, editable models. In this

chapter we examine how this framework can be extended or adapted so that it can be

applied to more advanced or specialized applications.

7.1. Custom design and redesign functionality

As described in a previous chapter, by using features and defining their parameters we

obtain editable CAD models. We can achieve even higher levels of editability and

flexibility if we combine the basic parameter and constraint definition with more local

and global constraints. Local or global constraints are imposed on a model to enforce

complex geometric structures and advanced functionality. Such constraints may be

part of a feature or span a number of different features. By applying a system of

constraints on a model and its features we can support custom design on a higher

level, providing the capability to extract individual features from a model or a set of

features and use them in the design process of a different model or for the redesigning

of the current model.

71

7.1.1. Constraint definition

The constraints that we define on our features refer to distance, incidence, angle,

parallelism, and perpendicularity. The primitives we define these constraints on are

points, lines and planes. We use pi to represent a point with coordinates (xi,yi,zi) and li

to represent a line. We use Pli to refer to a plane defined by its normal vector ni and a

point on the plane. A plane can also be defined by the equation:

0=+++ dczbyax

- Angle constraints

The angle a formed between two lines is calculated based on the dot product of the

unit vectors ti and tj of the lines:

jijiji zzyyxxji ttttttatta ++=⇒⋅= coscos

If the angle formed is 0 degrees, then the two lines are parallel, whereas if the angle is

90 degrees, then they are perpendicular.

In the case of the angle between two planes, we use the dot product of the normal

vectors of the corresponding planes.

jijiji zzyyxxji nnnnnnanna ++=⇒⋅= coscos

If the dot product is 1 then the planes are parallel, whereas if it is 0, then the planes

are perpendicular. Any other value provides the angle formed by the two planes. To

determine the relationship between two features in the CAD model, we use the normal

vectors of the planes that pass through the centers of the features’ corresponding

bounding boxes and contain the two principal axes.

To determine the angle formed by a line and a plane, we use the unit vector of the line

and the normal vector of the plane

jijiji zzyyxxji ntntntanta ++=⇒⋅= coscos

- Distance constraints

The distance between two points pi(xi,yi,zi) and pj(xi,yi,zi) is determined by:
2222)()()(jijiji zzyyxxd −+−+−=

72

The distance between two lines is useful when they are parallel. Their distance can be

evaluated by picking a point pj on one of the lines and calculating the distance from

the other line so that the dot product of the distance vector and the line is 0.

0=⋅ lidij

This approach can be used also for point line distance evaluation.

The distance between two planes can be computed when two planes are parallel. A

point p(xj,yj,zj) on one of the planes (i.e. the origin of the plane) can be used to

determine the distance from the other.

222
),(

cba

dczbyax
Plpd jjj

i
++

+++
=

This formula can be used in general for point-plane distance computation.

The distance between a line and a plane can be determined by picking a point pj on

the line such that its distance from the plane Pli is d.

Incidence constraints are used to place primitives on primitives and are applied by

setting the distance of the one primitive to the other as 0.

These constraints are applied on points, planes derived from the bounding boxes of

features, as well as edges (lines) belonging to these planes or from paths. They are

used to define the relationship between features of the cloud. For example, if two

features are parallel then the planes passing through their corresponding bounding

boxes will be parallel. Another example is two planes located at an angle, however

edges belonging to the planes are parallel.

7.1.2. Geometric Constraint Solving

We assume that the system of constraints that were defined can be solved using an

existing constraint problem solving method. A number of approaches have been

73

suggested for solving constraint systems and we will briefly refer to the method

characteristics [34].

Numerical Constraint Solvers

In numerical constraint solvers, the constraints are translated into a system of

algebraic equations and are solved using iterative methods. To handle the exponential

number of solutions and the large number of parameters, iterative methods require

sharp initial guesses. Also, most iterative methods have difficulties handling

overconstrained or underconstrained instances. The advantage of these methods is that

they have the potential to solve large nonlinear system that may not be solvable using

any of the other methods. All existing solvers more or less switch to iterative methods

when the given configuration is not solvable by the native method. This fact

emphasizes the need for further research in the area of numerical constraint solving.

Sketchpad [81] was the first system to use the method of relaxation as an alternative

to propagation. Relaxation is a slow but quite general method. The Newton-Raphson

method has been used in various systems [63, 70], and it proved to be faster than

relaxation but it has the problem that it may not converge or it may converge to an

unwanted solution after a chaotic behavior. For that reason, Juno [63] uses as initial

state the sketch interactively drafted by the user. However, Newton-Raphson is so

sensitive to the initial guess [8], that the sketch drafted must almost satisfy all

constraints prior to constraint solving. A sophisticated use of the Newton-Raphson

method was developed in [59], where an improved way for finding the inverse

Jacobian matrix is presented. Furthermore, the idea of dividing the matrix of

constraints into submatrices as presented in the same work has the potential of

providing the user with useful information regarding the constraint structure of the

sketch. Though this information is usually quantitative and nonspecific, it may help

the user in basic modifications. To check whether a constraint problem is well-

constrained, Chyz [21] proposes a preprocessing phase where the graph of constraints

is analyzed to check whether a necessary condition is satisfied. The method is

however quite expensive in time and it cannot detect all the cases of singularity. An

alternative method to Newton-Raphson for geometric constraint solving is homotopy

or continuation [4], that is argued in [51] to be more satisfactory in typical situations

74

where Newton-Raphson fails. Homotopy, is global, exhaustive and thus slow when

compared to the local and fast Newton's method [62], however it may be more

appropriate for CAD/CAM systems when constructive methods fail, since it may

return all solutions if designed carefully.

Constructive Constraint Solvers

This class of constraint solvers is based on the fact that most configurations in an

engineering drawing are solvable by ruler, compass and protractor or using other less

classical repertoires of construction steps. In these methods the constraints are

satisfied in a constructive fashion, which makes the constraint solving process natural

for the user and suitable for interactive debugging. There are two main approaches in

this direction: Rule-constructive solvers and graph-constructive solvers.

Rule-constructive solvers use rewrite rules for the discovery and execution of the

construction steps. In this approach, complex constraints can be easily handled, and

extensions to the scope of the method are straightforward to incorporate [17].

Although it is a good approach for prototyping and experimentation, the extensive

computations involved in the exhaustive searching and matching make it

inappropriate for real world applications.

A method that guarantees termination, ruler and compass completeness and

uniqueness using the Knuth-Bendix critical pair algorithm is presented in ([15], [74]).

This method can be proved to confirm theorems that are provable under a given

system of axioms [16]. A system based on this method was implemented in Prolog.

Aldefeld in [3] uses a forward chaining inference mechanism, where the notion of

direction of lines is imposed by introducing additional rules, and thus restricting the

solution space. A similar method is presented in [82], where handling of

overconstrained and underconstrained problems is given special consideration. Sunde

in [80] uses a rule-constructive method but adopts different rules for representing

directed and nondirected distances, giving flexibility for dealing with the solution

selection problem. In [96], the problem of nonunique solutions is handled by

imposing a topological order on three geometric objects. An elaborate description of a

complete set of rules for 2D geometric constraint solving can be found in [90]. In their

75

work, the scope of the particular set of rules is characterized. [48] presents an

extension of the set of rules of [90], and provides a correctness proof based on the

techniques of [35].

The graph-constructive approach has two phases. During the first phase the graph of

constraints is analyzed and a sequence of construction steps is derived. During the

second phase these construction steps are followed to place the geometric elements.

These approaches are fast and more methodical. In addition, conclusions

characterizing the scope of the method can be easily derived. A major drawback is

that as the repertoire of constraints increases the graph-analysis algorithm needs to be

modified.

Fitzgerald [32] follows the method of dimensioned trees introduced by Requicha [69].

This method allows only horizontal and vertical distances and it is useful for simple

engineering drawings. Todd in [86] first generalized the dimension trees of Requicha.

Owen in [64] presents an extension of this principle that includes circularly

dimensioned sketches. DCM [24] is a system that uses some extension of Owen's

method. [36] presents an elaborative graph-constructive method, with fast analysis

and construction algorithms, and extensions for handling classes of nonsolvable,

underconstrained and consistently overconstrained configuration

Propagation Methods

Propagation methods follow the approach met in traditional constraint solving

systems. In this approach, the constraints are first translated into a system of equations

involving variables and constants. The equations are then represented by an

undirected graph which has as nodes the equations, the variables and the constants,

and whose edges represent whether a variable or a constant appears in an equation.

Subsequently, we try to direct the graph so as to satisfy all the equations starting from

the constants. To accomplish this, various propagation techniques have been used but

none of them guarantees to derive a solution and at the same time have a reasonable

worst case running time. A review of these methods is provided in [74]. In a sense,

the constructive constraint solvers can be thought of as a sub case of the propagation

method (fixed geometric elements for constants and variable geometric elements for

76

variables). However, constructive constraint solvers utilize domain specific

information to derive more powerful and efficient algorithms.

Symbolic Constraint Solvers

In symbolic solvers, the constraints are transformed to a system of algebraic equations

which is solved using methods from algebraic manipulation, such as Grobner basis

calculation [18] or Wu's method[95]. Although, these methods are interesting from a

theoretical viewpoint, their practical significance is limited, since their time and space

complexity is typically exponential or even hyperexponential.

Hierarchical and hybrid approaches

A major result in analysis of constraint graphs by [42] in which an efficient method

for detecting dense constraint subgraphs is described has enabled the solution of large

systems of geometric constraints in 2, 3 or more dimensions. By using this result we

can build efficient algorithm for solving arbitrary systems of geometric constraints.

We first find a set of minimal disjoint dense constraint subgraphs. Each subgraph is

then reduced in a supernode of high dimension and the method is applied recursively

to the resulting graph. In this way we build a hierarchy of constraint graphs that is

treated bottom up or top down based on the application. Interfeature 3D constraints

result in systems of 3D constraints. Such systems are very hard to solve with graph

constructive methods since there is not even a necessary and sufficient condition for

well-constrainedness in 3D. By using the decomposition suggested by this approach

we may breakdown the large geometric constraint system in a multitude of small

systems with few variables. Such systems are usually easy to solve using global

optimization with topological constraints to narrow down the root selection process.

In our system we have used a variation of the algorithm described in [41] in

conjunction with various optimization techniques for solving efficiently the dense

subsystems detected. We have also employed the ACIS constraint management tools.

77

7.2. Special applications

The framework suggested in this work can be extended and applied to applications

with a more specific focus. An example of such an application is the re-engineering of

jewellery, and more specifically, the reconstruction of traditional pierced Byzantine

jewellery [75, 76].

7.2.1. Pierced Byzantine Jewellery

Pierced Byzantine jewellery are jewellery of a particular craftsmanship. The

technique used to create them is a very sophisticated form of craftsmanship, as are the

designs featured on them, and this technique has faded over the years. They are gold

jewels with pierced designs that were made along the coastlines of the eastern

Mediterranean Sea during the period 3rd –7th century A.D. Their originality is due to

the particular processing technique that is used for their creation resulting in a special

aesthetic effect. Pierced jewellery was created from thin sheets of gold. The designs

were engraved on these sheets of gold with a thin sharp tool. After the outlining of the

designs, holes following their shape were created and these were decorated with

triangular carvings, using an iron chisel.

Figure 7.1 Using a chisel to create carvings around a hole.

The piercing technique was applied to various types of jewellery, such as necklaces,

earrings, rings and bracelets. This technique was also used to create pierced crowns,

pins used for holding tunics, belts and brooches. Jewellery such as earrings and

pendants on the necklaces were usually shaped as rectangles, circles, hexagons, half

moons (lunes) and teardrops. Many pieces of jewellery were decorated with sparsely-

placed solid beads, or with a beadlike sequence wrapped around the piece of

jewellery.

78

The designs used in Byzantine jewellery were specific. Usually, they were

representations of nature or of human life. Frequently used nature inspired themes

were different forms of birds, peacocks in particular, animals, especially dolphins, and

plants, such as clovers and vine leaves. Many pieces of jewellery represented scenes

combining nature and human. Byzantine jewellery had often representations of letters

or religious symbols such as the cross. The letters used belonged either to the Greek

or Latin alphabet and gave a personal touch to the jewellery.

Pierced Byzantine jewellery is interesting for many reasons. There is a limited

number of such jewellery preserved until today. The technique used to create them is

a very sophisticated form of craftsmanship, as are the designs featured on them, and

this technique has faded over the years. Furthermore, their esthetic effect is unique.

There are other techniques that result in jewellery with engraved designs, but they

differ in the way that they are processed and the final aesthetic result. An example of

such a technique is braiding plain or decorative wire to create the lace-like effect of

pierced jewellery. The difference of the processing technique can be observed in the

details of the designs and the back side of the jewellery. When the jewellery is

pierced, the traces of the tool used for the piercing are apparent, and the back side of

the jewellery is an ensemble of holes in a solid surrounding

7.2.2. An approach to designing pierced jewellery using feature elements

In [75, 76] ByzantineCAD, a feature-based CAD system suitable for the design of

pierced Byzantine jewellery is presented. The system is automated and parametric

meaning that the user-designer sets some parameter values and ByzantineCAD creates

the jewellery model that corresponds to the specified values. This provides the

designer with the ability to rapidly create custom-designed jewellery, based on the

preferences of the customers, such as including their initials on a ring. ByzantineCAD

introduces a feature-based and voxel-based approach to designing jewellery, through

the definition of elementary structural elements (features) with specific attributes and

properties that are used as building blocks to construct complex pierced designs.

79

ByzantineCAD uses voxel-based feature elements as building blocks for creating

pierced jewellery. Each feature has characteristics that make it differ from other

features, for example, a through hole, a pocket, a component forming an angle etc. By

changing the parameters of the feature we can modify it to obtain an appropriate piece

according to the jewellery that is being reconstructed. Each feature has a set of

constraints that refer to its morphology, dimensions and behavior, in reference to itself

and to other features. The feature elements are configured and combined using

Boolean operations so as to create the CAD model (Figure 7.2).

Figure 7.2 (left) A pierced voxel, (right) a pierced plate displaying the letter k created
by combining pierced voxels

In ByzantineCAD a feature library of carved, pierced feature elements is defined in

accordance to the craftsmanship used in traditional Byzantine jewellery. The design of

pierced jewellery is made up of cylindrical holes that have carvings around them.

Each hole with the corresponding carvings around it is considered for the purposes of

reconstruction as a structural element (feature). Each feature is a solid made of a

rectangular parallelepiped with a cylindrical hole and the corresponding carvings

around the hole (Figure 7.2). According to the aesthetic rules that characterize

traditional pierced jewellery, all feature elements have the same size but differ in the

position of the hole and the carvings around it. The hole can be located either in the

(a)

80

center of the parallelepiped or in the center of any of the four quarters. Note that, in

terms of computer aided design and manufacturing, the cylindrical hole can be

positioned anywhere in the rectangular parallelepiped; the above restriction follows

from careful interpretation of the traditional artistic patterns used. Attributes of these

feature elements are characteristics such as the number of carvings around the

cylindrical hole, the position of the hole in the parallelepiped, the directions of the

carvings and more. A large number of different features can be created by a hole and

various carvings and, since not all of these feasible feature elements are valid for use

in creating pierced designs, restrictions concerning the carving directions are defined

based on aesthetic and artistic rules. A set of validity rules for features is defined,

determining the number of carvings and their directions depending on the position of

the hole in the voxel. For example, if the through hole is positioned in the center of

the rectangular parallelepiped then, each carving starts from the hole and a carving

cannot be directed towards the hole.

In the library of designs that has been developed for ByzantineCAD a subset of the set

of features that satisfy the validity rules is used. Some characteristics of the feature

elements that belong to the subset used in ByzantineCAD are a) the feature elements

with holes located in the center have at most 5 carvings, and b) the feature elements

with the hole in one of the quadrants do not have more than 3 carvings.

Each pierced design is a combination of features. Therefore, every design can be

described using a “layout description file”, a file where the information needed to

construct a specific pierced design is stored. Each design can be thought of as a two-

dimensional matrix (Figure 7.2) whose entries correspond to feature elements. The

layout description file determines the feature element that must be placed in each

position of the matrix.

The layout description files of the letters of the Greek and Latin alphabet have been

embedded in ByzantineCAD, along with some characteristic designs found in

traditional Byzantine jewellery. It is possible for additional designs to be used by the

system, as long as their layout description files are provided. The end-user can use an

ordinary text editor to construct such designs by manually recording the sequence of

81

features that form the design. In addition, the system provides a user-interface where

the end-user can manually select valid feature elements and combine them to create

new designs. After a new design is created, the user needs to store the sequence as a

simple text file (the layout description file) and then this file can be imported to the

ByzantineCAD library to enhance the repertoire of available pierced designs.

A pierced design is created by reading its corresponding layout description file. Each

time the name of a feature is read, it is created, transformed (if necessary) and then

translated to the proper location. The horizontal and vertical translations of the

element are calculated using the equations:

where x, y are the horizontal and vertical translations respectively, h is the number of

structural elements already placed horizontally in the current row, v is the number of

structural elements already placed vertically in the current column and l, k are the

height and length of the feature.

The pierced design on a piece of jewellery can be a sequence of individual designs.

For instance, the design may be a sequence of letters forming a word. In this case, the

process of creating the plate representing the word is the same as for a single design.

The layout description files of each individual design are read in parallel and the plate

is created row-wise (Figure 7.3). First the first line of the first letter is created, then

the first line of the second letter is created and unioned with the first letter’s first line

and so on.

Figure 7.3 A complex solid plaque representing designs, i.e. letters or words, is sized
and modified appropriately to construct custom-designed jewellery (i.e. ring).

x = h × l

y = v × k

82

Each time a feature element is placed, it is unioned with the previous ones.

Eventually, a pierced plate representing the design is created.

ByzantineCAD is capable of designing rings, bracelets, necklaces and earrings. The

end-user of ByzantineCAD defines the parameter values for the type of jewellery he

would like to create. These parameter refer to type (ring, necklace), size, jewellery

design, decoration (beaded border) etc. Earrings and necklaces are created in a

number of different shapes, and are decorated with a beaded border (Figure 7.4(a)).

Also, since in traditional Byzantine jewellery there were pieces in which solid non-

pierced designs were placed in a pierced environment, ByzantineCAD has the

capability of embedding solid designs in pierced surroundings (Figure 7.4(b)).

Figure 7.4 (left) An earring featuring the letter D, (right) a necklace featuring a solid
design and a pierced design

An algorithm for scaling pierced patterns and designs is provided to enlarge pierced

figures without altering the size of the feature elements used to construct them.

Having this capability we may include, for instance, different font sizes in the same

design. A pierced design is thought of as a 2-dimensional matrix whose every entry

contains a feature element. Respectively, the scaled version of a design is a larger 2-

dimensional matrix of features. The idea behind the scaling method is to gradually

scan the design row by row using a sliding 2x2 window of feature elements, scale

individually the 2x2 windows of the design and then integrate smoothly the scaled

overlapping parts to create the scaled version of the design. The combinations of the

features form different designs that can be categorized accordingly.

83

Figure 7.5 The letter B in its (left) scaled and (right) original form

The scaling that can be achieved is discrete, because of the need to preserve

symmetries that may exist in the original design. For instance, letter B (Figure 7.5) is

symmetric by a horizontal axis that goes through the middle of the design. A design is

scaled by means of new rows and columns added to it. If we add only one new row to

letter B, the letter becomes asymmetric, because if the row is added to the upper half

or the lower half of the design, then the letter’s shape is altered unintuitively. Also if it

is added in the middle, the design becomes unproportionally thicker at the middle and

therefore its original shape is modified. These restrictions are best expressed by the

following rules for scaling upwards:

• avoid adding one row, or one column, and

• the number of rows and the number of columns must be integer

As a consequence of the first rule we choose to perform discrete scaling at a fixed

factor. We choose a scale factor of 1.33 because it always results in adding two or

more rows or columns. Therefore, from now on, we will refer to levels of scaling and

not to a scaling factor. Level 1 corresponds to scaling the design by a factor of 1.33,

Level 2 corresponds to a scale factor of 1.66 and so on.

A pierced design is represented by a 2-dimensional matrix whose entries correspond

to feature elements. For instance let us consider the Level 1 scaling of a letter of font

size 6 × c. When scaled to Level 1 a design is transformed from a 6 × c matrix to an 8

× k matrix (8 is the closest integer to 6 * 1.33= 7.98) , where c and k are the number of

columns of each matrix. The number of columns in the scaled design depends on the

original number and is calculated in the same manner.

84

Figure 7.6 Different scaled versions of the letter C

We observe that while scaling a design, as the design gets larger, there is a need for

thickening the engraved shape, so as to preserve its original form. In Figure 7.6 we

see an original design of the C (rightmost design), which is scaled to two different

levels (Level 1: 8 rows and Level 2: 10 rows). There are two different versions of

Level 2 scaling. The crossed out version of letter C is not valid, because there is a

distinct difference in the font style, compared to the original design. Therefore, the

interior shape in Level 2 has to be thickened. We define as thickness factor T the

ratio:

In the initial pierced design, the solid area that forms the shape that is created by two

feature elements corresponds to approximately 90% of the whole area covered by the

feature elements. Therefore the thickness factor is used in combination with this

initial thickness to determine the thickness that the scaled design must have. The

thickness H of the scaled design is determined by the product of the initial thickness

H0= 0.9 and the thickness factor. The quantum of the thickness increase is 0.5. Thus

the discrete thickness Hd is expressed by the following equations:

Number of rows in original design

Number of rows in scaled design
T =

H= H0T

 Hd= round(2H)/2

85

For example, if the initial design consists of 6 rows and the second level scaled design

consists of 10 rows, then the product of the thickness factor (10/6) and the initial

thickness (0.9) is 1.5 which is the thickness the scaled design must have. If Hd= 1, the

thickness of the curves inside the design is not altered. If Hd= 1.5 the thickness is

increased by 50%, if Hd= 2 the shape thickness is doubled (100% increase) and so on.

The original design is scanned using a 2×2 window that starts scanning the design

row-wise from the upper left corner. The design is scanned from left to right, and

from top to bottom. At each step the window is shifted to the right by one position,

and when an entire row has been scanned, the window is initialized at the beginning

of the next row.

Before scanning and scaling, datum positions are marked in the scaled design matrix.

We consider the structural elements positioned at North, South, East, West, South-

East, South-West, North-West and North-East as our datum “points”. These reference

points are used for ensuring that symmetries are preserved and that the various

proportions of the shapes within the design are maintained. Figure 7.7 depicts the

eight structural elements used as reference points. When the number of rows of the

scaled design is even reference points E and W are duplicated. Respectively, when the

number of columns of the scaled design is even reference points N and S are

duplicated.

Figure 7.7 Datum positions are marked in the scaled design matrix and O is the center
of the coordinate system created by the datum axes

86

The scaling algorithm can be described with the following steps:

Step1: Every time a window scan is performed, a combination of 4 feature elements is

returned.

Step 2: This combination is scaled individually and placed appropriately in the scaled

design matrix. The scaling of the 2×2 block of features is determined by the following

principles:

• The relative position of the block in the original design should be maintained

in the scaled design.

• The datum points should be respected.

• If the block contains part of a curve of a shape the corresponding curve should

be scaled appropriately.

The size of the scaled combination is normally 3x3 for Level 1 scaling. However,

according to the above principles the size of the scaled window may be reduced to

3x2 or 2x3 (one column or one row truncated), or 2x2 (one row and one column

truncated). For the other levels of scaling, the size of the scaled combination is

determined proportionally (Figure 7.8).

Figure 7.8 An example of (top) scaling a curve ending in a horizontal line and
(bottom) scaling a curve

87

Step 3: The appropriate scaling for the specific combination determined in Step 2 is

used to fill in the corresponding entries in the scaled matrix. This is placed in the new

scaled matrix so as to overlap previous scaled windows. The overlapping is used to

ensure that the connection among neighboring cells is a valid one. When two

overlapping features are not the same, then we have a conflict which has to be

resolved.

Overlapping and Conflict Resolution: Suppose S is the 2x2 sliding window which we

obtain from step 1. After scaling this combination of features we obtain a scaled

version S’ of the sliding window. The scaled sliding window S’ is placed in the

scaled design matrix positioned in such a way so as to overlap previously scaled

sliding windows. Suppose P’ is the previously scaled window on the left of S’, P’’ is

the previously scaled window located directly above S’. If S’ is being placed in the

first row of the design matrix then we overlap the last column of P’ with the first

column of S’. If S’ is placed in one of the other rows then we not only overlap with P’

but also with P’’ by placing the first row of S’ over the last row of P’’.

After appropriately placing S’ we check to see if any conflicts have occurred. A

conflict occurs when overlapping elements do not match exactly. In this case, one of

the overlapping elements must be picked to occupy the scaled design matrix position.

A feature can always be found to occupy the conflicting position so that it conforms

to the neighboring elements and continues the shape design correctly. A large number

of cases are covered by the mirrored and rotated versions of a feature. The other cases

are covered by using features that belong to the more general group of valid features,

from which we only use a subset in ByzantineCAD. In cases where a feature with a

hole in the center is used, we can ensure the continuation of a “curve” shape because

we have all possible combinations of carvings. Otherwise, by using elements whose

hole is not in the center, we can handle shapes where possibly there is a change in the

shape angle-wise.

88

Step 4: The above steps are carried out row-wise until all of the design is scanned and

scaled. If there are empty spaces in the scaled design matrix, then these are filled with

the neutral feature.

The scaling algorithm can be summarized as follows:

7.2.3. Reverse engineering point clouds of traditional pierced jewellery

A 3D point cloud of traditional pierced jewellery is reconstructed by combining our

feature detection approach with ByzantineCAD’s voxel-based/feature-based modeling

approach.

On one level, pierced feature voxels are scanned separately by a 3D laser scanner and

their point clouds are reconstructed using our feature detection and extraction

for i = 1 to n

for j = 1 to m

step 1: Consider the 2x2 window of feature elements: W[i, j]= [D[i,
j], D[i+1, j], D[i, j+1], D[i+1, j+1]]

step 2: Determine the new magnified window Ws. This window
will be 2x2, 2x3, 3x2 or 3x3 according to the category and position
of the original window.

step 3: Update the corresponding positions of the new scaled
matrix Ds by placing the magnified window Ws so as its upper left
corner goes to [i, j]. If any such value conflicts with previous
values of Ds then integrate them so that the two overlapping
windows join smoothly with each other

 end for

end for

step 4: Go through Ds searching for empty entries and fill them in with the

neutral feature element.

where n is the number of rows and m is the number of columns, D is the matrix

describing the original design, Ds is the matrix describing the scaled design, W

is the sliding window, and Ws is the scaled sliding window.

89

algorithm. The detected feature regions are used to define the properties of the

feature. Each reconstructed feature can then be used as a feature element for

parametric modeling, as described in ByzantineCAD.

In another re-engineering approach, on a point cloud corresponding to a piece of

pierced jewellery, our feature detection method is used to detect regions

corresponding to the particular characteristics of the object i.e carvings around a

through hole. The feature regions obtained by feature detection are reconstructed

using covering techniques to retrieve the surfaces corresponding to carving cuts. The

reconstructed pieces are used in ByzantineCAD either for the definition of new

feature elements or if they conform to the library already defined in ByzantineCAD,

they are mapped to the specific voxels. The mapping is performed by examining the

characteristics of the extracted regions. For example, if three triangular feature

regions are neighbors and they are connected to a through hole, then their orientation

in reference to the hole and the depth of the angles formed can help map the feature to

the predefined library. From there on, the jewellery piece is reconstructed using the

pierced voxel modeling scheme proposed in ByzantineCAD.

For example, in the case of a point cloud corresponding to the letter K designed as

shown in Figure 7.2, the regions detected by the region growing method are grouped

together to form the characteristics of a voxel (carvings) by grouping the regions with

the through hole to which they are connected. By defining and applying constraints on

the regions and by looking for symmetries we can help the mapping process by

detecting repeated features in the point cloud.

Alternatively, pierced traditional jewellery can be re-engineered by reconstructing the

patterns on the jewellery with embossing.

90

CHAPTER 8. CONCLUSIONS

A feature-based approach to reconstructing CAD models of objects from 3D point

clouds has been presented. The proposed approach focuses on reconstructing objects

of mechanical or freeform design as means of re-engineering, reproduction and

redesign.

We present an automated method that detects features in a point cloud by exploiting

point cloud morphology. Specifically, we use variations in the point concavity

intensity along with variations in the mean local surface normal in a region growing

method for segmenting the point cloud into subsets corresponding to features. This

method detects features in point clouds of objects of both mechanical and freeform

design. This region growing method provides, for each detected feature, a set of

points corresponding to the feature region and a set of points corresponding to the

boundary/boundaries of the feature. The capability of user-interaction, for post-

processing of the detected regions, is provided. Regions can be merged and divided

based on the preferences of the user. Also the user can modify the region growing

parameters to reduce or increase the number of regions, ergo the number of features,

detected.

We introduce a fast curve fitting algorithm which constructs rational curves with G1

continuity, which adequately capture the morphology of the boundary of a 3D feature

region. Convergence can be obtained in a couple iterations if we choose reasonable

end point tangent vectors and the point cloud is not noisy, otherwise a few iterations

are required to adjust the weights and to adapt the parameterization. This is an

automated process in which the only user intervention supported is the modification

of the angle used for dividing the boundary into curve segments.

91

We evaluate how solid modeling techniques can efficiently be applied to our feature

regions for means of reconstruction, to obtain an editable CAD model. Parameters and

constraints are defined on the features to serve this purpose.

In general, the work presented in this thesis provides a framework for feature based

reverse engineering. This framework has used successfully in jewellery redesign.

Parts of our suite of technique have been used in different applications. For example,

our feature detection and extraction method has been used to detect features and

feature borders in objects for use by morphing software. The detected features are

used for alignment and matching. Our framework augmented with a powerful

geometric constraint solving system provides advanced editing capabilities, and high-

level custom design and redesign.

Reasonable restriction of the required user- interaction is an aspect that needs further

research. Specifically, feature reconstruction is implemented in a semi-automated

way, where parameter and constraint definition is carried out mainly by the user

whereas the slicing and reconstruction is performed automatically. Methods for

automatic detection of symmetries and constraints have been developed. Further

research can be carried out on how these methods can be integrated and augmented to

fit our suggested framework. Also the level of automation that is achievable without

compromising the effectiveness of the reconstruction process should be further

investigated.

Another interesting research aspect is shape based retrieval of features. Considering

that the features detected by our re-engineering approach are described by their

construction methods (boundary contours, slice contours, paths), these parameters can

be used as shape descriptors for retrieval of features from 3D feature libraries.

92

REFERENCES

1. D. Agbodan, D. Marcheix, and G. Pierra. Persistent Naming for Parametric

Models, in WSCG 2000.

2. Aim@Shape, Aim@Shape Shape Repository V4.0, Dept. Of Genova, Institute

for Applied Mathematics and Information Technologies,

http://shapes.aimatshape.net. AIM@SHAPE Project.

3. B. Aldefeld, Variation of Geometries Based on a Geometric-Reasoning

Method, Computer-Aided Design, Vol. 20(3), pp. 117-126, 1988.

4. E.L. Allgower and K. Georg, Continuation and Path Following, Acta

Numerica, pp. 1-64, 1993.

5. N. Amenta, M. Bern, and M. Kamvysselis, A New Voronoi-Based Surface

Reconstruction Algorithm, Siggraph, 1998.

6. C.K. Au and M.M.F. Yuen, Feature-Based Reverse Engineering of Mannequin

for Garment Design, Computer-Aided Design, Vol. 31, pp. 751-759, 1999.

7. C.B. Barber, D.P. Dobkin, and H.T. Huhdanpaa, The Quickhull Algorithm for

Convex Hulls, ACM Transactions on Mathematical Software, Vol. 22(4), pp. 469-

483, 1996.

8. P.L. Beaty, P.A. Fitzhorn, and G.J. Herron, Extensions in Variational

Geometry That Generate and Modify Object Edges Composed of Rational Bezier

Curves, Computer-Aided Design, Vol. 26(2), pp. 98-108, 1994.

9. P. Benko, G. Kos, T. Varady, L. Andor, and R.R. Martin, Constrained Fitting

in Reverse Engineering, Computer-Aided Geometric Design, Vol.19, pp.173-205,

2002.

93

10. P. Benko, R.R. Martin, and T. Varady, Algorithms for Reverse Engineering

Boundary Representation Models, Computer-Aided Design, Vol. 33(11), pp. 839-851,

2001.

11. F. Bernardini, C.L. Bajaj, J. Chen, and D.R. Schikore, Automatic

Reconstruction of 3D CAD Models from Digital Scans, International Journal of

Computational Geometry & Applications, Vol. 9, pp. 327-369, 1999.

12. Blender, Blender Suite, Open Source Suite, http://www.blender.org, Blender

Foundation.

13. J. Bloomenthal. Medial-Based Vertex Deformation, in Proceedings of the

2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, San

Antonio, Texas, USA, pp. 147-151, 2002.

14. C. Bradley and B. Currie, Advances in the Field of Reverse Engineering,

Computer Aided Design and Applications, Vol. 2(5), pp. 697-706, 2005.

15. B. Bruderlin. Constructing Three-Dimensional Geometric Objects Defined by

Constraints, In Workshop on Interactive 3D Graphics, ACM, 1986.

16. B. Bruderlin, Using Geometric Rewrite Rules for Solving Geometric Problems

Symbolically, Theoretical Computer Science, Vol. 116, pp. 291-303, 1993.

17. B. Bruderlin and D. Roller, Geometric Constraint Solving and Applications.

Springer Verlag, 1998

18. B. Buchberger, Grobner Bases: An Algorithmic Method in Polynomial Ideal

Theory, in Multidimensional Systems Theory, N.K. Bose, Editor, D. Reidel

Publishing Company, pp. 184-232, 1985

19. X. Chen and C.M. Hoffmann, On Editability of Feature-Based Design,

Computer Aided Design, Vol. 27(12), pp. 905-914, 1995.

20. B. Choi, H. Shin, Y.I. Yoon, and J. Lee, Triangulation of Scattered Data in 3D

Space, Computer Aided Design, Vol. 20(5), pp. 239-248, 1988.

21. W. Chyz, Constraint Management for CSG, MSc Thesis, MIT,1985

22. N.D. Cornea, M.F. Demirci, D. Silver, A. Shokoufandeh, S.J. Dickinson, and

P.B. Kantor. 3d Object Retrieval Using Many-to-Many Matching of Curve Skeletons,

94

in IEEE International Conference on Shape Modeling and Applications, Boston USA,

2005.

23. Cyberware, Cyberware Rapid 3d Scanners - Desktop 3d Scanner Samples.

1999.

24. D-Cubed, 68 Castle Street, Cambridge, CB3 OAJ, England. The Dimensional

Constraint Manager, Version 2.7, June 1994.

25. J. Daniels, L. Ha, T. Ochotta, and C. Silva. Robust Smooth Feature Extraction

from Point Clouds, in IEEE International Conference on Shape Modeling and

Applications (SMI '07). 2007.

26. H.J. De St. Germain, S.R. Stark, W.B. Thompson, and T.C. Henderson.

Constraint Optimization and Feature-Based Model Construction for Reverse

Engineering, In Proceedings of the ARPA Image Understanding Workshop, 1996.

27. K. Demarsin, D. Vanderstraeten, T. Volodine, and D. Roose, Detection of

Closed Sharp Edges in Point Clouds Using Normal Estimation and Graph Theory,

Computer Aided Design, Vol. 39, pp. 276-283, 2007.

28. T. Dey and S. Goswami. Tight Cocone: A Water-Tight Surface Reconstructor,

in ACM Symposium on Solid and Physical Modeling, Seattle, Washington, USA.,

pp. 127-134, 2003.

29. D. Dimitrov, C. Knauer, K. Kriegel, and G. Rote. Upper and Lower Bounds

on the Quality of the PCA Bounding Boxes, in Proceedings of the International

Conference in Central Europe on Computer Graphics, Visualization and Computer

Vision - WSCG '07, Plzen, Czech Republic, pp. 185-192, 2007.

30. L. Fang and D. Gossard, Multidimensional Curve Fitting to Unorganized Data

Points by Nonlinear Minimization, Computer Aided Design, Vol. 27(1), pp. 48-58,

1995.

31. R.B. Fisher, Applying Knowledge to Reverse Engineering Problems,

Computer-Aided Design, Vol. 36, pp. 501-510, 2004.

32. W.J. Fitzgerald, Using Axial Dimensions to Determine the Proportions of Line

Drawings in Computer Graphics, Computer Aided Design, Vol. 13(6), pp. 377-382,

1981.

95

33. S. Flory and M. Hofer, Constrained Curve Fitting on Manifolds, Computer

Aided Design, Vol. 40, pp 25-34, 2008.

34. I. Fudos, Constraint Solving for Computer Aided Design, PhD Thesis, Dept of

Computer Sciences, Purdue University,1995

35. I. Fudos and C.M. Hoffmann, Correctness Proof of a Geometric Constraint

Solver, International Journal of Computational Geometry & Applications, Vol. 6(4),

pp. 405-420, 1996.

36. I. Fudos and C.M. Hoffmann, A Graph-Constructive Method to Solving

Systems of Geometric Constraints, ACM Transactions on Graphics, Vol. 16(2), pp.

179-216, 1997.

37. Y. Gong, J. Chen, T. Jin, and S. Tong. Feature and Constraints-Based to

Reconstruct Prototype Methods and Application, in Proceedings of the IEEE

International Conference on Mechatronics & Automation, Niagara Falls, Canada,

2005.

38. S. Gottschalk, Collision Queries Using Oriented Bounding Boxes, PhD

Thesis, Dept of Computer Science, University of North Carolina, 2000

39. S. Gumhold, X. Wang, and R. Macleod. Feature Extraction from Point Clouds,

in Proceedings of the 10th International Meshing Round Table, pp.293-305, 2001.

40. C.M. Hoffmann and R. Joan-Arinyo, On User-Defined Features, Computer

Aided Design, Vol. 30(5), pp 321-332, 1998.

41. C.M. Hoffmann and R. Juan, Erep - an Editable, High-Level Representation

for Geometric Design and Analysis, in Geometric Modeling for Product Realization,

Wilson P., Wozny M., Pratt M., eds, North Holland, 1993

42. C.M. Hoffmann, A. Lomonosov, and M. Sitharam, Finding Solvable Subsets

of Constraint Graphs, Smolka. G., Editor, pp. 463-477, 1997.

43. H. Hoppe, T. Derose, T. Duchamp, J. Mcdonald, and W. Stuetzle, Surface

Reconstruction from Unorganized Points, Computer Graphics, Vol. 26(2), pp. 71-78,

1992.

96

44. J. Hoschek and D. Lasser, Fundamentals of Computer Aided Geometric

Design, ed. A. Peters. 1993.

45. J. Huang and C. Menq, Automatic Data Segmentation for Geometric Feature

Extraction from Unorganized 3-D Coordinate Points, IEEE Transactions on Robotics

and Automation, Vol. 17(3), pp. 268-279, 2001.

46. K.A. Ingle, Reverse Engineering, McGraw-Hill, 1994.

47. IPOPT - Interior Point Optimizer, http://projects.coin-or.org/Ipopt

48. R. Juan-Arinyo and A. Soto, A Rule-Constructive Geometric Constraint

Solver, Technical Report LSI-95-25-R, Universitat Politecnica de Catalunya, 1995.

49. J. Kantz, Application of Sweeping Techniques to Reverse Engineering, MSc

Thesis, Department of Computer and Information Science, University of Michigan -

Dearborn, 2003

50. J. Kripac. A Mechanism for Persistently Naming Topological Entities in

History-Based Parametric Solid Models, in Solid Modeling '95. Salt Lake City Utah

USA, 1995

51. H. Lamure and D. Michelucci. Solving Geometric Constraints by Homotopy,

In Proc. Third Symposium on Solid Modeling and Applications, Salt Lake City, pp.

263-269, 1995.

52. F.C. Langbein, A.D. Marshall, and R.R. Martin, Choosing Consistent

Constraints for Beautification of Reverse Engineered Geometric Models, Computer-

Aided Design, Vol. 36, pp. 261-278, 2004.

53. F.C. Langbein, B.I. Mills, A.D. Marshall, and R.R. Martin. Finding

Approximate Shape Regularities in Reverse Engineered Solid Models Bounded by

Simple Surfaces, In Proceedings of the 6th Symp. Solid Modeling & Applications,

ACM, pp. 206-215, 2001.

54. I.-K. Lee, Curve Reconstruction from Unorganized Points, Computer Aided

Geometric Design, Vol. 17, pp. 161-177, 2000.

55. K. Lee, Principles of CAD/CAM/CAE Systems, ed. Addison-Wesley. 1999.

97

56. J.M. Lien and N.M. Amato, Approximate Convex Decomposition, TR03-001,

PARASOL LAB, Department of Computer Science, Texas A&M University, 2003

57. J.M. Lien and N.M. Amato, Approximate Convex Decomposition of

Polyhedra, TR05-001, PARASOL LAB, Department of Computer Science, Texas

A&M University, 2005.

58. J.M. Lien and N.M. Amato. Simultaneous Shape Decomposition and

Skeletonization, In Proceedings of the ACM Solid and Physical Modeling

Symposium (SPM), pp. 219-228, 2006.

59. R. Light and D. Gossard, Modification of Geometric Models through

Variational Geometry, Computer Aided Design, Vol. 14(4), pp. 209-214, 1982.

60. D. Marcheix and G. Pierra. A Survey of the Persistent Namine Problem, in

SM '02, Saarbrucken,Germany, June 17-21, 2002.

61. B.I. Mills, F.C. Langbein, A.D. Marshall, and R. Martin. Approximate

Symmetry Detection for Reverse Engineering, in ACM Symposium on Solid and

Physical Modeling, Ann Arbor, Michigan, United States, pp. 241-248, 2001.

62. A. Morgan, Solving Polynomial Systems Using Continuation for Engineering

and Scientific Problems, Prentice Hall Inc., 1987

63. G. Nelson. Juno, a Constraint-Based Graphics System, In SIGGRAPH, San

Francisco, USA, pp. 235-243, 1985.

64. J.C. Owen. Algebraic Solution for Geometry from Dimensional Constraints,

In ACM Symp. Found. of Solid Modeling, Austin, TX, 1991.

65. L. Piegl and W. Tiller, The NURBS Book, ed. D. Rogers., Springer-Verlag,

1997

66. H. Pottmann, S. Leopoldselder, and M. Hofer. Approximation with Active

Bspline Curves and Surfaces, in Proc of the Pacific Graphics IEEE, pp. 8-25, 2002.

67. S. Raghothama and V. Shapiro, Boundary Representation Deformation in

Parametric Solid Modeling, ACM Transactions on Graphics, Vol. 17, pp. 259-286,

1998.

98

68. G. Renner, A Method of Shape Description for Mechanical Engineering

Practice, Computers in Industry, Vol. 3, pp. 137-142, 1982.

69. A. Requicha, Dimensionining and Tolerancing, in Technical report PADL

TM-19, Production Automation Project, University of Rochester, 1977.

70. D. Serrano and D. Gossard. Combining Mathematical Models and Geometric

Models in Cae Systems, In Proc. ASME Computers in Eng. Conf., Chicago, pp. 277-

284, 1986.

71. J.J. Shah and M. Mantyla, Parametric and Feature-Based CAD/CAM. John

Wiley & Sons Inc, 1995.

72. D. Sheehy, C. Armstrong, and D. Robinson, Shape Description by Medial

Axis Construction, IEEE Transactions on Visualization and Computer Graphics, Vol.

2(1), pp. 62-72, 1996.

73. SINTEF, SISL - Sintef Spline Library, http://www.sintef.no/

content/page1____5470.aspx

74. W. Sohrt, Interaction with Constraints in Three-Dimensional Modeling, MSc

Thesis, Dept of Computer Science, The University of Utah, 1991

75. V. Stamati and I. Fudos, A Parametric Feature-Based Cad System for

Reproducing Traditional Pierced Jewellery, Computer Aided Design, Vol. 37(4), pp.

431-449, 2005.

76. V. Stamati, I. Fudos, S. Theodoridou, C. Edipidi, and D. Avramidis. Using

Poxels for Reproducing Traditional Pierced Byzantine Jewellery. in Proceedings of

the Computer Graphics International, Crete, Greece, 2004.

77. Stanford, The Stanford Bunny - the Stanford 3d Scanning Repository. 1993.

78. D.W. Storti, G.M. Turkiyyah, M.A. Ganter, C.T. Lim, and D.M. Stal.

Skeleton-Based Modeling Operations on Solids, Solid Modeling '97, Atlanta GA

USA., 1997.

79. X. Sun, P. Rosin, R. Martin, and F.C. Langbein, Fast and Effective Feature-

Preserving Mesh Denoising, IEEE Transactions on Visualization and Computer

Graphics, Vol. 13(5), pp. 925-938, 2007.

99

80. G. Sunde, Specification of Shape by Dimensions' and Other Geometric

Constraints, in Geometric Modeling for CAD Applications. M. J. Wozny, H. W.

McLaughlin, and J. L. Encarnacao, eds, North Holland, pp. 199-213, 1988

81. I. Sutherland. Sketchpad, a Man-Machine Graphical Communication System.

In Proc. of the Spring Joint Compo Conference, 1963.

82. H. Suzuki, H. Ando, and F. Kimura, Variation of Geometries Based on a

Geometric-Reasoning Method, Computers & Graphics, Vol. 14(2), pp. 211-224,

1990.

83. L. Szobonya and G. Renner. Construction of Curves and Surfaces Based on

Point Clouds, In Proc. First Hungarian Conference on Computer Graphics and

Geometry, Budapest Hungary, 2002.

84. W.B. Thompson, H. De St. Germain, T.C. Henderson, and J.C. Owen.

Constructing High-Precision Geometric Models from Sensed Position Data, In

Proceedings ARPA Image Understanding Workshop. 1996.

85. W.B. Thompson, J.C. Owen, H.J. De St. Germain, S.R. Stark, and T.C.

Henderson, Feature-Based Reverse Engineering of Mechanical Parts, IEEE

Transactions on Robotics and Automation, Vol.15(1), pp. 57-66, 1999.

86. P. Todd. A K-Tree Generalization That Characterizes Consistency of

Dimensioned Engineering Drawings, SIAM J. DISC. MATH, Vol. 2(2), pp. 255-261,

1989.

87. W.-D. Ueng, J.-Y. Lai, and Y.-C. Tsai, Unconstrained and Constrained Curve

Fitting for Reverse Engineering, International Journal of Advances Manufacturing

Technology, 33, pp. 1189-1203, 2007.

88. T. Varady, M. Facello, and Z. Terek, Automatic Extraction of Surface

Structures in Digital Shape Reconstruction, Computer Aided Design, Vol. 39, pp.

379-388, 2007.

89. T. Varady, R.R. Martin, and J. Cox, Reverse Engineering of Geometric

Models - an Introduction, Computer-Aided Design, Vol. 29(4), pp. 255-268, 1997.

100

90. A. Verroust, F. Schonek, and D. Roller, Rule-Oriented Method for

Parameterized Computer-Aided Design, Computer Aided Design, Vol. 24(10), pp.

531-540, 1992.

91. J. Vollmer, R. Mencl, and H. Muller, Improved Laplacian Smoothing of Noisy

Surface Meshes, Computer Graphics Forum, Vol. 18(3), pp.131-138, 1999.

92. J. Wang, M.M. Oliveira, and A. Kaufman. Reconstructing Manifold and Non-

Manifold Surfaces from Point Clouds, in Visualization 2005.

93. W. Wang, H. Pottmann, and Y. Liu, Fitting B-Spline Curves to Point Clouds

by Curvature-Based Squared Distance Minimization, ACM Transactions on Graphics,

Vol. 25(2), pp. 214-238, 2006.

94. A. Werner, K. Skalski, S. Piszczatowski, W. Swieszkowski, and Z. Lechniak,

Reverse Engineering of Free-Form Surfaces, Journal of Materials Processing

Technology, Vol. 16, pp. 128-132, 1998.

95. W.T. Wu, Basic Principles of Mechanical Theorem Proving in Elementary

Geometries, Journal of Automated Reasoning, Vol. 2, pp. 221-252, 1986

96. Y. Yamaguchi and F. Kimura, A Constraint Modeling System for Variational

Geometry, in Geometric Modeling for Product Engineering, M. J. Wozny, and K.

Preiss, eds, Elsevier Science Publishers B.V. (North Holland), pp. 221-233, 1990

97. Z. Yang and Y. Chen, A Reverse Engineering Method Based on Haptic

Volume Removing, Computer-Aided Design, 37, pp. 45-54, 2005

98. H.-T. Yau and J.-S. Chen, Reverse Engineering of Complex Geometry Using

Rational B-Splines. International Journal of Advances Manufacturing Technology,

Vol.13, pp. 548-555, 1997

99. S. Yoshizawa, A.G. Belyaev, and H.-P. Seidel. Free-Form Skeleton-Driven

Mesh Deformation, in Proceedings of the eighth ACM Symposium on Solid Modeling

and Applications, Seattle, Washington U.S.A., 2003

101

PUBLISHED WORK

• V. Stamati and I. Fudos, A Parametric Feature-based CAD System for

Reproducing Traditional Jewellery, Computer Aided Design & Applications,

2004, 559-568 (also presented in CAD ‘04)

• V. Stamati, I. Fudos, S. Theodoridou, C. Edipidi, and D. Avramidis Using

Poxels for reproducing traditional pierced Byzantine jewellery. In Computer

Graphics International 2004, Crete, Greece, June 16-19

• V. Stamati and I. Fudos, A parametric feature-based CAD system for

reproducing traditional pierced jewellery, Computer Aided Design 2005,

37(4), 431-449

• V. Stamati and I. Fudos, “A feature-based CAD approach to jewellery re-

engineering”, Computer-aided Design and Applications, Vol. 2, No.1-4, 1-10,

2005 (also presented in CAD ’05)

• V. Stamati and I. Fudos, “A Feature-Based Approach to Re-engineering

Objects of Freeform Design by Exploiting Point Cloud Morphology”, in

Proceedings of SPM 2007: ACM Symposium on Solid and Physical

Modeling, Beijing China, pp. 347-353, June 2007

• Ι. Fudos and V. Stamati, “Constraint-based and Feature-based CAD Systems

and Applications” for book: Computer-Aided Design Research and

Development, NovaPublishers (accepted – in print), 2008

• V. Stamati and I. Fudos, “On Reconstructing 3D Feature Boundaries”,

Computer Aided Design and Applications, Vol. 5, No.1-4, 316-324, June 2008

(also presented in CAD ’08)

102

Technical Reports

• V. Stamati and I. Fudos, CAD/CAM Methods for Reverse Engineering: A

Case Study of Reengineering Jewellery, Technical Report 2004-15, Computer

Science Dept, University of Ioannina 2004

• Ι. Fudos, V. Stamati and A. Protopsaltou, An Approach to Geometric

Constraint Solving for CAD Representations, Technical Report TR 2004-17,

Computer Science Dept., University of Ioannina, 2004

103

SHORT CV

 Vicky Stamati was born on July 16, 1977 in Calgary, Alberta, Canada. She received

her diploma in Computer Science from the Computer Science Dept. of the University

of Ioannina, Greece in 2001 and her M.Sc. in Computer Science from the same

University in 2003. Her research interests include parametric feature-based design,

reverse engineering and solid modeling.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

