USER MANUAL
PANMIN: Sequential and Parallel Global Optimization
Procedures with a variety of options for the Local
Search Strategy.

F. V. Theos, I. E. Lagaris
Department of Computer Science

D. G. Papageorgiou
Department of Materials Science and Engineering

UNIVERSITY OF IOANNINA
P.O.Box 1186, Ioannina 45110 - GREECE

October 16, 2003

http://merlin.cs.uoi.gr/panmin

Contents

1 MERLIN Set—Up 3
1.1 MERLIN installation 0 oL 3
1.2 Running MERLIN 4

2 Running and customizing the global optimization codes 5
2.1 Some general remarks.o oL oo 5t
2.2 Running PRICE D
2.3 Customizing PRICE o 7
24 Running TML 0.0 0o 7
2.5 Customizing TML o 9
2.6 Running Parallel-TML (PTML) 9
2.7 Customizing PTML 10
2.8 Files common to all methods 10

2.8.1 The MERLIN input file 10
2.8.2 Specifying parameter boundso 11

3 Test Runs 11
3.1 Six Hump Camel-Back code 11
3.2 PRICE-Test Run 12
3.3 TML-Test Run 14
3.4 PTML-Test Run 16

4 Examples 19
4.1 Polynomial Root-Finder 19
4.2 Sample code for multistarto 24
4.3 Molecular conformation problem L 25

5 Using MCL with the OPTIMA interface 26

References 30

1 MERLIN Set—Up

Before running the global optimization codes, one should install properly the MERLIN opti-
mization package [1, 2].

1.1 MERLIN installation

The following instructions are valid for installing MERLIN under a Unix system.

1. Download the latest MERLIN package from http://merlin.cs.uoi.gr. The corre-
sponding file will be of the form merlin-x.y.tar.gz where x.y is the MERLIN version.

2. Uncompress and untar the file
tar xvfz merlin-x.y.tar.gz
A directory named merlin-x.y will be created.

3. Change into the newly created directory
cd merlin-x.y

4. Edit Makefile.inc and provide appropriate values for the variables DESTDIR and
FOPTIONS (found in the first few lines of Makefile.inc).

DESTDIR is the destination directory where the MERLIN binaries and accompanying files
will be installed. You must specify DESTDIR using a full path. Note that this directory
must be different from the directory where you unpacked the MERLIN sources. Also
note that if installing MERLIN outside your home directory you must have super-user
privileges. Example:

DESTDIR=/usr/local/merlin

FOPTIONS is a string of options that must be passed to the Fortran compiler during
the installation process. This is a good place to pass appropriate optimization options
to the compiler. Example:

FOPTIONS=-03

In addition the following options may be set:

LINKOPTIONS: Options that must be passed to the linker during installation.

TYPE: This specifies whether MERLIN will be compiled using REAL or DOUBLE PRECISION
arithmetic.

MXV: The maximum number of optimization parameters MERLIN will handle.

MXT: The maximum number of terms in a sum-of-squares objective function.

MCLBUF: The maximum size (in bytes) of a compiled McL program.

MCLMEM: The maximum size (in words) of memory available to MCL programs.

The default values provided for DESTDIR and FOPTIONS are adequate for most systems.

Note for Cygwin users: You must set F77=g77 and uncomment EXESUFFIX=.exe in
Makefile.inc.

5. Build the package
make

6. Install the package
make install

1.2 Running MERLIN

In order to compile the user written subprograms with the rest of the MERLIN package one
must use the run-merlin script. After installation, the run-merlin script as well as other
binaries are located in DESTDIR/bin. Hence one needs to add this directory to its Unix PATH.

To add DESTDIR/bin to your Unix path and assuming that DESTDIR is set to /usr/local/merlin:

e Users of csh and tcsh add the following line in the file .cshrc
path = ($path /usr/local/merlin/bin)

e Users of sh add the following lines in the file .profile
PATH=$PATH: /usr/local/merlin/bin
EXPORT PATH

e Users of bash add the following lines in the file .bashrc
PATH=$PATH: /usr/local/merlin/bin
EXPORT PATH

Alternatively you can invoke the run-merlin script using a full path. For example:
/usr/local/merlin/bin/run-merlin funmin.f

The run-merlin script accepts one or more file names as arguments that can be of the
following types:

e Files ending in .d
These are files that must be processed by the MERLIN preprocessor before they can be
compiled. The MERLIN preprocessor will use the definitions file DEFS in the current
directory, or if no such file exists, the one used for the installation of the MERLIN
package (found in DESTDIR/files). After preprocessing the files, the script will compile
and link them with the rest of the MERLIN package.

e Files ending in .f
These are files containing Fortran-77 code that must be compiled.

e Files ending in .o
These are files containing object code (already compiled).

In addition the run-merlin script recognizes the following environment variables.

4

e MERLIN_F77
This is the name of the compiler that will be used to compile the user written code.

e MERLIN FOPTIONS
Options that will be used when compiling the user written code. The default is to
use —c (compile only-do not link) and any other flags that were specified when editing
Makefile.inc. Note that if you set this environment variable you must include the
-c compiler flag.

e MERLIN_LDOPTIONS
Options that will be passed to the linker when building the final MERLIN executable.
Here you can specify any libraries required by the user written subprograms.

2 Running and customizing the global optimization
codes

2.1 Some general remarks

Before running any of the global optimization codes, make sure you have installed the latest
version of the MERLIN optimization package as described in section 1.1.

In addition, you should prepare the objective function following the instructions given in the
MERLIN Users Manual. You may prepare either FUNCTION FUNMIN or SUBROUTINE SUBSUM.
Optionally the gradient vector, Hessian and Jacobian matrices may be programmed as well.

2.2 Running PRICE

1. Prepare the input file. This file must be named PRICE.DAT. A sample file is displayed

below.
2 NOD
0 NOF
10000 NOC
1.00000000000000E-04 EPS
10000.000000000 OMEGA
20 NF
1 IPRINT
1 NFORM
PRICE.OQUT OUTFIL
POIMAR.DAT POIFIL
in.dat FINP
out.dat FOUT

Only the first column is required by the software. The second column contains only
code-names that serve as a reminder to the user to ease the data entry.

(1)

NOD is the dimensionality of the problem.

NOF is the number of terms when the SUBROUTINE SUBSUM has been prepared.
If NOF is set to zero, FUNCTION FUNMIN is used.

NOC is an upper bound for the number of function evaluations.

EPS is a small tolerance, used to terminate the search.

OMEGA is the value of the w parameter.

NF is an integer used to set the sample size M via the relation: M = NF x NOD

IPRINT is a flag. If it is set to zero, no intermediate printout is produced.
If it is set to one, informative printout is issued at every iteration.

NFORM controls the format of the final output. Takes on the values 0,1,2 and
the corresponding formats are described at the end of this section.

OUTFIL is a character string that specifies the name of the output file.

POIFIL is a character string that specifies the name of the file containing an
initial point, parameter bounds and the fix-status as described in section 2.8.2.

FINP is a character string that specifies the name of the Merlin instructions file
as described in section 2.8.1. If FINP is left blank then the final polishing is not
performed.

FOUT is a character string that specifies the name of the Merlin output file.

. Prepare the MERLIN input file as described in section 2.8.1.

. Prepare a file containing the parameter bounds as described in section 2.8.2.

. Compile the program and the objective function, link with the rest of the MERLIN
package and run (assuming the objective function is in file funmin. f):
run-merlin price.d funmin.f

. After the run completes, the results are disposed in the output file. Its file name is
specified in the input file PRICE.DAT (The default being PRICE.QUT). The output file
contains the values of the minimization parameters along with the corresponding value
of the objective function. Three output formats are supported and may be specified
in the input file (NFORM).

e NFORM=0 Raw unformatted output.

Output is written using unformatted write statements as in the following program
segment:

DO 10,I=1,N
WRITE (1) X(I)
10 CONTINUE
WRITE (1) VALUE

e NFORM=1 Raw formatted output.
Output is written using formatted write statements as in the following program
segment:

DO 10,I=1,N
WRITE (1,20) X(I)
10 CONTINUE
WRITE (1,20) VALUE
20 FORMAT (1PG21.14)

e NFORM=2 Output is written as a MERLIN record.
This is the default.

2.3 Customizing PRICE

The following parameter statement is used to customize the code, in accord with the problem
at hand.

e PARAMETER (MAXFAC = 100)
This sets the maximum value for the NF factor.

2.4 Running TML

1. Prepare the input file. This file must be named TML.DAT. A sample file is displayed

below.
2 NOD
0 NOF
10 ITTHR
5.0000000000000 HEAL
2 NEARN
100 NSAMPL
4.0000000000000 SIGMA
0.99500000000000 COVTHR

0.10000000000000E-01 XDEPS
0.10000000000000E-03 FDEPS
0.10000000000000E-02 GDEPS

0 IREST

100 NDUMP
in.dat FINP
out.dat FOUT
MINIMA FMIN

POIMAR.DAT POIFIL
input INDIR

Only the first column is required by the software. The second column contains only
code-names that serve as a reminder to the user to ease the data entry.

NOD is the dimensionality of the problem.

NOF is the number of terms, in case where the SUBROUTINE SUBSUM is being
prepared.
If NOF is set to zero, FUNCTION FUNMIN is used.

ITTHR is the enforced minimum number of iterations of the algorithm.
HEAL is the healing parameter.

NEARN specifies the number of nearest neighbors

NSAMPL specifies the sample size

SIGMA specifies the o parameter involved in the calculation of the critical dis-
tance.

COVTHR specifies the required relative domain coverage. (Default value: 0.995)

XDEPS specifies the minimum distance between two minima to be considered as
different.

FDEPS specifies the minimum relative difference in the values of two minima, in
order to be considered as different.

GDEPS specifies the maximum value for the RMS gradient, in order that a point
is accepted as a local minimum.

IREST If set to a non-zero value, starts the procedure from a previously saved
dump.

NDUMP Specifies the iteration period between dumps.

FINP is a character string that specifies the name of the Merlin instructions file
as described in section 2.8.1.

FOUT is a character string that specifies the name of the Merlin output file.

FMIN is a character string that specifies the name of the file containing the
discovered local minima.

POIFIL is a character string that specifies the name of the file containing an
initial point, parameter bounds and the fix-status as described in section 2.8.2.

INDIR is a character string that specifies the name of a Unix directory, where
auxiliary files may reside as described in section 2.6. This applies only to the
parallel version of the software. The sequential version ignores it.

2. Prepare a file containing the parameter bounds as described in section 2.8.2.

3. Prepare the MERLIN input file as described in section 2.8.1.

4. Compile the program and the objective function, link with the rest of the MERLIN
package and run (assuming the objective function is in file funmin. f):
run-merlin tml.d funmin.f

d.

2.5

After the run completes, the results are disposed in the output file. Its file name is
specified in the input file TML.DAT, the default being MINIMA). The output file contains
the values of the minimization parameters along with the corresponding value of the
objective function, and is written as a series of MERLIN records (see the MERLIN Users
Manual for a description of MERLIN records).

Customizing TML

The following parameter statements are used to customize the code, in accord with the
problem at hand.

e PARAMETER (MXNM = 10000)

2.6

Sets the maximum number of local minima that will be stored. (The program stops
when the number of discovered minima becomes equal to MXNM).

PARAMETER (MXNS = 500)
The maximum number of points to sample at each iteration. (Maximum allowed value
for the NSAMPL input parameter).

PARAMETER (MXNNN = 8)
The maximum number of nearest neighbors considered. (Maximum allowed value for
the NEARN input parameter).

Running Parallel-TML (PTML)

. Prepare the input file. The file name and contents are the same as for the plain TML

code. (section 2.4).

Prepare a file containing the parameter bounds as described in section 2.8.2.

. Prepare the MERLIN input file as described in section 2.8.1.

In parallel TML, it is necessary for every processor to operate on a separate directory of
the file system, so that intermediate files created by MERLIN and the objective function
do not get mixed up. The user must create a directory and copy all input files required
by MERLIN and the objective function in this directory. Note that the MERLIN panel
description file PDESC must be copied as well.

mkdir input

cp PDESC input

cp an_input_file input

. Create temporary directories for all processors and copy the necessary input files (as-

suming 4 processors).
create-ptml-dirs 4 input

6. Compile the program and the objective function and link with MERLIN and the MPI
environment (assuming the objective function is in file funmin.f):
setenv MERLIN_F77 mpif77
compile-merlin ptml.d funmin.f

7. Run the program (assuming 4 processors):
mpirun -np 4 merlin.executable

8. The results are disposed in the output file (its file name is specified in the input file
TML.DAT, the default being MINIMA).

2.7 Customizing PTML

The following parameter statements are used to customize the code, in accord with the
problem at hand. These statements reside in the include file ptml.h.

e PARAMETER (MXPROC = 100)
The maximum number of processors that can be utilized.

e PARAMETER (MXNM = 10000)
Sets the maximum number of local minima that will be stored. (The program stops
when the number of discovered minima becomes equal to MXNM).

e PARAMETER (MXNS = 500)
The maximum number of points to sample at each iteration. (Maximum allowed value
for the NSAMPL input parameter).

e PARAMETER (MXNNN = 8)
The maximum number of nearest neighbors considered. (Maximum allowed value for
the NEARN input parameter).
2.8 Files common to all methods
2.8.1 The MERLIN input file
The MERLIN input file contains commands that are to be executed by MERLIN in order to

perform a local minimization. The name of this file is specified in files PRICE.DAT or TML.DAT
according to the method, the default being in.dat. A sample is presented below:

anal
bfgs noc 5000

Note that it not allowed to change the current point using commands such as point, init
etc. Note also that this may be the object file of an McL program.

10

2.8.2 Specifying parameter bounds

The name of this file is specified in files PRICE.DAT or TML.DAT according to the method,
the default being POIMAR.DAT. Each line in the file corresponds to one of the minimization
parameters and must contain 4 values: An initial value for the parameter, the lower and
upper bound and an integer specifying whether the parameter is fixed (0) or not (1).
Example (for a two parameter objective function):

-5.0 5.0 1
-8.0 17.0

N =
o o1

Note that if you attempt to run any of the global optimization codes without preparing this
file, the program will create a sample file with default values and stop. You must then edit
the file, specify the correct values for your problem, and rerun the program.

3 Test Runs

We employ for the test runs the “Six-hump Camel-Back” function:
1
flz,y) = (4 —2.12% + §x4)x2 —4(1 — Ay +ay

This function has six local minima, two of which are global. The code for the function
and its gradient is given in section 3.1. The PRICE and the TML results are presented
in sections 3.2 and 3.3 correspondingly. In section 4.2 we list a code that makes use of
the subroutine OPTIMA to search for the global minimum of the same test function. The
simplistic multistart approach is being used, i.e. we generate a number of points at random
and from each one we start a local search.

3.1 Six Hump Camel-Back code

The code for the “Six-hump Camel-Back”, its gradient and its Hessian, is given below:

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION X(N)

X1 = X(1)

X2 = X(2)

FUNMIN = (4 - 2.1%X1*%*2 + X1%%4/3)*X1%%x2 +
& X1*X2 + (-4 + 4*xX2%%2) *xX2x%2

END

11

C ___
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION X(N), GRAD(N)
GRAD(1) = 8*X(1) - 8.4xX(1)**x3 + 2xX(1)**5 + X(2)
GRAD(2) = X(1) - 8%xX(2) + 16%X(2)*%3
END

C ___
SUBROUTINE HANAL (H, LD, N, X)

C ___

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION H(LD,N), X(N)
H(1,1) = 8 - 25.2%X(1)**2 + 10%X(1)**4

H(2,1) =1
H(2,2) = 48%xX(2)*x2 - 8
END

3.2 PRICE - Test Run

To execute the test run, issue the following command:
run-merlin price.d 6Ghump.f
The following output is produced on the standard output.

PRICE running with ...

Number of parameters: 2

Maximum function calls: 10000

Termination criterion: 1.0000E-04

Weighting factor: 1.0000E+04

Sample size factor: 20

Printout option: 1

OQutput file: PRICE.OUT

Bounds file: POIMAR.DAT

Merlin input file: in.dat

Merlin output file: out.dat

Output format: 1
Iter: 30 Lower value: -0.14170040690117 Calls: 82 of 10000
Iter: 35 Lower value: -0.22434743776021 Calls: 92 of 10000
Iter: 48 Lower value: -0.64718662239411 Calls: 111 of 10000
Iter: 115 Lower value: -0.72788366844541 Calls: 199 of 10000
Iter: 140 Lower value: -0.83495615401031 Calls: 239 of 10000
Iter: 141 Lower value: -1.0275395980524 Calls: 241 of 10000

12

Iter: 211 Lower value: -1.0277942972752 Calls: 352 of 10000

Iter: 239 Lower value: -1.0284090174387 Calls: 390 of 10000
Iter: 257 Lower value: -1.0313613560203 Calls: 408 of 10000
Iter: 312 Lower value: -1.0313833436910 Calls: 463 of 10000
Iter: 335 Lower value: -1.0316284204941 Calls: 486 of 10000

The termination criterion has been satisfied

Function value: -1.0316284534837

Total function evaluations: 661

PRICE Iterations: 480

The minimum has been refined by Merlin, GRMS = 3.92365572601884E-10
OQutput parameters in file: PRICE.OUT

The relevant input files are listed:

File: POIMAR.DAT

0.0 -5.0 5.0 1
0.0 -5.0 5.0 1
File: PRICE.DAT
2 NOD
10000 NOC
1.00000000000000E-04 EPS
10000.000000000 OMEGA
20 NF
1 IPRINT
1 NFORM
PRICE.OUT OUTFIL
POIMAR.DAT POIFIL
in.dat in.dat
out.dat out.dat
File: in.dat
ANAL

BFGS NOC 2000

File: PRICE.OUT (Contains the global minimizer).
8.98420130599726E-02

-0.71265640298440
-1.0316284534837

13

3.3 TML - Test Run

To execute the test run, issue the following command:
run-merlin tml.d 6Ghump.f
The following output is produced on the standard output.

TML running with ...

Iteration threshold: 10
Healing parameter: 5.
Number of nearest neighbors: 2
Sample size: 100

Sigma parameter: 4.

Coverage threshold: 0.995000005

X distance criterion: 0.01

F distance criterion: 0.0001

Gradient convergence criterion: 0.001

Saving every 100 iterations
Merlin input file: in.dat
Merlin output file: out.dat

. The first minimum is found ... F: 136 G: 10
Iterations: 1 Coverage: 0.79865 Est. minima: 3.
Iterations: 2 Coverage: 0.96460 Est. minima: 1.

. Number of minima found: 2 F: 361 G: 32
. Number of minima found: 3 F: 375 G: 46

Iterations: 3 Coverage: 0.95274 Est. minima: 4.
. Number of minima found: 4 F: 489 G: 60
Iterations: 4 Coverage: 0.97160 Est. minima: 5.
. Number of minima found: 5 F: 656 G: 124
Iterations: 5 Coverage: 0.98355 Est. minima: 5.
Iterations: 6 Coverage: 0.99071 Est. minima: 5.
. Number of minima found: 6 F: 1042 G: 299
Iterations: 7 Coverage: 0.99201 Est. minima: 6.
Iterations: 8 Coverage: 0.99516 Est. minima: 6.
Iterations: 9 Coverage: 0.99674 Est. minima: 6.

Iterations: 10 Coverage: 0.99769 Est. minima:

TML run completed.

Number of local minimizers found: 6

The minimizers are disposed to file: MINIMA
Total number of Function calls: 1914

Total number of Gradient calls: 838

Total number of Jacobian calls: O

Total number of Hessian calls : O

14

(¢]

6.3

Total number of local optimizations : 51
Maximum number of starting points: 13
Current state has been saved.

The relevant input files are listed:

File: POIMAR.DAT

-5.0
-5.0

o O
o O
o o
o O

File: TML.DAT

2
0
10
5.0000000000000
2
100
4.0000000000000
0.99500000476837
0.10000000000000E-01
0.10000000000000E-03
0.10000000000000E-02
0
100
in.dat
out.dat
MINIMA
POIMAR.DAT
input

File: in.dat

ANAL
BFGS NOC 2000

NOD
NOF
ITTHR
HEAL
NEARN
NSAMPL
SIGMA
COVTHR
XDEPS
FDEPS
GDEPS
IREST
NDUMP
FINP
FOUT
FMIN
POIFIL
INDIR

File: MINIMA (Contains the minimizers found).

15

8.9842012988325989E-02
-0.7126564030053476
-1.031628453483664
-8.9842001740361430E-02

2 0.7126564016386691 -5
Value -1.031628453483664

no 1.703606615756318 -5

2 . -0.7960835641969248 -5
Value -0.2154630210843795

no -1.703606616107386 -5

2 0.7960835644085253 -5
Value -0.2154630210843795

no -1.607104586736009 -5

2 . -0.5686514769482340 -5
Value 2.104250946486463

no 1.607104589746949 -5

2 0.5686514782893214 -5
Value 2.104250946486463

3.4 PTML - Test Run

.000

.000
.000

.000
.000

.000
.000

.000
.000

The test run assumes that LAM-MPI is installed and operational.

processors. To execute the test run, issue the following commands:

../../src/create-ptml-dirs 4 indir
setenv MERLIN_F77 mpif77
compile-merlin ptml.d 6hump.f
lamboot

mpirun -np 4 merlin.executable
wipe

The following output is produced on the standard output.

Parallel TML running with ...

Iteration threshold: 10

Healing parameter: 5.0000000000000
Number of nearest neighbors: 2

Sample size: 100
Sigma parameter:
Coverage threshold:

X distance criterion:
F distance criterion:
Gradient convergence criterion:
Saving every 100 iterations
Merlin input file: 1in.dat
Merlin output file: out.dat
Directory containing input files: indir

4.0000000000000
0.99500000476837
1.0000000000000D-02
1.0000000000000D-04
1.0000000000000D-03

16

The test

5.000

5.000
5.000

5.000
5.000

5.000
5.000

5.000
5.000

run uses 4

. The first minimum is found ... F: 136 G: 9

Iterations: 1 Coverage: 0.6350206 Est. minima: 2.0
Iterations: 2 Coverage: 0.9556767 Est. minima: 1.5
. Number of minima found: 2 F: 379 G: 31
. Number of minima found: 3 F: 407 G: 47
Iterations: 3 Coverage: 0.9476247 Est. minima: 4.1
. Number of minima found: 4 F: 546 G: 75
Iterations: 4 Coverage: 0.9706831 Est. minima: 5.0
. Number of minima found: 5 F: 723 G: 130
Iterations: 5 Coverage: 0.9820669 Est. minima: 5.9
. Number of minima found: 6 F: 1039 G: 282
Iterations: 6 Coverage: 0.9870537 Est. minima: 6.8
Iterations: 7 Coverage: 0.9917658 Est. minima: 6.7
Iterations: 8 Coverage: 0.9953168 Est. minima: 6.5
Iterations: 9 Coverage: 0.9968641 Est. minima: 6.4
Iterations: 10 Coverage: 0.9978384 Est. minima: 6.3

PTML run completed.

Number of local minimizers found: 6

The minimizers are disposed to file: MINIMA
Total number of Function calls: 2400
Total number of Gradient calls: 986

Total number of Jacobian calls: 0

Total number of Hessian calls : 0

Total number of local optimizations : 0
Maximum number of starting points: 13
Current state has been saved.

Processor Utilization

Proc Minim Graph Fcalls Gcalls
0 0 0 1246 0
1 20 346 375 318
2 20 346 374 320
3 20 346 405 348

The relevant input files are listed:

File: POIMAR.DAT

0.0 -5.0 5.0 1
0.0 -5.0 5.0 1
File: TML.DAT
2 NOD

17

0
10
5.0000000000000
2
100
4.0000000000000
0.99500000476837
0.10000000000000E-01
0.10000000000000E-03
0.10000000000000E-02
0
100
in.dat
out.dat
MINIMA
POIMAR.DAT
indir

File: in.dat

ANAL
BFGS NOC 2000

NOF
ITTHR
HEAL
NEARN
NSAMPL
SIGMA
COVTHR
XDEPS
FDEPS
GDEPS
IREST
NDUMP
FINP
FOUT
FMIN
POIFIL
INDIR

File: MINIMA (Contains the minimizers found).

2

1) e
2) ce

1) e
2) e

1) ce
2) ce

1) e
2) e

1) e
2) e

1) e
2) e

... 8.9842012988325989E-02
... —0.7126564030053476

-1.031628453483664

... —8.9842001740361430E-02
... 0.7126564016386691

-1.031628453483664

ce 1.703606615756318
... —0.7960835641969248

-0.2154630210843795

... ~—1.703606616107386
... 0.7960835644085253

-0.2154630210843795

e 1.607104589746949
... 0.5686514782893214

2.104250946486463

... ~—1.607104586736009
... —0.5686514769482340

2.104250946486463

18

-5.
-5.

-5.
.000

000
000

000

.000
.000

.000
.000

.000
.000

.000
.000

.000
.000

.000
.000

.000
.000

.000
.000

.000
.000

.000
.000

4 Examples

4.1 Polynomial Root-Finder

As an example of an application of OPTIMA, we present a polynomial root finder. The method
we use is based on Bairstow’s algorithm and is briefly described here. Let P,(z) = 7_, apa®
be a polynomial of degree n with real coefficients ax, k =0,1,2,---,n. The division with
a quadratic polynomial

P, (x) = (2% 4+ p12 + p2) Bu—a(z, p1,p2) + R(p1, p2)z + Q(p1, pa) (1)

can be made perfect, by choosing properly p; and p, so as to make the remainder terms
R and @ vanish. (The coefficients by, k = 0,1,---,n — 2 of B,_5 as well as R and @, are
obtained by synthetic division, i.e. via a recursion relation). If we determine such values for
p1 and py then P, (z) has two roots that coincide with the roots of the quadratic. The same
procedure is then applied to the quotient polynomial B,,_» and so on so forth. One way to
search for proper values of p; and py is by optimizing the quantity: R%+ Q2. It is here where
OPTIMA can be used. We list the source code in Fortran 77.

PROGRAM ROOTF

This is a polynomial root finder program.

the polynomials must have real coefficients.

The method applied is a modification of bairstow’s

i.e. division by a quadratic polynomial x**2 +pl*x +p2
determining pl & p2 to be such that the remainder is vanishing.
Then a deflation is applied by synthetic division to reduce
the polynomial degree by two, and the procedure is repeated.

A check is always made if the degree is reduced to either

one or two to use special finishing procedure.

x* X X X X X X X X X X

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON /TOROQOT/ A(0:100), B(0:100), KCO

COMPLEX ROOT(100), DISC

PARAMETER (N =2, M = 2)

DIMENSION ICODE(4), XP(2), XLL(2), XRL(2), IXAT(2)
CHARACTER LINEx78

DATA ICODE / 1, 0, 0, O /

DO 100 I=1,78
LINE(I:I) = ’=’
100 CONTINUE
*
* Read in, tolerance, polynomial degree, polynomial coefficients
WRITE (*,*) ’Enter a termination tolerance: °’

19

READ (*,*) EPS
WRITE (*,*) ’Enter the degree of the polynomial:’
READ (*,%*) KCO
WRITE (*,*) ’Enter the polynomial coefficients:(a(0),a(l),...
READ (*,*) (A(I),I=0,KCO)

* Type the above input for reference.
WRITE (*,’(A)’) LINE

WRITE (*,%) °’ Running with the following input
WRITE (*,*) ’Tolerance: ’, eps
WRITE (*,%) ’Degree: > kco
WRITE (x,x)° Coefficients a(i), i=0,1,... ’

WRITE (*,*) (A(I),I=0,KCO)
WRITE (*,’(A)’) LINE
NOR = 0
30 CONTINUE
* Check if the degree is one, and if so solve a linear equation.
IF (KCO.EQ.1) THEN
WRITE (*,*) ’ The roots of the polynomial are:’
NOR = NOR + 1
ROOT(NOR) = CMPLX(-A(0)/A(1),0)

DO 1 I=1,NOR
WRITE (*,19) I, ROOT(I)
1 CONTINUE
19 FORMAT (2X,’Root # ’,i4,t17,’(’,g14.7,’, °,gl4.7,’)’)
STOP
END IF

* Check if the degree is two, and if so solve a quadratic equation.
IF (KCO.EQ.2) THEN
WRITE (*,%*) ’ The roots of the polynomial are:’
NOR = NOR + 1
DISC = CMPLX(A(1)**2 - 4%A(2)*A(0),0.DO0)

ROOT(NOR) = (-A(1)+CSQRT(DISC))/2./A(2)
NOR = NOR + 1
ROOT(NOR) = (-A(1)-CSQRT(DISC))/2./A(2)
DO 2 I=1,NOR
WRITE (*,19) I, ROOT(I)
2 CONTINUE

STOP

END IF

*

* Initialize randomly in (-1,1)
P1 = 2xRANM()-1
P2 = 2xRANM()-1

20

*

* X X X X *

P1
P2

XP(1)
XP(2)

Minimize the remainder down to zero !!!
CALL OPTIMA(N,M,XP,XV,XLL,XRL,IXAT,ICODE,

& ’in.dat’,’/dev/null’,GRMS,NF,NG,NHE,NJA)
IF (SQRT(XV).LE.EPS) THEN
P1 = XP(1)
P2 = XP(2)

DISC = CMPLX(P1%x2-4xP2, 0.DO)
NOR = NOR + 1

ROOT(NOR) = (-P1 + CSQRT(DISC))/2
NOR = NOR + 1
ROOT(NOR) = (-P1 - CSQRT(DISC))/2

CALL SYNDIV(A,KCO,P1,P2,B,R,Q)
KCO = KCO - 2
DO 3 I = 0,KCO
A(I) = B(I)
CONTINUE
END IF
GO TO 30
END

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

Given a polynomial: a(n)*x**n + ...+a(1)*x +a(0)

and a quadratic: x**2 + plxx + p2

calculate the coefficients of the quotient polynomial: b(k),k=0,1,...
and the remainder terms r and q.

DIMENSION A(O:x), B(O:%)

B(N-2) = A(N)
B(N-3) = A(N-1)-P1%B(N-2)
DO 1 K=N-2,2,-1
B(K-2) = A(K)-P1*B(K-1)-P2*B(K)
CONTINUe
R = A(1) - P1*B(0)-P2%B(1)
Q = A(0) - P2*B(0)

SUBROUTINE SYNDER (A, N, P1, P2, B, R, Q, B1, B2, R1, R2, Q1, Q2)

21

x* X X X X X ¥ *

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

Given a polynomial: a(n)*xx*n + ...+a(1l)*x +a(0)

and a quadratic: x**2 + pl*x + p2

calculate the coefficients of the quotient polynomial: b(k),k=0,1,...,n-2
and the remainder terms r and q.

Calculate the derivatives: bl(k),rl,ql of b(k),r and q with respect to pi,
and the derivatives: b2(k),r2,q92 of b(k),r and q with respect to p2.

DIMENSION A(O:%),B(0:%),B1(0:%),B2(0:%)

B(N-2) = A(N)
B(N-3) = A(N-1) - P1xB(N-2)
DO 1 K=N-2,2,-1
B(K-2) = A(K) - P1xB(K-1) - P2xB(K)
CONTINUE
R = A(1) - P1xB(0)-P2%B(1)
Q = A(0) - P2xB(0)

B1(N-2) =0
B1(N-3) = -A(N)
DO 2 K=N-2,2,-1
B1(K-2) = -B(K-1) - P1xB1(K-1) - P2x*B1(K)
CONTINUE
R1 = -B(0) - P1xB1(0) - P2xB1(1)
Q1 = -P2%B1(0)

B2(N-2) = 0
B2(N-3) =0
DO 3 K=N-2,2,-1
B2(K-2) = -P1xB2(K-1) - B(K) - P2xB2(K)
CONTINUE
R2 = -P1xB2(0) - B(1) - P2xB2(1)
Q2 = -B(0) - P2xB2(0)
END

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION X(N), F(M)

COMMON /TOROOT/ A(0:100), B(0:100), KCO
P1 = X(1)

P2 = X(2)

22

CALL SYNDIV(A,KCO,P1,P2,B,R,Q)

F(1) = R
F(2) = Q
END

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION X(N), GRAD(N)

COMMON /TOROOT/ A(0:100), B(0:100), KCO
DIMENSION B1(0:100), B2(0:100)

P1 = X(1)

P2 = X(2)

CALL SYNDER(A,KCO,P1,P2,B,R,Q,B1,B2,R1,R2,Q1,Q2)
GRAD(1) = 2*(R*R1 + Q*Q1)

GRAD(2) = 2*(R*R2 + Q*Q2)

END

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION X(N), FJ(LD,N)

COMMON /TOROOT/ A(0:100), B(0:100), KCO
DIMENSION B1(0:100), B2(0:100)

P1 = X(1)

P2 = X(2)

CALL SYNDER(A,KCO,P1,P2,B,R,Q,B1,B2,R1,R2,Q1,Q2)
FJ(1,1) = R1

FJ(1,2) = R2

FJ(2,1) = Q1

FJ(2,2) = Q2

END

We list the Input/Output of a run for obtaining the roots of the polynomial: z% — 4z° +
2% + 87% — Tz? — 4z + 4 which is an expansion of: (x + 1)%(z — 1)?(x — 2)?

Enter a termination tolerance:
1.e-12
Enter the degree of the polynomial:

Enter the polynomial coefficients:(a(0),a(l),...)
4, -4, -7. 8. 2. -4. 1.

Running with the following input

23

Tolerance: 1.E-12
Degree: 6

Coefficients a(i), i=0,1,...
4. -4. -7. 8. 2. -4. 1.

The roots of the polynomial are:

root # 1 (1.000000 , 0.000000)
root # 2 (-1.000000 , 0.000000)
root # 3 (1.000000 , 0.000000)
root # 4 (-1.000000 , 0.000000)
root # 5 (2.000000 , 0.000000)
root # 6 (2.000000 , 0.000000)

The input instructions to OPTIMA that reside in the file in.dat are as

ANAL

JANAL

LEVE NOC 1000
TOLMIN NOC 1000

4.2 Sample code for multistart

PROGRAM MSTART

Sample code for multistart.
Illustrates the use of subroutine optima.

* ¥ *x *

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

PARAMETER (N = 2, M = 0)

DIMENSION XP(N), XLL(N), XRL(N), IXAT(N), ICODE(4)
CHARACTER*10 FINP, FOUT

The input Merlin-instructions reside in file: in.dat
Merlin’s output will be disposed to: /dev/null (Trash file)
DATA FINP / ’in.dat’ /
DATA FOUT / ’/dev/null’ /

Instruct Merlin to initialize the parameters from array XP,
and to ignore the input for lower bounds, upper bounds and fix-status.
DATA ICODE / 1, 0, 0, O /

DO 2 J=1,10

Fill the XP array with random numbers in the range (-7,7)
Routine RANM() is provided by Merlin.

24

DO 1 I=1,N
XP(I) = 7*(2*RANM()-1)
1 CONTINUE
* Perform local optimization.
CALL OPTIMA(N,M,XP,XV,XLL,XRL,IXAT,ICODE,
& FINP,FOUT,GRMS,NF,NG,NH,NJ)
IF (J.EQ.1) WRITE (*,70)

WRITE (%,71) J, NF, NG, XV, (XP(I),I=1,N), GRMS

2 CONTINUE
70 FORMAT (3X,’J’,4x,’FE’,4X,’GE’,7X, VAL’ ,11X,". . XP . . .7,
& 10x, >GRMS’)
71 FORMAT (1X,13,1x,15,1X,15,2X,D12.5,1X,10(2X,D12.5))
END
The produced output is displayed below:
J FE GE VAL ... XP L L. GRMS
1 47 13 -0.10316E+01 0.89842E-01 -0.71266E+00 0.89234E-08
2 28 19 -0.21546E+00 -0.17036E+01 0.79608E+00 0.49642E-08
3 13 10 -0.10316E+01 0.89842E-01 -0.71266E+00 0.81464E-09
4 22 17 -0.10316E+01 -0.89842E-01 0.71266E+00 0.34503E-12
5 32 24 -0.10316E+01 -0.89842E-01 0.71266E+00 0.43907E-07
6 26 18 -0.21546E+00 0.17036E+01 -0.79608E+00 0.36890E-07
7 33 19 -0.10316E+01 -0.89842E-01 0.71266E+00 0.36883E-07
8 37 25 0.21043E+01 0.16071E+01 0.56865E+00 0.23094E-07
9 28 21 0.21043E+01 -0.16071E+01 -0.56865E+00 0.27245E-08
10 13 12 -0.10316E+01 -0.89842E-01 0.71266E+00 0.24530E-07

The file: in.dat that contains the Merlin instructions and specifies the method(s) used for
the local search is displayed below.

ANAL
DFP NOC 2000

The above is produced with the DFP method (Davidon, Fletcher, Powell). To change the
minimization method to another, say to the BFGS method, edit the in.dat file and change
the second line to:

BFGS NOC 2000

4.3 Molecular conformation problem

The geometrical structure is an important property for understanding and predicting the
behavior of any molecular system. It is the necessary starting point for the derivation of

25

structural features, the estimation of steric requirements, and the calculation of electronic
properties. For systems with many degrees of freedom, the potential energy hypersurface may
have a substantial number of local minima that correspond to stable molecular configurations.
Triglycerides are important biological compounds. Among other functions they serve as
structural components of the cell membranes and as a source of carbon atoms for biosynthetic
reactions. Glycerol triacetate also known as triacetin is a highly flexible molecule, hence its
properties do not depend only on the globally optimal conformational state.

Triacetin consists of 29 atoms which form three branches named «, 3 and 7 as shown in fig.
1. The 15 heavy atoms form a backbone structure with 8 rotational degrees of freedom, while
the rotation of the terminal methyl groups add 3 more. For the potential function we used
the MM2 [3] force field with 1991 parameters, as implemented in the Tinker [4] molecular
modeling package. Triacetin was modelled using internal coordinates. Bond lenghts and
angles were fixed to their equilibrium values while the 11 dihedral angles were allowed to
vary. We applied the parallel TML algorithm using 4 processors on a SUN Enterprise 450,
with the following default parameter values:

ITTHR=10 HEAL=5 NEARN=2 NSAMPL=100 SIGMA=4
COVTHR=0.995 XDEPS=1.e-2 FDEPS=1.e-4 GDEPS=1.e-5

For the local optimization we used the TOLMIN method with a maximum of 5000 function
calls. The TML algorithm performed 29780 iterations, 3982011 function and 993272 gradient
calls. A total of 2181 local minima were found. After TML completed all minima were further
refined using the full set of internal coordinates. Using this procedure we recovered all 109
low energy conformers described in [5]. The global minimum is shown in fig. 2, while the
next lowest is shown in fig. 3.

5 Using MCL with the OPTIMA interface

We present a general strategy, coded in MCL, and then show how it can be used with the
OPTIMA interface.

program
var geps;nocalls
geps = 1l.e-5
nocalls = 1000

call local(geps;nocalls)
end

% Mttt

% It is a local minimization strategy.

26

Figure 1: The triacetin molecule

Figure 2: Lowest energy conformer of triacetin

27

Figure 3: The second lowest energy triacetin conformer

%» GEPS is input and is a tolerance for the rms gradient.

» NOCALLS is input and adjusts the number of calls to the objective
yA function.

% Care is taken to use proper methods depending on the existance

==

% of analytic derivatives, jacobian and the functional form.
var ic;z
ic =0
REDO:
if funmode == 0 then % General form (FUNCTION FUNMIN)
if deriva == 1 then % Analytic gradient exists.

tolmin(NOC=nocalls)
when grms[z] > geps just simplex(NOC=nocalls)
b
else % Analytic gradient does not exist
simplex (NOC=nocalls)
when grms[z] > geps just bfgs(NOC=nocalls)

endif
else % Sum of Squares form (SUBSUM)
if jacomo == 1 then % Analytic Jacobian exists

28

leve (NOC=nocalls)
when grms[z] > geps just tolmin(NOC=nocalls)
A

else % Numerically estimated Jacobian
leve (NOC=nocalls)
when grms[z] > geps just simplex(NOC=nocalls)

endif

endif

ic = ic + 1
if grms[z] > geps then
when ic <= 10 just move to REDO

endif
end

Compile the above MCL program and let the object code be the input file (FINP) to
subroutine optima.

29

References

[1] D. G. Papageorgiou, I. N. Demetropoulos, I. E. Lagaris, Merlin—3.0. A multidimensional
optimization environment, Comput. Phys. Commun. 109 (1998) 227-249

[2] D. G. Papageorgiou, I. N. Demetropoulos, I. E. Lagaris, The Merlin Control Language
for strategic optimization, Comput. Phys. Commun. 109 (1998) 250-275 Journal of Global
Optimization 5 (1994) 349-358

[3] N. L. Allinger, Conformational analysis. 130. MM2. A hydrocarbon force field utilizing
Vi and Vy torsional terms, J. Am. Chem. Soc. 99 (1977) 8127-8134

[4] J. W. Ponder, TINKER 3.7 of June 1999, Availability: http://dasher.wustl.edu/tinker/

[5] D. G. Papageorgiou, I. N. Demetropoulos, I. E. Lagaris, P. T. Papadimitriou, How many
conformers of the 1,2,3-Propanetriol triacetate are present in gas phase and in aqueous
solution, Tetrahedron 52 (1996) 677-686

30

