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Abstract

We present two sequential and one parallel global optimization codes, that belong to the stochastic class, and an interface
routine that enables the use of the Merlin/MCL environment as a non-interactive local optimizer. This interface proved extremely
important, since it provides flexibility, effectiveness and robustness to the local search task that is in turn employed by the global
procedures. We demonstrate the use of the parallel code to a molecular conformation problem.

Program summary

Title of program: PANMIN

Catalogue identifier: ADSU

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADSU

Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland

Computer for which the programisdesigned and others on which it has been tested: PANMIN is designed for UNIX machines.

The parallel code runs on either shared memory architectures or on a distributed system. The code has been tested on a SUN
Microsystems ENTERPRISE 450 with four CPUs, and on a 48-node cluster under Linux, with both the GNU g77 and the
Portland group compilers. The parallel implementation is based on MPI and has been tested with LAM MPI and MPICH
Installation: University of loannina, Greece

Programming language used: Fortran-77

Memory required to execute with typical data: Approximately Gn?) words, where: is the number of variables

No. of bitsin a word: 64

No. of processors used: 1 or many

Has the code been vectorised or parallelized?: Parallelized using MPI

No. of bytesin distributed program, including test data, etc.: 147163

No. of linesin distributed program, including the test data, etc.: 14366

Distribution format: gzipped tar file

Y This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect
(http://www.sciencedirect.com.science/journal/00104655
* Corresponding author.
E-mail address: lagaris@cs.uoi.gr (I.E. Lagaris).
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Nature of physical problem: A multitude of problems in science and engineering are often reduced to minimizing a function

of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the
search for a better solution is required. Local optimization techniques can be trapped in any local minimum. Global Optimization
is then the appropriate tool. For example, solving a non-linear system of equations via optimization, one may encounter many
local minima that do not correspond to solutions, i.e. they are far from zero

Method of solution: PANMIN is a suite of programs for Global Optimization that take advantage of the Merlin/MCL
optimization environment [1,2]. We offer implementations of two algorithms that belong to the stochastic class and use local
searches either as intermediate steps or as solution refinement

Restrictions on the complexity of the problem: The only restriction is set by the available memory of the hardware configuration.
The software can handle bound constrained problems. The Merlin Optimization environment must be installed. Availability of
an MPI installation is hecessary for executing the parallel code

Typical running time: Depending on the objective function

References. [1] D.G. Papageorgiou, |.N. Demetropoulos, |.E. Lagaris, Merlin-3.0. A multidimensional optimization
environment, Comput. Phys. Commun. 109 (1998) 227—-249.

[2] D.G. Papageorgiou, I.N. Demetropoulos, |.E. Lagaris, The Merlin Control Language for strategic optimization, Comput.
Phys. Commun. 109 (1998) 250-275.
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1. Introduction present their implementation. The first aims to locate
only one global minimum, while the second to collect
Optimization has proved to be an invaluable tool all the existing local minima. Specifically we present
in many scientific fields. Its strength comes in part a modification of the “Controlled Random Search”
from the fact that a plethora of diverse scientific (CRS), originally introduced by Price [3], and the
as well as practical problems, can be reduced to “Healed Topographical Multilevel Single Linkage”
optimization problems, and in part from the existence (HTMLSL) that is based on the Multi Level Single
of robust and effective optimization methods. At Linkage (MLSL) method of Kan and Timmer [6-8],
this point we would like to make the distinction with topographical modifications inspired from the
between local optimization and global optimization. articles by Ali and Storey [9] and by T6érn and Viitanen
A function may have more than one points where [10]. The above two codes are sequential and do
the optimality conditions are satisfied, i.e. many local not take advantage of environments with multiple
minima. Any of these is an acceptable solution as far processors. Note also that CRS can hardly benefit from
as local optimization is concerned. Among the local such a computational environment due to the nature
minima, the one with the lowest value, i.e. the global of its algorithmic structure. HTMLSL lends itself to
minimum, is the solution that global optimization parallel processing and is reprogrammed using the
seeks for. Note also that there may exist several Message Passing Interface (MPI) to take advantage of
global minima, i.e. minima at different positions with  either a shared memory architecture or a distributed
the same, globally lowest, function value. Various environmentwith interconnected computers.
global optimization methods have been developed For a review with detailed bibliography and com-
rather recently, many of them being of stochastic parisons among various methods, we refer to [11]. For
nature. These methods recover the global minimum the recent developments in the area of global opti-
with a probability tending to one, in the asymptotic mization we refer to the article by Pardalos et al. [12].
limit. Deterministic methods that would guarantee Our implementation is based on the Merlin [1] opti-
the recovery of the global minimum, face at present mization environment and its programming language
various computational difficulties. We describe two MCL [2]. Merlin offers several local optimization al-
methods that belong to the stochastic class and wegorithms and many useful tools. MCL is a program-
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ming language for implementing optimization strate-
gies in the context of the Merlin environmeht.

This article is organized as follows. In Section 2,
we present the implemented algorithms and we make
some relevant comments. In Section 3 we pre€Pat
TI MA, the routine that interfaces the Merlin package
so that it can be used directly from a user’s program
as a local optimization routine. In Section 4 we lay out
the documentation of the corresponding software.

In the user's manual, we apply the implemented
methods to the standard “Six-hump Camel-Back” test
function and we list the output of the test runs. In the
examples section, we present a code that makes use of
the subroutine OPTIMA to implement the simplistic
multistart approach for global optimization, i.e. we
generate a number of points at random and from each
one we start a local search.

2. Algorithmic description *

In the following the descriptions of the two al- .

gorithms are given. First in Section 2.1 we sketch
the CRS, and in Section 2.2 the HTMLSL method.
The parallel version of HTMLSL is described in Sec-
tion 2.3.

2.1. Controlled random search

This is a modification of Price’s [3] algorithm,
similar but not identical to the one described in
[4]. The method seeks for one global minimum in
a given domainD. Here the feasible domai® is
considered to be a rectangular hyperbox. The steps of
the procedure are given (in a Fortran-like fashion) by:

Input data:

e M, an integer such tha/ > N + 1, whereN
is the space dimension. (Suggested value=
25N)

e ¢, a small positive constant. (Suggested value:
e=10"9)

e w, a rather large positive constant. (Suggested
value:w = 1000)
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SepO:

Setk = 0. Form the initial sets* = {x¥, x&, ...
xj’f,l} by picking M points randomly fronD

Evaluate:ff = f(xk) fori=1,2,..., M

)

Sep 1:

= max{fl.k}, and let the corresponding point
be denoted ask,,,. Similarly

fk. = min{£}}, and the corresponding point is
denoted ask.

IF fkao— fE. <e, polishxk. viaa local search
procedure and STOP

Sep 2:

ko gk

k
igr Xig» -0 X }

’ lN

Choose at random¥ + 1 points{x

from S¥
Calculate the weighted centroids:

N N
k k. k k koo( k
Cw = § Wik fuw = § wjf(xi_,')
j=1 =1

where:
k

n"
k j
w = ———
J N k’
Zj:lnj
nk = !
T FGE) = fin ¥
b (Fhax— fin)®
" =w—7 0
fmax_ fmin
Calculate a trial poing*as:
fok) — fk A

-k k k
X =(xl.0—cw) P
fmax

_fr’;in+¢k v

o whereA!, =2¢f, —x} if fi < f(xf)andAk =

2xf — ek if £ > fOxf)

e IF x¥ ¢ D REPEAT step 2

e Computef (x¥)

1 We maintain the sitehttp://merlin.cs.uoi.gr where updated
versions of the Merlin/MCL software and its manual can be found,
as well as installation scripts, compiler specific issues, development

info etc. °

Sep 3:

IF f(xk) > £k THEN


http://merlin.cs.uoi.gr
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— Calculate the success rate (the fraction of func- such a way so as to avoid this undesirable repetition.
tion evaluations that led to a new lower upper Here again the bounded sgt- R" is the rectangular

bound) hyperboxXazi, b1]1 ® [a2, b2] ® - - - ® [an, ba].
— IF success rate- 50%, setS**+! = sk, k = At the kth iteration:
k+1and GOTO step 2
et (1) Constructa sample by picking at randdhpoints

— Calculatey* = %, computef, = f(y*)

from S. A h int eval h jecti
_E fy>fr]ﬁax’ setS“ — Sk k= k + 1 and om S. At each point evaluate the objective

function.

_ ggtggftipﬁ Uy ) — (xk ), k =k + 1 and (2) Choose from thg sample a subset of points to be
GOTO step 1 max?» used as start points for local searches. _
« ENDIE 3) Perform_a Iocql se_arch from each start point. If a
new minimum is discovered store it.
Sep 4: (4) Determine whether to stop or not. If not, repeat

from step 1.

o Setsk1 = sk U (k) — (xk 00

e Incrementk =k + 1 and GOTO step 1 From the stored local minima the one with the lowest

value may be regarded to be the global minimum.

Steps 2 and 4 require further description. Steps 1
and 3 are straightforward, however a few comments
may be helpful.

2.1.1. Comments

The above algorithm (as quoted in [4]) has been
designed for problems where the objective function
is affected by the presence of noise and its gradient
is not analytically available. Such problems, in the Sep1
case of local optimization are treated with reasonable ~ The points are drawn from a uniform distribution.
success by the irregular Simplex method [5]. The In [9] the Halton sequence is used instead, which in
presented global algorithm is inspired in part by the the asymptotic limit produces uniformly distributed
tactic followed in that method. (Maintaining, i.e. a Points. This may reduce the number of function
population of points and performing operations such €valuations by a few percent. (A 15% reduction
as reflection with respect to a centroid, etc.). Note that is reported in [9].) Maintaining asymptotically the
if more than one global minima exist, this method will uniform distribution is important, since the strong

locate only one of them. theoretical (asymptotic) results in [6] and [7], are only
proved for the uniform distribution. In [10] uniform
2.2. Healed topographical multilevel single linkage sampling is used. However if a new point is too close

to another, is rejected in an attempt to coein a

In the present article we describe a stochastic MOre evenly manner.
method based on the MLSL algorithm [7], integrated
with ideas from [9] and [10]. A healing technique Sep?2
along with a threshold on the number of iterations  This is the step that characterizes the method as
is used, to prevent premature termination at the early “Topographical MLSL". In this step we first add to
stages of the algorithm. The algorithm attempts to find the sample the already found (initially none) local
all local minima of an objective functiorf (x) inside minima. So the sample contain$ + w points, w
a bounded sefS C R", that are potentially global. being the number of the local minima found so far.
These local minima are obtained by a local-search For every point; € S we find itsc closest neighbors
procedure, starting from suitably chosen points in a b;;, j=1,...,c. If f(r)) < f(bij), Vji=1,...,c,
properly maintained sample. Stochastic algorithms in then the point; is called a graph minimum. The start
the framework of multistart suffer from the problem points for the local searches are chosen from within
of recovering the same local minima repeatedly, a fact the set of the graph minima. A point from that set is a
that diminishes their efficiency. MLSL is devised in start point as long as:
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1. Itis not a local minimum found earlier, and
2. There is no other point within a critical distance
R, with a lower function value.

The critical distance is the one used and in the plain
MLSL algorithm, depends on the iteration numiger
and is given by:
1 n log(kN) T+/"
Ri=—|T{1+4 = S , 1
i= (145 )mesrr % ®

wherem(S) is the Lebesgue measure $ifando is a
user supplied positive parameteroif> 4 then, even

if the sampling continues for ever, the total number
of local searches has been proved to be finite with
probability one. See [7] and [8].

Sep 3

The local search is of key importance. It is invoked
many times during the course toward the global mini-
mum, and hence its efficiency and robustness influence
the overall performance dramatically. Methods that re-
quire the Hessian matrix or the Gradient vector, can-
not treat satisfactorily functions that are not continu-
ously differentiable. On the other hand, methods that
use only function values are comparatively inefficient
when applied to smooth, continuously differentiable
functions. Unfortunately there is no single method ap-
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tinuation or the termination of the iterations. A Bay-
esian estimate of the total number of local minimizers
[6] is given by:

w( —1)

t—w—2 )
Similarly an estimate for the covered portion 8f
by the regions of attraction of the local minimizers
already found is expressed as:

_ww+1 3)
tt—1)
wherer in [6] stands for the total number of points
used in the sample after a cut-off level reduction. Here
the reduction is implicitly performed by selecting the
start points from the set of the graph minima. Hence at
iterationk we take:
k
Z[Li +ai(Gi — L],
i=1
L;, G; stand for the number of start points and the
number of graph minima at thi¢h iteration, andy; €
(0,1) is given by:
ST ©)
1+exp(—i/h)
h being a positive healing parameter. Note that as the
iteration count increasas;, — 1 (healing), and then

West=

Pcov =

=

4)

plicable to all cases as a panacea. Therefore the localthe summand in Eq. (4) becomes equal to the number

procedure has to be either an intelligent system capa-
ble of making decisions as to which method is suitable
to apply, or easily replaceable without the need to tam-
per with the source code. This is precisely the reason
we have chosen the Merlin/MCL system in our im-
plementation. Merlin offers many optimization algo-
rithms. The information instructing which one to use,
is read from a text file. This file can be easily edited
each time accordingly and there is absolutely no need
to change the source code. Alternatively, an intelligent
minimization strategy can be coded in MCL, and Mer-
lin can be instructed to execute it every time a local
search is invoked. Such an example is provided in the
user’'s manual. By using Merlin/MCL we satisfy the so
crucial requirements of flexibility, efficiency and ro-
bustness.

Sep 4
This is the final step, where a decision is made,
based upon a Bayesian criterion, concerning the con-

of graph minima. Two conditions must be satisfied in
order to terminate the algorithm.

(1) west< w+ 3, or equivalently, 2%+ 3w +2 <t,
and

(2) pcov > 1— ¢, or equivalentlyw(w + 1) < e(t —
1,

€ being a small positive number. As it can be read-
ily realized, healing, protects the algorithm from pre-
mature termination, by delaying the growth of the
t-values for a number of initial iterations. As an ad-
ditional control parameter, a threshaldon the mini-
mum number of iterations is used. This forces the al-
gorithm to iterate for at leagdt times.

2.3. Parallel HTMLSL

For heavy tasks parallelization is of great impor-
tance. For example the determination of the confor-
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mational structure of molecules can be an exceedingly after the description is read, but let us say a few words
time consuming application. The parts of the algo- in advance. Merlin [1] supports many optimization al-
rithm that are parallelized are the nearest neighbor pro- gorithms, not just one. Some of them use derivatives
cedures and the local searches. and are suitable for smooth functions, some others
We employ the “one master n workers” scheme.  use only function values and are appropriate for noisy
Therefore one needs at least two processors to executdunctions with, maybe, discontinuous derivatives etc.
this version of the program. The workers perform two Merlin can also handle combinations of different algo-

actions: rithms, i.e. optimization strategies, which have proved
a) Determination of the nearest neighbors of a sample to be important. On the other hand, library routines
point usually implement a single algorithm and hence each
b) Local minimization of the objective function. time a different requirement is to be met, one would

The master processor creates the random pointshave to change the call to another optimization rou-
inside the hyperbox, evaluates the objective function tine, that implements the proper algorithm, and so on
at every point and communicates this information so forth. Tampering with the source code too often, is
to all workers. Each sample point is assigned to a poth unpleasant and error prone. By assigning the op-
worker for nearest neighbor determination. After this timization task to Merlin, one has the immediate bene-
the master selects the start points. Each start point isfit that the customization (i.e. which method to use) is
then assigned to a Workel’ for |Oca| Optimization. In performed without Changing the source Code' but On|y
both of the above actions, load balancing is achieved an entry to an input text file. In addition, using MCL
via a round-robin tactic among the workers. Finally [2] directives, one can employ an intelligent strategy
the master accepts only the truly new minimarejecting jnstead of a single method. It is understood that the
the rest. The accepted minimizers are passed to all gpjective function must be written in the form that is

workers. o o required by the Merlin package.
The implementation is based on MPI which is a

widely accepted standard for parallel and distributed
computing and is available for most computers and

operating systems. 4, Documentation of the software

There are three Global Optimization modules and
3. The OPTI MAinterface the OPTI MA Interface subroutine, as listed below.

The Merlin/MCL-3.0 package, offers a powerful ¢ ProgramPRICE.
environment for optimization. Merlin expects suitable The implementation of the Price algorithm for
instructions from an available repertoire, to search for ~ Global Optimization, as presented in Section 2.1.
the minimum of a user-prepared objective function. e ProgramlTML.
This procedure has an interactive character, which is ~ The implementation of the HTMLSL, as pre-
fine when the central issue is to obtain the optimum of sented in Section 2.2.
a function. However when the minimizationis onlyan e ProgramPTML.
intermediate task, required in the course of a calcula- The parallel implementation of HTMLSL, as pre-
tion, a single call to a routine that returns a minimum sented in Section 2.3.
point is more appropriate and far more convenient. To e SubroutinedOPTIMA.
meet this need, we devised an interface, that permits The user-interface to thderlin[1,2] optimization
one to call from within his own program the Merlin op- package.
timization environmentand use it without having to in-
struct it interactively. One may wonder if such an inter- Detailed instructions concerning installation and us-
face is worthwhile and ask if it is any differentfromthe age for the PRICE, TML and PTML modules, are in-
so many library optimization routines that operate in a cluded in the accompanying manual. The documenta-
similar way. The answer to this will become apparent tion of theOpt i ma subroutine follows.
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4.1. The OPTIMA interface

The interface is implemented asFORTRAN- 77
subroutine. Its syntax and argument description fol-
lows.

SUBROUTINE OPTIMA ( N, M XP, XV, XLL,
XRL, | XAT, | CODE,
FINP, FOUT, GRVB,
NF, NG NH, NJ )

&

4.1.1. Argument description

e N is the space dimension (i.e. the number of
parameters).

e Mis the number of terms in a Sum of Squares ob-
jective function. For a general functidimust be
set to zero. Namely wheRUNCTI ON FUNM N
is prepared theMis set to zero. Alternatively if
SUBROUTI NE SUBSUMIis prepared for a sum of
squares casélis set to be the number of terms
considered.

e XP is an array that on input it may contain
a starting point, and upon return contains the

minimizer.

e XV upon return contains the value of the mini-
mum.

e XLL, XRL, |XAT are arrays that on input

may contain the lower bounds, the upper bounds
and the fix-status of the parameters.

e | CODE is an input integer array with four ele-
ments. Each element may take the values O or 1.
1. If | CODE( 1) 1 then the (input) contents

of XP will be used to initialize the parameters.

2. If | CODE(2) = 1 then the contents of XLL
will be used to set the lower bounds for the
parameters.

3. If | CODE( 3) = 1 then the contents of XRL
will be used to set the upper bounds for the
parameters.

4. If | CODE(4) = 1 then the contents of IXAT

will be used to set the fix-status of the parame-
ters.
If any of thel CODE elements is zero, the corre-
sponding action is not taken.

e FI NP is an input character string, containing the
name of a file that contains Merlin instructions or
alternatively the object code of an MCL program.

e FQOUT is an input character string, containing the
name of a file where Merlin’s output will be dis-
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posed. This file has no use (other than debug-
ging) and in Unix systems can be set to equal
[ dev/ nul | to suppress it. The settifgOUT =

' ', corresponds to the standard output device.

e GRMB upon return contains the value of the root
mean square gradient, at the returned pxt

e NF upon return contains the number of the per-
formed function evaluations.

e NG upon return contains the number of the
performed gradient evaluations, i.e. the calls
to the (optionally) user-suppliecGUBROUTI NE
GRANAL.

e NH upon return contains the number of the per-
formed calls to the (optionally) user-supplied
SUBROUTI NE HANAL.

e NJ upon return contains the number of the per-
formed calls to the (optionally) user-supplied
SUBROUTI NE JANAL.
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