
Äéáêïìéó�Ýò êñõöÞò áðïèÞêåõóçò ìå äéá�Þñçóç�ïðéêü�ç�áò äåäïìÝíùí ãéá êá�áíåìçìÝíáóõó�Þìá�á áñ÷åßùí
Ç ÌÅÔÁ�ÔÕ×ÉÁÊÇ ÅÑ�ÁÓÉÁ ÅÎÅÉÄÉÊÅÕÓÇÓõðïâÜëëå�áé ó�çíïñéóèåßóá áðü �ç �åíéêÞ ÓõíÝëåõóç ÅéäéêÞò Óýíèåóçò�ïõ ÔìÞìá�ïò �ëçñïöïñéêÞò Åîå�áó�éêÞ Åðé�ñïðÞáðü �ç

ËáìðñéíÞ Êþíó�áùò ìÝñïò �ùí Õðï÷ñåþóåùí ãéá �ç ëÞøç �ïõ
ÌÅÔÁ�ÔÕ×ÉÁÊÏÕ ÄÉ�ËÙÌÁÔÏÓ ÓÔÇÍ �ËÇÑÏÖÏÑÉÊÇÌÅ ÅÎÅÉÄÉÊÅÕÓÇÓÔÁ Õ�ÏËÏ�ÉÓÔÉÊÁ ÓÕÓÔÇÌÁÔÁÖåâñïõÜñéïò 2009

Dedi
ation
To my lovely family...

A
knowledgements
At this point, i would like to mention all those people that strongly supported me duringthe design and implementation of this work.I wish to thank my supervisor, Prof. Stergios Anastasiadis, for his signi�
ant guidan
eand pre
ious advi
e throughout this resear
h. I am mostly grateful to my family that
ontiguously en
ouraged and supported me. I would also like to thank the membersof the Systems Resear
h Group (SRG) at the University of Ioannina, for the perfe
t
ollaboration. Espe
ially, Androma
hi Hatzieleftheriou and Giorgos Margaritis who werealways willing to dis
uss di�erent issues that helped me improve several
he
kpoints ofmy thesis.Finally, it should be noted that the work presented in this thesis was supported inpart by the proje
t Interreg IIIA Gree
e-Italy 2000-2006 Grant No I2101005.

Table of Contents
1 Introdu
tion 11.1 Thesis s
ope . 11.2 Thesis outline . 32 Related Resear
h 52.1 Ca
hing in network �lesystems . 52.1.1 Ca
hing fa
ilities for distributed �lesystems 62.2 Storage allo
ation in related
a
hing systems 72.2.1 FS-Ca
he . 72.2.2 Na
he . 92.2.3 Re
ent
a
hing systems . 112.2.4 Previous modi�
ations made to the AFS Ca
he Manager 122.3 Web Ca
hing Proxies . 122.3.1 Hummingbird �le system . 132.3.2 The BUDDY storage management method 162.3.3 File spa
e management algorithms 172.3.4 Methods to redu
e the disk head seek time 182.4 Summary . 193 Andrew File System 213.1 AFS: A Distributed File system . 223.1.1 S
alable Ar
hite
ture . 233.1.2 Client-server model . 243.1.3 The Ca
he Manager . 253.2 Basi
 de�nitions . 26i

3.2.1 Cells . 263.2.2 Volumes . 273.2.3 Uniform Namespa
e . 273.3 Major stru
tures . 283.3.1 On-disk stru
tures . 293.3.2 In-memory stru
tures . 313.4 Storage management in AFS . 343.4.1 Cir
ular queues . 353.4.2 Mapping from a remote to a lo
al �le o�set 373.4.3 Allo
ating a new lo
al
a
he �le to store remote data 374 Ar
hite
tural De�nitions 394.1 Design issues . 394.1.1 Storage allo
ation . 414.1.2 Data Repla
ement . 444.2 Design goals . 444.3 Proposed ar
hite
ture . 454.3.1 Storage management . 464.3.2 File Repla
ement . 474.4 Summary . 485 Implementation of Hades 505.1 Hades proxy server . 515.2 Ca
he Files . 525.3 Bitmap List . 535.4 Mapping . 545.5 Allo
ation . 555.5.1 Data
lustering based on the remote �le's identi�er 555.5.2 Data
lustering based on the user's identi�er 565.6 Hashing . 575.6.1 Hash lists . 575.6.2 Sear
hing in hash lists . 595.7 Repla
ement . 59ii

5.8 A File Retrieval Example . 616 Experimental Evaluation 636.1 Environment . 636.2 Retrieval of Ca
hed Data . 646.3 Software Compilation . 676.4 Summary . 697 Con
lusions - Future Work 707.1 Con
lusions . 707.2 Future Work . 71

iii

List of Figures2.1 FS-Ca
he ar
hite
ture. 82.2 Na
he ar
hite
ture blo
k diagram. 103.1 The AFS Ca
he Manager. 253.2 The uniform namespa
e of Andrew File System. 283.3 The f
a
he stru
ture . 293.4 The d
a
he stru
ture . 313.5 The v
a
he stru
ture . 323.6 The volume stru
ture . 333.7 Hash tables used to lo
ate data at the
lient's disk
a
he. 343.8 Major stru
tures of Andrew File System and their
orrelation. 364.1 The basi
 ar
hite
ture of a proxy server in a distributed �le system. . . . 404.2 Time to retrieve one large �le dire
tly from the lo
al �le system in
om-parison to a

essing it through OpenAFS from the lo
al disk or the remoteserver. 424.3 Time to retrieve numerous small �les dire
tly from the lo
al �le system in
omparison to a

essing them through OpenAFS from the lo
al disk or theremote server. 434.4 Proposed ar
hite
ture . 465.1 The Hades system
ombines a modi�ed OpenAFS
lient with a user-levelNFS server . 515.2 The main stru
ture of the modi�ed OpenAFS
lient in Hades. 535.3 Using hash tables and hash lists to lo
ate remote data at the proxy
a
heof Hades. 58iv

5.4 We prefer as vi
tims for repla
ement the least re
ently used lo
al �les ratherthan the remote ones. 606.1 We measure the �le a

ess throughput at the proxy server a
ross di�er-ent sizes of transferred �les. Consistently, Hades a
hieves a substantialthroughput improvement with respe
t to OpenAFS that gets up to 80%.See text for explanation of the Par/Seq and Wm/Cd abbreviations. 656.2 At the proxy server, we measure the time to read multiple �les in parallelfrom the origin server (Remote), and in parallel (Parallel) or sequentially(Single) from the proxy disk
a
he. The laten
y to transfer ea
h �le blo
kto the proxy server is broken down into fet
hing from the origin server,mapping to the lo
al �le, reading of the lo
al �le. In
omparison to Ope-nAFS, Hades redu
es substantially the blo
k a

ess laten
y up to 59%. . . 666.3 We build the Linux kernel on one (1)
lient, four (4)
lients, and four
lientswith the origin 50ms away (4D). O refers to OpenAFS, N to NFS and H toHades. The proxy
a
he is
old before ea
h experiment that uses it. (a) Wemeasure the total number of re
eived and transmitted bytes in the origin(S) and the proxy (P) server. (b) With
old proxy
a
he, the interventionof the proxy server in
reases the
ompilation time. For retrieved �les ofonly a few kilobytes ea
h, Hades only a
hieves a modest redu
tion from2315 to 2119 s (8.5%) in
omparison to the original OpenAFS. 68

v

List of Tables2.1 Major
a
hing systems and their basi

hara
teristi
s 20

vi

Abstra
tLamprini K. Konsta, MS
, Computer S
ien
e Department, University of Ioannina, Gree
e.February, 2009. Hades: Lo
ality-aware Proxy Ca
hing for Distributed File Systems.Thesis Supervisor: Stergios V. Anastasiadis.Re
ent trends in business and resear
h
ollaboration en
ourage se
ure data sharing overwide area networks with the minimal intervention from the end user. Alhough traditional�le transfer me
hanisms have been used for se
ure data sharing over the last de
ades, theyfa
e the main disadvantage of getting the user to expli
itly initiate the whole transferme
hanism, whi
h bears signi�
ant repli
a bookkeeping overhead to the user. As analternative,
a
hing proxies have been lately introdu
ed to redu
e WAN laten
y by
a
hingdata
loser to the
lient.In this thesis, we propose alternative storage management issues in
a
hing proxyservers for distributed �le systems, based on Andrew File System. We organize the re-quested data at the disks of the proxy server using lo
ality-aware approa
hes. Addition-ally, we introdu
e improvements in the mapping me
hanism from remote to lo
al dataand
onsider
ost-aware repla
ement methods. Thus, we su

eed to improve existing per-forman
e of retrieving �les from proxy's disk
a
he, espe
ially in the
ase of
on
urrent�le a

esses. In a prototype implementation that we developed, we experimentally
om-pare alternative distributed �le systems as
omponents of the proxy servers. Throughextensive measurements, we demonstrate throughput improvements at the proxy serverup to 80% in
omparison to the disk-based
a
he of Andrew File System.
vii

Åê�å�áìÝíç �åñßëçøçËáìðñéíÞ Êþíó�á �ïõ Êùíó�áí�ßíïõ êáé �çò �éáííïýëáò. MS
, ÔìÞìá �ëçñïöïñéêÞò,�áíåðéó�Þìéï Éùáííßíùí, ÖåâñïõÜñéïò, 2009. Äéáêïìéó�Ýò êñõöÞò áðïèÞêåõóçò ìå äéá�Þñçóç�ïðéêü�ç�áò äåäïìÝíùí ãéá êá�áíåìçìÝíá óõó�Þìá�á áñ÷åßùí.ÅðéâëÝðùí: Ó�Ýñãéïò Áíáó�áóéÜäçò.Ïé óýã÷ñïíåò áíÜãêåò åðé÷åéñçìá�éêÞò êáé åñåõíç�éêÞò óõíåñãáóßáò åíèáññýíïõí �çí áõ�ïìá-�ïðïéçìÝíç êáé áóöáëÞ êïéíï÷ñçóßá äåäïìÝíùí ðÜíù áðü äßê�õá åõñåßáò ðåñéï÷Þò ìååëÜ÷éó�ç åìðëïêÞ �ùí �åëéêþí ÷ñçó�þí. Ç áðáß�çóç áðü �ïí �åëéêü ÷ñÞó�ç íá áí�éãñÜöåé�á äåäïìÝíá êïí�Ü ó�ïõò õðïëïãéó�éêïýò ðüñïõò ìå �çí åê�Ýëåóç åí�ïëþí ìå�áöïñÜòáñ÷åßùí äçìéïõñãåß óçìáí�éêÞ åðéâÜñõíóç êáé êáèõó�åñÞóåéò. Óõíåðþò, èá Þ�áí ðñï�éìü�åñçç ýðáñîç åíüò äéáêïìéó�Þ êñõöÞò áðïèÞêåõóçò ðïõ èá áí�éãñÜöåé áõ�üìá�á �á áðïìáêñõóìÝíáäåäïìÝíá êáé èá áðïêñýð�åé �éò êáèõó�åñÞóåéò ìå�áöïñÜò êá�Ü �éò åðáíáëç�éêÝò ÷ñÞóåéò�ùí äåäïìÝíùí. Ç äçìéïõñãßá äéáêïìéó�þí êñõöÞò áðïèÞêåõóçò ãéá êá�áíåìçìÝíá óõó�Þìá�ááñ÷åßùí åëêýåé áñêå�Ü �ï åíäéáöÝñïí �çò åñåõíç�éêÞò êïéíü�ç�áò �á �åëåõ�áßá ÷ñüíéá,êõñßùò ùò ðñïò �çí êá�åýèõíóç �çò äéáóýíäåóçò õðáñ÷üí�ùí óõó�çìÜ�ùí áñ÷åßùí ìå�ïðéêÜ óõó�Þìá�á áñ÷åßùí ìå �åëéêü óêïðü �çí áðïäï�éêü�åñç áðïèÞêåõóç áðïìáêñõóìÝíùíäåäïìÝíùí.Ôá ðåñéóóü�åñá óõó�Þìá�á áñ÷åßùí ó÷åäéÜó�çêáí áñ÷éêÜ ãéá íá åîõðçñå�Þóïõí �éòáðïèçêåõ�éêÝò áíÜãêåò ÷ñçó�þí óå �ïðéêÜ óõó�Þìá�á áñ÷åßùí. ¸�óé, ç êñõöÞ áðïèÞêåõóçáðü �ç ìåñéÜ �ïõ ÷ñÞó�ç ðåñéïñéæü�áí ìüíï ó�çí êýñéá ìíÞìç, êáèéó�þí�áò ìç áíáãêáßá�çí êñõöÞ áðïèÞêåõóç ó�ï óêëçñü �ïõ äßóêï. Ìéá ÷áñáê�çñéó�éêÞ åîáßñåóç áðï�åëåß�ï Andrew File System, Ýíá êá�áíåìçìÝíï óýó�çìá áñ÷åßùí ðïõ äßíåé �ç äõíá�ü�ç�á�çò ðñïóùñéíÞò áðïèÞêåõóçò äåäïìÝíùí ó�ï �ïðéêü óýó�çìá �ïõ ðåëÜ�ç, ãéá ìåãáëý�åñçäéáèåóéìü�ç�á óå êá�áíåìçìÝíá óõó�Þìá�á áñ÷åßùí.Ôï Andrew File System Ý÷åé ÷ñçóéìïðïéçèåß åðé�õ÷þò �éò �åëåõ�áßåò äýï äåêáå�ßåòviii

êõñßùò óå óõó�Þìá�á ãåíéêïý óêïðïý. Ôá äåäïìÝíá ìå�áöÝñïí�áé áðü �ïõò áðïìáêñõóìÝíïõòåîõðçñå�ç�Ýò áíá �ìÞìá�á ó�áèåñïý ìåãÝèïõò êáé áðïèçêåýïí�áé ó�çí êñõöÞ ìíÞìç ó�ïäßóêï �ïõ ðåëÜ�ç. ÊÜèå áðïìáêñõóìÝíï �ìÞìá äåäïìÝíùí áðïèçêåýå�áé óå Ýíá ìüíï�ïðéêü áñ÷åßï. Ùó�üóï, óå óýã÷ñïíá åðéó�çìïíéêÜ ðåñéâÜëëïí�á åßíáé ðïëý óõ÷íÞ çýðáñîç ðïëëáðëþí áé�Þóåùí ãéá ðïëý ìéêñÜ Þ áñêå�Ü ìåãÜëá áðïìáêñõóìÝíá áñ÷åßá.Ôü�å, ç õðÜñ÷ïõóá ðñïóÝããéóç �ïõ Andrew File System ìðïñåß íá ìçí åßíáé áñêå�Üáðïäï�éêÞ, êõñßùò ùò ðñïò �ç äéá÷åßñéóç äåäïìÝíùí êáé ìå�áäåäïìÝíùí.Ó�çí ðáñïýóá åñãáóßá, äéåñåõíïýìå èÝìá�á áðïèÞêåõóçò äåäïìÝíùí óå åíäéÜìåóïõòäéáêïìéó�Ýò ãéá êá�áíåìçìÝíá óõó�Þìá�á áñ÷åßùí. Áí�éãñÜöïõìå áõ�ïìÜ�ùò �á äåäïìÝíáðïõ æç�ïýí�áé áðü �ïí áñ÷éêü äéáêïìéó�Þ áñ÷åßùí ó�ïõò äßóêïõò �ïõ åíäéÜìåóïõ äéáêïìéó�ÞêñõöÞò áðïèÞêåõóçò. Åêåß ïñãáíþíïõìå �á äåäïìÝíá ìå �å÷íéêÝò äéá�Þñçóçò �çò �ïðéêü�ç�áò.ÅðéðëÝïí, åéóÜãïõìå âåë�éþóåéò ó�ï ìç÷áíéóìü áðåéêüíéóçò �ùí áðïìáêñõóìÝíùí äåäïìÝíùí�ïðéêÜ êáé ëáìâÜíïõìå õðüøç èÝìá�á áí�éêá�Üó�áóçò �ùí äåäïìÝíùí. Óå ìéá ðñù�ü�õðçõëïðïßçóç ðïõ áíáð�ýîáìå, åîå�Üæïõìå �éò ðáñáðÜíù âåë�éþóåéò ìå åíáëëáê�éêÜ óõó�Þìá�ááñ÷åßùí ùò ìÝñç �ïõ åíäéÜìåóïõ äéáêïìéó�Þ. Ìå åê�å�áìÝíåò ìå�ñÞóåéò ðïõ ðñáãìá�ïðïéÞóáìåäéáðéó�þíïõìå âåë�ßùóç ó�ç ñõèìáðüäïóç �ïõ åíäéÜìåóïõ äéáêïìéó�Þ ìÝ÷ñé 80% óå óýãêñéóçìå �ï Andrew File System.

ix

Chapter 1
Introdu
tion

1.1 Thesis s
ope1.2 Thesis outline
1.1 Thesis s
opeRe
ent trends in business and resear
h
ollaboration en
ourage se
ure data sharing overwide-area networks, aiming at a
hieving the best possible performan
e with the minimalintervention from the end user. Traditional �le transfer me
hanisms su
h as FTP havelong be used for se
ure data and �le transferring. However, su
h me
hanisms fa
e themain disadvantage of getting the user to expli
itly initiate the whole transfer me
hanism,whi
h bears signi�
ant repli
a bookkeeping overhead to the user and only makes datausable after an entire �le has been fully repli
ated lo
ally. Thus,
a
hing proxies havebeen lately introdu
ed as an alternative approa
h, to redu
e WAN laten
y by
a
hingdata
loser to the
lient. Su
h proxies automati
ally repli
ate datasets and hide transferdelays during the repetitive use of data. Na
he is a representative example of a
a
hingproxy server for NFSv4, designed to retain a
onsistent
a
he of remote �le servers ina distributed environment in order to improve �le a

esses performan
e by redire
tingrequests that were initially intended for the �le server to the intermediate
a
hing proxy[4℄. In fa
t, the design of
a
hing proxies for distributed �lesystems is mainly attra
ting1

resear
h interest in the dire
tion of getting existing �lesystems interoperable with lo
al �lesystems for persistent
a
hing purposes. Therefore, we explore basi
 storage managementissues in
a
hing proxy servers for distributed �le systems. Our main goal is to point outthe need for eÆ
ient storage management in
a
hing proxies so that we make performan
eof a

essing
a
hed data from proxies
omparable to or better than dire
t a

esses fromlo
al �le system.Traditional distributed �lesystems were originally designed for serving the storageneeds of users within the same organization at a single geographi
al site. The assumeduse of a lo
al-area network limited
lient-side
a
hing to main memory and made unne
-essary the
orresponding disk-based
a
hing. However, wide area networks may introdu
elaten
ies that may be orders of magnitudes greater than dire
t disk a

esses. Su
h longlaten
ies en
ourage the design of a
lient-side disk
a
he for e�e
tive storage manage-ment. Andrew File System and its des
endants make a notable ex
eption as they providethe
apability to temporarily store data at the lo
al �le system of the
lient ma
hine forimproved s
alability and availability in distributed environments [14℄.Although Andrew
an a
hieve e�e
tive storage management in distributed environ-ments, it makes the assumption that the
lient ma
hines from individual users are pow-erful enough to relieve
entralized servers from
omputations. Nevertheless, this is notthe
ase when building
a
hing proxies for data sharing among large numbers of
lientswithin an organization. Therefore, it is essential to build an e�e
tive
a
hing proxy thatwould redu
e server's load while it is not based on the above assumption.In our proposed ar
hite
ture, we investigate alternative lo
ality-aware storage man-agement methods to improve Andrew's eÆ
ien
y and performan
e. Although Andrewhas been widely su

essful for over two de
ades in general �le system use, it does not o�era proxy
a
hing servi
e as it limits
a
hing to the lo
al �le system. Initially, it
reates alarge number of individual lo
al �les at the
lient and subsequently uses ea
h of them tostore an individual
hunk requested from the server. Remote data is repli
ated in
hunksof a
on�gurable �xed size. However, in modern s
ienti�
 and business environments it is
ommon to have numerous small �les or enormously large ones. Then, the existing AFSapproa
h of having a separate lo
al �le per
hunk might not be the best possible in termsof data a

ess or metadata management eÆ
ien
y.The most widely used method in re
ent published literature is to map ea
h remote �le2

to a lo
al �le in the
a
hing proxy [4,16℄. It o�ers a
onsistent view of remote data as itappears at the remote server. On the other hand, web
a
hing proxies
an store multipleremote �les per lo
al
a
he �le. They manage lo
al data in a way that serves their designobje
tives and have already been broadly used for over a de
ade in
ontent distributionnetworks. Originally,
opies of web pages requested by users were repli
ated on proxyservers
lose to the web browsers over traditional lo
al �le systems. However, relatedexperimentation in published literature demonstrated several performan
e de�
ien
iesrelated to metadata management of multiple small �les, frequent
reation and deletionof �les, ex
essive disk head movement from poor
lustering of jointly used data or a

essoverheads from multiple small writes. Subsequently,
ustomized �le systems emerged that
omplementarily addressed the above issues through spe
ial internal ar
hite
tures and newa

ess interfa
es. On the
ontrary, we
laim that apart from o�ering a
onsistent view ofthe data as they appear at the origin server, the
a
hing proxy should be free to manageits lo
al data in whatever way serves its design obje
tives better. Therefore, we proposeinnovative storage management methods,
ombining existing approa
hes to manage eithermultiple remote small or large �les. Furthermore, we
onsider data repla
ement issues toenhan
e existing performan
e.In the present thesis, we propose alternative storage management issues in proxyservers for distributed �le systems, based on Andrew File System. We organize the re-quested data at the disks of the proxy server using lo
ality-aware approa
hes. Addition-ally, we introdu
e improvements in the mapping me
hanism from remote to lo
al data and
onsider
ost-aware repla
ement methods. Thus, we su

eed to improve existing perfor-man
e of retrieving �les from proxy's disk
a
he, espe
ially in the
ase of
on
urrent �lea

esses. In a prototype implementation that we developed, we experimentally
omparealternative distributed �le systems as
omponents of the proxy servers. Through exten-sive measurements, we demonstrate throughput improvements at the proxy server up to80% in
omparison to the disk-based
a
he of a
ommonly used distributed �le system.
1.2 Thesis outlineThe remainder of this thesis is organized as follows:3

In
hapter 2, a majority of
a
hing fa
ilities for distributed �le systems is presented.We review previous related sear
h in the area of
a
hing systems for distributed �lesys-tems. Initially,
lient-server ar
hite
tures where
a
hing is done primarily at the
lient'sdisk
a
he are examined. Then, we present
a
hing proxies that relieve
entralized �le-servers and improve performan
e by
a
hing data
loser to the
lient. The storage al-lo
ation methods that ea
h system uses are examined. Furthermore, some pre-existingmodi�
ations made to the AFS Ca
he Manager are displayed. Finally, we depi
t how web
a
hing proxies manage their storage spa
e to improve performan
e.In
hapter 3, an overview of Andrew File System is presented. The storage manage-ment that AFS uses is des
ribed as well as the basi
 AFS stru
tures that we modi�ed inHades implementation.In
hapter 4, we present the basi
 design issues that emerge in proxy servers and ledto our prototype implementation. We det
et the design ineÆ
ien
ies of existing
a
hingsystems, in
luding Andrew File System. Furthemore, we de�ne the design goals of ourstudy along with our ar
hite
tural de
isions, emphasizing on storage spa
e managementand �le repla
ement. Finally, we present an overview of the proposed ar
hite
ture.In
hapter 5, we introdu
e the design and implementation of the Hades proxy server.Hades is a lo
ality-aware
a
hing proxy for distributed �le systems that was implementedas a
ombination of a modi�ed OpenAFS
lient and a regular user-level NFS server. Then,the modi�
ations made to the OpenAFS
lient are thoroughly examined, emphasizing onthe storage management and repla
ement methods.In
hapter 6, we evaluate our implemetation a
ross a mi
roben
hmark and an a
tualappli
ation. We make extensive experimental evaluation on the parallel retrieval of re-mote �les and the reuse of
a
hed data a
ross multiple
lients. A

ording to our allo
ationalgorithm, data are
lustered in proxy
a
he in su
h a way that leads to throughput im-provements at the proxy server up to 80% in
omparison to the disk
a
he that OpenAFSuses.Finally, in
hapter 7 we outline our
on
lusions and future work.
4

Chapter 2
Related Resear
h

2.1 Ca
hing in network �lesystems2.2 Storage allo
ation in related
a
hing systems2.3 Web Ca
hing Proxies2.4 SummaryIn this se
tion, we des
ribe approa
hes that have been previously proposed in orderto a
hieve high performan
e in distributing �le systems when we need to a

ess dataavailable from remote �le servers. Furthermore, we review previous resear
h related withdisk-based
a
hing as well as
a
hing proxies that lie between
lients and �leservers. Next,we examine storage allo
ation methods that have already been proposed to e�e
tivelymanage data that are
a
hed in the lo
al disk
a
hes. Finally, we present re
ent resear
hrelated to data and metadata management in web
a
hing proxies.
2.1 Ca
hing in network �lesystemsCa
hing has been a well-a

epted solution for e�e
tive �le storage during the last de
ades.Most popular distributed �lesystems use a
a
he to gain performan
e improvement. Espe-
ially for network �lesystems in a distributed environment,
lient-side performan
e heavilydepends on the number of RPC
alls that are made to the servers. It is worth mentioning5

that in network-based �lesystems, the laten
ies that are introdu
ed by the network areorders of magnitudes greater than dire
t disk a

ess. Thus, in order to improve perfor-man
e one should try to minimize these laten
ies, using a
lient-side
a
he or one thatwould simply
a
he data
loser to the user, so as to redu
e the need to go to the network.The basi
 idea is the following: when a
lient needs to operate on a �le of a remote �leserver, it should make an RPC
all to the server only the �rst time he a

esses the �leand then hold a valid
opy of it in the appropriate
a
he, so as to make future operationson the �le aim at its
opy in the
a
he. As a result, network traÆ
 and server load areredu
ed. Furthermore, dis
onne
ted operation is better supported be
ause even thougha server loses
onne
tion with the network, the
lient may still have
opies of the server's�les in its
a
he. Generally, for both network and non-network based �lesystems,
a
heson a faster medium improve performan
e as they redu
e the amount of traÆ
 to the slowermedium.2.1.1 Ca
hing fa
ilities for distributed �lesystemsA variety of
a
hing fa
ilities for �lesystems has been introdu
ed lately. Most distributed�lesystems rely on a
lient-server ar
hite
ture where
a
hing is done primarily at the
lient. Network �lesystems like Andrew File System, DFS, Network File system (NFS) andCoda, support
lient-side
a
hing. NFS enfor
es only weak-
a
he
onsisten
y. However,in some later NFS versions, like NFSv4, the Sprite
a
he
onsisten
y proto
ols were usedto improve
a
he
onsisten
y by using server
allba
ks. Although NFS is primarily used inLANs, Andrew is better used for �le-sharing in WANs. It supports
lient-side �le
a
hingand
a
he
onsisten
y through
allba
ks. What is more, there exist some kernel fa
ilities,like FS-Ca
he, that
an be used by network �lesystems to take advantage of persistentlo
al storage to
a
he data and metadata. FS-Ca
he uses Ca
heFS as its major
a
hingsour
e for storing and retrieving data.Ex
ept from
lient-side
a
hing, there have been introdu
ed
a
hing proxies who liebetween lo
al
lients and remote �leservers. In wide area networks, a
a
hing proxy thatwould
a
he data
loser to the
lients is preferrable as it redu
es the need to a
quiredata from the remote �leserver. Su
h proxies intend to enable a
onsistent
a
he of the�leservers' �les so as to generally improve
lient performan
e by bringing the data
loser6

to the
lient. Na
he is a representative example of su
h systems.Apart from
a
hing proxies, eÆ
ient resear
h has been done in the area of web
a
hingproxies. Individual
a
he �les or general-purpose �le systems are used to store one or moreURLs that are required by web
lients and fet
hed from several web servers.
2.2 Storage allo
ation in related
a
hing systemsA large number of disk-
a
he storage management methods have been introdu
ed in re
entpublished literature. In general, the overall time to a

ess
a
hed data from a
a
hingproxy may vary a

ording to the way data are pla
ed in the proxy's disk
a
he. Earlysystems
opied entire �les from the �le server to the
lient. This approa
h, originally usedin Andrew, was problemati
 be
ause it in
urred high transfer laten
y and large resour
erequirements at the
lient. In later approa
hes, the designers adopted partial
a
hingapproa
hes. One possible solution manages the remote �les in �xed-size
hunks that it
opies and stores onto
orresponding individual lo
al �les at the
lient. That is the
urrentallo
ation te
hnique of Andrew File System.However, in more re
ent prototypes the system dynami
ally repli
ates the dire
toryand �le naming stru
ture from the origin server to the
a
he. It also transfers the �le
ontents on demand in pages of
on�gurable size. Lo
ally, the system uses a typi
al �lesystem or a raw disk partition to temporarily store the data of the
a
he. FS-Ca
he is arepresentative example that was re
ently introdu
ed by Howells to be used by a network�le system to
a
he data on lo
al disks [5℄.2.2.1 FS-Ca
heFS-Ca
he is a kernel fa
ility that
an be used by network �le systems to a
hieve e�e
tivedata
a
hing. It improves
lient performan
e and redu
es network traÆ
 as it avoidsa

essing the network to a
quire remote server �les. It gives the
lient the opportunityto
a
he lo
ally �les that it fet
hes from remote �le servers. It is primarily designedfor use with network �le systems, su
h as AFS, NFS and CIFS. It
an support di�erenttypes of
a
he that have di�erent trade-o�s while it puts little overhead to the
lient�le system. There are two types of
a
he: Ca
heFS and Ca
heFiles. They are used for7

Figure 2.1: FS-Ca
he ar
hite
ture.storing and retrieving data. FS-Ca
he forwards the requests that are issued from thenetwork �lesystems to the available data
a
hes (�gure 2.1). Both
a
hes
an be addedor removed at any time. Ca
heFS uses a blo
k devi
e as a
a
he. The blo
k devi
e
anbe mounted using the mount system
all to make the
a
he available. If the
a
he isnot needed any longer, it
an be dea
tivated using the umount system
all. Ca
heFilesdefers from Ca
heFS in that it does not use a blo
k devi
e as its
a
he but a dire
toryin an already mounted �lesystem. Ca
heFiles is usually used when Ca
heFS
annot beused, probably be
ause we are not able to a
quire a blo
k devi
e. It uses the VFS/VM�lesystem interfa
es to get another �lesystem (su
h as Ext3) to do the ne
essary I/O onits behalf.Client �lesystems
an use FS-Ca
he to obtain
a
hing servi
es. FS-Ca
he is a thinlayer in the kernel that dire
ts the above requests for
a
hing servi
es to the available
a
hes. Client �le systems need not know the type of the atta
hed
a
hes as they getin
onta
t with them through FS-Ca
he. If two di�erent �le systems issue requests forthe same �le, FS-Ca
he will fa
e every request individually. The
a
he will �nally havetwo di�erent
opies of the same �le, whi
h is known as
a
he aliasing. It is possible thatthe system will not have a
a
he at one time, or a remote �le may be larger than the
a
he size limit. Thus, FS-Ca
he tries to ensure that a remote �le will be available foruse before it downloads and stores it in the
a
he. When a network �le system requestsa �le, FS-Ca
he serves data out of the
a
he in pages. To a

ess �les in the
a
he, it isne
essary to use sequen
es of keys, where keys are arbitrary sequen
es of binary data. Tosear
h for a �le, one must examine the su

essive keys that
orrespond to indexes whi
h8

may lead to the required �le.A major
hara
teristi
 of FS-Ca
he is that it
an support dis
onne
ted operation. Ifthe network
omes unavailable, the network �le system will be able to
ontinue a

essingthe �les through the available
a
hes. When the network be
omes available again, it
ansyn
hronize them with the server in
ase they were modi�ed while we were working of-
ine. To a
hieve dis
onne
ted operation, FS-Ca
he provides three fa
ilities: reservations,pinning and auxiliary data. Reservations let the network �le system reserve a
hunk ofthe
a
he for a �le, so that the �le
an be loaded or expanded up to the spe
i�ed limit.Pinning guarantees that �les would be available in the
a
he even when working o�ine.When a �le is pinned in the
a
he, it is sure that it would not be removed from it so asto free spa
e for other �les. Auxiliary data permits the network �le system to keep tra
kof a
ertain amount of writeba
k
ontrol information in the
a
he.2.2.2 Na
hePrevious evaluations of systems using the FS-Ca
he fa
ility showed some performan
elimitations due to double bu�ering a
ross the lo
al �le system and the
lient of the network�le system. Therefore, Gulati et al. implemented the Na
he
a
hing proxy for the NFSv4[4℄. The proxy uses an NFSv4
lient to a

ess the remote server, an NFSv4 server toreexport the
lient to the lo
al users, and Ca
heFS to
a
he �les in persistent storage(�gure 2.2). However, in our proposed ar
hite
ture we
onsider AFS as an alternativebasis for building a proxy server. We modi�ed the AFS proxy server to improve readperforman
e of �les stored at the origin server.Na
he is a
a
hing proxy for NFSv4 designed to retain a
onsistent
a
he of remote �leservers in a distributed environment. It
an be shared between multiple lo
al NFS
lientswho wish to a

ess �les of a remote NFS �le server. The obje
tive is to
a
he data
loserto the
lients so as to improve �le a

esses performan
e by redire
ting requests that wereinitially intended for the �le server to the intermediate
a
he proxy. The main idea is thefollowing: should a
lient issue a request for a �le lo
ated in a remote �le server, it must�rst sear
h if this �le exists in its own
a
he and if not try to go to the network to a
quireit. To avoid dire
ting the request to the server whi
h may
ause the server to overload,the
lient dire
ts the request to the intermediate
a
he proxy. If the required �le exists in9

the
a
he proxy, the
lient fet
hes the data from it and stores them in its lo
al
a
he tosatisfy future requests for this �le. If the requested �le does not exist in the
a
he proxy,the proxy forwards the request to the NFS server.

Figure 2.2: Na
he ar
hite
ture blo
k diagram.Thus, the
a
he proxy operates both as a server for the NFS
lients and as a
lientfor the remote NFS server. Its goal is to
a
he the remote data
loser to the
lients soas to redu
e network traÆ
 towards the server and improve the network laten
ies that
lients fa
e when they need to a

ess remote �les. The
a
he proxy server lies betweenthe
lients and the servers and is lo
ated mu
h
loser to the
lients to redu
e frequentWAN a

esses.The Proxy NFS
lient is responsible for the
ommuni
ation with the remote NFS serverso as to mount the server's �les. The proxy may mount either the root dire
tory or oneof its sub-dire
tories. Then, the Proxy NFS server exports these �les to the lo
al
lients.Those two
omponents
ommuni
ate via the VFS layer. Na
he uses as its major
a
he thesystem's bu�er
a
he but Ca
heFS is also used to add persisten
e to the
a
he. Ca
heFSis a
a
hing fa
ility available for use with NFS. It
an be used to enhan
e the performan
eof a distributed �le system su
h as NFS and uses a mounting proto
ol whi
h presupposes10

that the
a
he must manually be atta
hed to ea
h NFS mount after the mount has beenmade. Ca
heFS was originally designed for AFS but it
an also be used by any otherdistributed �le system. Its main feature is that it
an
a
he any ba
k �le system on thefront (lo
al) �le system. In Na
he, Ca
heFS
an be
onsidered as an extension of thebu�er
a
he that is lo
ated on the disk, not in the memory. Ca
heFS does not maintainthe dire
tory stru
ture of the sour
e �lesystem. Instead, �les are lo
ated in
a
he in theform of a database to make �le sear
h easier. A partition in a blo
k devi
e
an be usedfor
a
hing and a lo
al mount point
an be spe
i�ed for it to let any �le system (likeNFS) mount it and dis
over the available
a
hed �les. The data size that
an be storedin Ca
heFS
an vary from few �le pages to whole large �les.To be more spe
i�
, there exist some spe
ial
lient and server kernel modules that
ommuni
ate through an unmodi�ed VFS layer. When a
lient needs to a

ess a remote�le, it sends an RPC request for it to the
a
he proxy. The proxy has two types ofmodules: the server-side and the
lient-side module. The request is re
eived from theproxy's server-side module that forwards it to the proxy's
lient-side module through aVFS interfa
e. If the �le does not exist in the
a
he, the
lient-side module forwards itto the remote server and stores the response to the
lient-side bu�er
a
he. As a result,su

essive requests for the same �le, or part of it,
an be satis�ed from the nearby proxyinstead of the remote �le server.2.2.3 Re
ent
a
hing systemsIn more re
ent prototypes, the system dynami
ally repli
ates the dire
tory and �le namingstru
ture from the origin server to the
a
he. It also transfers the �le
ontents on demandin pages of
on�gurable size [5,16℄. Lo
ally, the system uses a typi
al �le system or a rawdisk partition to temporarily store the data of the
a
he. Sivathanu and Zadok proposedthe xCa
hefs framework that allows to persistently
a
he the data from any slow �lesystem to a faster �le system [16℄. xCa
hefs o�ers a performan
e enhan
ement of 64%and 20% for normal read and read-write workload respe
tively over NFS. They use adire
tory stru
ture at the
a
he as exa
t
opy of the sour
e �le system, while we organizethe
a
hed data at the proxy in ways that improve storage lo
ality.Matthews et al
onsidered the dynami
 reorganization of the stored data in order to11

improve the read performan
e of the log-stru
tured �le system [8℄. In a di�erent work,Vongsathorn and Carson proposed a disk subsystem that adaptively
orre
ts the disparitybetween expe
ted and a
tual a

ess pattern by reorganizing the disk data [18℄. Instead,in Hades we organize the remote data when �rst
a
hed at the proxy server disks by �leid and requesting user.2.2.4 Previous modi�
ations made to the AFS Ca
he ManagerStolar
huk uses several hints in order to improve the speed of the
ommon
ase of theAFS Ca
he Manager [17℄. The AFS Ca
he Manager fet
hes �les from the AFS �le server,and
a
hes them into a lo
al �le system. Given this model, users expe
t reads of lo
ally
a
hed �les to perform at lo
al �le system rates. However, read performan
e of the AFS
a
hed �les is half the read performan
e of the lo
al �le system. Stolar
huk examinesthe reasons for the large performan
e di�eren
e, and displays the modi�
ations made toAFS so that reads of lo
ally
a
hed �les perform within 10% of the performan
e of thelo
al �le system. After redu
ing the overheads of
a
he
onsisten
y
he
ks and �le-to-
hunk mapping, a

ess of the AFS
a
he be
omes
omparable to that of the lo
al �lesystem. Additionally, we
onsider storage lo
ality as an alternative dire
tion to improveperforman
e.
2.3 Web Ca
hing ProxiesA somewhat similar storage allo
ation problem showed up in web proxy servers. World-wide web proxies are widely used to allow web
lients a

ess web pages that several webservers o�er, even behind �rewalls. The obje
tive is to improve user laten
y and redu
eserver load as well as network traÆ
, espe
ially in wide-area networks. Web proxies haveadopted the idea of data
a
hing to generally improve performan
e. They lie betweenweb
lients and web servers. When a web
lient issues a request for a web obje
t, theintermediate web proxy tries to satisfy it on behalf of the web server. If the requestedobje
t relies in its
a
he, the web proxy forwards it to the
lient. Otherwise, it fet
hesthe obje
t from the appropriate server, stores it in its
a
he and �nally forwards it to theinitial
lient. 12

Although most web browsers
a
he data in their lo
al disk or main memory, web
a
hing proxies are
onsidered to be more eÆ
ient as they improve
a
he hit rates. Theyuse large
a
hes to satisfy huge amounts of requests from a variety of web
lients. In
asea
a
he �lls up, an eÆ
ient
a
he repla
ement algorithm is used to free enough spa
e forthe newly arrived requests. To further improve hit rate some
a
hes employ prefet
hingmethods based on the assumption that if a web page is requested, several related pagesare likely to be requested in the near future.In web
a
hing proxies, storage lo
ality
on
erns
an be handled by grouping �les andmetadata into
lusters stored on
onse
utive blo
ks of disk. The
lustering is based on thetemporal lo
ality of the a

ess requests. Additionally, the web proxy server
an treat large�les spe
ially and transfer them dire
tly to the disk bypassing the memory
a
he [15℄. Inorder to redu
e management overheads for small �les, the system may group the �les bysize and store them in a buddy organization. Thus, it eliminates �le spa
e fragmentationand redu
es
onsiderably the overhead for �le
reations and deletions. Aggregation of thewritten data in memory and subsequent appending to disk
an provide additional writethroughput improvement [7℄. We now analyti
ally present the re
ent approa
hes thatwere introdu
ed with regard to the storage allo
ation problems in web
a
hing proxies.2.3.1 Hummingbird �le systemCa
hing web proxies usually use general-purpose �le systems to store web obje
ts. Manywidely used web proxies, like Apa
he and Squid, use the standard Unix �le system (UFS)for data
a
hing. However, several other �lesystems have been designed for the samepurpose.Hummingbird is a light-weight �lesystem library that web proxies
an use to e�e
tivelystore web obje
ts they re
eive from web �le servers [15℄. It is made to run on top of araw disk partition. It manages a large memory
a
he and has two major
hara
teristi
s:1. it separates obje
t naming and storage lo
ality through dire
t appli
ation-providedhints2. its
lients are
ompiled with a linked library interfa
e for memory sharing
13

Comparison with UFSIt has been proved that UFS has a number of features that
ould limit �le system per-forman
e. On the
ontrary, Hummingbird is able to simplify these features in order toimprove the overall performan
e. To be more spe
i�
, UFS uses a hierar
hi
al name spa
ewhi
h means that �les are separated a
ross dire
tories. A pathname translation may re-quire a long time interval, espe
ially be
ause a linear sear
h is exe
uted to lo
ate a �le inits dire
tory
ontents. This is not needed by a web proxy that wishes to have a
at namespa
e and the ability to spe
ify storage lo
ality. As opposed to UFS, Hummingbird usesa
at name spa
e for its �les.Furthermore, UFS keeps �le meta-data on disks, in separate i-nodes. Syn
hronousdisk-writes are used to update �le-metadata and to preserve
onsisten
y. A web proxy doesnot need to exe
ute su
h syn
hronous disk-writes. It
an repla
e them with asyn
hronouswrites to improve performan
e. Hummingbird keeps most metadata in memory and, ifneeded, uses asyn
hronous writes to update the on disk �le metadata. It also stores
a
hed �les in �xed-sized 8KB blo
ks.In order to minimize the disk head positioning time, Hummingbird attempts to store�le blo
ks
ontiguously. To further improve performan
e, UFS tries to prefet
h blo
ks fora �le that is sequentially a

essed. For small �les, UFS attempts to minimize a

ess time.However, if a large number of �les are sequentially requested, large disk delays may beobserved due to the referen
e stream lo
ality not
orresponding with the on-disk layout.To over
ome this problem, UFS lets the user pla
e �les into dire
tories and attempts tostore the �les that a dire
tory
ontains in
ontiguous disk blo
ks
alled
ylinder groups.The main problem is that users have the responsibility to
onstru
t a hierar
hy withdire
tory lo
ality that mat
hes future usage patterns. In
ontrast, Hummingbird useslo
ality hints generated by the proxy to store
ollo
ated �les together. Clusters are theunit of disk a

ess in
ontrary to disk blo
ks in UFS. They usually
ontain �les and some�le metadata. Files are grouped into
lusters, typi
ally 32 or 64KB, a

ording to existinglo
ality hints, so as to
ollo
ate �les together. Least re
ently used �les are examined. Ifthe least-re
ently-used �le has a list of
ollo
ated �les, then these �les are added to the
luster if they are in main memory. When we read a
luster from the disk, all
ollo
ated�les that are
ontained in the
luster are read.14

Furthermore, in traditional �le systems like UFS, the standard �lesystem interfa
e
opies data from kernel VM into the appli
ation's address spa
e. It also
a
hes �le blo
ksin its own bu�er
a
he. However, many web proxies have their own appli
ation-level VM
a
hes to a
hieve more e�e
tive
a
he management. If a �le is re
ently a

essed fromthe disk, we may end up with two in-memory
opies of this �le: one in the web proxyappli
ation-level
a
he and another in the �lesystem's bu�er
a
he. To eliminate theproblem of multiple bu�ering, we need a single uni�ed
a
he. Hummingbird
an solve theabove problem, as it is a �lesystem implemented by a library that a

esses the raw diskpartition, so as to avoid
a
hing �le blo
ks in the �lesystem's bu�er
a
he.Data and metadata managementHummingbird stores two types of obje
ts in main memory, �les and
lusters. It
an thenmove
lusters from main memory
a
he to disk in order to free main memory spa
e. Datastored in the disk
an be
ategorized into four regions:1.
lusters with the real data and metadata2. mappings of �les to
lusters3. the hot
luster log used to
a
he frequently used
lusters4. the delete log used to store small re
ords des
ribing intentional deletesTwo daemons are used to perform the maintenan
e a
tivities in Hummingbird: one tore
laim main memory spa
e by writing �les into
lusters and another one to re
laim diskspa
e by deleting unused
lusters. Hummingbird keeps three types of metadata: �lesystemmetadata, �le metadata and
luster metadata. It uses two LRU lists to determine whi
h�les or
lusters to move from main memory to disk, in order to free main memory spa
e.The one list is used for �les whi
h have not yet been pa
ked into
lusters and the other isused for
lusters that are in memory. To retain �le metadata Hummingbird uses a hashtable that stores pointers to the �le information. If a �le is not
ontained in any
luster,Hummingbird must keep the �lename (usually its URL), �le-size and a list of �les thatshould be
ollo
ated with it, as the �le's metadata. When the �le is added to a
luster,it keeps the
luster ID and the �le referen
e
ount for that �le. Similarly, a
luster table15

is used to maintain information about ea
h
luster in the disk, like a list of �les in the
luster and the last time-a

esed.2.3.2 The BUDDY storage management methodRe
ent work has shown that disk I/O overhead is be
oming an important bottlene
k in theperforman
e of web proxies. Espe
ially, it has been found that the most important sour
eof overhead is asso
iated with storing ea
h �le in a separate �le. Many web proxies fet
hURLs from web servers and store their
ontents in separate �les in their
a
he. When the
a
he �lls up, a
a
he repla
ement algorithm is used to delete �les in order to store thenew �les. This means that a �le
reation in the
a
he is followed by a �le deletion. If we
onsider that the median size of a
a
hed �le is 3Kbytes and �le system operations, su
has �le
reation or �le deletion, may take up to 50 millise
onds, we
on
lude that the rateat whi
h a web server
an store data to disk is 60 Kbytes/se
, whi
h is mu
h lower thanthe data transfer rates that the
urrent disks
an sustain.To alleviate the above �le management ovehead Markatos et al. proposed a storagemanagement method
alled BUDDY that stores several URLS per �le [7℄. They triedto improve overall performan
e by altering the way that URL
ontents are stored on theweb proxies'
a
he. BUDDY is a �le management algorithm that stores remote �les ofthe same size in the same
a
hed �le. All �les that are smaller than one blo
k are storedin one
a
he �le, �les with size in between one and two blo
ks are stored in anotherseparate �le, until a prede�ned number of blo
ks is rea
hed. If a �le's size is larger thanthis upper bound, a separate
a
he �le is used to store the
ontents of it. When a new�le-write request is issued, BUDDY �rst identi�es the appropriate �le in the
a
he tostore it, a

ording to its size. It then seeks for the �rst free slot in that �le to store the
ontents of the remote �le there. When a �le-delete request is issued, BUDDY �rst seeksfor the
a
he �le that stores the �le's
ontents, identi�es the appropriate slot in it andmarks it as free, so as to make it reusable for a future �le-write request. When a �le-readrequest is issued, BUDDY �nds the slot in the appropriate �le and reads its
ontents.Thus, BUDDY manages to:1. Redu
e �le management overhead as remote �les do not need individual
a
he �lesto store their
ontents. One only needs to know the
a
he �le and the slot in it that16

the remote �le's
ontents are stored. Hen
e, only metadata for
a
he �les need tobe managed rather than metadata for the remote �les'
ontents.2. Eliminate �le spa
e fragmentation by pla
ing same-sized remote �les in one
a
he�le. BUDDY for
es ea
h remote �le to o

upy
onse
utive bytes within a single
a
he �le.2.3.3 File spa
e management algorithmsThe next largest sour
e of overhead, after the storage of ea
h remote �le to a single
a
he�le, is the
ost asso
iated with �le write operations. This sour
e of overhead is due todisk laten
ies in
urred by writing data s
attered all over the disk. Although it redu
es�le management overhead, BUDDY does not improve write throughput to a
onsiderableextent. Markatos et al. proposed two �le spa
e management algorithms to redu
e diskseek overhead and perform write operations at maximum speed.The STREAM �le spa
e management algorithmThe STREAM algorithm was inspired from log-stru
tured �le systems and intends toimprove write performan
e. The main idea is to store all remote �les in a single �le
ontiguously, if possible, in slots of 512 bytes long. STREAM tries to redu
e disk seekand rotational overhead by writing to the disk in a log-stru
tured mode. It tries to makeall writes in
ontiguous blo
ks. If the disk is full, write operations
ontinue from thebeginning of the disk.However, it was observed that STREAM did not write to disk at maximum through-put. This happened be
ause when a pro
ess is writing few blo
ks of a page in a page thatis not in the main memory
a
he, both disk-read and disk-write o

urs. The operatingsystem must �rst read the page from the disk, make all updates in the main memoryand then write the page to the disk. To redu
e this overhead, a pa
ketized version ofSTREAM is used.The STREAM-PACKETIZER �le spa
e management algorithmSTREAM-PACKETIZER uses a pa
ketized bu�er that is one page long and
an rea
h anupper boundary. When a �le write request is issued, it is not sent to the �lesystem for17

writing to the disk but it is stored in the pa
ketizer
ontiguously with the previous �lerequests. File write requests are forwarded to the �lsesystem only when the pa
ketizer�lls up or a request that is not
ontiguous with the previous arrives.2.3.4 Methods to redu
e the disk head seek timeOn
e write operations pro
eed at maximum speed with the use of STREAM-based al-gorithms, read operations represent the next single largest sour
e of overhead. In fa
t,this overhead is due to head movements when read requests are issued. Markatos et al.proposed two methods that redu
e disk seek overhead asso
iated with read operations [7℄.The LAZY-READ methodIf a �le read request is issued between �le write requests, the head has to move from thepoint it �nished writing data to the point it starts reading data,
omplete the read requestand move ba
k to the previous point. To redu
e this extra head movement overhead, alazy-read approa
h was introdu
ed, that is mu
h like STREAM-PACKETIZER. In LAZY-READ method, a �le read request is not initially forwarded to the appropriate data inthe disk. It is �rst stored into an intermediate bu�er, but not yet satis�ed. When thebu�er �lls up, the read requests it
ontains are forwarded to the �le system, ea
h requestto the appropriate �le.The LAZY-READ-LOC methodIn the LAZY-READ method, if the lo
ality of the stream is taken into a

ount, �leread overhead
an be further redu
ed. When a user requests an HTML page, he willprobably request all the embedded images as well. Su

essive requests from a web
lientmay not ne
essarily arrive
ontiguously at the web proxy server be
ause it
an supporta large number of
lients issuing
on
urrent requests. Therefore, �les that
orrespond to
ontiguous requests from a single
lient may be stored in the magneti
 disk hundreds ofKbytes away from ea
h other. However, storing requests arriving from a single web serverto a single lo
ality bu�er would improve performan
e to an extent. LAZY-READ-LOCis an algorithm that uses several lo
ality bu�ers to put together requests from a singleweb server. Is main intention is to preserve lo
ality of the URL stream. The idea is18

to store su

essive requests from a web
lient to nearby disk lo
ations so as to re-a

essthem qui
kly in
ase the user issues a request for them in the future. If requests froma single web server are stored in a single lo
ality bu�er, then URLs from the same webserver requested within a short time interval will probably be written in
ontiguous �lelo
ations. When a proxy fet
hes a URL from a web server, it tries to lo
ate the bu�erthat stores requests from this server and saves the data in this bu�er. If su
h a bu�erdoes not exist, an existing bu�er is
hosen to write its data to the disk and it is thenreused to store the
ontents of the requested URL.
2.4 SummaryIn distributed environments, a large amount of �les is usually shared between multiple
ilents and �leservers. Espe
ially in wide area networks, laten
ies introdu
ed by thenetwork may be mu
h greater than dire
t disk a

esses. Thus, the use of
a
hing systemsthat would
a
he data
loser to the
lient is essential. A summary of the major
a
hingsystems that we studied and were previously des
ribed is presented in table 2.1. Hades isthe
a
hing proxy server that we implemented and propose in the present thesis. It mustbe noted that SSMWP stands for Se
ondary Storage Management for Web Proxies andrefers to the data and metadata management methods that were proposed by Markatoset al.Ea
h of the above
a
hing systems uses its own storage allo
ation method to e�e
tivelypla
e data in the disk
a
he. In re
ent prototypes, the dire
tory and �le naming stru
tures
an dynami
ally be repli
ated from the origin server to the
a
he. Data
an be fet
hedand stored in
a
he in �xed-size
a
he �les, as part of the lo
al �lesystem or even at asingle raw partition. The basi
 goal of ea
h system is to manage data in
a
he in su
ha way that the overall performan
e of a

essing remote data is signi�
anlty enhan
ed.Similar storage allo
ation problems showed up in the area of web
a
hing proxies, wheredata and metadata
an be grouped into
lusters stored on
onse
utive blo
ks of disk toimprove existing performan
e.In this thesis, we
onsider Andrew File System as an alternative basis for building aproxy server for distributed �lesystems. We �rst investigate previous modi�
ations made19

Table 2.1: Major
a
hing systems and their basi

hara
teristi
sFS-Ca
he Na
he Hummingbird SSMWP HadesUsed by network �lesystems » » »Supports multiple
lients » » » »Supports dis
onne
ted operation »Ca
hing proxy » » » »Layer in the kernel »Double bu�ering » » » »Uses a
at namespa
e »Clusters data and metadata » » »Uses a raw disk partition as its disk
a
he »Multiple remote �les per lo
al
a
he �le » »Writes to the disk in a log-stru
tured mode »Read or write requests kept in bu�ers »Uses lo
ality bu�ers »Stores a �le in
ontiguous blo
ks »Stores parts of the same �le in nearby lo
ations »Clusters data based on �le or user id »to the AFS Ca
he Manager that improve a

ess of the AFS
a
he, by redu
ing
a
he
onsisten
y
he
ks and �le-to-
hunk mapping. However, we
onsider storage lo
ality asan alternative dire
tion to improve performan
e. At the same time, we a
quire metadatamanagement and �le repla
ement methods that support the design of an eÆ
ient
a
hingproxy server in wide area networks.

20

Chapter 3
Andrew File System

3.1 AFS: A Distributed File system3.2 Basi
 de�nitions3.3 Major stru
tures3.4 Storage management in AFSIn this
hapter, we present the Andrew File System (AFS), a lo
ation-transparentdistributed �lesystem that
an support growth up to thousands of workstations whileproviding users, appli
ation programs and system administrators with the amenities of ashared �le system. We �rst examine Andrew's advantages over
ontentional �lesystems,emphasizing on its s
alable ar
hite
ture. Then, we de�ne the
lient-server model thatAndrew uses as well as the set of modi�
ations to the
lient ma
hines' kernel that enable
ommuni
ations with the server pro
esses running on server ma
hines. Furthemore, weanalyze the way remote AFS �les are distributed in order to form a uniform namespa
e.Next, we de�ne the basi
 on-disk and memory-based data stru
tures of the OpenAFSsystem that we modi�ed in our prototype implementation. Finally, we examine how AFSmanages its storage spa
e and give a detailed des
ription of the steps that are followed inorder to store a remote AFS �le on the
lient's disk
a
he.21

3.1 AFS: A Distributed File systemAndrew File System is a distributed �le system that enables
o-operating hosts (
lientsand servers) to eÆ
iently share �le system resour
es a
ross both lo
al area and wide areanetworks. It is similar to Sun Mi
rosystems Network File System (NFS). AFS is
apableof s
aling to thousands of users. It enables users to share and a

ess all of the �les storedin a network of
omputers as easily as they a

ess the �les stored on their lo
al ma
hines.The �le system is
alled distributed for this exa
t reason: �les
an reside on many di�erentma
hines, but are available to users on every ma
hine.AFS is based on a distributed �le system originally developed at the InformationTe
hnology Center at Carnegie-Mellon University in 1984. The idea was to provide a
ampus-wide �le system for home dire
tories whi
h would run e�e
tively using a limitedbandwidth
ampus ba
kbone network. In 1989, the Transar

ompany was formed toevolve the Andrew File System into a
ommer
ial produ
t. Transar
 renamed the produ
tfrom Andrew File System to AFS. In 1990, the Open Software Foundation (OSF)
hoseAFS from Transar
 as the Distributed File System (DFS)
omponent of its DistributedComputing Environment (DCE).AFS joins together the �le systems of multiple �le server ma
hines, making it as easyto a

ess �les stored on a remote �le server ma
hine as �les stored on the lo
al disk. Adistributed �le system, like AFS, has two main advantages over a
onventional
entralized�le system:� In
reased availability: A
opy of a popular �le, su
h as the binary for an appli
ationprogram,
an be stored on many �le server ma
hines. An outage on a single ma
hineor even multiple ma
hines does not ne
essarily make the �le unavailable. Instead,user requests for the program are routed to a

essible ma
hines. With a
entralized�le system, the loss of the
entral �le storage ma
hine e�e
tively shuts down theentire system.� In
reased eÆ
ien
y: In a distributed �le system, the work load is distributed overmany smaller �le server ma
hines that tend to be more fully utilized than the largerand usually more expensive �le storage ma
hine of a
entralized �le system.AFS hides its distributed nature, so working with AFS �les seems like working with �les22

stored on the user's lo
al ma
hine, ex
ept that we
an a

ess many more �les. Whatis more, be
ause AFS relies on the power of users'
lient ma
hines for
omputation,in
reasing the number of AFS users does not slow AFS performan
e appre
iably, makingit a very eÆ
ient
omputing environment.3.1.1 S
alable Ar
hite
tureThere are three important problems in making a distributed �le system s
alable. If asingle server handles a large number of
lients, we get both server
ongestion and networkoverload. Inadequate
lient-side
a
hing
auses ex
essive network traÆ
. Finally, if theserver performs the bulk of the pro
essing of all operations, it will be
ome overloadedsooner. A s
alable system, like AFS, must address all these issues
orre
tly.In a standard AFS
on�guration,
lients provide
omputational power, a

ess to the�les in AFS and other "general purpose" tools to the users seated at their
onsoles. Thereare generally many more
lient workstations than �le server ma
hines. AFS �le serverma
hines run a number of server pro
esses, so
alled be
ause ea
h provides a distin
tspe
ialized servi
e: one handles �le requests, another tra
ks �le lo
ation, a third managesse
urity, and so on.AFS
ontrols network
ongestion and server overload by segmenting the network intoa number of independent
lusters. Unlike NFS and RFS, AFS uses dedi
ated servers.Ea
h
luster
ontains a number of
lients plus a server that holds the �les of interest tothose
lients, su
h as the user dire
tories of the owners of the
lient workstations. Ea
hma
hine is a server, a
lient or both in rare situations. The above
on�guration providesfastest a

ess to �les residing on the server, on the same network segment. Users
ana

ess �les on any other server, but the performan
e will be slower. The network
an bedynami
ally re
on�gured to balan
e loads on servers and network segments.AFS uses aggressive
a
hing of �les,
oupled with a stateful proto
ol, to minimizenetwork traÆ
. Clients
a
he re
ently a

essed �les on their lo
al disks. The originalAFS implemetation
a
hed only entire �les, whi
h was not pra
ti
al in
ase we neededto a

ess a part of a very large remote �le. AFS 3.0 divides the �les into
hunks of adefault size (usually 256KB), and
a
hes individual
hunks separately. The AFS serversparti
ipate a
tively in
lient
a
he management, by notifying
lients whenever the
a
hed23

data be
omes invalid. Finally, AFS redu
es server load by moving the burden of namelookups from the server to the
lients. Clients
a
he entire dire
tories and parse the�lenames themselves.3.1.2 Client-server modelAFS uses a
lient-server model. In general, a server is a ma
hine, or a pro
ess running ona ma
hine, that provides spe
ialized servi
es to other ma
hines. A
lient is a ma
hine orpro
ess that makes use of a server's spe
ialized servi
e during the
ourse of its own work,whi
h is often of a more general nature than the server's. Some ma
hines a
t as both
lients and servers. In most
ases, users work on a
lient ma
hine, a

essing �les storedon a �le server ma
hine. AFS divides the ma
hines on a network into two basi

lasses,�le server ma
hines and
lient ma
hines, and assigns di�erent tasks and responsibilitiesto ea
h.File server ma
hines store the �les in the distributed �le system, and a server pro
essrunning on the �le server ma
hine delivers and re
eives �les. AFS �le server ma
hines runa number of server pro
esses. Ea
h pro
ess has a spe
ial fun
tion, su
h as maintainingdatabases important to AFS administration, managing se
urity or handling the disk spa
ewhere a set of �les resides. This modular design enables ea
h server pro
ess to spe
ializein one area, and thus perform more eÆ
iently. Not all AFS server ma
hines must run allof the server pro
esses. Some pro
esses run on only a few ma
hines be
ause the demandfor their servi
es is low. Other pro
esses run on only one ma
hine in order to a
t as asyn
hronization site.The other
lass of ma
hines are the
lient ma
hines, whi
h generally work dire
tlyfor users, providing
omputational power and other general purpose tools. Clients alsoprovide users with a

ess to the �les stored on the �le server ma
hines. Clients do not runany spe
ial pro
esses, but do use a modi�ed kernel that enables them to
ommuni
atewith the AFS server pro
esses running on the �le server ma
hines and to
a
he �les. This
olle
tion of kernel modi�
ations is referred to as the Ca
he Manager.
24

3.1.3 The Ca
he ManagerThe Ca
he Manager resides on
lient ma
hines rather than on �le server ma
hines. It isnot te
hni
ally a stand-alone pro
ess, but rather a set of extensions or modi�
ations in the
lient ma
hine's kernel that enable
ommuni
ation with the server pro
esses running onserver ma
hines. Its main duty is to translate �le requests, made by appli
ation programson
lient ma
hine, into remote pro
edure
alls to the File Server. The Ca
he Manager�rst �nds out whi
h File Server
urrently houses the requested �le. When the Ca
heManager re
eives the requested �le, it
a
hes it before passing data on to the appli
ationprogram (�gure 3.1).The Ca
he Manager also tra
ks the state of �les in its
a
he
ompared to the versionat the File Server by storing the
allba
ks sent by the File Server. When the File Serverbreaks a
allba
k, indi
ating that a �le
hanged, the Ca
he Manager requests a
opy ofthe new version before providing more data to appli
ation programs.

Figure 3.1: The AFS Ca
he Manager.More spe
i�
ally, the Ca
he Manager helps us to a

ess all �les that remote AFS�leservers export when working on an AFS
lient ma
hine. It plays fundamental roleat the
lient kernel, be
ause it improves data transfer eÆ
ien
y through lo
al memoryand on-disk stru
tures. When we a

ess a �le, the Ca
he Manager on our
lient ma
hine25

requests the �le from the appropriate �le server ma
hine and
a
hes a
opy of it on our
lient ma
hine's lo
al disk. Appli
ation programs on our
lient ma
hine use the lo
al,
a
hed
opy of the �le. This improves performan
e be
ause it is mu
h faster to use a lo
al�le than to send requests for �le data a
ross the network to the �le server ma
hine.Be
ause appli
ation programs use the
a
hed
opy of a �le, any
hanges we make arenot ne
essarily stored permanently to the
entral version stored on the �le server ma
hineuntil the �le
loses. At that point, the Ca
he Manager writes our
hanges ba
k to the�le server ma
hine, where they repla
e the
orresponding parts of the existing �le. If a�le server ma
hine be
omes ina

essible, we
an
ontinue working with the lo
al,
a
hed
opy of a �le fet
hed from that ma
hine, but we
annot save our
hanges permanentlyuntil the server ma
hine is again a

essible.
3.2 Basi
 de�nitionsWe now identify
ells and volumes in a distributed environmnent that supports multiple
lients and �leservers. Files that AFS �leservers o�er are kept on volumes while
lient andserver ma
hines belong to
ells. Files that are grouped into volumes
an be distributeda

ross many ma
hines and yet provide a single, uniform namespa
e that is independentof the storage lo
ation.3.2.1 CellsA
ell is a grouping of
lient ma
hines and server ma
hines de�ned to belong to thesame organization. An AFS site is a grouping of one or more related
ells. Ea
h
ell'sadministrators determine how
lient ma
hines are
on�gured and how mu
h storage spa
eis available to ea
h user. The organization
orresponding to a
ell
an be a
ompany, auniversity department, or any de�ned group of users. For example, the
ells of the SystemsResear
h Group at University of Ioannina form a single site.By
onvention, the subdire
tories of the /afs dire
tory are
ellular �lespa
es, ea
h ofwhi
h
ontains subdire
tories and �les that belong to a single
ell. For example, dire
toriesand �les relevant to the Systems Resear
h Group of University of Ioannina
ell are storedin the subdire
tory /afs/srg.
s.uoi.gr While ea
h
ell organizes and maintains its own26

�lespa
e, it
an also
onne
t with the �lespa
e of other AFS
ells. The result is a huge�lespa
e that enables �le sharing within and a
ross
ells. The
ell to whi
h a user's
lientma
hine belongs is
alled his lo
al
ell. All other
ells in the AFS �lespa
e are termedforeign
ells.3.2.2 VolumesA volume is a unit of disk spa
e that fun
tions like a
ontainer for a set of related �les,keeping them all together on one partition. AFS groups �les into volumes, making itpossible to distribute �les a
ross many ma
hines and yet maintain a uniform namespa
e.For instan
e, a volume may
ontain all �les belonging to a single user. Volumes
an varyin size, but are smaller than a partition.Volumes are important to system administrators and users for several reasons. Theirsmall size makes them easy to move from one partition to another, or even betweenma
hines. The system administrator
an maintain maximum eÆ
ien
y by moving volumesto keep the load balan
ed evenly. In addition, volumes
orrespond to dire
tories in the�lespa
e. Most
ells store the
ontents of ea
h user home dire
tory in a separate volume.Thus the
omplete
ontents of the dire
tory move together when the volume moves,making it easy for AFS to keep tra
k of where a �le is at a
ertain time. Volume moves arere
orded automati
ally, so users do not have to keep tra
k of �le lo
ations. Volumes alsoallow �les that are mu
h larger than a single disk. Read-only volumes
an be repli
atedon several servers to in
rease availability and performan
e. Finally, ea
h volume
an beindividually ba
ked up and restored.Ea
h volume has a unique volume identi�er. Additionally, ea
h �le is identi�ed by a�le identi�er �d, whi
h
onsists of a volume ID, a vnode number and a vnode uniqui�er.Histori
ally, AFS uses the term vnode to mean a Vi
e inode. Hen
e, the vnode numberis an index into the inode list of the volume. The uniqui�er is a generation number,in
remented ea
h time the vnode is reused.3.2.3 Uniform Namespa
eAFS provides a single uniform namespa
e that is independent of the storage lo
ation(�gure 3.2). Although the AFS
ell that a
lient ma
hine belongs to is administratively27

Figure 3.2: The uniform namespa
e of Andrew File System.independent, we probably want to organize the lo
al
olle
tion of �les in a way that
lients from other
ells a

ess the information stored on it. AFS enables
ells to
ombinetheir lo
al �lespa
es into a global �lespa
e, and does so in su
h a way that �le a

ess istransparent. Users only need to know the pathname of the �le, whi
h looks the same inevery
ell. Thus every user at every ma
hine sees the
olle
tion of �les in the same way,meaning that AFS provides a unifore namespa
e.Ea
h
lient workstation must have a lo
al disk that
ontains a few lo
al �les, plus adire
tory on whi
h it mounts the shared �le hierar
hy. Conventionally, ea
h workstationmounts the shared tree on the same dire
tory (usually /afs). The lo
al �les in
lude thesystem �les essential for minimal operation, plus some �les the user may want to keeplo
al for reasons of se
urity or performan
e. Hen
e ea
h
lient sees the same shared namespa
e, plus its own, unique, lo
al �les. The lo
al disk also a
ts as a
a
he for re
entlya

essed shared �les.
3.3 Major stru
turesWe now present the basi
 OpenAFS stru
tures along with their most signi�
ant �elds. Inour prototype implementation, we modi�ed the majority of these stru
tures in order toimprove overall performan
e of
a
hed data.

28

3.3.1 On-disk stru
turesOpenAFS uses /var/
a
he/openafs as its default
a
hing dire
tory. Ca
heItems, CellItemsand VolumeItems are in
luded in this dire
tory. Depending on the total
a
he size, anumber of Di subdire
tories
ontain Vi �les of default size whi
h are used to store wholeor pie
es of remote AFS �les. The above �les are stored in the disk of the OpenAFS
lientand are updated periodi
ally.Ca
heItems �leInitially, the Ca
he Manager
reates the binary-format �le
alled Ca
heItems. This �leis used to store an index of all the
a
he �les. It
ontains the �d, o�set, and size of ea
h�le in the
a
he, together with some additional information, whi
h enables the Ca
heManager to determine whi
h
a
he �le
ontains the AFS data that is requested by anappli
ation. It is stru
tured as an array, with one entry (about 40 bytes) and storedon the disk. Every entry in the Ca
heItems �le is a spe
ial stru
ture whi
h identi�es aspe
i�

a
he �le (�gure 3.3). A remote AFS �le
an be saved in one or more �les in thedisk
a
he, depending on the �le size. When a �le in the disk
a
he is
hosen for storinga part of an AFS �le, an entry is added for it in the Ca
heItems �le re
ording the �dof the remote AFS �le, the relative
hunk number and the inode of the
a
he �le. If forexample a remote AFS �le is stored in �ve �les in the disk
a
he, the stru
t f
a
he entryfor ea
h
a
he �le will
ontain the same �d (as they refer to the same �le), but di�erent
hunk number(0 to 4).stru
t f
a
he {stru
t VenusFid fid; /* Fid for this file */afs_int32 modTime; /* last time this entry was modified */afs_hyper_t versionNo; /* Asso
iated data version number */afs_int32
hunk; /* Relative
hunk number */afs_inode_t inode; /* Unix inode for this
hunk */afs_int32
hunkBytes; /* Num bytes in this
hunk */
har states; /* Has this
hunk been modified? */
}; Figure 3.3: The f
a
he stru
ture29

Vn �lesAFS organizes its storage spa
e into multiple
hunk �les. The
hunk �le is the datatransfer and store unit. A large number of �xed-side
a
he �les (
alled Vn �les) areinitially
reated in the
a
he, whi
h is lo
ated in the
lient's lo
al �lesystem. Ea
h ofthem is subsequently used to satisfy requests that are issued from user programs in the
lient workspa
e. Vn �les are the a
tual data store units in the OpenAFS
lient's disk
a
he. A Vn �le
an store a
hunk of
a
hed AFS data on a
lient ma
hine that is using adisk
a
he. When the Ca
he Manager initializes itself, it veri�es that the lo
al disk
a
hedire
tory houses a number of Vn �les equal to the largest of the following: 100, one anda half times the result of dividing the
a
he size by the
hunk size (
a
hesize/
hunksize *1.5) or the result of dividing the
a
he size by 10 MB (10,240). Vn �les are stored in Disubdire
tories of the /var/
a
he/openafs dire
tory.Remote AFS �les are also separated into
hunks. Ea
h remote data
hunk is stored inone unique lo
al
a
he �le. If a request for a large remote AFS �le is issued, this �le willbe stored in multiple lo
al
a
he �les. In future read requests for this remote �le, all thelo
al
a
he �les that keep the remote data
hunks have to be dis
overed. We must open,read and
lose ea
h of these
a
he �les in order to a
quire the desired data.Ca
heinfo �leAnother �le is used to de�ne
on�guration parameters for the Ca
he Manager and islo
ated in /et
/openafs/. When OpenAFS
lient is initialized, the
a
heinfo �le is
reatedand initialized. The �le
ontains a single line of ASCII text. Its format ismount :
a
he:sizewhere mount is the lo
al disk dire
tory at whi
h the Ca
he Manager mounts the AFSnamespa
e,
a
he is the lo
al disk dire
tory to use as a
a
he and size is the
a
he sizeas a number of 1-kilobyte blo
ks. Larger
a
hes generally yield better performan
e, buta disk
a
he must not ex
eed 95% of the spa
e available on the
a
he partition. Ca
heManager usually mounts the AFS �lespa
e at /afs.The default
a
he dire
tory is /var/
a
he/openafs. However, we
an modify Ca
heinfo�le to set another lo
al dire
tory as the
a
he dire
tory. Ext2 and ext3
an be used as
a
he partitions unlike Reiserfs, XFS and tmpfs that
annot be used. When an openafs-
lient is initialized and started for the �rst time,
a
he dire
tory is
reated. Every time30

openafs-
lient restarts, Ca
he Manager only
he
ks to see if some
a
he �les are missingand so have to be
reated or if some �les must be deleted. The default
a
hesize is 500001KB-blo
ks.VolumeItems �leThe VolumeItems �le re
ords the mapping between volume name and mount point forea
h volume that the Ca
he Manager has a

essed sin
e its initialization on a
lientma
hine using a disk
a
he. The Ca
he Manager uses the mappings to respond
orre
tlyto queries about the
urrent working dire
tory, whi
h
an
ome from the operating systemor
ommands su
h as the UNIX pwd
ommand. As it initializes, the Ca
he Manager
reates the binary-format VolumeItems �le in the lo
al disk
a
he dire
tory, and it mustalways remain there.stru
t d
a
he {stru
t afs_q lruq; /* Free queue for in-memory images */stru
t afs_q dirty; /* Queue of dirty entries that need written */afs_rwlo
k_t lo
k; /* Prote
ts validPos, some f */afs_rwlo
k_t tlo
k; /* Atomizes updates to refCount */afs_rwlo
k_t mflo
k; /* Atomizes a

esses/updates to mflags */afs_size_t validPos; /* number of valid bytes during fet
h */afs_int32 index; /* The index in the Ca
heInfo file */short refCount; /* Asso
iated referen
e
ount. */
har dflags; /* Data flags */
har mflags; /* Meta flags */stru
t f
a
he f; /* disk image */
}; Figure 3.4: The d
a
he stru
ture3.3.2 In-memory stru
turesD
a
he entriesTo make
a
he �le indexing more eÆ
ient, a portion of Ca
he�les entries is kept in memory,in some spe
ial stru
tures. Rather than keeping all of the Ca
heinfo data in memory orkeep sear
hing it on disk, the Ca
he Manager keeps a subset of this data in memory, in31

stru
t v
a
he {stru
t vnode *v;stru
t afs_q vlruq; /* lru q next and prev */stru
t v
a
he *hnext; /* Hash next */stru
t afs_q vhashq; /* Hashed per-volume list */stru
t VenusFid fid;stru
t mstat{afs_size_t Length;afs_hyper_t DataVersion;afs_uint32 Date;afs_uint32 Owner;afs_uint32 Group;afs_uint16 Mode;afs_uint16 LinkCount;
} m;stru
t d
a
he *d
hint;

}; Figure 3.5: The v
a
he stru
tured
a
he entries. The dCa
heSize is the number of these entries that are kept in memory.The default dCa
heSize is
urrently half the number of
a
he �les, but not less than 300and not more than 2000.Valid
a
he �les are asso
iated with d
a
he entries. A stru
t d
a
he is asso
iated withan on-disk stru
t f
a
he, as it is shown in Figure 3.4. The dCa
heSize setting shouldapproximate the size of the workstation's working set of
hunks. If the
hunk size is large,this is
lose to the number of �les whose
ontents (not metadata) are in the working set.If the
hunk size is very small, then it's probably some multiple of that number.V
a
he entriesAnother in-memory stru
ture is used to store metadata about �les in AFS (�gure 3.5).Any time we need to get information about a �le that is not in the v
a
he, we must makean RPC to the remote �leserver. So, we don't want the v
a
he to be too small, sin
e thatwould result in lots of extra RPC's and
onsiderable performan
e loss. The ideal v
a
hesize approximates the size of the workstation's working set of AFS �les, in
luding �les32

stru
t volume {/* One stru
ture per volume, des
ribing where the volume is lo
ated* and where its mount points are. */stru
t volume *next; /* Next volume in hash list. */afs_int32
ell; /* the
ell in whi
h the volume resides */afs_int32 volume; /* This volume's ID number. */
har *name; /* This volume's name, or 0 if unknown */stru
t server *serverHost[MAXHOSTS℄; /* servers serving this volume */stru
t VenusFid dotdot; /* dir to a

ess as .. */stru
t VenusFid mtpoint; /* The mount point for this volume. */afs_int32 rootVnode, rootUnique; /* Volume's root fid */
}; Figure 3.6: The volume stru
turefor whi
h we only
are about metadata. V
a
he entries
a
he information obtained via�leserver RPC's and
an be
onsidered as spe
ializations of stru
t vnodes. A stru
t v
a
hekeeps a referen
e to a stru
t d
a
he, for the �rst
hunk that stores AFS �le's information.We
an then �nd subsequent
hunks storing the AFS �le using spe
i�
 hash tables.Volume entriesThe volume
a
he stores
a
hed information about volumes, in
luding name-to-ID map-pings, whi
h volumes have RO
lones, and where they are lo
ated (�gure 3.6). The size ofthe volume
a
he should approximate the size of the workstation's working set of volumes.Entries in this
a
he are updated periodi
ally every 2 hours.Data
a
he hash tablesData
a
he hash tables are used to lo
ate the lo
al
a
he �le that keeps a data
hunkof a remote AFS �le. When an OpenAFS
lient initializes itself, two hash tables areallo
ated in memory. The afs d
hashTbl
ontains the indexes of the lo
al
a
he �les thatkeep remote data
hunks, while the afs d
nextTbl table is used to �nd the
a
he �le indexin
ase of
ollisions. When a request for a remote �le o�set is issued, the
hunk numberthat the remote o�set belongs to is
al
ulated, as it is shown in �gure 3.7. The remote33

�d and
hunk are hashed to a
quire an integer (e.g. i) that indi
ates the appropriateposition in afs d
hashTbl. It is then
he
ked whether the table's index (e.g. j) in positioni is the index of the
a
he �le that keeps the sear
hed data. If not, afs d
nextTbl must be
he
ked. Therefore, it is
he
ked whether the index in position j of afs d
nextTbl (e.g. k)is the appropriate
a
he �le index. If not, the index in position k of afs d
nextTbl is now
he
ked an so on. If we
annot lo
ate the appropriate
a
he �le index after sear
hing inthis hash
hain, the �le has not been stored lo
ally in
a
he, so we must �nd a new free
a
he �le to map and store the remote data.

Figure 3.7: Hash tables used to lo
ate data at the
lient's disk
a
he.
3.4 Storage management in AFSIn this se
tion, we are going to des
ribe how AFS manages its storage spa
e. In following
hapters, the modi�
ations made to the existing storage management methods will beexamined. These modi�
ations led to a general performan
e improvement by redu
ingstorage spa
e fragmentation.When an OpenAFS
lient initializes itself, it
reates a disk
a
he as part of the lo
al34

ext2/3 �lesystem. Ea
h
a
he �le has maximum size equal to the
hunk used for thetransfers from the server (typi
ally 256KB). The total number of
a
he �les is
on�gurableand depends on the size of the disk
a
he. Ca
he �les appear as regular �les with namesVi, where the index i takes values between 0 and a maximum
on�gurable value.As it has already ben mentioned in the previous se
tion, for ea
h lo
al
a
he �le, thereexists a spe
ial f
a
he stru
ture on the Ca
heItems �le. These stru
tures asso
iate ea
h Vi�le with a
hunk of a remote �le. The �elds of f
a
he store metadata, su
h as the identi�erof the remote �le, the o�set, the
hunk size, and the inode of the lo
al �le. An array off
a
he stru
tures is stored persistently on disk. For improved indexing eÆ
ien
y, a subsetof the f
a
he stru
tures is also maintained in memory as a
olle
tion of d
a
he stru
tures.Periodi
 updates keep the f
a
he
ontents
onsistent with their memory
ounterparts. Infa
t, f
a
he stru
tures are the on-disk images of the
orresponding d
a
he entries. Ea
hd
a
he entry des
ribes a Unix �le on the lo
al disk that is serving as a
a
hed
opy of allor part of a remote AFS �le, as it is shown in �gure 3.8.3.4.1 Cir
ular queuesD
a
he entries live in three
ir
ular queues:1. freeDSlot2. freeDCList3. DLRUand move between them, depending on their
urrent state. Stru
t d
a
he entries areinitially kept in a
ir
ular queue
alled freeDSlot used for free d
a
he entries. A stru
td
a
he entry is in the freeDSlot queue when not asso
iated with a
a
he slot (lo
al
a
he�le). Otherwise, it is in the DLRU queue. Ca
he entries in the DLRU queue are eitherasso
iated with remote AFS �les, or they are in the freeDCList queue and are not as-so
iated with any remote �le. Entries are moved from DLRU to freeDCList when the
orresponding
a
he �les need to be repla
ed (e.g. when
a
he �lls up to 95%), and fromfreeDCList to DLRU when we need to a
quire a d
a
he entry to store some new data in
a
he. 35

Figure 3.8: Major stru
tures of Andrew File System and their
orrelation.When
a
he �les are initially
reated, afs InitCa
heFile fun
tion is
alled to initializethem. Given a �le name and inode, it sets up that �le to be an a
tive member in the AFS
a
he. In order to map disk
a
he �les with their in-memory d
a
he entries, afs GetDSlotfun
tion is
alled, that takes the �rst entry from freeDSlot queue and adds it in front ofthe DLRU queue. D
a
he entries in DLRU queue represent a
tive
a
he �les that are usedto store remote data. Whenever a d
a
he entry is referen
ed, it is moved in front of theDLRU queue so as to retain most re
ently used
hunks in front of the queue. Furthermore,this d
a
he entry must be put in the freeDCList as it is not yet used to store any remotedata.
36

3.4.2 Mapping from a remote to a lo
al �le o�setWhenever we need to a

ess a remote AFS �le, we must �rst examine whether this �le isalready
a
hed. There exists an afs GetDCa
he fun
tion that maps a remote byte o�setto the relative o�set in the lo
al
a
he �le that keeps this remote data. This fun
tion takeas a parameter the pointer to the v
a
he entry for the remote �le and the byte positionin the �le desired, and returns the o�set within the
hunk where the resident byte islo
ated. We �rst
ompute the
hunk number of the
hunk
ontaining the given byte.To examine whether this byte is already
a
hed, a thorough sear
h in afs d
hashTbl andafs d
nextTbl is done. These two hash tables
ontain
a
he �le indexes. If we know the
a
he �le index, we
an �nd the
orresponding d
a
he entry using afs GetDSlot fun
tion.We must then examine two �elds of the
orresponding d
a
he stru
ture, �d and
hunk.If these �elds have the same value with the �le identi�er in the v
a
he entry as well asthe already
omputed
hunk number, we
on
lude that the given byte id already storedin
a
he. We
an rea
h
a
he �le through d
a
he entry and the
orresponding on-diskimage f
a
he entry (stru
t d
a
he has one stru
t f
a
he �eld).3.4.3 Allo
ating a new lo
al
a
he �le to store remote dataIf none of the indexes found in hash tables indi
ates a
a
he �le that keeps the sear
hedremote data, we
on
lude that the remote
hunk is not
a
hed yet. Thus, we must �nd oneor more free
a
he �les to store the �le's data. The queues that were previously des
ribedare used for this purpose. We must sear
h for available and free d
a
he entries, whi
hmeans that these entries must not be asso
iated with any
a
he �le or any remote
hunkof data. If freeDCList is not empty, we
hoose its �rst d
a
he entry to store remote data.The next step is to �ll in the newly-allo
ated d
a
he re
ord with the
orre
t information(su
h as �d or
hunk) so as to des
ribe the remote data that is stored in it. We mustthen add the right information to the two hash
hains, in order to be able to lo
ate �lein future requests.To sum up, ea
h request to the o�set of a remote �le
an be mapped qui
kly to the
orresponding o�set of a lo
al �le at the
lient through the afs d
hashTbl hash table.The hash fun
tion translates the identi�er and the o�set of the remote �le to a hash tableposition. A separate auxiliary hash table
hains the additional entries required in the
ase37

of
ollisions. If the requested
hunk is not available lo
ally, a new index entry is allo
atedalong with a free lo
al �le to store the data transferred from the remote server.

38

Chapter 4
Ar
hite
tural Definitions

4.1 Design issues4.2 Design goals4.3 Proposed ar
hite
ture4.4 SummaryIn this
hapter, we examine the basi
 design goals of our study and present a high-level des
ription of our proposed ar
hite
ture. Initially, we introdu
e the major issues thatdetermine the
reation of a su

essful and e�e
tive
a
hing system. Then, we dete
t thedesign ineÆ
ien
ies of existing
a
hing systems, in
luding Andrew File System. We thende�ne the ar
hite
tural de
isions that were taken and led to our prototype implementation,emphasizing on storage spa
e management and �le repla
ement. Finally, we examinehow our eÆ
ient s
heme improves performan
e of multiple
on
urrent �le a

esses indistributed environments.
4.1 Design issuesCa
hing has long been used to redu
e the operation
ost of distributed �lesystems overwide-area networks. Some of the basi
 reasons why
a
hing proxies are
hosen to supportse
ure data sharing over multiple
lients in a wide-area network are des
ribed below:39

Figure 4.1: The basi
 ar
hite
ture of a proxy server in a distributed �le system.� Remote �leservers are not able to satisfy a large amount of
on
urrent requests froma single
lient as easily as the intermediate proxy servers
an.� Multiple
lients share physi
al storage resour
es that leads to a total redu
tion ofthe network bandwidth requirements.� In general, the total
ost of a

essing data from a remote server may be orders ofmagnitude greater than the
orresponding
ost of a

essing them from an interme-diate proxy server in a lo
al area network, in
luding the
ost of leasing networkbandwidth with
omparable transfer
apa
ity.In the present study, we introdu
e a
a
hing proxy for distributed �lesystems that wishesto sustain se
ure data sharing in WANs, while it satis�es the above
riteria. However,even though
a
hing proxies generally improve performan
e of a

essing
a
hed data,intermediate layers in the path from the origin server to the
lient may introdu
e per-forman
e bottlene
ks and redu
ed parallelism in the data transfers. Consequently, it isquite probable that the per
eived throughput will be lessened while the total time fora

essing
a
hed data may be in
reased. Hen
e, a variety of resour
e management issueshad to be thoroughly examined while designing the new
a
hing proxy server. The basi
design issues that were initially investigated and led to our prototype implementation aredes
ribed in the following se
tions
40

4.1.1 Storage allo
ationIn network �lesystems, retrieving data exa
tly from a remote �leserver may
ause laten
iesthat are mu
h greater than the
orresponding time to fet
h data from the lo
al �le systemor memory
a
he. Furthemore, when developing
ost-e�e
tive �lesystems it is preferableto keep
a
hed data on hard disks rather than the main memory of the proxy server.Thus, to improve retrieval time of
a
hed data, one should explore innovative storagemanagement methods in order to e�e
tively allo
ate the disk storage spa
e of the
a
he.A variety of di�erent approa
hes to the storage allo
ation problem were re
ently intro-du
ed by the resear
h
ommunity. The dominant strategy is to map ea
h remote �le to asingle lo
al
a
he �le. However, early approa
hes
opied entire �les from the remote �leserver to the
lient, in
reasing transfer laten
y as well as the overall resour
e requirementsat the
lient. Later approa
hes attempted to over
ome these restri
tions by
opying andstoring parts of remote �les in
a
he, pla
ing ea
h �le part into a single lo
al
a
he �le.In more re
ent prototypes, the system dynami
ally repli
ates the dire
tory and �le nam-ing stru
ture from the origin server to the
a
he, while transferring the �le
ontents ondemand in pages of
on�gurable size. What is more, on web
a
hing proxy servers �lesand metadata are grouped by size and stored into
lusters on
onse
utive blo
ks of disk,to redu
e laten
ies and improve performan
e.However, we
laim that the proxy server should not be restri
ted to o�er a
onsistentview of the data as they appear at the remote server. A
a
hing proxy for distributed �lesystems should be free to manage its lo
al data in ways that serve its design obje
tivesbetter. Thus, the existing storage management methods should be enhan
ed in order toa
hieve� better mapping of remote data to the lo
al
a
he �le, by organizing metadata in amore e�e
tive way� su

essful
lustering of remote data to the lo
al disk of the proxy, in order to improvethe existing performan
e of a

essing
a
hed data.Experimental measurements to AFSIn order to examine Andrew's
a
hing eÆ
ien
y, we made a variety of experiments withits open-sour
e variant (OpenAFS v. 1.4.5) over Linux kernel v. 2.6.18. We measure41

Figure 4.2: Time to retrieve one large �le dire
tly from the lo
al �le system in
omparisonto a

essing it through OpenAFS from the lo
al disk or the remote server.the retrieval time from the disk
a
he through OpenAFS as well as the
orrespondingretrieval time from the lo
al �lesystem or the remote �leserver. As we see in Figures 4.2and 4.3, the retrieval time from the disk
a
he through OpenAFS is is about 2-3 timesgreater for large �les and 1.3-1.8 times greater for numerous small �les in
omparison tothe retrieval time from the lo
al �le system. On the other hand, fet
hing �les from theremote server (another node on the same gigabit Ethernet swit
h in our experiments)
osts about 150-200% the retrieval time from the OpenAFS disk
a
he for large �les and250-550% for numerous small �les. Thus, we
on
luded that it is essential to explorealternative methods for the mapping of the remote data to lo
al �les in disk
a
he to� redu
e storage spa
e and metadata management overhead� enhan
e the existing performan
e of retrieving
a
hed dataHowever, to examine whether Andrew
an e�e
tively support multiple users, we measuredthe total time to satisfy
on
urrent requests issued by di�erent
lients. For example, weissue
on
urrent requests for �ve di�erent remote �les of 1GB size. We observed that these
on
urrent reads of �les stored at the remote server, require time that may be orders ofmagnitude greater than the
orresponding time to read the same �les sequentially. Morespe
i�
ally, it takes about 395 se
onds to
on
urrently fet
h the remote �les and about366 se
onds to read them in parallel from the disk
a
he. Additionally, the time tosequentially read from disk
a
he only one of these �les is about 70 se
onds, while the
orresponding time to read the same �le (in
ase it was sequentially fet
hed and storedin
a
he) is about 40 se
onds. We investigated where ea
h portion of time is wasted and42

Figure 4.3: Time to retrieve numerous small �les dire
tly from the lo
al �le system in
omparison to a

essing them through OpenAFS from the lo
al disk or the remote server.
on
luded that in
reased laten
y o

urs due to disk spa
e fragmentation that is
ausedby multiple
on
urrent reads. That was the basi
 motivation for our proposed methodthat
hanges the way
a
hed data are pla
ed on proxy's hard disk.With the existing allo
ation algorithm of AFS, �les that are
on
urrently fet
hed fromremote servers may s
atter over the
lient's disk
a
he. In order to avoid �le fragmentation,we proposed a method that groups together parts of the same remote �le in
onse
utiveblo
ks at the
lient's disk. Consequently, we a
hieved to redu
e �le retrieval times inall
ases. Spe
i�
ally, in the above �le retrieval example we redu
ed fet
h time from theremote server from 395 se
onds to 249 se
onds and read time from the disk
a
he from 366to 253 se
onds while the time to sequentially read one �le was redu
ed from 70 se
ondsto 40 se
onds. Thus, even though the �les were
on
urrently stored in
a
he, the time toread ea
h of them from the disk
a
he remains the same as they had been sequentiallyfet
hed and stored in
a
he.In fa
t, these are the basi
 reasons why we modi�ed the storage method that AndrewFile System uses. However, we aim not only at improving the Andrew's
a
hing eÆ
ien
y,but we also planned to o�er a new
a
hing servi
e that would support multiple
on
urrent
lients in a distributed environment.
43

4.1.2 Data Repla
ementA variety of data repla
ement methods have been lately introdu
ed in the area of
a
hingsystems. They intend to remove the most appropriate �les from a full
a
he, in orderto satisfy the in
oming requests. We
onsider data repla
ement a major issue for thor-ough investigation in proxy servers of distributed �le systems. Re
ent page repla
ementpoli
ies in lo
al storage hierar
hies are able to simultaneously take into
onsiderationmultiple a

ess features su
h frequen
y and re
en
y in order to maximize the hit ratioa
ross di�erent workloads. In spe
i�
, the Adaptive Repla
ement Ca
he (ARC) has beendesigned to automati
ally keep a balan
e between re
en
y and frequen
y in an online andselftuning manner [9℄. In addition, a very interesting deterministi
 online algorithm forrepla
ing �les of spe
i�
 size and retrieval
ost in a limited-size
a
he has been proposed[19℄. However, in the area of web proxies, the most su

essful poli
ies
ombine re
en
ywith �le size, popularity or fet
hing laten
y.Hen
e, the sele
tion of an e�e
tive data repla
ement algorithm to manage data whenthe proxy disk
a
he �lls up is essential. In our proposed repla
ement algorithm we donot only take into a

ount two major fa
tors, re
en
y and fet
hing laten
y, but we alsotry to maintain lo
ality in the data that are already
a
hed on the proxy's hard disk.
4.2 Design goalsWith our proposed ar
hite
ture we initially intended to improve the performan
e of a
-
essing data from the proxy's disk
a
he. We wished to enhan
e Andrew's storage man-agement and repla
ement methods in order to support
on
urrent requests from multiple
lients in distributed environments. As we have already mentioned in previous se
tions,the majority of the published literature on proxy
a
hing ar
hite
tures typi
ally refersto web environments with predominantly read-only workloads of limited reliability and
onsisten
y demands. In addittion, web proxies support a

ess granularity of entire �lesand have limited se
urity
onstraints due to the publi
 nature of the transferred data.Furthermore, the disk-based
a
hing system that is most
ommonly used for �le systemshas mainly been developed to run dire
tly on personal workstations and is not optimizedto support
on
urrent requests from large numbers of users arriving from di�erent
lient44

ma
hines. Thus, the design of a new proxy that would satisfy all the above
riteria isessential. To be more spe
i�
, an eÆ
ient
a
hing proxy server for distributed �le systemsmust a
hieve the below basi
 goals:� Adopt an innovative way of managing requested data on the proxy
a
he to improvethe spatial storage lo
ality.� Create
lusters of �les in the proxy
a
he that have
ommon
hara
teristi
s, in orderto improve �le a

ess performan
e by redu
ing{ storage spa
e fragmentation{ metadata management overhead� Relieve
lients that issue a burst of
on
urrent requests in a wide area network, asthe proxy
a
he is preferred to a disk-based
a
hing system to satisfy them.� Use existing standard proto
ols to allow reuse of data available on the proxy servera
ross di�erent
lients.� Repla
e �les that have not been used re
ently with
onsideration of their fet
hinglaten
y from the origin server.
4.3 Proposed ar
hite
tureIn this se
tion we present a high-level des
ription of our
a
hing proxy server. First, thenew allo
ation algorithm is depi
ted whi
h modi�es the way remote data are
a
hed onproxy's hard disk as well as the
orresponding mapping between remote and
a
hed data.Then, we introdu
e the repla
ement algorithm that is used to e�e
tively manage data inthe proxy
a
he when it �lls up. Our basi
 goal is to repla
e �les that are not frequentlyused while the time to fet
h them again from the remote server is relatively low. Atthe same time, we try to maintain lo
ality in the
a
hed data to avoid fragmentation.Consequently, we prefer to repla
e some spa
e from the last
a
he �le that has alreadybeen used for repla
ement.Below we present the blo
k diagram of the proposed ar
hite
ture that expands AndrewFile System over two dire
tions: storage management and �le repla
ement.45

Figure 4.4: Proposed ar
hite
ture4.3.1 Storage managementTo satisfy our basi
 goals, we must adopt a new lo
ality-aware storage managementmethod that
hanges the way remote data are stored in the proxy
a
he. As laten-
ies o

ur due to fragmentation in the proxy
a
he, we modi�ed the way remote �le partsare stored on the proxy's hard disk. The Andrew File System stores ea
h remote datapart as a separate �le on the disk
a
he. Therefore, when multiple
lients need to a

essdi�erent remote �les, the data parts of ea
h �le may be s
attered over the proxy' s disk
a
he. Consequently, the overall time to read ea
h �le from the disk
a
he may be mu
hgreater than the
orresponding time to read the same �le, in
ase the initial requests wereissued sequentially.Thus, the
hunks of a single remote �le must be grouped together in nearby lo
ationsat the proxy
a
he. In our system, we investigate the pla
ement of in
oming data into
onse
utive lo
ations grouped by the identi�er of the remote �le to whi
h the data
or-responds or the requesting user. More spe
i�
ally, we organize the
hunks as
ontiguoussegments of a large �le in the proxy server,
alled proxy �le. The
hunks of the sameremote �le that we fet
h with a single request from the origin server are stored
onse
-46

utively at the same lo
al �le. In addition, we try to keep in nearby lo
ations parts ofthe same �le that are not requested
on
urrently. We also store on the same lo
al �lethe data
hunks fet
hed subsequently either from the same remote �le, or from di�erentremote �les by the same user. The proxy �le has size that is only limited by the lo
al �lesystem.Due to the spatial lo
ality that we enfor
e at the proxy, we anti
ipate that �le a

esstime will be improved as we manage to pla
e parts of the same �le in
ontiguous lo
ationson the hard disk. Furthermore, we manage to redu
e �le management overhead as lo
al
a
he �les
an keep data from di�erent remote �les whereas separate parts of the sameremote �le
an be stored on
ontiguous lo
ations inside a lo
al
a
he �le. If we onlyknow the lo
al
a
he �le and the
oresponding slot where the remote �le's
ontents arestored, we
an retrieve the requested data. Hen
e, we do not need to manage metadata forremote �les'
ontens. In
ontrast, only metadata for lo
al
a
he �les need to be managed.Additionally, data repetitively used by a user
an be retrieved from the proxy
a
he withlow a

ess overhead. However, the a
tual performan
e seen by the end user also dependson the behavior of the other users
on
urrently utilizing the same proxy server.Apart from improving spatial storage lo
ality and the
orresponding �le a

ess per-forman
e, our system also a
hieves our third goal be
ause it no longer assumes that
lientma
hines are powerful enough to release
entralized servers from
omputations. On
ea �le is fet
hed and stored in the proxy
a
he, future requests that are issued by
lientma
hines for this �le will be satis�ed from the intermediate proxy. Consequently, thegeneral load at the servers will be signi�
antly redu
ed.4.3.2 File Repla
ementThe deployment of �le system proxies is mainly motivated by the need to a

ess dataa
ross wide-area networks. As a result, di�erent �les requested from the proxy in
ur fet
hlaten
ies that vary a

ording to the a
tual lo
ation of the origin server. In our repla
ementpoli
y, we keep tra
k of the amount of time needed to fet
h ea
h
hunk to the proxy. Weaim to preserve lo
ality and avoid fragmentation during repla
ement. Thus, we treat asa single unit,
alled
hunk run, the group of
hunks that are stored
onse
utively on theproxy and belong to the same remote �le. 47

For ea
h run, we keep tra
k of the average fet
h laten
y a
ross its
hunks. We
ate-gorize the
hunk runs as lo
al or remote depending on whether their average laten
y islower from or ex
eeds a
on�gurable threshold. At the next repla
ement operation, wepi
k as vi
tim the
hunk run that is earliest in the LRU list and has the lowest averagelaten
y. As a result, we �rst favor the lo
al runs for repla
ement. If our sear
h for a lo
alrun fails in a pass along the LRU list, then we pi
k for repla
ement the remote run thathas been least re
ently used.
4.4 SummaryCa
hing has long been used to a
hieve e�e
tive �le storage in distributed environments.Espe
ially in wide area networks, intermediate
a
hing proxies that
a
he data
loser tothe
lients are frequently used. They intend to redu
e the total
ost of a

essing remotedata while they manage to signi�
antly redu
e the load at the remote �leservers. However,to design an e�e
tive
a
hing proxy server a variety of resour
e management issues haveto be thoroughly examined su
h as storage spa
e management and �le repla
ement. Datamust be lo
ated in the proxy's disk
a
he in su
h a way that the performan
e of a

essing
a
hed data is relatively high. Additionally, metadata must be organized in an e�e
tiveway to a
hieve better mapping from remote to lo
al data. Furthemore, data must berepla
ed in su
h ways that redu
e the overall a

ess
ost.AFS is a distributed �le system that has been su

essfully used for over two de
adesin general �le systems. It is better used in wide area networks where laten
ies introdu
edby the metwork en
ourage the design of a
lient-side disk
a
he for e�e
tive storagemanagement. In an e�ort to understand Andrew's
a
hing eÆ
ien
y, we experimentedwith its open-sour
e variant. We
on
luded that
on
urrent �le reads may
ause storagespa
e fragmentation due to the existing �le management methods.In the present thesis, we propose a new
a
hing proxy server for distributed �lesystems,based on Andrew File System. We present a new �le management method that modi�esthe way remote data are kept in AFS
lient's
a
he, in order to satisfy
on
urrent requestsand improve overall performan
e. However, AFS does not o�er a
a
hing proxy serveras it limits
a
hing to the lo
al �lesystem. In the design we propose, we aim not only48

at improving Andrew's
a
hing eÆ
ien
y but we plan to o�er a new
a
hing servi
eto support multiple
n
urrent
lients in a distributed �le system. Finally, we proposeinnovative �le repla
ement methods that enhan
e the existing repla
ement methods ofAndrew File System. Thus, we manage to preserve lo
ality and avoid fragmentationbased on the following idea: we repla
e �les that have not been used for a long time and
an be a

essed qui
kly in future requests.

49

Chapter 5
Implementation of Hades

5.1 Hades proxy server5.2 Ca
he Files5.3 Bitmap List5.4 Mapping5.5 Allo
ation5.6 Hashing5.7 Repla
ement5.8 A File Retrieval ExampleIn this
hapter, we present the basi
 modi�
ations made to the OpenAFS
lient in ourimplementation of the Hades proxy server. The new lo
ality-aware allo
ation algorithmis introdu
ed, that groups together either remote data with the same �le identi�er or �lesrequested by the same user in a distributed environment. As a result, the performan
e ofa

essing data from the proxy's disk
a
he is signi�
antly improved, espe
ially in
ases ofmultiple
on
urrent requests from di�erent users. Finally, we display the extensions madeto the existing repla
ement algorithm that wish to improve performan
e while preservinglo
ality and avoiding fragmentation in the proxy
a
he.50

Figure 5.1: The Hades system
ombines a modi�ed OpenAFS
lient with a user-level NFSserver5.1 Hades proxy serverWe implemented the Hades proxy server as a
ombination of a modi�ed OpenAFS
lientand a regular user-level NFS server as shown in Figure 5.1. Regular OpenAFS �le serversexport multiple �les that
an be a

essed from di�erent
on
urrent OpenAFS
lients.Hen
e, we modi�ed appropriately OpenAFS
lient to allow Hades a

ess su
h remote�les. Hades
an initially a

ess remote �les through a modi�ed OpenAFS
lient, andre-export the a

essible remote �les through a regular NFS server. Consequently, Hadesa
ts as a
lient and a server at the same time. Finally,
lient ma
hines use a normal NFS
lient to avoid a

essing remote �les from the remote �le server. Users issue requests thatare better and more eÆ
iently satis�ed from the intermediate Hades proxy server.One of our main design goals was to explore alternative methods for the mappingof the remote data to lo
al
a
he �les, in order to improve the existing �le retrievalperforman
e. Thus, we proposed and implemented a method that modi�es the existingmapping te
hniques as well as the way that remote �les are stored in the lo
al disk ofthe OpenAFS
lient. We keep remote �les in
onse
utive o�sets in ea
h lo
al �le atthe proxy
a
he. What is more, we retain di�erent parts of the same remote �le innearby disk lo
ations. Our intention is to redu
e storage spa
e fragmentation as well asthe
orresponding disk a

ess overhead. In addition, we redu
e metadata managementoverhead as for ea
h remote �le we have to manage only one and not multiple lo
al
a
he�les.To a
hieve our design goals we expanded the OpenAFS
lient along the following threedire
tions: 51

1. We preallo
ate multiple large lo
al �les and do our own spa
e management for ea
hof them.2. We expand the mapping stru
ture of ea
h lo
al �le to store multiple
hunks thatbelong to di�erent remote �les.3. We keep low the average a

ess
ost by repla
ing lo
ally
a
hed
hunks a

ordingto their a

ess re
en
y and fet
hing laten
y.Below, we explain in more detail our implementation along ea
h of the above dire
tions.
5.2 Ca
he FilesA number of preallo
ated �xed-size
a
he �les are initially
reated in the proxy' s
a
he.The maximum size of ea
h lo
al �le is only limited by the settings of the lo
al �le systemat the proxy as well as the needs of the
lients' appli
ations. A small number of large
a
he �les is usually needed. We
onsider as parameters: the number and the size of thelo
al
a
he �les as well as the number of the di�erent remote AFS �les that
an be storedin ea
h lo
al
a
he �le along with their maximum size. We use a separate bitmap tomanage the storage spa
e of ea
h �le and we
all
a
heblo
k the respe
tive unit of storageallo
ation. Ca
heblo
k is a parameter of our system that
an be
on�gured a

ordingto our needs. The default
a
heblo
k size is 4KB. The size of
hunks that we transferbetween the proxy and the origin server is typi
ally a multiple of the
a
heblo
k size.When a
lient issues a request for a part or an entire AFS �le1. a
onne
tion with the remote �leserver will be established2. the data will be fet
hed from the remote server to the proxy's kernel memory inparts of default
hunksize (usually 256KB)3. a
a
he �le will be
hosen4. the data will be stored in the lo
al
a
he �le in parts of usually 4KB sizeTo
hoose the right lo
al
a
he �le for the remote data, we sear
h for the requested numberof
onse
utive
a
heblo
ks starting from the lo
al �le that was used more re
ently.52

Figure 5.2: The main stru
ture of the modi�ed OpenAFS
lient in Hades.5.3 Bitmap ListA list
ontaining spe
ial bitmap stru
tures relative with the lo
al
a
he �les is retained inthe proxy's kernel memory. These stru
tures are inserted in the bitmap list when initially
reated. Ea
h su
h bitmap
onsists of k bits, representing the k blo
ks of ea
h lo
al
a
he�le, where k = Filesize /
a
heblo
k. Thus, for ea
h lo
al
a
he �le we
an �nd whi
hblo
ks are free to store remote data. We try to store remote �les in
onse
utive
a
he �leo�sets, as appli
ations request them, to maintain lo
ality and avoid spa
e fragmentation.To a
hieve this, we must sear
h for
onse
utive spa
e in one lo
al
a
he �le to store therequested data as a whole. We must note that bitmap a

ess is atomi
. Two di�erentpro
esses are not able to sear
h
on
urrently for free spa
e in the same lo
al
a
he �le.For an empty
a
he, the data initially requested will be stored in the �rst
a
he �le atthe bitmap list that has enough free spa
e to store the entire request. Pro
esses
anonly a

ess atomi
ally the bitmap list to reserve bits. We then map remote data to the
orresponding lo
al
a
he �le and store the fet
hed
hunks at it.
53

5.4 MappingTo a
hieve one of our basi
 goals and retain parts of the same �le in nearby disk lo
ations,we had to expand the v
a
he stru
ture. Thus, for ea
h remote �le
a
hed at the proxy,we added pointers to the bitmap and respe
tive d
a
he stru
tures of the lo
al
a
he �lesthat keep parts of it. In more details, bmap is the
orresponding bitmap pointer used tosear
h and allo
ate free blo
ks in order to store the requested remote data, while l
hunkis the
orresponding d
a
he pointer. If this is the �rst time that a request for this �leis issued, d
a
he and bitmap pointers are NULL. Ea
h time remote �le parts are fet
hedand stored in
a
he, the above pointers are updated to point at the right lo
al
a
he �le.Additionally, we added other �elds that in
lude the lo
al �le o�set where the request isstored, the initial
hunk number and the total size of the requested data. To be morepre
ise, StartO�s is the lo
al
a
he �le o�set where the remote data is stored. Aftersear
hing in the bitmap list, we
ompute StartO�s byte by multiplying the �rst free bit(�rst bit with value 0) in the bitmap with the
a
heblo
k parameter. Every remote AFS�le is divided into one or multiple data
hunks, ea
h of whom has a unique
hunk numberbetween 0 and a maximum value depending of the �le's size. Similarly, InitChunk is thenumber of the �rst
hunk of the requested data, used to
ompute the initial lo
al �le o�setwhere ea
h remote
hunk will be stored. For example, if we issue a request for a remote�le of size 1MB, the remote data will be fet
hed from the remote server in four
hunks of256KB. The initial
hunk number is 0 and the initial o�set of ea
h
hunk is
omputed bythe ma
ro AFS COMPUTEINITOFFSET as:InitialO�s=AFS COMPUTEINITOFFSET(StartO�s,(
hunk - InitChunk));where #de�ne AFS COMPUTEINITOFFSET(A,B) (A + (B* afs OtherCSize)),afs OtherCSize is equal to
hunksize, as this is de�ned by the system.Finally, we added the �eld size to represent the initial size of ea
h �le request. This isessential as we must know beforehand the total number of bits we have to allo
ate fromthe bitmap to store the requested data.The in-memory d
a
he stru
tures as well as their
orresponding on-disk images, areusually used to map su

essfully remote �le
hunks to lo
al
a
he �les. Hen
e, we ex-panded these stru
tures to support the Hades implementation be
ause it is di�erent fromthe OpenAFS implementation in the way remote data is mapped and stored in lo
al
a
he54

�les. Ea
h lo
al
a
he �le may be used to keep di�erent parts of remote �les in
ontraryto the OpenAFS implementation where ea
h lo
al
a
he �le keeps only a unique
hunk ofa remote AFS �le. Consequently, we expanded the d
a
he stru
ture of ea
h lo
al �le tomaintain an array of pointers to f
a
he stru
tures of remote �les. The basi
 �eld we addedto the d
a
he stru
tures is stru
t f
a
he *R�les, to asso
iate a lo
al
a
he �le with allthe remote �les that store
hunks there. This is a departure from the original OpenAFSimplementation, where ea
h lo
al �le
ould only store one
hunk of a single remote �leand only needed one f
a
he pointer. Further more, we expanded the
orresponding f
a
hestru
tures to asso
iate ea
h on-disk image with the
hunks of remote �les that are storedin it. In ea
h f
a
he stru
ture that belongs to the above array, we maintain an array of
hunk des
riptors
alled
hunkT, to lo
ate all the
hunks of remote �les that have beenstored in the respe
tive lo
al
a
he �le. In su
h des
riptors we keep information aboutthe
orresponding
hunk of remote data, in
luding the
hunk number, the
hunk's totalsize as well as the
hunk's starting and ending o�set at the lo
al
a
he �le.
5.5 Allo
ation5.5.1 Data
lustering based on the remote �le's identi�erAs we have already pointed out, our main intention is to maintain the requested data in
onse
utive byte o�sets. Assuming temporal lo
ality, we argue that if a remote data partis requested on
e, it is possible enough that a future request for a
onse
utive part of thesame �le will be issued. Thus, we aim at keeping parts of the same remote �le in nearbylo
ations in the proxy's disk
a
he, in order to minimize the disk a

ess/fragmentationoverhead that may o

ur when a future read request for this remote �le will be issued. Ifwe re
eive a request for part of a remote �le, we must �rst identify if this data is already
a
hed. We
an use the d
a
he and f
a
he stru
tures along with the hash tables to mapthe identi�er and the
hunk of the remote �le to the lo
al �le and the
orresponding o�setwhere it is stored.If our sear
h fails, the requested part is not lo
ally
a
hed and we have to reservethe needed number of
hunks at the �rst lo
al �le (starting from the last used) that has55

enough
onse
utive spa
e available. The allo
ation is done a

ording to our allo
ationalgorithm that was previously des
ribed. We must �rst
he
k whether another �le's partis already
a
hed. If so, we examine whether there is enough free spa
e to store remotedata in this last lo
al �le so as to keep these two data parts in nearby lo
ations. If thislo
al
a
he �le does not have enough
onse
utive free spa
e, we keep sear
hing in thesubsequent lo
al
a
he �le. If none of the lo
al
a
he �les satis�es our
riteria, we mustfree some spa
e in the disk
a
he a

ording to our repla
ement algorithm. On the otherhand, if this is the �rst time we re
eive a request for a remote �le, we sear
h for enoughfree spa
e starting from the lo
al
a
he �le that was last used. If we have not freed anyspa
e in the disk
a
he, we
hoose the �rst lo
al
a
he �le in the bitmap list to store thenew data. Otherwise, we sele
t the last �le where an existing data part was repla
ed bya new �le request. In both
ases, we sear
h for a lo
al
a
he �le that has free spa
e tostore the remote data
onse
utively and in total.When we have �nally
hosen the lo
al
a
he �le to store the remote
hunks, we mustproperly update the
orresponding bitmap stru
ture along with the d
a
he and f
a
hestru
tures to keep tra
k of the remote
hunks that will be
a
hed. We must then
omputethe starting and ending o�set of ea
h
hunk and update the appropriate �elds in the arrayof
hunk des
riptors in the
orresponding f
a
he stru
ture. Then, the remote data
hunkswill be fet
hed and stored lo
ally in
a
heblo
ks. It must be pointed out that writes tothe same lo
al �le are implemented atomi
ally.5.5.2 Data
lustering based on the user's identi�erIn order to improve read performan
e of
a
hed data requested by the same user, weintrodu
ed a new
riterion in our allo
ation algorithm. We keep in mind the id of theuser making the request in addition to the remote �le's id, in order to keep in the proxy
a
he
lustered the data of di�erent �les requested by the same user. We must noti
e thatin the original OpenAFS implementation, a spe
ial stru
ture is kept for ea
h a
tive userin a linked list maintaining all users issuing requests for remote �les. When we re
eive arequest for a remote �le, we must �rstly identify the
orresponding user. We then
he
kif this user has already issued another remote �le request. Thus, we added to the abovestru
ture a pointer bmap to the bitmap of the lo
al �le where the user
a
hed data more56

re
ently. During a request, if the user attempts to
a
he data for the �rst time, thebitmap pointer is null and we only
luster data based on the identi�er of the remote �le.Otherwise, we examine two
ases1. It is the �rst time that a part of this remote �le is requested. In su
h
ases, we takeinto a

ount the user's id
riterion and sear
h for free spa
e in the lo
al �le wherethe user last
a
hed data. If we don't �nd suÆ
iently large spa
e to �t the requestthere, we
ontinue the sear
h in the subsequent lo
al �le.2. Data of this �le are already
a
hed. In su
h
a
es, we sear
h for free spa
e a

ordingto the �rst �le id
riterion, as we aim at keeping parts of the same �le in nearbylo
ations at the proxy's disk
a
he.In both
ases, when the lo
al
a
he �le to keep remote data is �nally sele
ted, we updatethe
orresponding �elds of the stru
ture kept for the user and the v
a
he stru
ture, tosatisfy future requests issued by the same user.
5.6 HashingTo map a remote byte o�set to the
orresponding lo
al
a
he �le o�set, we must followthe following steps:1. Find the
hunk number of the remote AFS �le for the given byte o�set.2. Compute the relative o�set of the given byte o�set into this
hunk.3. Dis
over the lo
al
a
he �le where this
hunk is stored. In this
ase, mapping isimplemented through sear
h in the appropriate stru
tures.4. Find the o�set within the lo
al
a
he �le where the resident byte is lo
ated.5.6.1 Hash listsOur implementation di�ers from the original OpenAFS implementation in the way thesear
h is implemented in step 3. In the me
hanism that we use to map remote
hunksto lo
al �le o�sets, we use a variation of the hash table used in the original OpenAFS.57

We should note that in our implementation the spa
e of ea
h lo
al �le is partitioneda
ross the di�erent
hunks of multiple remote �les. This was not the
ase in the originalimplementation of OpenAFS, where ea
h lo
al �le
ould only store a unique remote
hunk.Therefore, our system hashes di�erent
hunks to the same entry of the afs d
hashTblhash table. In order to address the need to map di�erent
hunks to the same lo
al�le, we remove the auxiliary afs d
nextTbl table that was previously implementing anopen addressing s
heme for
ollisions. Instead, we implement hashing with
haining afteratta
hing a linked list to ea
h entry of the hash table, as it is shown in �gure 5.3.

Figure 5.3: Using hash tables and hash lists to lo
ate remote data at the proxy
a
he ofHades.We introdu
ed hash lists as in our implementationmultiple remote �les
an be stored inone lo
al
a
he �le in
ontrary to the original openAFS implementation. If we maintainedhash tables, it
ould be possible to fa
e the following problem: for two di�erent remote�les that are
a
hed in the same lo
al
a
he �le with index i, the
orresponding indexwould appear multiple times in the o�set i of the hash table or in the
orrespondinghash
hains. Consequently, the sear
h in the hash tables might not be a

omplishedsu

essfully. However, using hash lists instead of hash
hains means that every lo
al
a
he�le index i would appear only on
e in ea
h linked list, even if there exist two di�erent58

remote �les that have been
a
hed in this �le. Hen
e, the total size of ea
h linked listis redu
ed as every index i would only appear on
e in ea
h lo
al
a
he �le for all remote�les that are
a
hed in it.5.6.2 Sear
hing in hash listsEa
h element of the original afs d
hashTbl is a pointer to a linked list. For example,the pointer in the o�set i of afs d
hashTbl stru
ture points to a linked list
ontainingstru
tures with a
ommon
hara
teristi
: they maintain indexes of the lo
al
a
he �lesthat keep parts of remote AFS �les for whom the �d and
hunk hashing will return thenumber i. In more details, when a new remote �le request arrives we must �rst allo
atethe appropriate lo
al
a
he �le to store the remote data. We must then hash the identi�erof the remote �le and the requested
hunk number to a hash table entry so as to examinewhether the index of this lo
al
a
he �le exists in the appropriate hash list. We thensear
h through the atta
hed linked list for a d
a
he stru
ture that
ontains pointer to therequested remote �le. The f
a
he stru
ture that
orresponds to the remote �le shouldalso
ontain pointer to the requested
hunk number. If the sear
h su

eeds, we found the
hunk lo
ally
a
hed and so we move it up in the beginning of the linked list to be ableto �nd it easier in future requests. Otherwise, we add a new node to the linked list of thehash table and make it point to the right d
a
he stru
ture after the
hunk is transferredfrom the remote server.
5.7 Repla
ementThe existing repla
ement method of OpenAFS only
onsidered the �les' re
en
y whensele
ting whi
h �les to repla
e from the proxy
a
he. One LRU algorithm was initiallyused to �nd the �les that have been least re
ently used. Then, some of these �les weresele
ted as vi
tims for repla
ement.Instead, we take into
onsideration another parameter
alled fet
h laten
y, that weadd to ea
h list node in the LRU list. There, we store the amount of time needed to fet
hea
h
hunk from the remote server to Hades. We
onsider a
hunk as lo
al if its fet
hlaten
y is lower than a pre
on�gured threshold. During repla
ement, we prefer as vi
tims59

Figure 5.4: We prefer as vi
tims for repla
ement the least re
ently used lo
al �les ratherthan the remote ones.the lo
al LRU
hunks rather than the remote ones (�gure 5.4). We should noti
e that ourbasi

riterion still remains the �le's re
en
y. However, fet
h laten
y identi�es whi
h �les
an be fet
hed in a relatively short time. The main idea of our repla
ement algorithm isthe following: we want to repla
e �les that have not only been used for a long time but
an be a

essed again qui
kly, in
ase users issue future requests for them.It must be pointed out that our repla
ement method should preserve lo
ality and avoidfragmentation. Consequently, we group together
hunks that are stored
onse
utively inthe disk
a
he and are parts of the same �le. We use the term
hunk run for these
hunks.A

ordingly, in allo
ation algorithm of Hades, the last
hunk run that was used to repla
e�les is pre�ered as the �rst pla
e in proxy
a
he to sear
h for free spa
e. To maintainlo
ality and avoid fragmentation, we try to repla
e
onse
utive spa
e from a single
hunkrun before we move to another. We treat
hunk runs as a single unit, so we assign a fet
hlaten
y and re
en
y value to ea
h of them. For the fet
h laten
y we
ompute the averageof the
orresponding values that are assigned to ea
h
hunk of the unit. The
hunk run'sre
en
y is determined a

ording to the least re
ently used
hunk of the run. Thus, in
asewe need to repla
e some �les in the proxy
a
he, we
hoose the
hunk run that is the leastre
ently used and has the lowest average laten
y. A remote
hunk run will not be
hosenas a vi
tim, unless none of the lo
al �les satis�es our
riteria. If we pass the LRU list anddo not �nd a lo
al
hunk run with a desirable fet
h laten
y, then we repla
e the remote
hunk run that has been least re
ently used.
60

5.8 A File Retrieval ExampleLet's assume that a lo
al appli
ation in an openafs
lient ma
hine issues an open anda subsequent read request for a remote AFS �le. The �le open system
all is usuallyinter
epted and diverted to the kernel. The linux kernel identi�es that this isn't a lo
al�le but a remote AFS �le. The �le open system
all is then inter
epted by a small 'hook'installed in the workstations's kernel. The user's program is then suspended and theinter
epted request is diverted to a spe
ial program, implemented as a user-level pro
esson the workstation, the Ca
he Manager whi
h will implement the open and read system
alls. The Ca
he Manager must �rst
he
k if we have the permissions to open the remoteAFS �le. It then asso
iates this �le with a stru
ture in kernel-memory that is kept forevery remote AFS �le that is requested by the users, the stru
t v
a
he. In
ase the �leneeds to be opened in O TRUNC mode, the
urrent time is kept in one of the �elds of theabove in-memory stru
ture, so as to retain �le
onsisten
y. Whenever a �le needs to beopened, the kernel must asso
iate it with a spe
ial stru
ture kept in kernel's memory, theemphstru
t �le. A stru
t �le is a kernel stru
ture that never appears in user programs.The �le stru
ture represents an open �le. (It is not spe
i�
 to devi
e drivers; every open�le in the system has an asso
iated stru
t �le in kernel spa
e.) It is
reated by the kernelon open and is passed to any fun
tion that operates on the �le, until the last
lose. Afterall instan
es of the �le are
losed, the kernel releases the data stru
ture. As a result,the remote AFS �le is being opened and asso
iated with an appropriate stru
t va
he andstru
t �le, used to handle the operations on this �le.If the remote AFS �le has been su

essfully opened, the next step is to
he
k whetherthe remote AFS �le is already in memory (in the page
a
he) so as to read it from there.If not, the Ca
he Manager must �nd out if it is already stored in the
a
he. The hashtable and the
orresponding hash lists are used for this purpose in order to identify thelo
al �le that stores the requested
hunk.However, if the
hunk is not lo
ally available, the Ca
he Manager pi
ks a lo
al �le andopens it for a

ess. We favor the last lo
al
hunk run that was used for repla
ement, if itexists and has enough spa
e, or the lo
al �le where parts of this �le were
a
hed lately.It then updates a

ordingly the d
a
he and f
a
he stru
tures to keep tra
k of the remotedata. 61

Sin
e it has opened the
a
he �le, the Ca
he Manager must fet
h the data from theremote AFS �leserver and store them in the open
a
he �le. The �le data is being fet
hedfrom the remote �leserver using RPC system
alls. The server sends RX pa
kets of sizeequal to
hunksize. We must note that if a remote AFS �le needs more than a �le tostore its data, we must make di�erent RPC
alls to fet
h the data. Ea
h
a
he �le is�lled independently, as we fet
h data by making a separate RPC
all to the �leserver.The requested data is transferred from the remote server to the lo
al kernel bu�ers. TheCa
he Manager then reads the data from the kernel spa
e per 4096 bytes and writes themto the appropriate
a
he �le. Subsequently data is
opied to the user-level address spa
eof the appli
ation and the lo
al
a
he �le. It must be noti
ed that the Ca
he Manager triesto read the remote data per 4096 bytes and repeats the same pro
ess for every individualpage. The Ca
he Manager then trun
ates the
a
he �le to keep its
orre
t size and
losesit, freeing the stru
t �le that was previously allo
ated for the
a
he �le. If subsequentrequests are issued for the same �le or parts of it, we take advantage of lo
ally
a
hed �le
ontents, and also metadata related to volumes, remote �les and lo
al
hunks. Thus, therequested data is a

essed from the proxy
a
he in a mu
h faster manner.In future read requests for the same �le, data is read in pages of 4096 bytes. For ea
hpage, we repeat the same pro
ess. The remote o�set is mapped into a lo
al
a
he �leo�set, the lo
al �le is opened, data is read from the appropriate o�set,
opied to the userspa
e and the lo
al
a
he �le is �nally
losed.

62

Chapter 6
Experimental Evaluation

6.1 Environment6.2 Retrieval of Ca
hed Data6.3 Software Compilation6.4 SummaryIn the present se
tion, we �rst des
ribe the experimentation environment that we usedto develop and evaluate the Hades prototype. Then, we make an extensive experimentalevaluation on the parallel retrieval of remote �les and the reuse of
a
hed data a
rossmultiple
lients.
6.1 EnvironmentIn our experiments, we used ra
k-mounted x86 servers with one quad-
ore pro
essor2.33GHz, 2GB RAM and gigabit ethernet ni
. Every server has two SATA disks ea
h of250GB, 7.5KRPM and 16MB bu�er. We modi�ed the kernel module of the open-sour
evariant of Andrew File System (OpenAFS 1.4.5) over the Debian distribution of Linuxkernel version 2.6.18. We use Kerberos version 5 and version 2.2 of user-level NFS server.Unless otherwise spe
i�ed, we used the default
hunk size of 256KB and
a
heblo
k size4KB, respe
tively, for transfer and storage of data at the proxy
a
he.63

6.2 Retrieval of Ca
hed DataOur �rst set of experiments uses a mi
roben
hmark that we run dire
tly at the proxyserver. Our purpose is to evaluate the
omparative advantage of Hades with respe
t toOpenAFS, when we read �les stored at the origin server. We measure the laten
y toread ea
h �le blo
k and the
orresponding transfer throughput at the proxy server. We
onsider three �le a

ess modes that di�er in the
on
urren
y of the transfers and theinvolvement of the origin server during their servi
e. We refer with Par and Seq to theparallel and sequential transfers, respe
tively, and we use Cd and Wm for the
old andwarm proxy disk
a
he. Below we des
ribe our three a

ess modes:Par/Cd. The �les are requested with the proxy
a
he empty. The proxy server �rstprepares the mapping from the requested �les to the lo
al �les, then it transfers the �lesfrom the origin server to the lo
al page
a
he in
hunk units, and �nally it
opies the �lesto the user-level memory of the proxy server in blo
ks of 4KB.Par/Wm. The �les are requested
on
urrently after the proxy disk
a
he has beenwarmed up. We enfor
e lo
al disk a

esses by
ushing the memory page
a
he beforestarting the experiment.Seq/Wm. Depending on the �le size, the previous two
ases initiated multiple threadsa
ross one or two users to request
on
urrently multiple �les. In this mode, we only haveone user making a sequen
e of �le a

esses from the warm disk
a
he of the proxy server.In our experiments we transfer �les of four di�erent sizes:100KB. We have either two users reading in parallel two separate sequen
es of 1000�les ea
h, or one user reading a sequen
e of 1000 �les.1MB. We have either two users reading in parallel two separate sequen
es of 500 �lesea
h, or one user reading sequentially 500 �les.100MB. In the �rst two modes we have the transfer of �ve �les in parallel, while in thethird mode we only read one �le sequentially.64

1GB. We transfer in parallel �ve �les for the �rst two modes, and do a sequential readof one �le for the third one.

0

5

10

15

20

25

T
hr

ou
gh

pu
t

(M
B

/s
)

Block Read Rate at the Proxy Server

O H
Par/Cd

O H
Par/Wm

O H
Seq/Wm

100KB

O H
Par/Cd

O H
Par/Wm

O H
Seq/Wm

1MB

O H
Par/Cd

O H
Par/Wm

O H
Seq/Wm

100MB

O H
Par/Cd

O H
Par/Wm

O H
Seq/Wm

1GBFigure 6.1: We measure the �le a

ess throughput at the proxy server a
ross di�erent sizesof transferred �les. Consistently, Hades a
hieves a substantial throughput improvementwith respe
t to OpenAFS that gets up to 80%. See text for explanation of the Par/Seqand Wm/Cd abbreviations.In Figure 6.1, we measure the average throughput during the sequential and parallel�le transfers a
ross the di�erent �le sizes. Ea
h experiment is run �ve times, in ea
h modeand for ea
h �le size. We then
al
ulate the average value of those runs in ea
h
ase. Thedi�erent runs of ea
h
ase give similar values that
onverge to the same average value. Itis remarkable that Hades improves the measured throughput a
ross all
ases. The lowestthroughput that we measure is 9.56 MB/s, when the OpenAFS
lient reads in parallel twosequen
es of 100KB �les from a
old proxy
a
he. The
orresponding Hades throughputis 23% higher at 11.74 MB/s. The highest throughput of OpenAFS is 17.42 MB/s for1000 �les of 100KB read from a warm proxy
a
he, while the highest throughput of Hadesis 25.15 MB/s for a single �le of 1GB read from a warm proxy
a
he.We attribute the improvement of Hades to di�erent reasons a
ross the
ases that weexamine. In Figure 6.2 we
an see the breakdown of the blo
k read laten
y. The readtime of ea
h blo
k is spent a
ross (i) mapping the requested blo
k to the o�set of the lo
al
a
he �le, (ii) fet
hing from the origin server and storage to the lo
al
a
he, (iii)
opyingfrom the lo
al
a
he to the user-level memory. In the
ategory of fet
hing, we in
lude the65

1

2

3
R

ea
d

T
im

e
(m

s)
Block Read Latency at the Proxy Server

O H
Par/Cd

O H
Par/Wm

O H
Seq/Wm

100KB

O H
Par/Cd

O H
Par/Wm

O H
Seq/Wm

1MB

O H
Par/Cd

O H
Par/Wm

O H
Seq/Wm

100MB

O H
Par/Cd

O H
Par/Wm

O H
Seq/Wm

1GB

Fetch + Other
Mapping
Cache Read

Figure 6.2: At the proxy server, we measure the time to read multiple �les in parallelfrom the origin server (Remote), and in parallel (Parallel) or sequentially (Single) fromthe proxy disk
a
he. The laten
y to transfer ea
h �le blo
k to the proxy server is brokendown into fet
hing from the origin server, mapping to the lo
al �le, reading of the lo
al�le. In
omparison to OpenAFS, Hades redu
es substantially the blo
k a

ess laten
y upto 59%.rest of una

ountable transfer delays.We note that the initial read from the
old proxy
a
he in
urs substantial mappingoverhead in OpenAFS. This is the
ost to insert into the hash stru
ture the informationto �nd the
a
hed remote blo
ks next time we look for them. Hades avoids this overheadby storing together in an array of
hunk des
riptors the mapping of all the
hunks that
orrespond to the same remote �le. We simpli�ed additionally the hashing stru
ture byatta
hing a linked list to ea
h entry of the hash table. The length of the lists is short,sin
e we only use a limited number of large lo
al �les. Other optimizations that we didin
lude adding a hint for the lo
al �le of ea
h remote �le, and moving to the front of thelist a found lo
al �le.When the �les are a

essed from a warm proxy
a
he (Wm), the
omponent fet
h+otheris negligible. Also, the mapping overhead is insigni�
ant after the mapping stru
ture hasbeen
reated during the warming up. Thus, the dominant
omponent in a

essing thewarm
a
he of the proxy is to get the data from the lo
al disk. The redu
tion of the blo
kread laten
y during the parallel transfers (Par/Wm) of Hades
an be attributed to the66

spatial lo
ality in the storage of the
a
hed data. In parti
ular, we store to the same lo
al�le the
hunks of either the same remote �le or di�erent remote �les retrieved from thesame user. Instead, OpenAFS distributes the retrieved
hunks a
ross an equal number ofseparate �les in the proxy server. The same reason leads to the redu
ed blo
k read timeof Hades in
omparison to OpenAFS when reading one or multiple �les sequentially byone user (Seq/Wm). In
omparison to the sequential transfer, parallel transfers share theavailable disk bandwidth and expand
orrespondingly the page read laten
y. For exam-ple, the bar height of the Seq/Wm measurement is approximately half or one �fth of thePar/Wm measurement depending on whether we have two or �ve parallel transfers.
6.3 Software CompilationAs an appli
ation to examine the general bene�ts of proxy
a
hing, we use the building oflinux kernel version 2.6.18. We assume that the sour
e
ode is made
ommonly availablefrom an OpenAFS volume (i) dire
tly to OpenAFS
lients (OO), (ii) to NFS
lientsthrough a proxy server running unmodifed OpenAFS
lient and user-level NFS server(OON), (iii) to NFS
lients through the Hades prototype (OHN). We know in advan
ethat the relative bene�ts of Hades in
omparison to the original OpenAFS
lient are mostlyevident when we retrieve large �les from a warm
a
he. Instead, the present experimentwe retrieve small �les of a few kilobytes from a
old
a
he. Nevertheless, the softwarebuild is a baseline ben
hmark typi
ally used in su
h types of experimentations [4℄.In Figure 6.3(a) we measure the number of re
eived and transmitted bytes at the origin(S) and the proxy (P) server, when we have one
lient (1), four
lients (4) and four
lientswith the proxy at a distan
e from the origin of 50ms round-trip time (4D). Obviously,when we in
rease the number of
lients from one to four, there is
orresponding in
reasein the throughput of the origin server at the OO
on�guration. Instead, the interventionof the proxy server keeps
onstant the
onsumed bandwidth at the origin server, as wesee in
ases OON and OHN.On the other hand, even with one
lient talking to the proxy, the NFS system
on-sumes an ex
ess of four time more network bandwidth than what OpenAFS requires forthe same
onne
tion. Admittedly, the NFSv3 proto
ol that we use has been previously67

1

2

3

4

T
ot

al
 T

ra
ns

fe
rr

ed
 D

at
a

(G
B

yt
e)

Linux Build

S
1

S
4

S
4D

OO

S P
1

S P
4

S P
4D

OON

S P
1

S P
4

S P
4D

OHN

Server Tx
Server Rx

Proxy Tx
Proxy Rx

(a) 0

1000

2000

3000

C
om

pi
la

ti
on

 T
im

e
(s

)

Linux Build

1 4 4D
OO

1 4 4D
OON

1 4 4D
OHN(b)Figure 6.3: We build the Linux kernel on one (1)
lient, four (4)
lients, and four
lientswith the origin 50ms away (4D). O refers to OpenAFS, N to NFS and H to Hades. Theproxy
a
he is
old before ea
h experiment that uses it. (a) We measure the total numberof re
eived and transmitted bytes in the origin (S) and the proxy (P) server. (b) With
old proxy
a
he, the intervention of the proxy server in
reases the
ompilation time. Forretrieved �les of only a few kilobytes ea
h, Hades only a
hieves a modest redu
tion from2315 to 2119 s (8.5%) in
omparison to the original OpenAFS.des
ribed as too
hatty [4,13℄. In fa
t, the version 4 of NFS makes more eÆ
ient the
ommuni
ation between the
lient and the server for example through delegations and
ompound statements. However, for a simple s
enario, where multiple
lients only readdata from a
ommon server without any modi�
ations, the
ost of NFS seems ex
essivelyhigh. Therefore, our
onsideration of OpenAFS as an alternative proto
ol for buildingproxy servers demonstrates a lot of potential. In Figure 6.3(b), we
ompare the
om-pilation time a
ross the di�erent systems
on�gurations and numbers of
lients. As wesee, the dire
t
onne
tion between the OpenAFS
lient and server leads to the shortest
ompilation time. The bene�t of Hades with respe
t to the unmodi�ed OpenAFS is onlylimited to 8.5%. This behavior is justi�ed from the small �le sizes that typi
ally dominatesour
e
odes. 68

6.4 SummaryIn summary, we noti
e that our de
ision to
luster at the proxy server the
a
hed datarequested from the same remote �le or by the same user ends up to a substantiallyimproved read performan
e from the warm
a
he. Additionally, we improve the readperforman
e from the
old
a
he by making more eÆ
ient the me
hanism of mappingremote
hunks to lo
al �le o�sets.Overall, we
on
lude that proxy servers
an redu
e the required network bandwidthfrom the origin server, but they may introdu
e a

ess delays during the �rst a

ess ofthe requested data from a
old
a
he. Furthermore, OpenAFS requires signi�
antly lessbandwidth when
ompared to NFS, even though the latter is
onsidered defa
to
hoi
efor proxy server in the latest related resear
h.

69

Chapter 7
Con
lusions - Future Work

7.1 Con
lusions7.2 Future Work
7.1 Con
lusionsIn the present thesis, we examined the design of Hades, a lo
ality-aware proxy serverfor distributed �lesystems, based on Andrew File System. We proposed a new storageallo
ation algorithm that alters the way remote data are kept in the disk
a
he of theproxy server. Furthermore, we presented a new �le repla
ement method that keeps lowthe average
ost while it preserves lo
ality by repla
ing lo
ally
a
hed
hunks a

ordingto their a

ess re
en
y and fet
hing laten
y.Hades proxy server improves the eÆ
ien
y of storage and metadata management ina distributed �le system, by storing on nearby lo
ations of the same lo
al
a
he �leparts of a unique remote �le or �les requested by the same user. The performan
e andrelated
ost a
ross di�erent �le sizes and numbers of
lients was experimentally evaluated.We observed that Hades improves throuhput a

ross all di�erent
ases of
on
urrent �lereads. A

ordingly, Hades redu
es the blo
k read laten
y a
ross parallel transfers orparallel retrievals from the proxy
a
he. In fa
t, it a
hieves a substantial throughputimprovement with respe
t to OpenAFS that gets up to 80%. Furthermore, it redu
es the70

blo
k a

ess laten
y up to 59%. Finally, we
on
luded that Hades proxy server
an redu
ethe required network bandwidth from the origin server.
7.2 Future WorkIn the future, we plan to study more grouping
riteria su
h as the identi�er of the originserver that keeps the requested data. Furthermore, we wish to experimentally evaluateadditional appli
ations, su
h as a

essing biomedi
al data from a warm
a
he rather thana
old one. Finally, we intend to investigate alternative data repla
ement methods usingour prototype.

71

Bibliography[1℄ W. J. Bolosky, J. R. Dou
eur, D. Ely, and M. Theimer. Feasibility of a serverlessdistributed �le system deployed on an existing set of desktop p
s. In ACM Sigmetri
s,pages 34{43, June 2000.[2℄ A. J. Borr. Se
ureshare: Safe unix/windows �le sharing through multiproto
ol lo
k-ing. In USENIX Windows NT Symposium, pages 13{23, Seattle, WA, Aug. 1998.[3℄ P. Cao and S. Irani. Cost-aware www proxy
a
hing algorithms. In USENIX Sym-posium on Internet Te
hnologies and Systems, pages 193{206, Monterey, CA, 1997.[4℄ A. Gulati, M. Naik, and R. Tewari. Na
he: Design and implementation of a
a
hingproxy for nfsv4. In USENIX Conferen
e on File and Storage Te
hnologies, pages199{214, San Jose, CA, 2007.[5℄ D. Howells. Fs-
a
he: A network �lesystem
a
hing fa
ility. In Pro
eedings of theLinux Symposium, Ottawa, Canada, 2006.[6℄ S. Jin and A. Bestavros. Popularity-aware greedydual-size web proxy
a
hing algo-rithms. In IEEE International Conferen
e on Distributed Computing Systems, pages254{261, Taipei, Taiwan, 2000.[7℄ E. P. Markatos, M. G. H. Katevenis, D. Pnevmatikatos, and M. Flouris. Se
ondarystorage management for web proxies. In USENIX Symposium on Internet Te
hnolo-gies and Systems, pages 93{114, Boulder, CO, 1999.[8℄ J. N. Matthews, D. Roselli, A. M. Costello, R. Y. Wang, and T. E. Anderson. Improv-ing the performan
e of log-stru
tured �le systems with adaptive methods. In ACMSymposium on Operating Systems Prin
iples, pages 238{251, Saint Malo, Fran
e,1997. 72

[9℄ N. Megiddo and D. S. Modha. Ar
: A self-tuning, low overhead repla
ement
a
he. InUSENIX Conferen
e on File and Storage Te
hnologies, pages 115{130, San Fran
is
o,CA, 2003.[10℄ D. Muntz and P. Honeyman. Multi-level
a
hing in distributed �le systems. InUSENIX Winter Te
hni
al Conferen
e, pages 305{313, San Fran
is
o, CA, 1992.[11℄ E. Otoo and A. Shoshani. A

urate modeling of
a
he repla
ement poli
ies in a datagrid. In IEEE/NASA Goddard Conferen
e on Mass Storage Systems and Te
hnolo-gies, pages 10{19, San Diego, CA, Apr. 2003.[12℄ B. Pawlowski, C. Jusz
zak, P. Stauba
h, C. Smith, D. Lebel, and D. Hitz. Nfsversion 3 design and implementation. In USENIX Summer Te
hni
al Conferen
e,pages 137{152, Boston, MA, June 1994.[13℄ B. Pawlowski, S. Shepler, C. Beame, B. Callagham, M. Eisler, D. Nove
k, D. Robin-son, and R. Thurlow. The nfs version 4 proto
ol. In SANE Conferen
e, Maastri
ht,Netherlands, May 2000.[14℄ M. Satanarayanan. S
alable, se
ure, and highly available distributed �le a

ess.Computer, 23(5):9{21, May 1990.[15℄ E. Shriver, E. Gabber, L. Huang, and C. A. Stein. Storage management for webproxies. In USENIX Annual Te
hni
al Conferen
e, pages 203{216, Berkeley, CA,2002.[16℄ G. Sivanathu and E. Zadok. A versatile persistent
a
hing framework for �le system.Te
hni
al Report FSL-05-05, Department of Computer S
ien
e, SUNY Stony Brook,Stony Brook, NY, 2005.[17℄ M. T. Stolar
huk. Faster afs. Te
hni
al Report TR 92-3, CITI, University of Mi
hi-gan, Ann Arbor, MI, 1992.[18℄ P. Vongsathorn and S. D. Carson. A system for adaptive disk rearrangement.Software-Pra
ti
e and Experien
e, 20(3):225{242, 1990.[19℄ N. E. Young. On-line �le
a
hing. In ACM-SIAM Symposium on Dis
rete Algorithms,pages 82{86, San Fran
is
o, CA, 1998.73

Author's Publi
ationsLamprini Konsta, Stergios V. Anastasiadis, Hades: Lo
ality-aware Proxy Ca
hing forDistributed File Systems, Te
hni
al Report DCS2009-1, Department of Computer S
ien
e,University of Ioannina, January 2009.Lamprini Konsta, Stergios V. Anastasiadis, Hades-Managing Storage in Ca
hing Proxiesfor Distributed Filesystems, EuroSys, Glasgow, S
otland, UK, April 2008 (poster).

Short VitaLamprini Konsta was born in Preveza, Gree
e in 1983. She was admitted at the ComputerS
ien
e Department of the University of Ioannina in 2001. She re
eived her BS
 degreein Computer S
ien
e in 2005 and she is
urrently a postgraduate student at the samedepartment. She is a member of the Systems Resear
h Group of the University of Ioanninasin
e 2007. Her main resear
h interests lie in the �eld of
a
hing and storage systems.

