
�ñÞãïñç êáé Áîéüðéó�ç ÁðïèÞêåõóç Ñïþí ìåÄéáöïñéêÞ Êá�áãñáöÞ Äïóïëçøéþí ÄåäïìÝíùí
Ç ÌÅÔÁ�ÔÕ×ÉÁÊÇ ÅÑ�ÁÓÉÁ ÅÎÅÉÄÉÊÅÕÓÇÓõðïâÜëëå�áé ó�çíïñéóèåßóá áðü �çí �åíéêÞ ÓõíÝëåõóç ÅéäéêÞò Óýíèåóçò�ïõ ÔìÞìá�ïò �ëçñïöïñéêÞò Åîå�áó�éêÞ Åðé�ñïðÞáðü �çí

ÁíäñïìÜ÷ç ×á�æçåëåõèåñßïõùò ìÝñïò �ùí Õðï÷ñåþóåùí ãéá �ç ëÞøç �ïõ
ÌÅÔÁ�ÔÕ×ÉÁÊÏÕ ÄÉ�ËÙÌÁÔÏÓ ÓÔÇÍ �ËÇÑÏÖÏÑÉÊÇÌÅ ÅÎÅÉÄÉÊÅÕÓÇÓÔÁ Õ�ÏËÏ�ÉÓÔÉÊÁ ÓÕÓÔÇÌÁÔÁ

ÉáíïõÜñéïò 2009

Dedi
ation
To my family and NP...

A
knowledgements
At this point, I would like to thank all those people, who ea
h in his way have helped forthe su

essful
ompletion of this thesis.I am mostly grateful to Prof. Stergios Anastasiadis for his systemati
 supervision andguidan
e throughout this resear
h, from the early stages of the design, to the last ones ofthe
omposition of this thesis. During all these months, through his
ore knowledge onthe �eld of
omputer systems, he gave me the opportunity to indulge in this parti
ulararea of knowledge.The deepest gratitude to my parents for everything they have done, from the earlystages of my edu
ation till this point, and espe
ially for the moral and �nan
ial supportthey provided me, and the toleran
e they have shown during all these years. I am reallygrateful for their
ontinuous en
ouragement.I would like to thank all the people of the Systems Resear
h Group (SRG) at theUniversity of Ioannina, who turned the endless hours of study into a joyful experien
e.Espe
ially Lamprini Konsta and George Margaritis, through numerous hours of dis
us-sions, provided me useful feedba
k at several
he
kpoints of my thesis. Spe
ial thanks toNikolaos Papanikos for all the help and en
ouragement, and primarily for all his valuabletoleran
e during the months that passed.Finally, it should be noted that all the work presented in this thesis was in partsupported by the proje
t INTERSAFE with approval number 303090/YD7631 of theINTERREG IIIA Gree
e-Albania 2000-20006 neighboring program.

Table of Contents
1 Introdu
tion 11.1 Thesis S
ope . 11.2 Thesis Outline . 32 Related Resear
h 42.1 Fast and Reliable Storage Systems . 42.1.1 Syn
hronous Writes . 52.1.2 Log-Stru
tured File Systems . 62.1.3 Soft Updates . 82.1.4 Journaling File Systems . 82.1.5 Persistent Memory . 102.1.6 Other Implementations . 112.2 Stream Ar
hival Servers . 112.2.1 Traditional Databases . 122.2.2 General-Purpose File Systems . 132.2.3 Playba
k Servers . 142.3 Redundan
y Elimination . 162.4 Summary . 173 Journaling in the Ext3 File System 183.1 Ba
kground . 183.1.1 Basi
 File System Con
epts . 193.1.2 Introdu
tion to Ext3 . 203.1.3 Journaling Modes . 213.1.4 Journal . 24i

3.1.5 Transa
tions . 253.1.6 Kernel Bu�ers . 263.1.7 Flushing Dirty Bu�ers to Disk . 263.2 Commit Poli
y . 283.3 Che
kpoint Poli
y . 293.4 Re
overy Poli
y . 303.5 Summary . 314 Ar
hite
tural De�nitions 324.1 Design Goals . 324.2 Partial Writes . 344.3 Commit Poli
y . 354.4 Re
overy Poli
y . 354.5 Summary . 365 Prototype Implementation 375.1 Partial Blo
ks . 385.2 Journal Heads . 395.3 Tags . 395.4 Commit Poli
y . 405.5 Re
overy Poli
y . 416 Experimental Results 426.1 Experimentation Environment . 426.2 Streaming Workloads . 446.2.1 Flushing Poli
y . 456.2.2 Journal TraÆ
 . 476.2.3 Final Lo
ation TraÆ
 . 496.2.4 Write Response Time . 516.2.5 CPU Utilization . 526.2.6 Mixed Workload . 536.3 The Postmark Ben
hmark . 546.4 Re
overy Time . 55ii

6.5 Other Issues . 567 Con
lusions and Future Work 587.1 Con
lusions . 587.2 Future Work . 59

iii

List of Figures2.1 A log-stru
tured �le system treats its storage as a
ir
ular log and writes alldata and metadata modi�
ations sequentially to the head of a segmentedappend-only log. Log spa
e must be
onstantly re
laimed and thus, agarbage
olle
ting pro
ess is responsible for
oales
ing unused spa
e intoempty segments. 62.2 A journaling �le system logs updates to a
ir
ular journal �le before
om-mitting them to the main �le system. On
e the
orresponding updates hasbeen stored to their �nal lo
ation,
opies of the blo
ks in the journal
anbe dis
arded allowing the journal spa
e to be re
laimed. 93.1 We illustrate the ar
hite
tural view of the Linux operating system anddistinguish the Ext3 �le system inside the kernel. Furthermore, we �gurethe on-disk layout of the Ext3, whi
h is based on the generi
 Unix �lesystem stru
ture. 203.2 The behavior of the three di�erent journaling modes through time. Time
ows downwards following the arrows, while the boxes represent �le sys-tem updates. The two timelines represent
ommit and
he
kpoint; thepro
esses of updating the on-disk journal stru
ture and the �nal on-disklo
ation, a

ordingly. Depending on the
onsisten
y semanti
s that ea
hmode provides, the updates
an take pla
e syn
hronously or not. 233.3 In the original design of the Ext3 data journaling, there is a full blo
kin the journal for ea
h write operation, despite the size of the new datamodi�
ation. In addition, in the journal des
riptor blo
k a new auxiliarytag is allo
ated ea
h time a write update is logged, and it is used to des
ribethe
orresponden
e between the journal and the �xed lo
ation disk blo
k. 24iv

3.4 We illustrate the on-disk layout of the journal. The journal
onsists ofa journal superblo
k, journal des
riptor blo
ks, full data and metadatablo
ks, and journal
ommit blo
ks. 253.5 A bu�er page is a page of data asso
iated with spe
ial des
riptors,
alledbu�er heads. Their main purpose is to qui
kly lo
ate the disk address ofea
h individual blo
k in the page. 273.6 Two spe
ial stru
tures, a bu�er head and a journal head, need to be allo-
ated for ea
h blo
k bu�er that is going to be journaled. The bu�er headspe
i�es the respe
tive blo
k number in the journal, while the journal headpoints to the
orresponding transa
tion. 294.1 We measure the amount of traÆ
 sent to the journal devi
e a

ording tothe three journaling modes. The total journal traÆ
 of data journaling issubstantially higher in
omparison to the other two modes. Additionally,at request sizes lower than 4KB, data journaling in
urs traÆ
 that
hangessublinearly as a fun
tion of the write rate. This is reasonable sin
e datajournaling sends to the journal entire blo
ks rather than only the part thatis modi�ed by ea
h write operation. 335.1 In di�erential data journaling, the on-disk layout of the journal has one newfeature; the partial data blo
ks. These blo
ks are used to a

umulate themodi�
ations of multiple write operations in a redu
ed number of journalblo
ks. 385.2 In the di�erential data journaling we use a new type of journal blo
ks, thepartial journal blo
ks, to a

umulate the data modi�
ations from multiplewrites. Full journal blo
ks are still used for metadata or blo
ks that are
ompletely modi�ed by write operations. The des
riptor's tags are usedto keep the
orresponden
e between �nal lo
ation and journal blo
ks, andalso to des
ribe the partial modi�
ations inside the partial journal blo
ks. 40
v

6.1 We examine the journal devi
e throughput a
ross di�erent numbers ofstreams and rates of 1Kbps, 10Kbps and 1Mbps. For low-rate streams,the disk overhead of di�erential data journaling is
omparable to that ofordered and writeba
k modes, unlike the default data journaling modewhi
h leads to journal devi
e throughput by several fa
tors higher. Never-theless, at high rates, di�erential data journaling overlaps with the defaultdata journaling mode in terms of journaling throughput. 486.2 We examine the throughput of the �le system devi
e a
ross di�erent num-bers of streams and rates. For low-rate streams, the two metadata-onlyjournaling modes require up to several fa
tors higher throughput than thetwo data journaling modes. Nevertheless, in
ase of high-rate streams, the�nal lo
ation disk overhead is
omparable a
ross all the four modes. . . . 506.3 We measure the average write laten
y of syn
hronous updates at di�erentrates and streams. Syn
hronous writes are usually avoided be
ause theyare known to in
ur high laten
y in typi
al �le systems. However, datajournaling modes
an bene�t from the sequential journal's throughput thateventually allows the system to safely and qui
kly store the in
oming data. 516.4 We investigate the total CPU utilization of the system a
ross the di�erentjournaling modes. In all the four
ases, at both low and high rates, theCPU remains mostly idle, whether doing nothing or waiting for the I/Ooperations to �nish. Thus, the extra CPU
ost of di�erential data journal-ing due to memory
opy operations is nominal, in
omparison to the otherthree modes. 536.5 We evaluate the Postmark ben
hmark results. Both data and di�erentialdata journaling modes perform several fa
tors better from the metadata-only journaling modes. In parti
ular, due to low write laten
y, data jour-naling modes manage to serve a larger number of transa
tions per se
ond. 546.6 We measure the re
overy time a
ross the four journaling mount modes.We observe that di�erential data journaling requires mu
h lower time forthe s
an pass than the default data journaling mode, while the replay passtakes
omparable time a
ross the two modes. 56vi

6.7 We �gure the Postmark results while enabling and disabling the on-diskwrite
a
he. We noti
e that the two data journaling modes almost doublethe transa
tion rate with respe
t to the ordered mode that is
ommonlyused by default. 57

vii

List of Tables6.1 Various rates used from di�erent types of streams. 446.2 Flushing Poli
y - Stream Rate of 1Kbps 466.3 Flushing Poli
y - Stream Rate of 10Kbps 466.4 Flushing Poli
y - Stream Rate of 1Mbps 476.5 Flushing Poli
y - Postmark . 55

viii

Abstra
tAndroma
hi T. Hatzieleftheriou, MS
, Computer S
ien
e Department, University of Ioan-nina, Gree
e. January, 2008. Fast and Reliable Stream Storage Through Di�erential DataJournaling.Thesis Supervisor: Stergios V. Anastasiadis.Real-time storage of massive stream data is emerging as a
riti
al
omponent in modern
omputing infrastru
tures used for
ontinuous monitoring purposes. Traditional �le anddatabase systems are not designed for su
h operation environments and in
ur ex
essiveresour
e requirements when handling high-volume streaming traÆ
.In this thesis, we examine the possibility of employing data journaling te
hniques inorder to
ombine sequential throughput with low laten
y during syn
hronous writes. Ex-perimentally we demonstrate that low-rate streams in
ur remarkably high data journalingtraÆ
 in a
ommonly used produ
tion �le system. Therefore, to alleviate the problemwe introdu
e di�erential data journaling in a prototype subsystem that we have designedand implemented for a widely available operating system. Through extensive experimen-tation, we show that our implementation a
hieves substantial redu
tion in the requireddisk throughput
ombined with very low write laten
y.

ix

Åê�å�áìÝíç �åñßëçøçÁíäñïìÜ÷ç ×á�æçåëåõèåñßïõ �ïõ ÈùìÜ êáé �çò Öù�åéíÞò. MS
, ÔìÞìá �ëçñïöïñéêÞò,�áíåðéó�Þìéï Éùáííßíùí, ÉáíïõÜñéïò, 2008. �ñÞãïñç êáé Áîéüðéó�ç ÁðïèÞêåõóç Ñïþí ìåÄéáöïñéêÞ Êá�áãñáöÞ Äïóïëçøéþí ÄåäïìÝíùí.ÅðéâëÝðùí: Ó�Ýñãéïò Áíáó�áóéÜäçò.Ç áðïèÞêåõóç ìåãÜëïõ üãêïõ ñïþí äåäïìÝíùí óå ðñáãìá�éêü ÷ñüíï áðï�åëåß âáóéêÞ õðç-ñåóßá �ùí óýã÷ñïíùí óõó�çìÜ�ùí õðïëïãéó�þí, êõñßùò óå ðåñéð�þóåéò åöáñìïãþí ðáñá-êïëïýèçóçò. ÔÝ�ïéåò åöáñìïãÝò ÷ñçóéìïðïéïýí�áé åõñÝùò ó�éò ìÝñåò ìáò ãéá �ç äéá÷åßñéóçõðïëïãéó�éêþí õðïäïìþí êáé �çí ðñïó�áóßá öõóéêþí ÷þñùí.Óýìöùíá ìå ðñïçãïýìåíåò åñãáóßåò, �á ðáñáäïóéáêÜ óõó�Þìá�á äéá÷åßñéóçò äåäïìÝ-íùí, üðùò åßíáé �á óõó�Þìá�á áñ÷åßùí ãåíéêïý óêïðïý êáé ïé ó÷åóéáêÝò âÜóåéò äåäïìÝíùí,äåí åðáñêïýí ãéá �çí áðïèÞêåõóç ñïþí ðïõ ðáñÜãïí�áé ìå óõíå÷Þ ñõèìü áðü áéóèç�Þñåòóå ðñáãìá�éêü ÷ñüíï. Ó�ç ãåíéêÞ ðåñßð�ùóç, Ýíá óýó�çìá ðáñáêïëïýèçóçò ëáìâÜíåé óõ-íå÷þò íÝá äåäïìÝíá áðü Ýíá ìåãÜëï ðëÞèïò óõíäÝóåùí-áéóèç�Þñùí êáé �á áðïèçêåýåé ãéáêÜðïéï ÷ñïíéêü äéÜó�çìá, �ï ïðïßï åîáñ�Ü�áé áðü �ï åßäïò �çò åðåîåñãáóßáò ó�çí ïðïßáðñüêåé�áé íá õðïâëçèïýí. Ïé áéóèç�Þñåò ìðïñïýí, ãéá ðáñÜäåéãìá, íá ðáñÜãïõí âßí�åï êáéÞ÷ï õøçëÞò ðïéü�ç�áò ìå õøçëü ñõèìü ìå�Üäïóçò, Þ íá ó�Ýëíïõí ðåñéïäéêÜ ðëçñïöïñßåòãéá �ç äéáêýìáíóç êëéìá�ïëïãéêþí óõíèçêþí ìå ðïëý ÷áìçëü�åñï ñõèìü. ÊÜ�ù áðü áõ�Ýò�éò å�åñïãåíåßò óõíèÞêåò, ðñïêýð�åé ç áíÜãêç ãéá Ýíá óýó�çìá éêáíü íá áðïèçêåýåé áîéü-ðéó�á �çí åéóåñ÷üìåíç ñïÞ, ÷ùñßò ðáñÜëëçëá íá åðçñåÜæåé �çí áêïëïõèéáêÞ áíáðáñáãùãÞ�ùí äåäïìÝíùí ðïõ ëáìâÜíåé.Ôá óýã÷ñïíá óõó�Þìá�á áñ÷åßùí åöáñìüæïõí �å÷íéêÝò êá�áãñáöÞò äïóïëçøéþí (jour-naling) ðñïêåéìÝíïõ íá âåë�éþóïõí �ï âáèìü áîéïðéó�ßáò ðïõ ðñïóöÝñïõí. Âáóéêü ãíþñé-óìá áõ�Þò �çò ìåèüäïõ åßíáé ü�é åðé�ñÝðåé �ç ìå�áöïñÜ �ùí äåäïìÝíùí Þ �ùí ìå�áäåäïìÝíùíáðü �ç ìíÞìç ó�ï äßóêï óýã÷ñïíá ìå áêïëïõèéáêü �ñüðï. ¸�óé, áíáâÜëëå�áé ðñïóùñéíÜx

ç ÷ñïíïâüñá ìå�áêßíçóç �ùí äåäïìÝíùí Þ �ùí ìå�áäåäïìÝíùí ó�çí �åëéêÞ �ïõò èÝóç ó�ïäßóêï, åíþ �áõ�ü÷ñïíá ìåéþíå�áé ç êáèõó�Ýñçóç åããñáöÞò ðïõ ãßíå�áé áí�éëçð�Þ áðü �çíåêÜó�ï�å åöáñìïãÞ. Êá�Ü êýñéï ëüãï, ïé �å÷íéêÝò áõ�Ýò åöáñìüæïí�áé ó�á ìå�áäåäïìÝíá�ïõ óõó�Þìá�ïò, åíþ êÜðïéá óõó�Þìá�á áñ÷åßùí åðéðñüóèå�á õðïó�çñßæïõí êá�áãñáöÞ äï-óïëçøéþí ó�á äåäïìÝíá ðïõ �ñïðïðïéïýí�áé (data journaling). Ó÷å�éêÞ Ýñåõíá Ý÷åé äåßîåéü�é ìÝóù �çò êá�áãñáöÞò äïóïëçøéþí äåäïìÝíùí, ìðïñïýí íá åîõðçñå�çèïýí áé�Þóåéò åã-ãñáöÞò �õ÷áßáò ðñïóðÝëáóçò ìå áêïëïõèéáêÞ áðüäïóç äßóêïõ. Áí�ßèå�á, óå ðåñéð�þóåéòìåãÜëùí áé�Þóåùí åããñáöÞò áêïëïõèéáêÞò ðñïóðÝëáóçò Ý÷åé ðáñá�çñçèåß ü�é ç �å÷íéêÞáõ�Þ ìåéþíåé �çí áðüäïóç �ïõ äßóêïõ, êáèþò áõîÜíå�áé óçìáí�éêÜ ç êßíçóç ó�ï áðïèçêåõ-�éêü ìÝóï. Ó�çí ðåñßð�ùóç ðïõ ìåëå�Üìå, âáóéêü ìáò ìÝëçìá åßíáé ç áîéüðéó�ç êáé áðï-äï�éêÞ áðïèÞêåõóç ðïëëáðëþí åéóåñ÷üìåíùí ñïþí, �ùí ïðïßùí ç óõíïëéêÞ óõìðåñéöïñÜåßíáé �õ÷áßáò ðñïóðÝëáóçò, ðáñüëï ðïõ êáèåìßá ãñÜöåé áêïëïõèéáêÜ óå êÜðïéï îå÷ùñé-ó�ü áñ÷åßï. Óå �Ý�ïéá ðåñéâÜëëïí�á ðáñáìÝíåé áäéåõêñßíéó�ï ðïéÜ åßíáé ç êá�áëëçëü�åñçìÝèïäïò ãéá �ç äéá÷åßñéóç �çò åéóåñ÷üìåíçò ñïÞò.Ó�çí ðáñïýóá åñãáóßá, ìåëå�Üìå �ç óõìðåñéöïñÜ �çò êá�áãñáöÞò äïóïëçøéþí äåäïìÝ-íùí ó�á ðëáßóéá �ùí óýã÷ñïíùí áé�Þóåùí åããñáöÞò óå óõó�Þìá�á áñ÷åßùí. ¸íá âáóéêüìåéïíÝê�çìá áõ�Þò �çò ìåèüäïõ åßíáé ü�é åðéöÝñåé óçìáí�éêü êüó�ïò óå åýñïò æþíçò äßóêïõ,ëüãù �ïõ õøçëïý üãêïõ �ùí äåäïìÝíùí ðïõ ó�Ýëíïí�áé ãéá áðïèÞêåõóç. �ñïêåéìÝíïõ íáåëá��þóïõìå �éò áðáé�Þóåéò óå åýñïò æþíçò, õëïðïéÞóáìå ìéá íÝá ìÝèïäï êá�áãñáöÞò äï-óïëçøéþí äåäïìÝíùí ðïõ áðïèçêåýåé ìüíï �çí ðñáãìá�éêÞ ìå�áâïëÞ ó�á äåäïìÝíá ùò áðï-�Ýëåóìá �ùí áé�Þóåùí åããñáöÞò �ïõ ÷ñÞó�ç. ÕëïðïéÞóáìå �çí ðñï�åéíüìåíç ìÝèïäï ó�ïðñïêáèïñéóìÝíï óýó�çìá áñ÷åßùí ext3 �ïõ ðõñÞíá �ïõ ëåé�ïõñãéêïý óõó�Þìá�ïò Linux.Ìå ëåð�ïìåñåßò ðåéñáìá�éêÝò ìå�ñÞóåéò äåß÷íïõìå ü�é áíÜëïãá ìå �ï ñõèìü ìå�Üäïóçò �ùíñïþí, ìðïñïýìå íá ìåéþóïõìå óçìáí�éêÜ �éò áðáé�Þóåéò óå åýñïò æþíçò �çò êá�áãñáöÞòäïóïëçøéþí äåäïìÝíùí. Ôáõ�ü÷ñïíá, ðå�õ÷áßíïõìå ìéá óçìáí�éêÞ ìåßùóç ó�ï ÷ñüíï áðü-êñéóçò �ùí óýã÷ñïíùí áé�Þóåùí åããñáöÞò �ïõ óõó�Þìá�ïò áñ÷åßùí. ÓõíïëéêÜ, ç ìÝèïäïòðïõ ðñï�åßíïõìå åßíáé éêáíÞ íá ðñïóöÝñåé ãñÞãïñç êáé áîéüðéó�ç áðïèÞêåõóç, �üóï óå ðå-ñéð�þóåéò ñïþí äåäïìÝíùí, üóï êáé óå ðáñáäïóéáêÝò åöáñìïãÝò ðïõ áðáé�ïýí óýã÷ñïíåòåããñáöÝò ãéá �çí áîéüðéó�ç áðïèÞêåõóç �ùí äåäïìÝíùí �ïõò.
xi

Chapter 1
Introdu
tion

1.1 Thesis S
ope1.2 Thesis Outline
1.1 Thesis S
opeContinuous monitoring pro
esses are prevalent today for a wide range of purposes su
h asnetwork administration, autonomi
 systems management and physi
al site safety. Su
himportant appli
ations make stream-oriented fun
tionality highly relevant in modern
omputing infrastru
tures. For instan
e, re
ently proposed stream management enginesdemonstrate the feasibility of
exibly applying time-series operators on high-rate streams[3, 19℄. Existing stream pro
essing environments store stream data either temporarilybefore applying real-time operators within time windows [7℄, or permanently in order tosupport retrospe
tive query pro
essing [10℄.Prior resear
h has made the
ase that traditional data management approa
hes, su
has relational databases and general-purpose �le systems, are not engineered to eÆ
ientlystore
ontinuous stream data that are automati
ally generated from sensors in real time[7, 10℄. Sensors may generate high-resolution video and audio streams at high rates [11℄,or send intermittent variations of environmental
onditions at mu
h lower rates [22℄. Amonitoring system re
eives messages from high-volume links or large numbers of sensors1

and stores the re
eived data for a time period that depends on whether the appliedpro
essing o

urs in real time or retroa
tively.A
ross all types of heterogeneous streams with di�erent rate and
ontent
hara
teris-ti
s, it would be desirable to store the re
eived data reliably on the same fa
ility without
ompromising the sequential playba
k performan
e required for statisti
al pro
essing ore�e
tive visualization. Thus, a stream storage fa
ility
ould serve as a building blo
kfor a variety of appli
ations in the entire range from network pa
ket pro
essing to urbantraÆ

ontrol or environmental monitoring with the appropriate indexing fun
tionalitybuilt separately at a higher level, when support for query pro
essing is required.In general, �le system operations are either data operations that update user data, ormetadata operations that modify the stru
ture of the �le system itself. Existing general-purpose �le systems use journaling in order to syn
hronously move data or metadata frommemory to disk in a sequential manner. Thus they postpone the more
ostly transfer ofdata or metadata to the disk lo
ation without penalizing the write laten
y per
eived bythe appli
ation user. Indeed, previous resear
h has used tra
e-based emulation to experi-mentally demonstrate that data journaling
an serve random writes with high sequentialthroughput, but a
tually makes throughput lower at high data volumes due to the extradisk traÆ
 generated [25℄. The study made the reasonable
on
lusion that data journalingshould only be enabled with random writes, but disabled with large sequential writes. In-stead, we fo
us on the eÆ
ient and reliable storage of multiple
on
urrent streams whoseaggregate workload demonstrates random-a

ess behavior even though appends
orre-sponding to individual streams may be perfe
tly sequential. To a large extent, in su
henvironments it remains un
lear what is the most appropriate way to handle the in
omingdata.In the present thesis, we investigate the performan
e
hara
teristi
s of data journalingin the
ontext of syn
hronous writes that would be required among several situationsin
luding the reliable storage of in
oming streaming data. In order to lower the
ost of datajournaling, we introdu
e di�erential data journaling, that
onstitutes a di�erential versionof the default data journaling mode of a widely used operating system. In parti
ular, theprimary idea of our approa
h is to journal only the bytes that are a
tually written ratherthan the entire
orresponding blo
ks that
ontain them. Therefore, depending on therate
hara
teristi
s of the streams, we
an redu
e the required journaling throughput up2

to several fa
tors. As a side-e�e
t of the sequential writes to the journaling devi
e, wealso manage to substantially redu
e the response time of syn
hronous writes. Thus, we
an use data journaling to redu
e the laten
y of writes at a redu
ed
ost of required diskthroughput.
1.2 Thesis OutlineThe remainder of this thesis is organized as follows:In Chapter 2, an overview of the related literature is presented. We review previousresear
h related to te
hniques that have been proposed to provide �le system reliabilitya
ross system
rashes and a
hieve high performan
e during data and metadata updates.Furthermore, we de�ne the storage needs of appli
ations that manage stream data, andpresent some of the most important implementations in this �eld. Finally, we presentre
ent resear
h related to redundan
y elimination that intends to redu
e the
onsumptionof expensive resour
es, su
h as hard disk and memory spa
e.In Chapter 3, we des
ribe an existing journaling method that is
ommonly used. Inparti
ular, we examine the journaling te
hnique that the Ext3 �le system applies in orderto preserve metadata
onsisten
y a
ross system failures, while minimizing the requiredre
overy time.In Chapter 4, the design goals of our study are de�ned and the general ar
hite
turalde
isions taken during our prototype implementation are justi�ed.In Chapter 5, we introdu
e the di�erential data journaling te
hnique that we havedesigned and implemented for a widely available operating system. Our prototype isbased on the idea of a

umulating the modi�
ations of multiple updates into a singlejournal blo
k, and intends to minimize the write laten
y at a redu
ed disk throughput
ost.In Chapter 6, we explain the experimentation environment that we used in our studyand present our measurements a
ross di�erent workloads. The experimental results aredisplayed graphi
ally and our
on
lusions are justi�ed.In Chapter 7, the
on
lusions and the future dire
tions of this thesis are outlined.3

Chapter 2
Related Resear
h

2.1 Fast and Reliable Storage Systems2.2 Stream Ar
hival Servers2.3 Redundan
y Elimination2.4 SummaryIn this
hapter, we des
ribe approa
hes that have been previously proposed in orderto a
hieve high performan
e in �le systems during data and metadata updates. Further-more, we review previous resear
h that fo
uses on te
hniques whi
h intend to provide �lesystem reliability a
ross system
rashes. Next, we de�ne the storage needs of streamingappli
ations, and present some of the most important proposals in this dire
tion. Finally,we present re
ent resear
h related to redundan
y elimination that intends to redu
e the
onsumption of expensive resour
es, su
h as hard disk and memory spa
e.
2.1 Fast and Reliable Storage SystemsFile systems are
entral parts of modern operating systems and are expe
ted to serve twoopposing prin
iples; performan
e and durability. Nevertheless, operating systems are stillsus
eptible to hardware, software and power failures that damage both their eÆ
ien
yand their reliability. 4

Early �le systems introdu
ed the use of a main memory bu�er
a
he to hold writesuntil they are asyn
hronously written to disk. Those �le systems su�ered from potential
orruption during a power failure or an operating system's
rash, sin
e re
overy oftenrequired a time
onsuming examination of the entire state of the �le system. Even today,during reboot, verifying a �le system's
onsisten
y requires a spe
ial utility that re
oversthe �le system's
omponents to a
onsistent state. As disk sizes grow, this time
anbe
ome a serious bottlene
k, leaving the system o�ine for a
onsiderable amount of timewhile the disk is s
anned,
he
ked and repaired. Although disk drives are be
oming fasterthrough time, this speed in
rease is modest
ompared with their enormous in
rease in
apa
ity. Unfortunately, every doubling of disk
apa
ity leads to a doubling of re
overytime needed from traditional �le systems
he
king te
hniques.It is, however, possible to make �le system re
overy fast without sa
ri�
ing reliabilityand predi
tability. This is typi
ally done by �le systems whi
h guarantee atomi

omple-tion of �le system updates. The prin
ipal idea behind atomi
 updates is that an entirebat
h of updates
an be written to the �le system, but those updates do not take e�e
tuntil a �nal
ommit update is made on the disk. In order to a
hieve this, the �le systemmust keep both the old and the new
ontents of the updated data somewhere on diskuntil the �nal
ommit.In order to predi
tably re
over after a
rash, the re
overy phase must be able towork out what the �le system was trying to do when the
rash that led to in
ompleteoperations to disk o

urred. Consistent re
overy of the metadata after a
rash, due tooperating system or power failure, requires the system updates to be written on disk in aspe
i�
 order. There are many ways of a
hieving the required ordering between updatesand we des
ribe some of the most important in the rest of the present se
tion.2.1.1 Syn
hronous WritesThe system
an a
hieve
onsisten
y simply by updating the system metadata syn
hronously.The syn
hronous metadata update me
hanism �rst waits for the pending writes to
om-plete, before submitting the next ones. Nonetheless, syn
hronous writes
an signi�
antlyimpair the ability of a �le system to a
hieve high performan
e as it is not feasible to bat
hup multiple updates into a single disk operation. Similarly one
an re
over re
ently writ-5

Log

Segments

... Disk

...
Write Frontier

Available for reclamation

Figure 2.1: A log-stru
tured �le system treats its storage as a
ir
ular log and writes alldata and metadata modi�
ations sequentially to the head of a segmented append-onlylog. Log spa
e must be
onstantly re
laimed and thus, a garbage
olle
ting pro
ess isresponsible for
oales
ing unused spa
e into empty segments.ten data after a
rash by writing them syn
hronously to disk. Syn
hronous data writesare typi
ally applied in database systems that store
riti
al data [31, 8℄.Xsyn
fs introdu
es the idea of externally syn
hronous I/O that guarantees durabilitynot to the appli
ation, but to the external entity that observes appli
ation output [23℄.In parti
ular, an externally syn
hronous system
all returns
ontrol to the appli
ation be-fore
ommitting data. Subsequently, all output that
ausally depends on the un
ommittedtransa
tion is bu�ered, and is eventually externalized only after the
ommitment is su
-
essfully
ompleted. However, in the
ase of appli
ations that do not produ
e any output,xsyn
fs
ommits data periodi
ally similarly to an asyn
hronously mounted journaling �lesystem, an approa
h that is des
ribed later in this se
tion.2.1.2 Log-Stru
tured File SystemsThe main idea behind the design of a log-stru
tured �le system (LFS) is to improve writeperforman
e by bu�ering a sequen
e of �le system updates in the �le
a
he and thenwriting all the
hanges to disk sequentially in a single disk write operation [27℄. For thisreason, a log-stru
tured �le system treats the disk as a segmented append-only log andwrites all data and metadata modi�
ations into it. The log is the only stru
ture on diskand
onsists of segments that fa
ilitate the removal of deleted areas (Figure 2.1).Periodi
ally, the system writes the
omplete and
onsistent �le stru
tures safely ata �xed lo
ation of the log
alled
he
kpoint region. After a
rash, the �le system uses6

the
he
kpoint for its initialization, and the re
ent portion of the log to qui
kly re
overre
ently written data. In parti
ular, upon its next mount, the �le system does not needto walk all its data stru
tures to �x any in
onsisten
ies, but
an re
onstru
t its state fromthe last
onsistent point in the log.Free spa
e must be
onstantly re
laimed from the tail of the log to prevent the �lesystem from be
oming full when the head of the log wraps around to meet it. Whenupdated data is written to the end of the log, the previous
opy of the data is still on diskin its old lo
ation and
an be
onsidered as dead spa
e or a hole in the log. A garbage
olle
ting pro
ess is responsible for
oales
ing these holes into empty segments whi
h arethen available for new log writes. The tail itself
an skip forward over data for whi
hnewer versions exist farther ahead in the log; the remainder is simply moved out of theway by appending it ba
k to the head.Log-stru
tured �le systems maximize the write throughput on magneti
 media byavoiding
ostly seeks. In addition, interleaved writes to multiple streams
an be allo
ated
losely together on disk. However, log-stru
tured �le systems indu
e
leaning overhead,sin
e the size of the �le system is of �nite size and the log must eventually wrap around.Although write allo
ation in log-stru
tured �le systems is straightforward, the garbage
olle
tion of storage spa
e after �les are deleted, has remained problemati
. Cleaning ina general purpose LFS must handle �les of vastly di�erent sizes and lifetimes, and allexisting solutions involve
opying data to avoid fragmentation. Previous study veri�edthis high
leaning overhead, parti
ularly under OLTP-like workloads, where small randomwrites make up a large portion of the disk I/O requests [28℄. Over the last years, manyalgorithms have been proposed to redu
e the
leaning
ost of LFS, but the
leaning
ostis still high in systems with high disk spa
e utilization and little idle time.A number of �le systems have been implemented based on this design, in
luding theSprite LFS [27℄ and some prototype LFS implementations on Linux. HyLog uses a log-stru
tured layout for hot pages to a
hieve high write performan
e, and overwrite strategyfor
old pages to redu
e the
leaning
ost [32℄. DualFS is a re
ent implementation basedon a variation of log-stru
tured �le systems [24℄. It uses two separates devi
es for thedata and metadata, respe
tively; it employs a log-stru
tured �le system for the metadataand treats data as in typi
al Unix systems. We present another variation of LFS
alledStreamFS in Se
tion 2.2.2, where all writes take pla
e at a write frontier whi
h advan
es7

as data is written [10℄. StreamFS does not require a segment
leaner, and applies aprototype expiration poli
y in order to sele
tively overwrite the stored data.2.1.3 Soft UpdatesSoft updates is a me
hanism that delays writes of metadata and expli
itly maintains de-penden
y information to spe
ify the order in whi
h data must be written to disk [13℄.Thus, it eliminates the need for a log or most syn
hronous writes related to metadata.The system maintains for ea
h disk blo
k a list of all the metadata dependen
ies asso-
iated with the blo
k. When a blo
k needs to be written, whi
h blo
k requires otherblo
ks to be written �rst, the system rolls ba
k the a�e
ted parts of the sele
ted blo
k totheir earlier state. After the write has
ompleted, the system deletes all the
ompleteddependen
ies and restores the blo
k to its
urrent value. Thus, appli
ations see the mostre
ent version of the metadata blo
ks and the system keeps disk
ontents
onsistent. Aftersystem
rashes the system
an be mounted and used immediately, sin
e the only remain-ing in
onsisten
ies are non-fatal errors that
an be
orre
ted in the ba
kground duringnormal operation.Soft updates tra
k and enfor
e metadata update dependen
ies, so that the �le system
an safely delay writes for most �le operations. This method improves system performan
ebe
ause it aggregates multiple metadata updates into a redu
ed number of disk writesand postpones time-
onsuming operations, su
h as deletes, to a ba
kground pro
ess.2.1.4 Journaling File SystemsJournaling �le systems use an auxiliary log to re
ord all metadata operations and ensurethat the log and data bu�ers are syn
hronized in a way that guarantees re
overability.Additionally, some implementations also support logging of data modi�
ations. The goalof a journaling �le system is to avoid running time-
onsuming
onsisten
y
he
ks on thewhole �le system, by looking instead in the log that
ontains the most re
ent disk writeoperations. Consequently, remounting a journaling �le system after a system failure is amatter of a few se
onds.A journaling �le system maintains a journal of the updates it intends to make, aheadof time. The log is maintained as a preallo
ated �le within the same �le system or as8

1

2

3

Final LocationJournal

Metadata and data
written to the filesystem

Metadata/Data
writt

en

to
the journal

Write Request

Log space can be
reclaimedFigure 2.2: A journaling �le system logs updates to a
ir
ular journal �le before
om-mitting them to the main �le system. On
e the
orresponding updates has been storedto their �nal lo
ation,
opies of the blo
ks in the journal
an be dis
arded allowing thejournal spa
e to be re
laimed.a standalone separate �le system. After a
rash, re
overy simply involves replaying theupdates from the journal until the �le system is
onsistent again. A �le system transa
tion,whi
h
onsists of a sequen
e of
orrelative updates, is marked as
omplete when it isjournaled and followed by a
ommit re
ord. Only then the
orresponding updates
an bewritten to their �nal lo
ation (Figure 2.2). Journaling �le systems guarantee atomi
ityduring re
overy, as all the updates of a transa
tion
an either be reje
ted or replayed,a

ording to whether or not the transa
tion is followed by a
ommit re
ord in the journal.Through write-ahead logging the journaling �le systems ensure that the log is writtento disk before any pages
ontaining data modi�ed by the
orresponding operations. Eventhough the system performs additional disk operations, they are eÆ
ient sin
e they aresequential. Bat
hing of log writes that originate from di�erent
on
urrent appli
ations,provides additional throughput improvements. In addition, �le system journaling allowssyn
hronous writes to
omplete faster, be
ause they return as soon as the sequential logupdate
ompletes. Therefore,
ostly disk operations at the �nal lo
ations of the modi�edblo
ks
an be deferred and
ompleted periodi
ally and asyn
hronously.Journaling of �le data helps further in that dire
tion, but in
urs signi�
ant extrathroughput on the journaling devi
e. The
ost of data journaling
an be high for largewrites due to the signi�
ant volume of data sent to the log. Unfortunately,
urrentimplementations in
ur
onsiderable logging a
tivity even with small writes. In order to9

simplify the implementation, they log the entire blo
ks being modi�ed rather than justtheir modi�ed part. However, journaling redu
es write laten
y in both small and largewrites, sin
e it allows the syn
hronous log updates to be
ompleted sequentially.The data and metadata journaling of the Ext3 �le system has been do
umented[29, 12℄.yFS is a re
ently proposed �le system for general purposes that only uses journal transa
-tions for metadata modi�
ations [33℄, while it redu
es disk seeking and handles large �leseÆ
iently. Earlier, Hagmann des
ribed metadata update logging in the Cedar File Systemto improve performan
e and a
hieve
onsisten
y [16℄. In order to gain performan
e, itused group
ommit, a
on
ept derived from high performan
e database systems. Also, theE
ho distributed �le system used a journal to re
ord disk storage updates thus improvingperforman
e and availability [5℄.Prabhakaran et al. introdu
ed the semanti
 blo
k-level analysis te
hnique to tra
e andanalyze �le systems, and the semanti
 tra
e playba
k te
hnique to evaluate �le systemmodi�
ations [25℄. Evaluation of Ext3 over Linux showed that data journaling in
urssubstantial traÆ
 to the journal but with sequential throughput, unlike the ordered modethat mainly writes data to the �nal lo
ation. The authors
on
lude that sequential work-loads should better be served in ordered mode, while random workloads
an bene�t fromdata journaling. Using tra
e-based emulation, the authors show that di�erential datajournaling
an redu
e substantially the amount of traÆ
 to the journal in database ap-pli
ations.2.1.5 Persistent MemoryThere exist approa
hes that implement some type of stable storage through spe
ializedhardware. The memory vulnerability to power outages
an be en
ountered using uninter-ruptible power supply or a distin
t Flash RAM devi
e. Thus, writes to the �nal on-disklo
ation
an be deferred to a later more
onvenient time, when the memory spa
e needsto be re
laimed for example. However, the main drawba
k of su
h implementations is theextra hardware expenses.The Rio �le
a
he makes ordinary memory safe for persistent storage, through theuse of an uninterruptible power supply, that allows the �le system to avoid syn
hronouswrites and guarantee the �le system
onsisten
y at the same time [8℄. However, durability10

is guaranteed only as long as the power in on or the batteries remain
harged.Another approa
h, the Network Applian
e's WAFL (Write Anywhere File Layout) �lesystem
he
kpoints the disk to a
onsistent state periodi
ally and uses Non-Volatile RAM(NVRAM) for fast writes between
he
kpoints [18℄. NVRAM is used to keep a log of NFSrequests that WAFL has pro
essed sin
e the last
onsisten
y point. WAFL keeps thenew
opies of the updated data in di�erent lo
ations from the old
opies, and eventuallyreuses the old spa
e on
e the updates are
ommitted to disk. After an un
lean shutdown,it replays any requests in the log to prevent them from being lost. The Write AnywhereFile Layout improves write performan
e by writing �le system blo
ks to any lo
ation ondisk and in any order, while deferring disk spa
e allo
ation with the help of NVRAM.Nevertheless, NVRAM is
hara
terized by
apa
ity, reliability and
ost limitations.2.1.6 Other ImplementationsHildebrand et al. highlight the prevalen
e of small and sequential data requests in s
ienti�
appli
ations [17℄. They show that it is possible to improve the overall write performan
eof parallel �le systems by using parallel I/O for large write requests and a distributed �lesystem for small write requests. The Virtual Log is another e�ort to minimize the laten
yof small syn
hronous writes by building the log-stru
tured �le system over a log withentries that are not ne
essarily physi
ally
ontiguous [31℄. Virtual Log is an approa
hto improve small disk write performan
e even in systems with no idle periods, but itrequires detailed knowledge of the disk layout and the lo
ation of the disk head at anymoment, whi
h might be diÆ
ult to obtain from modern disks. Finally, the Google FileSystem handles large �les typi
ally mutated by appending new data sequentially ratherthan overwriting existing data, at random �le lo
ations [14℄.
2.2 Stream Ar
hival ServersRe
ently a new
lass of data-intensive appli
ations has be
ome widely re
ognized; stream-ing data management appli
ations. This
lass in
ludes �nan
ial appli
ations, networkmonitoring, se
urity, tele
ommuni
ations data management, web appli
ations, manufa
-turing and sensor networks. In the data stream model, individual data items may be11

relational tuples, e.g., network measurements,
all re
ords, web page visits, sensor read-ings, and so on. However, their
ontinuous arrival in multiple, rapid and time-varyingstreams yields some fundamentally new resear
h problems.In parti
ular, data arrival rates whi
h
an vary from hundreds of thousands of pa
ketsper se
ond per link to mu
h lower rates,
ompli
ate the storage management for su
happli
ations. Currently, the design of a streaming-oriented storage system
an be basedon two possible ar
hite
tures; either a relational database
an be used to store the in-
oming stream data, or a
ustom index
an be built on top of a
onventional �le system.Nonetheless, at the above mentioned heterogeneous data rates, both
ommon database in-dex stru
tures and general-purpose �le systems have been do
umented to perform poorly[7, 10, 2℄. This motivates the need for a new storage system, that runs on
ommodityhardware and is spe
i�
ally designed to satisfy the storage needs of streaming data.2.2.1 Traditional DatabasesNowadays, network monitoring systems are useful for a multitude of purposes, su
h asphysi
al site safety, network and se
urity forensi
s. Monitoring appli
ations di�er sub-stantially from
onventional business data pro
essing. Traditional Database ManagementSystems (DBMS) have been oriented toward business data pro
essing, and
onsequentlyare designed to address the needs of these appli
ations [7℄. Parti
ularly, a DBMS is
on-sidered to be a passive repository storing a large
olle
tion of data elements and typi
allyonly humans initiate queries and transa
tions on this repository. Furthermore, tradi-tional DBMSs are not designed for rapid and
ontinuous loading of individual data items,and they do not dire
tly support the
ontinuous queries that are typi
al of data streamappli
ations. Finally, a DBMS assumes that appli
ations require no real-time servi
es.Appli
ations that
ontinuously monitor and store massive numbers of streams in real-time
ould bene�t from DBMSs, due to the high volume of monitored data and the queryrequirements that arise. However, traditional DBMSs seem to have remarkable ineÆ
ien-
ies under su
h
ir
umstan
es. First, monitoring appli
ations
ontinuously re
eive highvolumes of data from external sour
es, su
h as sensors, rather than from humans issuingtransa
tions. Moreover, while for a DBMS data do not have a notion of time and anyupdate operation overwrites the previous value, data stream represent a sequen
e of val-12

ues for the same entity. Thus, the stati
 model of databases, with dynami
ally
hangingqueries being exe
uted over stati
 data, is not designed for handling stream data, whi
hhas stati
 queries being exe
uted over dynami
ally
hanging data. Last but not least,handling data streams would require the DBMS to serve real-time appli
ations, making itimperative that the DBMS employ intelligent resour
e management (e.g., s
heduling) andgra
eful degradation strategies (e.g., load shedding) during periods of high load. Theseare not features of a traditional DBMS whi
h is designed as a store-and-query modelinstead.Digital streaming infrastru
tures repla
e traditional
losed-
ir
uit television systemsin urban traÆ
-
ontrol appli
ations to store large numbers of video feeds [11℄. Previously,environmental, o
eanographi
 and meteorologi
al
onditions have been measured andstored over distributed relational databases [22℄. Aurora is a stream pro
essing enginethat has been developed to support primitives for streaming appli
ations, handle querypro
essing on in
oming messages in real time and gra
efully deal with spikes in messageload [7, 3℄. The CoMo is a passive monitoring system that
an be used as a building blo
kfor a network monitoring infrastru
ture that pro
esses and shares network traÆ
 statisti
sover multiple sites [19℄. Como in
ludes a storage pro
ess that is data agnosti
 and treatsall data blo
ks equally. Also, load shedding te
hniques were developed to maintain thea

ura
y of traÆ
 queries within a

eptable levels at extreme traÆ

onditions [4℄.2.2.2 General-Purpose File SystemsThe storage needs of monitoring appli
ations result in
ontinuous sequential writes to theunderlying storage system. In order to redu
e disk seek overheads and improve systemthroughput, the system should employ data pla
ement te
hniques that exploit the par-ti
ular I/O
hara
teristi
s of streams. General-purpose �le systems are not engineered toeÆ
iently store
ontinuous stream data that are automati
ally generated from sensors inreal time. Unix-like �le systems, for instan
e, are typi
ally optimized for writing small�les and reading large ones sequentially, while monitoring and querying appli
ations ei-ther write very large �les at high data rates, or apply small writes at mu
h lower rates,while issuing small reads.File systems periodi
ally write data to disk and transa
tion pro
essing appli
ations13

view transa
tions as
ommitted only after the data has been written to disk. A mod-i�ed version of the log-stru
tured �le system has been re
ently used for the storage ofhigh-volume streams [10℄. StreamFS has in
oming stream data written to a frontier thatmoves in a
ir
ular fashion along the disk spa
e and sele
tively overwrites the expireddata. However, StreamFS has been spe
i�
ally designed for high-rate streams typi
allygenerated in network monitoring systems; it is un
lear how it would behave in hetero-geneous environments where high-rate and low-rate streams
o-exist. Additionally, anaggregate high-rate stream typi
ally
ontains a large volume of information that makesne
essary to build an index stru
ture online during data storage and s
an entire segmentsof the stored data during retrospe
tive query pro
essing. Instead, demultiplexing of thein
oming data into separate �les would possibly fa
ilitate and redu
e the load of thesubsequent sele
tive retrieval and pro
essing.In order to improve their operation reliability, re
ent general-purpose �le systemsapply journaling te
hniques to preserve metadata
onsisten
y a
ross system
rashes atminimal re
overy time. Su
h te
hniques are therefore in high demand, espe
ially, in en-vironments where high availability is important, not only to improve re
overy times onsingle ma
hines, but also to allow a
rashed ma
hine's �le system to be re
overed onanother ma
hine when we have a
luster of nodes with a shared disk. Comparisons a
rossdi�erent journaling methods with general-purpose �le server traÆ
 has shown that, de-pending on the sequentiality workload
hara
teristi
s, either ordered data writing or datajournaling may lead to better performan
e [25℄. Nevertheless, the problem is that theblo
k a

ess sequen
e on a
ontent server is e�e
tively random when many slow streamsa

ess large �les
on
urrently, even though individual stream appends are perfe
tly se-quential [1℄. Therefore, it might be useful to build system fa
ilities for the storage ofheterogeneous streams with di�erent rate and
ontent
hara
teristi
s.2.2.3 Playba
k ServersSeveral resear
h proje
ts and
ommer
ial produ
ts of media streaming servers have al-ready established the feasibility of streaming stored �les. Re
ent years have witnessedan ever-in
reasing demand for media-on-demand appli
ations on the Internet. Typi
ally,users a

ess online media
lips by
li
king on a hyperlink using their Web browser, whi
h14

results in the browser opening a media player to play the sele
ted media �le. The playba
kservers are responsible to deliver the sele
ted media �le to the player through streaming.In the streaming mode of data delivery, the initial portion of the media is loaded into theplayer bu�er, whi
h takes a brief time period. The remainder of the
ontent is obtaineda
ross the network, while the media �le is being played ba
k. A stream �le is re
eived,pro
essed, and played simultaneously and immediately, leaving behind no residual
opyof the
ontent on the re
eiving devi
e.Therefore, the main purpose of a playba
k server is to read from disk the requiredstored stream �le, and then deliver it to the proper
lient. Reading a stream �le from thedisk refers to �nding and retrieving the blo
ks that
ontain the requested data. Addition-ally, read-ahead te
hniques are applied in order to enhan
e disk performan
e. Read-ahead
onsists of reading several adja
ent pages of data of a �le from disk, before they are a
-tually requested. On the other hand, streaming storage deals with the stream �les' writeoperations. Thus, the basi

hallenge of a streaming storage server is to qui
kly, reliablyand eÆ
iently, in terms of disk throughput, store the in
oming data. Write operations ondisk-based stream �les are slightly more
ompli
ated, sin
e spe
ial
are must be taken inorder to avoid
ompromising their sequential playba
k performan
e.Streaming workloads di�er from traditional web workloads in many respe
ts, present-ing a number of
hallenges to system designers and media servi
e providers. For instan
e,transmitting media �les requires more
omputing power, bandwidth and storage and ismore sensitive to network jitter than web obje
ts. Furthermore, media a

ess lasts for amu
h longer period of time and allows for user intera
tion.In parti
ular, although proxy
a
hing has been su

essful in delivering stati
 text-based
ontent, it is more diÆ
ult to deliver streaming media
ontent. First, the size of a mediaobje
t is generally mu
h larger than a text-based obje
t, rendering the
a
hing of entiremedia obje
ts as stati
 obje
ts ineÆ
ient. Furthermore, a
lient requesting some mediaobje
t demands
ontinuous streaming delivery. While, the o

asional delays that o

urwhen transferring data over the Internet are a

eptable for text-based Web browsing, forstreaming media data this transfer delay results in undesirable playba
k jitter at the
lientside.Instead, whole-�le transfers, or �le downloading
an provide
ontinuous playba
k, butit introdu
es a signi�
ant startup delay, in addition to large bu�er spa
e requirements15

on the
lient. In
omparison to traditional �le downloading, media data streaming al-lows signi�
antly faster playba
k initiation, provides guarantees for uninterrupted datade
oding, and requires minimal bu�ering requirements from the
lient devi
es.
2.3 Redundan
y EliminationSeveral approa
hes have been proposed that intend to redu
e the
onsumption of expen-sive resour
es, su
h as hard disk and memory spa
e or transmission bandwidth. Redu
ingthe number of required bytes is equivalent to the elimination of data redundan
y withinmemory or the storage devi
e. A number of te
hniques that have been proposed towardsthis e�ort in
lude data
ompression, dupli
ate suppression and delta en
oding methods.Parti
ularly, data
ompression eliminates the redundan
y inside an obje
t, dupli
ate sup-pression refers to the elimination of identi
al obje
ts and, �nally delta en
oding eliminatesthe redundan
y between similar obje
ts.Signi�
ant improvements have o

urred over the past de
ades in the �eld of virtual-ization. The main resear
h interest lies in the multiplexing of hardware resour
es amongvirtual ma
hines that run
ommodity operating systems, in order to redu
e the host'smanagement overhead. Nevertheless, main memory is not amenable to inexpensive mul-tiplexing and thus a variety of redundan
y elimination te
hniques, su
h as page sharing ofidenti
al pages, memory
ompression inside individual pages and delta en
oding betweensimilar pages, are performed to a
hieve high memory
onsolidation. Related study showsthat substantial memory savings are available from the sharing of identi
al pages betweenvirtual ma
hines when running homogeneous workloads [30℄. The Di�eren
e Engine, anextension to the Xen virtual ma
hine monitor, demonstrates the potential memory savingsavailable from leveraging a
ombination of whole page and sub-page sharing and memory
ompression [15℄.Kulkarni et al. exploited similarity at the blo
k level in order to redu
e the number ofbytes needed to represent an obje
t when it is stored [21℄. In parti
ular, they proposedthe use of
ompression, dupli
ate blo
k suppression and delta en
oding to eliminate re-dundan
y of stored data in a s
alable and eÆ
ient way. Finally, Venti is a network-basedstorage system intended primarily for ar
hival purposes [26℄. This approa
h enfor
es a16

write-on
e poli
y, preventing a

idental or mali
ious destru
tion of data, while dupli
ate
opies of a blo
k
an be
oales
ed in order to redu
e the
onsumption of storage.
2.4 SummaryThe prevalen
e of
ontinuous monitoring pro
esses for system management purposes andgeneral physi
al site safety make stream pro
essing appli
ations highly relevant in modern
omputing infrastru
tures. Prior resear
h has made the
ase that neither traditionaldatabases, nor general-purpose �le systems are suÆ
iently engineered to eÆ
iently store
ontinuous stream data that is automati
ally generated from sensors in real time.Furthermore,
urrent �le systems mostly
are to maintain their integrity a
ross
rasheswithout
ompromising their performan
e. They a
hieve this goal by
ushingmetadata up-dates at sequential disk throughput or by avoiding the violation of the dependen
ies a
rossthe blo
k updates. Existing te
hniques that
omplete the data updates syn
hronously,require signi�
ant extra disk throughput in order to a
hieve that at relatively low laten
y.This overhead
omes from the large amounts of data that needs to be written to disk, evenin
ases of small updates. However, a number of e�e
tive te
hniques have been proposedover the last de
ades, in order to redu
e the
onsumption of expensive resour
es, su
h asmemory and disk spa
e.In this thesis, we re
onsider the ability of
onventional �le systems to serve the needs ofstreaming workloads, and towards this dire
tion we modify a widely available �le systemin order to alleviate its relevant design ineÆ
ien
ies. At the same time, we demonstratethat it is possible to redu
e substantially the throughput overhead of syn
hronous datawrites while maintaining low laten
ies, as well.

17

Chapter 3
Journaling in the Ext3 File System

3.1 Ba
kground3.2 Commit Poli
y3.3 Che
kpoint Poli
y3.4 Re
overy Poli
y3.5 SummaryJournaling results in noti
eable redu
tion of the time period spent during the re
overyof a �le system to a
onsistent state after a
rash. In this
hapter, we analyze the popularLinux journaling �le system, Ext3 [29, 12℄. In parti
ular, we examine the journalingte
hniques that are applied, in order to a
hieve high
onsisten
y guarantees a
ross system
rashes at minimal re
overy time, and dete
t design ineÆ
ien
ies that in
ur signi�
antperforman
e overhead to the journal devi
e.
3.1 Ba
kgroundAs disk
apa
ities grow faster than disk a

ess speeds over time, modern �le systemsuse journaling to support fast re
overy after a
rash [29, 12, 6, 25℄. Journaling redu
espossible downtime of several hours to a few se
onds by avoiding running time-
onsuming18

onsisten
y
he
ks over the entire
apa
ity of the �le system. Instead, it simply replaysthe most re
ent disk writes stored in the log. Ext3 implements journaling by performingea
h high-level
hange to the �le system in two steps:1. First, it
opies the modi�ed blo
ks into the journal.2. Then, it transfers the modi�ed blo
ks into their �nal disk lo
ation.The journal is treated as a
ir
ular bu�er; on
e the ne
essary information has been storedto its �nal lo
ation,
opies of the blo
ks in the journal
an be dis
arded allowing thejournal spa
e to be re
laimed.3.1.1 Basi
 File System Con
eptsA �le system refers to a
olle
tion of �les and �le management stru
tures on a physi
alor logi
al mass storage devi
e. It des
ribes a method of organizing blo
ks on a storagedevi
e into �les and dire
tories. The
ommon �le model used by the widely known Linuxoperating system is obje
t-oriented. Obje
t is a software
onstru
t that de�nes both adata stru
ture and the methods that operate on it. It
onsists of the following obje
ttypes:
• The superblo
k obje
t that stores information relating to a mounted �le system.
• The i-node obje
t that stores information about a single �le. Ea
h i-node obje
tis asso
iated with an inode number that uniquely identi�es the �le within the �lesystem.
• The �le obje
t that stores information
on
erning the relation between an open �leand a pro
ess.
• The dentry obje
t that stores information about the linking of a dire
tory entry withthe
orresponding �le.The ar
hite
ture depi
ted in Figure 3.1 illustrates the relationships between the major�le system-related
omponents in both user spa
e and the Linux kernel. In parti
ular, asystem
all interfa
e layer provides the means to perform fun
tion
alls from user spa
einto the kernel. The Linux kernel
ontains a Virtual File System layer whi
h provides a19

Hardware

User Space User Processes

Kernel
System Call Interface

VFS

Ext3 Filesystem

IB Inode Bitmap

Data BitmapDB

Journal SuperblockJS

DBIB INODE JS JD... ...

Journal Descriptor BlockJD

Journal Commit BlockJC

JC...

Journal file

Storage Media

DATASB

SuperblockSB

......M/D

Journal Metadata/Data BlocksM/DFigure 3.1: We illustrate the ar
hite
tural view of the Linux operating system and dis-tinguish the Ext3 �le system inside the kernel. Furthermore, we �gure the on-disk layoutof the Ext3, whi
h is based on the generi
 Unix �le system stru
ture.
ommon interfa
e abstra
tion for �le systems supported by the kernel. VFS
onstitutesan indire
tion layer whi
h handles the �le oriented system
alls and
alls the ne
essaryfun
tions in the physi
al �le system
ode to do the appropriate I/O. Finally, the �lesystem is responsible for applying the
orresponding I/O requests on the proper devi
es.3.1.2 Introdu
tion to Ext3The Third Extended File System, known as Ext3, is a journaling �le system that is
om-monly used by the Linux operating system, and
onstitutes the default �le system for themost re
ent Linux distributions. Ext3 is largely based on the Ext2 �le system. Parti
u-larly, its on-disk layout is entirely
ompatible with the existing of an Ext2 �le system withan additional disk stru
ture, the journal �le (Figure 3.1). Thus, all data and metadataupdates are pla
ed into the standard Ext2 stru
tures that
onstitute the �nal lo
ationstru
tures. 20

Information about pending �le system updates is written to the journal. By for
ingjournal updates to disk before updating
omplex �le system stru
tures, this write-aheadlogging te
hnique enables eÆ
ient
rash re
overy. A simple s
an of the journal and aredo of any in
omplete
ommitted operations are needed to re
over the �le system to a
onsistent state. The journal �le is, by default, lo
ated within the �le system, although it
an be also stored on a separate devi
e or partition. The journal is treated as a
ir
ularbu�er and thus, on
e the ne
essary information has been written to its �xed on-disklo
ation, the
orresponding journal spa
e
an be re
laimed.3.1.3 Journaling ModesExt3 uses three kinds of journaling; writeba
k, ordered and data journaling mode.
• In writeba
k mode Ext3 logs only the �le system metadata, while data blo
ks arewritten dire
tly to their �xed lo
ation. Although this mode is
onsidered to be thefastest, it provides the weakest
onsisten
y guarantees of the three modes, sin
e itdoes not enfor
e any ordering between the journal and the �xed-lo
ation data writes.Parti
ularly, the
ontents of a �le might be written before or after the journal isupdated. As a result, �les modi�ed right before a
rash
an be
ome
orrupted. Thus,while metadata blo
ks are
onsidered to be
onsistent, no guarantee is provided tothe
orresponding data blo
ks.
• In ordered journaling mode, only metadata writes are journaled. However, datawrites to their �xed lo
ation are ordered right before the journal writes of themetadata, thus redu
ing the risk of
orrupting data during re
overy. In
ontrast towriteba
k mode, this mode provides more sensible
onsisten
y semanti
s, sin
e dataand metadata are guaranteed to be
onsistent after re
overy. This is the defaultjournaling mode on many Linux distributions.
• The full data journaling mode journals both metadata and data blo
ks. This modeminimizes the risk of losing �le updates, but in
urs additional disk a

esses. Itis
onsidered to provide the strongest
onsisten
y guarantees of the three modes,while it seems to have di�erent performan
e
hara
teristi
s, in some
ases worse, andsurprisingly, in some
ases better. In parti
ular, the sequential nature of the journal21

an improve performan
e, while in other
ases performan
e gets worse be
ause ea
hblo
k is typi
ally transferred to disk twi
e; on
e to the journal and then later to its�nal lo
ation. In the rest of this thesis, we prefer to use the term data journalingwhen we refer to the full data journaling mode in order to stress out the fa
t thatit journals data in addition to metadata.In our resear
h, we fo
us on the eÆ
ient and reliable storage of multiple
on
urrentstreams. Hen
e, we
on
entrate on the
onsisten
y guarantees provided through orderedand data journaling, sin
e writeba
k mode o�ers the weakest
onsisten
y semanti
s of thethree modes. However, for reasons of
ompleteness, in our experimental measurementswe examine the behavior of all the three modes.Figure 3.2 depi
ts the behavior of three di�erent journaling modes during the
ommitand the
he
kpoint intervals; the pro
esses of updating the on-disk journal stru
ture andthe �nal on-disk lo
ation respe
tively. A

ording to the mount options, the write updatesare either written dire
tly to their �nal on-disk lo
ation, or to the journal. Depend-ing on the
onsisten
y semanti
s that ea
h mode provides, the updates
an take pla
esyn
hronously or not. In parti
ular, time
ows downwards following the arrows, whileboxes represent �le system updates. Additionally, the two timelines represent
ommitand
he
kpoint time. As shown in Figure 3.2(a), during the
ommit time, the writeba
kmode writes syn
hronously metadata to the journal, while data blo
ks
an be
ushedasyn
hronously to their �nal lo
ation at any time. Thus, the required disk overhead islow sin
e only metadata is logged. In Figure 3.2(a), the dotted boxes are used to implythat no ordering is required between data and metadata updates as they
an o

ur in anyorder. Ordered journaling mode
ushes data syn
hronously to the �xed lo
ation beforethe
orresponding journal re
ord is updated (Figure 3.2(b)). Next, when the proper timeinterval expires, metadata is �nally written asyn
hronously to the appropriate �xed lo-
ation. Consequently, a small amount of information (only metadata) is written to thejournal sequentially and eÆ
iently. However, syn
hronous data writes to the �le systemin
ur heavy disk traÆ
, whi
h limits the system's performan
e for small writes. In datajournaling the log is updated syn
hronously with both metadata and data re
ords at ea
h
ommit interval (Figure 3.2(
)). When the proper time interval expires, both metadataand data are �nally written asyn
hronously to their �xed on-disk lo
ations. On
e again,22

WRITEBACK
MODE

Final Location

Journal

(Data)

Final Location
(Data)

Final Location
(Data)

(Metadata)

Final Location
(Metadata)

Sync

Commit

Checkpoint

(a)

ORDERED
MODE

Final Location

Journal

(Metadata)

(Metadata)

Final Location
(Data)

Sync

Sync

Commit

Checkpoint

(b)

DATA
MODE

Journal
(Metadata+Data)

Final Location

(Metadata+Data)

Sync

Commit

Checkpoint

(
)Figure 3.2: The behavior of the three di�erent journaling modes through time. Time
ows downwards following the arrows, while the boxes represent �le system updates.The two timelines represent
ommit and
he
kpoint; the pro
esses of updating the on-disk journal stru
ture and the �nal on-disk lo
ation, a

ordingly. Depending on the
onsisten
y semanti
s that ea
h mode provides, the updates
an take pla
e syn
hronouslyor not.journal writes are eÆ
ient due to the append-only nature of the log. Nevertheless, whenlarge volumes of data need to be written, the dupli
ates due to the journal writes impairthe overall system's performan
e. Although journal writes negatively a�e
t the perfor-man
e of large data writes, small writes
an bene�t from the sequential journal. There,data modi�
ations
an be bat
hed together while deferring their movement to the �nallo
ation, thus redu
ing disk head seeking overhead.
23

HEADER

TAG

Journal Descriptor
Block

...

TAG

TAG

Full Blocks

- block # of final
location on disk

TAG

TAG

...Buffer Page

Block Buffer
New Data

Unmodified DataFigure 3.3: In the original design of the Ext3 data journaling, there is a full blo
k inthe journal for ea
h write operation, despite the size of the new data modi�
ation. Inaddition, in the journal des
riptor blo
k a new auxiliary tag is allo
ated ea
h time a writeupdate is logged, and it is used to des
ribe the
orresponden
e between the journal andthe �xed lo
ation disk blo
k.3.1.4 JournalExt3 handles the journal through a spe
ial kernel layer
alled journaling blo
k devi
e(JBD). The journal is implemented as either a hidden �le within the root dire
tory ofthe �le system or a separate disk partition. Ea
h log re
ord in the journal
orrespondsto one low-level operation in the �le system that updates one disk blo
k. The journalrepresents with a log re
ord the entire modi�ed blo
k of the �le system rather than therange of blo
k bytes a
tually modi�ed (Figure 3.3). Thus, the journal is wasteful in termsof disk throughput and spa
e, but simple in terms of pro
essing
omplexity be
ause ituses the bu�ers of the modi�ed blo
ks dire
tly. Additionally, ea
h log re
ord is asso
iatedwith auxiliary information that
ontains the number of the
orresponding blo
k in the �lesystem and several status
ags.As shown in Figure 3.4, Ext3 uses additional metadata stru
tures to tra
k the list ofjournaled blo
ks. The journal superblo
k tra
ks summary information for the journal,su
h as the blo
k size and head and tail pointers. A journal des
riptor blo
k, as weexplain later in this
hapter, marks the beginning of a transa
tion and des
ribes thesubsequent journaled blo
ks, in
luding their �nal �xed on-disk lo
ation. In data journalingmode, the des
riptor blo
k is followed by the data and metadata blo
ks; in ordered and24

JDJS M/D JCJC JD M/DM/D

Journal Descriptor Block

JS Journal Superblock

JD

Journal Commit Block

Journal Metadata/Data Block

JC

M/D

...

Journal On-Disk Layout

Figure 3.4: We illustrate the on-disk layout of the journal. The journal
onsists of ajournal superblo
k, journal des
riptor blo
ks, full data and metadata blo
ks, and journal
ommit blo
ks.writeba
k mode, the des
riptor blo
k is followed by the metadata blo
ks. Finally, a journal
ommit blo
k is written to the journal at the end of the transa
tion to mark its su

essful
ompletion and verify that the
orresponding data and metadata updates are safe on disk.3.1.5 Transa
tionsEa
h high-level operation of the �le system (e.g. a system
all) is usually split into a seriesof low-level operations that manipulate disk data stru
tures. The atomi
 operation handlerefers to a set of low-level operations. When the system re
overs from a failure, it ensuresthat either the whole high-level operation is applied, or none of its low-level operations is.For reasons of eÆ
ien
y, instead of
ushing ea
h atomi
 handle to the journal, the systemgroups into a single transa
tion the re
ords of multiple atomi
 operation handles. Allthe log re
ords of a handle belong to one transa
tion. After its
reation, the transa
tiona

epts log re
ords of new handles for a �xed period of time. The system stores all thelog re
ords of a transa
tion
onse
utively on the journal. After the log re
ords have been
ommitted to the �le system, the system re
laims all the blo
ks of the transa
tion.The JBD layer handles ea
h transa
tion as a whole. A transa
tion is
onsidered
omplete (equivalently in state T FINISHED), if all its log re
ords are fully residing inthe journal in
luding the
ommit blo
k. It is in
omplete, if at least one log re
ord of thetransa
tion is not in the journal. An in
omplete transa
tion
an be in one of the followingstatesT RUNNING It still a

epts new atomi
 operation handles.T LOCKED It does not a

ept new handles, but waits for the a

epted handles to25

�nish.T FLUSH All the handles in a transa
tion are
omplete and the transa
tion is beingwritten to the journal.T COMMIT All the log re
ords have been written to the journal ex
ept for the
ommitblo
k of the transa
tion.When re
overing from a failure, the system skips all in
omplete transa
tions and transfersthe blo
ks of the
omplete transa
tions to the �le system.3.1.6 Kernel Bu�ersThe Linux kernel uses the page
a
he to temporarily keep page
opies from re
entlya

essed disk �les in memory. In most
ases, the kernel refers to the page
a
he whenreading or writing from disk. In parti
ular, before a �le write o

urs, the kernel veri�eswhether the
orresponding page exists in the page
a
he. In
ase that it is found, thewrite is applied to that page in memory. Otherwise, when the write perfe
tly falls on pagesize boundaries, the page is not read from disk, but allo
ated and immediately marked asdirty. Otherwise, the
orresponding page is fet
hed from disk and requested modi�
ationsare done. Pages that have been modi�ed in memory for writing to disk, are marked dirtyand have to be
ushed to disk before they
an be freed.A blo
k bu�er is the bu�er of an individual disk blo
k in memory. As depi
ted inFigure 3.5, ea
h blo
k bu�er has a bu�er head des
riptor that spe
i�es all the ne
essaryhandling information required by the kernel in order to lo
ate the
orresponding blo
kon disk. Generally, the page
a
he does not allo
ate the blo
k bu�ers individually, but inunits of pages
alled bu�er pages. The kernel addresses individual blo
ks using the bu�erheads pointed to by the
orresponding bu�er page.3.1.7 Flushing Dirty Bu�ers to DiskWrite operations are deferred in the page
a
he. When data in the page
a
he is newerthan the data on the ba
king store, that data is
alled dirty. Dirty pages that a

umulatein memory eventually need to be written ba
k to disk. Dirty page writeba
k o

urs intwo situations: 26

Buffer Page

Block Buffer

..
.

..
.

Block Buffer

Block Buffer

Disk Block ...

Disk

block number
offset in page

Disk BlockDisk Block

Buffer Head

Buffer Head

Buffer Head

Disk BlockFigure 3.5: A bu�er page is a page of data asso
iated with spe
ial des
riptors,
alledbu�er heads. Their main purpose is to qui
kly lo
ate the disk address of ea
h individualblo
k in the page.
• When free memory shrinks below a spe
i�ed threshold, the kernel must write dirtydata ba
k to disk in order to free memory.
• When dirty data grows older than a spe
i�
 threshold, suÆ
iently old data is writtenba
k to disk, in order to ensure that dirty data does not remain dirty inde�nitely.The Linux kernel uses a group of general purpose kernel threads
alled pd
ush to system-ati
ally s
an the page
a
he looking for dirty pages to
ush, and additionally, ensure thatno page remains dirty for too long.Therefore, a number of pd
ush kernel threads
ush dirty pages to their �nal lo
ationon disk through two separate me
hanisms:
• Systemati
ally s
an the page
a
he every writeba
k period.
• Implement a timeout me
hanism on ea
h page a

ording to a
on�gurable expirationperiod.Furthermore, the JBD layer uses an additional kernel thread, known as kjournaldthread. This kernel thread is responsible for two things:
• Every so often the
urrent state of the �le system needs to be
ommitted to thejournal on disk. This happens periodi
ally and the
orresponding time interval isknown as
ommit interval. 27

• The dirty bu�ers of the
ommitted transa
tions need to be
ushed periodi
ally tothe �nal on-disk lo
ation, in order to re
laim spa
e in the log.A user
an also use the fsyn
 system
all to syn
hronously
ush all the data andmetadata dirty bu�ers of the spe
i�ed �le des
riptor to disk. A
tually, fsyn
 moves theblo
ks to the journal or the �nal disk lo
ation depending on the mount mode.
3.2 Commit Poli
yThe
ommit of a transa
tion involves writing to journal the dirty bu�ers that were modi-�ed by this trana
tion, and then writting a
ommit re
ord to mark the pro
ess as
omplete.The
ommit poli
y is initiated, either when the
ommit interval expires, or when the writeupdates need to be syn
hronously written to disk (i.e., through fsyn
).Ea
h invo
ation of the write system
all
reates a new atomi
 operation handle thatis added to the
urrent a
tive transa
tion. When the transa
tion moves to
ommit state,the kernel a
quires a journal des
riptor blo
k. This blo
k
ontains tags that map blo
kbu�ers to their �nal lo
ation on disk of the �le system (Figure 3.3). When a journaldes
riptor blo
k �lls up with tags, the kernel moves it to the journal together with the
orresponding blo
k bu�ers. The kernel allo
ates additional journal des
riptor blo
ks asneeded for ea
h transa
tion.For ea
h blo
k bu�er that will be journaled, the kernel allo
ates a separate bu�erhead spe
i�
ally for the I/O needs of journaling. Additionally, the kernel
reates anauxiliary stru
ture
alled journal head that asso
iates the blo
k bu�er with the respe
tivetransa
tion. So, as depi
ted in Figure 3.6, for ea
h journal blo
k bu�er there is (i) a bu�erhead that spe
i�es the respe
tive blo
k number in the journal and, (ii) a journal headthat points to the
orresponding transa
tion.In general, the bu�er head of a journaled blo
k bu�er points to the original
opy ofthe blo
k bu�er. However, if this blo
k bu�er is going to be used
on
urrently by anothertransa
tion, then the kernel
reates in memory a new
opy of the blo
k bu�er for thejournal I/O transfer needs. When all the log re
ords of a transa
tion have been safelywritten to the journal, the system allo
ates and syn
hronously writes to the journal a�nal
ommit blo
k that states the transa
tion has
ommitted su

essfully.28

Journal Head

Buffer Head

Buffer Page

offset in page

Disk

block number
...

...Figure 3.6: Two spe
ial stru
tures, a bu�er head and a journal head, need to be allo-
ated for ea
h blo
k bu�er that is going to be journaled. The bu�er head spe
i�es therespe
tive blo
k number in the journal, while the journal head points to the
orrespondingtransa
tion.3.3 Che
kpoint Poli
yObviously, there is a limited amount of spa
e in the journal, and this spa
e needs to bereused. Besides,
ommitted transa
tions that have all their blo
ks written to the �nalon-disk lo
ation, no longer need to be kept in the journal. The pro
ess of ensuring that ase
tion of the log is
ommitted fully to disk, so that this area
an be re
laimed, is knownas
he
kpointing.The
he
kpointing pro
ess
ushes the metadata and data bu�ers of a transa
tion notyet written to their a
tual lo
ation on the disk, allowing the transa
tion to be safelyremoved from the journal. The journal
an have multiple
he
kpointing transa
tions,and ea
h
he
kpointing transa
tion
an have multiple bu�ers. The pro
ess
onsiders ea
h
ommitting transa
tion, and for ea
h transa
tion, it �nds the metadata bu�ers that needto be written to the �nal lo
ation on disk. Subsequently, all these bu�ers are
ushedin one bat
h. On
e all the transa
tions are
he
kpointed, their log is removed from thejournal.In parti
ular,
he
kpointing is initiated when the journal is being
ushed to the disk(e.g., unmount) or when a new handle is started. A new handle
an fall short of guaranteednumber of bu�ers, so it may be ne
essary to
arry out a
he
kpointing pro
ess in orderto release some spa
e in the journal. Espe
ially, a
he
kpoint pro
ess is triggered whenthe amount of free journal spa
e is between 1/4 and 1/2 of the journal size. In general,29

the size of the journal is a
on�gurable parameter in Ext3.
3.4 Re
overy Poli
yThe transa
tion
ommitting
ompletes when a transa
tion has
ushed all its re
ords to thejournal and has been marked as �nished. This is done for ea
h running transa
tion withina spe
i�ed time period by the kjournald kernel thread. Subsequently, the transa
tion
he
kpointing
ompletes when all the blo
ks of a
ommitted transa
tion have been movedto their �nal lo
ation on disk and the
orresponding transa
tion re
ords are removed fromthe journal.During re
overy, the �le system s
ans the log for
ommitted
omplete transa
tions;in
omplete transa
tions are dis
arded. Thus, if the system �nds log re
ords in the journalafter a
rash, it assumes that the unmount was unsu

essful and initiates a re
overypro
edure in three phases.PASS SCAN In the �rst phase, it �nds the last re
ord of the journal. From here, there
overy pro
ess knows whi
h transa
tions need to be replayed. The exa
t state ofthe journal is unknown sin
e the system does not know the point at whi
h the failureo

urred. The last transa
tion in the journal
an be either in the
he
kpointing orin the
ommitting state. A running transa
tion
annot be found, as it was only inmemory during the
rash. For
ommitting transa
tions, the updates made need tobe dis
arded. Thus, the system only
onsiders
ommitted transa
tions for replaying.PASS REVOKE During the se
ond phase, the kernel builds a hash table from therevoked blo
ks. These are blo
ks of
ommitted transa
tions that should not bewritten to their �nal disk lo
ation, be
ause they are obsoleted by later operations.This is important to know in order to prevent older journal re
ords from beingreplayed on top of newer data using the same blo
k. This table is used every timethat the system needs to �nd out whether a parti
ular blo
k should be replayed ondisk.PASS REPLAY In the third phase, the re
overy pro
ess writes to their �nal disk lo
a-tion the newest version of all the blo
ks that o

ur in
ommitted transa
tions, and30

are not present in the hash table of revoked blo
ks.If the system
rashes again before the re
overy �nishes, the same journal
an be reusedin order to
omplete the re
overy.
3.5 SummaryThe Ext3 �le system is a journaling extension to the standard Ext2 �le system on Linux.Summarizing, the write updates are initially re
orded sequentially in a separate area ofthe disk reserved for use as a journal. File system transa
tions whi
h
omplete have a
ommit re
ord added to the journal, and only after the
ommit is safely on disk may the�le system write the updates ba
k to their original lo
ation. During the re
overy phase,the in
luded blo
ks of a transa
tion
an either be replayed or dis
arded. A
he
kpointingpro
ess is needed to
ush the bu�ers of an already
ommitted transa
tion, that have notyet been written to their �nal lo
ation through the normal dirty page
ushing poli
y.Then, the transa
tion
an be safely removed from the journal.Journaling results in massively redu
ed time spent re
overing a �le system after a
rash, and is therefore in high demand in environments where high availability is impor-tant. In addition, syn
hronous writes
omplete faster sin
e they return as soon as thesequential log update
ompletes. Data journaling
an improve even more the responsetime of syn
hronous writes, but signi�
ant extra disk throughput on the journaling devi
eis in
urred due to the large volume of data written to the log.

31

Chapter 4
Ar
hite
tural Definitions

4.1 Design Goals4.2 Partial Writes4.3 Commit Poli
y4.4 Re
overy Poli
y4.5 SummaryIn this
hapter, we de�ne the design goals of our study and explain the general ar-
hite
tural de
isions taken before our prototype implementation. Initially, we dete
t thedesign ineÆ
ien
ies of existing journaling te
hniques that lead to unne
essary disk over-head on the journal devi
e. Then we propose a more eÆ
ient s
heme for the fast andreliable storage of multiple
on
urrent updates.
4.1 Design GoalsContemporary journaling �le systems mostly
are to maintain their metadata
onsisten
y.In order to provide high
onsisten
y guarantees, they only log metadata modi�
ations inthe journal. Nevertheless, two
ommonly used �le systems, Ext3 and Reiser FS, addition-ally support data journaling as a mount option.32

0 1 10 100

Request Size (KB)

0

1

10

100

1000

T
ot

al
 J

ou
rn

al
 T

ra
ff

ic
 (

M
B

)

Requirements

Data Journaling
Writeback
Ordered

Figure 4.1: We measure the amount of traÆ
 sent to the journal devi
e a

ording to thethree journaling modes. The total journal traÆ
 of data journaling is substantially higherin
omparison to the other two modes. Additionally, at request sizes lower than 4KB,data journaling in
urs traÆ
 that
hanges sublinearly as a fun
tion of the write rate. Thisis reasonable sin
e data journaling sends to the journal entire blo
ks rather than only thepart that is modi�ed by ea
h write operation.Comparisons a
ross di�erent journaling methods with general-purpose �le server traf-�
, have shown that either ordered data writing or data journaling may lead to betterperforman
e depending on whether the aggregate workload is sequential or random-a

ess[25℄. Parti
ularly, it was reported that data journaling improves the throughput of ran-dom I/O operations, but in
urs mu
h higher disk throughput than metadata journaling.This high
ost of data journaling originates from the signi�
ant volume of data that is sentto the log. When the journal �lls up with log re
ords, a
he
kpoint pro
ess is triggeredto syn
hronously write them to their �nal lo
ation, thus leading to further delay.Furthermore, �le system journaling allows syn
hronous writes to
omplete faster sin
ethey return as soon as the sequential log update
ompletes. In the parti
ular
ases thatboth data and metadata blo
ks are logged, the bene�t is higher, but this
osts signi�
antdisk overhead on the journaling devi
e. Unfortunately, the
ost of data journaling
an behigh even with small writes, sin
e for simpli
ity reasons, journaling te
hniques that sup-port data journaling, log the entire blo
ks being modi�ed rather than just their modi�edpart.In order to verify the signi�
ant overhead of data journaling, we examine the three33

mount options of Ext3 using periodi
 syn
hronous writes of varying request sizes. Thedi�eren
e in the amount of traÆ
 sent to the journal devi
e a
ross the three mountoptions of Ext3 is depi
ted in Figure 4.1, where the total disk traÆ
 is measured duringa time period of 5 minutes. We observe that the total journal traÆ
 of data journaling issubstantially higher in
omparison to the other two modes. Furthermore, we noti
e thatat request sizes lower than 4KB, whi
h is the default �le system blo
k size, data journalingin
urs traÆ
 that
hanges sublinearly as a fun
tion of the write rate. In parti
ular, datajournaling sends a large amount of traÆ
 to the journal for small writes regardless of thea
tual size of the write requests. This is reasonable sin
e data journaling sends to thejournal entire blo
ks instead of the a
tual newly written bytes.In the present study, we investigate the performan
e
hara
teristi
s of data journalingin the
ontext of syn
hronous writes that would be required among several situationsin
luding the reliable storage of in
oming streaming data. In order to lower the
ost ofdata journaling we introdu
e di�erential data journaling ; a new journaling mode wherea series of write modi�
ations
an be a

umulated in a single journal blo
k. Therefore,when the workload
onsists of many small writes we manage to redu
e substantially therequired journal throughput by avoiding to log a whole blo
k for ea
h data modi�
ation.
4.2 Partial WritesThe idea behind journaling is that an entire bat
h of updates
an be written to the �lesystem, but those updates do not take e�e
t until a �nal
ommit update is made on thedisk. In order to a
hieve this, the �le system must keep both the old and the new
ontentsof the updated data somewhere on disk until the �nal
ommit. The updated
ontents arestored in the journal on disk, where for ea
h modi�ed �nal blo
k exists a
orrespondingjournal blo
k.Therefore, in order to manage the partial data blo
k modi�
ations we need to introdu
ea new type of journal blo
k. This new type is responsible for �tting as many partialmodi�
ations as possible. In
ase that it runs out of spa
e, a new one
an be allo
ated inits pla
e. 34

4.3 Commit Poli
yDuring the
ommit poli
y, dirty bu�ers are written to the journal followed by a
ommitre
ord, that states that the pro
ess has
ompleted su

essfully. As we have alreadyexplained, data journaling logs full blo
ks instead of the new bytes written by ea
h update,and thus invokes unne
essary disk traÆ
, even in
ases of small writes. Ideally, we shouldonly journal the modi�ed part of individual blo
ks, and this
an be a
hieved throughthe proposed new journal blo
k type. Through the use of this blo
k we
an substantiallyredu
e the total number of blo
ks that need to be logged and,
onsequently we
an improve
onsiderably the journal devi
e throughput.
4.4 Re
overy Poli
yDuring the re
overy phase, the journal is initially s
anned for in
omplete
ommittedtransa
tions. If su
h transa
tions exist, they are replayed in the �le system. Throughthis pro
ess whole blo
ks are read from the journal and, hen
e they
an easily be writtenba
k to their �nal on-disk lo
ation.However, our approa
h is more
ompli
ated than the default poli
y. In parti
ular,some journal blo
ks in
lude updates from more than one blo
k modi�
ations, and inorder to be applied, the
orresponding unmodi�ed blo
ks need to be read from the disk.Thus, in
ase of partial modi�
ations, every original blo
k should be �rst read from the�nal on-disk lo
ation, and then written ba
k, updated with the di�eren
e retrieved fromthe
orresponding journal re
ord. Nevertheless, when a blo
k is retrieved from the journaland it is either a metadata or a fully modi�ed blo
k, then the default re
overy pro
ess
an be applied.Furthermore, the su

essful
ompletion of the re
overy phase imposes the need forauxiliary information. The required information, that is known and stored for ea
h journalblo
k at the
ommit time, should in
lude:

• the number of the
orresponding blo
k in the �le system,
• the size and the starting o�set of the modi�
ation inside the original disk blo
k,35

• anything else that
ould be useful during the replay of the partial updates from thejournal blo
ks to their �nal lo
ation.Subsequently, this information
an be retrieved during the re
overy pro
ess and, thus helpthe replay of the partial modi�
ations.
4.5 SummaryAs it is
lear from the above analysis, traditional data journaling s
hemes
an exhibithigh and unne
essary disk traÆ
, as whole blo
ks are written to the journal, regardless ofthe modi�
ation size. In this thesis, we propose an advan
ement of the traditional datajournaling approa
h, where the deltas (
hanges) to data blo
ks are journaled rather thanthe entire data blo
ks themselves. Our main idea is to a

umulate a number of writemodi�
ations in a few single journal blo
ks, named partial journal blo
ks. Subsequently,during the un
ommon
ase of re
overing after a
rash, we
an easily re
over the originalblo
ks after applying to them the
orresponding modi�
ations from the partial blo
ks.

36

Chapter 5
Prototype Implementation

5.1 Partial Blo
ks5.2 Journal Heads5.3 Tags5.4 Commit Poli
y5.5 Re
overy Poli
yA

ording to previous resear
h, the journaling of both data and metadata improvesthe throughput of random I/O operations, while at the same time in
urs mu
h higherdisk overhead than the metadata-only journaling modes. In the rest of this
hapter, weoutline the approa
h that we follow in order to keep low the overhead of data journalingand at the same time retain its signi�
ant performan
e gains. In parti
ular, we des
ribethe implementation of di�erential data journaling ; a variation of the full data journalingmode of Ext3. Even though we
onsider our approa
h quite general, in our des
riptionwe use the previously introdu
ed terminology of Ext3, over whi
h we have implementedour prototype.
37

JDJS M/D JCJC JD M/DPD

Journal On-Disk Layout

Journal Descriptor Block

Journal Commit Block

JS Journal Superblock

JD

JC

Journal Metadata/Data BlockM/D

Journal Partial Data BlockPD

PD M/D PD

Figure 5.1: In di�erential data journaling, the on-disk layout of the journal has one newfeature; the partial data blo
ks. These blo
ks are used to a

umulate the modi�
ationsof multiple write operations in a redu
ed number of journal blo
ks.5.1 Partial Blo
ksThe original journaling pro
ess of Ext3 transfers a full
opy of ea
h modi�ed blo
k bu�erfrom memory to journal. This is true for both data and metadata blo
ks when theyare journaled a

ording to the mount options of the �le system. Thus, even a single bit
hange in a bitmap results in the entire bitmap blo
k being logged. In
ase of small writesthat modify only a part of a blo
k bu�er, the logging of full blo
ks
an have a multipliere�e
t at the throughput required by the journal devi
e, as we have already observed inFigure 4.1. The a
tual waste in journal devi
e throughput depends on the fra
tion of theblo
k bu�er that is left unmodi�ed by ea
h write operation. Ideally, only the modi�edpart of the blo
k should be written to the journal. Subsequently, at the un
ommon
asethat the re
overy pro
ess is initiated, the original blo
k should be read from the �nalon-disk lo
ation and then written ba
k, updated with the di�eren
e retrieved from the
orresponding journal re
ord.In order to implement di�erential data journaling, we introdu
e a new type of journalblo
k that we use to a

umulate the modi�
ations of data blo
ks from multiple writeoperations (Figure 5.1). We
all this type of journal blo
k partial, to di�erentiate itfrom full blo
ks, whi
h are blo
ks fully modi�ed by a single write operation. Partialblo
ks are only used to gather the partial updates of data blo
ks, rather than metadatamodi�
ations. In summary, the
ommit pro
ess treats data blo
ks di�erently than themetadata ones, while two di�erent types of data blo
ks are distinguished; partial thatstore writes smaller than the default blo
k size, and non-partial that
orrespond to fully38

written bu�ers.
5.2 Journal HeadsAs we have already explained in paragraph 3.2, for ea
h journal blo
k bu�er there is a
orresponding journal head that asso
iates the blo
k with a transa
tion. Additionally,the journal head points to a bu�er head that links the bu�er to a bu�er page and otherinformation required for the transfer to the journal devi
e.For writes that only modify part of a blo
k, we expanded the journal head with twoextra �elds, the o�set and the length, respe
tively, of the partially modi�ed blo
k pointedto by the bu�er head. As we see below, we make use of the journal head in order toprepare the blo
ks that we a
tually send to the journal.
5.3 TagsAs the
ommit pro
ess is started, a bu�er for the journal des
riptor blo
k is allo
ated. Indata journaling, the transa
tion logs both data and metadata modi�
ations. The journaldes
riptor blo
k
ontains a list of �xed-length tags, where ea
h tag
orresponds to onewrite. Originally, ea
h tag
ontains two �elds:

• The �nal disk lo
ation of the modi�ed blo
k.
• Four
ags for journal-spe
i�
 properties of the blo
k.In our design, we introdu
e three new �elds in ea
h tag:
• A
ag to indi
ate whether the
orresponding blo
k is partially modi�ed or not.
• The length of the new bytes written in the partial blo
k.
• The starting o�set in the data blo
k of the �nal disk lo
ation.This data is persistent and
an be used for re
overy if a failure o

urs.

39

HEADER

TAG

Journal Descriptor
Block

Partial Blocks

...

TAG

TAG

..
.

DATA DIFF

DATA DIFF

DATA DIFF

Full Blocks

- block # of final
location on disk

- offset inside page
- length in bytes

TAG

DATA DIFF

...

TAG

Buffer Page

Block Buffer
New Data

Unmodified DataFigure 5.2: In the di�erential data journaling we use a new type of journal blo
ks, thepartial journal blo
ks, to a

umulate the data modi�
ations from multiple writes. Fulljournal blo
ks are still used for metadata or blo
ks that are
ompletely modi�ed by writeoperations. The des
riptor's tags are used to keep the
orresponden
e between �nallo
ation and journal blo
ks, and also to des
ribe the partial modi�
ations inside thepartial journal blo
ks.On
e the tags �ll up a journal des
riptor blo
k, the des
riptor blo
k and all the
orre-sponding data and metadata blo
ks are written
onse
utively to the journal. Furthermore,additional journal des
riptor blo
ks are allo
ated as required by the transa
tion.
5.4 Commit Poli
yThe
ommit pro
ess of di�erential data journaling di�ers from the original approa
h inthat it makes further use of partial blo
ks. In parti
ular, a new partial data blo
k is allo-
ated when a new transa
tion is started and it is used to a

umulate all the modi�
ationswith size smaller than the default �le system blo
k size. The journal des
riptor blo
kstores the mapping of ea
h journal blo
k to its a
tual on-disk lo
ation in the form of tags.In our prototype, it additionally in
ludes tags that des
ribe the partial writes (Figure5.2). If a write updates part of a data blo
k, the modi�ed bytes are
opied to the
urrent40

partial blo
k bu�er of the transa
tion. When the available spa
e of a partial data blo
kis not suÆ
ient to store a new in
oming update, then a new partial blo
k is allo
ated toserve the next partial modi�
ations. In
ase that a write system
all modi�es a metadatablo
k or fully writes a data blo
k, we log the
orresponding full blo
k instead.We might still need to
reate a
opy of the full blo
k in order to freeze the versionthat we send to the journal, if the blo
k is going to be modi�ed shortly by anothertransa
tion. On
e all data and metadata is on safe storage, the transa
tion needs to bemarked as
ommitted so that it
an be guaranteed that all its updates are safe in thejournal. Eventually, the
ommit pro
ess
ompletes right after the journal
ommit blo
kis syn
hronously written to the log.
5.5 Re
overy Poli
yDuring the re
overy pro
ess, the data modi�
ations are retrieved from the journal, andare subsequently applied to the blo
ks
orresponding to the �nal on-disk lo
ation.Initially, when a des
riptor blo
k is read from the log, we extra
t its in
luded tags.Ea
h tag
an des
ribe either a partial or a full log blo
k. When we meet the �rst tag thatdes
ribes a partial write modi�
ation, the next log blo
k is retrieved from the journal,and from that point on it is used as the partial blo
k of the
urrent transa
tion. Sin
ethe data of
onse
utive writes are pla
ed next to ea
h other in the partial blo
k, their
orresponding starting o�sets
an be dedu
ed from the length �eld in the tags. In
asethat the length �eld of a tag ex
eeds the end of the
urrent partial blo
k, the next blo
kis read from the journal and be
omes the new partial blo
k of the transa
tion. We usethe starting o�set tag �eld to read into a kernel bu�er the disk blo
k that we will modifyin order to apply the data modi�
ations.However, if the partial blo
k
ag is not set, then the next blo
k is retrieved from thejournal, whi
h is eventually treated as a metadata or a full data blo
k. Obviously, thefull blo
k is dire
tly written to the �nal disk lo
ation without reading �rst the previousversion from the disk.

41

Chapter 6
Experimental Results

6.1 Experimentation Environment6.2 Streaming Workloads6.3 The Postmark Ben
hmark6.4 Re
overy Time6.5 Other IssuesIn the present
hapter, initially, we introdu
e the hardware
on�guration that we usedin our performan
e measurements. Afterwards, we study the requirements and perfor-man
e of our di�erential data journaling implementation with respe
t to the ordered, thewriteba
k and the default data journaling modes of Ext3, and we graphi
ally present ourexperimental results.
6.1 Experimentation EnvironmentWe implemented the di�erential data journaling in the Linux kernel version 2.6.18. Weevaluated our prototype implementation using x86-based server nodes running the DebianLinux distribution. For the majority of the experiments we used nodes with a quad-
ore2.66GHz pro
essor, 2GB RAM, and two SAS 15KRPM disks, ea
h of 300GB storage42

apa
ity and 16MB internal bu�er. Additionally, for one set of the experiments, a 2.33GHzquad-
ore pro
essor and two SATA 7.5KRPM disks, ea
h of 250GB and 16MB on-disk
a
he, were used.In the general
ase, two separate disks are used; one for the journal and another onefor the a
tual �le system stru
tures, ex
ept for one
ase that is explained later in this
hapter. Furthermore, we use the default �le system parameters of Linux that set the pageand the blo
k size to 4KB. We also keep the default journal size of 128MB, but manuallytune for best performan
e the writeba
k period and expiration period of the dirty page
ush pro
ess. In our measurements, we assume that write operations are followed by thefsyn
 system
all for syn
hronous
ompletion.Previous resear
h reports that, by default, a syn
hronous write operation returns assoon as the data rea
hes the on-disk write
a
he, rather than the storage media. Thisbehavior renders the system unreliable unless we disable the on-disk bu�er
a
he or use
ontrollers with battery-ba
ked
a
he [23℄. In most of our experiments, we kept enabledthe disk write
a
he, whi
h essentially emulates devi
es with battery-ba
ked memory.However, we also evaluated our system with the write
a
hes disabled. As we explain,the disk write
a
he adds no bene�t to streaming workloads but leads to signi�
antperforman
e advantages in traditional appli
ations.In order to study the
hara
teristi
s of our system and evaluate our implementation,we did extensive performan
e measurements. In parti
ular, the �rst set of experiments isbased on a mi
roben
hmark that we have built for the needs of a streaming workload eval-uation. This ben
hmark
onsists of multiple threads that periodi
ally apply syn
hronouswrites at a spe
i�
 rate. In our evaluation, we examine the disk throughput requirementsand the average laten
y of ea
h write. During the next set of experiments, we used thePostmark ben
hmark to measure performan
e in an environment of temporary small �lesthat is typi
al for ele
troni
 mail, newsgroups and web-based
ommer
e [20℄. Thus, weinvestigate the bene�t of data journaling in appli
ations other than streaming. Finally,we performed a series of experiments in order to examine the possible overhead of ourprototype implementation. Therefore, we measure the time needed to re
over the sys-tem to a
onsistent state after a
rash, the CPU overhead that our approa
h in
urs andperform some other experiments that are presented in the rest of this
hapter.At last but not least, our prototype implementation of di�erential data journaling is43

Table 6.1: Various rates used from di�erent types of streams.Stream Type Estimated Average RateEnvironmental Measurements (tens of bits - hundreds of Kbits)/se
(humidity, temperature et
.)Audio Streams (hundreds of bits - hundreds of Kbits)/se
(telephone quality, mp3 et
.)Video Streams (tens of Kbits - tens of Mbits)/se
(videophone quality, mpeg et
.)being used as a working environment over a period of three and a half months. Thesystem has demonstrated a stable behavior during this entire period.
6.2 Streaming WorkloadsIn our �rst set of experiments, we evaluate the bene�ts and requirements of di�erentialdata journaling in a �le system. We
onsider the
ase where the in
oming data from a largenumber of
on
urrent streams is stored syn
hronously on the same disk. A
tually, throughthe use of mi
roben
hmark that we developed, we emulate the behavior of streamingworkloads, where massive numbers of streams need to be stored syn
hronously at thesame disk fa
ility.In digital multimedia, the data rate, or else bitrate, represents the amount of informa-tion of a re
ording that is stored per unit of time. Various fa
tors
an in
uen
e a stream'srate, su
h as the
ompression s
heme that is used or the nature of the parti
ular steamingappli
ation. For instan
e, some sensors may send video and audio streams of high qual-ity at high rates, while others may generate environmental measurements at mu
h lowerrates. In Table 6.2, we present the range of di�erent rates that are used a

ording to thetype of ea
h stream.Our mi
roben
hmark tool allows us to examine the performan
e
hara
teristi
s ofstreams with di�erent rates, while varying the degree of
on
urren
y. So, in order topress the system, we in
rease the total number of streams between the di�erent runs. At44

ea
h exe
ution, a sequen
e of write updates is syn
hronously applied to the system fora spe
i�ed amount of time, while a

ording to the stream rate di�erent re
ord sizes areused. Typi
ally, a low-rate streaming workload implies many small syn
hronous writesapplied to the same storage media, while higher-rate streams typi
ally
orrespond tolarger ones. In parti
ular, the rate of a low-rate streaming workload varies from tens ofbits up to few tens of kilobits per se
ond. Therefore, the
orresponding write request sizeis mu
h smaller than the default Linux kernel blo
k size. On the other hand, high-ratestreams send data over megabits per se
ond, thus leading to request sizes that range fromhundreds of kilobytes and on.6.2.1 Flushing Poli
yIn streaming workloads, even though ea
h stream simply appends data sequentially tothe end of a separate �le, the aggregate traÆ
 is random. However, data journaling safelystores data on the journal at sequential throughput and lazily transfers it to the �nallo
ation at a rate that we
an
ontrol. Parti
ularly, we manually tune for best performan
ethe writeba
k period and the expiration period of the dirty page
ush pro
ess, a

ording tothe rate and the number of the streams that are involved in ea
h experiment's exe
ution.The writeba
k period is used to de�ne when the pd
ush daemons wake up and write olddata out to disk, while the expiration period de�nes when dirty data is old enough tobe eligible for writeout by the pd
ush daemons. Data whi
h has been dirty in memoryfor longer than this interval will be written out next time a pd
ush daemon wakes up.In Linux kernel, the writeba
k period is by default set to 5 se
onds and the expirationperiod to 30 se
onds.Ideally, in
ase of low-rate streams we would like to a

umulate multiple write updatesin memory for a long period of time, in order to bene�t as mu
h as possible from thebat
hing of related writes. We a
hieve this by delaying the awakening of pd
ush daemonsand in
reasing both the default expiration and writeba
k intervals. Nevertheless, thenew time intervals should be
arefully sele
ted, to avoid over�tting either the journaldevi
e, or the memory. In general, when there is no available spa
e left in the journalor the memory, the subsequent writes should blo
k, waiting for the journaled updates tomove from memory to their �nal on-disk lo
ation, through either the
he
kpointing or the45

Table 6.2: Flushing Poli
y - Stream Rate of 1KbpsNumber of Writeba
k Period Expiration PeriodStreams (in se
onds) (in se
onds)100 10 300500 10 3001000 10 1502000 10 603000 1 304000 1 305000 1 56000 1 57000 1 58000 1 5kernel's dirty page
ush pro
ess. For this reason, we
hoose the expiration interval to belong enough for low-rate streams, but we wake up the pd
ush daemons rather frequentlyto
lean the memory from old updates. Additionally, when the number of low-rate streamsin
reases, so does the total amount of data written and hen
e, we lessen the expirationinterval to avoid the
he
kpointing and the dirty page
ush pro
ess. Tables 6.2 and 6.3present the parti
ular tuning of the dirty page
ushing parameters that we use in ourmeasurements, for low-rate streams of 1Kbps and 10Kbps respe
tively.Multiple high-rate streams generate large volumes of data that need to be stored onTable 6.3: Flushing Poli
y - Stream Rate of 10KbpsNumber of Writeba
k Period Expiration PeriodStreams (in se
onds) (in se
onds)50 10 300100 5 100500 5 601000 1 301500 1 1046

Table 6.4: Flushing Poli
y - Stream Rate of 1MbpsNumber of Writeba
k Period Expiration PeriodStreams (in se
onds) (in se
onds)10 5 2025 1 550 1 375 1 1100 1 1the same disk fa
ility. The bene�t of bat
hing together su
h updates is insigni�
antdue to their size. Therefore, we don't need to keep them in memory for long time. Inthese
ases, we
an either use the default expiration and writeba
k periods, or slightlyredu
e them a

ording to the generated amount of data. On
e again, when the number ofstreams in
reases we
an redu
e the intervals even more, in order to prevent the memorystru
tures from getting full. Table 6.4 presents the
on�guration of the writeba
k andexpiration periods in
ase of high-rate streams of 1Mbps.Finally, sin
e we fsyn
 every individual write, we use the default journal
ommitinterval of 5 se
onds to wake up the kjournald daemon, as it eventually does not in
uen
eour measurements.6.2.2 Journal TraÆ
In Figure 6.1 we measure the journal devi
e throughput a
ross di�erent numbers ofstreams and rates of 1Kbps, 10Kbps and 1Mbps. In Figure 6.1(a), we observe that whenthe number of streams rea
hes several thousands, data journaling sends around 30MB/sof log re
ords to the journal. Instead, di�erential data journaling keeps the traÆ
 lowerthan 5MB/s. This behavior is less intense as the stream rate in
reases from 1Kbps to10Kbps (Figure 6.1(b)), and in fa
t the two data journaling modes overlap for streams of1Mbps (Figure 6.1(
)). As expe
ted, in all three
ases the two metadata-only journalingmodes keep the overhead of the journal devi
e at the low levels, sin
e only a small amountof information is �nally logged.
47

0 2000 4000 6000 8000

Number of Streams

0

5

10

15

20

25

Jo
ur

na
l T

hr
ou

gh
pu

t
(M

B
/s

)

1 Kbps/stream

Data Journaling
Diff Data Jrn
Writeback
Ordered

(a) 0 500 1000 1500

Number of Streams

0

5

10

15

20

25

Jo
ur

na
l T

hr
ou

gh
pu

t
(M

B
/s

)

10 Kbps/stream
Data Journaling
Diff Data Jrn
Writeback
Ordered

(b)

0 20 40 60 80 100

Number of Streams

0

5

10

15

20

25

Jo
ur

na
l T

hr
ou

gh
pu

t
(M

B
/s

)

1 Mbps/stream
Data Journaling
Diff Data Jrn
Writeback
Ordered

(
)Figure 6.1: We examine the journal devi
e throughput a
ross di�erent numbers of streamsand rates of 1Kbps, 10Kbps and 1Mbps. For low-rate streams, the disk overhead ofdi�erential data journaling is
omparable to that of ordered and writeba
k modes, unlikethe default data journaling mode whi
h leads to journal devi
e throughput by severalfa
tors higher. Nevertheless, at high rates, di�erential data journaling overlaps with thedefault data journaling mode in terms of journaling throughput.In general, we observe that at low rates, the journal throughput of di�erential datajournaling is
lose to that of ordered and writeba
k modes. The
orresponding throughputin the
ase of the default data journaling mode is several fa
tors higher. Parti
ularly, alow-rate streaming workload implies many small syn
hronous writes applied to the samestorage media, while higher-rate streams typi
ally
orrespond to larger ones. In the
ase oflow-rate streams, di�erential data journaling manages to redu
e substantially the journalthroughput. This is a
hieved through the a

umulation of multiple write updates into a48

single journal blo
k. On the other hand, default data journaling in
urs signi�
ant journaloverhead be
ause of the full-blo
k logging s
heme. Even though a
orresponding in
reasein memory
opy a
tivity is likely, this is hardly a problem as we see later. Therefore, we
an reliably store the data of low-rate streams without ex
essive journaling
ost.Nonetheless, at high rates, di�erential data journaling overlaps with the default datajournaling mode in terms of journaling throughput, while the required journal disk over-head of metadata-only modes remains signi�
antly low. As the total amount of datawritten in
reases, the bene�t of partial writes be
omes nominal and large volumes of dataare �nally sent to the journal.6.2.3 Final Lo
ation TraÆ
In Figure 6.2 we measure the disk throughput for the update of the �nal lo
ation on the �lesystem. We noti
e that the ordered and writeba
k methods, that only journal metadata,in
ur
onsistently higher throughput to the �nal disk lo
ation, espe
ially at low-ratestreams. Besides, metadata-only journaling allows syn
hronous updates to
omplete by�rst for
ing data blo
ks to their �nal on-disk lo
ation, before the
orresponding metadatablo
ks are syn
hronously written to the journal. Instead, the two data journaling modesappend both the metadata and data updates syn
hronously, but eÆ
iently to the journal,and keep the
orresponding data blo
ks in memory for some time. There, ea
h blo
k hasthe
han
e to re
eive the updates from multiple writes, before it is transferred to its �nallo
ation on disk. Furthermore, we tune the parameters of the dirty page
ush pro
ess inorder to gain as mu
h as possible from the opportunity of bat
hing. Hen
e, for low-ratestreams we open enough the expiration interval and allow many small modi�
ations ofsingle blo
ks to be a

umulated.On the other hand, for high rate streams, we have redu
ed
onsiderably the expirationand the writeba
k periods, in order to prevent the journal devi
e from be
oming full.Generally, when the journal �lls up, a
he
kpointing pro
ess is initiated and all the sub-sequent writes are blo
ked. However, this tuning, in the long run, prevents us to bene�tfrom the bat
hing opportunities o�ered during small writes. Thus, the same number ofwrite updates are applied to the �nal on-disk lo
ation, regardless of the journaling mode.
49

0 2000 4000 6000 8000

Number of Streams

0

5

10

F
ile

 S
ys

te
m

 T
hr

ou
gh

pu
t

(M
B

/s
) 1 Kbps/stream

Writeback
Ordered
Data Journaling
Diff Data Jrn

(a) 0 500 1000 1500

Number of Streams

0

5

10

F
ile

 S
ys

te
m

 T
hr

ou
gh

pu
t

(M
B

/s
) 10 Kbps/stream

Writeback
Ordered
Data Journaling
Diff Data Jrn

(b)

0 20 40 60 80 100

Number of Streams

0

5

10

F
ile

 S
ys

te
m

 T
hr

ou
gh

pu
t

(M
B

/s
) 1 Mbps/stream

Writeback
Ordered
Data Jrn
Diff Data

(
)Figure 6.2: We examine the throughput of the �le system devi
e a
ross di�erent numbersof streams and rates. For low-rate streams, the two metadata-only journaling modesrequire up to several fa
tors higher throughput than the two data journaling modes.Nevertheless, in
ase of high-rate streams, the �nal lo
ation disk overhead is
omparablea
ross all the four modes.Summarizing, at low rates, the writeba
k and ordered modes tend to require up toseveral fa
tors higher throughput than the two data journaling modes. We attribute thisbene�t of the two data journaling modes to the aggregation of multiple writes that updatethe same blo
k. Sin
e journaling keeps ea
h update safe on disk, dirty pages
an remainfor a
on�gurable time period in memory before they are
ushed to the �le system disk.Nevertheless, in
ase of high-rate streams, the �nal lo
ation disk overhead is
omparablea
ross all the four modes sin
e, due to the large amount of data written, there is no bene�tfrom bat
hing together related writes. 50

0 2000 4000 6000 8000

Number of Streams

1

10

100

1000

10000

W
ri

te
 L

at
en

cy
 (

m
s)

1 Kbps/stream

Ordered
Writeback
Data Jrn
Diff Data Jrn(a) 0 500 1000 1500

Number of Streams

1

10

100

1000

10000

W
ri

te
 L

at
en

cy
 (

m
s)

10 Kbps/stream

Ordered
Writeback
Data Jrn
Diff Data(b)

0 20 40 60 80 100

Number of Streams

1

10

100

1000

10000

W
ri

te
 L

at
en

cy
 (

m
s)

1 Mbps/stream

Ordered
Data Journaling
Diff Data Jrn
Writeback

(
)Figure 6.3: We measure the average write laten
y of syn
hronous updates at di�erentrates and streams. Syn
hronous writes are usually avoided be
ause they are known toin
ur high laten
y in typi
al �le systems. However, data journaling modes
an bene�tfrom the sequential journal's throughput that eventually allows the system to safely andqui
kly store the in
oming data.6.2.4 Write Response TimeThe bene�ts of the two data journaling modes are even more impressive, when we
onsiderthe average laten
y of the syn
hronous writes, as depi
ted in Figure 6.3. In order todemonstrate the di�eren
es a
ross the di�erent modes, we use logarithmi
 s
ale at they axis. As we move from higher to lower rates, the write laten
y of the ordered andwriteba
k modes appears from several fa
tors up to orders of magnitude higher thanthose of the two data journaling modes. In parti
ular, in Figure 6.3(a), we see that the51

ordered and writeba
k modes in
ur almost two orders of magnitude higher laten
y withrespe
t to the other two modes, when serving large numbers of low-rate streams. Thus, awrite operation that
ompletes in tens of millise
onds with data journaling, takes as highas 10 se
onds with ordered mode.Data journaling modes for
e write updates syn
hronously to the journal. Therethe written transa
tions are appended sequentially and eÆ
iently. However, in
ase ofmetadata-only journaling modes, data is
ushed syn
hronously to the �xed lo
ation beforethe
orresponding metadata blo
ks are syn
hronously written to the journal. Espe
ially,when we have large numbers of streams, data blo
ks are distributed a
ross random lo
a-tions on disk, and hen
e in
ur seeking overhead and rotational laten
y when data writesare for
ed to the �nal lo
ation.Su
h a high write laten
y in the default Ext3 journaling mode, the ordered mode, raisesissues about the ability of the system to qui
kly and safely store in
oming measurements.This is
ru
ial, espe
ially at
riti
al time periods before physi
al
atastrophes, when thearriving data matter the most. Syn
hronous writes are usually avoided be
ause they areknown to in
ur high laten
y in typi
al �le systems. This is true even when the write
a
he of the disk is enabled. Nevertheless, the sequential throughput of the journal hasa
onsiderable impa
t to the ability of the system to store safely the in
oming data in ashort period of time.6.2.5 CPU UtilizationA possible overhead of our prototype implementation is the CPU
ost that is needed,so that multiple data modi�
ations
an be a

umulated in single journal blo
ks. This isa
hieved through the memory
opy of the modi�ed blo
k parts to the appropriate journalpartial blo
k.In Figure 6.4 we evaluate the impa
t of the four journaling modes to the total CPUutilization of the system. We observe that the system utilization always remains less than10%. At both low and high rates, the CPU remains mostly idle, whether doing nothingor waiting for the I/O operations to �nish. Therefore, the pro
essing
ost of di�erentialdata journaling remains
omparable to that of the other three mount modes.Consequently, the a

umulation of multiple write updates in one blo
k in di�erential52

20

40

60

80

100

U
ti

liz
at

io
n

(%
)

Total CPU

Ordered

W
riteback

Data Jrn

Diff Data

1Kbps

Ordered

W
riteback

Data Jrn

Diff Data

1Mbps

Idle

Idle Wait

System

User

Figure 6.4: We investigate the total CPU utilization of the system a
ross the di�erentjournaling modes. In all the four
ases, at both low and high rates, the CPU remainsmostly idle, whether doing nothing or waiting for the I/O operations to �nish. Thus, theextra CPU
ost of di�erential data journaling due to memory
opy operations is nominal,in
omparison to the other three modes.data journaling does not
reate an overhead, for the memory
opy, mu
h higher than theother modes.6.2.6 Mixed WorkloadFinally, a number of experiments with workloads that
onsist of mixed set of streamswith di�erent rates were performed and lead to measurements similar to the above. Theresults of the mixed workload tend to approa
h respe
tively the behavior of streams withlow or high rate, depending on the prevalen
e of the
orresponding type of stream in theworkload.
53

0 5000 10000 15000

Request Size (Bytes)

0

100

200

300

400

500

T
ra

ns
ac

ti
on

s/
s

Postmark

Diff Data Jrn
Data Journaling
Writeback
Ordered

Figure 6.5: We evaluate the Postmark ben
hmark results. Both data and di�erentialdata journaling modes perform several fa
tors better from the metadata-only journalingmodes. In parti
ular, due to low write laten
y, data journaling modes manage to serve alarger number of transa
tions per se
ond.6.3 The Postmark Ben
hmarkIn Figure 6.5, given the very en
ouraging results that we obtained for workloads with low-rate streams, we evaluate data journaling with Postmark. This ben
hmark is typi
allyused to study the performan
e of small writes [17℄. It is designed by Je�rey Kat
her inorder to repli
ate the small �le workloads seen in ele
troni
 mail, netnews, and web-based
ommer
e under heavy load.We measure the a
hieved transa
tion rate with a workload of 10000 transa
tions over500 �les, and a mix of read, append,
reate and delete �le operations. We run Postmarkwith 100 threads and �le ranges from half kilobyte to a hundred kilobyte.The a
tualduration of the experiment varies depending on the eÆ
ien
y of the requested operations.We run the ben
hmark in a range of blo
k sizes from 128 bytes to 16KB. During ourexperimental measurements, we use the kernel's default dirty page
ushing parametersthat are presented in Table 6.5. In Figure 6.5 the x axis refers to the request size of theread and write operations, while the y axis is the number of transa
tions that
an beserved per se
ond.Our main observation is that the two data journaling modes perform several fa
torsbetter than the metadata-only journaling modes. The performan
e improvement is higherfor small blo
k sizes. However, even with the blo
k size equal to 16KB, the data journaling54

Table 6.5: Flushing Poli
y - PostmarkWriteba
k Period Expiration Period Commit Interval5 se
onds 30 se
onds 5 se
ondsmodes double the measured transa
tion rate. This behavior
omes from the low writelaten
y that the two data journaling modes in
ur, in
ontrast to the metadata-only modes.Thus, within the same time period, data and di�erential data modes manage to serve mu
hmore transa
tions than the other modes.Consequently, if somebody uses di�erential data journaling to keep low the extrajournaling throughput, one
an improve substantially the performan
e of appli
ationsthat need syn
hronous small writes.
6.4 Re
overy TimeIn a di�erent experiment, we evaluate the ability of the system to re
over qui
kly aftera system
rash that leads to log re
ords appearing in the journal during the reboot. Inthis setting, we have 100 threads that apply 100 write updates with request size 125bytes. Furthermore, we disable the writeba
k and expiration time periods of the pd
ushkernel thread, in order to ensure that the transa
tions
ommit to the journal, but don't
he
kpoint the updates to the �nal lo
ation on disk. Then we
ut the power to thesystem. During the reboot, we measure, within the kernel, the time period of the �lesystem re
overy.In Figure 6.6, we breakdown the total re
overy a
ross the three passes that s
an thetransa
tions, revoke blo
ks, and replay the
ommitted transa
tions. We noti
e that thes
anning period for di�erential data journaling is mu
h lower than that of default datajournaling and a
tually similar to those of ordered and writeba
k. This is reasonable,due to the new type of journal blo
ks that we introdu
ed, the partial data blo
ks. Thus,gathering small updates into a small number of journal blo
ks, di�erential data journalinglogs mu
h fewer blo
ks than default data journaling, whi
h for ea
h update sends a fullblo
k to the journal. Instead, in the metadata-only journaling modes, the amount ofjournaled blo
ks is even smaller sin
e data blo
ks are not logged at all.55

100

200

300

400

500

600

700

M
ill

is
ec

on
ds

Recovery Time

Ordered

W
riteback

Data Jrn

Diff Data

Replay
Revoke
Scan

Figure 6.6: We measure the re
overy time a
ross the four journaling mount modes. Weobserve that di�erential data journaling requires mu
h lower time for the s
an pass thanthe default data journaling mode, while the replay pass takes
omparable time a
ross thetwo modes.For the revoke phase, as expe
ted, the time period needed is
omparable to all thefour modes. During the last phase, in di�erential data journaling extra blo
k reads fromthe disk are required so that the modi�
ations from the journal partial blo
ks
an beapplied to the
orresponding �nal disk blo
ks during replay. On the other hand, in thedefault data journaling
ase, this is avoided sin
e whole blo
ks are logged, and duringreplay these blo
ks
an dire
tly repla
e the existing �nal disk blo
ks without �rst readingthem. Nonetheless, despite the extra blo
k reads involved in the replay of di�erential datajournaling, the time the replay phase takes ends up
omparable to that of the default datajournaling.
6.5 Other IssuesSin
e the ordered mode does not take full advantage of the separate journal devi
e, wealso investigate the
ase where we use the two SAS disks in RAID0
on�guration withhardware
ontroller support. For the
on�guration of this set of experiments, we use asjournal a normal �le within the same �le system devi
e rather than a separate partition.From our measurements (not shown) we observe that the write laten
y drops to half in56

0 5 10 15

Request Size (Bytes)

0

50

100

150

T
ra

ns
ac

ti
on

s/
s

Postmark

Diff Data
Ordered

(Disabled cache/SATA)

(a) 0 5 10 15

Request Size (Bytes)

0

100

200

300

400

500

Postmark

Diff Data
Ordered

(Enabled cache/SATA)

(b)Figure 6.7: We �gure the Postmark results while enabling and disabling the on-disk write
a
he. We noti
e that the two data journaling modes almost double the transa
tion ratewith respe
t to the ordered mode that is
ommonly used by default.the ordered mode, when
ompared to the
ase where we dedi
ate one disk to the journal.After the
hange, the write laten
y of di�erential data journaling remains about the sameas before. The relative di�eren
e between the laten
ies of the two modes is still higha
ross the di�erent streams rates and in ex
ess of a magnitude order for 1Kbps streams.In a di�erent experiment, we examine the e�e
ts from disabling the write
a
he of thedisks. For these measurements, we use a server with two 250GB SATA disks. We �ndthat the disabled write
a
he of the disks makes no di�eren
e to the streaming workloadmeasurements in
omparison to the
ase that the
a
he is enabled. However, in the
aseof the Postmark ben
hmark with 5000 transa
tions, disabling the write
a
he s
ales downthe performan
e of the di�erent mount modes, as shown in Figure 6.7.Spe
i�
ally, we disable the on-disk write
a
he to ensure that the writes only returnafter they rea
h the media. The advantage of di�erential data journaling is evidentespe
ially with small read and write requests. Furthermore, when we enable the on-disk write
a
he, performan
e s
ales similarly for the ordered mode and di�erential datajournaling, while the relative di�eren
e remains. Overall, di�erential data journaling stillmaintains a signi�
ant advantage with respe
t to the ordered mode, espe
ially at lowstream rates.
57

Chapter 7
Con
lusions and Future Work

7.1 Con
lusions7.2 Future Work
7.1 Con
lusionsThe unique demands pla
ed by high-volume stream storage indi
ate that neither existingdatabases nor �le systems are dire
tly suited to handle their storage needs. In our vision,a general-purpose stream storage fa
ility
ould serve as a building blo
k for a variety ofappli
ations in the entire range from network pa
ket monitoring to urban traÆ

ontrolwith the appropriate indexing fun
tionality built separately at a higher level when needed.The operation reliability in su
h appli
ations is a primary
hallenge, espe
ially when publi
safety
on
erns are involved. In order to improve their operation reliability, general-purpose �le systems apply journaling te
hniques to preserve metadata
onsisten
y a
rosssystem
rashes at minimal re
overy time. Motivated from the emerging need to reliablystore and handle large numbers of streams for real-time or retrospe
tive pro
essing, wehave taken a fresh look at �le systems that support data journaling.We have used a widely known �le system mounted with data journaling mode and,after applying syn
hronous writes, we demonstrated that the journal devi
e throughputis high be
ause the journal log re
ords store entire blo
ks rather than their modi�ed part.58

Then, we introdu
ed the di�erential data journaling mode, based on the idea of a

umu-lating the updates from multiple writes into a single journal blo
k. In order to implementdi�erential data journaling, we designed a new type of journal blo
k that we
all partialdata blo
k. Additionally, we tune the timing of dirty page
ushing to
omplete in theba
kground rather than syn
hronously with the write operations. Using streaming work-loads, we found that di�erential data journaling redu
es the journal traÆ
 substantiallyin
omparison to the default data journaling mode, espe
ially for streams with low rates.The sequential throughput of the journal redu
es the write laten
y up to orders of mag-nitude for the data journaling modes with respe
t to metadata-only journaling. Finally,we have experimented with a typi
al small-write workload and measured substantial im-provement in the supported transa
tion rate. Overall, di�erential data journaling o�ersfast storage a
ross streaming and traditional workloads at relatively low disk throughputrequirements.
7.2 Future WorkThere are many dire
tions for future work, mainly regarding the performan
e evaluationof our implementation. In the future, we primarily plan to extend the experimentalmeasurements of our prototype implementation, to validate further the
ontributions ofour study and emphasize the o�ered performan
e gains.Only experimentation in a real streaming environment
an reveal the potential ofour approa
h. Therefore, initially, we aim to examine the behavior of di�erential datajournaling in the
ontext of a distributed �le system that we are
urrently building for theneeds of streaming data storage. In parti
ular, a real workload with varying number of
lients applying
on
urrent writes of stream data to the same storage server, will providea more realisti
 environment in terms of the ability of di�erential data journaling to servestreaming workloads.Regardless of the possible performan
e loss under
ertain
ir
umstan
es, given thenature of the load for whi
h our system is designed, a dire
t
omparison with the log-stru
tured �le system or other journaling �le systems would also be valuable in order todemonstrate the bene�ts of our ar
hite
ture.59

Furthermore, heterogeneity, a main feature of most streaming storage systems, is itselfa
hallenging problem to be handled by the existing implementations. We have alreadyperformed a series of measurements a
ross mixed workloads, where low and higher ratestreams
oexisted. Yet, we need to examine further how di�erential data journalingperforms in su
h heterogeneous s
enarios.Moreover, we intend to examine the behavior of di�erential data journaling undersome database workload. TPC-C simulates a
omplete
omputing environment where apopulation of users exe
utes transa
tions against a database [9℄. The ben
hmark thatwe are going to use
onstitutes a realisti
 implementation of order-entry built on top ofPostgres.Finally, a possible extension of our work would investigate the automati
 tuning ofsystem parameters related to the timing of dirty page
ushes.

60

Bibliography[1℄ Stergios V. Anastasiadis, Rajiv G. Wi
kremesinghe, and Je�rey S. Chase. Cir
us:Opportunisti
 blo
k reordering for s
alable
ontent servers. In USENIX Conferen
eon File and Storage Te
hnologies, pages 201{212, 2004.[2℄ Brian Bab
o
k, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom.Models and issues in data stream systems. In ACM Symposium on Prin
iples ofDatabase Systems, pages 1{16, New York, NY, USA, 2002. ACM Press.[3℄ Hari Balakrishnan, Magdalena Balazinska, Don Carney, Ugur Cetintemel, Mit
hChernia
k, Christian Convey, Eddie Galvez, Jon Salz, Mi
hael Stonebraker, NesimeTatbul, Ri
hard Tibbetts, and Stan Zdonik. Retrospe
tive on aurora. The VLDBJournal, 13(4):370{383, 2004.[4℄ Pere Barlet-Ros, Gianlu
a Ianna

one, Josep Snjuas-Cuxart, Diego Amores-Lopez,and Josep Sole-Pareta. Load shedding in network monitoring appli
ations. InUSENIX Annual Te
hni
al Conferen
e, pages 59{72, Santa Clara, CA, 2007.[5℄ Andrew D. Birrell, Andy Hisgen, Chu
k Jerian, Timothy Mann, and Garret Swart.The e
ho distributed �le system. Te
hni
al Report TR-111, DEC Systems Resear
hCenter, Palo Alto, CA, September 1993.[6℄ Daniel P. Bovet and Mar
o Cesati. Understanding the Linux Kernel. O'Reilly Media,Sebastopol, CA, third edition, November 2005.[7℄ Don Carney, U�gur C� etintemel, Mit
h Chernia
k, Christian Convey, Sangdon Lee,Greg Seidman, Mi
hael Stonebraker, Nesime Tatbul, and Stan Zdonik. Monitoringstreams - a new
lass of data management appli
ations. In International Conferen
eon Very Large Data Bases, pages 215{226, Hong Kong, China, 2002.61

[8℄ Peter M. Chen, Wee Te
k Ng, Subha
handra Chandra, Christopher Ay
o
k, Gu-rushankar Rajamani, and David Lowell. The rio �le
a
he: Surviving operating sys-tem
rashes. In Interlational Conferen
e on Ar
hite
tural Support for ProgrammingLanguages and Operating Systems, pages 74{83, Cambridge, MA, 1996.[9℄ Transa
tion Pro
essing Coun
il. Tp
 ben
hmark
 standard spe
i�
ation, revision5.9. Te
hni
al report, 2007.[10℄ Peter J. Desnoyers and Prashant Shenoy. Hyperion: High volume stream ar
hivalfor retrospe
tive querying. In USENIX Annual Te
hni
al Conferen
e, pages 45{58,Santa Clara, CA, June 2007.[11℄ Manuel Esteve and Carlos E. Palau. A
exible video streaming system for urbantraÆ

ontrol. IEEE Multimedia, 13(1):78{83, January 2006.[12℄ Ri
ardo Galli. Journal �le systems in linux. Upgrade, 2(6):50{56, De
ember 2001.[13℄ Gregory R. Ganger, Marshall K. M
Kusi
k, Craig A. N. Soules, and Yale N. Patt.Soft updates: a solution to the metadata update problem in �le systems. ACMTransa
tions on Computer Systems, 18(1):127{153, February 2000.[14℄ Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung. The google �le system.In ACM Symposium on Operating Systems Prin
iples, pages 29{43, Bolton Landing,NY, O
tober 2003.[15℄ Diwaker Gupta, Sangmin Lee, Mi
hael Vrable, Stefan Savage, Alex C. Snoeren,George Varghese, Geo�rey M. Voelker, and Amin Vahdat. Di�eren
e engine: Harness-ing memory redundan
y in virtual ma
hines. In USENIX Symposium on OperatingSystem Design and Implementation, San Diego, CA, USA, 2008.[16℄ Robert Hagmann. Reimplementing the
edar �le system using logging and group
ommit. In ACM Symposium on Operating Systems Prin
iples, pages 155{162,Austin, TX, 1987.[17℄ Dean Hildebrand, Lee Ward, and Peter Honeyman. Large �les, small writes, andpnfs. In ACM International Conferen
e on Super
omputing, pages 116{124, Cairns,Australia, June 2006. 62

[18℄ Dave Hitz, James Lau, and Mi
hael Mal
olm. File system design for an nfs �le serverapplian
e. In Usenix Winter Te
hni
al Conferen
e, pages 235{246, San Fran
is
o,CA, January 1994.[19℄ Gianlu
a Ianna

one, Christophe Diot, Derek M
Auley, Andrew Moore, Ian Pratt,and Luigi Rizzo. The
omo white paper. Te
hni
al Report Te
hni
al Report IRC-TR-04-17, Intel Resear
h, 2004.[20℄ Je�rey Kat
her. Postmark: A new �le system ben
hmark. Te
hni
al Report TR-3022,NetApp, 1997.[21℄ Purushottam Kulkarni, Fred Douglis, Jason LaVoie, and John M. Tra
ey. Redun-dan
y elimination within large
olle
tions of �les. In USENIX Annual Te
hni
alConferen
e, pages 59{72, Boston, MA, 2004.[22℄ Darrel D. E. Long, Patri
k E. Mantey, Craig M. Wittenbrink, Theodore R. Haining,and Bru
e R. Montague. Reinas: the real-time environmental information networkand analysis system. In IEEE COMPCON, pages 482{487, Mar
h 1995.[23℄ Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and Jason Flinn.Rethink the syn
. In Usenix Symposium on Operating Systems Design and Imple-mentation, pages 1{14, Seattle, WA, 2006.[24℄ Juan Piernas, Toni Cortes, and Jose M. Gar
ia. Dualfs: A new journaling �le systemwithout meta-data dupli
ation. In ACM International Conferen
e on Super
omput-ing, pages 137{146, New York, NY, 2002.[25℄ Vijayan Prabhakaran, Andrea C. Arpa
i-Dusseau, and Remzi H. Arpa
i-Dusseau.Analysis and evolution of journaling �le systems. In USENIX Annual Te
hni
alConferen
e, pages 105{120, Anaheim, CA, 2005.[26℄ Sean Quinlan and Sean Dorward. Venti: a new approa
h to ar
hival storage. InUSENIX Conferen
e on File and Storage Te
hnologies, Monterey,CA, 2002.[27℄ Mended Rosenblum and John K. Ousterhout. The design and implementation of alog-stru
tured �le system. ACM Transa
tions on Computer Systems, 10(1):26{52,February 1992. 63

[28℄ Margo Seltzer, Keith A. Smith, Hari Balakrishnan, Ja
queline Chang, Sara M
mains,and Venkata Padmanabhan. File system logging versus
lustering: A performan
e
omparison. In Usenix Annual Te
hni
al Conferen
e, pages 249{264, 1995.[29℄ Stephen C. Tweedie. Journaling the linux ext2fs �lesystem. In LinuxExpo, pages25{29, Durham, NC, 1998.[30℄ Carl A. Waldspurger. Memory resour
e management in vmware esx server. SIGOPSOperating Systems Review, 36(SI):181{194, 2002.[31℄ Randolph Y. Wang, Thomas E. Anderson, and David A. Patterson. Virtual log based�le systems for a programmable disk. In USENIX Symposium on Operating SystemsDesign and Implementation, pages 29{43, New Orleans, LA, 1999.[32℄ Wenguang Wang, Yanping Zhao, and Ri
k Bunt. Hylog: A high performan
e ap-proa
h to managing disk layout. In USENIX Conferen
e on File and Storage Te
h-nologies, pages 145{158, Berkeley, CA, USA, 2004. USENIX Asso
iation.[33℄ Zhihui Zhang and Kanad Ghose. yfs: A journaling �le system design for handlinglarge data sets with redu
ed seeking. In USENIX Conferen
e on File and StorageTe
hnologies, pages 59{72, San Fran
is
o, CA, 2003.

64

Author's Publi
ationsAndroma
hi Hatzieleftherou, Stergios V. Anastasiadis, Okeanos: Fast and Reliable StreamStorage Through Di�erential Data Journaling, Te
hni
al Report DCS2008-8, Departmentof Computer S
ien
e, University of Ioannina, November 2008.Androma
hi Hatzieleftheriou, Stergios V. Anastasiadis, Okeanos - Reliable Ar
hival Stor-age for Heterogeneous Stream Data, EuroSys, Glasgow, S
otland, UK, April 2008 (poster).

Short VitaAndroma
hi Hatzieleftheriou was born in Serres, Gree
e in 1985. She was admitted at theComputer S
ien
e Department of the University of Ioannina in 2002. She re
eived her BS
degree in Computer S
ien
e in 2006 and she is
urrently a postgraduate student at thesame department. She is a member of the Systems Resear
h Group of the University ofIoannina sin
e 2007. Her main resear
h interests lie in the �eld of �le and storage systems.

