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Abstract. Today, the overwhelming volume of information that is avail-
able to an increasingly wider spectrum of users creates the need for per-
sonalization. In this paper, we consider a database system that supports
context-aware preference queries, that is, preference queries whose result
depends on the context at the time of their submission. We use data
cubes to store the associations between context-dependent preferences
and database relations and OLAP techniques for processing context-
aware queries, thus allowing the manipulation of the captured context
data at different levels of abstractions. To improve query performance,
we use an auxiliary data structure, called context tree, which indexes the
results of previously computed preference-aware queries based on their
associated context. We show how these cached results can be used to
process both exact and approximate context-aware preference queries.

1 Introduction

The increased amount of available information creates the need for personalized
information processing [1]. Instead of overwhelming the user with all available
data, a personalized query returns only the relevant to the user information. In
general, to achieve personalization, users express their preferences on specific
pieces of data either explicitly or implicitly. The result of their queries are then
ranked based on these preferences. However, most often users may have different
preferences under different circumstances. For instance, a user visiting Athens
may prefer to visit Acropolis in a nice sunny summer day and the archaeological
museum in a cold and rainy winter afternoon. In other words, the results of a
preference query may depend on context.

Context is a general term used to capture any information that can be used to
characterize the situation of an entity [2]. Common types of context include the
computing context (e.g., network connectivity, nearby resources), the user context
(e.g., profile, location), the physical context (e.g., noise levels, temperature),
and time [3]. A context-aware system is a system that uses context to provide
relevant information and/or services to its users. In this paper, we consider
a context-aware preference database system that supports preference queries
whose results depend on context. In particular, users express their preferences
on specific attributes of a relation. Such preferences depend on context, that is,
they may have different values depending on context.



We model context as a finite set of special-purpose attributes, called con-
text parameters. Users express their preferences on specific database instances
based on a single context parameter. Such basic preferences, i.e., preferences as-
sociating database relations with a single context parameter, are combined to
compute aggregate preferences that include more than one context parameter.
Context parameters may take values for hierarchical domains, thus different lev-
els of abstraction for the captured context data are introduced. For instance,
this allows us to represent preference along the location context parameter at
different levels of detail, for example, by grouping together preferences for all
cities of a specific country. Basic preferences are stored in data cubes, following
the OLAP paradigm.

Although, aggregate preferences are not explicitly stored, we cache the results
of previously computed preference queries using a data structure called context
tree. The context tree indexes the results of queries based on their associated
context. The cached results are re-used to speed up the processing of queries
that refer to the exact context of a previously computed query as well as of
queries whose context is similar enough to those of some previously computed
ones. We provide initial experimental results that characterize the quality of the
approximation attained by using preferences computed at similar context states.

In summary, the main contributions of this paper are:

– We provide a logical model for the representation of user preferences and
context-related information. We also investigate the use of OLAP techniques
for context-aware queries.

– We propose storing the results of previously computed preference queries
using a data structure, the context tree, that indexes these results based on
the values of the context parameters.

– We show how such cached results can be used to compute both exact and
approximate context-aware preference queries.

The rest of this paper is organized as follows. Section 2 describes our ref-
erence example and introduces our preference model. Section 3 focuses on how
preferences are stored, and Section 4 introduces the context tree for storing ag-
gregate preferences. In Section 5, we evaluate the size of the context tree and the
accuracy of the approximation achieved by using the context tree, while related
work is presented in Section 6. Section 7 concludes this paper with a summary
of our contributions.

2 A Logical Model for Context and Preferences

2.1 Reference Example

Consider a database schema with information about points of interest and
users (Fig. 1). The points of interest may be for example museums, monu-
ments, archaeological places or zoos. We consider three context parameters as
relevant to this application: location, temperature and accompanying people.



Users have preferences about points of interest that they express by providing
a numeric score between 0 and 1. The degree of interest that a user expresses
for a point of interest depends on the values of the context parameters. For ex-
ample, a user may visit different places depending on the current temperature,
for instance, user Mary may give to Acropolis that is an open-air place, a lower
score when the weather is cold than when the weather is warm. We consider
temperature to take one of the following values: freezing, cold, mild, warm,
and hot. Furthermore, the location of users may also affect their preferences, for
example, a user may prefer to visit places that are nearby her current location.
Similarly, the result of a query depends on the accompanying people that might
be friends, family, and none. For example, a zoo may be a better place to visit
than a brewery in the context of family.

Points of Interest(pid, name, type, location, open-air, hours of operation, admission cost)
User(uid, name, phone, address, e-mail)

Fig. 1. The database schema of our reference example.

2.2 Modeling Context

Context is modeled through a finite set of special-purpose attributes, called
context parameters (Ci). For a given application X , we define its context envi-
ronment CEX as a set of n context parameters {C1, C2, . . . , Cn}. For instance,
the context environment of our example is {location, temperature, accompany-
ing people}. As usual, a domain is an infinitely countable set of values. A context
state corresponds to assigning to each context parameter a value from its domain.
For instance, a context state may be: CS(current) = {Plaka, warm, friends}.
The result of a context-aware preference query depends on the context state of
its execution.

Furthermore, it is possible for some context parameters to participate in an
associated hierarchy of levels of aggregated data, i.e., they can be viewed from
different levels of detail. Formally, an attribute hierarchy is a lattice of attributes
– called levels for the purpose of the hierarchy – L = (L1, . . . , Ln, ALL). We
require that the upper bound of the lattice is always the level ALL, so that we
can group all the values into the single value ‘all’. The lower bound of the lattice
is called the detailed level of the parameter. In our running example, we consider
location to be such an attribute as shown in Fig. 2 (left). Levels of location are
Region, City, Country, and ALL. Region is the most detailed level. Level ALL
is the most coarse level for all the levels of the hierarchy.

2.3 Contextual Preferences

In this section, we define how context affects the results of a query. Each user
expresses her preference for an item in a specific context by providing a numeric



score between 0 and 1. This score expresses a degree of interest, which is a real
number. Value 1 indicates extreme interest, while value 0 indicates no interest.
We distinguish preferences into basic (involving a single context parameter) and
aggregate ones (involving a combination of context parameters).

Basic Preferences. Each basic preference is described by (a) a value of a
context parameter ci ∈ dom(Ci), 1 ≤ i ≤ n, (b) a set of values of non-context
parameters ai ∈ dom(Ai), and (c) a degree of interest, i.e., a real number between
0 and 1. So, for a context parameter ci, we have:

preferencebasici
(ci, ak+1, . . . , am) = interest scorei.

In our reference example, besides the three context parameters (i.e, location,
temperature and accompanying people), the set of non-context parameters are
attributes about points of interest and users that are stored in the database.
For example, assume user Mary and the point-of-interest Acropolis. When
Mary is in the Plaka area, she likes to visit Acropolis and gives it the score
0.8. Similarly, she prefers to visit Acropolis when the weather is warm and gives
Acropolis the score 0.9. Finally, if she is with friends, Mary gives Acropolis
the score 0.6. So, the basic preferences for Acropolis and Mary are:

preferencebasic1
(Plaka, Acropolis, Mary) = 0.8,

preferencebasic2
(warm, Acropolis, Mary) = 0.9,

preferencebasic3
(friends, Acropolis, Mary) = 0.6.

For context values not appearing explicitly in a basic preference, we consider
a default interest score of 0.5.

Aggregate Preferences. Each aggregate preference is derived from a combi-
nation of basic ones. An aggregate preference involves (a) a set of of n values
xi, one for each context parameter Ci, where either xi = ci for some value ci ∈
dom(Ci) or xi = ∗, which means that the value of the context parameter Ci is
irrelevant, i.e., the corresponding context parameter should not affect the aggre-
gate preference, and (b) a set of values of non-context parameters ai ∈ dom(Ai),
and has a degree of interest:

preference(x1, . . . xn, ak+1, . . . , am) = interest score.

The interest score of the aggregate preference is a value function of the in-
dividuals scores (the degrees of the basic preferences). This value function pre-
scribes how to combine basic preferences to produce an aggregate score, ac-
cording to the user’s profile. Users define in their profile how the basic scores
contribute to the aggregate one. Although, the value function can be any com-
putable one, in this paper, we focus on linear functions. In particular, each user
assigns a weight wi to each context parameter Ci, such that

∑n

i=1
wi = 1. Then,

the interest score is computed as the aggregated sum of the corresponding basic
preferences.

For instance, in the previous example, if the weight of location is 0.6, the
weight of temperature is 0.3 and the weight of accompanying people is 0.1, we
get: preference(Plaka, warm, friends, Acropolis, Mary) = 0.81.



We describe next two approaches for computing the aggregate scores when
the value for some parameters in the preference is ‘*’. The first one assumes a
score of 0.5 for those context parameters whose values in the preference is ‘*’.
Then, the interest score for the preference preference(x1, . . . xn, ak+1, . . . , am)
is computed as:

interest score =
∑n

i=1
wi × yi

where yi = preferencebasici
(xi, ak+1, . . . , am), if xi = ci and yi = 0.5, if xi = *.

The other approach is to include in the computation only the interest scores of
those context parameters whose values are specified in the preference and ignore
those specified as irrelevant. In this case, the interest score for the preference
preference(x1, . . . xn, ak+1, . . . , am) is computed as follows. Assume without loss
of generality, that for the first k parameters xi, 1 ≤ i ≤ k, it holds xi = ci, for
ci ∈ dom(Ci) and for the remaining n− k parameters, xi, k < i ≤ n, it holds xi

= *. Then,
interest score =

∑k

i=1
w′

i × yi

where w′

i = wi∑
k

j=1
wj

, yi = preferencebasici
(xi, ak+1, . . . , am), if xi = ci and yi

= 0.5, if xi = *.
For instance, for the preference preference(Plaka, ∗, friends, Acropolis, Mary),

the first approach gives as the score 0.69 and the second one the score 0.77.
It is easy to see that the orderings produced by each approach are con-

sistent with each other. That is, both approaches order the tuples (e.g., the
points of interest in our example) the same way, since in both cases their ag-
gregate score depends on the values of the context parameters that are specified,
i.e., are not irrelevant. In particular, for any two tuples t1 and t2, let agg t1, and
agg t2 be their aggregate scores computed using the first approach and agg′ t1,
and agg′ t2 be their scores computed using the second approach. We shall show
that agg t1 > agg t2 if and only if agg′ t1 > agg′ t2.

Suppose that there are n context parameters with weights w1, w2, . . . , wn

and that the corresponding basic preference scores for the first tuple are y1,
y2, . . . , yn and for the second one y′

1, y′

2, . . . , y′

n. Without loss of generality,
assume that the value ‘*’ appears ones for the last context parameter. For the
first approach, the aggregate scores are:

agg t1 = w1 × y1 + w2 × y2 + . . . + wn × 0.5 (1)

agg t2 = w1 × y′

1 + w2 × y′

2 + . . . + wn × 0.5 (2)

For the second approach, the new weights w′

i of the context parameters,
i.e., the weights after the normalization, are w′

1 = w1/(w1 + w2 + . . . + wn−1),
w′

2 = w2/(w1 + w2 + . . . + wn−1), . . . , w′

n−1 = wn−1/(w1 + w2 + wn−1). The
aggregate scores are:

agg′ t1 = w′

1 × y1 + w′

2 × y2 + . . . + w′

n−1 × yn−1 (3)

agg′ t2 = w′

1 × y′

1 + w′

2 × y′

2 + . . . + w′

n−1 × y′

n−1 (4)



First, we shall show that agg t1 > agg t2 ⇒ agg t′1 > agg t′2.
agg t1 > agg t2 ⇒ (from Eq. (6) and (7))
w1 × y1 + w2 × y2 + . . . wn−1 × yn−1 + wn × 0.5 > w1 × y′

1 + w2 × y′

2 + . . . + wn−1 ×

y′

n−1 + wn × 0.5 ⇒
w1 × y1 + w2 × y2 + . . . + wn−1 × yn−1 > w1 × y′

1 + w2 × y′

2 + . . . + wn−1 × y′

n−1 ⇒
w1×y1+w2×y2+...+wn−1×yn−1

w1+w2+...+wn−1

>
w1×y′

1
+w2×y′

2
+...+wn−1×y′

n−1

w1+w2+...+wn−1

⇒

w′

1 × y1 + w′

2 × y2 + . . . + w′

n−1 × yn−1 > w′

1 × y′

1 + w′

2 × y′

2 + . . . + w′

n−1 × y′

n−1 ⇒
(from Eq. (9) and (10))
agg′ t1 > agg′ t2.
We now show that agg′ t1 > agg′ t2 ⇒ agg t1 > agg t2.
agg′ t1 > agg′ t2 ⇒ (from Eq. (9) and (10))
w′

1 × y1 + w′

2 × y2 + . . . + w′

n−1 × yn−1 > w′

1 × y′

1 + w′

2 × y′

2 + . . . + w′

n−1 × y′

n−1 ⇒
w1 × y1 + w2 × y2 + . . . + wn−1 × yn−1 > w1 × y′

1 + w2 × y′

2 + . . . + wn−1 × y′

n−1 ⇒
w1 × y1 + w2 × y2 + . . . + wn × 0.5 > w1 × y′

1 + w2 × y′

2 + . . . + wn × 0.5 ⇒ (from Eq.
(6) and (7))
agg t1 > agg t2.

So, independently of the way that the aggregate scores are computed the
ordering of the tuples is the same. In the following, we assume that the second
approach is used.

To facilitate the procedure of expressing interests, the system may provide
sets of pre-specified profiles with specific context-dependent preference values
for the non-context parameters as well as default weights for computing the
aggregate scores. In this case, instead of explicitly specifying basic and aggregate
preferences for the non-context parameters, users may just select the profile that
best matches their interests from the set of the available ones. By doing so, the
user adopts the preferences specified by the selected profile.

2.4 Preferences for Hierarchical Context Parameters

When the context parameter of a basic preference participates in different levels
of a hierarchy, users may express their preference in any level, as well in more
than one level. For example, Mary can denote that the monument of Acropolis
has interest score 0.8 when she is at Plaka and 0.6 when she is in Athens. Note
that in the hierarchy of location the city of Athens is one level up the region of
Plaka.

For a parameter L, let L1, L2,. . . , Ln, ALL be the different levels of the hier-
archy. There is a hierarchy tree, for each combination of non-context parameters.
In our reference example, there is a hierarchy tree for each user profile and for a
specific point of interest that represents the interest scores of the user for the
points of interest, accordingly to the location parameter’s hierarchy. In Fig. 2
(right), the root of the tree corresponds to level ALL with the single value all.
The values of a certain dimension level L are found in the same level of the tree.
Each node is characterized by a score value for the preference concerning the
combination of the non-context attributes with the context value of the node.

If the context in a query refers to a level of the tree in which there is no explicit
score given by the user, there are three ways to compute the appropriate score
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Fig. 2. Hierarchies on location (left) and the hierarchy tree of location (right).

for a preference. In the first approach, we traverse the tree upwards until we find
the first predecessor for which a score is specified. In this case, we assume that
a user that defines a score for a specific level, implicitly defines the same score
for all the levels below. In the second approach, we compute the average score of
all the successors of the immediately following level, if such scores are available,
else we follow the first approach. Finally, we can combine both approaches by
computing a weighted average score of the scores from both the predecessor and
the successors. In any case, we assume a default score of 0.5 at level all, if no
score is given.

3 Storing Basic Preferences

We store basic user preferences in hypercubes, or simply cubes. The number of
data cubes is equal with the number of context parameters, i.e., we have one
cube for each context parameter. Formally, a cube schema is defined as a finite
set of attributes Cube = (Ci, A1, . . . , An, M), where Ci is a context parameter,
A1, . . . , An are non-context attributes and M is the interest score. The cubes for
our running example are depicted in Fig. 3. In each cube, there is one dimension
for the points of interest, one dimension for the users and one dimension for
the context parameter. In each cell of the cube, we store the degree of interest
for a specific preference.

User

Location

UserUser

Temperature
Accompanying_People

     Points_of_Interest      Points_of_Interest      Points_of_Interest

Fig. 3. Data cubes for each context parameter.



A relational table implements such a cube in a straightforward fashion. The
primary key of the table is Ci, A1, . . . , An. If dimension tables representing hier-
archies exist (see next), we employ foreign keys for the attributes corresponding
to these dimensions. The schema for our running example which is based on
the classical star schema is depicted in Fig. 4. As we can see, there are three
fact tables, Temperature, Location and Accompanying People. The dimension
tables are: Users and Points of Interest. These are dimension tables for both
fact tables.

       uid

      

scoreuid

phone

address

e−mail

 name

   weather Users

  pid

region

 city

country

    lid

hours of operation

   pid

  open−air

   admission cost

   name

     type

    region

Temperature
Points_of_Interest

      Location

pid

uid

  lid

score

Accompanying_ People

a_people

score

pid

uid

H_Location

Fig. 4. The fact and dimension tables of our schema.

Regarding hierarchical context attributes, the typical way to store them is
shown in Fig. 5 (left). In this modeling, we assign an attribute for each level
in the hierarchy. We also assign an artificial key to efficiently implement refer-
ences to the dimension table. The denormalized tables of this kind suffer from
the fact that there exists exactly one row for each value of the lowest level of
the hierarchy, but no rows explicitly representing values of higher levels of the
hierarchy. Therefore, if we want to express preferences at a higher level of the
hierarchy, we need to extend this modeling (assume for example that we wish
to express the preferences of Mary when she is in the city of Thessaloniki, in-
dependently of the specific region of Thessaloniki she is found at). To this end,
we use an extension of this approach, as shown in the right of Fig. 5. In this
kind of dimension tables, we introduce a dedicated tuple for each value at any
level of the hierarchy. We populate attributes of lower levels with NULLs. To
explain the particular level that a value participates at, we also introduce a level
indicator attribute. Dimension levels are assigned attribute numbers through a
topological sort of the lattice.

To compute aggregate preferences from simple ones we need also to store
the weights used in this computation. Weights are stored in a special purpose
table AggScores(wC1, . . . , wCk, Ak+1). The value for each context parameter



wCi is the weight for the respective interest score and the value Ak+1 spec-
ifies the user who gives these weights. For instance, in our running example,
the table AggScores has the attributes Location weight, Temperature weight,
Accompanying People weight, and User. A record in this table can be (0.6,
0.3, 0.1, Mary).

Aggregate preferences are not explicitly stored in our system. The main rea-
son is space and time efficiency, since this would require maintaining a con-
text cube for each context state and for each combination of non-context at-
tributes. Assume that the context environment CEX has n context parameters
{C1, C2, . . . , Cn} and that the cardinality of the domain dom(Ci) of each param-
eter Ci is (for simplicity) m. This means that there are mn potential context
states, leading to a very large number of context cubes and prohibitively high
costs for their maintenance. Instead, we store only previously computed aggre-
gate scores, using an auxiliary data structure (described in Section 4).

An advantage of using cubes to store user preferences is that they provide
the capability of using hierarchies to introduce different levels of abstractions
of the captured context data through the drill-down and roll-up operators [4].
The roll-up operation provides an aggregation on one dimension. Assume, for
example, that the user has executed a query about Mary’s most preferable point-
of-interests in Plaka. However, this query has returned an unsatisfactory small
number of answers. Then, Mary may decide that is worth broadening the scope of
the search and investigate the broader Athens area for interesting places to visit.
In this case, a roll-up operation on location can generate a cube that uses cities
instead of regions. Similarly, drill-down is the reverse of roll-up and allows the
de-aggregation of information moving from higher to lower levels of granularity.
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Fig. 5. A typical (left) and an extended dimension table (right).

4 Caching Context-Aware Queries

In this section, we present a scheme for storing results of previous queries exe-
cuted at a specific context, so that these results can be re-used by subsequent
queries.



4.1 The Context Tree

Assume that the context environment CEX has n context parameters {C1, C2,
. . . , Cn}. A way to store aggregate preferences uses the context tree, as shown in
Fig. 6. There is one context tree per user. The maximum height of the context
tree is equal to the number of context parameters plus one. Each context pa-
rameter is mapped onto one of the levels of the tree and there is one additional
level for the leaves. For simplicity, assume that context parameter Ci is mapped
to level i. A path in the context tree denotes a context state, i.e., an assignment
of values to context parameters. At the leaf nodes, we store a list of ids, e.g.,
points of interest ids, along with their aggregate scores for the associated con-
text state, that is, for the path from the root leading to them. Instead of storing
aggregate values for all the ids, to be storage-efficient, we just store the top − k
ids (keys), that is the ids of the items having the k-highest aggregate scores for
the path leading to them. The motivation is that this allows us to provide users
with a fast answer with the data items that best match their query. Only if more
than k-results are needed, additional computation will be initiated. The list of
ids is sorted in decreasing order according to their scores.

c    c     c               any...

...c    c              any ...

c            any c            any... ... ... ...c            

21    23 21    23     25

11    12     14

n2    n2    n3    

c    c     c            22    ...c          

1

2

n

top_k list {(id, score)}

C

C

C

Fig. 6. A context tree.

The context tree is used to store aggregate preferences that were computed
as results of previous queries, so that these results can be re-used by subsequent
ones. Thus, it is constructed incrementally each time a context-aware query is
computed. Each non-leaf node at level k contains cells of the form [key, pointer],
where key is equal to ckj ∈ dom(Ck) for a value of the context parameter Ck

that appeared in some previously computed context query. The pointer of each
cell points to the node at the next lower level (level k + 1) containing all the
distinct values of the next context parameter (parameter Ck+1) that appeared
in the same context query with ckj . In addition, key may take the special value
any, which corresponds to the lack of the specification of the associated context
parameter in the query (i.e., to the use of the special symbol ‘*’).

In summary, a context tree for n context parameters satisfies the following
properties:



– It is a directed acyclic graph with a single root node.

– There are at most n+1 levels, each one of the first n of them corresponding
to a context parameter and the last one to the level of the leaf nodes.

– Each non-leaf node at level k maintains cells of the form [key, pointer] where
key ∈ dom(Ck) for some value of ck that appeared in a query or key = any.
No two cells within the same node contain the same key value. The pointer
points to a node at level k + 1 having cells with key values which appeared
in the same query with the key.

– Each leaf node stores a set of pointers to data sorted by their score.

For example, Fig. 7(left) shows a set of context states expressed in five previ-
ously submitted queries. Assume that the three context parameters are assigned
to levels as follows: accompanying people is assigned to the first level of the tree,
temperature to the second and location to the third one. Leaf nodes store the
ids of the top− k points of interest, that is the places with the top− k highest
aggregate scores. For the above preference queries, the context tree of Fig. 7
(right) is constructed.

query 3: friends / cold / Plaka

query 1: friends / warm / Plaka
query 2: family / warm / Plaka

query 5: friends / warm / *
query 4: family / warm / Kifisia

  friends         family

  Plaka  Plaka     Kifisia  Plaka       any

top_k top_k top_k top_k top_k

warm      cold warm

Fig. 7. A set of aggregate preferences (left) and the corresponding context tree (right).

The context tree provides an efficient way to retrieve the top-k results that
are relevant to a preference query. When a query is posed to the system, we first
check if there exists a context state that matches it in the context tree. If so, we
retrieve the top-k results from the associated leaf node. Otherwise, we compute
the answer and insert the new context state, i.e., the new path and the associated
top-k results, in the tree. Thus a query is a simple traversal on the context tree
from the root to a leaf. At level i, we search a node for a cell having as key value
the ith value of the query and descend to the next level following the appropriate
pointer. For a context tree with n context parameters (C1, C2, . . . , Cn), if each
parameter has |dom(Ci)| values in its domain, the maximum number of cells that
are required to be visited for a query is |dom(C1)|+ |dom(C2)|+ . . .+ |dom(Cn)|.

The way that the context parameters are assigned to the levels of the context
tree affects its size. If the domain of the first level of the tree, i.e., the root of the
tree, has n0 values (including the any value), the second level n1 values, and the
last one nk, then the maximum number of cells is n0 ∗ (1+n1 ∗ (1+ . . . (1+nk))).
The above number is as small as possible, when n0 ≤ n1 ≤ . . . ≤ nk, thus, it is



better to place context parameters with domains with higher cardinalities lower
in the context tree.

Finally, there are two additional issues related to managing the context tree:
replacement and update. To bound the space occupied by the tree, standard
cache replacement policies, such as LRU or LFU, may be employed to replace
the entry, that is the path, in the tree that is the least frequently or the least
recently used one. Regarding cache updates, stored results may become obsolete,
either because there is an update in the contextual preferences or because entries
(points-of-interests, in our running example) are deleted, inserted or updated. In
the case of a change in the contextual preferences, we update the context tree by
deleting the entries that are associated with paths, that is context states, that
are involved in the update. In the case of updates in the database instance, we
do not update the context tree, since this would induce high maintenance costs.
Consequently, some of the scores of the entries cached in the tree may be invalid.
Again, standard techniques, such periodic cache refreshment or associating a
time-out with each cache entry, may be used to control the deviation between
the cached and the actual scores.

4.2 Querying with Approximate Results

We consider ways of extending the use of the context tree to not only provid-
ing answers in the case of queries in exactly the same context state, but also
providing approximate answers to queries whose context state is “similar” to a
stored one. One such case involves the ‘*’ operator. If the value of some context
parameter is “any” (i.e., ‘*’), we check whether results for enough values of this
parameter are already stored in the tree. In particular, if the number of the
existing values of this parameter in the same node of the context tree is larger
than a threshold value, we do not compute the query from scratch, but instead,
merge the stored results for the existing values of the parameter. We call this
threshold, coverage approximation threshold (ct). Its value may be either system
defined or given as input by the user.

Another case in which we can avoid recomputing the results of a query is
when the values of its context parameters are “similar” with those of some
stored context state. For example, if one considers the near-by locations Thisio
and Plaka as similar, then the query friends/warm/Thisio can use the results
associated with the stored query friends/warm/Plaka (Fig. 7 (right)).

To express when two values of a context parameter are similar, we introduce
a neighborhood approximation threshold (nt). In particular, two values ci and c′i
of a context parameter Ci are consider similar up to nti, if and only if for any
tuple t with score di for Ci = c1 and d′i for Ci = c′i, it holds:

|di − d′i| ≤ nti (5)

for a small constant nt, 0 ≤ nt ≤ 1.
The threshold nti may take different values for each context parameter Ci

depending for instance, on the type of its domain. As before, the threshold may



be either determined by the user or the system. To estimate the quality of an
approximation, we are interested in how much the results for two queries in two
similar context states differ, that is how much different is the rating of the results
in the two states, thus leading to a different set of top-k answers.

Next, we prove that “small” changes in context values lead to “small” changes
in the rating of the queries’ results. In particular, the following intuitive property
states that for any two tuples, the difference between their aggregate scores in
two states, s and s′ that differ only at the value of one context parameter, Ci,
is bounded, if the two values of Ci are similar. This indicates that the relative
order of the results in states s and s′ is rather similar.

More specifically, let t1 and t2 be two tuples and s and s′ be two context
states. Assume that in s, t1 and t2 have aggregate scores d1 and d2 respectively
and in s′, d′1 and d′2 respectively. When the two context states are similar, we
would like the following to hold:

|d1 − d2| ≤ ε ⇒ (6)

|d′1 − d′2| ≤ δ (7)

where ε and δ are “small” positive constants.
Assume further, that if two context states have similar values, then the scores

of the tuples are similar that is, for every t and for a specific context parameter,

|dit − d′it| ≤ nti (8)

for a small constant nti, with 0 ≤ nti ≤ 1.
With the following property, we prove that when only one of the degrees of

the context parameters is changed, δ = ε + 2 ∗w1 ∗nt, where nt is the difference
between the degrees of interest of the same context parameter of two similar
context states, and w1 is the weight of the context parameter that its value is
changed.

Property 1. Let t1, t2 be two tuples that have aggregate scores d1, d2 in a context
state s and d′1, d′2 in a context state s′ respectively. If s, s′ differ only in the
values of one context parameter, Ci, and these two values of Ci are similar up
to nti, then if |d1 − d2| ≤ ε, |d′1 − d′2| ≤ ε + 2 ∗w1 ∗ nt, where wi is the weight of
the context parameter Ci.

Proof Since only one of the degrees of the context parameters is changed, we
have:

d1 = w1 ∗ d1t1 + Σn
i=2wi ∗ dit1 (9)

d2 = w1 ∗ d1t2 + Σn
i=2wi ∗ dit2 (10)

and



d′1 = w1 ∗ d′1t1
+ Σn

i=2wi ∗ dit1 (11)

d′2 = w1 ∗ d′1t2
+ Σn

i=2wi ∗ dit2 (12)

From (8), for the above two tuples we have:

|d1t1 − d′1t1
| ≤ nt (13)

|d1t2 − d′1t2
| ≤ nt (14)

From (9), (10) and (11), (12), Equations (6), (7) can be written as:

|w1 ∗ d1t1 + Σn
i=2wi ∗ dit1 − w1 ∗ d1t2 − Σn

i=2wi ∗ dit2 | ≤ ε (15)

|w1 ∗ d′1t1
+ Σn

i=2wi ∗ dit1 − w1 ∗ d′1t2
− Σn

i=2wi ∗ dit2 | ≤ δ (16)

and so, we would like to prove that if (15) holds, then Equation (16) holds, with
the assumptions of (13) and (14).

From (15), we have: −ε ≤ w1 ∗ d1t1 +Σn
i=2wi ∗ dit1 −w1 ∗ d1t2 −Σn

i=2wi ∗ dit2

≤ ε ⇒

a ≤ w1 ∗ d′1t1
+ Σn

i=2wi ∗ dit1 − w1 ∗ d′1t2
− Σn

i=2wi ∗ dit2 ≤ b (17)

with a = −ε−w1 ∗ d1t1 + w1 ∗ d′1t1
+ w1 ∗ d1t2 −w1 ∗ d′1t2

and b = ε−w1 ∗ d1t1 +
w1 ∗ d′1t1

+ w1 ∗ d1t2 − w1 ∗ d′1t2
.

From (13), and (14) we can take that: d1t2−d′1t2
≥ −nt and d′1t1

−d1t1 ≥ −nt,
and so, a = −ε+w1 ∗ (d′1t1

− d1t1)+w1 ∗ (d1t2 − d′1t2
) ≥ −ε−w1 ∗nt−w1 ∗nt =

−ε − 2 ∗ w1 ∗ nt, i.e., a ≥ −ε − 2 ∗ w1 ∗ nt.
Furthermore, from (13), and (14) we can take that: d1t2 − d′1t2

≤ nt and
d′1t1

− d1t1 ≤ nt, and so, b = ε + w1 ∗ (d′1t1
− d1t1) + w1 ∗ (d1t2 − d′1t2

) ≤
ε + w1 ∗ nt + w1 ∗ nt = ε + 2 ∗ w1 ∗ nt, i.e., b ≤ ε + 2 ∗ w1 ∗ nt.

From the above, (17) can be written: −ε− 2 ∗w1 ∗ nt ≤ w1 ∗ d′1t1
+ Σn

i=2wi ∗
dit1 − w1 ∗ d′1t2

− Σn
i=2wi ∗ dit2 ≤ ε + 2 ∗ w1 ∗ nt ⇒

|w1 ∗ d′1t1
+ Σn

i=2wi ∗ dit1 − w1 ∗ d′1t2
− Σn

i=2wi ∗ dit2 | ≤ ε + 2 ∗ w1 ∗ nt (18)

and thus, the equation (16) holds, with δ = ε + 2 ∗ w1 ∗ nt.
Property 1 is easily generalized for the case in which two states differ in more

than one similar up to nti context parameters. In particular:

Property 2. Let t1, t2 be two tuples that have aggregate scores d1, d2 in a context
state s and d′1, d′2 in a context state s′ respectively. If s, s′ differ only in the
value of m context parameters, Cjk

, 1 ≤ k ≤ m, and these two values of Cjk
are

similar up to ntjk
, then if |d1 − d2| ≤ ε, then, |d′1 − d′2| ≤ ε + 2 ∗ (wj1 ∗ ntj1 +

wj2 ∗ntj2 . . .+wjm
∗ntjm

), where wjk
is the weight of a context parameter Cjk

.

The proof of Property 2 proceeds similar to the proof of Property 1.



5 Performance Evaluation

In this section, we evaluate the expected size of the context tree as well as the
accuracy of the two approximation methods. We divide the input parameters
into three categories: context parameters, query workload parameters, and query
approximation parameters. In particular, we use three context parameters and
thus, the context tree has three levels (plus one for the top − k lists). There
are two different types regarding the cardinalities of the domains of the context
parameters: the small domain with 10 values and the large one with 50 values.

Table 1. Input Parameters

Context Parameters Default Value Range

Number of Context Parameters 3
Cardinality of the Context
Parameters’ Domains

Small 10
Large 50

Query Workload

Number of Tuples 10000
Number of Stored Queries 50-200
Percentage of ‘*’ values 10%
Data Distributions uniform

zipf - a = 1.5 a = 0.0 - 3.5
Top-k results 10

Query Approximation

Coverage Approximation Threshold (ct) ≥ 40%, ≥ 60%, ≥ 80%
Neighborhood Approximation Threshold (nti) 0.08 0.04, 0.08, 0.12
Weights 0.5, 0.3, 0.2

We performed our experiments with various numbers of queries stored at the
context tree varying from 50 to 200, while the number of tuples is 10000. 10%
of the values in the queries are ‘*’. The other 90% are either selected uniformly
from the domain of the corresponding context parameter, or follow a zipf data
distribution. The coverage approximation threshold ct refers to the percentage of
values that need to be stored for a context parameter, to compute the top−k list
by combining their corresponding top− k lists when there is the ‘*’ value at the
corresponding level in a new query. The neighborhood approximation threshold
nt refers to how similar are the scores for two “similar” values of a context
parameter.

Our input parameters are summarized in Table 1.



5.1 Size of the Context Tree

In the first set of experiments, we study how the mapping of the context param-
eters to the levels of the context tree affects its size. In particular, we count the
total number of cells in the tree as a function of the number of stored queries,
taking into consideration the different orderings of the parameters. For a con-
text tree with three parameters, we call ordering 1 the ordering of the context
parameters when the domain of the parameter of the first level has 10 values,
the next domain has 10 values too, and the last one has 50 values. Ordering 2
is the ordering when the domains have 10, 50, 10 values respectively, and for
the ordering 3 the domains have 50, 10, 10 values. As discussed in Section 3,
the mapping of the context parameters to levels that is expected to result in a
smaller sized tree, is the one that places the context parameters with the large
domains lower in the tree.

In our experiments, 10% of the query values are selected to be the any value.
The rest 90% of the values are selected from the corresponding domain, either
using a uniform data distribution, or a zipf data distribution with a = 1.5. In
both cases, as shown in Fig. 8, the total storage space is minimized when the
parameter with the large domain (50 values) is assigned to the last level of the
tree (ordering 3). Also, for the zipf distribution (Fig. 8 (right)), the total number
of cells is smaller than for the uniform distribution, (Fig. 8 (left)), because using
the zipf distribution “hot” values appear more frequently in queries, i.e., more
context values are the same.
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Fig. 8. Uniform Data Distribution (left) and Zipf Data Distribution with a = 1.5
(right).

However, the best way of assigning parameters to levels depends also on the
query workload, that is, on the percentage of values from the domain of each
parameter that actually appears in the queries. Thus, if a parameter has a very
skewed data distribution, it may be more space efficient to map it higher in the
tree, even if its domain is large. This is shown with the next experiment (Fig.
9). We performed this experiment 50 times with 200 queries. The values of the
context parameters with small domains are selected using a uniform data dis-
tribution and the values of the context parameter with the large domain are
selected using a zipf data distribution with various values for the parameter a,



varying from 0 (corresponding to the uniform distribution) to 3.5 (correspond-
ing to a very high skew).
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Fig. 9. Combining uniform and zipf data distribution.

5.2 Accuracy of the Approximations

In this set of experiments, we evaluate the accuracy of the approximation when
using the coverage and the neighborhood approximation thresholds. In both
cases, we report how many of the top-k tuples computed using the results stored
in the tree actually belong to the top-k results.

Using the Coverage Approximation Threshold. A coverage approximation
threshold of ct% means that at least ct% of the required values are available, i.e.,
there are already computed and stored in the context tree. We use three values
for ct, namely, 40%, 60%, and 80%. All the weights take the value 0.33. In Fig.
10, we present the percentage of different results in the top-k list for each ct
value, when a ‘*’ value is given for a parameter with a small domain or a large
domain, respectively. To compute the actual aggregate preference scores, we use
the second of the two approaches presented in Section 2.2. The approximation is
better when the ‘*’ refers to the context parameter with the large domain. This
happens because in this case, more paths of the context tree are included to the
relative paths, and so, more top-k lists of results are merged to produce the new
top-k list.

Using the Neighborhood Approximation Threshold. We consider first
that a query is similar with another one, when they have the same values for
all the context parameters except one, and the values of this parameter are
similar up to nt. We use three values for the parameter nt: 0.04, 0.08, and
0.12. The weights have the values 0.5, 0.3, and 0.2. We count first, the number
of different results between two similar queries that differ at the value of one
context parameter, as a function of the weight of this parameter, taking into
consideration the different values of nt. The results are depicted in Fig. 11 (left).
Then, we examine the case in which the values of two context parameters are
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Fig. 11. Different results between two similar queries when nt = 0.04, 0.08, 0.12.

different between the similar queries (Fig. 11 (right)). In this case, the accuracy of
the results depend on both the weights that correspond to the context parameters
whose values are similar. As expected, the smaller the value of the parameter
nt, the smaller the difference between the results in the top-k list of two similar
queries. Note further, that the value of the weight that corresponds to the similar
context parameter also affects the number of different results: the smaller the
value of the weight, the smaller the number of different results.

6 Related Work

Although there has been a lot of work on developing a variety of context infras-
tructures and context-aware middleware and applications (such as, the Context
Toolkit [5] and the Dartmouth Solar System [6]), there has been only little work
on the integration of context information into databases. Next, we discuss work
related to context-aware queries and preference queries. A preliminary version of
the model without the context tree and the performance evaluation part appears
in [7].

Context and Queries. Although, there is much research on location-aware query
processing in the area of spatio-temporal databases, integrating other forms of
context in query processing is less explored. In the context-aware querying pro-
cessing framework of [8], there is no notion of preferences, instead context at-
tributes are treated as normal attributes of relations. Storing context data using



data cubes, called context cubes, is proposed in [4] for developing context-aware
applications that use archive sensor data. In this work, data cubes are used to
store historical context data and to extract interesting knowledge from large
collections of context data. In our work, we use data cubes for storing context-
dependent preferences and answering queries. The Context Relational Model
(CR) introduced in [9] is an extended relational model that allows attributes to
exist under some contexts or to have different values under different contexts.
CR treats context as a first-class citizen at the level of data models, whereas
in our approach, we use the traditional relational model to capture context as
well as context-dependent preferences. Context as a set of dimensions (e.g., con-
text parameters) is also considered in [10] where the problem of representing
context-dependent semistructured data is studied. A similar context model is
also deployed in [11] for enhancing web service discovery with contextual pa-
rameters. Finally, context has been used in the area of multidatabase systems
to resolve semantic differences, e.g., [12,13,14] and as a general mechanism for
partitioning information bases [15].

Preferences in Databases. In this paper, we use context to confine database
querying by selecting as results the best matching tuples based on the user
preferences. The research literature on preferences is extensive. In particular, in
the context of database queries, there are two different approaches for expressing
preferences: a quantitative and a qualitative one. With the quantitative approach,
preferences are expressed indirectly by using scoring functions that associate
a numeric score with every tuple of the query answer. In our work, we have
adapted the general quantitative framework of [16], since it is more easy for
users to employ. In the quantitative framework of [1], user preferences are stored
as degrees of interest in atomic query elements (such as individual selection or
join conditions) instead of interests in specific attribute values. Our approach
can be generalized for this framework as well, either by including contextual
parameters in the atomic query elements or by making the degree of interest
for each atomic query element depend on context. In the qualitative approach
(for example, [17]), the preferences between the tuples in the answer to a query
are specified directly, typically using binary preference relations. This framework
can also be readily extended to include context.

7 Summary

The use of context is important in many applications such as in pervasive com-
puting where it is important that users receive only relevant information. In this
paper, we consider integrating context in expressing preferences, so that when a
user poses a preference query in a database, the result also depends on context.
In particular, each user indicates preferences on specific attribute values of a
relation. Such preferences depend on context and are stored in data cubes. To
allow re-using results of previously computed preference queries, we introduce
a hierarchical data structure, called context tree. This tree can be used further



to produce approximate results, using similar stored results. Our future work
includes exploring context information in answering additional queries, not just
preference ones.
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