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Abstract

We present a new simple wait-free universal construction, called Sim, that uses just a
Fetch&Add and an LL/SC object and performs a constant number of shared memory accesses.
We have implemented Sim in a real shared-memory machine. In theory terms, our practical ver-
sion of Sim, called P-Sim, has worse complexity than its theoretical analog; in practice though,
we experimentally show that P-Sim outperforms several state-of-the-art lock-based and lock-free
techniques, and this given that it is wait-free, i.e., that it satisfies a stronger progress condition
than all the algorithms it outperforms.

We have used P-Sim to get highly-efficient wait-free implementations of stacks and queues.
Our experiments show that our implementations outperform the currently state-of-the-art shared
stack and queue implementations which ensure only weaker progress properties than wait-
freedom.



1 Introduction

Designing efficient shared data structures has become ever so urgent due to the proliferation of
multicore machines and the strong necessity of exploiting their computational power by developing
parallel software; shared data structures, like stacks and queues, are the most widely used inter-
thread communication structures, and therefore they are major building blocks of such software. A
universal construction is a generic mechanism to implement any shared data structure; it supports
an operation, called ApplyOp, that takes as a parameter the sequential implementation of any
operation of the simulated object, and simulates its execution in a concurrent environment.

Herlihy [17] introduced the consensus hierarchy which characterizes the power of a shared object
to simulate (together with r/w registers) other objects in a wait-free manner; wait-freedom [17]
ensures that each process should finish the execution of its operation within a finite number of its
own steps independently of the speed of other processes. A shared object with consensus number
n can simulate any other object in a system of n processes. The strongest types of objects are CAS
and LL/SC which have infinite consensus number. Although CAS (or LL/SC) are currently provided
by several systems, it is highly desirable to perform as few such operations as possible since their
current implementation is much slower than that of simpler types of objects.

A Fetch&Add object O is a weaker type of object (with consensus number 2), which supports
in addition to read, the operation FA(R,x) which adds some (positive or negative) value x to O
and returns its previous value. Fetch&Add has performance advantages [13] compared to other
synchronization primitives (like CAS, or LL/SC); in brief, a Fetch&Add requires only one memory
access which minimizes serialization delays, it is combinable [12], and excessive contention for
Fetch&Add objects can be reduced or eliminated by using appropriate software techniques [30]. In
some architectures (i.e., the Origin2000) a Fetch&Add is implemented in-memory (bypassing the
cache and its coherence protocol) which was proved to be much faster under contention than the
integrated to the coherence protocol implementation of LL/SC [25].

In this paper, we investigate how to use Fetch&Add (in addition to LL/SC) to design a highly-
efficient wait-free universal construction. Jayanti [21] has proved a lower bound of Ω(log n) on the
shared memory accesses performed by any oblivious universal construction (that does now exploit
the semantics of the simulated object) using LL/SC objects. One of the open problems mentioned
in that paper is the following: ”If shared-memory supports all of read, write, LL/SC, swap, CAS,
move, Fetch&Add, Fetch&Multiply, would the Ω(log n) lower bound still hold?”We present a simple
oblivious universal construction, called Sim, that performs a constant number of shared memory
accesses. It uses a single Fetch&Add object in addition to an LL/SC object, thus proving that the
lower bound in [21] can be beaten if we use just a single Fetch&Add object in addition to an LL/SC

object. To the best of our knowledge, Sim is the first universal construction that performs just
a constant number of shared memory accesses; it proves that the common belief that ensuring
wait-freedom is possible only with a significant performance cost is in many cases wrong.

Sim exploits the well-known technique [15, 26, 27, 30] of having a thread executing an operation
helping other already announced operations. We have implemented and experimentally tested Sim
on a real shared-memory machine. Our experiments show that achieving synchronization using
Sim outperforms several state-of-the-art synchronization techniques, both lock-based (like local
spinning) and lock-free (Figures 2 and 3). We believe that this is very surprising given that Sim is
a wait-free algorithm whereas all other techniques ensure only weaker progress properties.

Flat-combining introduced by Hendler, Incze, Shavit, and Tzafrir in SPAA’10 [15] also employs
the simple idea of having a thread execute sequentially all announced operations; in flat combining,
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this is the thread that manages to acquire a global lock protecting the entire data structure.
Apparently, the algorithm is blocking and therefore it is not robust (a thread holding the lock
could be preempted causing all other threads to wait or it may fail causing the entire system to
block). We experimentally prove that Sim exhibits all the performance benefits of flat combining
and sometimes outperforms it (Figures 2 and 3) without sacrificing robustness; in fact, it ensures
the strongest known progress condition of being wait-free.

We have used Sim to design new highly-efficient wait-free implementations of simple shared data
structures like queues and stacks. We experimentally prove that our stack implementation, called
SimStack, outperforms most well-known previous shared stack algorithms, like the lock-free stack
implementation of Treiber [29], the elimination back-off stack [16], a stack implementation based on
a CLH spin lock [9, 22], and a linked stack implementation based on flat combining [15]. Similarly,
our queue implementation, called SimQueue significantly outperforms the following previous imple-
mentations: a lock-based algorithm (using two CLH locks) and the lock-free algorithm presented
in [24], as well as the implementation using flat combining provided by Hendler et. al [15].

One limitation of Sim is that it cannot efficiently cope with large objects (i.e., objects that need a
large amount of storage s to maintain their state) since it copies (the part of) the object’s state (that
should be updated) locally. To overcome this limitation, we have combined the main techniques of
the universal construction presented by Chuong, Ellen and Ramachandran in SPAA’10 [7] with Sim
to get a universal construction, called L-Sim, that operates directly in the shared data structure
(and not on a local copy of the entire state). The resulted algorithm exhibits all the advantages
of the universal construction in [7], and improves upon it by being adaptive; it performs O(kw)
shared memory accesses (where w is the maximum number of different memory words accessed by
an operation on the sequential data structure, and k is the interval contention, i.e., the maximum
number of processes that are active during the execution interval of any operation) instead of O(nw)
that does the algorithm in [7]. We would like to point out that the algorithm in [7] is transaction
friendly. Making a transaction-friendly version of our algorithm is left as future work; however,
we believe that this can be easily achieved by applying similar techniques to those in [7]. The
experimental analysis of L-Sim is also left as future work.

While designing Sim, we saw that using a single Fetch&Add we could get simple implementations
of an active set, a collect object and a snapshot object that perform just one cache miss in cache-
coherent machines with up to as many threads as the length c of the system’s cache line, and ⌈n/c⌉
cache misses in case c < n. Using these implementations, one could get improved performance for
several previously presented algorithms [2, 5, 20, 28] in case ⌈n/c⌉ is a small constant.

Fatourou and Kallimanis have presented in [10] a family of wait-free, adaptive, universal con-
structions, called RedBlue. The first algorithm (F-RedBlue) performed O(min{k, log n}) shared
memory accesses; the second (S-RedBlue) used smaller objects than F-RedBlue and performed O(k)
shared memory access. Sim is much simpler than F-RedBlue and S-RedBlue, uses significantly less
objects and performs much less shared memory accesses. Two additional adaptive RedBlue univer-
sal constructions [10] (LS-RedBlue and BLS-RedBlue) coped with large objects. These algorithms
combined some of the techniques described by Anderson and Moir [4] with the techniques of the
RedBlue family to get the best of both worlds. Using Sim, we can obtain much simpler versions
of these algorithms (which although perform the same number of shared memory accesses as LS-
RedBlue and BLS-RedBlue, they employ Ω(n) less LL/SC objects and reduce the number of LL/SC
instructions performed in any execution by a factor of Ω(log k) per operation. A summary of known
wait-free universal algorithms is presented in Table 1.
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Algorithm Primitives Shared Memory Accesses Space Overhead

Herlihy [17] consensus objects, r/w regs O(n) O(n3s)
GroupUpdate [1] LL/SC, consensus objects, r/w regs O(min{n, k log k}) O(n2s logn)

IndividualUpdate [1] LL/V L/SC O(kw logw) O(nw + s)

F-RedBlue [10] LL/SC O(min{k, logn}) O(n2 + s)
S-RedBlue [10] LL/V L/SC, r/w regs O(k + s) O(n2 + ns)

Anderson & Moir [3] LL/V L/SC
O((n/min{k,M/T}) (B+

ML+ nw))
O(n2 + n(B +ML))

LS-RedBlue [10] LL/V L/SC, r/w regs O(B + k(w + TL)) O(n2 + n(B + kTL))

BLS-RedBlue [10] LL/V L/SC, r/w regs
O((k/min{k,M/T}) (B +
ML+ k+min{k,M/T}w))

O(n2 + n(B +ML))

Chuong, et. al [7] CAS, r/w regs O(nw) O(s+ n)
Sim (this paper) LL/SC or CAS, Fetch&Add O(1) O(1)
L-Sim (this paper) LL/SC or CAS, Fetch&Add O(kw) O(s+ n)

Table 1: Wait-free universal algorithms and their complexities; in [3], B is the number of blocks,
each of size L, needed to store the object’s state, and each process is allowed to modify at most T
blocks and help at most M/T , where M ≥ 2T is some integer.

We note that Sim (and L-Sim) has similar applicability limitations to flat combining [15]; efficient
implementations of data structures like search trees, where m lookups can be executed in parallel
performing just a logarithmic number of shared memory accesses each, are expected to outperform
Sim (since Sim applies each operation sequentially like most previous universal constructions [7, 10,
15, 17, 18]). This limitation can possibly be overcome by using multiple instances of Sim (as done
in our queue implementation of Section 5); for more complicated data structures this will be part
of our future work.

This paper is organized as follows. Section 2 presents a brief model. Sim is presented in Section 3
and the techniques we have applied to get a practical version of it, as well as some experimental
results are described in Section 4. The new wait-free stack and queue implementations as well as
their experimental analysis are presented in Section 5. Finally, Section 6 presents L-Sim.

2 Model

We consider an asynchronous system of n processes, p1, . . . , pn, each of which may fail by crashing.
An active set implements a set of processes that participate in a computation; it supports the
operations getSet (which returns a set of “participating” processes), join (to request participation
to the set), and leave (to request removal from the set). A collect object consists of n components
A1, ..., An, one for each process, each of which stores a value from a set V = {0, ..., 2d − 1}; it
supports the operations update(v) (when executing by pi it stores the value v in Ai) and collect
(which returns a vector of n values, one for each component). An implementation of a (high-level)
object from base objects provides an algorithm for each process to simulate each operation of the
simulated object using the base objects. A configuration C is a vector containing the states of the
processes and the values of the shared variables at any point in time. At an initial configuration,
registers contain initial values and processes are at initial states. A process completes the execution
of a step, each time it accesses a shared register. An execution is a sequence of steps by processes.
A process is active at some configuration C, if it has executed the invocation of an operation op at
C but it has not yet executed the response of op. The execution interval of op is the part of the
execution that starts with op’s invocation and ends with op’s response.
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Linearizability [19] imposes a total order, called linearization, on all operations performed in an
execution α. The linearization must respect the partial order imposed by the execution intervals of
operations. If α is linearizable, each of its operations has the same response as the corresponding
operation in the serial execution determined by the linearization; when this hold, we say that the
response is consistent. An implementation is linearizable if all its executions are linearizable. We
remark that implementations of active set and collect objects do not have to be linearizable. An
implementation of an active set should rather satisfy the following: (1) the returned set by a getSet
GS should contain any process p that has finished the execution of a join J before the invocation
of GS and it has not started the execution of a leave in the execution interval between the end
of J and the end of GS, and (2) the returned set by GS should not contain any process p that has
finished the execution of a leave L before the invocation of GS and it has not invoked a join in
the execution interval between the end of L and the end of GS. Similarly, in an implementation
of a collect object the returned vector of each collect Col should contain the value written by
an update (executed by a process p) that has finished its execution before the invocation of Col,
given that p has not started the execution of a new update in the execution interval between the
end of U and the end of Col. A snapshot object is a collect object that satisfies the extra property
of being linearizable (we then use the term scan instead of collect).

3 A new universal construction

We start with the presentation of a (single-writer) collect object, called SimCollect, which is a major
constructing module of Sim. A collect object is comprised of n components, one for each process,
each of which is capable of storing a value from a set D. Let d be the number of bits that are
needed for the representation of any value in D. The implementation uses a Fetch&Add object R
of nd bits. R is partitioned into n chunks of d bits each, one for each process. Process pi owns the
i-th chunk of d bits, and stores there the value of the component that has been assigned to it. An
update U with value v by pi first performs a FA() to ensure that v is written into the i-th chunk of
R, and then keeps a copy of v into a local variable prev; this copy is maintained by pi to discover
the appropriate value that should be added in the i-th chunk of R during its next update (which
will be the new value minus v). Whenever, pi executes a collect operation, it simply reads the
value stored in R and returns for each component the value stored in the corresponding chunk.
Apparently, the step complexity of SimCollect is 1.

If the size b of a Fetch&Add object is less than nd bits, then we can employ ⌈nd/b⌉ Fetch&Add
objects, R1, . . . , R⌈nd/b⌉. In this case, the value last written by pi is represented by the (id mod b)-
th chunk of R⌈id/b⌉. An update by pi adds an appropriate value to R⌈id/b⌉, and collect reads
every Fetch&Add object once and returns the set of values written in the chunks. This version of
the algorithm has step complexity 1 for update, and ⌈nd/b⌉ for collect. Notice that in this
version collect is not linearizable (but recall that linearizability is not necessary for collect).
In case b ≥ nd, collect is linearizable, so then SimCollect can serve as a single-writer snapshot
implementation. We remark that similar techniques as in SimCollect can be used to get an imple-
mentation of an active set, SimActSet, by a Fetch&Add object of n bits (one for each process) with
step complexity 1 if b < n, or ⌈n/b⌉ if b > n.

We continue to present Sim (Algorithm 1). Sim uses an LL/SC object S and an instance Col of
the collect implementation discussed above. The LL/SC object stores the state st of the simulated
object, a vector applied of n bits identifying whether the current operation (if any) of each process
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Algorithm 1 Pseudocode for Sim.
type Pindex {1, ..., n};
typedef struct State{

boolean applied[1..n];
RetVal rvals[1..n];
state st;

} State;

shared Collect Col;
shared State S = <<F,. . .,F>, <⊥,. . .,⊥>, ⊥>;

// Code for process pi
RetVal ApplyOp(operation op){
1. update(Col, i, op);
2. Attempt();

3. update(Col,i, ⊥);

4. Attempt();

5. return S.rvals[i];
}

void Attempt(){
State ls; Pindex i, j;
BitVector act; operation ops[1..n];

6. for j=1 to 2 do{
7. ls = LL(S);
8. ops = collect(Col);
9. for i=1 to n do { // local loop

10. if(ops[i] ̸= ⊥ AND ls.applied[i] == false)
11. apply ops[i] to ls.st and store

into ls.rvals[i] the return value;

12. if(ops[i] ̸= ⊥) ls.applied[i] = true;
13. else ls.applied[i] = false;

}
14. SC(S, ls);

}
}

has been applied to the simulated object, and an array rvals of return values, one for each process;
notice that the size of S could be reduced to just a single pointer using indirection. (In later
sections, we present how we can get a practical version of Sim that outperforms most of the state
of the art lock-based and lock-free algorithms.)

Whenever a process pi wants to apply some operation op to the simulated object, it first an-
nounces op by updating its component in Col (line 1). Then, pi executes a routine, called Attempt

(line 2), to ensure that its operation has been applied to the object. Next, pi updates its component
with the special value ⊥ (line 3) to inform the other processes that op has been completed. Then,
p executes Attempt once more to eliminate any evidence of op (line 4).

We now discuss the details of Attempt. First, p executes an LL to S (line 7), and then a collect
to discover other active operations (line 8). Next, p applies all these operations (in addition to its
own) to a local copy ls of the state of the simulated object, and calculates the return value for
each applied operation (lines 9-13). Finally, p tries to update S by executing an SC (line 14). We
prove that it is enough for p to execute lines 7-14 twice to guarantee that its operation op has been
applied to the simulated object (or that the evidence of its last operation has been eliminated).

Theorem 3.1 Sim is a linearizable, wait-free implementation of a universal object using a Fetch&Add
object of size b equal to nd bits and one LL/SC object. Sim performs O(1) shared memory accesses.
In case b < nd, Sim uses ⌈nd/b⌉ Fetch&Add objects and one LL/SC object; it performs O(nd/b)
shared memory accesses.

We finally discuss some implications of our universal construction. Jayanti [21] has proved
that any oblivious implementation of a universal object from LL/SC objects has step complexity
Ω(log n). Sim is oblivious, so the lower bound can be beaten if just one Fetch&Add object (or a
collect object) is used in addition to an LL/SC object. Thus, our universal construction implies a
lower bound of Ω(log n) on the step complexity of any implementation of (1) a collect object, (2)
a single-writer snapshot object, or (3) a Fetch&Add object, from LL/SC objects.

3.1 Correctness proof of Sim

In this section, we prove that Sim is linearizable. We start by introducing some useful notation.
Let α be any execution of Sim and assume that some thread pi, i ∈ {1, ..., n}, executes mi > 0
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instances1 of Attempt in α. Let πi
j be the jth instance of Attempt executed by pi in α (see Fig. 1).

By the code, it follows that if j mod 2 = 1, πi
j is an instance of Attempt called on line 2; otherwise,

it is an instance of Attempt called on line 4. Let U i
j be the last update executed by pi before πi

j

and let Qi
j be the configuration just before the first step of U i

j ; let r
i
j be the value written by U i

j .

Let reqil be the lth request initiated by pi, where l ≤ ⌈mi/2⌉; we remark that reqil executes
πi
2l−1 and πi

2l. We say that reqil is applied when the following hold: (1) collect, executed by
some request req′ (that might be reqil or any other request) returns reqil as the value of the ith
component, (2) Attempt by req′ executes line 11 for req, and (3) the execution of the SC of line 14
on S by req′ succeeds. When these conditions are satisfied, we sometimes also say that req′ applies
reqil .

We start with a brief outline of the proof. We first prove that S.applied[i] equals to 1 just
after the execution of the first Attempt of reqil , whereas it is equal to 0 just after the execution
of its second Attempt. We also prove that S.applied[i] changes from 0 to 1 for the lth time after
U i
2l−1 has started its execution and before the end of πi

2l−1; similarly, S.applied[i] changes from
1 to 0 for the lth time after U i

2l has started its execution and before the end of πi
2l. Each time

S.applied[i] changes from 0 to 1, a request by pi is appplied, whereas each time it changes back to
0, the evidence of the fact that pi has an active request is eliminated. This is enough to prove that
reqil is applied exactly once in a consistent way.

We first present the following observation which is an immediate consequence of the code (lines
6, 7 and 14).

Observation 3.2 Consider any j, 0 < j ≤ mi. There are at least two successful SC instructions
in the execution interval of πi

j.

We next prove that at the end of the execution of the first Attempt of any instance of Sim by
thread pi, S.applied[i] equals to 1, whereas at the end of the second Attempt, S.applied[i] equals
to 0.

Lemma 3.3 Consider any j, 0 < j ≤ mi. It holds that S.applied[i] is equal to j mod 2 at the end
of πi

j.

Proof: Assume, by the way of contradiction, that S.applied[i] is equal to 1 − (j mod 2) at the
end of πi

j . By Observation 3.2, there are at least two successful SC instructions in the execution

interval of πi
j . It follows that the last successful SC instruction executed in πi

j writes 1− (j mod 2)
into S.applied[i]. Let SCx be this SC instruction, let LLx be its matching LL instruction, let px
be the thread that executes LLx and SCx, and let Gx be the instance of collect executed by px
between LLx and SCx. If j mod 2 = 0, then SCx writes 1− (j mod 2) = 1 to S.applied[i]; the code
(lines 8 and 12 − 14) implies that, in this case, Gx returns a value r ̸= ⊥ for the ith component,
whereas rij = ⊥. In the opposite case where j mod 2 = 1, SCx writes 0 to S.applied[i]; the code
(lines 8 and 12 − 14) implies that, in this case, Gx returns a value r = ⊥ for the ith component,
whereas rij ̸= ⊥. Thus in either case, v ̸= rij .

Since SCx is executed in the execution interval of πi
j , Gx (which is executed before SCx) returns

before the end of πi
j . Since no update occurs on component i after U i

j and before the end of πi
j ,

if the execution of Gx starts after the end of the execution of U i
j , Gx must return rij for the ith

1We remark that mi may be ∞.
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Figure 1: An example execution of Sim algorithm.

component. However, recall that Gx returns v ̸= rij for the ith component. Thus, the execution of

Gx must start before the end of the execution of U i
j . Therefore, LLx which is called by px before

executing Gx, is performed before the beginning of πi
j . By Observation 3.2, there are at least two

successful SC instructions in the execution interval of πi
j . Since, SCx is the last one, it follows that

SCx is an unsuccessful SC instruction, which is a contradiction.

For the rest of the proof we use the following notation. Let Ci
0 = C0 be the initial configuration.

At Ci
0, S.applied[i] is equal to 0. If mi > 0, Lemma 3.3 implies that just after πi

1, S.applied[i] is
equal to 1. Let Ci

1 be the first configuration between C0 and the end of πi
1 at which S.applied[i] is

equal to 1. Consider any integer 1 < j ≤ mi. Lemma 3.3 implies that just after πi
j−1, S.applied[i]

is equal to (j − 1) mod 2, while just after πi
j , S.applied[i] is equal to j mod 2. Let Ci

j be the first

configuration between the end of πi
j−1 and the end of πi

j such that S.applied[i] is equal to j mod 2.

Obviously, Ci
j precedes the end of πi

j . Fig. 1 illustrates the above notation.
Since the value of S.applied[i] can change only by the execution of an SC instruction on S, it

follows that just before Ci
j a successful SC on S is executed. Let SCij be this SC instruction and let

LLij be its matching LL instruction. Denote by Gi
j the instance of collect that is executed (line

8) between LLij and SCij by the same thread.

We continue to prove that Gi
j returns the value rij written by U i

j for thread pi; moreover, we

prove that SCij is executed after Qi
j (i.e., after the first step of U i

j has been executed).

Lemma 3.4 Consider any j, 0 < j ≤ mi. It holds that: (1) SCij is executed after Qi
j, and (2) Gi

j

returns rij for the ith component.

Proof: Assume first that j = 1. Then, SCi1 writes 1 to S.applied[i]; the code (lines 8 and 12− 14)
implies that, in this case, Gi

1 returns a value r ̸= ⊥ for the ith component. However, since the
initial value of the ith component is ⊥, and U i

1 is the only update on the ith component before
πi
1, this can happen only if the execution of Gi

1 ends after the beginning of U i
1, i.e., after Qi

1. It
follows that, Gi

1 returns ri1, and SCi1, which occurs after Gi
1, is performed after Qi

1.
Consider now any j > 1. Suppose that Gi

j starts executing before the beginning of πi
j−1. By

Observation 3.2, at least two successful SC instructions are executed in the execution interval of
πi
j−1. By the code it follows that LLij is executed before Gi

j and, by its definition, SCij is executed

after the end of πi
j−1. It follows that SC

i
j is not successful, which is a contradiction. Thus, Gi

j starts

its execution after the beginning of πi
j−1.

If j mod 2 = 0, then by definition, SCij writes 0 to S.applied[i]. Then, the code (lines 8 and

12 − 14) implies that, in this case, Gi
j returns a value r = ⊥ for the ith component; also, by the
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code (lines 1 and 3) and by definition, if j mod 2 = 0, then rij−1 ̸= ⊥. In the opposite case where j

mod 2 = 1, by definition, SCij writes 1 to S.applied[i]. Then, the code (lines 8 and 12− 14) implies

that, in this case, Gi
j returns a value r ̸= ⊥ for the ith component; also, by the code (lines 1 and

3) and by definition, rij−1 = ⊥ in this case. Thus in either case, r ̸= rij−1.

By the code (lines 1− 4), no update other than U i
j is executed on the ith component between

U i
j−1 and the end of the πi

j . Since Gi
j starts after the end of U i

j−1, ends before the end of πi
j ,

and returns a value not equal to rij−1, it follows that Gi
j must return the value rij written by U i

j .

Moreover, the execution intervals of Gi
j and U i

j should be overlapping. So, the execution of Gi
j ends

after the beginning of the execution of U i
j , and the same is true for SCij which is executed right

after Gi
j .

We next prove that no SC on S that is executed between SCij−1 and SCij , can change the value
of S.applied[i].

Lemma 3.5 Consider any j, 0 < j ≤ mi. At each configuration C following Ci
j−1 and preceding

Ci
j, it holds that S.applied[i] = (j − 1) mod 2.

Proof: By definition of Ci
j , no successful SC writes j mod 2 to S.applied[i] between the end

of πi
j−1 and Ci

j . Assume, by the way of contradiction, that there is some configuration between

Ci
j−1 and the end of πi

j−1 such that S.applied[i] is equal to j mod 2. Let Cx be the first of these
configurations. Since only SC instructions change the value of S, there is a successful SC instruction,
SCx, which occurs just before Cx and writes j mod 2 to S.applied[i]. Let LLx be the matching LL

instruction to SCx and let πx be the instance of Attempt that executes SCx.
If j mod 2 = 0, then by definition, SCx writes 0 to S.applied[i]. Then, the code (lines 8 and

14) implies that, in this case, Gx returns a value r = ⊥ for the ith component; also, by the code
(lines 1 and 3) and by definition, it follows that if j mod 2 = 0, then rij−1 ̸= ⊥. In the opposite
case where j mod 2 = 1, SCx writes 1 to S.applied[i]. Then, the code (lines 8 and 14) implies that,
in this case, Gx returns a value r ̸= ⊥ for the ith component; also, by the code (lines 1 and 3) and
by definition, rij−1 = ⊥ in this case. Thus in either case, r ̸= rij−1.

Since SCx is successful, LLx must have occurred after Ci
j−1. Since Gx occurs between LLx and

SCx, and U i
j−1 is executed before πi

j−1, Gx occurs after the end of the execution of U i
j−1. Since no

other update occurs on component i between U i
j−1 and the end of πi

j , it follows that Gx returns

rij−1 for the ith component, which contradicts our argument above that Gx returns r ̸= rij−1.

Consider any l, l ≤ ⌈mi/2⌉. By the pseudocode (lines 10-12), when reqil is applied, S.applied[i]
changes from 0 to 1. This, Lemma 3.5, and the definitions of Ci

2l−1 and Ci
2l, imply the following

corollary.

Corollary 3.6 For each l, 0 < l ≤ ⌈mi/2⌉, reqil is applied at most once.

We next prove that reqil is applied exactly once.

Lemma 3.7 For each l, 0 < l ≤ ⌈mi/2⌉, reqil executed by pi is applied just before Ci
2l−1.
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Proof: Recall that a request by pi is applied each time S.applied[i] changes from 0 to 1. By the
definition of Ci

2l−1, it follows that some of the requests of pi is applied before Ci
2l−1.

By Lemma 3.4, Gi
2l−1 returns ri2l−1 for the ith component. By the code, ri2l−1 = reqil . It follows

that reqil is applied just before Ci
2l−1, as needed.

We are now ready to assign linearization points. Let α be any execution. For each i ∈ {1, ..., n}
and for each l, 0 < l ≤ ⌊mi/2⌋, we place the linearization point of reqil at C

i
2l−1; ties are broken by

the order imposed by thread identifiers.

Lemma 3.8 Each request reqil , 0 < l ≤ ⌊mi/2⌋, is linearized within its execution interval.

Proof: Lemma 3.4 implies that SCi2l−1 follows Qi
2l−1. By its definition, SCi2l−1 occurs before the

end of πi
2l−1. Thus, C

i
2l−1 is in the execution interval of reqil , as needed.

In order to prove consistency, we use the following notation. Denote by SCi the i-th successful
SC instruction on S and let LLi be its matching LL. Obviously, between SCi and SCi+1, S (and
therefore also its st field) is not modified.

Let α be any execution of the algorithm. Denote by αi, the prefix of α which ends at SCi and
let Ci be the first configuration following SCi. Let α0 be the empty execution. Denote by li the
linearization order of the requests in αi. We remark that S.st stores a copy of the simulated state
at each point in time. Moreover, each process applies each request on its local copy of the simulated
state sequentially, the one after the other. We say that S.st is consistent at Ci if it is the same as
the state resulted by executing the requests of αi sequentially in the order specified by li.

Lemma 3.9 For each i ≥ 0, (1) S.st is consistent at Ci, and (2) αi is consistent.

Proof: We prove the claim by induction on i.
Base case (i=0): The claim holds trivially; we remark that αi is empty in this case.
Induction hypothesis: Fix any i > 0 and assume that the claim holds for i− 1.
Induction step: We prove that the claim holds for i. By the induction hypothesis, it holds
that: (1) S.st is consistent at Ci−1, and (2) αi−1 is consistent with linearization li−1. Let req be
the request that executes SCi. If req applies no request on the simulated object, the claim holds
by induction hypothesis. Thus, assume that req applies j > 0 requests on the simulated object.
Denote by req1, ..., reqj the sequence of these requests ordered with respect to the identifiers of the
threads that initiate them.

Notice that req performs LLi after Ci−1 since otherwise SCi would not be successful. By defi-
nition, S.st does not change between Ci−1 and Ci. Thus, LLi returns the value written in S.st at
Ci−1. By the induction hypothesis, this value is consistent at Ci−1. Lemma 3.7 and Corollary 3.6
imply that SCi is the only SC that applies req1, . . . , reqj . Thus, none of these requests have been
applied in past.

Given that req1, ..., reqj are executed by req sequentially, the one after the other in the order
mentioned above, it is a straightforward induction to prove that (1) for each l, 0 ≤ l ≤ j, request
reql returns a consistent response; moreover, ls.st is consistent once line 11 has been executed by
req for all these requests. Therefore, S.st is consistent after the execution of req’s successful SC.
This concludes the proof of the claim.
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4 From theory to practice

Implementation. We describe the major techniques applied to Sim to port it to a real-world
machine architecture, like x86 64. This gives a practical variation of Sim, called P-Sim.

A shared bit vector Act of size n is employed, containing one bit for each process; each process
toggles its bit, by performing a Fetch&Add, when it initiates a new operation. An operation by pi
is applied only if the i-th bit of Act differs from the i-th bit of the applied array of struct State;
before attempting to write the new state of the simulated object, pi changes S.applied to be equal
to Act. In this way, there is no need for eliminating the evidence of an executed operation. This
technique reduces the total number of cache misses to almost half giving a noticeable speed gain.

The collect object is replaced by a set of n single-writer r/w registers (Announce array). When
pi wants to apply an operation op, announces it by writing op (and its parameters) in Announce[i].
Process pi discovers the operations that other active processes want to perform (to help them) by
reading the appropriate entries of Announce. This increases the time complexity of Sim to O(k)
(where k is the interval contention) but it decreases the size of the Fetch&Add object.

The information stored in struct State is now maintained using indirection. Each process pi
maintains a pool of a constant number C of structs of (an enhanced version of) type State. These
pools are implemented by allocating an array Pool of nC structs of type State. Process pi’s pool
is comprised by the Pool[(i−1)C..iC−1] part of the array. Variable S has now been replaced by a
shared variable P which is an index in Pool, i.e., P is a “reference” to a struct of type State which
stores the current state of the simulated object (in addition to other useful information).

Several modern shared memory machines (like those using the x86 64 architecture) support a
Fetch&Add instruction on up to 64 bit words. In order to cope efficiently with more than 64 threads,
the multi-word bit vector Act is implemented by storing its words to the minimum possible number
of cache lines. Notice that a typical cache line is usually of 64 bytes; thus, it can be used to store
one bit for each of up to 512 processes (so, more than one cache line may be needed only if the
number of processes is more than 512; otherwise, we read Act with just one cache miss).

The majority of the commercially available shared memory machines support CAS rather than
LL/SC. We simulate an LL on P with a read(P ), and an SC with a CAS on a timestamped version of
P to avoid ABA. Since P stores just an index to the pool of blocks (and not a full 64 bit pointer),
there are enough bits (in our experiments 48) in a word to store the timestamp (we remark that in
systems with more processes, we could use 128 bit words, supported e.g., in x86 64).

We remark that the performance of P-Sim gets enhanced when processes manage to help a large
number of other processes while performing their operations. For exploring this property, we use an
adaptive exponential backoff scheme which has some similarities to that used in [16]. A process pi
backoffs after it has announced its operation and has indicated in Act that it is active. This results
in increasing the number of operations that pi will help while executing the current instance of its
operation, as is desirable. It is worth-pointing out that P-Sim achieves very good performance even
if no backoff is employed.

A simplified version of P-Sim is presented in Algorithms 2, 3. The full code is provided at
http://code.google.com/p/sim-universal-construction/.

Performance Evaluation. We run our experiments on a 32-core machine consisting of four AMD
opteron 6134 processors (Magny Cours). Each processor consists of two dies and each of them
contains four processing cores and an L3 cache shared by its cores. Dies and thus processors are
connected to each other with Hyper Transport Links creating a topology with an average diameter
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Figure 2: Performance and degree of helping of Sim.

of 1.25 [8]. All codes were compiled with gcc 4.3.4, and the Hoard memory allocator [6] was used
to eliminate bottlenecks in memory allocation.

We first focus on a synthetic benchmark which shows the performance advantages of Sim over
well-known blocking and lock-free techniques. More specifically, we used Sim to implement a
simple Fetch&Multiply instruction; we measure the time needed to complete the execution of 106

Fetch&Multiply instructions (with each thread executing 106/n such instructions) for different
values of n. For each value of n, the experiment has been performed 10 times and averages have
been taken. A random number (up to 512) of dummy loop iterations have been inserted between
the execution of two Fetch&Multiply by the same process; in this way, we simulate a random
work load large enough to avoid unrealistically low cache miss ratios (but not too big to reduce
contention). A similar technique was employed by Michael and Scott in [24] for the same reasons.

We have performed the same experiment using the following mechanisms: CLH spin locks [9,
22]2, a simple lock-free algorithm with exponential back-off using a single CAS object, and flat
combining [14, 15]. We carefully optimized these algorithms to achieve best performance in our
computing environment. For those that use backoff schemes, we performed a large number of
experiments to select the best backoff parameters in each case. CLH spin locks have been evaluated
for only up to 32 threads (so that each thread runs on a distinct core), since otherwise they
result in very poor performance. We used the flat combining implementation provided by its
inventors [14, 15] but we carefully chose its parameters (i.e., polling level, number of combining
rounds) to optimize its performance in our computing environment; we performed a big number
of experiments and we observed that choosing the flat combining’s parameters differently to get
other degrees of helping leads to performance degradation. The simple lock-free algorithm uses a
single CAS object O, and executes a CAS instruction on O repeatedly, until it successfully stores
the new value there; the algorithm employs an exponential back-off scheme to reduce contention in
accessing O. Given that this seems to be the simplest lock-free implementation, we expect that it
performs well.

In our experiment, Sim has been proved to be up to 2.36 times faster than spin-locks, and up
to 1.67 times faster than the lock-free algorithm (Figure 2). Since both Sim and flat-combining are
based on the simple idea of having each process that performs an operation helping other active
operations, we would be happy to see Sim (which is a wait-free algorithm) to perform the same

2As expected for cache-coherent NUMA architectures, we experimentally saw that MCS spin locks [23] have
slightly worse (or similar) performance than (to) CLH locks, so we present our results only for CLH locks.
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well as flat-combining (which is blocking). As Figure 2 shows, this is indeed the case. Even more,
for all values of n > 4, we got better numbers for Sim than for flat-combining. We found it very
surprising that there exists a wait-free universal construction with the performance advantages of
Sim.

As illustrated in Figure 2, all algorithms scale well for up to 4 cores. For larger values of n, the
performance of spin-locks and the lock free algorithm degrade as the number of threads increases.
A major reason for this is that the (intra)communication cost between dies is much higher than
the (inter)communication cost between the four cores of the same die; additionally, the lock-free
algorithm causes more contention as n increases. It is worth-pointing out that the performance
of Sim and flat combining is being enhanced as the number of n increases (even for values of
n > 4). This is so since the average degree of helping (where Sim and flat-combing owe their good
performance) increases with the number of active operations in the system, and therefore also with
n, as shown in the second part of Figure 2. We remark that this enhancement in performance is
noticed even in case of n > 32 where the processing cores are oversubscribed.

5 A stack and a queue implementation based on Sim

A New Wait-Free Implementation of a Shared Stack. Implementing a stack object based
on Sim is not a difficult task. The only encountered subtlety is that instead of maintaining the
entire state of the stack, Sim is employed to atomically manipulate just the top of the stack.

We compare the experimental performance of SimStack with that of state-of-the-art concurrent
stack implementations, like the lock free stack implementation presented by Treiber in [29], the
elimination back-off stack [16], a stack implementation based on CLH spin lock [9, 22], and a linked
stack implementation based on flat combining [14, 15].

Algorithm 2 Data structures used in P-Sim algorithm.
typedef struct State {

int seq1, seq2;
BitVector applied;
state st;
RetVal rvals[1..n];

} State;
typedef struct TimedPoolIndex {

int index; // 16 bit array index
int tm; // 48 bit timestamp

} TimedPoolIndex;

// Each element of pool is initialized
// as follows < 0, 0, < 0, . . . , 0 >,⊥, < ⊥, . . . ,⊥ >>
shared State Pool[0..n*C]; // C > 1 is a small constant
shared TimedPoolIndex P = {n*C, 0};
shared BitVector Act = 0;
shared OpType Announce[1..n];

// private persistent variables of process pi
// operator << implements a left bit shift
BitVector maski = 1 << i;
BitVector offseti = -maski;
int pool indexi = 0;
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Algorithm 3 Pseudocode for P-Sim algorithm.
RetVal ApplyOp(function sfunc, ArgVal arg) { // Code for process pi

TimedPoolIndex lp, mp;
ObjectState *lst;
ArgVal tmp arg;
int j, k;
BitVector Act;

1. Announce[i] = arg; // announce the operation
2. offseti = -offseti; // offseti is added to Act to toggle pi’s bit
3. FAA(Act, offseti); // toggle pi’s bit in Act, Fetch&Add acts as a full write-barrier
4. backoff();
5. for j=0 to 1 do { // code of Attempt
6. lp = P ; // read reference to struct State
7. lst = &Pool[i ∗ n+ pool indexi];
8. *lst = Pool[lp.index]; // read struct State in a local variable lst
9. active = Act; // read Act
10. diffs = lst → applied XOR active; // determine the set of active processes
11. if (lst → seq1 != lst → seq2) continue; // consistency check
12. if (diffs AND mask i == 0) return lst → rvals[pi]; // if the operation has already been applied return
13. if (j == 0) compute backoff();
14. lst → seq1 = lst → seq1 + 1;
15. while (diffs != 0) { // as long as there are still processes to help
16. k = bitSearchFirst(diffs); // find the next such process
17. tmp arg = Announce[k]; // discover its operation
18. lst → rvals[k] = sfunc(lst, tmp arg); // apply the operation to a local copy of the object’s state
19. diffs = diffs XOR (1L << k); // extract this process from the set

}
20. lst → applied = active; // change applied to be equal to what was read in Act
21. lst → seq2 = lst → seq2 + 1;

// compute a new reference mp to store in P
22. mp.tm = lp.tm + 1; // increase P ’s timestamp
23. mp.index = i ∗ n+ pool indexi; // store in mp.index the index in Pool where lst will be stored
24. Pool[i ∗ n+ pool indexi] = lst; // store the new state in position mp.index of Pool
25. if (CAS(P , lp, mp)) { // try to change P to the value mp
26. pool indexi = (pool indexi + 1) mod C; //if this happens successfully,use next item in pi’s pool next time
27. return lst → rvals[i]; // return;

}
}

28. lp = P ; // after two unsuccessful efforts, read current value of P
29. lst = &Pool[lp.index]; // read the element of Pool indicated by the index field of P
30. return lst → rvals[i]; // return the value found in the record stored there
}

Our experiment is similar to that performed by Michael and Scott for queues in [24]. More
specifically, we measure the time needed to complete the execution of 106 pairs of a push and a
pop as the number of threads increases (Figure 3). Again, for each value of n, the experiments
have been performed 10 times and averages have been taken; we have also simulated a random
workload by executing a random number of iterations of a dummy loop after each operation.

As shown in Figure 3, all algorithms scale well up to 4 threads but SimStack outperforms all
other implementations for n > 4. More specifically, SimStack is up to 2.94 times faster than the
lock-free stack, up to 2.58 times faster than the spin-lock based stack, up to 2.57 times faster than
the elimination back-off stack, and up to 1.17 times faster than flat-combining.
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Figure 3: Performance of SimStack (left) and SimQueue (right).

As expected the elimination backoff stack achieves better performance than the lock-free and
the spin-locks based implementations in almost all experiments. Again, the performance of the
spin-lock based and the lock free implementations, as well as that of the elimination back-off stack
degrade as the number of threads increases once n becomes more than four, in contrast to flat-
combining and Sim that enjoy further performance enhancement as n increases. SimStack and flat
combining significantly outperform the other stack implementations. A possible reason that Sim
exhibits better performance than flat-combining could be that executing the algorithm instead of
performing local spinning may result in better cache locality.

A New Wait-Free Implementation of a Shared Queue. To allow the enqueuers and
dequeuers to run independently, we employed two instances of P-Sim. Whenever a process p
performs an enqueue, it helps only other enqueuers (ignoring currently active dequeuers). Process
p creates a local list of nodes, one for each enqueuer it helps. These nodes are eventually inserted to
the shared queue by changing the next field of the queue’s tail node to point to the first node of the
list, and the queue’s tail to point to the last node of this list. To do so, the tail of the queue, and
pointers to the first and last nodes of this list are stored in the EnqState struct of the enqueuer’s
instance of Sim. If process p manages to successfully update EnqP (i.e., the pointer pointed to the
EnqState struct), it also tries to update (using CAS) the next field of the last node of the queue to
point to the first node of its local list. To avoid situations where p crashes before doing this change
but after it has written a new value in EnqP , any subsequent enqueue also tries to connect (using
CAS) the tail of the shared queue with the first node of the list (recorded in the EnqP ). Similarly,
a dequeue helps only active dequeuers. The DeqState struct stores a pointer to the front element
of the queue. To ensure consistency, each dequeue also executes a CAS to connect the two parts
of the queue in a similar way that enqueue operations do.

Each process maintains three pools of structs, one containing structs of type EnqState, one
containing structs of type DeqState and one containing nodes of the queue. Each time a process
wants to allocate a new struct, it simply uses one of the structs in the appropriate local pool. The
pseudocode of the implementation is provided in Algorithms 2, 3.

We compare the experimental performance of SimQueue with that of state-of-the-art concurrent
queue implementations, like the lock-based implementation (using two CLH locks) and the lock-free
algorithm presented in [24], and the implementation using flat combining [14, 15]. Similarly to the
experiment performed in [24], we measure the time needed to complete the execution of 106 pairs
of an enqueue and a dequeue operation as the number of threads increases (Figure 3). As in
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previous experiments, we simulate a random workload after each operation.
As shown in Figure 3, SimQueue significantly outperforms all other implementations for n > 4.

More specifically, SimQueue is up to 3.06 times faster than the lock-free implementation, up to 1.82
times faster than the spin-lock based implementation, and up to 1.5 times faster than flat combining.
As expected, flat combining outperforms all queue implementations other than SimQueue. However,
SimQueue achieves much better performance than flat combining for almost any number of threads.
This performance advantage of SimQueue over flat-combining is basically due to the fact that we
used two instances of Sim for our queue implementation, thus achieving increased parallelism by
having enqueuers and dequeuers run concurrently.

6 Sim for large objects

The algorithm (Algorithms 7 and 8) uses an instance of SimActSet and a set of n single-writer
registers (instead of a collect object). Each process starts the execution of an operation op by
announcing op in its single-writer register and joining the active set. The main difficulty in designing
L-Sim was to ensure that at each point in time, all ”up-to-date” processes (i.e., those that have read
the current version of State) will help the same set of operations. This is achieved by storing in
State (S) two versions of the applied bit vector (called applied and papplied). Each time an instance
A of Attempt is executed, papplied is updated to store the values found in applied at the beginning
of A (line 14); applied is updated based on the processes that are recorded in the active set (lines
15 − 16). Whether an operation by a process pi should be applied or not is determined based on
the values read in the i-th entry of the arrays applied and papplied of S; if they contain FALSE and
TRUE, respectively, then the operation has not been applied yet and it should be simulated (lines
18− 35); otherwise, the operation (if any) has already been applied.

The simulated data structure is now shared and it can be updated directly by any process. For
each data item x, L-Sim maintains a struct of type ItemSV . This struct stores the old and the
current value of the data, a toggle bit that identifies the position in the val array of the struct
where the current data for x should be read from, and a sequence number. All these fields are
required to achieve synchronization between the processes that help the same set of operations.

Each process pi uses a local directory D containing structs of type DirectoryNode, where
it stores information about each item it accesses during the execution of its current instance of
Attempt (lines 25, 31 and 32), and performs all its updates first on these copies (lines 29 and 34).
Only after it has finished the simulation of the set of operations described in the arrays of S, it
applies the changes listed in the elements of its directory to the shared data structure (lines 37−41).

Some additional synchronization that should be achieved between different helpers of the same
set of operations is when new data items are allocated by these operations; Then, all helpers should
use the same allocated ItemSV struct for each of these data items. To solve this problem, S stores
a pointer (called var list) to a list of newly created data items shared by all processes that read
this instance of S. Each time a process pi needs to allocate the k-th, k ≥ 1, such data item, it
tries to add a struct of type NewV ar as the k-th element of the list (lines 21− 23). If it does not
succeed, some other process has already done so, so p uses this struct (by moving pointer ltop to
this element on line 24, and by inserting ltop → var in its dictionary on line 25).

Theorem 6.1 L-Sim is a linearizable, wait-free implementation of a universal object. The number
of shared memory accesses performed by L-Sim is O(kW ).
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Algorithm 4 Data structures of SimQueue algorithm.
// Two copies of Sim are used
// the first is used to achieve synchronization between the enqueuers,
// and the second to achieve synchronization between the dequeuers

typedef struct Node { // node of the queue
Value v; // value stored in each node
struct Node *next;

} Node;

typedef struct EnqState { // struct of type State for the enqueuers’ copy of Sim
int seq1;
BitVector applied;
Node *new tail;
Node *lfirst;
Node *old tail;
int seq2;

} EnqState;

typedef struct DeqState { // struct of type State for the dequeuers’ copy of Sim
int seq1;
BitVector applied;
Node *head;
Node rvals[1..n];
int seq2;

} DeqState;

typedef struct TimedPoolIndex {
int index;
int tm;

} TimedPoolIndex;

shared EnqState EnqPool[0..nC]; // where C is a small constant greater than 1
shared DeqState DeqPool[0..nC];
shared TimedPoolIndex EnqP = {nC, 0};
shared TimedPoolIndex DeqP = {nC, 0};
shared BitVector EnqAct = 0;
shared BitVector DeqAct = 0;
shared OpType EnqAnnounce[1..n];
// EnqAnnounce[i] stores the argument of the last executed (or the currently active)
// enqueue operation of process pi
// there is no need for having a DeqAnnounce array since dequeues do not have any arguments

// private, persistent variables of process pi
BitVector maski = 1 << i;
BitVector enq offseti = -maski, deq offseti = -maski;
int enq pool indexi = 0, deq pool indexi = 0;
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Algorithm 5 Pseudocode of enqueue operation.
void Enqueue(ArgVal arg) { //Code for process pi

BitVector lactive, diffs;
TimedPoolIndex lp, mp;
EnqState ms, ls;
int k, j;
Node *node, *lfirst;

1. EnqAnnounce[i] = arg; // announce the operation
2. enq offseti = -enq offseti; // enq offseti is added to EnqAct to toggle pi’s bit
3. Fetch&Add(EnqAct, enq offseti); // toggle the bit in EnqAct
4. backoff();

5. for j=0 to 1 do { // code of Attempt
6. lp = EnqP ; // read reference to struct State for enqueuers
7. ms = EnqPool[lp.index]; // read struct State for enqueuers in a local variable
8. lactive = EnqAct;
9. diffs = ms.applied XOR lactive; // determine the set of active enqueuers
10. if (ms.seq1 != ms.seq2) continue; // consistency check
11. if (diffs AND maski == 0) return; // if the operation has already been applied return
12. ms.seq1 = ms.seq1 + 1;
13. node = new Node(); // allocate a new node for the item to be enqueued
14. node → next = nil; // and initiate its fields
15. node → obj = arg;
16. lfirst = node; // make a new list which will eventually contain one node

//for each of the the enqueuers that pi will help

17. diffs = diffs XOR maski; // exclude pi from the set of active enqueuers
18. CAS(ms.old tail → next, nil, ms.lfirst); // Connect the two parts of the queue

// if not already done by other enqueuers
19. while (diffs != 0) { // as long as there are still processes to help
20. k = bitSearchFirst(diffs); // find the next such enqueuer pk
21. node → next = new Node(); // assign a new node for the item that pk wants to enqueue.
22. node = node → next;
23. node → next = nil;
24. node → obj = EnqAnnounce[k]; // initialize appropriately the fields of this node
25. diffs = diffs XOR (1 << k); // exclude pk from the set of active processes

}
26. ms.old tail = ms.new tail; // store tail in ms.old tail
27. ms.lfirst = lfirst; // store a pointer to the first node of the list of newly created nodes
28. ms.new tail = node; // keep a pointer to the last node of the list of newly created nodes

// in ms.new tail; this will be the new tail if the CAS by pi succeeds
29. ms.applied = lactive; // change applied to be equal to what was read in EnqAct
30. ms.seq2 = ms.seq2 + 1;
31. mp.tm = lp.tm + 1; // increase timestamp
32. mp.index = n*i + enq pool indexi; // store in mp.index the index in EnqPool where ms will be stored
33. EnqPool[mp.index] = ms; // store the new state in position mp.index of EnqPool
34. if (CAS(EnqP , lp, mp)) { // try to change EnqP to point to mp
35. CAS(ms.old tail → next, nil, ms.lfirst); // try to change the last pointer to point to the first node

// of the local list
36. enq pool indexi = (enq pool indexi + 1) mod C; // use next item in pi’s enqueue pool next time
37. return;

}
}

38. return;
}
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Algorithm 6 Pseudocode of dequeue operation.
Node Dequeue(void) { //Code for process pi

BitVector lactive, diffs;
TimedPoolIndex lp, mp;
DeqState ms, ls;
EnqState lenq s;
int k,j;

39. deq offseti = -deq offseti; // deq offseti is added to DeqAct to toggle pi’s bit
40. Fetch&Add(DeqAct, deq offseti); // toggle the bit in DeqAct
41. backoff();

42. for j=0 to 1 do { // code of Attempt
43. lp = DeqP ; // read reference to struct State for dequeuers
44. ms = DeqPool[lp.index]; // read struct State for dequeuers in a local variable ms
45. lactive = DeqAct; // read DeqAct
46. diffs = ms.applied XOR lactive; // determine the set of active dequeuers
47. if (ms.seq1 != ms.seq2) continue; // consistency check
48. if (diffs AND maski == 0) return ms.rvals[pi]; // if the operation has already been applied return
49. lenq s = EnqPool[EnqP.index]; // read the current state of the enqueuers’ copy of Sim to help

// enqueuers connect the queue which might be split in two parts
50. if(lenq s.seq1 == lenq s.seq2) // consistency check
51. CAS(lenq s.old tail → next, nil, lenq s.lfirst); // try to connect the two parts of the queue
52. ms.seq1 = ms.seq1 + 1;
53. while (diffs != 0) { // as long as there are dequeuers to help
54. k = bitSearchFirst(diffs); // find the next such dequeuer pk
55. next = ms.head → next; // calculate the return value for pk; ms.head holds the head of the queue
56. if (next == nil)
57. ms.rvals[k] = nil;
58. else {
59. ms.rvals[k] = next;
60. ms.head = next;

}
61. diffs = diffs XOR (1 << k); // exclude pk from the set of active dequeuers

}
62. ms.applied = lactive; // change applied to be equal to the value read in DeqAct
63. ms.seq2 = ms.seq2 + 1;
64. mp.tm = lp.tm + 1; // increase timestamp
65. mp.index = n*i + deq pool indexi; // store in mp.index the index in DeqPool where ms will be stored
66. DeqPool[n ∗ i+ deq pool indexi] = ms; // store the new state in position mp.index of DeqPool
67. if (CAS(DeqP , lp, mp)) { // try to change DeqP to point to mp
68. deq pool indexi = (deq pool indexi + 1) mod C; // use next item in pi’s dequeue pool next time
69. return ms.rvals[pid];

}
}

70. lp = DeqP ; // after two unsuccessful efforts, read current value of DeqP
71. ms = DeqPool[lp.index]; //read the element of DeqPool indicated by the index field of DeqP ,
72. return ms.rvals[pi]; // and return the value found in the record stored there
}
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Algorithm 7 Data structures used in L-Sim algorithm.
typedef struct NewVar {

ItemSV *var;
NewVar *next;

} NewVar;

typedef struct NewList {
ItemSV *first;

} NewList;

typedef struct State {
boolean applied[1..n], papplied[1..n];
RetVal rvals[1..n];
int seq;
NewList *var list;

} State;

typedef struct DirectoryNode {
Name name;
ItemSV *sv;
Value val;

} DirectoryNode;

typedef struct ItemSV {
Value val[0..1];
int toggle;
int seq;

} ItemSV;

shared ActiveSet Act = ⊥;
shared State S = << F, ..., F >,< F, ..., F >,< ⊥, ...,⊥ >, 0, < ⊥ >>;
shared OpType Announce[1..n] = {⊥, ..., ⊥};

RetVal ApplyOp(operation op){ // Pseudocode for process pi
1. Anounce[i] = op; // Announce the operation
2. join(Act); // Join the active set
3. Attempt(); // Execute Attempt twice
4. Attempt();
5. leave(Act); // Leave the active set
6. Attempt(); // Eliminate any evidence of op
7. return S.rvals[i];
}

Acknowledgments. We would like to thank Dimitris Nikolopoulos, Angelos Bilas and Manolis
Katevenis for several useful discussions. We especially thank Dimitris Nikolopoulos for arranging
the provision of access to some of the multi-core machines of the Department of Computer Science
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Algorithm 8 Pseudocode of L-Sim algorithm.
void Attempt()(operation op){ // pseudocode for process pi

Pindex q, j; State ls, tmp; Set lact; DirectoryNode D;
NewVar *pvar = new NewVar(), *ltop; ItemSV sv, *psv = new ItemSV();

8. psv → ⟨val, toggle, seq⟩ = << ⊥,⊥ >, 0, 0 >; pvar → ⟨var, next, ⟩ = < psv, nill >;
9. for j = 1 to 2 do {
10. D = ∅;
11. ls = LL(S); // read State struct
12. lact = getSet(Act); // read active set
13. ltop = ls.var list → first; // read pointer to the current variable list
14. tmp.seq = ls.seq + 1;
15. tmp.papplied[1..n] = ls.applied[1..n]; // p will attempt to update S with tmp
16. for q = 1 to n do // local loop
17. if(q ∈ lact) tmp.applied[q] = TRUE;
18. else tmp.applied[q] = FALSE;
19. for q = 1 to n do { // local loop
20. if (ls.applied[q] == TRUE AND ls.papplied[q] == FALSE) { // if appropriate conditions hold,
21. foreach access of a variable x while applying operation Announce[q]{ //apply operation of process q
22. if (x is a newly allocated variable) {
23. if(CAS(ltop → next, nil, pvar)){ // try to insert a new node for the new variable in list
24. psv = new ItemSV(); psv → ⟨val, toggle, seq⟩ = << ⊥,⊥ >, 0, 0 >; // in case of success,
25. pvar = new NewVar(); pvar → ⟨var, next, ⟩ = < psv, nill >; // allocate new pvar

}
26. ltop = ltop → next; // in any case, use ltop → next as the new variable’s metadata
27. add < x, ltop → var, ltop → var.val[0] > to D; // add variable to local dictionary
28. }else { // if x is not a newly allocated variable
29. let svp be a pointer to the ItemSV struct for x;
30. if this access is a read instruction {
31. if (x exists in D) read x from D; // perform the operation on the local copy of x (if any)
32. else {sv = LL(*svp);
33. if(tmp.seq == sv.seq) add < x, svp, sv.val[1− sv.toggle] to D;
34. else if(tmp.seq > sv.seq) add < x, svp, sv.val[sv.toggle] to D;
35. else goto Line 38; // the State read by p is obsolete, start from scratch

}
36. } else if (this access is a write instruction) update x in D; // perform operation on local copy

}
}

37. store into tmp.rvals[q] the return value;
}

}
38. if (ls != S) continue; // the State read by p is obsolete, start from scratch
39. foreach record < x, svp, v > in D {
40. if(svp → seq > tmp.seq) return; // if all operations have been applied, return
41. else if(svp → seq == tmp.seq) continue; // if variable Rx has already been modified, continue
42. else if(svp → toggle == 0) SC(*svp, << svp → val[0], v >, 1, tmp.seq >); // make update visible
43. else SC(*svp, << v, svp → val[1] >, 0, tmp.seq >); // make update visible

}
44. tmp.var list = new List(); tmp.var list → first = nil; // re-initiate tmp.var list to point to nill
45. SC(S, tmp); // try to modify S

}
}
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