
A Novel Huffman Based Compression Method for IP Cores∗

Xrysovalantis Kavousianos1, Emmanouil Kalligeros1,2, and Dimitris Nikolos2
1Computer Science Dept., University of Ioannina, Ioannina, Greece

2Computer Engineering & Informatics Dept., University of Patras, Patras, Greece

Abstract

This paper introduces a new Test Resource Partitioning compression method for

Intellectual Property cores. The proposed method compresses the test data supported by the
vendor with a new very effective compression scheme based on Huffman code. The compressed
data are decompressed on-chip with the use of simple decompression architecture. As it is shown
experimentally the proposed method improves the compression ratio compared with other
methods, while the hardware overhead of the decompressor is very low and comparable to the
most efficient methods in the literature. Moreover, the proposed compression scheme offers a
trade-off between compression ratio and area overhead of the decompressor. Finally, it enhances
the coverage of unmodeled faults because a large portion of the unknown values of the test set are
replaced with pseudorandom data generated by an LFSR.

Index Terms: Automatic Test Equipment, Test Resource Partitioning, Data Compression,
Huffman Code, IP Cores, LFSR

I. Introduction

VLSI technology nowadays allows the placement of million of transistors on a single die.
The complexity of integrated circuits (ICs) increases rapidly, with a direct impact on the cost of
testing, which also increases very fast [Chandramouli 96], [Zorian 98]. In order to meet time to
market constraints, contemporary systems embed pre-designed and pre-verified cores, which are
called IP (Intellectual Property) cores. IP cores hide their structure from the system integrator, but
support all the testing information required (e.g. pre-computed test tests). The system integrator is
responsible for developing the proper structures at system level so as the test engineer to apply
the test tests on the cores during the testing process. The increased density of ICs introduces new
types of defects, which require new testing methods, increasing that way the volume of test data
and the application time [Khoche 00]. When the volume of test data increases beyond the limited
memory depth of the Automatic Test Equipment (ATE), multiple reloads are required to transfer
the test data from the workstation to the ATE. ATE reloads are very time consuming [Vranken 03]
and must be avoided in a competitive fast time-to-market environment. Therefore, in order to
retain the cost of ATE low advanced testing techniques have to be adopted which can be applied
by slow and low cost testers [Hetherington 99], [Rajski 01].

Increased test data volume increases also the test application time. Multiple scan chains can
drive the test applicant time down, but require a large number of pins and high-speed ATE
channels which may not be available on low cost testers. Test Resource Partitioning (TRP) has

∗ This research was co-funded by the European Union in the framework of the program “Pythagoras IΙ” of
the “Operational Program for Education and Initial Vocational Training” of the 3rd Community Support
Framework of the Hellenic Ministry of Education, funded by 25% from national sources and by 75% from
the European Social Fund (ESF).

been proposed to ease the burden of testing on ATE. It combines the ATE capabilities with on-
chip integrated structures. TRP methods store a compressed test set on the ATE, which is
downloaded and decompressed on chip. Among these methods are combinational continuous
flow linear decompressors [Bayraktaroglu 03], [Krishna 03], the RESPIN architecture [Dorsch
01], the Illinois Scan Architecture [Hamzaoglu 99], [Hsu 01], LFSR based architectures
[Hellebrand 95], [Khoche 02], [Jas 04b], [Krishna 04a], [Kalligeros 05], folding counters
[Hellebrand 01] and weighted random pattern generators [Jas 99], [Jas 04a]. Also commercial
tools exist which automate the generation of embedded decompressors [Barnhart 01],
[Koenemann 01], [Rajski 03].

The above methods require structural information of the circuit under test (CUT), thus they
are not suitable for IP cores. One category of methods for IP cores embeds the pre-computed test
vectors in longer sequences of random vectors produced on chip [Chakrabarty 00], [Li 04]. Apart
from the large application time, such methods suffer from the problem of X-generation
[Hetherington 99]. The vectors applied to the IP cores which are not compatible with the test
vectors supported by the vendor may produce internally unknown states (X). If an unknown state
propagates to the MISR, it corrupts the signature. In these cases expensive methods such as X-
suppression or response masking must be applied. Therefore, many methods have been proposed
to reduce the test data volume and test application time by directly compressing the pre-computed
test set TD into TE (TE<TD) without the interference of any useless vectors. Such methods encode
the test sets using various codes with compression properties. Golomb codes were proposed in
[Chandra 01], [Rosinger 01], [Chandra 02a], [Chandra 02b], alternating run length codes in
[Chandra 03a], FDR codes [Maleh 02], [Chandra 03b], statistical codes in [Iyengar 99],
[Gonciari 03], [Jas 03], nine-coded technique in [Tehranipour 05], and combinations of codes in
[Tehranipour 04], [Nourani 04]. Some methods use dictionaries [Wolff 02], [Li 03],
[Wurtenberger 04], [Knieser 03], [Reddy 03] but suffer from large hardware overhead due to the
large embedded RAMs.

Some techniques compress the difference vectors instead of the actual test vectors [Jas 98],
[Chandra 01], [Chandra 02b], [Chandra 03b]. This comes from the observation that the test
vectors usually differ in a small number of bits, therefore the difference vectors will have long
runs of 0s which can be effectively compressed using various run length codes. Such techniques
are inefficient for circuits with internal scan chains which capture responses, because the data
shifted in the scan chains are corrupted by the response of the circuit. In these cases either
additional cyclical shift registers must be supported, which increase the cost of testing especially
for cores with large number of scan cells, or the scan chains of other cores must be reused, if they
are available .

There is a class of techniques requiring the pre-existence of arithmetic modules or
processors embedded in the system [Maleh 01], [Balakrishnan 02], [Jas 02], [Hwang 03],
[Hashempour 04], [Dutta 05].

Among the statistical codes used for compressing the test sets, the most effective are
Huffman codes because they are provably optimal as they result in the shortest average codeword
length [Iyengar 99], [Ichihara 00], [Ichihara 01], [Kajihara 02], [Jas 03]. The major problem with
Huffman codes is the large hardware overhead of the decompressors. For that reason in [Jas 03]
was proposed a selective Huffman compression scheme which sacrificing slightly the
compression ratio reduces significantly the hardware overhead implied by the decompressor.

Utilization of all these codes for compressing pre-computed test sets is effective due to the
large number of X values occurring in the test sets. Even after dynamic or static compaction the
number of X values is quite large. Traditionally these X values are filled randomly with logic 0 or
1 in order to enhance the coverage of unmodeled faults. On the contrary, compression methods
utilize these X values to achieve large compression ratios, by replacing them with the appropriate
0 or 1 logic values, depending on the implemented code. For example, sequences of 0 and/or 1
are used to replace X values in [Maleh 02], [Chandra 03a,b], [Gonciari 03], [Nourani 04].

Therefore, compression methods may adversely affect the coverage of unmodeled faults. In
[Tehranipour 05] it is suggested that leaving at least a portion of the X values unchanged during
compression is preferred.

In this paper we propose a statistical compression method based on Huffman code which
fills the major portion of the X values of the test set with random values. This random filling is
achieved by the use of an LFSR. In the same time the proposed method improves the compression
ratio and requires a very simple decompressor with low overhead, offering also a trade-off
between compression ratio and area overhead. The proposed method does not require any
structural information of the CUT, thus it is proper for IP cores. Additionally it does not require
any special modules or cyclical shift registers to be embedded in the system and it does not apply
any useless vectors on the core.

The rest of the paper is organized as follows. Section II reviews the Huffman code, section
III describes the proposed compression method and section IV presents the decompression
architecture. Experimental results are presented in section V. Finally section VI concludes the
paper.

II. Huffman Encoding

Statistical codes represent fixed-length blocks of data with variable length codewords. The

efficiency of a statistical code depends on the frequency of occurrence of all distinct fixed length
blocks. If each block occurs with the same or nearly the same frequency with the others then no
compression can be expected by statistical coding. Statistical codes encode the most frequently
occurring blocks with short codewords and the less frequently occurring blocks with large
codewords, minimizing that way the average length of the codewords.

Among all statistical codes, Huffman code is the optimal one since it is proven that it
provides the shortest average codeword length. Let k unique blocks occur in a test set T with
probability of occurrence p1, p2, …..pk, then the entropy of the test set in defined as

H(T)= ()∑
=

−
k

i
ii pp

1
2log and intuitively is the minimum average length of the codewords required

to represent the test set. Huffman code has the average codeword length which is closer to the
theoretical limit of entropy bound compared with any other statistical code. In order to achieve
the best compression ratio, the frequency of occurrence of the unique blocks must be as skewed
as much as possible. This is usually easy to achieve in a test set because of the correlations of the
test vectors and the large number of X values. A good encoding algorithm attempts to assign the
X values in such a way as to achieve the most skewed frequency of occurrence of the codewords.

Another advantageous property of Huffman code for test compression is that it is prefix –
free, that is no codeword is a prefix of another codeword. This makes the decoding process
simple and easy to implement.

Example1 (Huffman Encoding). Consider the test set shown in Table 1 which consists of 5
unique blocks shown along with their probability of occurrence.

Table 1. Huffman Encoding Example

Test Set Block P Codeword
1010 7/16 0
0000 5/16 10
1111 2/16 110
0001 1/16 1110

0000 1010 1111 1010
1111 0000 1010 0001
1010 0000 0010 1010
0000 1010 0000 1010

0010 1/16 1111

In order to construct the Huffman encoding, we generate a binary tree. Each block

corresponds to a leaf node and a weight is associated with it, which is equal to the occurrence
probability of that block. The pair of nodes with the lowest weights is selected and a parent node
is created with weight equal to the sum of the weights of these two nodes. This is repeated
iteratively selecting each time a pair of nodes without parents, until only a single node is left
without parents, the root. Then each edge is associated with the logic value 0 if it leads to a left
child and 1 if it leads to a right child. The codeword of each block is constructed by the logic
values of the edges belonging to the path from the root towards the leaf node of the block. The
Huffman tree of the above example is shown in Figure 1, and the codeword of each block is
shown in Table 1. The average codeword length of this test set is
1.7/16+2.(5/16)+3.(2/16)+4.(1/16+1/16)=1,9375. Note that the entropy is equal to H(T)=
−(7/16.log2(7/16)+5/16.log2(5/16)+2/16.log2(2/16)+1/16.log2(1/16) + 1/16.log2(1/16))=1,9218.

1010 0000 1111 0001

7/16 5/16 2/16 1/16 1/16

2/16

4/16

9/16

16/16

0

1

1

1

1

0

0

0

0010Block
Figure 1. Huffman Tree

When the number of the encoded blocks is large then the cost of the Huffman decoder is

high because of the large size of the decoding tree. For these cases a selective Huffman approach
is adopted [Jas 03] which encodes only the most frequently occurring blocks while the rest blocks
are not encoded. A special bit is appended to each block to indicate if the block is encoded or not.

III. Compression Method

The proposed compression method is based on Huffman code with limited number of
codewords. The novelty of the method is that data produced by various cells of an LFSR are
matched with the required test vectors and these cells are used for the encoding instead of the
actual data. Each Huffman codeword is used to encode one cell of the LFSR. If a match with an
LFSR cell can not be found then the data are encoded directly with Huffman code as proposed in
[Jas 03]. Usually, the data encoded directly with Huffman code belong to vectors with many
defined bits that can not be easily matched with the pseudorandom stream generated by the LFSR.
On the other hand the major part of the test data encoded from LFSR cells belong to test vectors
with many X values. Therefore the major portion of the X values is replaced with pseudorandom
data, enhancing that way the probability of detection of unmodeled faults. In the following we
describe the compression method assuming single scan chain.

Firstly, the test set is partitioned into clusters of fixed length. The LFSR is let evolve for a
number of cycles equal to the size of the test set and the clusters of the test set are compared with
the normal and inverted data produced by each LFSR cell. When a cluster of test data is
compatible with a cluster generated by an LFSR cell, it is considered as a hit of the corresponding
cell. A predetermined number of the LFSR cells with the largest hit ratios are selected, and feed
the scan chain through a multiplexer. All the clusters which are compatible with data produced by
at least one selected LFSR cell are encoded by one of them. Specifically, the multiplexer selection
address of each cell is encoded using Huffman code. We call this type of encoding Cell encoding.
All the clusters which are not compatible with a selected LFSR cell are labeled as failed and are
processed afterwards in a different way, as it will be explained later on. Beside selection
addresses, Cell encoding also associates one Huffman codeword with all failed clusters, in order
to distinguish them from the rest.

Since many clusters have a large number of X values, they can be matched with many
LFSR cells at the same time. Therefore the proposed method associates each cluster with that
LFSR cell which skews the cell occurrence probabilities the most, that is the LFSR cell most
frequently used. The processing of the Huffman tree is done in the ordinary way, using the
probabilities of the cell addresses, as also the probability of the failed clusters.
Example 2 (Cell encoding). Suppose that a test set consists of 30 clusters, and 4 LFSR cells are
used to match the test data. Suppose also that the matching probability of each LFSR cell, as well
as the probability of the failed clusters, is shown in Figure 2. The Huffman tree and thus the
codewords are generated using these frequencies.

A Failed B C D

10/30

30/30Cell Prob. Code
Word

A 10/30 00

B 5/30 10

C 4/30 110

D 3/30 111

Failed 8/30 01
8/30 5/30 4/30 3/30

7/30

12/30

18/30

1

1

11

0

0

0

0

Figure 2. Cell encoding example.

A drawback of the Huffman code is that it is a fixed to variable code, whereas a variable to

variable code is more efficient [Gonciari 03]. In the proposed method we try to eliminate this
problem by allowing consecutive clusters to match, if possible, with the same LFSR cell and
encode all these clusters only once. As we experimentally observed this was possible in all the
cases due to the large number of X values in the test sets. For that reason besides the address of a
selected LFSR cell, we also encode the number of consecutive clusters (cluster group) which can
be encoded using this cell. In order to keep the hardware overhead low we allow the length of
each group of clusters to be among a predetermined list of distinct lengths. These distinct lengths
are experimentally selected as the powers of 2 in the interval [1, max_length) whereas
max_length is the maximum number of consecutive clusters matched with any one of the selected
cells. Each group of clusters is associated with the largest possible length in the list, which does
not exceed the actual length of the group. For example if the list lengths are 1, 2, 4, 8, 16 and 32
then a group of 30 consecutive clusters is partitioned into a group of 16, a group of 8, a group of 4

and a group of 2 clusters. These list lengths are also encoded by Huffman code. This is justified
from their probability of occurrence which is naturally skewed (large lengths are expected to
occur less frequently than short lengths). We call this type of Huffman encoding as Length
encoding. As it will be explained later, the same Huffman code used for Cell encoding is also
used for Length encoding, in order to keep the decoding cost low. Therefore the maximum
number of the potential list lengths is equal to the number of selected cells. In case that the list
can hold more lengths than the number of the powers of 2 in the interval [1, max_length) then
additional lengths are appended in the list following a different rule. The lengths of the list are
sorted in ascending order and the pair of consecutive (in the list) lengths with the greatest distance
between them is selected. The new length is the mid point between this pair of lengths. A
codeword of Length encoding always succeeds a codeword of Cell encoding, when the encoded
cluster is not a failed one.
Example 3 (Length encoding). Assume that 12 groups of clusters with lengths equal to 1, 2, 4, or
8, matched with 4 selected LFSR cells. The occurrence probabilities of these groups are shown at
Figure 3. In this case, the Huffman tree is constructed by using these probabilities.

1 2 4 8

12/12Group
Length

Prob.
Code
Word

1 6/12 0

2 3/12 10

4 2/12 110

8 1/12 111
3/12 2/12 1/12

3/12

6/12

6/12

1

1

1

0

0

0

Figure 3. Length-encoding example

In the case of a failed cluster a different approach is adopted. The cluster is partitioned into

equally sized blocks, and each block is encoded directly with the selective Huffman code as
proposed in [Jas 03]. We call this encoding as Pure-Data encoding. If a block fails to be encoded
with the selective Huffman code (failed block), then it remains not encoded and is supported
directly by the ATE in the code stream. As in the case of failed clusters, one Huffman codeword
is associated with each failed block, while the others are associated to the most frequently
occurring blocks. The data of the not encoded block follows its codeword. In Pure-Data encoding
the same Huffman code with Cell and Length encoding is used. Therefore, Pure-Data encoding
encodes a number of blocks equal to the number of selected LFSR cells. Note that in Cell and
Pure-Data encoding the failed data are distinguished by using Huffman codewords in contrast to
[Jas 03] where a special bit is used in all codewords.

The major advantage of the proposed compression method is that the same Huffman
decompressor can be used in order to implement the three different encodings. The number of
selected cells determines the size of the Huffman decompressor and vice-versa. Note that the
number of selected cells is equal to the number of the list lengths in Length encoding and to the
number of unique blocks encoded by Pure-Data encoding. The Huffman tree is constructed by
summing the corresponding occurrence probabilities of all three cases and one Huffman code is
generated to cover all three of them. Thus the same codeword depending on the phase of the
decoding corresponds to 3 different things: to a cell, to a cluster group length or to a block of data.
Always the first codeword is considered as a Cell-codeword. If it does not indicate a failed cluster

then the next codeword correspond to the length of the cluster group. If instead it corresponds to a

failed cluster then the next
sizeblock

sizecluster
 codewords are processed as Pure-Data codewords, where

cluster size (block size) represents the number of bits of each cluster (block). Each one of them
may indicate a failed block or a Pure-Data block. In the first case the actual block of data follow
in the code stream else the block of data is produced by the decompressor. This sequence is
iteratively repeated starting always from a Cell encoding codeword.

Cell Occur.
Code
Word

A 5 0

B 4 10

Fail 3 110

C 2 1110

D 1 1111

List
Length Occur.

1 6

2 3

4 2

8 1

Data
Block Occur.

0011 8

0000

4Fail

3

1111 2

0001 1

SUM 15 12 18

Total Sum = 45

P

(5+6+8)/45

(4+3+4)/45

(3+2+3)/45

(2+1+2)/45

(1+1)/45

Cell Encoding Length
Encoding

Pure-Data
Encoding

0.42 0.24 0.18 0.11 0.05

0.16

0.34

0.58

1

0

1

1

1

1

0

0

0

c5

c1

c2

c3

c4

c5c1 c2 c3 c4

Data from cell A 0010 0011

Cluster 1 Cluster 2 Cluster 3 (Failed)

0 10 110 10 0010 0

Scan
Data

Code Stream

Failed
Block

Failed Block

Figure 4. Compression example.

Example 4 (Compression method). Assume an encoding scenario with 4 cells of an LFSR, 4
different cluster group list lengths and 4 blocks of data. Let each cluster be 24 bit wide and each
block 4 bit wide (6 blocks per cluster). Figure 4 presents the selected cells, the list lengths and the
data blocks sorted by descending occurrence frequency. Each single occurrence in all three cases
corresponds to a codeword in the final encoded stream. Note that there are 12 groups of clusters
matched with LFSR cells and 3 failed clusters which are partitioned into 18 blocks. 5 unique
codewords (one per line of the table) synthesize the code stream which consists of 45 occurrences
of them. The occurrence frequencies in each line of the table are summed and divided by the total
number of expected codewords, generating thus the total probability of occurrence of each
distinct codeword, as shown in Figure 4. The encoded stream in Figure 4 shows the representation
of scan data. The first codeword 0 corresponds to the cell A and the next codeword 10 indicates
the group length which is 2. Therefore the scan chain is fed by cell A for the next two consecutive
clusters 1, 2. The next codeword 110 indicates that the next cluster is a failed one. According to
the proposed compression scheme, cluster 3 is partitioned into 6 blocks. The next codeword 10
indicates that the first block is a failed one; therefore the actual data (0010) are not encoded and
follow this codeword in the code stream. The codeword for the second block is 0 which
correspond to the encoded block 0011 which will be shifted in the scan chain. This is repeated
until all 6 blocks have been processed.

Huffman
FSM

ATE_DATA

HSync

ATE_CLK

LFSR

...

Cell MUX

CSR

Source Select MUX

Scan Chain

Code

Pure
Data

Cluster
Group
Length

Shifter

Fail Cluster/
Block

Decoding
Controller

SYSTEM_CLK

Valid
Code

BC BLC CC

BC_Done BLC_Done CLC_Done

SE

Fail

SE

SE

CSync

ATE_SYNC

Src

Src

CSR_en

CSR_en

Sh_en

Sh_en

2

2

0
1
2

Figure 5. Decompression Architecture

IV. Decompressor Architecture

The block diagram of the proposed decompressor Architecture is shown in Figure 5. The
functionality of the proposed architecture has been verified with extensive simulations. It consists
of the following units*:
Huffman FSM: This unit receives the data from the ATE (ATE_DATA) using the ATE clock
(ATE_CLK). Upon reception of a codeword the signal HSync is sent back to the ATE to stop the
transmission until the decompressor is able to receive the next one. In the same time the FSM
issues the signal code which is a binary number indicating which codeword has been received. In
other words for N codewords, each codeword is assigned a number between 0 and N-1 and the
signal code is the binary representation of that number. Also the FSM issues the signal Valid
Code which informs the Decoding Controller that a codeword has been received and its number
has been placed on signal code.
Source Select Mux: This is the multiplexer which selects the source to feed the scan chain. Signal
Src issued by the Decoding Controller selects the source that is the selected cell (Src=01) or the
Pure-Data (Src=10) or a not encoded block directly from the ATE (Src=00).
Cell Mux: This is the multiplexer which selects the cell to feed the scan chain.
CSR (Cell Selection Register): This register holds the address of the selected cell during scan
chain loading. It stores the address of the selected cell when the Decoding controller sets
CSR_en=1.
LFSR: It is the Linear Feedback Shift Register, which is let evolve only during the loading of
scan chain, using as enable signal the SE (Scan Enable).
Pure-Data: Combinational block which returns the pure data encoded in Huffman code upon
recognition of the corresponding codeword. It receives as input the code signal issued by the FSM
and outputs the corresponding data. It can be also implemented by a Lookup Table, with the
signal code used for addressing the Table.

* For the convenience of the reader only the most important signals are reported.

Cluster Group Length: Combinational circuit which determines the group length corresponding
to the received codeword. It can also be implemented by a Lookup Table in the same way as
Pure-Data unit.
Shifter: a register which upon reception of a Pure-Data codeword (corresponding to a
successfully encoded block) shifts in the scan chain the block of data retrieved by the Pure-Data
unit. Decoding controller supervises the shifting of the register with the signal Sh_en.
Fail Cluster/Block: A very small combinational circuit which recognizes when a codeword
corresponds to a failed cluster or a failed block and sets Fail=1.
Bit counter (BC), Block counter (BLC) and Cluster counter (CLC): Count the number of bits,
blocks and clusters respectively, entered the scan chain (after initialization the counters count
down until they reach zero). Bit counter issues signal BC_Done when a whole block has been
shifted into the scan chain; Block counter issues the signal BLC_Done when all the blocks of a
cluster have been shifted into the scan chain; Cluster counter issues the signal CLC_Done when
all the clusters of a group have been shifted into the scan chain.

WAIT
CHANNEL

WAIT
LENGTH

SHIFT
LFSR
DATA

WAIT
FAILED

CLUSTER

WAIT
FAILED
BLOCK

SHIFT
PURE
DATA

CLUSTER
DONE?

0,-,-,-,- / 1,0,0,- -,0,0

1,0,-,-,- / 0,0,0,- -,1,0

0,-,-,-,- / 1,0,0,- -,0,0

1-,-,-,- / 0,0,0,01,0,0

-,-,-,-,0 / 0,0,1,01,0,0

-,-,-,-,1 / 0,0,0,- -,0,0
-,-,0,-,- / 0,0,1,10,0,1

1,1,-,-,- / 0,0,0,- -,0,00,-,-,-,- / 1,0,0,- -,0,0

1,0,-,-,- / 0,0,0,10,0,0

-,-,1,-,- / 0,0,0,- -,0,0

-,-,0,-,- / 0,1,1,00,0,0

-,-,-,0,- / 0,0,0,- -,0,0

Valid Code,Fail,BC_Done,BLC_Done,CLC_Done /
Hsync,CSync,SE,Src,CSR_en,Sh_en

-,-,1,-,- / 0,0,0,- -,0,0

-,-,-,1,- / 0,0,0,- -,0,0

1,1,-,-,- / 0,0,0,00,0,0

Figure 6. Decoding Controller State Diagram.

Decoding Controller: This is a finite state machine which synchronizes the operation of all units.
The state diagram of this machine is shown on Figure 6 (the state diagram reports only the most
important signals). Initially the controller waits for the first codeword which encodes a cell
selection address. When the codeword has been received (Valid Code = 1) then the controller
checks if it encodes an LFSR cell (Fail=0) or indicates a failed cluster (Fail=1). In the former
case the controller stores the cell address to the CSR resister (CSR_en=1) and proceeds to the
WAIT_LENGTH state. In the latter case it proceeds to the WAIT_FAILED_CLUSTER state. Being
at the WAIT_LENGTH state it waits for the next codeword to be received by the Huffman FSM
unit. Then it sends a signal to the Cluster counter to store the data returned by the Cluster Group
Length unit which is the binary representation of the length of the group. Also the controller
initializes the Bit and Block counters to their initial values, tunes the Source Select multiplexer to
the Cell Mux input (Src=01)and proceeds to the SHIFT_LFSR_DATA state. At this state it
activates the scan enable signal (SE=1) and the LFSR begins to load the scan chain with the data

from the selected cell, until the Cluster counter reaches zero (CLC_Done=1). Then the state
machine returns to the WAIT_CHANNEL state waiting for the next iteration. If the machine enters
the WAIT_FAILED_CLUSTER state then it waits for the next codeword from the FSM. If this
codeword corresponds to an encoded Pure-Data block (Fail=0), then the controller sends a signal
to the Shifter unit to store the output of the Pure-Data unit (which is the encoded data block), sets
the Source Select multiplexer to the shifter input (Src=10) and proceeds to the
SHIFT_PURE_DATA state where it remains until the Bit counter finishes counting (BC_Done=1).
While the controller is in this state, the Shifter unit shifts the data serially into the scan chain. On
the other hand if the codeword received at the WAIT_FAILED_CLUSTER state corresponds to a
failed block (Fail=1) then the controller sets the Source Select multiplexer to the ATE channel
(Src=00), and proceeds to the WAIT_FAILED_BLOCK state where it remains until the Bit
counter finishes counting (BC_DONE=1). During this state the Bit counter, the Decoding
Controller and the scan chain are triggered by the ATE clock and the signal CSync is set to 1 to
enable the ATE to send directly the block which is not encoded. From both states
SHIFT_PURE_DATA and WAIT_FAILED_BLOCK the state machine proceeds to the
CLUSTER_DONE? state where the contents of the Block counter are checked through the signal
BLC_DONE. If the Block counter has reached 0 (BLC_Done=1) all the blocks of the cluster have
been processed, therefore the next state is WAIT_CHANNEL, otherwise the next state is
WAIT_FAILED_CLUSTER where the next block will be processed in the same way.

As we will show in the experimental results, the efficiency of the proposed encoding depends
mainly on the number of selected cells, which determine the number of codewords of the
Huffman code. The number of codewords determines the size of the Huffman FSM which is the
major part of the hardware overhead. Assuming that for two or more cores equal number of cells
can be efficiently used for the encoding, the same decompressor can be used for all of them by
changing only the following units: Cell Mux, Pure-Data, Cluster Group Length unit and Fail
Cluster/Block unit. Moreover, if the Pure Data unit and Cluster Group Length units are
implemented as Lookup Tables, then they only need to be loaded at the beginning of the test
session with the specific data of each core. Therefore, the decompressor can easily be reused for
different cores with virtually minimal or almost zero area penalty. An issue that will be clarified
at section V, is that assuming equal number of selected cells, how effective is to use common
Huffman codewords to more than one different cores. As we will see in the majority of the cases
the effect on the compression ratio is only marginal. This is easy to explain taking into account
that for the same number of cells (same number of Huffman codewords) and relatively skewed
frequency of occurrence the Huffman trees can not be much different and thus the encoding if not
optimal will be very close to the optimal one. (Note that the selected cells, the cluster size and the
block size need not be the same for different cores when using common decompressor, regardless
of the Huffman FSM unit being the same).

For multiple scan chains a shift register is used with width equal to the number of scan
chains. The shift register is loaded by the decompressor and when it is full it loads the scan chains
in parallel, as proposed in [Tehranipour 05].

V. Experimental results

The proposed compression method was implemented using the C-programming language.

We run experiments on a Pentium PC for the largest ISCAS 89 benchmarks circuits, assuming
full scan. We used the dynamically compacted test cubes generated by Mintest [Hamzaoglu 00],
the same used in [Chandra 01], [Rosinger 01], [Chandra 02a], [Maleh 02], [Chandra 03a,b], [Jas
03], [Gonciari 03], [Tehranipour 04], [Li 05] and [Tehranipour 05]. The running time of the
compression method is a few seconds for each benchmark circuit. The percentage compression, it
is calculated by the formula

BitsData

BitsCompressedBitsData
nCompressioPercentage

−
=

For all the reported experiments the LFSR size was set equal to 15.

Cells=8, Cluster Size=16, Block Size=4

72

72,5

73

73,5

74

1 2 3 4 5 6 7 8 9 10

Experiment

Pe
rc

en
ta

ge
 C

om
pr

es
si

on
 %

Seed

Poly

Figure 7. Seed and Polynomial Experiment for s15850.

The first experiment is reported in Figure 7 and studies the effect of different polynomials

and seeds on the compression ratio. We applied the proposed method on the test set of s15850
with a) 10 different seeds and the same polynomial (Seed curve), and b) 10 different polynomials
and the same seed (Poly curve). The rest parameters are reported in Figure 7 and are the same for
both curves. As it is obvious from Figure 7, both polynomials and seeds affect the compression
results in a very limited way, while seeds seem to affect the compression ratio a little more than
polynomials. For all the experiments the variation of the percentage compression (maximum
percentage – minimum percentage) for the 10 seeds is 0.79%, while for the 10 polynomials is
0.36%. Therefore we conclude that, seeds and polynomials marginally affect the proposed
compression method.

Cells=8
68
69
70
71
72
73
74

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

Cluster Size

P
er

c.
 C

om
pr

es
si

on

Block Size=4

Block Size=8

Figure 8. Varying cluster size for s15850

The second experiment shows the effect of different cluster sizes on the compression ratio.

We applied the compression method on the test set of s15850, for cluster sizes between 8 and 80
bits (pace 4), one polynomial, one seed, 8 cells, and block sizes 4 and 8. It is obvious from Figure
8 that cluster size affects the compression ratio. For small and large cluster sizes the compression
decreases, while it reaches a peak point somewhere in the middle. For small cluster sizes the
number of clusters is high and thus the bits required for encoding is high as well, while for large

cluster sizes, the number of failed clusters increases. The variation of the percentage compression
in this experiment approaches 3%.

Cells=8

68

69

70

71

72

73

74

3 4 5 6 7 8 9 10 11 12
Block Size

P
er

c.
 C

om
pr

es
si

on

Cluster Size = 30

Cluster Size = 24

Figure 9. Varying Block size for s15850

The third experiment shows the effect of different block sizes on the compression ratio. We

applied the compression method on the test set of s15850 varying the block size between 3 and 12
bits (with pace 1) for one polynomial, one seed, 8 cells and cluster sizes 24, 30. Note that block
size affects only the encoding of failed clusters and consequently influences only Pure-Data
encoding. The results are shown in Figure 9. Small block sizes increase the number of codewords
needed to encode each failed cluster, because the number of blocks per cluster increases. Large
block sizes adversely affect the compression achieved by Pure-Data encoding because as the
block size increases, the number of distinct blocks increases exponentially, while the number of
encoded blocks remains constant. Thus it is expected that the fraction of the number of encoded
blocks to the number of all distinct blocks decreases, and thus many test data remain not
compacted by Pure-Data encoding. The percentage variation in this experiment approaches 3%
for block sizes 3 up to 12, while it is expected to be much greater for even larger block sizes.

66

68

70

72

74

76

4 8 12 16 20 24

Number of Selected Cells

P
er

ce
nt

ag
e

C
om

pr
es

si
on

 (%
)

Cluster=16, Block=4

Cluster=16, Block=8

Cluster=32, Block=4

Cluster=32, Block=8

Figure 10. Varying Number of Channels for s15850f

Now we show the effect of the number of cells on the compression. We applied the

compression method on the test set of the s15850 benchmark for cluster sizes 16 and 32, block
sizes 4 and 8, one polynomial and one seed. For each experiment we varied the number of cells
between 4 and 24 with pace 4. The results are shown in Figure 10. It is obvious that the
compression ratio increases when the number of cells increases. As it is shown in Figure 10, for

small number of selected cells the compression ratio is mainly affected by the block size. This is
justified from the large number of failed clusters when the number of cells is low. In other words
low number of cells means more data encoded by Pure-Data encoding. When the number of cells
increases, the block size affects the compression ratio marginally, while it is now affected mainly
by the cluster size. In this case the number of failed clusters decreases and thus more test data are
compressed by Cell encoding. After a certain number of cells the compression ratio reaches a
saturation point as shown from the curve. The variation of the percentage compression in these
experiments approaches 5.7%.

Table 2. Effect of predetermined Huffman code on compression ratio

Circuit
Test Set

Size
Cluster

Size
Block
Size

Dedicated
Decompr.

Common
Decompr.

Decrease
(%)

s5378 23754 12 6 10132 10132 0%
s9234 39273 20 4 16689 16689 0%
s13207 165200 40 10 21419 21568 0,6%
s35932 28208 90 9 7277 7458 2,4%
s38417 164736 36 6 63096 63840 1,1%
s38584 199104 30 6 59403 59862 0,8%

The next experiment shows the effect of using the same decompressor for various circuits,

assuming equal number of selected cells for each one of them. As we mentioned in section IV, the
number of selected cells affects the size of the Huffman FSM unit, which as it will be show later
is the major area overhead of the decompressor. Therefore, in order to reuse the decompressor for
testing different cores and minimize the area overhead we append for each core only the Pure-
Data unit, the Cluster Group Length unit, the Fail Cluster/Block unit and the Cell Mux unit. The
rest units (Huffman FSM, Decoding Controller, counters, CSR and Source Select Mux) can be
reused as is. Using the same Huffman FSM unit for a number of cores means that the
compression method is based on pre-generated Huffman codewords for each core. In other words
the codewords corresponding to cells, list lengths and data blocks are the same for each core,
while the selected cells, list lengths and data blocks need not be the same. With this experiment
we show that using the pre-generated code for various cores the decrease of the compression is
very limited compared to the compression achieved when a separate code is generated for each
one of them for the same number of cells. Firstly, we generate the code for the test set of the
s15850 circuit for 8 selected cells, cluster size 28 and block size 4. Then we compressed the test
set of each benchmurk, for 8 cells and various cluster sizes and block sizes assuming separate
decompressors for each one of them. We also compressed the test sets of each benchmark circuit
with the exact same parameters for each core using the pre-generated code produced for the
s15850. The results are shown in Table 2. The first column presents the circuit name, the second
presents the size of the test set, the next two columns present the cluster and block size used for
each benchmark. Block and cluster size were selected among others so as to give the best
compression when dedicated compressors are used. The column labeled Dedicated
Decompressor presents the compression achieved when the encoding of each core is generated
based on each test set separately. The column labeled Common Decompressor presents the
compression when the pre-generated code for the s15850 circuit is used for each one of the
reported circuits. Column labeled Decrease presents the percentage decrease in compression of
the common decompressor compared to the dedicated one. It is obvious that the difference in
compression is very low or even zero. As it will be shown next, the larger of number of cells is
the greater is the compression achieved. Therefore, for various cores we may implement the
decompressor for the core requiring the largest number of cells and then reuse it for the rest cores,
minimizing that way the percentage decrease for each one of them.

Table 3. Compression results

 Cells = 4 Cells = 8 Cells = 12 Cells = 16 Cells = 20 Cells = 24
Circuit ENC C/B ENC C/B ENC C/B ENC C/B ENC C/B ENC C/B
s5378 10446 16/8 9876 12/6 9817 20/10 9627 20/10 9494 20/10 9370 20/10
s9234 17491 16/4 16555 20/4 16277 20/5 16269 20/10 15921 32/8 15636 20/10
s13207 23076 40/8 20428 40/10 19931 64/8 19577 64/8 19429 64/8 18832 64/8
s15850 21819 20/4 20203 28/4 20110 20/5 19806 40/8 19436 32/8 19382 64/8
s38417 65630 20/5 62811 36/6 61912 40/8 60379 40/8 59533 40/8 58943 48/8
s38584 63233 20/4 58995 30/6 58780 32/8 57372 20/10 56556 32/8 56504 20/10

Table 3 presents the compression for all benchmark circuits achieved by the proposed

method. The same polynomial was used in all experiments while 10 random seeds were tried for
each experiment. Compression results for 6 different numbers of cells are reported, 4 to 24 with
pace 4. For each number of cells the compression method was applied on each test set for various
cluster and block sizes. Among them the best results are reported. Columns labeled C/B report the
cluster size / block size for each circuit, and columns labeled ENC present the size of the encoded
test sets (test set sizes are reported in Table 2). It is obvious that in all cases the compression
increases when the number of cells increases.

Table 4. Comparisons with [Jas 03] and and [Tehranipour 05].

 Jas 03 Tehranipour. 05
Circuit Prop. Enc. Impr. Enc. Impr.
s5378 9370 10666 12,2% 10511 10,9%
s9234 15636 17987 13,1% 17763 12,0%
s13207 18832 37996 50,4% 24450 23,0%
s15850 19382 26175 26,0% 22126 12,4%
s38417 58943 67542 12,7% 61134 3,6%
s38584 56504 71478 21% 62897 10,2%

Table 4 compares the proposed method with [Jas 03] which is also based on Huffman code,

and [Tehranipour 05] which is the most effective compression method proposed so far in the
literature. Column labeled Prop. reports the best compression achieved by the proposed method in
terms of bits of the encoded test set. The same information is provided for the other two methods
under column labeled Enc. Columns labeled Impr. report the relative improvement of the
proposed compression to the compression of the other two methods as (Enc-Prop)/Enc. It is
obvious that the proposed scheme gives better compression results than both these methods.

Table 5. Comparisons with other methods

Circuit Chand.
01

Rosing.
01

Chand
. 02a

Maleh
02

Chand.
03b

Chand.
03a

Gonc.
03

Tehr.
04

Li 05

s5378 - 35,9% - 17,9% 24,1% 19,9% 18,2% 14,7% 34,1%
s9234 29,7% 34,7% 30,5% 26,4% 29,4% 27,7% 24,5% 24,0% 48,1%
s13207 54,8% 50,4% 46,4% 37,2% 39,0% 42,3% 30,9% 34,8% 10,3%
s15850 52,4% 38,1% 36,6% 21,3% 25,5% 26,3% 21,5% 22,9% 22,9%
s38417 36,0% 19,7% 35,3% 9,3% 36,9% 9,3% 23,3% 0,1% 30,8%
s38584 45,7% 34,6% 37,1% 23,5% 27,4% 27,0% 24,8% 24,5% 1,1%

Table 5 gives the compression improvement of the proposed method against other

compression methods which have comparable hardware with the proposed method and reported
results for the Mintest test sets. To have a fair comparison, we do not compare the proposed
method with methods compressing difference vectors because they require cyclical shift registers.
It is obvious that the proposed compression method performs than all the other methods.

Table 6. Hardware Overhead
 Area Overhead (Gate Equivalents)

Number
of cells

Rest
Units

Huffman
FSM

Group
Length

Pure
Data

Total

4 163 34 3 3 203
8 181 63 9 10 263
12 191 88 9 26 314
16 199 110 11 35 355
20 205 128 11 53 397
24 221 142 11 58 432

In order to show the area overhead of the proposed method we synthesized decompressors

for various numbers of cells using with Leonardo Spectrum (Mentor tools). The area overhead
depends strongly on the number of cells, which mainly affects the area of the Huffman FSM unit.
The block size affects the hardware overhead in a limited way since only the area of the Pure-
Data unit depends on the block size. Table 5 shows the area overhead of the decompressor in gate
equivalents for different numbers of cells, 8 bits block size and 16 bits cluster size. The
decompressors were synthesized for the test set of s15850. We have to note that the decompressor
area does not depend on the test set, but mainly on the architecture parameters. Therefore the area
picture is similar for the rest benchmarks too. Columns labeled Huffman FSM, Group Length and
Pure Data present the area attributed to the corresponding units. Column Rest Units present the
area overhead of the rest units in the design. As it is obvious the area overhead depends mainly on
the area of Huffman FSM which is getting larger as the number of cells (and thus the number of
Huffman codewords) increases. The area overhead of Group Length and Pure Data unit is only a
small portion of the total overhead. The rest units occupy an almost constant area which increases
very slowly due to the increased size of the Cell Mux unit, as also the increased size of the
counters. Under column Total the area overhead of the decompressor is reported. The reported
area overhead varies between 11,5% and 24% of the s15850 circuit area. For larger benchmarks
as s38584 the overhead varies between 3,1% and 6,6% while for larger circuits it is expected to
be even less. If the same decompressor is used for different cores then the area overhead for each
circuit confines mostly to the area occupied by Group Length and Pure Data while the other units
are shared among all cores. Then the above percentages for s15850 vary between 0,3% and 4,5%
and for s38584 vary between 0,092% and 1,2% which is extremely low.

In order to compare the proposed decompressor in terms of hardware overhead (gate
equivalents) with the most efficient methods, we report the area overhead of various methods:
416 for [Tehranipour 05], 320 for [Chandra 03a], 136-296 for [Gonciari 03], 125-307 for
[Chandra 01] (as reported in [Gonciari 03]). In [Jas 03] hardware overhead is provided as
percentage of the benchmarks circuit and can not be directly compared with these above methods.
However, compared with [Gonciari 03] reported inferior results in area overhead. It is obvious
that the proposed decompressors are comparable with the other proposed decompressors.

VI. Conclusion

This paper presented a compression method based on Huffman code. The compression
achieved is in most of the cases higher than all the other methods while the area overhead of the
proposed decompressor is very low. Moreover, a trade-off between area and compression ratio is
supported. The proposed decompressor can be easily shared among different cores, minimizing
that way the overall implementation cost in a system. Additionally, the major portion of X values
is filled with pseudorandom data produced by an LFSR, enhancing that way the coverage of
unmodeled faults. Experimental results proved that the compression achieved is better that the

other methods, while the hardware overhead is comparable to the hardware overhead of these
methods.

References
[Balakrishnan 02] K.J. Balakrishnan, N.A. Touba, “Matrix-Based Test Vector Decompression

Using an Embedded Processor”, 17th IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems, pp. 159 – 165, 2002.

[Barnhart 01] C. Barnhart, V. Brunkhorst, F. Distler, O. Farnsworth, B. Keller, B. Koenemann
“OPMISR: the foundation for compressed ATPG vectors”, Proceedings International Test
Conference, pp. 748 – 757, 2001.

[Bayraktaroglu 03] I. Bayraktaroglu, A. Orailoglu, “Concurrent Application of Compaction and
Compression for Test Time and Data Volume Reduction in Scan Designs”, IEEE
Transactions on Computers, Volume: 52 , Issue: 11, pp. 1480- 1489, 2003.

[Chakrabarty 00] K. Chakrabarty, B. Murray, V. Iyengar, “Deterministic Built-In Test Pattern
Generation for High-Performance Circuits using Twisted-Ring Counters”, IEEE Trans. On
Very Large Scale Integration (VLSI) Systems, pp. 633-636, October 2000.

[Chandra 01] A. Chandra, K. Chakrabarty, “System-on-a-Chip Test-Data Compression and
Decompression Architectures Based on Golomb Codes”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 20, No. 3, pp. 355-368, March 2001.

[Chandra 02a] Chandra A., Chakrabarty K., “Test Data Compression and Decompression Based
on Internal Scan Chains and Golomb Coding”, IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, volume: 21, No 6, pp. 715-72, June 2002.

[Chandra 02b] A. Chandra, K. Chakrabarty and R. A. Medina, “How Effective are Compression
Codes for Reducing Test Data Volume?”, Proceedings of the 20th IEEE VLSI Test
Symposium, pp. 2002.

[Chandra 03a] A. Chandra, K. Chakrabarty, “A Unified Approach to Reduce SOC Test Data
Volume, Scan Power and Testing Time”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 22 , No 3, pp. 352 – 363, March 2003

[Chandra 03b] A. Chandra, K. Chakrabarty, “Test Data Compression and Test Resource
Partitioning for System-On-A-Chip Using Frequency-Directed Run-Length (FDR) codes”,
IEEE Transactions on Computers, Vol. 52 , No 8, pp. 1076 – 1088, Aug. 2003

[Chandramouli 96] R. Chandramouli, S. Pateras, “Testing Systems on a chip”, IEEE Spectrum,
pp. 42-47, November 1996.

[Das 00] D. Das, N. A. Touba, “Reducing Test Data Volume Using External/LBIST Hybrid Test
Patterns”, Proceedings International Test Conference, pp. 115-122, 2000.

[Dorsch 01] R. Dorsch, H. J. Wunderlich, “Tailoring ATPG for Embedded Testing”, Proceedings
International Test Conference, pp. 530-577, 2001.

[Dutta 05] A. Dutta, T. Rodrigues, N.A. Touba, “Low Cost Test Vector Compression /
Decompression Scheme for Circuits with a Reconfigurable Serial Multiplier”, Proceedings
IEEE Computer Society Annual Symposium on VLSI, pp. 200- 205, 2005.

[Gonciari 03] P.T. Gonciari, B.M. Al-Hashimi, N. Nicolici, “Variable-Length Input Huffman
Coding for System-On-A-Chip Test”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 22 , No 6, pp. 783 – 796, June 2003

[Hamzaoglu 99] I. Hamzaoglu, J. H. Patel, “Reducing Test Application Time for Full Scan
Embedded Cores”, Proceedings International Symposium Fault-Tolerant Computers, 1999

[Hamzaoglu 00] I. Hamzaoglu, J. H. Patel, “ Test Set Compaction Algorithms for Combinational
Circuits”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 19, No. 8, pp. 957-963, August 2000.

[Hashempour 04] H. Hashempour, F. Lombardi, “Compression of VLSI Test Data By Arithmetic
Coding”, Proceedings. 19th IEEE International Symposium on Defect and Fault Tolerance
in VLSI Systems, pp. 150- 157, 2004.

[Hellebrand 95] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, B. Courtois, “Built-In Test
for Circuits with Scan Based on Reseeding of Multiple-Polynomial Linear Feedback Shift
Registers” IEEE Transactions on Computers, Vol. 44, No 2, pp. 223 – 233, 1995

[Hellebrand 01] S. Hellebrand, H.-G. Liang and H.-J. Wunderlich, “A Mixed Mode BIST Scheme
Based on Reseeding of Folding Counters”, Journal of Electronic Testing, Vol. 17, No. 3 – 4,
June 2001, pp. 341 - 349

[Hetherington 99] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A. Hassan, J. Rajski,
“Logic BIST for Large Industrial Designs: Real Issues and Case Studies”, Proceedings
International Test Conference, pp. 358-367, 1999.

[Hsu 01] F. Hsu, K. Butler, J. Patel, “A Case Study on the Implementation of the Illinois Scan
Architecture”, Proceedings International Test Conference, pp. 538-547, 2001.

[Hwang 03] S. Hwang, J. A. Abraham, “Test Data Compression and Test Time Reduction Using
an Embedded Microprocessor”, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 11, No 5, pp. 853- 862, 2003

[Ichihara 00] H. Ichihara, K. Kinoshita, I. Pomeranz, S.M. Reddy, “Test Transformation to
Improve Compaction by Statistical Encoding”, 13th International Conference on VLSI
Design, pp. 294 – 29, 2000.

[Ichihara 01] H. Ichihara, A. Ogawa, T. Inoue, A. Tamura, “Dynamic Test Compression Using
Statistical Coding”, Proceedings 10th Asian Test Symp., pp. 143 – 148, 2001.

[Iyengar 99] V. Iyengar, K. Chakrabarty, B. T. Murray, “Deterministic Built-In Pattern
Generation for Sequential Circuits”, Journal of Electronic Testing, vol. 15, pp. 97-114,
1999

[Jas 98] A. Jas and N. A. Touba, “Test Vector Decompression via Cyclical Scan Chains and Its
Application to Testing Core-Based Designs”, Proceedings International Test Conference,
pp. 458-464, 1998

[Jas 99] A. Jas, K. Mohanram, and N. A. Touba, “ An Embedded Core DFT Scheme to Obtain
Highly Compressed Test Sets”, Proceedings Asian Test Symposium, pp. 275-280, 1999.

[Jas 02] A. Jas and N. A. Touba, “Deterministic Test Vector Compression/Decompression for
Systems-on-a-Chip Using an Embedded Processor”, Journal of Electronic Testing, Issue:
Volume 18, No 4 – 5, pp. 503 - 514, August 2002

[Jas 03] A. Jas, J. Ghosh-Dastidar, M. –E. Ng and N. A. Touba, “An Efficient Test Vector
Compression Scheme Using Selective Huffman Coding”, IEEE Transaction on CAD of
Integrated Circuits and Systems, vol. 22, No 6, June 2003

[Jas 04a] A. Jas, C.V. Krishna, N.A. Touba, “Weighted Pseudorandom Hybrid BIST”, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, Volume: 12 , Issue: 12 ,
2004, Page(s): 1277- 1283

[Jas 04b] A. Jas, B. Pouya, N.A. Touba, “Test Data Compression Technique for Embedded Cores
Using Virtual Scan Chains”, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 12, No 7, pp. 775- 781, 2004

[Kajihara 02] S. Kajihara, K. Taniguchi, K. Miyase, I. Pomeranz, S.M. Reddy, “Test data
compression using don't-care identification and statistical encoding”, Proceedings of the
11th Asian Test Symposium, pp. 67 – 72, 2002

[Kalligeros 05] E. Kalligeros, X. Kavousianos, D. Nikolos, “Multiphase BIST: A New Reseeding
Technique for High Test Data Compression”, IEEE Transactions on Computer Aided
Design of Integrated Circuits and Systems, pp. 1429-1446, vol. 23, No 10, Oct. 2004.

[Khoche 00] A. Khoche, J. Rivoir, “I/O Bandwidth Bottleneck for Test: Is it Real?”, IEEE Test
Resource Partitioning Workshop, pp. 2.3-1 – 2.3-6, 2000.

[Khoche 02] A. Khoche, E. Volkerink, J. Rivoir, S. Mitra, “Test Vector Compression Using
EDA–ATE Synergies” Proceedings of the 20th IEEE VLSI Test Symposium, pp. 97-102,
2002.

[Kiefer 97] Kiefer G., Wunderlich H.-J., “Using BIST Control for Pattern Generation”,
Proceedings International Test Conference, pp. 347 – 355, 1997.

[Knieser 03] M.J. Knieser, F.G. Wolff, C.A Papachristou., D.J. Weyer, D.R. McIntyre, “A
Technique for High Ratio LZW Compression”, Design, Automation and Test in Europe
Conference and Exhibition, pp. 116 – 121, 2003

[Koenemann 01] B. Koenemann, C. Barnhart, B. Keller, T. Snethen, O. Farnsworth, D. Wheater,
“A SmartBIST Variant with Guaranteed Encoding”, IEEE Asian Test Symposium, pp. 325-
330, 2001

[Krishna 03] C.V. Krishna, N.A. Touba, “Adjustable Width Linear Combinational Scan Vector
Decompression”, IEEE/ACM International Conference on Computer Aided Design, pp.
863- 866, 2003

[Krishna 04a] C.V. Krishna, N.A. Touba, “3-Stage Variable Length Continuous-Flow Scan
Vector Decompression Scheme”, Proceedings. 22nd IEEE VLSI Test Symposium, pp. 79-
86, 2004

[Li 03] L. Li, K. Chakrabarty, N. A. Touba, “Test Data Compression Using Dictionaries with
Selective Entries and Fixed-Length Indices”, ACM Transactions on Design Automation of
Electronic Systems (TODAES), Vol. 8 No 4, October 2003

[Li 04] L. Lei, K. Chakrabarty, “Test Set Embedding for Deterministic BIST Using A
Reconfigurable Interconnection Network”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol.23, No. 9, pp. 1289- 1305, Dec. 2004.

[Li 05] Lei Li, K. Chakrabarty, S. Kajihara, S. Swaminathan, “Efficient space/time compression
to reduce test data volume and testing time for IP cores”, 18th International Conference on
VLSI Design, 3-7 Jan. 2005, Page(s): 53- 58

[Liang 02] H.-G. Liang, S. Hellebrand and H.-J. Wunderlich, “Two-Dimensional Test Data
Compression for Scan-Based Deterministic BIST” Journal of Electronic Testing, Vol. 18,
No. 2, pp. 159 - 170, April 2002.

[Maleh 01] A. El-Maleh, S. al Zahir, E. Khan, “A Geometric-Primitives-Based Compression
Scheme for Testing Systems-On-A-Chip” 19th IEEE Proceedings on VLSI Test Symposium,
pp. 54 – 59, 2001

[Maleh 02] A.H. El-Maleh, R.H. Al-Abaji, “Extended Frequency-Directed Run-Length Code
with Improved Application to System-On-A-Chip Test Data Compression” 9th
International Conference on Electronics, Circuits and Systems, vol. 2, pp. 449-452, 2002

[Nourani 04] M. Nourani, M. H. Tehranipour, “RL-huffman Encoding for Test Compression and
Power Reduction in Scan Applications”, ACM Transactions on Design Automation of
Electronic Systems (TODAES) Vol. 10, No 1, pp. 91 – 115, 2004

[Rajski 01] J. Rajski, “DFT for High-Quality Low Cost Manufacturing Test”, Proceedings. 10th
Asian Test Symposium, pp. 3 – 8, 2001.

[Rajski 03] J. Rajski, M. Kassab, N. Mukherjee, N. Tamarapalli, J. Tyszer, J. Qian, “Embedded
deterministic test for low-cost manufacturing”, IEEE Design & Test of Computers, vol. 20,
No 5, pp. 58- 66, 2003

[Reddy 03] S. M. Reddy, K. Miyase, S. Kajihara, I. Pomeranz, “On Test Data Volume Reduction
for Multiple Scan Chain Designs”, ACM Transactions on Design Automation of Electronic
Systems Vol. 8, No 4, pp. 460 – 469, 2003

[Rosinger 01] P. Rosinger, P.T. Gonciari, Al-Hashimi B.M., Nicolici N., “Simultaneous
Reduction in Volume of Test Data and Power Dissipation for Systems-On-A-Chip”,
Electronics Letters, Vol. 37, No. 24, pp. 1434 – 1436, 2001.

[Tehranipour 04] M. Tehranipour, M. Nourani, K. Arabi, A. Afzali-Kusha, “Mixed RL-Huffman
Encoding for Power Reduction and Data Compression in Scan Test”, Proceedings of the
2004 International Symposium on Circuits and Systems, Vol. 2, pp. II- 681-4, 2004

 [Tehranipour 05] M. Tehranipour, M. Nourani, K. Chakrabarty, “Nine-Coded Compression
Technique for Testing Embedded Cores in SoCs”, IEEE Trans. On Very Large Scale
Integration (VLSI) Systems, vol. 13, No. 6, June 2005.

[Volkerink 02] E.H. Volkerink, A. Khoche, S. Mitra, “Packet-Based Input Test Data
Compression Techniques”, Proceedings. International Test Conference, pp. 154 – 163,
2002

[Vranken 03] H. Vranken, F. Hapke, S. Rogge, Chindamo D., Volkerink E., “Atpg Padding and
ATE Vector Repeat per Port for Reducing Test Data Volume”, Proceedings International
Test Conference, pp. 1069 – 1078, 2003

[Wolff 02] F.G. Wolff, C. Papachristou, “Multiscan-Based Test Compression and Hardware
Decompression Using LZ77”, Proceedings. International Test Conference, pp. 331 – 339,
2002

[Wurtenberger 04] A. Wurtenberger, C.S. Tautermann, S. Hellebrand, “Data Compression for
Multiple Scan Chains using Dictionaries with Corrections”, Proceedings International Test
Conference, pp. 926- 935, 2004

[Zorian 98] Y. Zorian, E. J. Marinissen, S. Dey, “Testing Embedded-Core-Based System Chips”,
Proceedings International Test Conference, pp. 130-143, 1998.

