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Abstract 
 
This paper introduces a new Test Resource Partitioning compression method for 

Intellectual Property cores. The proposed method compresses the test data supported by the 
vendor with a new very effective compression scheme based on Huffman code. The compressed 
data are decompressed on-chip with the use of simple decompression architecture. As it is shown 
experimentally the proposed method improves the compression ratio compared with other 
methods, while the hardware overhead of the decompressor is very low and comparable to the 
most efficient methods in the literature. Moreover, the proposed compression scheme offers a 
trade-off between compression ratio and area overhead of the decompressor. Finally, it enhances 
the coverage of unmodeled faults because a large portion of the unknown values of the test set are 
replaced with pseudorandom data generated by an LFSR. 
 
 
Index Terms: Automatic Test Equipment, Test Resource Partitioning, Data Compression, 
Huffman Code, IP Cores, LFSR 
 
 
I. Introduction 
 

VLSI technology nowadays allows the placement of million of transistors on a single die. 
The complexity of integrated circuits (ICs) increases rapidly, with a direct impact on the cost of 
testing, which also increases very fast [Chandramouli 96], [Zorian 98]. In order to meet time to 
market constraints, contemporary systems embed pre-designed and pre-verified cores, which are 
called IP (Intellectual Property) cores. IP cores hide their structure from the system integrator, but 
support all the testing information required (e.g. pre-computed test tests). The system integrator is 
responsible for developing the proper structures at system level so as the test engineer to apply 
the test tests on the cores during the testing process. The increased density of ICs introduces new 
types of defects, which require new testing methods, increasing that way the volume of test data 
and the application time [Khoche 00]. When the volume of test data increases beyond the limited 
memory depth of the Automatic Test Equipment (ATE), multiple reloads are required to transfer 
the test data from the workstation to the ATE. ATE reloads are very time consuming [Vranken 03] 
and must be avoided in a competitive fast time-to-market environment. Therefore, in order to 
retain the cost of ATE low advanced testing techniques have to be adopted which can be applied 
by slow and low cost testers [Hetherington 99], [Rajski 01].  

Increased test data volume increases also the test application time. Multiple scan chains can 
drive the test applicant time down, but require a large number of pins and high-speed ATE 
channels which may not be available on low cost testers. Test Resource Partitioning (TRP) has 
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been proposed to ease the burden of testing on ATE. It combines the ATE capabilities with on-
chip integrated structures. TRP methods store a compressed test set on the ATE, which is 
downloaded and decompressed on chip. Among these methods are combinational continuous 
flow linear decompressors [Bayraktaroglu 03], [Krishna 03], the RESPIN architecture [Dorsch 
01], the Illinois Scan Architecture [Hamzaoglu 99], [Hsu 01], LFSR based architectures 
[Hellebrand 95], [Khoche 02], [Jas 04b], [Krishna 04a], [Kalligeros 05], folding counters 
[Hellebrand 01] and weighted random pattern generators [Jas 99], [Jas 04a].  Also commercial 
tools exist which automate the generation of embedded decompressors [Barnhart 01], 
[Koenemann 01], [Rajski 03].  

The above methods require structural information of the circuit under test (CUT), thus they 
are not suitable for IP cores. One category of methods for IP cores embeds the pre-computed test 
vectors in longer sequences of random vectors produced on chip [Chakrabarty 00], [Li 04]. Apart 
from the large application time, such methods suffer from the problem of X-generation 
[Hetherington 99]. The vectors applied to the IP cores which are not compatible with the test 
vectors supported by the vendor may produce internally unknown states (X). If an unknown state 
propagates to the MISR, it corrupts the signature. In these cases expensive methods such as X-
suppression or response masking must be applied. Therefore, many methods have been proposed 
to reduce the test data volume and test application time by directly compressing the pre-computed 
test set TD into TE (TE<TD) without the interference of any useless vectors. Such methods encode 
the test sets using various codes with compression properties. Golomb codes were proposed in 
[Chandra 01], [Rosinger 01], [Chandra 02a], [Chandra 02b], alternating run length codes in 
[Chandra 03a], FDR codes  [Maleh 02], [Chandra 03b], statistical codes in [Iyengar 99], 
[Gonciari 03], [Jas 03], nine-coded technique in [Tehranipour 05], and combinations of codes in 
[Tehranipour 04], [Nourani 04]. Some methods use dictionaries [Wolff 02], [Li 03], 
[Wurtenberger 04], [Knieser 03], [Reddy 03] but suffer from large hardware overhead due to the 
large embedded RAMs. 

Some techniques compress the difference vectors instead of the actual test vectors [Jas 98], 
[Chandra 01], [Chandra 02b], [Chandra 03b]. This comes from the observation that the test 
vectors usually differ in a small number of bits, therefore the difference vectors will have long 
runs of 0s which can be effectively compressed using various run length codes. Such techniques 
are inefficient for circuits with internal scan chains which capture responses, because the data 
shifted in the scan chains are corrupted by the response of the circuit. In these cases either 
additional cyclical shift registers must be supported, which increase the cost of testing especially 
for cores with large number of scan cells, or the scan chains of other cores must be reused, if they 
are available . 

There is a class of techniques requiring the pre-existence of arithmetic modules or 
processors embedded in the system [Maleh 01], [Balakrishnan 02], [Jas 02], [Hwang 03], 
[Hashempour 04], [Dutta 05].  

Among the statistical codes used for compressing the test sets, the most effective are 
Huffman codes because they are provably optimal as they result in the shortest average codeword 
length [Iyengar 99], [Ichihara 00], [Ichihara 01], [Kajihara 02], [Jas 03]. The major problem with 
Huffman codes is the large hardware overhead of the decompressors. For that reason in [Jas 03] 
was proposed a selective Huffman compression scheme which sacrificing slightly the 
compression ratio reduces significantly the hardware overhead implied by the decompressor.  

Utilization of all these codes for compressing pre-computed test sets is effective due to the 
large number of X values occurring in the test sets. Even after dynamic or static compaction the 
number of X values is quite large. Traditionally these X values are filled randomly with logic 0 or 
1 in order to enhance the coverage of unmodeled faults. On the contrary, compression methods 
utilize these X values to achieve large compression ratios, by replacing them with the appropriate 
0 or 1 logic values, depending on the implemented code. For example, sequences of 0 and/or 1 
are used to replace X values in [Maleh 02], [Chandra 03a,b], [Gonciari 03], [Nourani 04]. 



Therefore, compression methods may adversely affect the coverage of unmodeled faults. In 
[Tehranipour 05] it is suggested that leaving at least a portion of the X values unchanged during 
compression is preferred. 

In this paper we propose a statistical compression method based on Huffman code which 
fills the major portion of the X values of the test set with random values. This random filling is 
achieved by the use of an LFSR. In the same time the proposed method improves the compression 
ratio and requires a very simple decompressor with low overhead, offering also a trade-off 
between compression ratio and area overhead. The proposed method does not require any 
structural information of the CUT, thus it is proper for IP cores. Additionally it does not require 
any special modules or cyclical shift registers to be embedded in the system and it does not apply 
any useless vectors on the core.  

The rest of the paper is organized as follows. Section II reviews the Huffman code, section 
III describes the proposed compression method and section IV presents the decompression 
architecture. Experimental results are presented in section V. Finally section VI concludes the 
paper. 

 
 

II. Huffman Encoding 
 
Statistical codes represent fixed-length blocks of data with variable length codewords. The 

efficiency of a statistical code depends on the frequency of occurrence of all distinct fixed length 
blocks. If each block occurs with the same or nearly the same frequency with the others then no 
compression can be expected by statistical coding.  Statistical codes encode the most frequently 
occurring blocks with short codewords and the less frequently occurring blocks with large 
codewords, minimizing that way the average length of the codewords. 

Among all statistical codes, Huffman code is the optimal one since it is proven that it 
provides the shortest average codeword length. Let k unique blocks occur in a test set T with 
probability of occurrence p1, p2, …..pk, then the entropy of the test set in defined as 

H(T)= ( )∑
=

−
k

i
ii pp

1
2log and intuitively is the minimum average length of the codewords required 

to represent the test set. Huffman code has the average codeword length which is closer to the 
theoretical limit of entropy bound compared with any other statistical code. In order to achieve 
the best compression ratio, the frequency of occurrence of the unique blocks must be as skewed 
as much as possible. This is usually easy to achieve in a test set because of the correlations of the 
test vectors and the large number of X values. A good encoding algorithm attempts to assign the 
X values in such a way as to achieve the most skewed frequency of occurrence of the codewords. 

Another advantageous property of Huffman code for test compression is that it is prefix – 
free, that is no codeword is a prefix of another codeword. This makes the decoding process 
simple and easy to implement. 

 
Example1 (Huffman Encoding). Consider the test set shown in Table 1 which consists of 5 
unique blocks shown along with their probability of occurrence.  

 
Table 1. Huffman Encoding Example 

Test Set Block P Codeword 
1010 7/16 0 
0000 5/16 10 
1111 2/16 110 
0001 1/16 1110 

0000 1010 1111 1010 
1111 0000 1010 0001 
1010 0000 0010 1010 
0000 1010 0000 1010 

0010 1/16 1111 



 
In order to construct the Huffman encoding, we generate a binary tree. Each block 

corresponds to a leaf node and a weight is associated with it, which is equal to the occurrence 
probability of that block. The pair of nodes with the lowest weights is selected and a parent node 
is created with weight equal to the sum of the weights of these two nodes. This is repeated 
iteratively selecting each time a pair of nodes without parents, until only a single node is left 
without parents, the root. Then each edge is associated with the logic value 0 if it leads to a left 
child and 1 if it leads to a right child. The codeword of each block is constructed by the logic 
values of the edges belonging to the path from the root towards the leaf node of the block. The 
Huffman tree of the above example is shown in Figure 1, and the codeword of each block is 
shown in Table 1. The average codeword length of this test set is 
1.7/16+2.(5/16)+3.(2/16)+4.(1/16+1/16)=1,9375. Note that the entropy is equal to H(T)= 
−(7/16.log2(7/16)+5/16.log2(5/16)+2/16.log2(2/16)+1/16.log2(1/16) + 1/16.log2(1/16))=1,9218. 
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Figure 1. Huffman Tree 

 
When the number of the encoded blocks is large then the cost of the Huffman decoder is 

high because of the large size of the decoding tree. For these cases a selective Huffman approach 
is adopted [Jas 03] which encodes only the most frequently occurring blocks while the rest blocks 
are not encoded. A special bit is appended to each block to indicate if the block is encoded or not.  
 
 
III. Compression Method 
 

The proposed compression method is based on Huffman code with limited number of 
codewords. The novelty of the method is that data produced by various cells of an LFSR are 
matched with the required test vectors and these cells are used for the encoding instead of the 
actual data. Each Huffman codeword is used to encode one cell of the LFSR. If a match with an 
LFSR cell can not be found then the data are encoded directly with Huffman code as proposed in 
[Jas 03]. Usually, the data encoded directly with Huffman code belong to vectors with many 
defined bits that can not be easily matched with the pseudorandom stream generated by the LFSR. 
On the other hand the major part of the test data encoded from LFSR cells belong to test vectors 
with many X values. Therefore the major portion of the X values is replaced with pseudorandom 
data, enhancing that way the probability of detection of unmodeled faults. In the following we 
describe the compression method assuming single scan chain. 



Firstly, the test set is partitioned into clusters of fixed length. The LFSR is let evolve for a 
number of cycles equal to the size of the test set and the clusters of the test set are compared with 
the normal and inverted data produced by each LFSR cell. When a cluster of test data is 
compatible with a cluster generated by an LFSR cell, it is considered as a hit of the corresponding 
cell. A predetermined number of the LFSR cells with the largest hit ratios are selected, and feed 
the scan chain through a multiplexer. All the clusters which are compatible with data produced by 
at least one selected LFSR cell are encoded by one of them. Specifically, the multiplexer selection 
address of each cell is encoded using Huffman code. We call this type of encoding Cell encoding. 
All the clusters which are not compatible with a selected LFSR cell are labeled as failed and are 
processed afterwards in a different way, as it will be explained later on. Beside selection 
addresses, Cell encoding also associates one Huffman codeword with all failed clusters, in order 
to distinguish them from the rest.  

Since many clusters have a large number of X values, they can be matched with many 
LFSR cells at the same time. Therefore the proposed method associates each cluster with that 
LFSR cell which skews the cell occurrence probabilities the most, that is the LFSR cell most 
frequently used. The processing of the Huffman tree is done in the ordinary way, using the 
probabilities of the cell addresses, as also the probability of the failed clusters.  
Example 2 (Cell encoding). Suppose that a test set consists of 30 clusters, and 4 LFSR cells are 
used to match the test data. Suppose also that the matching probability of each LFSR cell, as well 
as the probability of the failed clusters, is shown in Figure 2. The Huffman tree and thus the 
codewords are generated using these frequencies. 
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Figure 2. Cell encoding example. 

 
A drawback of the Huffman code is that it is a fixed to variable code, whereas a variable to 

variable code is more efficient [Gonciari 03]. In the proposed method we try to eliminate this 
problem by allowing consecutive clusters to match, if possible, with the same LFSR cell and 
encode all these clusters only once. As we experimentally observed this was possible in all the 
cases due to the large number of X values in the test sets. For that reason besides the address of a 
selected LFSR cell, we also encode the number of consecutive clusters (cluster group) which can 
be encoded using this cell. In order to keep the hardware overhead low we allow the length of 
each group of clusters to be among a predetermined list of distinct lengths. These distinct lengths 
are experimentally selected as the powers of 2 in the interval [1, max_length) whereas 
max_length is the maximum number of consecutive clusters matched with any one of the selected 
cells. Each group of clusters is associated with the largest possible length in the list, which does 
not exceed the actual length of the group. For example if the list lengths are 1, 2, 4, 8, 16 and 32 
then a group of 30 consecutive clusters is partitioned into a group of 16, a group of 8, a group of 4 



and a group of 2 clusters. These list lengths are also encoded by Huffman code. This is justified 
from their probability of occurrence which is naturally skewed (large lengths are expected to 
occur less frequently than short lengths). We call this type of Huffman encoding as Length 
encoding. As it will be explained later, the same Huffman code used for Cell encoding is also 
used for Length encoding, in order to keep the decoding cost low. Therefore the maximum 
number of the potential list lengths is equal to the number of selected cells. In case that the list 
can hold more lengths than the number of the powers of 2 in the interval [1, max_length) then 
additional lengths are appended in the list following a different rule. The lengths of the list are 
sorted in ascending order and the pair of consecutive (in the list) lengths with the greatest distance 
between them is selected. The new length is the mid point between this pair of lengths. A 
codeword of Length encoding always succeeds a codeword of Cell encoding, when the encoded 
cluster is not a failed one.  
Example 3 (Length encoding). Assume that 12 groups of clusters with lengths equal to 1, 2, 4, or 
8, matched with 4 selected LFSR cells. The occurrence probabilities of these groups are shown at 
Figure 3. In this case, the Huffman tree is constructed by using these probabilities. 
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Figure 3. Length-encoding example 

 
In the case of a failed cluster a different approach is adopted. The cluster is partitioned into 

equally sized blocks, and each block is encoded directly with the selective Huffman code as 
proposed in [Jas 03]. We call this encoding as Pure-Data encoding. If a block fails to be encoded 
with the selective Huffman code (failed block), then it remains not encoded and is supported 
directly by the ATE in the code stream. As in the case of failed clusters, one Huffman codeword 
is associated with each failed block, while the others are associated to the most frequently 
occurring blocks. The data of the not encoded block follows its codeword. In Pure-Data encoding 
the same Huffman code with Cell and Length encoding is used. Therefore, Pure-Data encoding 
encodes a number of blocks equal to the number of selected LFSR cells. Note that in Cell and 
Pure-Data encoding the failed data are distinguished by using Huffman codewords in contrast to 
[Jas 03] where a special bit is used in all codewords. 

The major advantage of the proposed compression method is that the same Huffman 
decompressor can be used in order to implement the three different encodings. The number of 
selected cells determines the size of the Huffman decompressor and vice-versa. Note that the 
number of selected cells is equal to the number of the list lengths in Length encoding and to the 
number of unique blocks encoded by Pure-Data encoding. The Huffman tree is constructed by 
summing the corresponding occurrence probabilities of all three cases and one Huffman code is 
generated to cover all three of them. Thus the same codeword depending on the phase of the 
decoding corresponds to 3 different things: to a cell, to a cluster group length or to a block of data. 
Always the first codeword is considered as a Cell-codeword. If it does not indicate a failed cluster 



then the next codeword correspond to the length of the cluster group. If instead it corresponds to a 

failed cluster then the next 
sizeblock

sizecluster
 codewords are processed as Pure-Data codewords, where 

cluster size (block size) represents the number of bits of each cluster (block). Each one of them 
may indicate a failed block or a Pure-Data block. In the first case the actual block of data follow 
in the code stream else the block of data is produced by the decompressor. This sequence is 
iteratively repeated starting always from a Cell encoding codeword. 
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Figure 4. Compression example. 

 
Example 4 (Compression method). Assume an encoding scenario with 4 cells of an LFSR, 4 
different cluster group list lengths and 4 blocks of data. Let each cluster be 24 bit wide and each 
block 4 bit wide (6 blocks per cluster). Figure 4 presents the selected cells, the list lengths and the 
data blocks sorted by descending occurrence frequency. Each  single occurrence in all three cases 
corresponds to a codeword in the final encoded stream. Note that there are 12 groups of clusters 
matched with LFSR cells and 3 failed clusters which are partitioned into 18 blocks. 5 unique 
codewords (one per line of the table) synthesize the code stream which consists of 45 occurrences 
of them. The occurrence frequencies in each line of the table are summed and divided by the total 
number of expected codewords, generating thus the total probability of occurrence of each 
distinct codeword, as shown in Figure 4. The encoded stream in Figure 4 shows the representation 
of scan data. The first codeword 0 corresponds to the cell A and the next codeword 10 indicates 
the group length which is 2. Therefore the scan chain is fed by cell A for the next two consecutive 
clusters 1, 2. The next codeword 110 indicates that the next cluster is a failed one. According to 
the proposed compression scheme, cluster 3 is partitioned into 6 blocks. The next codeword 10 
indicates that the first block is a failed one; therefore the actual data (0010) are not encoded and 
follow this codeword in the code stream. The codeword for the second block is 0 which 
correspond to the encoded block 0011 which will be shifted in the scan chain. This is repeated 
until all 6 blocks have been processed. 
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Figure 5. Decompression Architecture 

 
IV. Decompressor Architecture 
 

The block diagram of the proposed decompressor Architecture is shown in Figure 5. The 
functionality of the proposed architecture has been verified with extensive simulations. It consists 
of the following units*: 
Huffman FSM: This unit receives the data from the ATE (ATE_DATA) using the ATE clock 
(ATE_CLK). Upon reception of a codeword the signal HSync is sent back to the ATE to stop the 
transmission until the decompressor is able to receive the next one. In the same time the FSM 
issues the signal code which is a binary number indicating which codeword has been received. In 
other words for N codewords, each codeword is assigned a number between 0 and N-1 and the 
signal code is the binary representation of that number. Also the FSM issues the signal Valid 
Code which informs the Decoding Controller that a codeword has been received and its number 
has been placed on signal code. 
Source Select Mux: This is the multiplexer which selects the source to feed the scan chain. Signal 
Src issued by the Decoding Controller selects the source that is the selected cell (Src=01) or the 
Pure-Data (Src=10) or a not encoded block directly from the ATE (Src=00).   
Cell Mux: This is the multiplexer which selects the cell to feed the scan chain. 
CSR (Cell Selection Register): This register holds the address of the selected cell during scan 
chain loading. It stores the address of the selected cell when the Decoding controller sets 
CSR_en=1. 
LFSR: It is the Linear Feedback Shift Register, which is let evolve only during the loading of 
scan chain, using as enable signal the SE (Scan Enable). 
Pure-Data: Combinational block which returns the pure data encoded in Huffman code upon 
recognition of the corresponding codeword. It receives as input the code signal issued by the FSM 
and outputs the corresponding data. It can be also implemented by a Lookup Table, with the 
signal code used for addressing the Table. 

                                                   
* For the convenience of the reader only the most important signals are reported. 



Cluster Group Length: Combinational circuit which determines the group length corresponding 
to the received codeword. It can also be implemented by a Lookup Table in the same way as 
Pure-Data unit. 
Shifter: a register which upon reception of a Pure-Data codeword (corresponding to a 
successfully encoded block) shifts in the scan chain the block of data retrieved by the Pure-Data 
unit. Decoding controller supervises the shifting of the register with the signal Sh_en. 
Fail Cluster/Block: A very small combinational circuit which recognizes when a codeword 
corresponds to a failed cluster or a failed block and sets Fail=1. 
Bit counter (BC), Block counter (BLC) and Cluster counter (CLC): Count the number of bits, 
blocks and clusters respectively, entered the scan chain (after initialization the counters count 
down until they reach zero). Bit counter issues signal BC_Done when a whole block has been 
shifted into the scan chain; Block counter issues the signal BLC_Done when all the blocks of a 
cluster have been shifted into the scan chain; Cluster counter issues the signal CLC_Done when 
all the clusters of a group have been shifted into the scan chain. 
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Figure 6. Decoding Controller State Diagram. 

 
Decoding Controller: This is a finite state machine which synchronizes the operation of all units. 
The state diagram of this machine is shown on Figure 6 (the state diagram reports only the most 
important signals). Initially the controller waits for the first codeword which encodes a cell 
selection address. When the codeword has been received (Valid Code = 1) then the controller 
checks if it encodes an LFSR cell (Fail=0) or indicates a failed cluster (Fail=1). In the former 
case the controller stores the cell address to the CSR resister (CSR_en=1) and proceeds to the 
WAIT_LENGTH state. In the latter case it proceeds to the WAIT_FAILED_CLUSTER state. Being 
at the WAIT_LENGTH state it waits for the next codeword to be received by the Huffman FSM 
unit. Then it sends a signal to the Cluster counter to store the data returned by the Cluster Group 
Length unit which is the binary representation of the length of the group. Also the controller 
initializes the Bit and Block counters to their initial values, tunes the Source Select multiplexer to 
the Cell Mux input (Src=01)and proceeds to the SHIFT_LFSR_DATA state. At this state it 
activates the scan enable signal (SE=1) and the LFSR begins to load the scan chain with the data 



from the selected cell, until the Cluster counter reaches zero (CLC_Done=1). Then the state 
machine returns to the WAIT_CHANNEL state waiting for the next iteration. If the machine enters 
the WAIT_FAILED_CLUSTER state then it waits for the next codeword from the FSM. If this 
codeword corresponds to an encoded Pure-Data block (Fail=0), then the controller sends a signal 
to the Shifter unit to store the output of the Pure-Data unit (which is the encoded data block), sets 
the Source Select multiplexer to the shifter input (Src=10) and proceeds to the 
SHIFT_PURE_DATA state where it remains until the Bit counter finishes counting (BC_Done=1). 
While the controller is in this state, the Shifter unit shifts the data serially into the scan chain. On 
the other hand if the codeword received at the WAIT_FAILED_CLUSTER state corresponds to a 
failed block (Fail=1) then the controller sets the Source Select multiplexer to the ATE channel 
(Src=00), and proceeds to the WAIT_FAILED_BLOCK state where it remains until the Bit 
counter finishes counting (BC_DONE=1). During this state the Bit counter, the Decoding 
Controller and the scan chain are triggered by the ATE clock and the signal CSync is set to 1 to 
enable the ATE to send directly the block which is not encoded. From both states 
SHIFT_PURE_DATA and WAIT_FAILED_BLOCK the state machine proceeds to the 
CLUSTER_DONE? state where the contents of the Block counter are checked through the signal 
BLC_DONE. If the Block counter has reached 0 (BLC_Done=1) all the blocks of the cluster have 
been processed, therefore the next state is WAIT_CHANNEL, otherwise the next state is 
WAIT_FAILED_CLUSTER where the next block will be processed in the same way. 

As we will show in the experimental results, the efficiency of the proposed encoding depends 
mainly on the number of selected cells, which determine the number of codewords of the 
Huffman code. The number of codewords determines the size of the Huffman FSM which is the 
major part of the hardware overhead. Assuming that for two or more cores equal number of cells 
can be efficiently used for the encoding, the same decompressor can be used for all of them by 
changing only the following units: Cell Mux, Pure-Data, Cluster Group Length unit and Fail 
Cluster/Block unit. Moreover, if the Pure Data unit and Cluster Group Length units are 
implemented as Lookup Tables, then they only need to be loaded at the beginning of the test 
session with the specific data of each core. Therefore, the decompressor can easily be reused for 
different cores with virtually minimal or almost zero area penalty. An issue that will be clarified 
at section V, is that assuming equal number of selected cells, how effective is to use common 
Huffman codewords to more than one different cores. As we will see in the majority of the cases 
the effect on the compression ratio is only marginal. This is easy to explain taking into account 
that for the same number of cells (same number of Huffman codewords) and relatively skewed 
frequency of occurrence the Huffman trees can not be much different and thus the encoding if not 
optimal will be very close to the optimal one. (Note that the selected cells, the cluster size and the 
block size need not be the same for different cores when using common decompressor, regardless 
of the Huffman FSM unit being the same). 

For multiple scan chains a shift register is used with width equal to the number of scan 
chains. The shift register is loaded by the decompressor and when it is full it loads the scan chains 
in parallel, as proposed in [Tehranipour 05]. 
 
 
V. Experimental results 

 
The proposed compression method was implemented using the C-programming language. 

We run experiments on a Pentium PC for the largest ISCAS 89 benchmarks circuits, assuming 
full scan. We used the dynamically compacted test cubes generated by Mintest [Hamzaoglu 00], 
the same used in [Chandra 01], [Rosinger 01], [Chandra 02a], [Maleh 02], [Chandra 03a,b], [Jas 
03], [Gonciari 03], [Tehranipour 04], [Li 05] and [Tehranipour 05]. The running time of the 
compression method is a few seconds for each benchmark circuit. The percentage compression, it 
is calculated by the formula  



BitsData

BitsCompressedBitsData
nCompressioPercentage

−
=  

For all the reported experiments the LFSR size was set equal to 15. 
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Figure 7. Seed and Polynomial Experiment for s15850. 

 
The first experiment is reported in Figure 7 and studies the effect of different polynomials 

and seeds on the compression ratio. We applied the proposed method on the test set of s15850 
with a) 10 different seeds and the same polynomial (Seed curve), and b) 10 different polynomials 
and the same seed (Poly curve). The rest parameters are reported in Figure 7 and are the same for 
both curves. As it is obvious from Figure 7, both polynomials and seeds affect the compression 
results in a very limited way, while seeds seem to affect the compression ratio a little more than 
polynomials. For all the experiments the variation of the percentage compression (maximum 
percentage – minimum percentage) for the 10 seeds is 0.79%, while for the 10 polynomials is 
0.36%. Therefore we conclude that, seeds and polynomials marginally affect the proposed 
compression method. 
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Figure 8. Varying cluster size for s15850 

 
The second experiment shows the effect of different cluster sizes on the compression ratio. 

We applied the compression method on the test set of s15850, for cluster sizes between 8 and 80 
bits (pace 4), one polynomial, one seed, 8 cells, and block sizes 4 and 8. It is obvious from Figure 
8 that cluster size affects the compression ratio. For small and large cluster sizes the compression 
decreases, while it reaches a peak point somewhere in the middle. For small cluster sizes the 
number of clusters is high and thus the bits required for encoding is high as well, while for large 



cluster sizes, the number of failed clusters increases. The variation of the percentage compression 
in this experiment approaches 3%. 
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Figure 9. Varying Block size for s15850 

 
The third experiment shows the effect of different block sizes on the compression ratio. We 

applied the compression method on the test set of s15850 varying the block size between 3 and 12 
bits (with pace 1) for one polynomial, one seed, 8 cells and cluster sizes 24, 30. Note that block 
size affects only the encoding of failed clusters and consequently influences only Pure-Data 
encoding. The results are shown in Figure 9. Small block sizes increase the number of codewords 
needed to encode each failed cluster, because the number of blocks per cluster increases. Large 
block sizes adversely affect the compression achieved by Pure-Data encoding because as the 
block size increases, the number of distinct blocks increases exponentially, while the number of 
encoded blocks remains constant. Thus it is expected that the fraction of the number of encoded 
blocks to the number of all distinct blocks decreases, and thus many test data remain not 
compacted by Pure-Data encoding. The percentage variation in this experiment approaches 3% 
for block sizes 3 up to 12, while it is expected to be much greater for even larger block sizes.  
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Figure 10. Varying Number of Channels for s15850f 

 
Now we show the effect of the number of cells on the compression. We applied the 

compression method on the test set of the s15850 benchmark for cluster sizes 16 and 32, block 
sizes 4 and 8, one polynomial and one seed. For each experiment we varied the number of cells 
between 4 and 24 with pace 4. The results are shown in Figure 10. It is obvious that the 
compression ratio increases when the number of cells increases. As it is shown in Figure 10, for 



small number of selected cells the compression ratio is mainly affected by the block size. This is 
justified from the large number of failed clusters when the number of cells is low. In other words 
low number of cells means more data encoded by Pure-Data encoding. When the number of cells 
increases, the block size affects the compression ratio marginally, while it is now affected mainly 
by the cluster size. In this case the number of failed clusters decreases and thus more test data are 
compressed by Cell encoding. After a certain number of cells the compression ratio reaches a 
saturation point as shown from the curve. The variation of the percentage compression in these 
experiments approaches 5.7%. 

 
Table 2. Effect of predetermined Huffman code on compression ratio 

Circuit 
Test Set 

Size 
Cluster 

Size 
Block 
Size 

Dedicated 
Decompr. 

Common 
Decompr. 

Decrease 
(%) 

s5378 23754 12 6 10132 10132 0% 
s9234 39273 20 4 16689 16689 0% 
s13207 165200 40 10 21419 21568 0,6% 
s35932 28208 90 9 7277 7458 2,4% 
s38417 164736 36 6 63096 63840 1,1% 
s38584 199104 30 6 59403 59862 0,8% 

 
The next experiment shows the effect of using the same decompressor for various circuits, 

assuming equal number of selected cells for each one of them. As we mentioned in section IV, the 
number of selected cells affects the size of the Huffman FSM unit, which as it will be show later 
is the major area overhead of the decompressor. Therefore, in order to reuse the decompressor for 
testing different cores and minimize the area overhead we append for each core only the Pure-
Data unit, the Cluster Group Length unit, the Fail Cluster/Block unit and the Cell Mux unit. The 
rest units (Huffman FSM, Decoding Controller, counters, CSR and Source Select Mux) can be 
reused as is. Using the same Huffman FSM unit for a number of cores means that the 
compression method is based on pre-generated Huffman codewords for each core. In other words 
the codewords corresponding to cells, list lengths and data blocks are the same for each core, 
while the selected cells, list lengths and data blocks need not be the same. With this experiment 
we show that using the pre-generated  code for various cores the decrease of the compression is 
very limited compared to the compression achieved when a separate code is generated for each 
one of them for the same number of cells. Firstly, we generate the code for the test set of the 
s15850 circuit for 8 selected cells, cluster size 28 and block size 4. Then we compressed the test 
set of each benchmurk, for 8 cells and various cluster sizes and block sizes assuming separate 
decompressors for each one of them. We also compressed the test sets of each benchmark circuit 
with the exact same parameters for each core using the pre-generated code produced for the 
s15850. The results are shown in Table 2. The first column presents the circuit name, the second 
presents the size of the test set, the next two columns present the cluster and block size used for 
each benchmark. Block and cluster size were selected among others so as to give the best 
compression when dedicated compressors are used.  The column labeled Dedicated 
Decompressor presents the compression achieved when the encoding of each core is generated 
based on each test set separately. The column labeled Common Decompressor presents the 
compression when the pre-generated code for the s15850 circuit is used for each one of the 
reported circuits. Column labeled Decrease presents the percentage decrease in compression of 
the common decompressor compared to the dedicated one. It is obvious that the difference in 
compression is very low or even zero. As it will be shown next, the larger of number of cells is 
the greater is the compression achieved. Therefore, for various cores we may implement the 
decompressor for the core requiring the largest number of cells and then reuse it for the rest cores, 
minimizing that way the percentage decrease for each one of them. 



 
Table 3. Compression results 

 Cells = 4 Cells = 8 Cells = 12 Cells = 16 Cells = 20 Cells = 24 
Circuit ENC C/B ENC C/B ENC C/B ENC C/B ENC C/B ENC C/B 
s5378 10446 16/8 9876 12/6 9817 20/10 9627 20/10 9494 20/10 9370 20/10 
s9234 17491 16/4 16555 20/4 16277 20/5 16269 20/10 15921 32/8 15636 20/10 
s13207 23076 40/8 20428 40/10 19931 64/8 19577 64/8 19429 64/8 18832 64/8 
s15850 21819 20/4 20203 28/4 20110 20/5 19806 40/8 19436 32/8 19382 64/8 
s38417 65630 20/5 62811 36/6 61912 40/8 60379 40/8 59533 40/8 58943 48/8 
s38584 63233 20/4 58995 30/6 58780 32/8 57372 20/10 56556 32/8 56504 20/10 

 
Table 3 presents the compression for all benchmark circuits achieved by the proposed 

method. The same polynomial was used in all experiments while 10 random seeds were tried for 
each experiment. Compression results for 6 different numbers of cells are reported, 4 to 24 with 
pace 4. For each number of cells the compression method was applied on each test set for various 
cluster and block sizes. Among them the best results are reported. Columns labeled C/B report the 
cluster size / block size for each circuit, and columns labeled ENC present the size of the encoded 
test sets (test set sizes are reported in Table 2). It is obvious that in all cases the compression 
increases when the number of cells increases. 

 
Table 4. Comparisons with [Jas 03] and and [Tehranipour 05]. 

  Jas 03 Tehranipour. 05 
Circuit Prop. Enc. Impr. Enc. Impr. 
s5378 9370 10666 12,2% 10511 10,9% 
s9234 15636 17987 13,1% 17763 12,0% 
s13207 18832 37996 50,4% 24450 23,0% 
s15850 19382 26175 26,0% 22126 12,4% 
s38417 58943 67542 12,7% 61134 3,6% 
s38584 56504 71478 21% 62897 10,2% 

 
Table 4 compares the proposed method with [Jas 03] which is also based on Huffman code, 

and [Tehranipour 05] which is the most effective compression method proposed so far in the 
literature. Column labeled Prop. reports the best compression achieved by the proposed method in 
terms of bits of the encoded test set. The same information is provided for the other two methods 
under column labeled Enc. Columns labeled Impr. report the relative improvement of the 
proposed compression to the compression of the other two methods as (Enc-Prop)/Enc. It is 
obvious that the proposed scheme gives better compression results than both these methods. 

 
Table 5. Comparisons with other methods 

Circuit Chand. 
01 

Rosing. 
01 

Chand
. 02a 

Maleh 
02 

Chand. 
03b 

Chand. 
03a 

Gonc. 
03 

Tehr. 
04 

Li 05 

s5378 - 35,9% - 17,9% 24,1% 19,9% 18,2% 14,7% 34,1% 
s9234 29,7% 34,7% 30,5% 26,4% 29,4% 27,7% 24,5% 24,0% 48,1% 
s13207 54,8% 50,4% 46,4% 37,2% 39,0% 42,3% 30,9% 34,8% 10,3% 
s15850 52,4% 38,1% 36,6% 21,3% 25,5% 26,3% 21,5% 22,9% 22,9% 
s38417 36,0% 19,7% 35,3% 9,3% 36,9% 9,3% 23,3% 0,1% 30,8% 
s38584 45,7% 34,6% 37,1% 23,5% 27,4% 27,0% 24,8% 24,5% 1,1% 

 
Table 5 gives the compression improvement of the proposed method against other 

compression methods which have comparable hardware with the proposed method and reported 
results for the Mintest test sets. To have a fair comparison, we do not compare the proposed 
method with methods compressing difference vectors because they require cyclical shift registers. 
It is obvious that the proposed compression method performs than all the other methods.  

 



Table 6. Hardware Overhead 
 Area Overhead (Gate Equivalents) 

Number 
of cells 

Rest 
Units 

Huffman 
FSM  

Group 
Length  

Pure 
Data  

Total 

4 163 34 3 3 203 
8 181 63 9 10 263 
12 191 88 9 26 314 
16 199 110 11 35 355 
20 205 128 11 53 397 
24 221 142 11 58 432 

 
In order to show the area overhead of the proposed method we synthesized decompressors 

for various numbers of cells using with Leonardo Spectrum (Mentor tools). The area overhead 
depends strongly on the number of cells, which mainly affects the area of the Huffman FSM unit. 
The block size affects the hardware overhead in a limited way since only the area of the Pure-
Data unit depends on the block size. Table 5 shows the area overhead of the decompressor in gate 
equivalents for different numbers of cells, 8 bits block size and 16 bits cluster size. The 
decompressors were synthesized for the test set of s15850. We have to note that the decompressor 
area does not depend on the test set, but mainly on the architecture parameters. Therefore the area 
picture is similar for the rest benchmarks too. Columns labeled Huffman FSM, Group Length and 
Pure Data present the area attributed to the corresponding units. Column Rest Units present the 
area overhead of the rest units in the design. As it is obvious the area overhead depends mainly on 
the area of Huffman FSM which is getting larger as the number of cells (and thus the number of 
Huffman codewords) increases. The area overhead of Group Length and Pure Data unit is only a 
small portion of the total overhead. The rest units occupy an almost constant area which increases 
very slowly due to the increased size of the Cell Mux unit, as also the increased size of the 
counters. Under column Total the area overhead of the decompressor is reported. The reported 
area overhead varies between 11,5% and 24% of the s15850 circuit area. For larger benchmarks 
as s38584 the overhead varies between 3,1% and 6,6% while for larger circuits it is expected to 
be even less. If the same decompressor is used for different cores then the area overhead for each 
circuit confines mostly to the area occupied by Group Length and Pure Data while the other units 
are shared among all cores. Then the above percentages for s15850 vary between 0,3% and 4,5% 
and for s38584 vary between 0,092% and 1,2% which is extremely low. 

In order to compare the proposed decompressor in terms of hardware overhead (gate 
equivalents) with the most efficient methods, we report the area overhead of various methods: 
416 for [Tehranipour 05], 320 for [Chandra 03a], 136-296 for [Gonciari 03], 125-307 for 
[Chandra 01] (as reported in [Gonciari 03]). In [Jas 03] hardware overhead is provided as 
percentage of the benchmarks circuit and can not be directly compared with these above methods. 
However, compared with [Gonciari 03] reported inferior results in area overhead. It is obvious 
that the proposed decompressors are comparable with the other proposed decompressors.  

 
 
VI. Conclusion 
 

This paper presented a compression method based on Huffman code. The compression 
achieved is in most of the cases higher than all the other methods while the area overhead of the 
proposed decompressor is very low. Moreover, a trade-off between area and compression ratio is 
supported. The proposed decompressor can be easily shared among different cores, minimizing 
that way the overall implementation cost in a system. Additionally, the major portion of X values 
is filled with pseudorandom data produced by an LFSR, enhancing that way the coverage of 
unmodeled faults. Experimental results proved that the compression achieved is better that the 



other methods, while the hardware overhead is comparable to the hardware overhead of these 
methods. 
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