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Abstract 

In this paper we present an efficient seed-selection algorithm for reducing the test data storage re-

quirements of scan-based, test set embedding schemes with reseeding. Moreover, a technique for reducing 

the length of the generated test sequences is introduced. This technique achieves significant savings with 

minor overhead (one extra bit per seed plus a small counter in the scheme’s control logic). Experimental 

results demonstrate the advantages of the proposed algorithm and the test sequence reduction technique. 

 

1. Introduction 

The ever-increasing size and density of contemporary Systems-on-a-Chip (SoCs) are placing a severe 

burden on the traditional testing approaches based on external Automatic Test Equipment (ATE). The 

prevalent, core-oriented design style, although reducing the time-to-market and the complexity of the de-

signers' task, leads to circuits with reduced accessibility and increased test data storage and test sequence 

length requirements. Consequently, the introduction of new, embedded testing solutions that overcome 

these problems is of great importance. 

From the perspective of testing, the cores integrated in a SoC can be classified into two categories: 

those that are of known structure and those that are IP-protected and practically constitute a black box. For 

the former, fault simulation and/or test pattern generation can be performed, while the latter are just ac-

companied by a pre-computed set T of test patterns that should be applied to their inputs so as to be tested. 

Various very successful embedded testing techniques for cores of known structure have been recently pre-

sented in the literature, some of which have been incorporated in industrial and commercial CAD-tool 

suites [1], [2]. 

Three different approaches can be followed in order to reproduce a test set T that comes with a core of 



unknown structure: deterministic test set generation, test-pattern compression/decompression and test set 

embedding. In the first approach, an on-chip ROM or a deterministic Test Pattern Generator (TPG) [3] is 

used for precisely reproducing the test set of the Circuit (or Core) Under Test (CUT). In the second one, 

compressed versions of the test patterns of T are stored in the tester and decompressed on-chip by means 

of a built-in circuit [4]-[6]. Contrary to the two aforementioned approaches, test set embedding [7]-[9] en-

codes the test patterns of T in a longer TPG sequence, thus allowing the exploitation of the test data vol-

ume–test sequence length trade-off. Consequently, compared to the other two, the test set embedding ap-

proach can achieve smaller hardware overhead and test-data storage results. However, this advantage is 

often exchanged with excessively long test sequences. Therefore, test set embedding techniques that com-

bine both reduced hardware and test data storage requirements with short test sequences are desirable. 

An LFSR-based test set embedding approach with reseeding, featuring the two aforementioned charac-

teristics is proposed in this paper. For minimizing the number of required seeds, a seed-selection algo-

rithm, which makes use of a heuristic criterion similar to that presented in [10] along with two new ones, 

is proposed. The two new criteria significantly refine the selection process and fairly reduce the selected-

seed volumes. Moreover, a technique for reducing the length of the generated test sequences is introduced. 

The proposed technique partitions the set of vectors generated from each seed into segments and then re-

orders the seeds according to the number of useful segments they include. The test sequence length sav-

ings it achieves are significant, while the imposed overhead is confined to one extra bit per stored LFSR 

seed plus one very small counter in the scheme's control logic. We note that the proposed test set embed-

ding approach can be implemented either as a full BIST solution or it can be combined with an external 

tester in a test resource partitioning scenario. 

 

2. Seed-selection algorithm 

For presenting the seed-selection algorithm, we consider the classical LFSR-based reseeding scheme, 

consisting basically of an LFSR, a Bit and a Vector Counter. The LFSR is loaded with a new seed and is 

let generate states in order to produce L test vectors. That is, each seed is expanded to a window of L vec-

tors, which are serially shifted in the scan chains (through a phase shifter) and applied to the CUT. The 

corresponding responses are captured by the Test Response Compactor (TRC). The same process is re-

peated until all the test cubes accompanying the CUT have been covered.  

The proposed seed-selection algorithm receives as inputs the user-defined parameter L, which repre-

sents the size of the window (number of test vectors) that each seed is expanded to and a test cube set T. 

Its goal is to select a number of LFSR seeds so as each test cube of T to be compatible with at least one of 

the vectors generated when the selected seeds are expanded to the corresponding vector-windows. The set 

of chosen seeds should be as small as possible. 



The search space of the seed-selection algorithm is shown in Figure 1. It is (initially) comprised of L 

symbolic vectors (sv0, sv1, ..., svL-1). Symbolic vector svi is the ith vector that would have been shifted in 

the scan chains of the CUT, if each bit of the initial state of the LFSR were equal to a binary variable ai. In 

other words, if the maximum scan chain length is equal to n, symbolic vector svi is the union of the sets of 

linear expressions of variables ai contained in the scan chains of the CUT after i n-tuplets of clock cycles 

from the initialization of the LFSR with a new seed (we do not consider the capture cycle). 
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Figure 1. The search space of the seed-selection algorithm 

 

For determining a new seed, the seed-selection algorithm makes use of the well-known concept of solv-

ing systems of linear equations [11]. At first, for each window the seed-selection algorithm generates the 

above described search space by simulating the function of the LFSR and the phase shifter symbolically. 

Then, for each test cube t of the set T, it traverses the search space row by row and, by solving the corre-

sponding linear systems svi=t, tries to verify if a vector compatible to t can be generated at each position. 

If the corresponding system is solvable, then such a vector exists. In order to be generated, the initial 

LFSR state should be updated according to the solution of the system (i.e. assuming Gauss-Jordan elimi-

nation, all the variables belonging in the pivot columns of the system should be replaced by linear expres-

sions of the free variables). We then say that test cube t has been covered at the ith window position. 

The seed-selection algorithm examines, at each step, all possible linear systems for all test cubes and 

chooses one in order to be solved. After variable replacement, the selected test vector is removed from T 

and the search space is regenerated using the new initial LFSR state. We note that the replaced variables 

are not contained in the symbolic vectors of the regenerated search space. The above-described procedure 

is repeated by selecting a new test cube to be covered at some window position at each step of the algo-

rithm, until no system is solvable for any of the remaining test cubes of T. At this point a new seed has 

been determined. The seed-selection algorithm continues to generate seeds this way until all the test cubes 

of T have been covered. 



Since at each step of the algorithm, linear systems corresponding to more than one test cubes will be 

solvable at more than one positions of the examined window, a set of heuristics should be defined for se-

lecting the system that will be actually solved. The proposed seed-selection algorithm utilizes three basic 

criteria for this purpose. The first one is similar to the one proposed in [10] but since this criterion is not 

elaborate enough, we refine the selection process with two additional ones. These two new criteria signifi-

cantly improve the encoding ability of the proposed algorithm and thus lead to better results in terms of 

the required seed volumes and the resulting test-sequence lengths. 

According to the first criterion, after traversing the search space for all test cubes, the algorithm selects 

the solvable system that corresponds to the “hardest” among the test cubes of T at each step. As “hardest”, 

we consider the test cube containing the maximum number of defined bits. Such cubes are always more 

difficult to be encoded along with others in the same seed, since, due to the increased number of defined 

bits they contain, fewer variables remain free after solving a system for them. Therefore, we avoid letting 

such “hard” test cubes to be covered at the last stages of the encoding procedure, since it is difficult to en-

code, in the same seed, another “hard” test cube (many seeds would be needed in order to cover them - 

there may be cases in which only one cube would be encoded in one seed). 

Since at each step there are more than one linear systems that correspond to test cubes with the same 

maximum number of defined bits, a second criterion is needed in order to select one of them. According to 

that, among the systems selected by the first criterion, we choose the one that its solution leads to the re-

placement of the fewest variables ai in the L-vector window (search space). In that way, at each step there 

will be more variables available in the linear expressions of the symbolic vectors of the window and there-

fore more systems will be solvable in the following steps of the algorithm, making it possible to encode 

more test cubes in just one seed. Thus this second, new criterion enhances the encoding ability of each one 

of the selected seeds. 

Finally, in the case that after the application of the two above criteria there are more than one test cubes 

that can be selected, a third criterion is necessary in order to choose just one of them. According to that, 

among the systems that correspond to test cubes with the same maximum number of defined bits and re-

quire the replacement of the same minimum number of variables in order to be solved, the one which is 

nearest to the first vector of the window is selected. This third selection criterion (the second new one) 

targets the minimization of the test sequences resulting after the application of the test sequence reduction 

technique that will be presented in the following section. 

Various optimizations have been adopted for reducing the execution time of the seed-selection algo-

rithm. The "always select the hardest cube" nature of the algorithm allows the test cubes of T to be 

grouped in cube-groups. Each cube-group contains only test cubes with the same number of defined bits. 

The groups are sorted in descending order starting from the one that contains the cubes with the maximum 



number of defined bits. In the process of selecting a new seed, the algorithm considers only the test cubes 

of a group and only when no cube belonging to that group can be further encoded, proceeds to the next 

group. This reduces significantly the number of traverses of the search space and thus, the number of lin-

ear systems solved at each step of the algorithm. Also, when a test cube is considered, the positions in the 

search space that a linear system can be solved for that cube are marked, so that if the same cube has to be 

re-examined (after the selection of another cube in the same group), only these positions are checked. 

These run-time optimizations combined with the fact that the procedures for solving systems of binary 

linear equations are much faster than those for solving conventional systems of linear equations [10], lead 

to run-times in the range of some minutes to few hours in a Pentium 4, 2.6 GHz workstation, for each of 

the experiments that will be presented in Section 4. 

 

3. Test-sequence reduction scheme 

As it has been explained in the previous section, the seed-selection algorithm assumes a window of L 

successive test vectors for each selected seed. Only some of the vectors of each window are actually being 

used for reproducing the test cubes of set T. One can easily understand that, if the last vector of a window 

is not a useful one, i.e. no test cube has been selected by the algorithm in order to be covered at that posi-

tion, then all vectors from the last useful one to the last window vector are redundant (Figure 2). On the 

other hand, the useless vectors between two successive useful ones are necessary since they connect the 

two useful vectors in the test vector sequence. Therefore, they cannot be removed without reseeding the 

LFSR (so as to bridge the gap created in its state sequence by the removed vectors). Moreover, as more 

seeds are selected by the algorithm, fewer cubes are encoded in new seeds’ windows, leaving more useless 

states at the end of those windows. Due to the above-mentioned reasons we conclude that usually there 

will be a significant number of final-redundant test vectors in each window. This fact negatively affects 

the required test application time. This problem is much more important in the case of test set embedding 

since the increased number of seeds, compared to the case where the CUT is of known structure, leads to 

much longer test sequences. 

The most efficient way, in terms of test-sequence length, for eliminating those redundant final vectors 

is to stop the expansion of each vector-window after the clock cycle, in which the last useful vector was 

loaded in the scan chains of the CUT. In that way the number of redundant vectors in each window (the 

useless vectors at the end of the window) will be equal to zero. Assuming that a Vector Counter is used for 

counting the vectors of each window, this “maximum reduction” approach requires Vector Counter to be 

initialized in a different value at each reseeding and consequently, the initialization values of the counter 

should be stored along with the corresponding seeds. Therefore, excessive test data storage may be re-

quired, especially when a long Vector Counter is needed. In order to overcome this inefficiency, a differ-



ent approach has to be followed. 
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Figure 2. A window of L states 

 

Such an approach would require a component (e.g. a state machine), which could generate the required 

number of test vectors (the initial value of the Vector Counter) for every window in the test sequence. 

Since the value that would be loaded in the Vector Counter at each reseeding is generated by that state 

machine, the corresponding initialization values do not have to be stored. A counter could be a simple im-

plementation of that machine. Due to its functionality we call it Load Counter. As far as this counter is 

concerned, the only information that should be kept in a ROM is some trigger bits. Since one such bit can 

be used for triggering (or not) Load Counter only once (bit=1 => Load Counter proceeds to its next value, 

bit=0 => Load Counter maintains its previous value), the volume of stored data is proportional to the accu-

racy provided by the counter's values, i.e. how close are these values to the best possible ones (those re-

quired for achieving “maximum reduction”). If for example, at the end of seed's i window there are five 

useful vectors less than those at the end of the window of seed i-1, Load Counter should be decreased five 

times in order for the best result to be achieved. Unfortunately, in this case, the volume of data that should 

be stored may increase to such an amount that no gain would be feasible compared to the “maximum re-

duction” approach (for which the initial values of Vector Counter are stored). 

A solution to this problem would be to assign each value of Load Counter to a group of test vectors in-

stead of just one. In order to realize that, we segment each window into a number of equal-sized groups of 

test vectors (segments). The partitioning of a window into segments is shown in Figure 3. The useful vec-

tors of the window are included in the first k segments, where the kth segment contains the last useful vec-

tor. k is, most of the times, smaller than m (the total number of segments a window has been partitioned 

to) and thus the last m-k segments (those containing redundant vectors) can be dropped during test genera-

tion. Furthermore, with proper selection of the segment size (parameter Segment_Size), the distance be-

tween the last useful vector and the end of the last useful segment can be minimized. Both the above rea-

sons assure that this segmentation approach eliminates the majority of redundant vectors that a window 

includes, having as upper limit (of the eliminated redundant vectors) those dropped by the “maximum re-



duction” approach. Since Load Counter values now correspond to the segments of each window, Vector 

Counter has to be split in two separate counters, Segment Counter and Segment-Vectors Counter. The 

former counts the segments that should be generated for each window and is the one that is loaded with 

Load Counter's value, while the latter counts the test vectors of a segment (from Segment_Size-1 to 0). The 

combination of these two counters substitutes the Vector Counter of the classical reseeding approach. 
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Figure 3. The proposed window segmentation technique 

 

After partitioning each seed's window into segments, two issues remain to be resolved. The first one has 

to do with the frequency with which Load Counter will be triggered, or, in other words, with the number 

of extra bits that will be stored. There are two extreme approaches that can be followed: a) a single trigger 

per multiple reseedings or b) multiple triggers per one reseeding. Since the first approach lacks accuracy 

and the second one has increased storage requirements, we choose the solution of triggering the counter 

once for each reseeding. This solution combines the advantages of easy implementation, reduced test data 

storage requirements (one extra bit is stored per seed) and satisfactory accuracy (as earlier mentioned, the 

accuracy can be further improved by adjusting the size of the segments). 

The second issue concerns the functionality of Load Counter. If from seed i more useful segments have 

to be generated compared to seeds i-1 and i+1, then Load Counter should first increase (from seed i-1 to 

seed i) and then decrease (from seed i to seed i+1). Seed reordering helps to eliminate this problem. We 

remind that the seeds are independent of each other and can be reordered in any suitable way. Therefore, 

we rearrange the seeds, in descending order, according to the number of useful segments they include. 

However, there will be cases for which the difference in the number of useful segments between two suc-



cessive (ordered) seeds will be greater than one. In such cases, some useless segments should be main-

tained in the window with the smaller number of useful segments. The proposed seed rearrangement pro-

cedure is better explained with the example of Figure 4. 

ca

b
d

ac

b
d

e

e

a ) In itia l  W ind o w s  an d   u se fu l  segm ent  vo lu m es

7

3

8

5

7

c ) F in al w ind o w s an d  ex tra  b its

7

3
5

78

S eed  1

E x tra  B its
R edun dan t
S egm ents

S ee d  2 S eed  5S ee d  4S eed  3

1 0 1 1 0

S eed  1 S eed  2S eed  5 S eed  4S e ed  3

ac

b
d

e

7
5678

S eed  1 S eed  2S eed  5 S ee d  4S ee d  3

b ) R eo rd e rin g  
Figure 4. Rearrangement technique: a) Initial Windows, b) Windows after the reordering, c) Final win-

dows and extra bits 

 

At first, the seeds are arranged in descending order according to the number of useful segments their 

windows include (Figure 4.b). After that, if there is any difference in the number of required segments 

between two successive windows, let say Wi and Wi+1, that is larger than one, then a number of redundant 

segments should be allowed in Wi+1, so as this difference to be reduced to one (Figure 4.c windows d and 

b). On the other hand, if the above difference is smaller than or equal to one then the number of segments 

remains unchanged (Figure 4.c windows c, a and e). Finally the procedure runs over the resulting windows 

and calculates the value of the extra bit of each seed (one=next seed’s window requires one segment less, 

zero=next seed’s window requires the same number of segments). Although the existence of a single extra 

bit per seed decreases somehow the effectiveness of the segment-partitioning scheme (due to the redun-

dant-segments allowed in some windows), with proper selection of the segment size the number of al-

lowed redundant segments can be reduced. This way, test-sequence length reductions that are very close to 

those of the “maximum reduction” approach can be achieved, as will be demonstrated in Section 4.  
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Figure 5. The proposed test-sequence reduction scheme 

 

The architecture that handles the operation of the proposed scheme is shown in Figure 5. As previously 

mentioned, Load Counter is controlled by the value of the extra bit of each seed and is responsible for 

maintaining the required number of segments for each window. If this bit is equal to 1, the counter is trig-

gered and its value decreases by one (just after its previous value has been loaded in the Segment 

Counter), while if it is 0, Load Counter remains unchanged. That is, before being triggered, Load Counter 

contains the number of vector-segments that should be applied to the CUT, starting from the current seed. 

In order to actually control the generation of the test vectors of a window, three counters are needed: Bit 

Counter, Segment Counter and Segment-Vectors Counter. Bit Counter controls the scan-in operation of 

each vector's bits in the scan chains of the CUT. Segment-Vectors Counter controls the generation of the 

test vectors of a single segment, while Segment Counter is responsible for counting the required number 

of segments for each window and thus is initialized for each seed with the value of Load Counter. As pre-

viously mentioned, Segment and Segment-Vectors Counter constitute a combined counter. Segment 

Counter’s value is decreased by one every time Segment-Vectors Counter signals that Segment_Size pat-

terns have been applied to the CUT. That is, for every state of Segment Counter a full count down of 

Segment-Vectors Counter is carried out. When Segment Counter becomes equal to zero, the vectors of the 

current window have been generated and the expansion of the current seed stops (Bit Counter is disabled). 

In order to generate the next window the following steps have to be carried out: the next stored seed is 

loaded in the LFSR, Segment Counter is loaded with current Load Counter’s value, Load Counter is trig-

gered (or not) according to the value of the seed’s extra bit and Bit Counter is enabled again (due to the 

initialization of Segment Counter to a value different from 0). The above-described process is repeated 

until all the seeds have been expanded to their corresponding vector-segments. We stress that Segment 

Counter does not count down from (#Segments-1) to 0 for each seed but from #Segments, since its zero 

value triggers the loading of the next seed. 



A final comment that should be made about the proposed scheme is that, since Segment and Segment-

Vectors Counters are combined to generate the vectors of a seed’s window, their combined size cannot be 

much greater than the size of the Vector Counter of the classical reseeding approach. In fact it can be 

proven that their combined length can be at most one bit larger than that of Vector Counter. Consequently, 

extra hardware overhead in the Control Logic of the proposed scheme is imposed only by the addition of 

Load Counter, which, as will be seen in the evaluation section, is very small (its length is equal to that of 

Segment Counter). 

 

4. Evaluation and comparisons 

In order to evaluate the effectiveness of the proposed scheme, we implemented the seed-selection and 

segmentation-rearrangement algorithms in C programming language and we conducted a series of ex-

periments on the larger ISCAS’89 benchmark circuits with many hard-to-detect faults, assuming 32 and 

64 scan chains. The required test sets were obtained by using the Atalanta ATPG tool [12]. The character-

istic polynomials of the LFSRs were selected to be primitive and the Phase Shifters were calculated ac-

cording to the work of [13], using 2 XOR gates for every output of the shifter. 

The choice of the window size L of the seed-selection algorithm significantly affects both the number 

of final selected seeds and the length of the resulting test sequences (before the application of segmenta-

tion-rearrangement technique). By increasing the size of the window, the number of required seeds ini-

tially reduces due to the existence of more test vectors in each window. However, as the value of L in-

creases, after a point we get diminishing returns (Saturation Point in Figure 6). The primary target of the 

selection process of the window size L was the reduction of the required seeds. For that reason, the win-

dow size L was chosen to be at the right of the saturation point (Figure 6).   

 

 
Figure 6. Number of seeds versus windows size L for s9234. 

 



In Table 1 we present the results of the proposed technique for 32 and 64 scan chains, having deter-

mined the window size L as explained above. Columns 6 to 8 give the results after the application of the 

seed-selection algorithm with the last one (the column labelled “Test-seq. length (unreduced)”) referring 

to the test-vector sequences for which full size windows are used for each seed (i.e., before the application 

of the segmentation-rearrangement technique). Moreover, in columns 9 to 13 we present the results of the 

segmentation-rearrangement technique. In contrast to the window size parameter L, the value of Seg-

ment_Size parameter can be easily determined by using a very quick, brute-force procedure. This proce-

dure tests all possible values for the Segment_Size and chooses the best of them, with respect to the final 

test-sequence length. That is, it chooses the Segment_Size that achieves the best balance between the num-

ber of allowed redundant segments in the seeds' windows and the number of redundant vectors included in 

the useful segments. The running time of this procedure is very low. In fact, it was lower than two seconds 

for each of the experiments of Table 1, in a Pentium 4, 2.6 GHz workstation. The final test sequence 

length after the application of the segmentation-rearrangement procedure is shown in column 11, while the 

reduction achieved compared to the unreduced test sequences of column 8 is given in column 12. As can 

be seen, the gain is up to 42,9% while the average test-sequence-length reduction reaches 30.05% and 

29.91% for 32 and 64 scan chains, respectively. For the case of the s38584, assuming either 32 or 64 scan 

chains, this gain is small due to the fact that the seed-selection algorithm achieves high levels of compres-

sion, by encoding many test cubes in each window, and therefore less redundant test vectors remain at the 

end of the windows. As a result, the segmentation-rearrangement technique achieves small reductions for 

this circuit. 

For assessing the effectiveness of the segmentation-rearrangement technique, in the rightmost column 

of Table 1 we provide the percentage of the managed test-sequence-length reductions over those that can 

be achieved by the "maximum reduction" approach (Section 3). That is, if the application of the segmenta-

tion-rearrangement technique leads to a test-sequence-length reduction of X vectors, while the "maximum 

reduction" technique achieves a Y-vector reduction, then this percentage is equal to (X/Y)⋅100. As can be 

seen the proposed test-sequence-reduction technique manages to drop most of the windows' redundant 

vectors (94.12% and 94.62% on average for 32 and 64 scan chains respectively). This is valid even for the 

small-gain case of s38584, where a significant percentage of the (few) redundant vectors is eliminated 

from the final test sequence (83.14% for 32 scan chains and 85.79% for the case of 64 scan chain).  

In Table 2 we compare the proposed technique against the Reconfigurable Interconnection Network 

(RIN) approach of [9], which has been shown to be the most successful test set embedding technique in 

the literature, in terms of the required test-data storage. Since, according to this approach no reseedings are 

performed, two strategies are proposed for declustering the care bits of the test cubes: scan cell reorganiza-

tion and the insertion of an extra level of multiplexers between the outputs of RIN and the inputs of scan 



chains of the CUT (Interleaving Multiplexers). Due to the fact that scan cell reorganization is not a prefer-

able approach, in the comparisons we considered only the strategy of the extra interleaving level. 

According to [9], the number of tristate gates in each multiplexer of the RIN is equal either to the number 

of configurations or to the number of LFSR cells, whichever is smaller. By doing so, the authors ensure 

the usage of the minimum overall number of tristate gates. Although this is true, in the case that the num-

ber of configurations is bigger than the size of the LFSR, some extra gates will be needed in every MUX 

of the RIN, in order to actually connect each configuration control line Di with a tristate gate that is used 

in more than one configurations. That is, for every tristate gate of the RIN, which is used more than once, 

an extra gate (having as inputs the respective configurations’ control lines) is needed in order to control 

this tristate gate. If we assume that each of these extra gates require at least 4 transistors, then the hard-

ware overhead of the RIN will be equal to or even greater than the case in which a single tristate gate (4 

transistors) is used for every configuration in each MUX of the RIN. Consequently, the easiest and fairest 

way to compare the two techniques is to assume that the number of tristate buffers in each MUX is equal 

to the number of configurations’ control lines (Di), as shown in Figure 2.b of [9]. 

 

Table 1. The results of the proposed technique. 

 
 

Taking into consideration all the above, we have calculated the hardware overhead of [9] as the overall 

number of transistors that this approach requires. In other words, the overhead presented in Table 2 is 

equal to the sum of the transistors required for the implementation of the tristate-buffer-based MUXes of 

the RIN and the interleaving level, as well as the ROM for storing some necessary control bits. We have 

assumed that for the implementation of each tristate buffer 4 transistors are needed as mentioned in [9], 

while the area that each ROM bit occupies was considered to be equal to that of 1 transistor [14]. More-

over, for every configuration control line (Di) we have calculated the overhead of an inverter required for 

generating the signal 
iD , which, combined with the Di, controls the inputs enable and enable of the as-

sumed tristate buffers, respectively. The hardware overhead of the proposed approach was calculated as 
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s15850 611 39 2391 300 157 47100 5 6 30095 36.10 97.79 
s38417 1664 85 6322 300 548 164400 2 8 97736 40.55 99.56 

32 scan 
chains 

 
s38584 1464 56 8317 500 84 36775 25 5 36775 12.44 83.14 
s13207 700 24 2217 370 126 46620 11 6 34573 25.84 94.33 
s15850 611 39 2391 200 162 32400 3 7 20004 38.26 98.55 
s38417 1664 85 6322 300 555 166500 1 9 95078 42.90 99.80 

64 scan 
chains 

s38584 1464 56 8317 500 86 43000 18 5 37566 12.64 85.79 



the sum of the transistors required for the implementation of the phase shifter plus the transistors that cor-

respond to the ROM bits that should be stored (as above, 1 transistor per bit was assumed). The hardware 

overhead of the phase shifters is equal to 16·Number of scan chains, since 2 standard transmission-gate-

based XORs were used for the realization of each of their XOR trees. Such a XOR gate requires 8 transis-

tors for its implementation. We note that in our ROM-bit results we have also calculated the extra bit that 

is stored along with each seed. We should stress that, for the calculation of the hardware overhead of the 

approach of [9] we did not take into account neither the excessive wiring of the RIN and the interleaving 

level, nor the decoder needed for driving the RIN. As for the rest of the control logic of the two compared 

schemes, it is very small and imposes similar area overhead and, for that reason, it has not been considered 

in the comparisons. 

Two kinds of comparison are presented in Table 2. In columns 3 to 5 we compare the two techniques 

with respect to the imposed hardware overhead, while in the next 3 columns we compare them as far as 

the length of the resulting test sequences is concerned. As can be seen from this table, the proposed ap-

proach requires substantially smaller test sequences than those of [9]. Specifically, our technique is better 

in terms of test-sequence length in all cases, requiring on average 80.96% and 78.62% fewer test vectors, 

for the 32 and 64 scan chains respectively. As for the hardware overhead comparisons, the RIN approach 

requires significantly fewer ROM bits but this is done at the expense of the insertion of two levels of 

MUXes between the LFSR and the scan chains of the CUT. Consequently, these MUXes, the size of 

which is proportional to the number of the scan chains, require for their implementation significantly more 

transistors compared to those needed by both the phase shifter and the stored data bits of our approach. 

Therefore, as far as the hardware overhead comparisons are concerned, even with much smaller test se-

quences, the proposed technique is, in all but one case, more efficient than that of RIN approach. Only for 

s38417 in the case of 32 scan chains, the proposed approach imposes more hardware overhead. However, 

in this case the test sequence length saving is equal to 84.37%. On average, compared to the technique of 

[9] the proposed one requires 13.49% and 53.67% less hardware overhead for 32 and 64 scan chains re-

spectively. 

 

Table 2. Hardware overhead and test-sequence length comparisons. 

  Hardware overhead Test sequence length 
Scan 

Chains 
Circuit 

[9] 
(#trans.) 

Proposed 
(#trans.) 

Reduct. 
(%) 

[9] (#vec.) 
Proposed 

(#vec.) 
Reduct. 

(%) 
s9234 9424 7082 24.85 135765 46312 65.89 
s13207 5428 3737 31.15 152596 34040 77.69 
s15850 7352 6792 7.62 222336 30095 86.46 
s38417 44896 47640 -6.11 625273 97736 84.37 

32 scan 
chains 

s38584 5884 5300 9.93 383009 36775 90.40 
64 scan s13207 19409 4174 78.49 75047 34573 53.93 



s15850 19420 7504 61.36 179580 20004 88.86 
s38417 52524 48754 7.18 616835 95078 84.59 

chains 

s38584 18323 5926 67.66 291425 37566 87.11 
 

5. Conclusion 
An efficient LFSR-based test set embedding approach with reseeding has been proposed in this paper. It 

features an effective seed-selection algorithm that minimizes the test data storage requirements, as well as 

a technique for reducing the resulting test sequences. The latter achieves significant test sequence length 

savings (30% on average), while the overhead imposed is confined to one extra bit per stored LFSR seed 

plus one very small counter in the scheme's control logic. The proposed approach compares favorably 

against the most recent and efficient test set embedding technique in the literature. 
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