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ABSTRACT

This paper describes efficient data structures, namely
the Indexed P-tree, Block P-tree, and Indexed-Block P-
tree (or IP-tree, BP-tree, and IBP-tree, respectively,
for short), for maintaining future events in a general
purpose discrete event simulation system, and studies
the performance of their event set algorithms under the
event horizon principle. For comparison reasons, some
well-known event set algorithms were also selected and
studied; that is, the Dynamic-heap and the P-tree al-
gorithms. To gain insight into the performance of the
proposed event set algorithms and allow comparisons
with the other selected algorithms, they are tested un-
der a wide variety of conditions in an experimental way.
The time needed for the execution of the Hold opera-
tion is taken as the measure for estimating the average
time complexity of the algorithms. The experimental
results show that the BP-tree algorithm and the IBP-
tree algorithm behave very well with all the sizes of the
event set and their performance is almost independent
from the stochastic distributions.

1 INTRODUCTION

In a discrete event simulation system an event (or future
event) is a collection of actions that are scheduled to be
executed in a specific simulation time called event time.
In such a system events are kept in objects known as
event notices and maintained in a data structure known
as event set. An event notice is represented by a record
with two fields, ¢t and a, where t is the scheduled time for
its occurrence, and a is the activity which is scheduled
in time ¢ (Fishman 1973, Mitrani 1982).

In a discrete-event simulation system based on the
next-event time-advance approach, the next-event time-
advance mechanism is responsible for the simulation
clock; it initializes the simulation clock, and then it
determines the event times of future events. The sim-
ulation clock is then advanced to the event time of the
earliest event known as next event (i.e., the event with
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the minimum event time) and the system state is up-
dated to account for the occurrence of this event. When
the next event occurs, it is removed from the event set
and the simulation clock is advanced to the time of the
next event. The processing of this event may lead to
the generation and scheduling of additional (new) fu-
ture events. A new event is scheduled when its event
time ¢ becomes known. Then, an event notice is creat-
ed and inserted into the event set in such a way that
it is ensured that this event will occur at the scheduled
time ¢. This type of simulation approach is referred to
as discrete event-driven simulation.

The responsibility for the execution of these opera-
tions in a discrete event-driven simulation is due to an
algorithm which is known as an event set algorithm (or
event scheduling algorithm); that is, it

e scans the event set to determine the proper inser-
tion position for the new event,

e removes the next-event from the event set, and

e advances the simulation clock to the time of the
next-event.

It is obvious that being able to repeatedly select the
event notice from the event set that has the minimum
event time is essential. If all of the event notices in this
event set are known in advance, and their event times
remain unchanged, then the problem of determining the
next event and updating the simulation clock is easily
solved by sorting the event notices and retrieving them
in order. In the simulation process discussed above,
however, it is often necessary to insert new event no-
tices into the event set as other events are being pro-
cessed. This leads to the following set of priority queue
operations:

e insert a new event notice into the event set (in a
proper position according to its event time),

e find the event notice with the minimum event time,
and
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e remove the event notice with the minimum event
time from the event set.

The above priority queue operations are the most fre-
quent operations required by a discrete event simulation
system and they are involved in any event scheduling
algorithm. Thus, it is clear that the main factor that
affects the efficiency of an event scheduling algorithm
is the structure of the event set.

The most important requirements of an event
scheduling algorithm are speed of operation and storage
economy. Many researchers have extensively studied
this field and presented both analytical and empirical
results concerning the time and space performance of
many event scheduling algorithms. They use different
data structures for the simulation of the event sets; that
is, linear lists, special kinds of trees, time-indexed lists,
two-level structures and many other. Moreover, they
use different techniques for the operations performed
by the scheduling algorithms; see, (Brown 1988, Franta
and Maly 1975, Franta and Maly 1977, Jonassen and
Dahl 1975, Kaplan, Shafrir, and Tarjan 2002, McCor-
mack and Sargent 1981, Reeves 1984, Tan and Thng
2000) for an exposition of the main results.

The data structures used for the simulation of the
event set can generally be classified under three types;
that is, lists, tree structures and multi-lists. Lists are
structures that are based on the simple linear list. They
include doubly linked lists, indexed lists (Nikolopoulos
and MacLeod 1993), SPEEDES Queue which is based
on the event horizon technique (Steinman 1992, Stein-
man 1994, Steinman 1996) and many other. Trees are
structures that are based on the simple binary tree, and
include binary heaps (Andreou and Nikolopoulos 1998,
Franta and Maly 1975, Franta and Maly 1977, Hwang
and Steyaert, to appear), skip lists (Nikolopoulos and
MacLeod 1993), priority trees (Jonassen and Dahl 1975,
Lewis and Denenberg 1991, Nikolopoulos and MacLeod
1993) which are studied here as well. Finally, multi-
lists are structures that are the result of a combination
of several types of lists. This is done in order to combine
the merits of two structures that may not perform as
well when implemented separately. Such structures are
the calendar queue and the SNOOPY calendar queue
(Tan and Thng 2000).

This paper describes efficient data structures, name-
ly the Indexed P-tree, Block P-tree, and Indezxed-Block
P-tree (or IP-tree, BP-tree, and IBP-tree, respectively,
for short), for the simulation event set. All the struc-
tures, combine the advantages of both the P-tree and
the static representation of the list. The combination
of the P-tree and the list provides efficient date struc-
tures for the simulation event set in the case where the
event horizon technique is applied. The main feature of
each of our event set algorithm is the efficiency of the

merging process in the event horizon technique; that is,
the process of sorting the event notices of the secondary
queue and inserting them back into the event set. We
point out that, in the horizon technique the most time
consuming operation performed by the event set algo-
rithm is the merging process of the secondary queue
back into the main event set.

To gain insight into the performance of the IP-tree,
the BP-tree and the IBP-tree, and allow comparisons
with other selected algorithms (i.e., Dynamic-heap and
P-tree), they are coded and tested under a wide variety
of conditions in an experimental way. The objective was
to estimate the average complexity of each algorithm.
For this purpose, we used a revised definition of com-
plexity. That is, for a given configuration of event set
and a given distribution providing the scheduled time,
we estimate the time expected to be needed for the ex-
ecution of the Hold procedure (or Hold model).

Two main parameters affect the execution time of
the above operations. They are (i) the schedule time
T, and (ii) the size N of the event set. The parameter
T, which is given by a stochastic distribution, deter-
mines how long an event will remain in the event set.
Six stochastic distributions are especially chosen which
are not only representative of typical simulation prob-
lems but also capable of showing the advantages and
limitations of each algorithm. The parameter N de-
fines the notion of the small and large event sets. Tests
were performed with values of N from 64 (small event
set) to 262144 (large event set). This range is represen-
tative of actual simulations and the behaviour of the
algorithms for N > 262144 can be extrapolated from
the results.

The results of this work show that the IP-tree al-
gorithm combines time performance, storage economy
and simplicity of coding. The BP-tree and the IBP-
tree algorithms outperform the IP-tree algorithm, and
the BP-tree algorithm has a slightly better performance
than the IBP-tree algorithm.

The paper is organized as follows. Section 2 presents
the main features of the Hold model and the event hori-
zon technique. Section 3 describes the P-tree structure
which is the structure that our approach is based on.
The IP-tree, the BP-tree and the IBP-tree structures
are described in Sections 4, 5 and 6, respectively. An
experimental evaluation of the algorithms is presented
in Section 7, where we also compare the performance of
the algorithms. Finally, Section 8 concludes the paper
with a summary of our results.

2 HOLD AND EVENT HORIZON

As already mentioned, the two basic operations per-
formed on the event set by an event set algorithm are
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(i) insertion of a new event notice into event set, and
(ii) determination and deletion of the notice of the next
event. A standard metric for comparison of the perfor-
mance of an event set algorithm is the time required for
a Hold operation, which combines both insertion and
deletion operations (Andreou and Nikolopoulos 1998,
Franta and Maly 1975, Law and Kelton 2000, Mitrani
1982). Under the Hold model, event notices are repeat-
edly deleted and then re-inserted with a randomly re-
duced priority; this sequence of operations is known as
a Hold operation. The hold operation works as follows:

(1) determine and remove the event notice with the
minimum event time T,,;, from the event set; that
is, the current notice,

(2) increase the event time value of the current notice
by T', where T is a random variate distributed ac-
cording to some distribution F(¢), and

(3) re-insert the new notice back into the event set;it
now has T},cp = Tonin + 1 event time.

The Hold model has two parameters: N, the number of
notices in the event set, and F', the distribution used to
determine the time an inserted event will occur. Thus,
the model allows the average combined time for inser-
tion and deletion to be measured as a function of the
size of the event set and the stochastic distribution.

The event horizon is a fundamental concept that ap-
plies to both parallel and sequential discrete event sim-
ulations (Rao and Kumar 1988, Steinman 1992, Stein-
man 1994, Steinman 1996). Using event horizon one
can improve the performance of several event sets; that
is, priority queue data structures such as linked lists
and various binary trees.

In order to exploit the event horizon for event set
management algorithms, it is assumed that as new
events are generated they are not inserted into the main
priority queue data structure immediately; they are col-
lected in an unsorted temporary (secondary) queue in
such a way that one can always track the event with
the earliest event time. As a result, when the event to
be processed happens to be in the secondary queue, the
queue is sorted and then it is “merged” back into the
main priority queue.

The secondary queue is most frequently a linked list,
providing the advantage of inserting a new event in con-
stant time since the list is kept unsorted; it is sorted
just before the merging process. Merging the two da-
ta structures, however, is not always a simple process.
The main priority queue (event set) itself may be a very
complicated data structure.

3 P-TREE

A Priority-tree (or P-tree) is either empty or it is a sort-
ed, non-increasing sequence of nodes, the “left path”,
such that to each node of the left path except the last
one, is associated a P-tree (possibly empty), the “right
subtree”. The nodes of the right subtree associated
with a node x on the left path, are ranked between x
and the left successor of = (Jonassen and Dahl 1975,
Lewis and Denenberg 1991, Nikolopoulos and MacLeod
1993).

Neglecting node values, a binary tree is a P-tree if
and only if each node having a right successor also has
a left successor. The terminal node on the leftmost path
is the element with the smallest key value. In order to
insert a new element = into a P-tree T the algorithm
P-insert below is applied recursively.

P-insert x into T":

1. fT =0 or x.v > T.v, let x be the new root and T'
its left subtree;

2. Otherwise search down the left path of T" for the
first node y, if any, such that y.v < z.v;

2.1 If none, append x as the new left leaf;

2.2 Otherwise y.v < z.v < z.v, where z is the
predecessor of y (y = z.¢). P-insert x into the
right subtree of z;

where z, y and z denote nodes, u./ and u.v denote the
left subtree and the node value of u, respectively.

The detection of the event notice with the earliest
time value can be performed in constant time provided
that there is an additional pointer to the terminal notice
on the left path. After the removal of this notice, the
last right subtree, if it is not empty, is appended to the
left path.

4 THE INDEXED P-TREE

An Indezed P-tree (or IP-tree) consists of a tree struc-
ture, the P-tree, and a static representation of a list
structure, the I-list. The elements of the I-list point
into specific event notices in the P-tree; see Figure 1.
Using the event horizon technique, when the event hori-
zon is crossed (i.e., when the event to be processed hap-
pens to be in the secondary queue), the secondary pri-
ority queue is sorted and then it is merged back into
the main priority queue (P-tree).

We next describe the main operations performed in
a discrete event simulation system using the IP-tree for
the simulation of the event set.



K. Asdre and S.D. Nikolopoulos

I-list

Root pointer
—

—>

——>

[elele]

Current

.
L1 Current pointer

Figure 1: An [P-tree structure; it consists of a list of
pointers, called I-list, and a P-tree.

(i) Insert operation: According to the event horizon
technique, a new event notice is inserted in the sec-
ondary queue, which is a linked list structure. As
the secondary queue is kept unsorted, the insertion
of a new event notice can be completed in constant
time.

(ii) Delete operation: The deletion of the curren-
t event notice from the IP-tree structure can be
implemented in constant time as it only involves
deleting the current event notice from a P-tree
structure.

(iii) Merge operation: Suppose that the event no-
tices of the secondary queue have to be inserted
into a standard P-tree structure. To this end, for
each event notice the P-tree event set algorithm s-
cans the whole P-tree, starting each time from the
root of the tree, in order to determine its proper
insertion position. The IP-tree event set algorithm
takes advantage of the fact that the event notices
in the secondary list are sorted in decreasing order
and the I-list determines some specific subtrees of
the P-tree; recall that every subtree of a P-tree
is a P-tree itself. Thus, for each event notice the
IP-tree algorithm scans the I-list and determines
the proper insertion subtree. Then, it proceeds as
the P-tree algorithm and completes the insertion
operation. Thus, in order to insert the event no-
tices of the secondary list into the IP-tree there is
no need to scan the whole P-tree for each notice,
meaning that the P-insert operation, as it was de-
scribed before, is not necessary to start from the
root of the P-tree.

In the merging process, some of the subtrees that are

not scanned during an insertion operation will not be
scanned by the next insertion operation either, as the
time-value of the event notice of the second operation
is less or equal than the time-value of the event no-
tice of the first operation. Taking advantage of this
knowledge, the I-list is constructed in order to make
the merging operation more efficient. In particular, if
an event notice, say b, is the next event to be inserted
into the P-tree and the event notice which was last in-
serted, say a, had a greater event time, we do not need
to check a notice, say ¢, that a was compared with and
was found to be less than ¢. Thus, we need to keep
pointers to the event notices of the P-tree that a was
compared with and then moved to a right subtree; see
Figure 1. We shall call these specific notices I-notices.
In the IP-tree structure the pointers which point into
the I-notices are simply the elements of the I-list. Note
that the first I-notice is the root of the P-tree and the
last one is the current event notice; that is, the leaf
node on the leftmost path of the P-tree.

An example of an IP-tree structure is presented in
Figure 1. Let a be the last event notice which has been
inserted into the P-tree and let 14 be its event time.
The pointers of the I-list were pointed at notices with
event times 18 and 17. Let b be the next event notice
which has to be inserted into the P-tree and let 13 be its
event time. Then, the time of the notice b is compared
only with the times of the left children of the I-notices.
Thus, a search is performed on the I-list and the I-
notice that its left child has the greatest event time
which is less than the time of b is determined; let ¢
be such an I-notice. Then, the IP-tree algorithm P-
inserts the notice b into the P-tree rooted at c. Recall
that every subtree of a P-tree is also a P-tree.

5 THE BLOCK P-TREE

The Block P-tree (or BP-tree) structure is a P-tree that
consists of nodes containing an array of an initially fixed
number of elements, say S, which we call supernodes.
The elements of every supernode are kept sorted in in-
creasing order and the P-tree property is applied on
the event with the earliest event time of each supern-
ode. In other words, the position of a supernode in the
BP-tree is determined by the earliest event time that it
contains.

Inserting a new event notice is a very simple process.
As the BP-tree algorithm takes advantage of the event
horizon technique, the new event notice can be inserted
in constant time in the secondary priority queue which
is a static representation of the list structure.

The deletion of the event notice with the earliest
event time is quite simple as well. The current su-
pernode, that is the supernode containing the event
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Figure 2: An IBP-tree structure; it consists of an I-list,
and a BP-tree with S = 3.

notice with the earliest event time, is easily tracked s-
ince there always exists a pointer pointing to it, and
also since the current event notice can be located in
constant time. After deleting the current event notice,
the BP-tree may need to be updated. Thus, if the new
minimum element that the current supernode contains
is the minimum of all notices of the BP-tree, the dele-
tion operation is completed. Otherwise, the supernode
does not contain the current event notice and thus it is
reinserted in the BP-tree according to the value of the
minimum element that it contains. After the comple-
tion of this process, the new current supernode contains
the current event notice.

Using the event horizon technique, when the event
horizon is crossed, the secondary priority queue, which
is a static representation of the list structure, is sorted
in increasing order. Then, the secondary queue forms
a single supernode which is then reinserted back into
the main priority queue (BP-tree). The advantage of
this implementation is that only one supernode has to
be inserted into the BP-tree. Note that, the number of
the elements of each supernode can exceed the value of
S, as the secondary queue can consist of more than S
elements when the event horizon is crossed.

6 THE INDEXED BLOCK P-TREE

The Indexed-block P-tree (or IBP-tree) structure is
based on the IP-tree and the BP-tree structures; it con-
sists of an I-list and a BP-tree. Recall that the I-list
is a static representation of the list structure and its el-
ements point into specific event notices of the BP-tree;
see Figure 2.

The insertion operation is a very simple process, since

the IBP-tree algorithm takes advantage of the even-
t horizon technique; that is, the new event notice can
be inserted in constant time in the secondary priority
queue which is a static representation of the list struc-
ture.

The deletion of the event notice with the earliest
event time is quite simple as well and similar to the
deletion operation of the BP-tree algorithm. The cur-
rent supernode is tracked in constant time as there is
a pointer variable pointing to it. Since the elements
of the supernodes are sorted, the current event notice
can be located in constant time. After extracting it,
the BP-tree may need to be updated. This operation
is similar to that performed by the BP-tree algorithm.
Note that, despite the fact that the deletion operation
may result to supernodes having less than S elements, it
is essential that the supernodes cannot consist of more
than S elements.

Using the event horizon technique, when the event
horizon is crossed, the secondary priority queue, which
is a static representation of a list structure, is sorted
in increasing order and then it is merged back into the
main priority queue (BP-tree).

Let us describe the merging process of the BP-tree
structure and the secondary queue in the event horizon
technique. The event notices of the secondary queue,
after being sorted, form arrays (supernodes) that con-
tain S elements. Thus, if the secondary queue contain-
s M elements, M/S supernodes have to be reinserted
at the BP-tree; each supernode contains S event no-
tices, except probably from the last one. Recall that
the proper insertion position of each supernode is de-
termined according to the value of the earliest event
time that it contains, say t,.;,. In order to complete
the merging process, we take advantage of the IP-tree
algorithm and the I-list. Thus, for each supernode, the
IBP-tree algorithm scans the /-list and determines the
proper insertion subtree. Then the algorithm proceed-
s as the P-tree algorithm and completes the insertion
operation. Note that the supernodes are inserted in the
BP-tree in decreasing order according to the value of
the earliest event time that each supernode contains.

An example of a IBP-tree structure is presented in
Figure 2. After deleting the current event notice, which
in our example has value equal to 0, the BP-tree is not
updated since the last supernode of the leftmost path
of the tree still contains the current event notice, which
has now value equal to 1.

7 AN EXPERIMENTAL EVALUATION OF
THE ALGORITHMS

The main motivation for the empirical studies per-
formed so far comes from the fact that most of the
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Table 1: The Six Distributions

(A) Unimodal
EXP: Negative exponential (mean 1).
U02:  Uniform distribution over the interval [0, 2].
U09:  Uniform distribution over [0.9, 1.1].
(B) Bimodal
BIM: 0.9 probability - uniform over [0, 5],
0.1 probability - uniform over the interval
[100S, 101S], where S is chosen to give
the mixed distribution an average of unity.

(C) Discrete

D1: T is constant with value of unity.
D012: T is assigned the values 0, 1 or 2 with equal
probabilities.

theoretical performance bounds associated with the d-
ifferent event set algorithms hide significant constant
factors. In addition, these results are usually expressed
using different concepts such as expected case, worst
case and amortized case bounds. Given the number of
alternatives for implementing the event set and the need
for solutions that are efficient in practice, the empirical
studies have then arisen as an effective tool to evaluate
the performance of an event set algorithm.

7.1 Test Conditions

Most of the research performed to date uses the Hold
procedure to estimate the average time complexity of an
event set algorithm. The time needed for the execution
of the Hold operations is the measure for estimating the
average time complexity. Obviously, the data structure
chosen to simulate the event set as well as the size of
the event set affect the processor time required for the
Hold operations (insertion and deletion). Tests were
performed for N = 2%, k = 6, 7, ..., 18, where N is
the size of the event set; that is, the number of event
notices in the event set.

A crucial step in designing the tests lies in the selec-
tion of the stochastic distribution which provides the
event time T'; that is, the parameter for the Hold proce-
dure that determines how long an event notice remains
in the event set. Six distributions have been chosen be-
cause they differ in their characteristics and reveal the
advantages and the disadvantages of an algorithm; see
Table 1. Each test includes the following operations:

(1) generate N event notices with each one having
event time that is generated by the distribution
F' and insert them into the event set.

(2) without counting time, execute 1.6 x 10° times the
Hold procedure with the distribution F'.

Table 2: Dynamic-heap Algorithm: Test Results

N U02 U91 EXP BIM D1 D012

64 5.11  5.13 542 6.68 510 513

256 5.85 5.90 6.20 7.42 583 5.87
1024 6.60 6.58 6.88 814 6.51  6.57
4096 741 7.42 7.71 8.95 7.29 T7.37
16384 8.36 8.35 8.76 9.95 8.03 811
65536 9.35 9.33 9.62 10.93 883 8.94
262144 | 10.53 10.54 10.89 12.12 9.54 9.74

Table 3: P-tree Algorithm: Test Results

N U02 U91 EXP BIM D1 Do012

64 3.27  2.67 3.78 7.87 2.33 3.58

256 4.02  2.99 4.48 16.15 2.33 6.80
1024 5.33  3.50 5.42 3142 2.33 17.77
4096 7.82 442 6.41 58.61 235 73.14
16384 | 12.66 6.10 7.83 102.90 2.36 308.95
65536 | 22.00 9.26 9.52 141.88 2.39 1253.46
262144 | 54.41 20.78 13.69 280.26 2.42 4995.45

(3) execute 1.6 x 10° Hold operations and count the to-
tal processor time (CPU time) needed to complete
them.

Operation (1) initializes the system while operation (2)
allows it to reach a steady state. Operation (3) yields
a measure of the complexity of the tested algorithm-
s. The algorithms were coded in C programming lan-
guage and the experimental results were taken from
Sun-Blade-1000, 2 x 750 MHz Ultrasparc-III processors
(8MB cache), 512MB RAM.

The IP-tree, the BP-tree and the BIP-tree algo-
rithms were coded and run to collect evidence of their
performance under realistic conditions. For compari-
son reasons, well-known event set algorithms were also
coded and run under the same conditions; that is, the
Dynamic-heap and the P-tree algorithms. To gain in-
sight into the performance of the proposed algorithms
and allow comparisons with the other event set algo-
rithms, they were tested under a wide variety of condi-
tions in an experimental way. The experimental results
for each algorithm (that is the time in seconds needed
to complete each algorithm) are represented in the form
of tables and graphs; see, Tables 2—6 and Figures 3-8.

7.2 Dynamic-heap and P-tree: Hold model

As expected, the Dynamic-heap algorithm provides a
very good time performance. The performance results
are given in Table 2. What is observed is the expect-
ed logarithmic behavior of a heap data structure and



K. Asdre and S.D. Nikolopoulos

the fact that the time performance of the event set al-
gorithm is almost the same with all the distributions.
We note that the Static-heap algorithm has the same
performance.

One can easily observe (see Table 3), that the perfor-
mance of the P-tree is not as good as the performance
of the heap algorithm. Its CPU times increase with the
variance of the scheduling distribution. It is remark-
able that the P-tree is efficient under constant values
(D1 distribution). This performance was expected be-
cause each new event notice becomes the new root of
the P-tree, which in this case is a sorted linked list,
and thus the new event is inserted in constant time.
Its performance is extremely worst with the discrete
D012 distribution. Furthermore, the P-tree algorithm
becomes even more inefficient as the size of the even-
t set increases. The experimental results showed that
the performance of the P-tree algorithm cannot be im-
proved by applying the event horizon technique.

7.3 IP-tree, BP-tree and IBP-tree:

Horizon

Event

The experimental results of the performance of the IP-
tree algorithm are presented in Table 4. These show
the superiority of the IP-tree compared to the P-tree
algorithm and its excellent performance with all the
sizes of the event set and all the stochastic distributions.
Specifically, we observe that the CPU time for the D012
distribution is extremely decreased compared with the
results taken by the P-tree algorithm. In addition, one
can observe that the CPU times for all the distributions
are almost the same.

The experimental results of the performance of the
BP-tree algorithm are presented in Table 5. The results
show the superiority of the algorithm compared to the
heap algorithm, and also to the P-tree and IP-tree algo-
rithms. Furthermore, its performance is slightly better
than the performance of the IBP-tree, apart from the
Exponential and the discrete D012 distributions when
N > 65536. Note that the value of the parameter S
is equal to the size of the event set; that is S = .
Recall that the parameter S determines only the ini-
tial size of the supernodes because the size changes as
the secondary queue becomes a supernode every time
the event horizon is crossed. The experimental result-
s showed that the algorithm performs better when the
BP-tree has initially only one supernode which contains
N elements; that is when S = N.

Table 6 presents the experimental results of the per-
formance of the IBP-tree algorithm. Its excellent per-
formance, regardless of the size of the event set or the
stochastic distribution, show the superiority of the al-
gorithm over the IP-tree and the heap algorithms. The

Table 4: IP-tree Algorithm: Test Results

N Uo02 U91 EXP BIM D1 D012

64 4.04 3.81 439 526 3.46 3.72

256 446 4.17 488 6.37 3.66 4.01
1024 4.89 4.52 536  7.00 3.88 4.32
4096 5.43  5.02 598 7.79 413 4.72
16384 6.12 5.65 6.76 836 4.48 5.28
65536 6.86 6.21 7.50 852 4.74 572
262144 9.08 8.50 9.97 9.96 5.15 7.78

Table 5: BP-tree Algorithm: Test Results

N U02 U91 EXP BIM D1 D012

64 3.92 345 438 475 3.26 3.42

256 4.44 3.78 4.96 5.29 3.47  3.67
1024 4.98 4.13 5.58 6.15 3.66 3.92
4096 5.60 4.55 630 6.86 3.95 4.23
16384 6.30 5.08 7.09 741 424  4.66
65536 7.10  5.57 8.02 7.99 446 5.03
262144 8.52 7.69 994 934 477 6.74

Table 6: IBP-tree Algorithm: Test Results

N Uo02 U91 EXP BIM D1 D012

64 4.07  3.50 458 5.76 341 3.54

256 452 3.81 5.08 6.59 3.58 3.73
1024 5.03 4.15 5.65 739 3.76  3.96
4096 5.65 4.59 6.33 7.84 4.04 425
16384 6.35 5.11 714  8.05 4.35 4.68
65536 7.14  5.59 8.06 825 4.56 5.01
262144 8.66 7.66 9.91 945 491 6.63

IBP-tree algorithm outperforms the IP-tree algorithm
because it takes advantage of the properties of the lat-
ter and, in addition, the size of the event set can be
considered to be smaller as the event notices form su-
pernodes. Thus, if the size of the event set is equal to
N, the IP-tree algorithm produces a P-tree containing
N nodes, while the IBP-tree algorithm can produce a
BP-tree much smaller, having N/S nodes, if the val-
ue of § is sufficiently large. The experimental results
show that the IBP-tree algorithm has the best perfor-
mance when S ~ 3000. Consequently, when N < S the
IBP-tree algorithm behaves as the BP-tree algorithm.

7.4 A Comparison of the Algorithms

The experimental results show that the IP-tree algo-
rithm has an extremely better performance than the
P-tree algorithm. The latter becomes very inefficient
as the size of the event set increases, especially with
the D012 distribution. The BP-tree and IBP-tree al-
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Figure 3: Uniform(0.0,2.0) Distribution
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Figure 4: Exponential Distribution
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Figure 5: Discrete(1) Distribution

gorithms are even more efficient than the IP-tree algo-
rithm as their performance is excellent regardless of the
size of the event set or the distribution that is used.

What is also remarkable is the fact that the BP-tree
and the IBP-tree algorithms provide results which are

Uniform(0.9,1.1)
20 T
15 q
10 q
5L 4
0 64 256 1024 4096 16384 65536 262144
Figure 6: Uniform(0.9,1.1) Distribution
Bimodal
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Figure 7: Bimodal Distribution
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Figure 8: Discrete(0,1,2) Distribution

better even than the results of the well known efficient
Dynamic-heap algorithm. The latter performs, as ex-
pected, better than the P-tree algorithm regardless of
the distribution which is used. Furthermore, the BP-
tree and the IBP-tree algorithms outperform all the
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other algorithms and their superiority can easily be con-
cluded. Figures 3-8 present the performance of each
one of the algorithms under the six distributions.

We would like to comment on the logarithmic be-
haviour of the BP-tree and the IBP-tree algorithms.
One can easily observe from Figures 3-8 that the t-
wo algorithms behave like the Dynamic-heap algorithm.
Furthermore, the performance of the IP-tree algorithm
resembles the performance of the P-tree algorithm.

What should also be pointed out is that the event
horizon technique, when applied to the Dynamic-heap
algorithm or the P-tree algorithm, does not result to a
better performance. Applying the event horizon princi-
ple to the heap algorithm involves using a heap struc-
ture (static representation) as a main event set and a
list data structure (unsorted array) as a secondary event
set. When the minimum event time is found to be in
the secondary list, its elements are merged back into the
main priority queue data structure (merge operation).
The array is kept unsorted because experimental results
showed that the performance of the Static-heap is not
improved in the case where the secondary list is sorted
either in increasing or decreasing order. Furthermore, it
was observed that the event horizon technique does not
affect the performance of the Dynamic-heap algorithm;
that is, the performance of the algorithm with the event
horizon technique is almost the same as without it.

In the P-tree algorithm the secondary data struc-
ture is an unsorted linked list. When the next-event
to be processed (event notice with the minimum even-
t time) happens to be in the secondary list, the latter
is sorted in an increasing order and its elements are
placed back into the main event set. The experimental
results showed that when we apply event horizon the
CPU times taken by the P-tree algorithm are slightly
increased for all the distributions except for the D012
distribution.

8 CONCLUDING REMARKS

The P-tree structures proposed in this paper could use-
fully replace the classic P-tree structure, as well as the
heap structure, for the simulation event set in a general
purpose discrete event simulation system. The proces-
sor time obtained with the IP-tree, the BP-tree and
the IBP-tree algorithms is relatively insensitive to vari-
ations in the scheduling distributions or the number of
event notices in the event set, and points to their su-
periority over the P-tree structure, and also over the
Dynamic-heap. Our proposed structures provide time
efficiency, size flexibility and space economy.

Future work might involve how the BP-tree or IBP-
tree algorithms can be efficiently parallelized. Further-
more, it would be interesting to study the performance

of algorithms that use other tree-like data structures
under the event horizon technique and/or the I-list
technique.

In closing, we point out that the results of this work
prompts us to suggest the BP-tree and the IBP-tree as
efficient data structures for the simulation event set in
a general purpose discrete event simulation system.
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