
Faster Algorithms for the Paired Domination Problem

on Interval and Cirular-Ar Graphs

Leonidas Palios

Department of Computer Siene and Engineering, University of Ioannina

GR-45110 Ioannina, Greee

palios�s.uoi.gr

Abstrat

A vertex subset D of a graph G is a dominating set if every vertex of G is either in D or is adjaent

to a vertex in D. The paired domination problem on G asks for a minimum-ardinality dominating

set S of G suh that the subgraph indued by S ontains a perfet mathing; motivation for this

problem omes from the interest in �nding a small number of loations to plae pairs of mutually

visible guards so that the entire set of guards monitors a given area. The paired domination problem

on general graphs is known to be NP-omplete.

In this paper, we onsider the paired domination problem on interval and irular-ar graphs.

We use properties of the models of interval and irular-ar graphs in order to desribe simple and

eÆient algorithms for the problem: given an interval (ar, resp.) model of an interval (irular-ar,

resp.) graph on n verties and m edges with endpoints sorted, our algorithms detet whether there

exist isolated verties, returning one if one exists, otherwise returning a minimum paired-dominating

set of the input graph; our algorithm for interval graphs runs in O(n) time and spae whereas the

one for irular ar graphs runs in O(n + m) time using O(n) spae. Both algorithms ahieve better

time omplexities over the orresponding known algorithms.

Keywords: interval graph, irular-ar graph, paired domination, ertifying algorithm, domination.

1 Introdution

A subset D of verties of a graph G is a dominating set if every vertex of G either belongs to D or is

adjaent to a vertex in D; the minimum ardinality of a dominating set of G is alled the domination

number of G and is denoted by γ(G). The problem of omputing the domination number of a graph has

reeived and keeps reeiving onsiderable attention by many researhers (see [15℄ for a long bibliography

on domination). The problem �nds many appliations, most notably in relation to area monitoring

problems by a minimum-ardinality set of guards.

The domination problem admits many variants: domination, edge domination, weighted domination,

independent domination, onneted domination, total/open domination, loating domination, and paired

domination [15, 16, 17, 18, 26, 32℄. Among these, we will fous on paired domination: a vertex subset S

of a graph G is a paired-dominating set if it is a dominating set and the subgraph indued by the set S

has a perfet mathing; the minimum ardinality of a paired-dominating set in G is alled the paired

domination number and is denoted by γp(G). Paired domination was introdued by Haynes and Slater

[17℄; their motivation ame from the variant of the area monitoring problem in whih eah guard has

another guard as a bakup (i.e., we have pairs of guards proteting eah other). Haynes and Slater

noted that every graph with no isolated verties has a paired-dominating set (on the other hand, it easily

follows from the de�nition that a graph with isolated verties does not have a paired-dominating set).
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Additionally, they showed that the paired domination problem is NP-omplete on arbitrary graphs; thus,

it is of theoretial and pratial importane to �nd lasses of graphs for whih this problem an be solved

in polynomial time and to desribe eÆient algorithms for its solution.

Trees have been one of the �rst targets of researhers working on paired domination: Qiao et al. [28℄

presented a linear-time algorithm for omputing the paired domination number of a tree and haraterized

the trees with equal domination and paired domination number; Henning and Plummer [19℄ haraterized

the set of verties of a tree that are ontained in all, or in no minimum paired-dominating sets of the

tree. Kang et al. [21℄ onsidered \inated" graphs (for a graph G, its inated version is obtained from

G by replaing eah vertex of degree d in G by a lique on d verties), gave an upper and lower bound

for the paired domination number of the inated version of a graph, and desribed an algorithm for

omputing a minimum paired-dominating set of the inated version of a tree Tr whih runs in O(|V (Tr)|)

time. Bounds for the paired domination number have been established also for law-free ubi graphs

[12℄, for Cartesian produts of graphs [3℄, and for generalized law-free graphs [9℄; we all K1,3 a law

and K1,a a generalized law, where a ≥ 3, and thus a graph G is alled law-free (generalized law-free,

resp.) graph if G does not ontain K1,3 (K1,a, resp.) as an indued subgraph. Cheng et al. [8℄ gave an

O(nm)-time algorithm for the paired domination problem on permutation graphs, where n and m are

the numbers of verties and edges of the graph, working on the permutation de�ning the input graph;

an optimal O(n)-time algorithm for this problem was reently desribed by Lappas et al. [25℄. For the

paired domination problem on interval graphs, Cheng et al. [7℄ proposed an O(n + m)-time algorithm

assuming that an interval model for the graph with endpoints sorted is available; they also extended their

result to irular-ar graphs giving an algorithm running in O(m(m + n)) time in this ase. Chen et al.

[6℄ pointed out that the interval graph algorithm in [7℄ is inorret and gave O(n + m)-time algorithms

for the paired domination problem on blok graphs provided that an appropriate vertex ordering is given

and on interval graphs provided that an interval model with endpoints sorted is given; they also showed

that the problem is NP-omplete for bipartite, hordal, and split graphs. The same authors....

Chen et al. [5℄ desribed an O(n + m)-time algorithm for the paired domination problem on strongly

hordal graphs if the strong (elimination) vertex ordering is given; their algorithm implies an O(n + m)-

time algorithm for the paired-domination problem on interval graphs when

We too onsider the paired domination problem on the lasses of interval and irular-ar graphs.

An interval graph is the intersetion graph of a family of intervals in the real line; the lass of interval

graphs is a sublass of the very interesting lass of perfet graphs [13℄. Reognizing whether a graph on

n verties and m edges is interval an be done in O(n+m) time [2, 24, 14℄; in fat, the algorithms in [24℄

and [14℄ produe an interval model whenever the input graph is found to be interval. The irular-ar

graphs generalize the interval graphs; a irular-ar graph is the intersetion graph of a family of ars

on a irle. MConnell [27℄ gave an O(n + m)-time algorithm to reognize whether a given graph is

irular-ar. In 2006, Kaplan and Nussbaum [22℄ desribed a simpler O(n + m)-time irular-ar graph

reognition algorithm based on an earlier O(n2)-time algorithm of Eshen and Spinrad [10℄. Both the

algorithms of MConnell and of Kaplan and Nussbaum produe a orresponding ar model if the given

graph is irular-ar graph.

Both the interval and the irular-ar graphs have reeived onsiderable attention and many algorithms

have been developed for various problems on these graphs. In addition to the result of Cheng, Kang, and

Ng [7℄ on paired domination that we mentioned earlier, several variants of the domination problem have

been onsidered on interval and irular-ar graphs. Farber [11℄ presented a polynomial-time algorithm

for omputing a minimum-weight dominating set and a minimum-weight independent dominating set

on strongly hordal graphs that require O(n + m) time on interval graphs. White et al. [31℄ gave an

O(n2)-time algorithm for a minimum-ardinality onneted dominating set for strongly hordal graphs

and thus for interval graphs. Bertossi [1℄ desribed an O(n2)-time algorithm for omputing a minimum-

ardinality total dominating set on an interval graph. The same year, Keil [23℄ proposed an improved

algorithm for the same problem that run in O(n+m) time; Ramalingam and Pandu Rangan [29℄ pointed
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out an error in Keil's algorithm and orreted it. The same authors in [30℄ desribed a uni�ed approah

leading to O(n + m)-time algorithms for the minimum-weight versions of the domination, independent

domination, total domination, and onneted domination on interval graphs. In 1998, Chang [4℄ gave

O(n)-time algorithms for minimum-weight {independent, onneted} domination, and an O(n log log n)-

time algorithm for minimum-weight total domination on interval graphs assuming that an interval model

with endpoints sorted is given; he also extended the results to irular-ar graphs obtaining O(n + m)-

time algorithms for the same problems. We also note that Hsu and Tsai [20℄ presented an O(n)-time

algorithm for the minimum-ardinality dominating set (as well as the minimum independent set and the

minimum lique over) on irular-ar graphs assuming that an ar model is given.

In this paper, we study the paired domination problem on interval and irular-ar graphs, assuming

that an interval and ar representation of the graph with endpoints sorted is given. We prove properties

of the intervals and the ars in the representation whih help us desribe an optimal O(n)-time algorithm

for the paired-dominating problem on interval graphs and an O(n+m)-time algorithm for the irular-ar

graphs. Sine an interval model of an interval graph and an ar model of a irular-ar graph an be

omputed in time linear in the total number of verties and edges of the graph, our algorithms imply

O(n + m)-time algorithms for interval and irular-ar graphs when the graph is given.

2 Theoretial Framework

We onsider �nite undireted graphs with no loops or multiple edges. For a graph G, we denote its vertex

and edge set by V (G) and E(G), respetively. The subgraph of G indued by a subset S of the vertex

set V (G) is denoted by G[S]. The neighborhood N(x) of a vertex x of G is the set of all the verties of

G whih are adjaent to x; the losed neighborhood of x is de�ned as N [x] := N(x) ∪ {x}. The degree of

a vertex x in G is the number of verties adjaent to x in G; thus, degree(x) = |N(x)|.

Our algorithms assume that an interval model of an interval graph and an ar model for a irular-

ar graph is given with endpoints sorted. Furthermore, for onveniene, we assume that the intervals

and the ars have distint endpoints. Yet, even if we had a model in whih intervals or ars may have

the same endpoint, then we an easily get a model with distint endpoints as follows: �rst, to eah

vertex v of the graph, we arbitrarily assign a distint integer from 1 to n, denoted id(v), where n is the

number of verties of the graph; then, an endpoint of the interval or the ar of a vertex w at x = xi is

represented by the ordered pair (xi, id(w)) and the omparison of the endpoints is done lexiographially

on the orresponding ordered pairs. This orresponds to moving the endpoint of the interval (ar, resp.)

orresponding to the larger id a bit to the right (lokwise, resp.).

3 Paired Domination of Interval Graphs

In this setion, we present and analyze the algorithm for the paired domination problem on interval

graphs; we assume that an interval model with endpoints sorted is given.

The general idea of our algorithm is to traverse the intervals in the interval model of the input graph

from left to right

• olleting pairs of adjaent verties whose intervals extend as far to the right as possible

• without however leaving behind intervals orresponding to non-dominated verties.

This an be done in a systemati way by taking advantage of the result desribed in the following lemma:

Lemma 3.1 Let IG be an interval model of an interval graph G without isolated verties and let

vi be the non-dominated vertex of G whose interval in IG has the leftmost right endpoint,

vj be the neighbor of vi whose interval in IG has the rightmost right endpoint, and
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vk be the neighbor of vj whose interval in IG has the rightmost right endpoint.

Then there exists a minimum paired-dominating set of G whih ontains the pair {vj, vk}.

Proof: Sine the graph G has no isolated verties, the verties vj and vk exist (note that it may hold

that vk = vi). Consider a minimum paired-dominating set S of G. First, we show that S ontains a

neighbor of vi. If not, then vi ∈ S; sine the indued subgraph G[S] has a perfet mathing, vi is mathed

to one of its neighbors belonging to S, a ontradition. Thus, S ontains a neighbor of vi. If S does not

ontain vj , then we an obtain a minimum paired-dominating set S′
of the paired domination problem

on G ontaining vj by simply replaing a neighbor of vi in S by vj ; note that the de�nitions of vi and vj

imply that vj is adjaent to all the neighbors of vi and of vi's neighbors.

Next, sine S′
is a minimum paired-dominating set of G, the subgraph G[S′] of G indued by S′

has

a perfet mathing; thus vj is mathed to another vertex in S′
, say, w. If w = vk then S′

ontains both

vj and vk. If w 6= vk, then we an obtain a minimum paired-dominating set ontaining both vj and

vk by replaing w by vk; vj dominates all the verties whose intervals in IG start to the left of the left

endpoint of the interval of vj while the de�nition of vk implies that for any neighbor w of vj it holds that

N(w)−N(vj) ⊆ N(vk)−N(vj).

Let us denote by I(v) the interval orresponding to vertex v in an interval model. In order to simplify

our presentation, let us denote by r neighbor(v) the neighbor of vertex v whose interval in the interval

model has the rightmost right endpoint; thus, for a vertex v, r neighbor(v) is well de�ned as long as v is

not an isolated vertex. We note that if the intervals of the neighbors of v do not extend past the right

endpoint of the interval I(v) of v, the right endpoint of the interval of r neighbor(v) will be to the left of

the right endpoint of I(v).

Then, our method to ompute a paired-dominating set of an interval graph G with interval model IG,

as suggested by Lemma 3.1, is as follows: we initialize the dominating set of G to the empty set; next, we

�nd the vertex, say, v, whose interval in IG has the leftmost right endpoint and we add the doubleton set

{r neighbor(v), r neighbor(r neighbor(v))} in the dominating set of G; following that, we ignore all the

verties dominated by the urrent dominating set and �nd the vertex, say, v′, (among the verties that

are not yet dominated) whose interval in IG has the leftmost right endpoint and we add the doubleton

set {r neighbor(v′), r neighbor(r neighbor(v′))} in the dominating set of G; we keep repeating the last

step for as long as there are non-dominated verties.

It is interesting to note that the hoie of pairs of adjaent verties guarantees that at any time, the

interval of any non-dominated vertex v starts to the right of the intervals of all the verties in the urrent

dominating set. This implies that r neighbor(v) does not belong to the urrent dominating set, nor does

r neighbor(r neighbor(v)).

Of ourse, if there exist isolated verties in the graph G, the paired domination problem on G has

no solution [17℄. So, in its Step 1, our algorithm heks for isolated verties and omputes the values

of r neighbor(x) for all verties x ∈ V (G). If isolated verties are found, an appropriate message is

printed and the algorithm stops, whereas if no suh verties exist our algorithm applies the method

desribed in the previous paragraph. A desription of our algorithm in pseudoode is given in Algorithm

Interval Paired Domination.

Algorithm Interval Paired Domination(IG)

Input : an interval model IG of an interval graph G with interval endpoints sorted

Output : a minimum paired-dominating set of G, if it exists, or

a message that there is no solution and an isolated vertex of G

1. traverse the interval endpoints in IG (from left to right) in order to hek for isolated verties and

to ompute the value of r neighbor(v) ∀v ∈ V (G);

if there exists a vertex w that is isolated in G

then print(\No solution...");

print that w is an isolated vertex and exit;
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2. {traverse interval endpoints again (from left to right) to get a minimum paired-dominating set}

mark all verties in G with −1; {-1 denotes not yet enountered vertex}

S ← ∅; {S will store a dominating set; initially empty}

i← 0; {ounter for pairs in S; initially 0 pairs}

while there exist interval endpoints to be proessed do

p← next interval endpoint in IG;

v ← vertex orresponding to the interval with p as an endpoint;

if p is the left endpoint of I(v)

then mark v with i; {I(v) enountered (v non-dominated) after the i-th pair in S}

else {p is the right endpoint of I(v)}

if v is marked with i

then {v: non-dominated vertex whose right endpoint is leftmost}

S ← S ∪ {r neighbor(v), r neighbor(r neighbor(v))};

skip endpoints in IG up to the rightmost between the right endpoints of

I(r neighbor(v)) and I(r neighbor(r neighbor(v)));

i← i + 1; {inrement ounter for next pair in S}

end-while

3. print(\A minimum paired-dominating set of the input graph is:");

print the elements of the set S.

The orretness of Algorithm Interval Paired Domination follows from Lemma 3.1 and the dis-

ussion preeding the pseudoode. Additionally, as the set S is onstruted by olleting disjoint pairs of

adjaent verties, this guarantees that the subgraph of the input graph G indued by the resulting set S

will have a perfet mathing.

Time and Spae Complexity

Let n be the numbers of verties of the given graph G. In order to ahieve a good time omplexity, we

establish pointers from eah endpoint of eah interval I(v) to the orresponding vertex v and with eah

vertex we store the values of the endpoints of its orresponding interval; these an be set in O(n) time

by means of an initial traversal of the intervals in the interval model IG. Then, Step 2 runs in in time

linear in the number of interval endpoints, that is, in O(n) time and uses O(n) spae. Step 3 also takes

O(n) time.

Let us now see how we an implement Step 1 in O(n) time and spae as well. The omputation

of r neighbors relies in maintaining the value of rightmost v, i.e., the vertex whose interval has the

rightmost right endpoint so far. Then, r neighbor(x) is equal to the value of rightmost v when the right

endpoint of the interval I(x) of x is reahed unless it happens that the value of rightmost v is equal to x.

The latter holds if and only if none of the intervals of the neighbors of x extends past the right endpoint

of I(x); in suh a ase, the r neighbor(v) is the vertex whose interval ended last before the right endpoint

of I(x) was reahed (maintained in previous v in our algorithm) provided that x has neighbors. If x has

neighbors then previous v di�ers from x and is indeed r neighbor(x). If x has no neighbors (i.e., it is an

isolated vertex) then no interval endpoint appears between the endpoints of I(x) in the interval model,

i.e., previous v is equal to x; we take advantage of preisely this observation in order to detet isolated

verties. Below, we present the implementation of Step 1 in pseudoode:

while there exist interval endpoints to be proessed do

p← next interval endpoint in IG;

v ← vertex orresponding to the interval with p as an endpoint;

if p is the left endpoint of I(v)

then if p is the leftmost interval endpoint in IG or
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the right endpoint of I(v) is to the right of the right endpoint of I(rightmost v)

then rightmost v ← v; {the right endpoint of I(v) is urrently rightmost}

else {p is the right endpoint of I(v)}

if rightmost v = v

then {the intervals of v's neighbors do not extend past the right endpoint of I(v)}

if previous v = v

then vertex v is an isolated vertex of the input graph;

exit from the while-loop;

else r neighbor(v)← previous v; {previous v is v's r neighbor}

else r neighbor(v)← rightmost v; {set r neighbor(v)}

previous v ← v;

end-while

In summary, we have the following theorem.

Theorem 3.1 Let G be an interval graph on n verties. Then, given an interval model of G with end-

points sorted from left to right, Algorithm Interval Paired Domination omputes a paired-dominating

set of G in O(n) time and spae.

Sine an interval model orresponding to an interval graph an be omputed from the graph in time

linear in the total number of its verties and edges (e.g., [24, 14℄), we onlude that, given an interval

graph, we an ompute a minimum-ardinality paired-dominating set of the graph in O(n + m) time,

where n is the number of verties and m is the number of edges of the graph.

4 Paired Domination of Cirular-Ar Graphs

In this setion, we present and analyze the algorithm for the paired domination problem on irular-ar

graphs; we assume that we are given an ar model of the input irular-ar graph with endpoints sorted

(reall that we assume that the ars have distint endpoints).

Sine we have an optimal algorithm for the paired domination problem on interval graphs when given

an interval model, it is worth trying to redue the problem on irular-ar graphs into that on interval

graphs. This an be easily done whenever the ar model of the input irular-ar graph G has a gap, that

is, the union of angle ranges of the ars in the model do not span the full range of 360 degrees; in suh

a ase, we an obtain an interval model of G by \unrolling" the ars of the ar model of the irular-ar

graph onto a line and then use Algorithm Interval Paired Domination on it. If the ar model has no

gap, then we are able to onsider subgraphs of the given graph whose ar models have gaps and redue

again the problem to that on interval graphs.

In order to make our desription more preise, we need some additional terminology and notation,

whih are introdued in Setion 4.1; the theoretial bakground of our algorithm is given in Setion 4.2,

and the algorithm in Setion 4.3.

4.1 Cirular-ar Model Terminology and Notation

In an ar model, the ar orresponding to vertex x is denoted by A(x). Eah suh ar has a w endpoint

and a w endpoint and the ar extends in a lokwise diretion from the former to the latter and in a

ounterlokwise diretion from the latter to the former (in Figure 1(a), a and b are the w endpoint and

w endpoint, respetively, of the ar A(x)). With respet to the ar of a vertex x, the ar of a neighbor y

of x may be suh that:

(i) the ar of x overs the ar of y (see Figure 1(a));
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Figure 1: The ases of the ars of two neighbors x and y.

(ii) the ar of y overs the ar of x (see Figure 1(b)) or equivalently the ar of x is overed by the ar

of y;

(iii) the ars of x and y overlap and the ar of y extends past the w endpoint of the ar of x (see

Figure 1());

(iv) the ars of x and y overlap and the ar of y extends past the w endpoint of the ar of x (see

Figure 1(d)).

In ases (i) and (ii) above, we say that x and y form a nested pair ; in ases (iii) and (iv), they form

an overlapping pair. In partiular, in ase (iii) we say that x forms a lokwise overlapping pair with

y, whereas in ase (iv) it forms a ounterlokwise overlapping pair with y; learly, if vertex x forms

a lokwise overlapping pair with y then y forms a ounterlokwise overlapping pair with x, and vie

versa.

For a vertex x, the set of neighbors of x an be partitioned into the following 4 sets:

• Ncw(x): set of neighbors y of x suh that x forms a lokwise overlapping pair with y;

• Nccw(x): set of neighbors y of x suh that x forms a ounterlokwise overlapping pair with y;

• Ncovering(x): set of neighbors of x whose ars over the ar of x;

• Ncovered(x): set of neighbors of x whose ars are overed by the ar of x.

(Note that this partition of the neighbors of x depends on the ar model onsidered; a di�erent ar

model for the same input graph may yield di�erent neighborhood partitions.) Among the elements of

Ncw(x), Nccw(x), and Ncovering(x), whenever these sets are non-empty, we distinguish the following

speial neighbors of x:

• cwo(x): among the elements of Ncw(x) (if any), cwo(x) is the vertex whose ar extends farthest

lokwise;

• ccwo(x): among the elements of Ncw(x) (if any), ccwo(x) is the vertex whose ar extends farthest

ounterlokwise;

• cwc(x): among the elements of Ncovering(x) (if any), cwc(x) is the vertex whose ar extends farthest

lokwise;

• ccwc(x): among the elements of Ncovering(x) (if any), ccwc(x) is the vertex whose ar extends

farthest ounterlokwise.
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Figure 2: Examples of ars.

The above verties are well de�ned provided that the orresponding set of neighbors of x is non-empty

(reall that we assume that the endpoints are all distint). Moreover, we note that it may hold that

cwo(x) = ccwo(x) (see Figure 2(a)), as well as cwc(x) = ccwc(x) (see Figure 2(b)). It is lear that for

a vertex, some or all of the above neighbors need not exist. However, under ertain onditions some of

these neighbors exist as we show in the following observation.

Observation 4.1 Let G be a irular-ar graph with ar model AG. Then:

(i) For eah vertex x whose ar A(x) is overed by another ar in AG, both neighbors cwc(x) and

ccwc(x) exist and their ars are not overed by any ar in AG.

(ii) If the ar model AG does not have a gap, then for eah vertex x whose ar A(x) is not overed by any

ar in AG, both neighbors cwo(x) and ccwo(x) exist. Moreover, if for a vertex x the neighbor cwo(x)

(ccwo(x), resp.) exists, then the ar of cwo(x) (ccwo(x), resp.) is not overed by any ar in AG.

(iii) Consider any vertex x whose ar A(x) is not overed by any ar in AG. If neighbor y = cwo(x) exists,

then cwo(ccwo(y)) = y. Symmetrially, if neighbor z = ccwo(x) exists, then ccwo(cwo(z)) = z.

Proof: (i) Any ar overing the ar A(x) of x extends both lokwise and ounterlokwise farther than

the endpoints of A(x). Hene both cwc(x) and ccwc(x) exist. Moreover, the ar of cwc(x) is not overed

by any ar in AG; if not, any suh ar would over the ar of x and would extend farther lokwise than

the ar of cwc(x) ontraditing the de�nition of cwc(x). A similar argument establishes that the ar of

ccwc(x) is not overed by any ar either.

(ii) Sine AG does not have a gap, there must be an ar extending farther lokwise than the w endpoint

of the ar of x. The vertex orresponding to this ar is a neighbor of x and belongs to Ncw(x) sine

Ncovering(x) = ∅; thus, cwo(x) exists. Additionally, the ar of cwo(x) is not overed by any other ar; if

there were suh an ar A(w) of a vertex w, then w ∈ Ncovering(x) ∪Ncw(x) = Ncw(x), in ontradition

to the de�nition of cwo(x).

A similar argument holds for ccwo(x) as well.

(iii) Suppose that y = cwo(x) exists. Sine x forms a lokwise overlapping pair with y, y forms a

ounterlokwise overlapping pair with x. Thus, x ∈ Nccw(y) and the vertex ccwo(y) exists. In turn,

y ∈ Ncw(ccwo(y)) and thus cwo(ccwo(y)) exists. Sine the ar of x is not overed by any ar, it is

important to note that Nccw(y) ontains

• verties V1(y) (if any) whose ars have their w endpoints in A(y)−A(x) and their w endpoints

in A(x) −A(y),

• verties V2(y) whose ars have their w endpoints in A(x)∩A(y) and their w endpoints in A(x)−

A(y), and
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• verties V3(y) (if any) that belong to Nccw(x) and whose ars have their w endpoints in A(x)∩A(y).

Then, ccwo(y) ∈ {x} ∪ V3(y) whih implies that y ∈ Ncw(ccwo(y)). If V3(y) = ∅, then ccwo(y) = x and

thus cwo(ccwo(y)) = y. If V3(y) 6= ∅, then if cwo(ccwo(y)) = y′ 6= y (i.e., the ar of y′
extends farther

lokwise than the w endpoint of the ar of y), we have that the w endpoint of y′
(i) either belongs to

A(x)∩A(y) whih implies that y′ ∈ Ncw(x) in ontradition to the de�nition of y = cwo(x) (ii) or belongs

to A(x) −A(y) whih ontradits the fat that the ar of y is not overed by any ar (see statement (ii)

for y = cwo(x)).

4.2 Useful Lemmas

Now we are ready to prove the two main lemmas whih are the basis of our algorithm. Before that, we

show the following fat. We onsider a irular-ar graph G whose ar model does not have a gap; thus

G has no isolated verties and there exists a paired-dominating set of G.

Fat 4.1 Let S be a minimum paired-dominating set of a irular-ar graph G with ar model AG that

does not have a gap, and let verties x, y ∈ S suh that x is mathed to y in a perfet mathing M of the

indued subgraph G[S].

(i) If vertex x forms a lokwise overlapping pair with vertex y in AG, then there exists a minimum

paired-dominating set T of G and perfet mathing MT of the indued subgraph G[T ] suh that

x, cwo(x) ∈ T and x is mathed to cwo(x) in MT .

(ii) If vertex x forms a ounterlokwise overlapping pair with vertex y in the ar model AG, then

there exists a minimum paired-dominating set T of G and perfet mathing MT of the indued

subgraph G[T ] suh that x, ccwo(x) ∈ T and x is mathed to ccwo(x) in MT .

(iii) If the ar of vertex x overs the ar of vertex y in the ar model AG that does not have a gap,

then there exists a minimum paired-dominating set T of G and perfet mathing MT of the indued

subgraph G[T ] suh that x, cwo(x) ∈ T and x is mathed to cwo(x) in MT .

Proof: (i) We �rst observe that sine vertex x forms a lokwise overlapping pair with y, then cwo(x)

exists and

P1: N [y]−N(x) ⊆ N [cwo(x)]−N(x).

If cwo(x) 6∈ S then in light of Property P1, we an obtain a minimum paired-dominating set T as suggested

in the statement of the fat by simply replaing y by cwo(x). So, next suppose that cwo(x) ∈ S. If

y = cwo(x) then T = S. If y 6= cwo(x) and cwo(x) ∈ S then let u be the vertex mathed to cwo(x)

in the mathing M . Vertex u dominates a vertex w not dominated by any other vertex in S, otherwise

the set S − {y, w} would also be a paired-dominating set of G due to Property P1, in ontradition

to the minimality of S. Then we an obtain a minimum paired-dominating set T as suggested in the

statement of the fat by replaing the vertex y by the vertex w in S; note that a perfet mathing of the

subgraph G[T ] is obtained from M by replaing the pairs {x, y} and {cwo(x), u} by the pairs {x, cwo(x)}

and {u, w}.

(ii), (iii) Statements (ii) and (iii) are established in a similar fashion. The existene of vertex cwo(x) in

statement (iii) follows from statement (ii) of Observation 4.1 sine the ar model AG does not have a gap

and the ar of x in AG is not overed by any ar.

Lemma 4.1 Let S be a minimum paired-dominating set of a irular-ar graph G with ar model AG

that does not have a gap, and let x ∈ S. Then:

(i) If the ar of x is overed by another ar in AG, then there exists a minimum paired-dominating set

of G ontaining cwc(x);

9



(ii) If the ar of x is not overed by another ar in AG, then there exists a minimum paired-dominating

set D of G and perfet mathing MD of the indued subgraph G[D] suh that

⊲ ccwo(cwo(x)), cwo(x) ∈ D and ccwo(cwo(x)) and cwo(x) are mathed in MD or

⊲ ccwo(x), cwo(ccwo(x)) ∈ D and ccwo(x) and cwo(ccwo(x)) are mathed in MD

where none of the ars of cwo(x), ccwo(x), ccwo(cwo(x)), and cwo(ccwo(x)) is overed by any ar

in AG.

Proof: (i) Sine the ar of x is overed, then the vertex cwc(x) exists (as does ccwc(x)). If cwc(x) ∈ S

then S is a paired-dominating set as desribed in statement (i); if not, then we an replae x by cwc(x)

in S and obtain suh a paired-dominating set sine N [x] ⊆ N [cwc(x)].

(ii) Sine the ar of x is not overed by any ar, the verties cwo(x) and ccwo(x) exist and sine the ars of

these verties are not overed either (see statement (ii) of Observation 4.1), then the verties ccwo(cwo(x))

and cwo(ccwo(x)) exist as well. Let y ∈ S be the vertex mathed to x in a perfet mathing M of the

subgraph G[S]. Then, exatly one of the following 3 ases holds:

• x forms a lokwise overlapping pair with y in the ar model AG;

• x forms a ounterlokwise overlapping pair with y in AG;

• the ar of x overs the ar of y in AG.

These 3 ases orrespond to statements (i), (ii), and (iii), respetively, of Fat 4.1, whih implies that in

all ases there exists a minimum paired-dominating set T of G and perfet mathing MT of the indued

subgraph G[T ] suh that

x, cwo(x) ∈ T and x is mathed to cwo(x) in MT or

x, ccwo(x) ∈ T and x is mathed to ccwo(x) in MT .

Then, statement (ii) of the lemma follows from one again applying statement (i) of Fat 4.1 in the

former ase (with respet to cwo(x)) and statement (ii) of Fat 4.1 in the latter ase (with respet to

ccwo(x)). Note that sine the ar of x is not overed by any ar in the ar model AG, statement (ii) of

Observation 4.1 implies that the ars of cwo(x) and ccwo(x) are not overed, whih in turn implies that

the ars of ccwo(cwo(x)) and cwo(ccwo(x)) are not overed either.

For a irular-ar graph with ar model without a gap, Lemma 4.1 implies that there always exists a

minimum paired-dominating set ontaining a pair of mathed verties x, y forming an overlapping pair

suh that x = ccwo(y) and y = cwo(x); Lemma 4.2 onsiders suh a ase. We note that this does not

imply that all pairs of mathed verties in a minimum paired-dominating set form overlapping pairs.

Indeed, there are ases suh that no suh a minimum paired-dominating set exists; for example, any

minimum paired-dominating set for the ar model shown in Figure 3(a) ontains verties u, v, and w,

and a neighbor of exatly one among u, v, and w, whih forms a nested pair with (its mathed neighbor)

u, v, and w, respetively. Additionally, Lemma 4.1 in onjuntion with the neighborhood partition given

in Setion 4.1 may also give the impression that one need onsider only minimum paired-dominating sets

ontaining an appropriate vertex v, or ccwo(v), or cwo(v), or perhaps ccwc(v) and cwc(v). However, this

is not true as indiated by the example shown in Figure 3(b): as shown, the minimum paired-dominating

set is equal to {v2, u2}; yet, the ars of z, z′ an be appropriately rotated so that the minimum paired-

dominating set beomes any of the sets {vi, ui}, i = 1, 2, . . . , k. Therefore, without knowing the position

of z, z′, we need onsider all neighbors of vertex w in order to �nd a minimum paired-dominating set.

Lemma 4.2 Let G be a irular-ar graph, whose ar model AG does not have a gap, and suppose that

the adjaent verties x, y are mathed to eah other in a perfet mathing M of the subgraph of G indued

by a minimum paired-dominating set S of G. Further suppose that x = ccwo(y) and y = cwo(x) (that

is, x forms a lokwise overlapping pair with y) and neither the ar A(x) of x nor the ar A(y) of y are

overed by any ar in AG.
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Figure 3: Examples of ar models.

(i) There exists a minimum paired-dominating set D = D′ ∪ {x, y} of G suh that

• D′
does not ontain any verties whose ars in AG are overed by the union of the ars of x

and of y;

• D′
ontains at most 1 neighbor of y whose ar extends farther lokwise than the w endpoint

of the ar of y; symmetrially, D ontains at most 1 neighbor of x whose ar extends farther

ounterlokwise than the w endpoint of the ar of x.

(ii) Consider the following 4 ar models resulting from AG:

• A1: from AG remove the ars of x, y, and all their neighbors;

• A2: from AG remove the ars of x, y, and all their neighbors exept for ccwo(x);

• A3: from AG remove the ars of x, y, and all their neighbors exept for cwo(y);

• A4: from AG remove the ars of x, y, and all their neighbors exept for cwo(y) and ccwo(x).

Then

(a) eah of A1, A2, A3, and A4 has a gap;

(b) there exists a minimum paired-dominating set of G ontaining the pair {x, y} and the smallest

among the minimum paired-dominating sets on the graphs orresponding to A1, A2, A3, and

A4 (whenever a paired-dominating set exists).

Proof: Sine the ars of x and y are not overed by any ar in the ar model AG, statement (ii) of

Observation 4.1 implies that the verties ccwo(x) and cwo(y) exist.

(i) Consider the minimum paired-dominating set S and let M be a perfet mathing of the indued

subgraph G[S]. Suppose that S ontains a vertex z whose ar is overed by the union of the ars of x and

y in AG, and let z′ ∈ S be the vertex in S mathed to z in M . Clearly, z′ must dominate some vertex w

not dominated by any other vertex in S, otherwise the set S −{z, z′} would also be a paired-dominating

set, in ontradition to the minimality of S. The fat that z′ dominates w implies that the ar of z′ is

not overed by the union of the ars of x and y; additionally, w is not adjaent to either x or y. Then,

we an replae z by w in S obtaining a minimum paired-dominating set not ontaining z (the mathed

pair {z, z′} is replaed by the mathed pair {z′, w}). Beause we an replae any suh vertex z, we an

obtain a minimum paired-dominating set S′
that does not ontain verties (other than x and y) whose

ars are overed by the union of the ars of x and y.

Finally, we show the restrition on the number of neighbors of y whose ars extend farther lokwise

than the w endpoint of the ar of y; for simpliity, let us all suh a neighbor a w-neighbor of y (we note

11



(d)

PSfrag replaements

xx

xx

yy

yy

pp

pp

q
q

qq

(a) (b)

()

Figure 4: For the proof of Lemma 4.2 (the dashed part of an ar may or may not exist).

that the de�nition of y = cwo(x) implies that a w-neighbor of y is not a neighbor of x). We will show

that there exists a minimum paired-dominating set of the graph G whih, in addition to not ontaining

verties whose ars are overed by the union of the ars of x and y, ontains at most one w-neighbor

of y. Consider the minimum paired-dominating set S′
as desribed in the previous paragraph and let

M ′
be a perfet mathing of the indued subgraph G[S′]. Suppose, for ontradition, that S′

ontains

two w-neighbors p1 and p2 of y. First, suppose that p1, p2 are not mathed to eah other in M ′
and let

q1, q2 ∈ S′
be the verties mathed to p1 and p2, respetively, in M ′

(see Figure 4 for the four general ases

for the position of eah pair pi, qi (i = 1, 2) in the ar model AG taking into aount that y = cwo(x) and

that no vertex in S′ − {x, y} has its ar overed by the union of the ars of x and y). The verties q1, q2

are not neighbors of y, and thus the w endpoints of their ars lie farther lokwise than the w endpoint

of the ar of y (see Figure 4() and (d)). Assume without loss of generality that the w endpoint of the

union of the ars of p2 and q2 is farther lokwise than the w endpoint of the union of the ars of p2

and q2; then,
(

N [p1] ∪ N [q1]
)

−
(

N(x) ∪ N(y)
)

⊆
(

N [p2] ∪ N [q2]
)

−
(

N(x) ∪ N(y)
)

whih implies that

the set S′ − {p1, q1} is a paired-dominating set of G, in ontradition to the minimality of S′
. Suppose

now that p1, p2 are mathed to eah other in M ′
, and assume without loss of generality that the ar of p2

extends farther lokwise than the ar of p1 (see Figure 4(b) for p = p1 and q = p2), whih implies that

N [p1]−N(y) ⊆ N [p2]−N(y). The vertex p2 dominates a vertex, say, w, not dominated by the elements

of S′ − {p1, p2}; otherwise, the set S′ − {p1, p2} is a paired-dominating set of G, in ontradition to the

minimality of S′
. Then, if we replae p1 by w in S′

, we obtain a minimum paired-dominating set of G

ontaining only one w-neighbor of y; note that w is not a neighbor of y sine it is not dominated by any

element of S′ − {p1, p2}.

Therefore, S′
ontains at most one w-neighbor of y. A symmetri argument works for the ase of

neighbors of x whose ars extend farther ounterlokwise than the w endpoint of the ar of x.

(ii) (a) Sine y = cwo(x), the ar of cwo(y) annot extend farther ounterlokwise than the w endpoint

of the ar of x; additionally, sine x = ccwo(y), the ar of ccwo(x) annot extend farther lokwise than

the w endpoint of the ar of y. Then, sine the w endpoint of the ar of x lies in the ar of y, eah of

the ar models Ai (i = 1, 2, 3, 4) has a gap in a lokwise diretion from the w endpoint of the ar of y

to the w endpoint of the ar of x.

(b) Let D be a minimum paired-dominating set of the graph G as desribed in statement (i) of the lemma.

We have the following ases for D.

1. If D ontains no neighbor of x other than y and no neighbor of y other than x, then the set D−{x, y}

is a paired-dominating set of the graph G1 with ar model A1; in fat, D − {x, y} is a minimum

paired-dominating set of G1 sine if there were a smaller paired-dominating set X of G1, then

X ∪ {x, y} would be a paired-dominating set of G in ontradition to the minimality of D.
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2. If D ontains one neighbor of y (other than x) whose ar extends farther lokwise than the

w endpoint of the ar A(y) of y and no neighbor of x other than y, then the set D − {x, y}

is a minimum paired-dominating set of the graph with ar model A2.

3. Similarly to the previous ase, if D ontains one neighbor of x (other than y) whose ar extends

farther ounterlokwise than the w endpoint of the ar A(x) of x and no neighbor of y other than

x, then the set D − {x, y} is a minimum paired-dominating set of the graph with ar model A3.

4. Finally, if D ontains one neighbor of x (other than y) whose ar extends farther ounterlokwise

than the w endpoint of the ar A(x) of x, and one neighbor of y (other than x) whose ar extends

farther lokwise than the w endpoint of the ar A(y) of y, then the set D − {x, y} is a minimum

paired-dominating set of the graph with ar model A4.

4.3 The Algorithm

As mentioned above, the idea behind our algorithm is to redue the problem to a paired-domination on an

interval graph by appropriately reating a gap in the ar model of the input irular-ar graph G. In order

to reate a gap, we take advantage of the fat that for any vertex v ∈ V (G), at least one among v and

its neighbors belongs to eah paired-dominating set. Thus we pik an appropriate

1

vertex v and for eah

vertex x ∈ N [v], we apply Lemma 4.1 so that if the ar of x is not overed we onsider minimum paired-

dominating sets ontaining either {ccwo(cwo(x)), cwo(x)} or {ccwo(x), cwo(ccwo(x))}, whereas if the ar

of x is overed we onsider minimum paired-dominating sets ontaining either {ccwo(cwo(z)), cwo(z)} or

{ccwo(z), cwo(ccwo(z))} where z = cwc(x). Then, for eah suh pair, we apply Lemma 4.2 obtaining four

ar models with a gap, whih an be turned into interval models and the paired domination problem an

be solved on eah of them in O(n) time using the algorithm of the previous setion. A desription of the

overall algorithm in pseudoode is given below where we also detet the existene of isolated verties;

Proedure Solution ontaining Vertex applies Lemmas 4.1 and 4.2.

Algorithm Cir Ar Paired Domination(AG)

Input : an ar model AG of a irular-ar graph G with ar endpoints sorted

Output : a minimum paired-dominating set of G, if one exists, or

a message that there is no solution and an isolated vertex of G

1. {ompute useful information and hek for a gap and isolated verties}

hek for a gap in the ar model AG and �nd a vertex v of minimum degree in G;

if the degree of v is 0

then print(\No solution...");

print that v is an isolated vertex and exit;

if ∃ a gap in AG (say, next to the w endpoint of the ar A(w))

then D ← Interval Paired Domination(IG) where IG is an interval model orresponding to

the ars in AG starting at the w endpoint of A(w) and moving lokwise;

go to Step 3;

2. {v: a vertex of minimum degree in G}

�nd cwc(v) (if it exists);

if cwc(v) does not exist {ar A(v) not overed in AG}

then D ← paired-domin. set returned by Proedure Min P-D-Set ontaining Vertex(AG,v);

else {Proedure Min P-D-Set ontaining Vertex on cwc(v) will be alled...}

{...in the for-loop below when w = cwc(v)}

1

In order to get a good time omplexity, in our algorithm we hoose as v the vertex of minimum degree in G.
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D ← V (G);

for eah neighbor w of v do

�nd cwc(w) (if it exists);

if cwc(w) does not exist {ar A(w) not overed in AG}

then D′ ← paired-domin. set returned by Min P-D-Set ontaining Vertex(AG, w);

else D′ ← paired-domin. set returned byMin P-D-Set ontaining Vertex(AG, cwc(w));

D ← minimum between D and D′
;

end-for

3. print(\A minimum paired-dominating set of the input graph is:");

print the elements of the set D.

Proedure Min P-D-Set ontaining Vertex(AG,w)

Input : an ar model AG of a irular-ar graph G without isolated verties and

a vertex w of G whose ar is not overed by any ar in AG

Output : a minimum paired-dominating set of G among those ontaining w

1. {try the overlapping pair {ccwo(cwo(w)), cwo(w)}}

�nd cwo(w) and ccwo(cwo(w)) and assign y ← cwo(w) and x← ccwo(y);

{x forms a lokwise overlapping pair with y, and y = cwo(x) and x = ccwo(y)}

A1 ← ar model obtained by AG after having removed the ars of x, y, and their neighbors exept

for ccwo(x) and cwo(y);

Ia ← interval model orresponding to the ars in A1 starting at the w endpoint of the ar A(x)

of x and moving lokwise;

Ib ← interval model obtained from Ia after having removed the interval orresponding to cwo(y);

Ic ← interval model obtained from Ia after having removed the interval orresponding to ccwo(x);

Id ← interval model obtained from Ia after having removed the intervals orresponding to ccwo(x)

and cwo(y);

D1 ← {x, y}∪ smallest among the minimum paired-dominating sets (whenever they exist) returned

by Algorithm Interval Paired Domination when applied on Ia, Ib, Ic, and Id;

2. {try the overlapping pair {ccwo(w), cwo(ccwo(w))}}

repeat Step 1 for x← ccwo(w) and y ← cwo(y) obtaining a paired-dominating set D2;

3. D ← minimum between the paired-dominating sets D1 and D2;

report the verties in D as a minimum paired-dominating set of the graph G that ontains x.

We note that the problems on some of the interval models produed may not admit a solution as the

removal of the neighbors of x and y may leave isolated verties; in suh a ase, another interval model

produes the �nal minimum paired-dominating set.

The orretness of Algorithm Cir Ar Paired Domination follows from Lemmas 4.1 and 4.2.

Time and Spae Complexity

Let n and m be the numbers of verties and edges, respetively, of the given graph G. First, we note

that eah all to Proedure Min P-D-Set ontaining Vertex takes O(n) time: Step 1 of the pro-

edure involves identifying y = cwo(w) and then x = ccwo(y) (by twie examining all the verties in

the graph in O(n) time), onstruting 4 interval models whih an be obtained in O(n) time, and ap-

plying Algorithm Interval Paired Domination on eah of them, whih also takes O(n) time (see

Theorem 3.1); similarly, Step 2 also takes O(n) time, as does Step 3. The time omplexity of Proedure
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Min P-D-Set ontaining Vertex implies that Step 2 of Algorithm Cir Ar Paired Domination

takes O(n + m) time: O(n) time is needed for identifying all neighbors of v and for omputing cwc(v)

(by omparing the ar of v to all other ars in the ar model AG) and O
(

n (1 + degree(v))
)

time for

all the alls to Proedure Min P-D-Set ontaining Vertex and for all the \minimum between D

and D′
" omputations; beause v is a vertex of minimum degree in G, its degree is at most 2m/n sine

2m =
∑

x∈V (G) degree(x) ≥ n degree(v).

Let us now show how to hek whether the ar model AG has a gap and how to �nd a vertex of

minimum degree in G. The idea is to proess all the ar endpoints and maintain the number of ative

ars, that is, the number of ars ontaining the urrent ar endpoint in their interior (hene we exlude

the ar ending at that endpoint). Then, if before proessing the w endpoint of an ar, the number of

ative ars is 0, we onlude that there exists a gap ounterlokwise from that w endpoint. Moreover,

the degree of a vertex an be omputed by observing that the set of neighbors of a vertex x with ar A(x)

is preisely the disjoint union of the set of verties orresponding to the ars ontaining the w endpoint

of A(x) in their interior and the set of verties with ars whose w endpoint belongs to the interior of

A(x). The ardinality of the former set of verties (neighbors of x) is equal to the number of ative ars

while proessing the w endpoint of A(x); the ardinality of the latter set of verties an be omputed by

keeping ount of the w endpoints enountered. In partiular, if we �rst enounter the w endpoint t1
of the ar of x and then its w endpoint t2, then it is not diÆult to see that the degree of x is

degree(x) = active num at t1 + ccw num at t2 − ccw num at t1

where ccw num is the number of ar w endpoints enountered and ccw num at t1 is equal to the

number of w endpoints enountered inluding t1 (sine t2 is a w endpoint the number of w endpoints

does not hange while proessing t2). (For example, in Figure 5, let k be the number of w endpoints

enountered when reahing (and inluding) the w endpoint t1 of the ar of x (1 ≤ k ≤ 6); then, the

number of w endpoints at t2 is k + 3 and sine the number of ars ontaining t1 in their interior is 3,

the degree of x is orretly found equal to 3 + (k + 3)− k = 6.) On the other hand, if we �rst enounter

the w endpoint t2 of the ar A(x) of x and then its w endpoint t1, then the degree of x is

degree(x) = active num at t1 + n− (ccw num at t1 − ccw num at t2)

where ccw num at t1 is again equal to the number of w endpoints enountered inluding t1; note that

ccw num at t1 − ccw num at t2 is equal to the number of ars whose w endpoints do not belong to

the interior of A(x) and thus by subtrating this number from n gives the number of ars with their

w endpoints in the interior of A(x). (For example, in Figure 5, let k be the number of w endpoints

enountered when reahing the w endpoint t2 of the ar of x (1 ≤ k ≤ 3); then, the number of -

w endpoints at (and inluding) t1 is k+6 and sine the total number of ars is 9 and the number of ars

ontaining t1 in their interior is 3, the degree of x is orretly found equal to 3 + 9− ((k + 6)− k) = 6.)
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In order to be able to ompute the degrees of verties as presented above (from whih we will obtain

a vertex of minimum degree):

• we ount the number ccw num of w endpoints starting the ount at an arbitrary w endpoint;

• we maintain the number active num of ative ars (the value of active num at the �rst endpoint

proessed is omputed by examining all the ars of the ar model in order to �nd those ontaining

that endpoint);

• with eah vertex x, we maintain the number x.endpoints met of endpoints of the ar A(x) of x

enountered (initialized to 0), the value x.ccw num at ccw endp of ccw num at and inluding the

w endpoint of A(x), and the value x.active num at prev endp of active num at the endpoint of

A(x) enountered �rst.

In detail, the algorithm to hek for a gap in the ar model and to �nd a vertex of minimum degree is as

follows:

for eah vertex w of G do

w.endpoints met← 0;

v ← an arbitrary vertex of G;

active num← number of ars ontaining the w endpoint of the ar A(v) of v (exluding A(v));

min degree← n;

ccw num← 0;

for eah ar endpoint t starting at the w endpoint of A(v) and moving lokwise do

w ← vertex of G suh that t is an endpoint of A(w) in AG ;

w.endpoints met← w.endpoints met + 1;

if t is the w endpoint of A(w)

then ccw num← ccw num + 1;

if active num = 0

then there exists a gap next to the w endpoint of ar A(w);

exit the for-loop;

if w.endpoints met = 2

then degree← active num + n− (ccw num− w.ccw num at prev endp);

else w.active num at ccw endp← active num; {�rst endpoint met}

active num← active num + 1; {a new ar has been enountered}

else {t is the w endpoint of ar A(w)}

if w.endpoints met = 2

then degree← w.active num at ccw endp + ccw num− w.ccw num at prev endp;

active num← active num− 1; {an ar has ended}

if w.endpoints met = 1 {�rst endpoint met}

then w.ccw num at prev endp← ccw num;

if degree < min degree {minimum degree alulation}

then min degree← degree;

min degree v ← w;

end-for

The orretness of the above proedure follows from the disussion preeding the pseudoode and the

fat that both endpoints of eah ar will be proessed implying that the degrees of all the verties will

be omputed and will be taken into aount in the minimum degree omputation.

Initializing the values of the �elds endpoints met for eah vertex and omputing the initial value of

active num take O(n) total time. Assuming that eah ar endpoint is assoiated with the vertex whose

ar ends at that endpoint, then eah iteration of the for-loop takes O(1) time. Therefore, the above

omputation takes a total of O(n) time and so does Step 1 of AlgorithmCir Ar Paired Domination.
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Finally, Step 3 takes O(n) time. The spae needed by the algorithm is O(n). In total, Algorithm

Cir Ar Paired Domination takes O(n + m) time using O(n) spae.

Summarizing, we have the following theorem:

Theorem 4.1 Let G be a irular-ar graph with no isolated verties. Then, given an ar model of G with

the ar endpoints sorted, Algorithm Cir Ar Paired Domination omputes a minimum-ardinality

paired-dominating set of G in O(n + m) time and O(n) spae.

Sine an ar model orresponding to a irular-ar graph an be omputed from the graph in time

linear in its size [27, 22℄, we onlude that, given a irular-ar graph, we an ompute a minimum-

ardinality paired-dominating set of the graph in O(n + m) time, where n is the number of verties and

m is the number of edges of the graph.

5 Conluding Remarks

In this paper we studied the paired domination problem on interval and irular-ar graphs and presented

O(n) and O(n + m)-time algorithms, respetively, given an interval or an ar model representation with

endpoints sorted; our results improve on previous O(n + m) and O(m(n + m))-time algorithms [7℄.

An interesting open question is to investigate whether the paired domination problem on irular-ar

graphs an be solved in O(n) time. The ase of Figure 3(b) seems to imply that a new di�erent approah

will be needed to obtain an O(n)-time algorithm.

Additionally, it would also be interesting to �nd optimal or at least better algorithms for the paired

domination problem on other lasses of graphs.
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