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Abstrat

We are interested in the problem of overing simple orthogonal polygons with the mini-

mum number of r-stars. An orthogonal polygon P is an r-star if P is (orthogonally) onvex

and star-shaped. The problem of overing a simple orthogonal polygon with the mini-

mum number of r-stars has been onsidered by Worman and Keil [13℄ who desribed an

O(n17
poly- log n)-time algorithm where n is the size of the given polygon.

In this paper, we onsider the above problem on simple lass-3 orthogonal polygons; a

lass-3 orthogonal polygon is de�ned to have dents along at most 3 di�erent orientations. By

taking advantage of geometri properties of these polygons, we provide an O(n log n)-time

algorithm; this is the �rst purely geometri algorithm for this problem. Moreover, ideas in

our algorithm may be generalized to yield exat algorithms for this problem that are faster

than Worman and Keil's.

Keywords: orthogonal polygon, over, deomposition, r-star, visibility

1 Introdution

Motivated by a question of Klee in 1973 and thanks to work of Chv�atal and Fisk (see [11℄),

the now-lassi Art Gallery Theorem states that for an n-sided simple polygon, ⌊n/3⌋ immobile

guards are sometimes neessary and always suÆient suh that every point of the polygon is

wathed by at least one guard [11℄.

Sine then, many variants have been onsidered making the �eld of Art Gallery problems

a vibrant and large researh area in ombinatorial and omputational geometry [11, 12℄. The

multitude of variants is in part due to the fat that getting the minimum number of guards to

wath a given polygon is NP-omplete (Aggarwal [1℄). This stimulated researh in restrited

types of polygons or with guards possessing di�erent visibility or mobility harateristis.

Guarding problems have been onsidered on orthogonal polygons, i.e., polygons whose edges

are either horizontal or vertial. It turns out that fewer guards (in terms of the size of the

polygon) are needed for suh a polygon sine the art gallery theorem in this ase states that

⌊n/4⌋ immobile guards are sometimes neessary and always suÆient suh that every point of

the polygon is wathed by at least one of the guards [4℄.
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Figure 1: (a) Illustration of the main de�nitions; (b) an r-star with its kernel shaded.

Sine the edges of an orthogonal polygon are either horizontal or vertial, we an haraterize

them using the ompass diretions (N, S, E, W); more spei�ally, an edge is a N-edge (S-edge,

E-edge, and W-edge, resp.) if the vetor normal to the edge and pointing outward is direted

towards the North (South, East, and West, resp.). Of partiular importane are edges whose

both endpoints are reex verties of the polygon; suh edges are alled dents and as above

they are haraterized as N-dents, S-dents, E-dents, and W-dents (see Figure 1(a)). Orthogonal

polygons an be lassi�ed in terms of the types of dents that they ontain [2℄: a lass-k orthogonal

polygon (0 ≤ k ≤ 4) is de�ned to have dents along at most k di�erent orientations. Class-2

polygons an be further lassi�ed into lass-2a where the 2 dent orientations are parallel (i.e., N

and S, or E and W), and lass-2b where the 2 dent orientations are perpendiular to eah other.

An orthogonal polygon is an r-star if it is (orthogonally) onvex and star-shaped. The

term r-star omes from its formal de�nition with respet to the r-visibility : in an orthogonal

polygon P , two points p, q of P are r-visible from one another if and only if the axis-parallel

retangle with p, q at opposite orners lies within P (Figure 1(a) shows two suh points p and

q); then, a polygon P is an r-star if there exists a point p of P suh that every point q ∈ P
is r-visible from p while the set of all suh points p in P is alled the kernel of the r-star.
Figure 1(b) shows an r-star with its kernel shaded. (For ompleteness, we mention that in

orthogonal polygons another type of visibility, the s-visibility, is de�ned: two points p, q of an

orthogonal polygon P are s-visible from one another if and only if there exists a stairase path

from p to q that lies entirely in P (a stairase path is a hain of axis-parallel edges with bends

that alternate between exatly two orientations) { in Figure 1(a) points p and q′ are s-visible
from one another.)

Clearly, the problem of determining a minimum set of r-visibility (or s-visibility) guards
to wath a simple polygon is equivalent to determining a minimum over of the polygon by

r-stars (or s-stars, respetively). A over of a polygon P by a set S of piees (or subpolygons

or omponents) requires that the union of the piees in S is equal to P . If additionally the

piees are required to be mutually disjoint (exept along boundaries), then we have a partition.

Obviously, a partition of a polygon also forms a over of the polygon; thus, a minimum-size

over of a polygon involves at most as many piees as a minimum-size partition of the polygon

into the same type of piees, and onsequently overs are better than partitions in terms of

the number of piees. On the other hand, overing problems prove to be harder than their

orresponding partition problems and there are ases where the former are NP-hard whereas

the latter admit polynomial solutions (e.g., �nding a minimum-size Steiner-free partition of a

simple polygon into star-shaped polygons is known to be omputable in polynomial time [5℄,

whereas the orresponding overing problem is NP-omplete [1℄). Covers and partitions are very

important as they an be used for deomposition into simpler piees. Reent appliations of
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retangulations inlude planar self-assembly with loal information [7℄ and DNA self-assembly

(M.Y. Kao and A. Sterling).

Covering by r-stars has been investigated early enough. Keil [6℄ desribed an O(n2)-time

algorithm to over a lass-2a orthogonal polygon by r-stars. Culberson and Rekhow [2℄ showed

that Keil's algorithm is worst-ase optimal if the r-stars need to be expliitly reported and

presented an O(n)-time algorithm to ount the number of r-stars needed; they also gave O(n2)-
time algorithms for minimally overing lass-2a as well as lass-2b orthogonal polygons. Soon

afterwards, Motwani, Raghunathan, and Saran [10℄ studied s-star overs. They showed a lose

relation between minimum-size overs of orthogonal polygons by s-stars and overs of perfet

graphs with the minimum number of liques; they took advantage of this very interesting idea

to derive an O(n8)-time algorithm for overing an orthogonal polygon by the minimum number

of s-stars and an O(n3)-time algorithm for the same problem in the ase that the orthogonal

polygon is lass-3. Returning bak to r-stars, Gewali, Keil, and Ntafos [3℄ onsidered the problem
of overing lass-2a orthogonal polygons by the minimum number of r-stars and they gave an

O(n)-time algorithm to report the loations of a minimum-ardinality set of guards. Their

algorithm was improved by Lingas, Wasylewiz, and

_

Zyli�nski [8℄ who were able to perform the

omputations in the two passes of the algorithm of Gewali et al. into a single pass; they also

redued the spae requirement (in addition to the spae required to store the polygon) to linear

in the number of guards required rather than linear in the size of the polygon. The problem

of overing general orthogonal polygons with r-stars was addressed by Worman and Keil who

took advantage of the graph-theoreti approah to desribe an O(n17
poly-logn)-time algorithm

[13℄. Very reently, a linear-time 3-approximation algorithm for general orthogonal polygons has

been given by Lingas, Wasylewiz, and

_

Zyli�nski [9℄.

In this paper, we study the r-star overing problem on lass-3 orthogonal polygons. We

take advantage of geometri properties of these polygons and we desribe an O(n log n)-time

algorithm to report the loations of a minimum-ardinality set of r-visibility guards to wath

the entire polygon by sweeping the polygon a single time. This is the �rst purely geometri

algorithm for this problem. Moreover, ideas in our algorithm may be generalized to yield exat

algorithms for this problem that are faster than Worman and Keil's.

2 Theoretial Framework

We onsider simple orthogonal polygons; so, in the following, we will omit the adjetive \simple."

Consider an orthogonal polygon P that does not have N-dents in a artesian oordinate

system. The intersetion of suh a polygon with a horizontal line L may onsist of several

line segments. Sine P has no N-dents, these line segments orrespond to disjoint parts of the

polygon P below the line L; for onveniene, we all eah suh part of P a trouser. Next, we

give extensions of the notions of \grid segment" and \level" used in [3℄: a grid segment of P or

a trouser T is a maximal (losed) horizontal line segment in P or T ; the level of a point or a

horizontal line segment (whih may be a grid segment or a horizontal edge) is its y-oordinate.
We also use the notion of orthogonal projetion in an orthogonal polygon P given in [8℄: the

orthogonal projetion o(s) of a horizontal line segment s at level ℓ in P onto the grid segment s′

at level ℓ′ ≥ ℓ is the maximal subsegment of s′ suh that for eah point a of o(s) there exists

a vertial line segment in P that goes through a and intersets s. Finally, for a horizontal line

segment s (edge or grid segment) we de�ne its x-range to be the set of x-oordinates of the

points of s. (We note that although a polygon is onsidered a losed set, we onsider edges to

be open sets (i.e., they do not inlude their endpoints) and thus their x-ranges are open sets as

well.)

The following lemma provides three important properties of lass-3 orthogonal polygons.
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Lemma 2.1 Let P be a lass-3 orthogonal polygon and assume that P has no N-dents. Then:

(i) The polygon P has a single topmost edge.

(ii) Consider sweeping the polygon from bottom to top. Eah edge enountered other than the

bottommost edge of eah trouser is inident with the boundary of the swept polygon.

(iii) Let T be a trouser at the moment when P is interseted by a horizontal line at level ℓ, and
let s1 and s2 be grid segments of T at levels ℓ1 and ℓ2, respetively, where ℓ1 < ℓ2 ≤ ℓ,
suh that there exists a vertial line segment in T interseting both s1 and s2. Then, the

orthogonal projetion of s1 onto ℓ is a subset of the orthogonal projetion of s2 onto ℓ.

Proof: Statements (i) and (ii) easily follow from the lak of N-dents. Statement (iii) follows

from the observation that the orthogonal projetion of s1 onto level ℓ2 is a subset of s2 taking

into aount that ℓ1, ℓ2 ≤ ℓ.

3 The Algorithm

Our algorithm applies plane-sweeping as do the algorithms in [3, 8℄; we assume that the given

lass-3 polygon does not have N-dents and we sweep it from bottom to top stopping at eah

horizontal edge (thus we an take advantage of Lemma 2.1). The invariant that we maintain is

that at any given time, the guards that have been plaed wath all points of the swept polygon

that annot be wathed by a guard loated at a point above the sweep-line at its urrent position.

In partiular, at any S-edge we do some preparatory work but do not plae guards as suh edges

an be wathed by guards loated at a higher level. N-edges may \over" parts of the polygon

from guards positioned higher; we hek this and only if a guard is needed, it is loated at the

level of the N-edge (the x-oordinate of its loation may not be set at the moment as we plae

guards so that they an see as muh of the polygon above them as possible {details are given

below). In the end, the algorithm reports the loations of a minimum-size set of r-visibility
guards that wath the entire input polygon.

Determining When a Guard is Needed and Where to be Plaed

Consider any S-edge e of the given polygon; see Figure 2(a). As long as the x-ranges of the
enountered N -edges do not interset the x-range of e, then a guard at a level higher than the

level of the N -edge an see the entire e; see the N-edge e1 in Figure 2(a). However, if the x-
range of a N -edge d intersets e's x-range, then a guard must be plaed at a level between (and

inluding) the levels of e and d sine no guard at a level higher than the level of d an see the

entire e; see the N-edge e2 in Figure 2(a). Additionally, if suh a guard is to be plaed at level ℓ,
it has to be plaed at any point of the orthogonal projetion of the grid segment ontaining e
onto level ℓ, in order to wath e.

Therefore, in order to enfore the above observations, eah S-edge e submits a type-1 guard-

request with whih we maintain:

⊲ a foring-range, or f-range for short, whih is the x-range of the edge e (beause a guard

is needed to wath e if the x-range of a N-edge above e intersets e's f-range);

⊲ a plaement-range, or p-range for short, whih is the range of x-oordinates of the grid

segment ontaining e (beause this is the initial range of x-oordinates of the guard's

loation).
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Figure 2: (a) A guard needs to be plaed no higher than the N-edge e2 to wath the entire

S-edge e; (b) the f-range (shown dotted) and the p-range (shown dashed) of the S-edge e.
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Figure 3: Type-2 guard-requests (f-range shown dotted, p-range shown dashed).

Eah of these ranges is a single interval of x-oordinates (the f-range is open, the p-range is

losed), and it always holds that the f-range of a S-edge is a subset of its p-range. Figure 2(b)

shows the f-range (shown dotted) and p-range (shown dashed) for the S-edge e.
In fat, there is one more ase in whih we need a guard-request. See Figure 3 (left). While

proessing the N-edge e, a guard g gets positioned as shown to wath the lowermost S-edge.

The same guard wathes the S-edge e′ whih justi�es the removal of the guard-request produed

due to e′; however, if we do not do anything else, no need will be reorded for a guard to wath

the orthogonal projetion of e′ onto a level slightly above the level of e. This learly leads to an

error in the ase of Figure 3 (left) as no guard other than g is plaed.

Therefore, at eah N-edge e (of a trouser T ), we investigate the need to plae a type-2

guard-request. Let I be the grid-segment of T at a level slightly above e's level. If the entire

I is wathed, no guard-request is needed. Otherwise, a guard-request r is submitted with p-

range equal to I and f-range equal to (xl, xr) where xl (xr, resp.) is the x-oordinate of the

leftmost (rightmost, resp.) point in I not wathed by any of the urrently plaed guards (see

Figure 3 (right)).

Here is how the f- and p-range of a guard-request r submitted by an edge e are used: During
the sweeping, as long as we enounter N-edges whose x-ranges do not interset either range, no

hange ours. If we enounter a N-edge whose x-range intersets the p-range of r, then the

p-range simply gets lipped. However, if we enounter a N-edge d whose x-range intersets the
f-range of r, then a guard is needed immediately; any guard loated at a level between (and

inluding) the levels of e and d, whih an be positioned at a point with x-oordinate in the

p-range of r will do.

Maintaining and Proessing Guards

In order to be able to manage the guards, with eah guard we maintain:

• its level (i.e., the y-oordinate of its loation),

• its loation-range, or lo-range for short, whih is the range of x-oordinates of the points
at whih the guard an urrently be plaed;
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Figure 4: Not seleting the lowermost andidate guard may lead to a non-minimum number of

guards.

• its visibility-range, or vis-range for short, whih is the range of x-oordinates of the points
above the urrent position of the sweep-line that are r-visible to the guard.

Sine there are no N-dents, eah of these ranges is a single interval of x-oordinates, and it

always holds that the lo-range of a guard is a subset of its vis-range.

For a guard g to be plaed at a grid segment sℓ at level ℓ in a trouser T , initially its lo-range
and its vis-ranges oinide with the x-range of sℓ. As the sweep-line moves upward, both ranges

get lipped by N-edges whose x-ranges interset them. If g is hosen to ful�ll a guard-request r
(then g's lo-range must interset r's p-range), the lo-range of g is set equal to its intersetion

with the p-range of r; in this way, the guard will be able to wath both the edge that submitted

r and as muh of the unseen polygon as possible. Finally, when a N-edge d is enountered suh

that the (possibly lipped) lo-range of g is a subset of d's x-range, then g is plaed at the point

(xl, ℓ) where xl is the left bound value of g's (lipped) lo-range right before the N-edge d is

enountered (in aordane with the onvention followed by [3, 8℄); moreover, g annot see any

points in the polygon P above the level of the edge d.

Seleting a Guard to Wath a S-Edge

Many guards at di�erent levels in the polygon may be able to wath a S-edge e′ when the f-range

in the guard-request submitted by e′ is interseted by the x-range of a N-edge. In order to make

a good hoie among them, we apply the poliy suggested in the following lemma.

Lemma 3.1 There exists a minimum-size set of guards suh that whenever a guard-request

needs to be ful�lled, among all guards that an ful�ll it, the lowermost one is hosen.

In other words, among the guards ful�lling the guard-request, we hoose a guard g that has

the smallest vis-range, saving guards with larger vis-ranges to possibly wath portions of the

polygon that g annot see. The proof of Lemma 3.1 relies on Lemma 2.1(iii). Reall that the

vis-range of a guard at a level ℓ is initialized to the x-range of the grid segment at level ℓ and is

subsequently lipped by N-edges enountered; thus, at a level ℓ′ > ℓ, the guard an see all the

points in the orthogonal projetion of its initial vis-range onto ℓ′.
In fat, there are ases where by hoosing a guard other than the lowermost available we

get an inorret result; see Figure 4. When enountering the N-edges e1 and e2, we realize that

guards are needed at these levels. If when assigning a guard to wath the S-edge e3, we selet a

guard at the level of e2 (see guard g1 in the polygon at Figure 4 (left), then a third guard g3 will

also be needed; yet, two guards suÆe to wath the entire polygon as shown at Figure 4 (right).

Desription of the Algorithm

As mentioned, we sweep the given lass-3 orthogonal polygon P from bottom to top maintaining

information on the urrent trousers (at the urrent position of the sweep-line), and the ranges
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of the guards and of the guard-requests. With eah trouser T , we also maintain T 's guards

partitioned into two sets, Available(T ) and Positioned(T ), storing the guards in T that an

wath points in P above the urrent position of the sweep-line or not, respetively.

During the sweeping, we stop at eah horizontal edge e and proess it. If e is a S-edge, we

update the trouser information and set up and insert a orresponding type-1 guard-request. If e
is a N-edge, we proess the guard-requests whose f-ranges are interseted by e's x-range, position
the guards whose lo-ranges are subsets of e's x-range, lip the guard-requests' p-ranges and the

guards' lo- and vis-ranges, and onditionally set up and insert a type-2 guard-request. After

all the edges have been proessed, the resulting guard set Positioned gives us the loations of a

minimum-ardinality set of r-visibility guards.

Below, we give a detailed desription of the algorithm in pseudoode when applied on a lass-

3 orthogonal polygon P (the ranges of a guard g are denoted by g.lo-range and g.vis-range,
the ranges of a guard-request r by r.f-range and r.p-range, and the x-range of an edge e by

e.x-range).

Algorithm Class3 rStar Cover(P )

Input : a simple lass-3 orthogonal polygon P (no N-dents)

Output : a minimum set of r-visibility guards

1. sort the N- and S-edges of P by non-dereasing y-oordinate;
reate an empty data struture Dt to store the trousers;

2. {sweep from bottom to top maintaining the trousers}
for eah N- or S-edge e in order do

if e is a S-edge

then reate the orresponding type-1 guard-request, say, r;
loate e in the data struture of the trousers;

if e does not belong to any of the urrent trousers

then reate a reord for the new trouser T (involving only e) and insert it in

the data struture Dt;

insert r in T 's guard-requests data struture;

Available(T )← ∅; Positioned(T )← ∅;
else if e is a S-dent

then {merge the two trousers T1 and T2 on either side of e}
remove T1 and T2 from Dt and insert a new trouser T ;
merge the guard sets and guard-requests data strutures assoiated with

T1 and T2 and assoiate them with T ;
insert r in the (merged) requests data struture;

else {e belongs to a single trouser T}
insert r in T 's guard-requests data struture;

else {e is a N-edge}
loate e in the data struture Dt of the trousers and let T be the trouser whose

boundary is inident with e;

{proess T 's guard-requests whose f-ranges interset e's x-range}
for eah guard-request r in T s.t. r.f-range ∩ e.x-range 6= ∅ do

{r.f-range not interseted before by x-range of a N-edge}
if ∃ guards ∈ Available(T ) ∪ Positioned(T ) whose lo-range is a subset

of r.p-range
then g ← lowermost suh guard;

else if ∃ guards ∈ Available(T ) whose lo-ranges interset r.p-range
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then g ← lowermost suh guard;

g.lo-range ← g.lo-range ∩ r.p-range;
else use a new guard g and insert it in Available(T );

g.level ← level of e;
g.vis-range ← x-range of the grid segment of T ontaining e;
g.lo-range ← r.p-range;

remove r from T 's guard-requests data struture;

{proess T 's guards whose lo-ranges are \overed" by e}
for eah guard g suh that g.lo-range ⊆ e.x-range do

xg ← x-oordinate of left endpoint of g.lo-range;
position g at (xg, yg) where yg is the level of g;
remove g from Available(T ) and insert it in Positioned(T );

{lip ranges}
lip lo-ranges and vis-ranges (if needed) of guards ∈ Available(T );
lip the p-ranges (if needed) of the guard-requests of T ;

{hek if a type-2 guard-request is needed}
I ← x-range of losure((grid segment at the level of e)− e);
if I is not entirely wathed

then reate a new guard-request r′; {type-2 guard-request}
r′.p-range ← I;
xl ← x-oordinate of leftmost non-wathed point in I;
xr ← x-oordinate of rightmost non-wathed point in I;
r′.f-range ← (xl, xr);
insert r′ in the guard-requests data struture of T ;

3. report the loations of the guards in the resulting set Positioned.

The orretness of the algorithm follows from the fat that we use a new guard only when we

have loated a portion of the polygon that is not wathed by any of the urrently used guards

and by any guard above the sweep-line at its urrent position, from Lemmas 2.1 and 3.1, and

from the preeding disussion.

Time and Spae Complexity

Let n be the number of verties of the given lass-3 polygon. Then, the number of trousers

is O(n) and so is the number of guard-requests (we have at most 1 guard-request for eah of

the S-edges (type-1 request) and eah of the N-edges (type-2 request) enountered), and the

number of guards (note that by plaing a guard on eah N- and S-edge, we an wath the entire

polygon).

Data Strutures. Let us now disuss the data strutures used. Sine we need to be able

to insert new trousers, to delete trousers, and to searh the urrent trousers to loate the one

inident with an edge (see Lemma 2.1(ii)), we maintain the trousers in a balaned binary searh

tree Dt storing them in order from left to right; then every insertion, deletion, and searh

operation takes O(log n) time.

Eah of the guard sets Available(T ) and Positioned(T ) assoiated with a trouser T is stored

with T in a doubly-linked list with pointers at both ends so that insertion, deletion, and list

onatenation an be done in onstant time.

In order to store the f-ranges of all the guard-requests (we do not distinguish them depending

on the trouser to whih they belong sine the f-ranges of guard-requests from di�erent trousers
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do not overlap), we use two threaded balaned binary searh trees Tl and Tr storing the f-ranges

in their leaves (sine the trees are threaded, their leaves are linked in order from left to right in

the tree) with eah pair of orresponding leaves in Tl and Tr linked to eah other: Tl (Tr, resp.)

stores the f-ranges in inreasing order of their left (right, resp.) endpoint and in ase of ties in

dereasing order of the level of the edge that aused the guard-request. The size of eah tree

is again O(n) and thus, inserting and deleting an f-range in both trees an be done in O(log n)
time. In order to �nd all the f-ranges interseted by the x-range of a N-edge e, we work as

follows: if e has its left endpoint on the boundary of a trouser de�ned by the sweep-line at its

urrent position (see Lemma 2.1(ii)), we use Tl to loate all the f-ranges, if any, with their left

endpoint idential to e's left endpoint, and move rightward from leaf to leaf using the thread

pointers until all the f-ranges interseting e's x-range are loated; if e has its right endpoint

on the boundary of a trouser, we work similarly with Tr. In summary, this an be done in

O(t + log n) time where t is the number of f-ranges aessed (and whih are deleted).

Clipping on the guards' vis-ranges is done in an impliit way; thus, the vis-ranges are stored

in a speial doubly-linked list as shown in Figure 5. Eah node orresponds to a vertial edge

(whih de�ned the endpoint of a vis-range or whih lipped a previously de�ned vis-range) and

stores the x-oordinate of that edge and a y-ordered sublist of vis-ranges (with pointers at both

ends) ending at that vertial edge; the levels of the vis-ranges stored at the sublists of two nodes

enable us to ompare them along the y-axis. If the lipping a�ets only the �rst or last node in

the list, then we simply update the x-oordinate stored in the node in O(1) time. If the lipping

a�ets more nodes, then their sublists are onatenated (maintaining their y-ordering) and again

the x-oordinate stored in the �rst or last node of the resulting list gets updated; the O(1)-time

onatenation of the sublists of two onseutive nodes t1, t2 is harged to the horizontal edge

inident on the top endpoint of the vertial edge orresponding to the lowermost node between

t1 and t2 (the sublist of the lowermost node gets linked to the sublist of the other one).

A similar data struture is used to store the guard-requests' p-ranges together with the

guards' lo-ranges; all these are linked together in y-ordered sublists whih also have extra

pointers doubly-linking only the p-ranges. Clipping is done as above. Getting the lowermost

guard to ful�ll a guard-request r involves getting to the sublist node for r (through pointers

from Tl and Tr) in the �rst or last node of the main list and then moving upwards in the sublist

until a guard's lo-range is found; if a guard is found, then all the traversed guard-requests will

be ful�lled by that guard and they are removed (we may remove some guard-requests whose

p-ranges are not interseted by the x-range of the urrently proessed N-edge but this does not

ause an error), whereas if no guard is found then a new is used who again ful�lls all the traversed

guard-requests. Assigning the lo-range of the guard to the p-range of the guard-request is done

by using the representation of the guard-request for the guard's lo-range and updating the

information and pointers for the p-ranges linking.

Complexity. Sorting the N- and S-edges (by y-oordinate) takes O(n log n) time. Then, for

eah S-edge e, we need to loate e with respet to the existing trousers in Dt, do at most one

insertion and at most two deletions of trousers (in O(log n) time), and update the information

stored in the orresponding trouser (in O(1) time).

Let us now onsider the proessing of eah N-edge e. Loating all the O(n) N-edges in Dt

takes O(n log n) time. Proessing all the guard-requests whose f-ranges interset the x-ranges
of all the N-edges requires O(n log n) time for searhing Tl, Tr, and O(n) for the deletion of

guard-requests. Proessing all the guards whose lo-ranges are overed by N-edges is done using

the lo-ranges list and takes O(1) time per guard sine the guard-requests in the same node have

already been proessed and removed. Clipping is done in O(n) time in total, sine the lipping

vertial edge is harged for the O(1)-time information updates while a di�erent horizontal edge

is harged for eah O(1)-time sublist onatenation. Handling all type-2 guard-requests takes

9
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Figure 5: The data struture for the guards' vis-ranges (retangles onneted by thik lines

indiate nodes of the main doubly-linked list, dark irles indiate sublist nodes).

O(n log n) time; for eah suh request r′, loating the leftmost and rightmost non-wathed points

an be done in O(1) time using the vis-ranges data struture, inserting and linking r′ in the

p-ranges (and lo-ranges) data struture is done in O(1) time as well, whereas inserting r′ in Tl

and Tr takes O(log n) time. In summary, proessing all the N-edges takes O(n log n) time.

Sine reporting the guards takes O(n) time, we have:

Theorem 3.1 Let P be a simple lass-3 orthogonal polygon with n verties. Then, a minimum-

ardinality set of r-visibility guards wathing the entire P an be omputed in O(n log n) time

and O(n) spae.

4 Conluding Remarks

We presented an O(n log n)-time algorithm for omputing a minimum r-star over of a lass-3

orthogonal polygon on n verties. It would be interesting to make our algorithm output-sensitive.

We believe that a more onservative poliy on olleting guard-requests will help improve the

time omplexity to O(n + k log k) where k is the minimum number of guards needed to wath

the given lass-3 orthogonal polygon.

We leave as open problems the following on minimum r-star overs: obtaining faster al-

gorithms for general simple orthogonal polygons ompared to the algorithm of Worman and

Keil [13℄, investigating the omplexity of the problem on orthogonal polygons with holes, and

studying extensions of the problem in three dimensions.

Finally, it would also be interesting to obtain faster algorithms for the s-star overing problem
on general simple orthogonal polygons; the urrent fastest algorithm takes O(n8) time [10℄ and

is based on the graph-theoreti approah.
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