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Overview

Defect screening is a major challenge for nanoscale CMOS circuits, especially since many
defects cannot be accurately modeled using known fault models. The effectiveness of test
methods for such circuits can therefore be measured in terms of the coverage obtained for
unmodeled faults. In this report, we present new defect-oriented LFSR reseeding techniques
for test-data compression. The proposed techniques are based on a new “output deviations”
metric for grading stuck-at patterns derived from LFSR seeds, and include a window-based
static reseeding method as well as a dynamic reseeding method based on a ring generator.
We show that, compared to standard compression-driven LFSR reseeding and a previously
proposed deviation-based method, higher defect coverage is obtained using stuck-at test
cubes without any loss of compression. The defect coverage for the proposed reseeding
methods based on stuck-at test cubes is evaluated using two surrogate fault models, namely
the transition fault model and the bridging fault model.

1 Introduction

The need for more and more complex fault models is rapidly increasing the test data volume
for integrated circuits testing. Moreover, in VDSM technologies many defects cannot even
be accurately modeled using known fault models [11]. It is, therefore, important to grade
the tests patterns of well-practiced fault models (such as stuck-at) based on their ability to
detect unmodeled defects. For this reason probabilistic fault models have been developed.

In [12–15] a probabilistic gate-level fault model is presented together with a technique
to compare tests patterns for their ability to detect arbitrary defects. This model is based
on probability measures, named output deviations, at primary outputs and pseudo-outputs
(all referred to as outputs) that reflect the likelihood of error detection at these outputs.
It was shown in [13], test patterns with high deviations tend to be more effective for fault
detection.

In [12,14] test set enhancement techniques for selection of test patterns that maximize
output deviations were presented. The reordering technique of test patterns presented
in [13] maximizes the defect coverage ramp-up for an abort-on-first-fail test environment,
while [5] describes a static compaction technique for stuck-at test vectors that maximizes
output deviations. The compression method of [15] presents a quality enchancement for
classical LFSR reseeding [7] technique that maximizes the output deviations of the gener-
ated patterns by exploiting wasted variables.

In this report, a new encoding method that offers high compression and increased
unmodeled defect coverage, for static and dynamic LFSR reseeding is presented. The main
contributions are:

1. The new encoding method is suitable for both static window-based and dynamic
LFSR reseeding, which are among the most efficient reseeding techniques.

2. High unmodeled defect coverage is achieved by using a new output- deviation-based
metric that is more effective than [15] for detecting defects.

3. The encoding method enhances the defect-detection potential of the generated seeds
without compromising compression.
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4. Instead of exploiting free variables, defect detection is facilitated simply by carefully
encoding the test cubes into seeds using compression as well as defect-oriented criteria.

Simulation results are presented for stuck-at test sets generated for the ISCAS’89 and
IWLS’05 benchmark circuits [1]. These results show that the defect-aware window-based
and dynamic reseeding methods offer higher defect coverage than the original (defect-
unaware) window-based and dynamic reseeding methods, without any adverse impact on
compression. In addition, due to the efficient output deviation metric introduced in this
report, the new method clearly outperforms [15] in terms of defect coverage. Finally, by
grading the seeds in the case of static window-based reseeding and applying the most
efficient seeds first, faster coverage ramp- up is achieved, thus reducing the test-application
time in an abort-at- first-fail environment. Even for dynamic reseeding, where seed ordering
is not an option, the carefully-tuned defect-oriented reseeding provides steeper coverage
ramp-up.

The rest of the report is organized as follows. Section 2 presents motivation for this
work and Section 3 presents the new output deviation-based metric. Section 4 describes
the procedure used for generating high-quality seeds using this metric. Simulation results
are presented in Section 5 and Section 6 concludes the report.

2 Motivation

Figure 1 presents the decompression architecture used in static as well as in dynamic
reseeding. It consists of an L-bit sequential linear decompressor, which can be either
an LFSR or a ring generator [9], and a phase shifter that receives the outputs of the
decompressor and drives m scan chains (m > L). A test response compactor is also included
in the scheme. The decompressor is reseeded by the Automatic Test Equipment (ATE),
and it generates a test vector through the phase shifter. In static reseeding, the seed of the
decompresor is its initial state and it is considered as a set of binary variables a0, . . . , aL−1
that are loaded directly from the ATE. In dynamic reseeding, the decompressor is reseeded
at every cycle from the ATE by injecting test bits into it through the ATE channels. Every
injected test bit is considered as a binary variable and all variables injected during the
generation of one test vector constitute the dynamic seed for this test vector. In both cases,
a seed is determined by solving a system of linear equations, which is formed according to
the specified bits of the test cubes and the feedback polynomial of the LFSR [6].

The main disadvantage of the static LFSR reseeding is that every new seed flushes
the decompressor contents and thus any variables left unspecified (free) during the seed-
computation process are wasted. The method proposed in [15] exploits these free variables
in order to increase unmodeled defect coverage. In order to achieve this goal, it utilizes the
notion of output deviations [13]. Output deviations are probability measures at primary
outputs and pseudo-outputs that indicate the likelihood of error detection at these outputs.
As it was shown in [13], test patterns with high deviations tend to be more effective for
fault detection. The method proposed in [15] attempts to improve the output deviations
of the seeds as follows: it first applies multiple random fillings on the variables that remain
free after each system of linear equations is solved, in order to generate multiple candidate
seeds for each test cube. Then it selects the seeds that generate the vectors with the highest
output deviation values.
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Figure 1: Generic LFSR reseeding architecture

Even though [15] constitutes an effective way to utilize the otherwise wasted variables, it
still suffers from limited compression. Window-based reseeding [4] and dynamic reseeding
[7, 8, 10] offer considerably better compression than [6], [15] as they manage to exploit
very efficiently the seed variables. In the case of window-based reseeding every seed is
expanded into w > 1 test vectors (w is referred to as the window size). Every position of
the window can be used for encoding a different test cube, and thus multiple incompatible
test cubes (i.e., test cubes that differ in at least one of their specified bit positions) as
well as multiple compatible test cubes can be encoded at the same window (i.e. seed).
Moreover, by carefully encoding each test cube at the window position that requires the
replacement of the fewest variables, the probability of encoding additional test cubes at
the same seed using the remaining variables increases. In the case of dynamic reseeding
high compression is achieved by continuously injecting test data from the ATE channels
into the decompressor, through linear (exclusive-or) operations with the current data of the
decompressor. Thus the decompressor is not flushed and the unspecified variables remain
inside the decompressor and they are exploited at a later step for encoding other test cubes.

Both window-based and dynamic reseeding techniques exploit almost all variables in
order to reduce the seed volume, thus they offer high compression. Moreover, [15] requires
all the candidate seeds for all the test cubes to be computed before the selection process
begins, which is not feasible in window-based and dynamic reseeding. Therefore, it is clear
that the approach of [15] cannot be used in these cases. To overcome this problem, a
different approach is followed in this report, which efficiently compresses the test cubes,
and also provides high defect coverage of the resulting vectors. The main idea of the new
method is to generate multiple candidate seeds that implement different unique encodings
of the test cubes. The encoding of each candidate seed is different from the encodings of the
other candidate seeds, therefore, the probability of generating a vector with high output
deviation values increases. At the same time, high compression is ensured by intelligently
generating the candidate seeds in such a way that best exploits the variables for decreasing
the seed volume. Let us see an illustrative example.

Example 1. Consider the circuit shown in Figure 2, which consists of two scan chains loaded
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Figure 2: Example of classical and window-based LFSR reseeding

using a 4-bit LFSR. The initial state of the LFSR is α1α2α3α4. Let us first encode test
cubes t1, t2 shown in Figure 2 into seeds using [15]. Since test cubes t1, t2 are incompatible
(they differ at the specified test bit corresponding to c1), they can not be encoded by the
same seed, and consequently two separate seeds are required. By solving the system of
equations for t1, we compute the seed α1α2α3α4 = 01x0 (denoted as C sd1 in the Table of
Figure 2). Note that α3 is a free variable and it can be replaced by either logic value ‘0’
or ‘1’ providing thus two candidate seeds α1α2α3α4 = 0100 or 0110. In the same way we
compute seed C sd2 for encoding t2 and we calculate the eight candidate seeds by replacing
the three free variables with all eight possible binary combinations. The test vector applied
to the circuit for each of these seeds and the respective output deviations are shown in
Columns 2, 3 of the Table (the output deviations are computed as in [15]). By selecting
the candidate seed corresponding to the first vector in the case of seed C sd1 and the last
vector in the case of C sd2 the maximum output deviation value achieved is equal to 0.156.
Now let us apply the window-based encoding for window size equal to 3. In this case, higher
compression can be achieved because both test cubes t1, t2 can be encoded into a single
seed. For example t1 can be encoded at the first position of the window, and t2 can be
encoded at the third position. However, the computed seed (labeled as W sd1) has no free
variables and thus it cannot provide any candidate seeds. We can easily see though, that
t2 can be also encoded at the second position of the window (W sd2 in Table 1), which
provides a second candidate seed offering the same compression as the first one (i.e. a
single seed suffices to encode both test cubes in this case too). However, it is obvious from
the output deviation values of the respective test vectors of both seeds (sixth column of
table), that by selecting W sd2 instead of W sd1, the maximum value of output deviation
increases from 0.156 to 0.452. �

It is therefore obvious that different window-based encodings yield similar results in
terms of seed volume, but they exhibit significant variations in terms of output deviation
values and potentially of defect coverage. In fact these variations are more significant
than in [15]. This is because the encoding of different combinations of test cubes into a
candidate seed affects the generated vectors much more than the random replacement of
the free variables.
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Finally, we emphasize that the metric proposed in [15] is not efficient since it ignores
important parameters such as the structure of the circuit under test and the output de-
viations of previously selected seeds. A more efficient output deviation-based metric was
proposed in [5] for generating test sets with high defect coverage. This metric takes into
account structural information of the circuit under test in order to further increase the
defect coverage. A major limitation of this metric is that it evaluates each test vector
for either timing-independent or timing-dependent defects. In this report, we use a new
deviation based metric for grading test patterns in order to evaluate the unmodeled defect
coverage of a set of test vectors.

3 A Deviation-based Metric for Time-related Defects

In this section we present the proposed output deviation-based metric for evaluating a
candidate seed s (we present the metric assuming that the s is calculated using window-
based reseeding, as the extension to the dynamic reseeding case is straightforward). We
assume that each seed s is expanded into w test vectors (w is the size of the window) and
each one of them is applied using two capture cycles r1, r2. In other words we assume the
Launch-On-Capture (LOC) technique as it is common in industry. A metric is described
based on output deviations in order to grade window-based LFSR encoding seeds. During
window-based LFSR encoding a seed generates w vectors (contrary to the other LFSR
based techniques). So, it is not clear how a seed is evaluated using the output deviations
metric, which is applied on a single vector. The answer is that the metric is applied to all the
vectors inside w simultaneously, as if all w vectors were a single huge test vector. Moreover,
the calculation of maximum expected deviations values is done with random assignement.
In this report, the metric is applied on linear decompressors and the maximum values
should capture any limitations imposed by the linear correlations of the decompressors
used. Below, the formulation of the new metric is given:

The Maximum Expected Deviation value for output i at capture cycle rk (k = 1, 2) and
fault-free response v (v = 0, 1), denoted as MED(i, rk, v) is an estimate of the maximum
deviation value expected throughout the seed-computation process on output i when its
fault-free response is v at capture cycle rk. It is calculated as follows: initially, for every
test cube, a predetermined number of single-vector seeds (i.e., seeds encoding only one
test cube) are generated by randomly replacing the free variables. For each output i, the
generated test vectors are partitioned into four groups: those producing fault-free responses
0 and 1 at capture cycles r1 and r2. The output-deviation values of all generated test vectors
are calculated and the greatest value for every output i and for each fault- free response
v = 0, 1 at capture cycle rk constitutes MED(i, rk, v). After calculating the MED(i, rk, v)
values, the generated single-vector seeds are discarded.

With the use of the MED values, the evaluation of the candidate seeds at each step of
the seed computation process is done as follows. Let D(s, j, i, rk, v) be the deviation value
at output i for the jth test vector in the window of candidate seed s (j ∈ [1, w]), where w is
the window size), which produces fault-free response v at that output at capture cycle rk.
The value D(s, j, i, rk, v) is considered to be maximum if it is very close to MED(i, rk, v),
or equivalently, if the following inequality is true:

D(s, j, i, rk, v) ≥ F1 ·MED(i, rk, v), v = 0, 1 (1)
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F1 is a real-valued parameter that must be close to 1 for selecting seeds with output
deviation values that are very close to the maximum expected deviation. However, a value
of F1 = 1 must be avoided since sometimes it results in a failure to select seeds (the
predicted MED(i, rk, v) value becomes hard to reach during the selection of the seeds).
As in the case of [5] we also verified that a value of F1 in the interval [0.99, 0.995] provides
high-quality seeds in all cases, and for our experiments we set F1 = 0.995.

The second task of the evaluation process is to rank all outputs according to their
potential of observing errors due to defects. Every output i is assigned two pairs of weights
wo(i, rk, 0), wo(i, rk, 1) for k = 1, 2, which are initially all set equal to the number of lines
in the logic cone of the corresponding output. These weights are indicative of the volume
of undetected defects that can be possibly detected for both fault-free responses 0 and 1
at output i during both capture cycles r1, r2. The set of weights {wo(i, r1, 0), wo(i, r1, 1),
wo(i, r2, 0), wo(i, r2, 1)} and the output deviation values are used during the evaluation of
the candidate seeds for determining a weight WS(s) for every candidate seed s as follows:
assume that seed s is expanded into a window of w test vectors, and let j be one of the
w window positions, i.e., j ∈ [1, w]. Let the number of observable outputs in the circuit
be k. For test vector j, the sets MS[s, j, r1, 0], MS[s, j, r1, 1], MS[s, j, r2, 0], MS[s, j, r2, 1]
consist of all outputs i, with 1 ≤ i ≤ k, for which any of the deviation values D(s, j, i, r1, 0),
D(s, j, i, r1, 1), D(s, j, i, r2, 0), D(s, j, i, r2, 1) satisfy inequality 1.

Finally, for evaluating each candidate seed, the sum of its weights is calculated using
the formula:

WS(s) =
∑
k=1,2

∑
j∈[1,w]

 ∑
i∈MS[s,j,rk,0]

wo(i, rk, 0) +
∑

i∈MS[s,j,rk,1]

wo(i, rk, 1)

 (2)

The above formula means simply that, for either fault-free response 0 or 1, only the weights
of the outputs that get near-maximum deviation values for capture cycles r1, r2 (i.e.,
those belonging to MS[s, j, r1, 0],MS[s, j, r1, 1], MS[s, j, r2, 0], and MS[s, j, r2, 1]) partic-
ipate into the final weights sum WS(s). Note that the first response targets the timing-
independent defects, while the second response targets timing-dependent defects. The seed
with the highest WS value is selected as the one with the best potential to detect timing-
independent as well as timing-dependent unmodeled defects.

The weight WS(s) enables the selection of seeds that generate vectors with the maxi-
mum deviation values at the outputs of large cones of the CUT. The larger the cones are
the greater is the probability of detecting unmodeled defects. However, maximizing the
deviations only at a subset of outputs may result in low defect coverage, even when this
subset consists of the outputs of the largest logic cones. To this end, for every selected seed,
every output i which satisfies equation 1 is identified, and the respective weight wo(i, rk, v)
is divided by a constant factor F2. In that way, the outputs with reduced weight have
much smaller impact on the selection of the next seeds. This is motivated by the fact that
if seed s provides a high deviation at output i for fault-free response v at capture cycle
rk then it is likely that many defects at the fan-in cone of i will be detectable at output
i when s is applied. Thus, test vectors that maximize the deviation at output i for the
same fault-free response and the same capture cycle will be less effective for increasing the
defect coverage during the application of the next seeds. We have chosen the value of F2
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to be equal to 8, as we verified experimentally that a value of F2 in the interval [2, 10] is
sufficient to maximize the deviations at all outputs.

4 Generation of Defect-Aware Seeds

In this section, we first describe the encoding algorithm for defect-aware window-based
LFSR reseeding. Next we discuss the special case of window-based reseeding with window
size w = 1, and the defect-aware dynamic reseeding method.

4.1 Window-Based Reseeding

The window-based reseeding approach proposed in [4] attempts to maximize compression
by using the following very effective encoding criterion:
Compression Maximization Criterion: “The first test cube encoded by every seed is the one
with the highest number of specified bits, and it is encoded at the first window position.
The next most-specified test cube is then encoded at the window position that results to
the replacement of the minimum number of variables. If more than one such test cubes
exist, the test cube that requires the replacement of the fewest variables is encoded. This
continues until no system for any of the unencoded test cubes can be solved in the same
window.”

This criterion efficiently exploits all the properties offered by window-based reseeding
[2,3]. In addition, it attempts to increase the number of densely specified test cubes encoded
by every seed, which, as shown in [4], tends to decrease the overall seed volume even more.
These are all major differences with other strategies used in the literature for encoding test
cubes, e.g., the incremental solver proposed in [10].

In the method presented in this report, two objectives are simultaneously addressed:
the efficient compression of test cubes, and the high defect coverage of the resulting pat-
terns. High defect coverage is targeted by generating candidate seeds implementing different
unique encodings of test cubes. For the selection of every seed, T candidate seeds (T is a
user-defined parameter) are first generated and then evaluated using the output- deviation-
based metric presented in section 3. The best candidate seed according to this metric is
selected each time. High compression is ensured by carefully generating the candidate seeds
using a new encoding criterion which ensures that all candidate seeds provide nearly the
same level of compression that is obtained if the seed is generated using the compression-
maximization criterion (i.e., according to [4]).

The generation of the T candidate seeds is done as follows: we start by encoding the
most-specified test cube (say t1) in the first position of the corresponding window. Next,
for initiating the generation of the T different candidate seeds, we independently apply the
compression-maximization criterion T times in that window, excluding each time all the
previous decisions. In other words, we identify the best T different test-cube encodings
that can be independently performed in the window that embeds t1 in its first position. As
a result, T different windows with t1 in their first position, and other test cubes in the rest
of the positions are determined.

The above procedure implies that we initially target windows that embed two different
test cubes. Note that this does not necessarily mean that the T chosen windows embed T
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Figure 3: An example to illustrate the generation of T candidate seeds

different pairs of cubes (i.e., t1 along with another cube). Test cube t1 can be combined
with the same test cube, ti, more than once, if ti can be encoded in different positions
of the window and the corresponding solutions are among the T best solutions according
to the compression-maximization criterion. Hence, among the T chosen windows, there
may be more than one embedding t1 and ti, with ti encoded in a different window-position
every time. However, if all possible windows that embed t1 with a second test cube are
fewer in number than T , then we increase the volume of the already chosen windows by
encoding in them a different third test cube. Two new different windows embedding three
(n) test cubes can be derived from one window which embeds two (n − 1) test cubes, by
separately encoding in the latter either two different test cubes (one for each new window),
or the same cube in two different positions. The same procedure is repeated until we get
T different windows, corresponding to the T candidate seeds. At this point, the set of
candidate seeds has T members; therefore, we continue by encoding as many test cubes as
possible in the window of each candidate seed by using only the compression- maximization
criterion. Finally, the T generated candidate seeds are evaluated using formula 2, and the
most promising one for increasing the defect coverage is selected. Then, the test cubes
encoded in its window are dropped and the seed-computation process continues in the
same way for selecting the next seed. We provide insights into the above process with the
following example.

Example 2. Let t1, t2, . . . , t10 be 10 test cubes sorted in descending order according to their
number of specified bits, w = 4 be the window size, and T = 5 be the number of candidate
seeds. In Figure 3, we present each window as a column with 4 cells, one for each window
position. Each encoded test cube is reported inside the corresponding cell and the newly
encoded test cubes are highlighted at each step. Initially, we encode test cube t1 (the
most specified one) in window position 1 (Figure 3a). Let us assume that the systems of
equations for test cubes t2, t4, t8, and t10 are independently solvable in the same window
with t1 (t2 is the first cube selected by the compression-maximization criterion, t4 is the
next selection, i.e., if we exclude t2, and so on). As a result, we initiate the generation of
four new candidate seeds (Figure 3b) by encoding each one of these test cubes separately
into the window that we previously encoded t1 (i.e., each one of the four seeds encodes
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one of the following pairs of test cubes: t1 and t2, t1 and t4, t1 and t8, t1 and t10). Since
though, the upper limit of T = 5 candidate seeds has not been reached yet, we continue
and attempt to encode a third test cube in the windows generated so far. This is shown in
Figure 3c. After encoding test cube t4 first, and then t8, in the window embedding t1 and
t2 (the compression-maximization criterion is again used for these selections), we reach the
limit of 5 candidate seeds. Therefore, the expansion of the tree (i.e., the generation of new
windows) now terminates and we continue by encoding in each of the T windows only the
test cubes that maximize compression (Fig 3d). Finally, we have generated five candidate
seeds s1, . . . , s5 which are subsequently evaluated using formula 2. Note that the leftmost
seed (s1 in this case) provides the best compression. Assuming though that seed s3 has the
highest weight among all seeds according to 2, s3 is selected and test cubes t1, t4 and t8
are dropped from the set of test cubes to be encoded. �

In contrast to [4], we examine various encoding options, apart from the one that maxi-
mizes compression (i.e., t1 along with t2 and t4 used in the previous example). Thus, several
choices are available for maximizing defect coverage. By trying different encodings early
on in the encoding process (i.e., after the selection of just the first cube for every window)
we guarantee that the T candidate seeds will be sufficiently different (and hence they will
potentially provide sufficiently different defect coverage). By selecting these different en-
codings using the compression-maximization criterion, we ensure that compression is not
compromised.

Note that by generating multiple candidate seeds with diverse encoding, we cannot
always guarantee an increase in defect coverage. However, we experimentally found that
among the candidate seeds, there exist seeds that increase defect coverage, and these seeds
are effectively identified and selected by the metric presented in Section 3. In addition,
note that by trying different encodings, the complexity of the encoding process increases.
However, we found in our work that even a small value of T can provide significant increase
in the defect coverage offered by the resulting seeds, and thus the encoding process is feasible
for large circuits. This can be easily concluded with the following analysis. Suppose that
the proposed deviation based enhancement method is applied on an encoding technique
with complexity O(N), where N is the size of the test set that needs to be encoded. The
proposed method adds a multiplier factor T at the complexity of the encoding method that
is applied on, and the new complexity becomes O(T · N). The gain in unmodeled defect
coverage saturates very fast as T increases. As a result, an efficient gain can be achieved
for very small values of T (experiments show that small values of T even with T ≤ 30 can
almost maximize that gain and, so, we selected T = 30 for all our experiments). Given
that, the proposed method can be treated as adding a constant complexity factor to the
complexity of the encoding method and consequently the complexity remains unaffected.

After all the seeds are generated, they are sorted according to their potential to detect
defects. Seeds with higher potential are loaded first in the LFSR in order to detect defects
as quickly as possible and thus to decrease the test application time in an abort-at-first-fail
environment. The ranking of the seeds is based on an evaluation process that is similar
to the T candidate seeds evaluation procedure. The difference lies in the fact that this
procedure is now applied to all the selected seeds, and not to candidate seeds. Moreover,
since all seeds are known at this step, the actual maximum deviation value MD(i, rk, v) for
each output i and fault-free response v = 0, 1 at capture cycle rk can be easily computed
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Figure 4: Final ranking of the selected seeds

(it is the largest among the output-deviation values of all test vectors generated by all
calculated seeds). Equation 2 is applied in this case too, but this time the set MS[s, j, rk, v]
is calculated by replacing values MED(i, rk, v) with values MD(i, rk, v) in inequality 1. A
flowchart for this final ranking of the seeds is shown in Figure 4.

4.2 Classical Static LFSR Reseeding and Dynamic Reseeding

One of the advantages of window-based reseeding is that the size of the window (w) offers
a tradeoff between compression and test sequence length. Specifically, large values of w
offer very high compression at the expense of relatively increased test sequence length,
whereas small values of w offer short test sequence length at the expense of relatively
reduced compression. In the degenerate case of w = 1, every seed generates only one
test vector. The test-application time is minimized, but only compatible test cubes can
be encoded by each seed. This restriction limits the encoding ability of the T candidate
seeds’ generation process described in the previous section, and consequently it adversely
affects both the encoding ability and the defect-screening potential of the resulting seeds.
However, the use of uncompacted test cubes combined with the defect aware compression-
maximization criterion presented in the previous section almost eliminates these adverse
effects and also offers the potential for a wide range of encoding options. This is the
significant difference between the classical and the window-based reseeding approach as for
w = 1; in classical reseeding, as proposed in [6] (and adopted in [15]), only one test cube is
encoded by each seed, whereas in window-based reseeding for w = 1, the utilization of the
defect-aware compression-maximization criterion offers an efficient way to combine more
than one compatible test cubes in the same encoded pattern. Thus, as will be shown in
the experimental section, the volume of the defect-aware seeds is low and their quality is
high for w = 1 as well.

Dynamic reseeding resembles window-based reseeding for w = 1, in the sense that they
both generate one test vector per seed. Thus, even though the way in which the systems
of equations are formed is different from static reseeding, the criterion for generating the T
candidate dynamic seeds can be applied in this case too. However, using this criterion, the
seeds are generated in no particular order of effectiveness in terms of defect coverage. Most
of the time, a seed selected near the end of the selection process may be more efficient than
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a seed near the beginning. In the case of static window-based reseeding, the final sorting
of the generated seeds, according to their output deviations (Figure 4) solves this problem
and provides steep defect coverage ramp-up. Note that in the case of static reseeding,
there is no dependency between the static seeds, because each seed flushes the contents
of the LFSR; therefore, sorting of the seeds is possible. However, in the case of dynamic
reseeding, reordering of the dynamic seeds is not possible since the LFSR is never flushed.
To provide both high defect coverage and steep coverage ramp-up in dynamic reseeding,
we allow a small reduction in compression offered by the T -candidate seeds generation
process, in order to facilitate the generation of high-quality seeds. Specifically, instead
of encoding the most-specified test cube as the first test cube of every candidate seed,
we select the T most-specified test cubes which have not yet been encoded. Each one of
these test cubes is encoded as the first test cube of each of the corresponding T candidate
seeds. Consequently, every candidate seed encodes a different test cube as its first test
cube. Then, for each candidate seed, we continue by encoding the test cubes providing the
highest compression (i.e., the most specified ones that also require the replacement of the
fewest variables), excluding all the T test cubes selected at the first step.

This modification allows us to increase the likelihood of generating high- quality can-
didate seeds as early as possible but it can also potentially reduce the amount of test
compression. However, in the modified criterion, the candidate seeds are still among the
most efficient ones in respect to the achieved compression. Experimental results show that
the reduction in compression is infrequent and very small.

Very frequently during the candidate-seed generation process, a single test cube should
be selected from a subset of equivalent, according to the Compression Maximization Cri-
terion, test cubes (i.e., test cubes that include the same maximum number of specified
bits and, at the same time, their encoding requires the replacement of the same minimum
number of variables). In most of these cases, only one of them can be encoded, because the
selection of any such test cube prevents the encoding of the others in the same seed (i.e.,
after any one of them is encoded the rest become un-encodable). We exploit this property
to increase the quality of the candidate seeds without sacrificing compression. Specifically,
during the generation of every candidate seed, the first time that a set of test cubes, say ST ,
is found with the above property, we select m of them (m is a predetermined parameter)
and we separately encode them in the candidate seed. Thus the candidate seed is replaced
by m new ones, and each one of them embeds all the test cubes of the initial candidate
seed (i.e., the one that we replace with the m new ones) as well as one of the test cubes of
set ST . Note that this is done only for the first (and consequently most- specified) m test
cubes found for each one of the initially generated T candidate seeds, in order to keep the
candidate-seeds’ volume low. To bound the number of candidate-seeds’ volume, we set the
maximum value of m equal to 2. Thus, the volume of generated candidate seeds cannot
exceed 2 · T , which is relatively small.

Example 3.Let t1, t2, . . . , t10 be 10 test cubes sorted in descending order according to their
number of specified bits, T = 3 be the number of candidate seeds, and m = 2. Figure 5
presents the various steps of the encoding process. Each dynamic seed encoding test cubes
ta and tb is denoted as s(a, b). At the first step (Figure 5a) test cubes t1, t2, t3 are selected
(they are the most specified ones) and the candidate seeds s(1), s(2), s(3) are determined.
Next we proceed with the seed s(1) and we select the most specified test cubes (excluding
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Figure 5: Illustration of the generation of candidate seeds for dynamic reseeding

tC2, t3) that can also be encoded by this seed. Let cubes t4, t5 and t6 have the same number
of specified bits. Suppose that they also require the replacement of the same number of
variables, and let all three of them be separately encode-able (only one at a time) at seed
s(1). Since m = 2 we select the first two among them, namely t4, t5. Thus candidate seed
s(1) is replaced by candidate seeds s(1, 4) and s(1, 5) – see Figure 5b. We proceed with each
one of them separately by encoding cubes t8 and t9 at seed s(1, 4) and s(1, 5), respectively
– Figure 5c. At this point, the generation of the first two candidate seeds terminates and
we proceed with the next candidate seed s(2) in the same way. Finally, six (equal to the
upper limit of 2 · T ) candidate seeds are generated. These seeds are underlined in Figure
5d. �

Note finally that in dynamic reseeding, each dynamic seed may not be fully specified.
Some variables may remain unspecified and are utilized by the next seeds. However, in order
to apply relation 2 for computing the output-deviation metric of each candidate dynamic
seed, every unspecified variable has to be assigned either the logic ‘0’ or ‘1’ value. To
overcome this problem, the encoding estimates the output deviation values by temporarily
replacing these variables randomly, and based on these estimates, it selects the best dynamic
candidate seed. Then it removes the random assignment from the variables (i.e., they
become unspecified again) and proceeds to the computation of the next dynamic seed. In
this way, compression is not compromised as the variables are utilized only for encoding
test cubes, whereas, at the same time, a good estimate of the defect-screening potential of
each candidate seed is obtained.

12



5 Fault simulation Results

In this section, we evaluate the effectiveness of the defect- aware reseeding methods. The
simulation platform was developed using the C programming language, and all ATPG and
fault simulations were carried out using commercial tools. We conducted experiments using
the largest ISCAS’89 circuits and a subset of the IWLS’05 circuits [1]. The number of scan
chains was set equal to 30 for the ISCAS circuits, 50 for the medium sized IWLS circuits,
and 100 for the large ethernet IWLS circuit. For evaluating the window-based reseeding
method, we considered two window sizes, w = 1 and w = 5. For each benchmark circuit,
a dedicated LFSR with a characteristic primitive polynomial of near minimum size was
selected following the smax + 20 rule [6].

For evaluating the dynamic reseeding method, we conducted experiments with various
ATE-channel volumes (the best results are reported). In addition, the LFSRs used in
window-based reseeding were replaced by ring generators of the same size in dynamic
reseeding. In the rest of the section, two cases are reported for both reseeding approaches:
a) the case, denoted as “Cmp” which refers to the encoding that targets only compression
(the original approach without applying the proposed enhancement method), and b) the
case noted as “Cmp & Def”, which refers to the encoding that targets compression and
defect coverage at the same time. For the “Cmp & Def” case, T was set to 30, m was set
to 2 (m is used only in dynamic reseeding) and the constants F1 and F2 were set equal to
0.995 and 8 respectively.

To demonstrate the advantage of the proposed method compared to the classical reseeding-
based method of [15], which uses a different output deviation-oriented metric, we have im-
plemented the method of [15] as well as the defect-unaware classical reseeding method [6].
We conducted experiments for these two methods using compacted test sets generated by
the same commercial ATPG engine used for the rest of the experiments. Note that in
contrast to the other methods (window-based and dynamic reseeding), for the classical
LFSR reseeding approaches of [6] and [15] we used compacted stuck-at test sets in order
to minimize both the number of required seeds as well as the test-sequence length. These
methods are not accompanied by a dynamic compaction technique. So, their TSL is the
same with the size of the test set. As a result, these methods exhibit the best TSL and
TDV when they are applied on compacted test sets.

In Table 1, we present the test-data volumes in Kbits (1Kbit =103 bits) for the window-
based and dynamic reseeding methods, as well as for the classical (static) reseeding ap-
proaches. The first column lists the names of the benchmark circuits. The next column
presents the size of the compacted test set used for the evaluation of both the classical
defect unaware LFSR reseeding method ( [6]) and the method proposed in [15]. The third
column presents the test data volume for these two methods, which is the same for both
of them (note that [15] differs from the classical LFSR reseeding approach only in the way
that the free variables are filled and does not impact TDV). The next three pairs of columns
present the test data volumes of the w = 1, w = 5 and dynamic reseeding cases, in their
defect-unaware versions (“Cmp”) as well as in their proposed defect-aware versions (“Cmp
& Def”).

As it is obvious from Table 1, window-based and dynamic reseeding clearly outperform
the classical static reseeding approaches ( [6] and [15]), while the highest compression
is always achieved by window-based reseeding for w = 5. Dynamic and window-based
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Table 1: Test data volume results (in Kbits)

Circuit

Classical Window-Based Reseeding
Dynamic ReseedingReseeding w = 1 w = 5

Test Set
[6, 15] Cmp Cmp & Def Cmp Cmp & Def Cmp Cmp & Def

Size
s5378 28.7 16.1 8 8 6.2 6.3 7.6 7.9
s9234 41 23.2 16.9 18.4 14.2 14.3 17.3 17.6
s13207 188.3 78 12 12.8 8.2 8 15.1 15.5
s15850 99 47 18.6 19 13.6 14 16.2 16.7
s38417 238 117.3 64.6 65.4 58.2 59.7 65.6 68.4
s38584 270.8 148 34 34 27.2 26.9 42.3 41.6

ac97 ctrl 148.7 68.6 11 10.9 7.2 7.3 13.9 13.7
mem ctrl 720 373.9 113.9 117.8 79.7 86.6 126.8 128.8
pci bridge 1160.6 343.2 111.4 110.3 100.2 99.7 123 122.9

tv80 281.6 151.4 99.8 102.5 54.3 55.7 81.4 82.7
usb funct 252.7 129.2 57.5 57.4 48.9 49.4 55.1 56.2
ethernet 11.8× 103 1.7× 103 203.8 225.5 162.5 165.1 231.3 233.1

reseeding for w = 1 provide comparable results. The most important observation though is
that for both the window-based and the dynamic reseeding method, the proposed defect-
aware encoding (columns labeled “Cmp & Def”) provides nearly the same compression
as the original defect-unaware encoding (columns labeled “Cmp”). In a few cases, the
proposed defect-aware encoding provides even better compression than the original defect-
unaware encoding. We attribute this result to the window-based encoding criteria, which
consist a heuristic encoding approach and they do not offer an optimal solution. As a
result, arbitary changes on the encoding order caused by the proposed method may result
to better compression results. Nevertheless, it is obvious that the utilization of the output-
deviation metric has no significant adverse impact on compression for both static and
dynamic reseeding methods.

Table 2 presents the test-sequence lengths (TSLs) of the examined reseeding methods
in terms of the test vectors applied to each circuit. Column 2 presents the TSLs of the
classical reseeding approaches (which are the same for both [6] and [15]). The next three
pairs of columns present the TSLs of the w = 1, w = 5 and dynamic reseeding cases, in their
defect unaware versions (“Cmp”) as well as in their proposed defect aware versions (“Cmp
& Def”). As expected, the classical, dynamic, and window-based reseeding for w = 1
offer short and comparable, in many cases, test sequence lengths. Note that the TSLs of
the classical reseeding approaches are shorter than those of window-based reseeding for
w = 1, due to the use of compacted test sets in the former case. As expected, the TSLs of
window-based reseeding for w = 5 are greater than those of the other methods, due to the
larger value of w. However, this can be also attributed to the small LFSR sizes used here.
Larger LFSRs offer considerably shorter TSLs (due to the smaller number of calculated
seeds) with minimal impact on compression. For example, if we increase the size of the
LFSR used for the pci bridge circuit from 90 bits to 200 bits, the test-sequence length
decreases form 5565 vectors to 2695 vectors, whereas the compressed test data volume has
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Table 2: Test sequence length results (# vectors applied)

Circuit

Classical Reseeding Window-Based Reseeding
Dynamic Reseeding[6], [15] w=1 w=5

Cmp Cmp & Def Cmp Cmp & Def Cmp Cmp & Def
s5378 134 199 199 770 785 232 243
s9234 166 282 307 1185 1195 317 324
s13207 269 300 320 1030 1005 313 322
s15850 162 310 316 1130 1170 385 396
s38417 143 808 818 3635 3730 585 611
s38584 185 485 485 1945 1920 288 283

ac97 ctrl 66 274 273 895 910 151 149
mem ctrl 603 876 906 3065 3330 879 894
pci bridge 330 1238 1226 5565 5540 867 866

tv80 757 1663 1708 4525 4645 1693 1719
usb funct 136 959 956 4075 4115 724 739
ethernet 1111 2912 3222 11610 11790 2155 2182

only a limited increase from 100.2 Kbits, to 107.8 Kbits. It is obvious that as the size of
the LFSR increases, the test application time drops considerably, while at the same time
the compression is not significantly affected. In our experiments we selected the size of the
LFSRs based on the smax + 20 rule [6], where smax the number of defined bits of the most
specified test cube.

For evaluating the effectiveness of the proposed defect-aware reseeding methods for
defect screening, we consider the coverage of unmodeled faults, namely transition and
bridging faults, obtained by applying to the circuit under test the test vectors generated
by the computed seeds. As is common in industry, we use the launch-on-capture (LOC)
scheme, also referred to as broadside scan, to apply test-vector pairs. Note that none of
these two fault models were targeted by the test sets (they are only used as surrogate fault
models). The concept of n-detection has been also used in the literature as a surrogate
defect coverage model. However, as shown in [5] n-detection is not always indicative of
defect coverage, therefore we do not use this metric in this report. Finally, as mentioned
in Section 3, for the proposed reseeding methods (w = 1, w = 5 and dynamic reseeding)
the output-deviation metric considers both the responses of each test vector pair. On the
other hand, [15] considers only one response (either the first or the second). Therefore,
for generating results using [15], we chose to evaluate the generated seeds using the second
response of each test-vector pair. This decision favors the timing-dependent defects of [15]
i.e. the transition-fault coverage of its generated patterns.

First we evaluate the proposed encoding with respect to the achieved transition-fault
coverage. The corresponding results are shown in Table 3. Columns 2, 4, 6 and 8 present the
transition-fault coverage achieved by the classical defect-unaware, window-based (for w = 1
and w = 5) and dynamic reseeding approaches respectively, while columns 3, 5, 7 and 9
present the transition fault coverage achieved by the classical defect-aware, reseeding of [15]
and the proposed defect-aware approaches. We see that in both the window-based and
dynamic reseeding, the use of the proposed output- deviation metric increases the transition
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Table 3: Transition-fault coverage (%)

Circuit

Classical Reseeding
Window-Based Reseeding Dynamic
w=1 w=5 Reseeding

[6] [15] Cmp Cmp & Def Cmp Cmp & Def Cmp Cmp & Def
s5378 61.1 63.49 62.9 66.38 65.66 70.32 63.64 66.2
s9234 40.7 49.63 43.04 53.08 53.94 58.41 45.84 53.52
s13207 62 69.48 62.94 68.28 64.31 70.32 60.18 68.52
s15850 52.8 55.25 53.58 56.95 57.58 58.31 53.87 58.04
s38417 79.2 80.24 85.42 87.93 88.85 90.6 84.99 87.32
s38584 61.5 62.21 65.03 66.32 68.1 69.07 63.25 64.02

ac97 ctrl 42.7 45.6 47.18 56.42 52.4 63.95 45 50.81
mem ctrl 41.1 44.24 42.69 46.01 44.03 47.36 43.32 45.72
pci bridge 65.2 69.5 77.39 85.8 82.96 87.5 73.78 82.97

tv80 53.8 59.31 60.16 64.76 61.97 64.9 59.44 62.45
usb funct 63.2 64.49 71.4 75.53 74.53 79.39 70.01 74.2
ethernet 47.6 49.56 53.94 63.79 71.37 83.14 50.75 54.92

fault coverage significantly. Compared to [6], the method described in [15] achieves higher
transition- fault coverage. Moreover, in nearly all cases, the proposed window-based and
dynamic reseeding approaches offer higher transition-fault coverage than [15].

It is obvious from Table 3 that the defect coverage achieved by the proposed method
for w = 5 is higher than the defect coverage achieved by the proposed method for w = 1
and dynamic reseeding. This is mainly a result of the increased diversity of the candidate
seeds in case of w = 5. This diversity can be attributed in part to the fact that many seeds
encode incompatible test cubes when w > 1. Note that the increased test sequence length
in the case of w = 5 contributes also to the increased defect coverage compared to the
other cases. However, according to the results shown in Table 3, this contribution is less
significant than the contribution of the proposed encoding method. Specifically, in most
cases, the defect- unaware window-based reseeding for w = 5 offers lower transition fault
coverage than the defect-aware window-based reseeding for w = 1, even though the test
sequences in the former case are much longer.

Figure 6 illustrates the transition fault coverge ramp-up achieved by the window-based
reseeding method for w = 5 for selected circuits. In each chart, the x-axis presents the
number of the applied vector pairs and the y-axis the transition-fault coverage. The
seeds for the defect-unaware window-based reseeding method have been sorted: a) ran-
domly (curves “Cmp(Rnd)”), and b) in descending order of their stuck-at-fault coverage
(curves “Cmp(Stuck)”). The curves “Cmp & Def” correspond to the proposed defect-aware
window-based reseeding method. It can be seen that the defect coverage of the “Cmp &
Def” method is considerably higher than that for the other methods. Moreover, the pro-
posed method exhibits higher coverage ramp-up than both the other methods, with the
“Cmp(Stuck)” being better than the “Cmp(Rnd)”. Finally, for the largest benchmark eth-
ernet, which consists of 136.2K gates and 10.5K scan flip flops and is more representative
of real-life industry circuits, the improvement in transition-fault coverage is striking. We
have also verified that the “Cmp & Def” method in the case of window-based reseeding for
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w = 1 exhibits also higher ramp-up than the “Cmp” method.
Figure 7 shows the coverage ramp-up achieved by the dynamic reseeding method for

the same circuits reported in Figure 6. As we can see, the proposed defect- aware method
offers steeper coverage ramp-up than the baseline defect- unaware approach for the dynamic
reseeding case as well.

The transition-fault coverage (or the coverage of any other fault model) can be further
improved by using ATPG to generate top-off test cubes, and by subsequently compressing
these test cubes using either static or dynamic reseeding. The advantage offered by this
strategy, when combined with the proposed encoding method is twofold: first, the encod-
ing of the baseline stuck-at test cubes using the defect-aware encoding will cover a large
number of the targeted faults (i.e., the transition faults in our case) and thus the number
of generated top-off test cubes will be relatively small. Second, if the encoding of the newly
generated top-off test cubes is properly tuned using the proposed output-deviation metric,
the generated seeds for them will offer high coverage of other unmodeled defects.

In our final experiment, we evaluate the proposed method and [15] in terms of the
achieved bridging-fault coverage. For evaluating the examined reseeding methods in terms
of their bridging fault coverage, both the BCE+ metric and the random bridging fault
coverage were used.

The bridging fault coverage cannot be accurately measured since the set of bridging
faults is huge and not all of them are equally possible. Bridging fault coverage can only
be accurately (and reasonable) estimated when layout information is available (after the
routing of the interconnections during the final steps of a designing process). Using layout
information, it is feasible to isolate the most possible pairs and drop the complexity of
estimating accurately the bridging fault coverage. However, this approach is infeasible
during test generation, because that is taking place during the early stage of designing
process, when layout information is not yet available. As a result various metrics and
methods have been proposed to measure the bridging fault coverage during the early stages
of a designing process. Although these metrics do not offer an accurate estimation of the
bridging fault coverage, they are very useful for comparison purposes. In this dissertation
we used the following two approaches:

• The Bridging Coverage Estimation (BCE+) metric: In [13] a metric has been
proposed for evaluation of tests in terms of their achieved bridging-fault coverage.
That BCE+ metric is:

BCE+ =
n∑

i=1

f sa−v
i

|F |
·

 |S|∑
j=1

1

|S|
(
1− (1− pj,v)i

)
where v = 0, 1. The parameter f sa−v

i refers to the number of stuck-at-0 faults (for
v = 0) and stuck-at-1 faults (for v = 1) that are detected i times by the test vectors
(n is the maximum number of detections for any stuck-at fault). |S| is the number
of circuit lines, |F | is the total number of stuck-at faults and pj,v is the probability
of signal j to receive the logic value 0 (for v = 0) and 1 (for v = 1). As noted
in [13], BCE+ is not very accurate for estimating the real bridging fault coverage
of a method, but it is very useful for comparing two different methods (the method
with the highest value of BCE+ is deemed to be more effective for defect screening).
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• Random bridging fault coverage: Another approach to compare the bridging
fault coverage between two test sets is to use fault simulation against a set of ran-
dom bridging faults e.g. n pairs of lines can be selected randomly from the CUT.
For each pair, four bridging faults are simulated by considering the four dominant-
AND/dominant-OR bridging faults 4 · n faults are finally simulated. The larger the
n the better the estimation on bridging fault coverage.

As noted before, BCE+ is not very accurate for estimating the real bridging fault cov-
erage of a method, but it is very useful for comparing two different methods (the method
with the highest value of BCE+ is deemed to be more effective for defect screening). Table
4 presents the results. Regarding the proposed window-based and dynamic reseeding ap-
proaches, we find that in all cases, both BCE+ values and random bridging-fault coverage
indicate that the proposed defect-aware encoding “Cmp & Def” achieves higher coverage
of bridging faults than the original “Cmp” method. In contrast, in the method described
in [15], the improvement is small compared to the classical defect-unaware reseeding [6],
and in some cases, there is even a decrease in the BCE+ values. Moreover, all the proposed
encoding methods offer higher BCE+ values as well as bridging fault coverage than [15].
The main reason for this observation is that [15] considers only one of the two responses
of each LOC vector-pair (either the first or the second) for calculating the output devi-
ations. In our experiments, we considered only the second response, as stated earlier, to
enhance the detection of timing related defects. However, bridging faults are detected by
the first response (i.e., the response of each stuck-at test). This is another weakness of [15],
compared to the proposed method, which is able to consider both responses of each pair.
Consequently, we conclude that the proposed method improves the bridging fault coverage,
which is also a significant advantage over [15].

Finally, we evaluate the execution time of the proposed method. Please note, that the
execution time of the proposed method is very fast because its complexity is linear. For a
single threaded implementation the overall complexity is O(C · O(orig)) where O(orig) is
the complexity of the original encoding method that our method is applied on. For very
small values of C the expression C can be considered as constant and the complexity is
unaffected. Although, higher C values theoritically result to better quality results, our
experiments indicate that the quality gain saturates as these values increase. In all our
case studies the value of C = 30 candidate test vectors achieve a near the maximum quality
gain result with very fast execution time (it requires some minutes for all the benchmark
circuits and almost an hour for the largest ethernet benchmark circuit). Moreover, the
proposed method can be easily parallelized by letting each thread handle a seed. This way
the C factor that impacts complexity can be shortened. A parallel implementation with 32
threads on a 4-cores CPU increases by only 4X the execution time for 30 candidates (that
would otherwise theoritically increase the execution time by 30X).

6 Conclusions

We have presented a defect-oriented LFSR reseeding technique that allows us to detect
unmodeled defects using stuck-at test sets in a test- compression environment. This tech-
nique is based on the output-deviations metric for grading the test patterns produced by
the LFSR seeds. We have considered both static and dynamic reseeding, and evaluated

19



unmodeled defect coverage using transition faults and bridging faults as surrogate fault
models. Our results show that compared to compression-driven LFSR reseeding, which is
largely in use today, higher defect coverage and faster coverage ramp-up are obtained using
stuck-at tests and output deviations, without any loss of compression.
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