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Abstract

The Horn-Schunck (HS) optical flow method is widely employed to initialize many motion

estimation algorithms. In this work, a variational Bayesian approach of the HS method is presented

where the motion vectors are considered to be spatially varying Student’s t-distributed unobserved

random variables and the only observation available is the temporal image difference. The proposed

model takes into account the residual resulting from the linearization of the brightness constancy

constraint by Taylor series approximation, which is also assumed to be a spatially varying Student’s

t-distributed observation noise. To infer the model variables and parameters we recur to variational

inference methodology leading to an expectation-maximization (EM) framework with update equa-

tions analogous to the Horn-Schunck approach. This is accomplished in a principled probabilistic

framework where all of the model parameters are estimated automatically from the data. Experimental

results show the improvement obtained by the proposed model which may substitute the standard

algorithm in the initialization of more sophisticated optical flow schemes.

Index Terms

Optical flow estimation, variational inference, Bayesian methodology, Student’s t-distribution.

I. INTRODUCTION

The estimation of optical flow is one of the fundamental problems in computer vision as it provides

the motion of brightness patterns in an image sequence. This may be useful information, among others,

for the determination of 3D structure or the relative motion between the camera and the 3D scene.
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Numerous are the proposed methods and their possible categorization in the literature. Nevertheless,

not only historically but also from a computational perspective, one may distinguish two main families

of methods for optical flow computation. The first category consists of local techniques, relying on

an isotropic coarse-to-fine image warping, having as their major representative the Lucas-Kanade

algorithm [17]. A Gaussian or rectangular window adapted in scale but being isotropic controls a

local neighborhood and jointly with a pyramidal implementation is capable of extending motion

estimates from corners to edges and the interior of regions. This method and its variants are still

among the most popular for flow and feature tracking. The second family of optical flow methods

are the global or variational techniques, relying on an energy minimization framework, with their

main representative being the Horn-Schunck method [14], which optimizes a cost function using

both brightness constancy and global flow smoothness and has also led to many variants of the basic

idea.

The spatial smoothness of the flow field assumed in the above techniques results in many cases to

blurred flow boundaries. To overcome this drawback, many researchers proposed various approaches

such as robust statistics, treating outliers in both matching and smoothness assumptions [8], [9], [19],

variational methodologies [1], [5], [15] incorporating temporal smoothness constraints and gradient

constancy assumptions [10], [28], the integration of spatial priors [24], the segmentation of the image

pixels or the motion vectors [23], [29], [31]. and learning from ground truth data [25]. Moreover,

efforts to combine local and global adaptive techniques were also proposed [13], [26], such as the

technique in [11], where the motion vectors are smoothed before being forwarded to a global scheme

or the method in [6], where the estimated motion of a feature is influenced by the estimated motion of

its neighbors. In both of these methods [11], [6] the spatial integration is isotropic while an anisotropic

smoothness term which works complementary with the data term was also conceived [30].

The variational methods belong to the most accurate techniques for optical flow estimation. In this

approach, the optical flow is computed as the minimizer of an energy functional consisting of a data

term and a smoothness term. The data term is the linearized brightness constancy constraint which

results by omitting the higher order terms (by keeping only the first order approximation) of the

Taylor series expansion of the constraint. This approximation, which is adopted in order to facilitate

the numerical solution is generally not taken into account. However, as it is shown in [1] and [10],

this issue should be thoroughly considered.

The smoothness term assumes global or piecewise smoothness spatially. Its properties may vary

from homogeneous and isotropic [14], to inhomogeneous [10], or even simultaneously inhomogeneous

and anisotropic [21], [27].

Another significant issue in the variational methods is the relative importance between the brightness

constancy term and the smoothness term which is usually controlled by a parameter determined by
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the user remaining fixed during the whole process. This is the case not only for the early algorithm

of Horn-Schunck [14] but also for the latest versions of this category of methods [6], [10], [11]. If

the weight parameter is not correctly tuned, which is a tedious and prone to errors task for each

distinct sequence, it favors one term over the other leading either to motion field degradation or to

oversmoothing.

In this paper, we propose a probabilistic formulation of the optical flow problem by following

the Bayesian paradigm. The proposed model has intrinsic properties addressing the above mentioned

shortcomings.

More specifically, we consider the motion vectors in the horizontal and vertical directions to be

independent hidden random variables following a Student’s t- distribution. This distribution may

model, according to its degrees of freedom, flows following a dominant model (spatial smoothness)

as well as flows presenting outliers (abrupt changes in the flow field or edges). Therefore, to account

for flow edge preservation with simultaneous smoothing of flat flow regions, the parameter of the

t-distribution is also considered to be spatially varying and its value depends on pixel location.

Furthermore, the proposed model takes into account the residual resulting from the linearization

of the brightness constancy constraint. The higher order terms of the Taylor series approximation are

also represented by a spatially varying Student’s t-distributed observation noise. This is, in fact, the

only quantity of the model to be considered as observed. By these means, non linear motion changes

are also captured.

The form of the assumed distributions makes the marginalization of the complete data likelihood,

involving the hidden and the observed quantities, intractable. Thus, to infer the model variables

and parameters we recur to variational inference through the mean field approximation [7] which

yields a variational expectation-maximization (EM) framework. It turns out that the update solution

for the motion field has a form analogous to the update equations of the Horn-Schunck method

[14], with the involved quantities being automatically estimated from the two images due to the

principled probabilistic modeling. In this framework, we show that the parameter controlling the

relative importance of the data and smoothness terms in the standard Horn-Schunck framework is

an intrinsic random variable of the proposed model whose statistics are also estimated by the data.

Numerical results revealed that the method provides better accuracies not only with respect to standard

optical flow algorithms [17], [14] which are used to initialize more sophisticated methods, but also

to a recently proposed version of their joint combination [6].

In the remainder of the paper, the modeling of the motion vectors by a t-distribution is presented

in section II while the overall probabilistic model for optical flow estimation is described in section

III. Model inference is derived in section IV, numerical results are presented in section V and a

conclusion is drawn in section VI.
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II. A PRIOR FOR THE MOTION VECTORS

Let I(x) be the first image frame (target frame) containing the intensity values lexicographically

and let also J(x) be the second image frame (source frame) where x = (x, y) represents the 2D

coordinates of a pixel. The brightness constancy constraint at a given location is expressed by:

∂I

∂x
ux +

∂I

∂y
uy +

∂I

∂t
= 0, (1)

where we have removed the independent variable representing the location x for simplicity. In (1),ux

and uy are the motion vectors in the horizontal and vertical directions respectively, ∂I/∂x and ∂I/∂y

are the spatial gradients of the target image and ∂I/∂t is the temporal difference between the two

images (J(x) − I(x)). The above equation holds for any pixel location x and the determination of

the target and source images is a question of convention as they may be interchanged along with a

simple sign change.

For convenience, we compactly represent the optical flow values at the i-th location by uk(i), for

i = 1, . . . ,N where k ∈ {x, y} and N is the number of image pixels. We now assume that uk(i) are

i.i.d. zero mean Student’s t-distributed, with parameters λk and νk:

uk(i) ∼ St (0, λk, νk) , ∀i = 1, ..., N, ∀k ∈ {x, y}. (2)

The Student’s-t distribution implies a two-level generative process [7]. More specifically, αk(i),

k ∈ {x, y} are first drawn from two independent Gamma distributions: αk(i) ∼ Gamma
(
νk
2 ,

νk
2

)
.

Then, uk(i), k ∈ {x, y} are generated from two zero-mean Normal distributions with precision

λkαk(i)Q
T
i Qi according to p(uk(i)|αk(i)) = N (0, (λkαk(i)Q

T
i Qi)

−1), where Qi is the matrix

applying the Laplacian operator to the flow field at the i-th location. Based on the assumption that

the flow field should be smooth, it is common to assume this type of prior privileging low frequency

motion fields [20], [12].

The probability density function in (2) may be written as

p (uk(i)) =

∫ ∞

0
p (uk(i)|αk(i)) p (αk(i)) dαk(i), (3)

where the variables αk(i) are hidden because they are not apparent in (2) since they have been

integrated out. As the degrees of freedom parameter νk → ∞, the pdf of αk(i) has its mass concentrated

around its mean. This in turn reduces the Student’s-t pdf to a Normal distribution, because all uk(i),

k ∈ {x, y} are drawn from the same normal distribution with precision λk, since αk(i) = 1 in that

case. On the other hand, when νk → 0 the prior becomes uninformative. In general, for small values

of νk the probability mass of the Student’s-t pdf is more ”heavy tailed”.

We assume that the horizontal and vertical motion fields are independent at each pixel location.

This assumption makes subsequent calculations tractable and is common in Bayesian image analysis.
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By defining the N ×N diagonal matrices Ak = diag[αk(1), . . . ,αk(N)]T , k ∈ {x, y}, the pdf of the

horizontal and vertical motion fields may now be expressed by:

p (uk|Ak) = N
(
0,
(
λkQ

TAkQ
)−1
)
, (4)

where Q is the Laplacian operator applied to the whole image and 0 is a N × 1 vector of zeros.

Then, the overall pdf of the motion field u = [ux,uy]
T is given by p(u) = p(ux|Ax)p(uy|Ay), or

equivalently:

p
(
u|Ã

)
= N

(
0,
(
λQ̃T ÃQ̃

)−1
)
, (5)

where the 2N × 1 vector λ = [λx, λy]
T , the 2N × 2N matrix Ã =

 Ax 0

0 Ay

, the 2N × 2N

matrix Q̃ =

 Q 0

0 Q

 and 0 is a zero matrix of size N ×N . Hence, following (5), the marginal

distribution p(u) has a closed form.

III. A PROBABILISTIC MODEL FOR OPTICAL FLOW

The optical flow equation (1) may be written in matrix-vector form as:

Gu = d, (6)

where the block diagonal N ×2N matrix G =
[
Gx Gy

]
, with Gx = diag

[
∂I(x1)
∂x , . . . , ∂I(xN )

∂x

]T
,

Gy = diag
[
∂I(x1)
∂y , . . . , ∂I(xN )

∂y

]T
contains the spatial derivatives in the horizontal and vertical direc-

tions lexicographically and the N ×1 vector d = [I(x1)− J(x1), . . . , I(xN )− J(xN )]T contains the

temporal image differences. Therefore, to visually highlight the role of matrix G, eq. (6) may be also

written as: [
Gx Gy

] ux

uy

 = d. (7)

In order to take into account higher order terms of the Taylor series expansion of the brightness

constancy constraint, which are not considered in (1), we add a noise term to (6) yielding:

Gu+w = d. (8)

We also assume spatially varying Student’s t-statistics for this N × 1 noise vector:

w ∼ N
(
0, (λnoiseB)−1

)
, (9)

where λnoiseB is the noise precision matrix and B = diag[b(1), . . . ,b(N)]T , where the t-distribution

implies that each b(i), i = 1, .., N is Gamma distributed with parameter µ:

b(i) ∼ Gamma
(µ
2
,
µ

2

)
. (10)
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Fig. 1. Graphical model for the optical flow problem.

Following the optical flow matrix-vector formulation in (8) and the noise modeling in (9) and (10),

we arrive at the probability of the temporal image differences given the motion vectors:

p(d|u) = N
(
Gu, (λnoiseB)−1

)
. (11)

The above probabilistic formulation of the optical flow problem is represented by the graphical model

of figure 1. As it may be observed, d is the vector containing the observations (temporal differences),

denoted by the double circle, u = [ux,uy]
T , αx, αy, b, are the hidden variables of the model,

denoted by the simple circles and λx, λy, λnoise, νx, νy and µ are the model’s parameters. Notice

that all of the variables and the observations are of dimension N except of the vector u collecting

the horizontal and vertical motions. This shows the ill-posedness of the original optical flow problem

where we seek 2N unknowns (vectors ux and uy) with only N observations (vector d).

IV. MODEL INFERENCE

In the fully Bayesian framework, the complete data likelihood, including the hidden variables and

the parameters of the model, is given by

p
(
d,u, Ã,b; θ

)
= p

(
d|u, Ã,b; θ

)
p
(
u|, Ã,b; θ

)
p
(
Ã; θ

)
p (b; θ) , (12)

where θ = [λnoise, λx, λy, µ, νx, νy] gathers the parameters of the model. Estimation of the model

parameters could be obtained through maximization of the marginal distribution of the observations

p (d; θ):

θ̂ = argmax
θ

∫ ∫ ∫
p
(
d,u, Ã,b; θ

)
du dÃ db. (13)

However, in the present case, this marginalization is not possible, since the posterior of the latent vari-

ables given the observations p(u, Ã,b|d) is not known explicitly and inference via the Expectation-

Maximization (EM) algorithm may not be obtained. Thus, we resort to the variational methodology
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[4], [7] where we have to maximize a lower bound of p
(
u, Ã,b

)
by employing the mean field

approximation [7]. The details of the derivation are given in the Appendix. Here we just provide the

update equations for the model variables and parameters.

Therefore, in the variational E-step (VE-step) of the algorithm the motion vectors are estimated

by:

u(t+1)
x = λ

(t)
noiseR

(t)
x B(t)Gx

(
d−Gyu

(t)
y

)
, (14)

and

u(t+1)
y = λ

(t)
noiseR

(t)
y B(t)Gy

(
d−Gxu

(t)
x

)
, (15)

where

R(t+1)
x =

(
λ
(t)
noiseG

T
xB

(t)Gx + λ(t)
x QTA(t)

x Q
)−1

, (16)

and

R(t+1)
y =

(
λ
(t)
noiseG

T
y B

(t)Gy + λ(t)
y QTA(t)

y Q
)−1

. (17)

The expectations of the hidden random variables αx(i) and αy(i) are updated by:

⟨αk(i)⟩ =
ν
(t)
k + 1

ν
(t)
k + λ

(t)
k

((
Qu

(t)
k

)2
i
+C

(t)
k (i, i)

) , (18)

where k ∈ {x, y},
(
Qu

(t)
k

)
i

is the i-th element of vector
(
Qu

(t)
k

)
and the N ×N matrix

C
(t)
k = QR

(t)
k QT . (19)

Notice that αk(i) is the equivalent parameter present in many variational methods [14], [10] which

weights the importance between the data and smoothness term and is generally determined by the

user. Here, not only it is updated using the image information but also is spatially varying and has

edge-preserving properties by handling abrupt motion changes.

In a similar manner, the expectation of b(i) is computed by:

⟨b(i)⟩ = µ(t) + 1

µ(t) + λ
(t)
noise

((
Gu(t) − d

)2
i
+ F(t)(i, i)

) , (20)

where
(
Gu(t) − d

)
i

is the i-th element of vector
(
Gu(t) − d

)
and the N ×N matrix

F(t) = GxR
(t)
x GT

x +GyR
(t)
y GT

y . (21)

Recall that b(i) models the residual of the linearization of the brightness constancy constraint using

Taylor series expansion and it is updated only from the data.

In (18) and (20) we have omitted the time step index (t+1) from the expectations only for presen-

tation purposes (notation would become barroque). The size of matrices Rx, Ry and consequently

Cx, Cy and F makes their direct calculation prohibitive. In order to overcome this difficulty, we
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employ the iterative Lanczos method [22] for their calculation. For matrices Cx, Cy and F only the

diagonal elements are needed in (18) and (20) and they are obtained as a byproduct of the Lanczos

method.

Let us notice that as we can see from (14) and (15), there is a dependency between u
(t+1)
x and

u
(t)
y , as well as between u

(t+1)
y and u

(t)
y . This is also the case in the standard Horn-Schunck method.

However, in our approach, all of the involved parameters are computed from the two images.

In the variational M-step (VM-step), where the lower bound is maximized with respect to the

model parameters, we obtain:

λ
(t+1)
noise =

N∑N
i=1⟨b(i)⟩

((
Gu(t+1) − d

)2
i
+ F(t+1)(i, i)

) , (22)

and equivalently for λx and λy:

λ
(t+1)
k =

N∑N
i=1⟨αk(i)⟩

((
Qu

(t+1)
k

)2
i
+C

(t+1)
k (i, i)

) , (23)

with k ∈ {x, y}.

The degrees of freedom parameters νk of the Student’s-t distributions are also computed accordingly

through the roots of the following equation:

1

N

(
N∑
i=1

log⟨αk(i)⟩ −
N∑
i=1

⟨αk(i)⟩

)
+z

(
ν
(t)
k

2
+

1

2

)

− log

(
ν
(t)
k

2
+

1

2

)
−z

(νk
2

)
+ log

(νk
2

)
+ 1 = 0, (24)

for νk, k ∈ {x, y} , where z(x) is the digamma function (derivative of the logarithm of the Gamma

function) and ν
(t)
k is the value of νk at the previous iteration.

Finally, by the same procedure we obtain estimates for the parameter µ of the noise distribution

1

N

(
N∑
i=1

log⟨b(i)⟩ −
N∑
i=1

⟨b(i)⟩

)
+z

(
µ(t)

2
+

1

2

)

− log

(
µ(t)

2
+

1

2

)
−z

(µ
2

)
+ log

(µ
2

)
+ 1 = 0. (25)

In our implementation equations (24) and (25) are solved by the bisection method, as also proposed in

[16]. The overall algorithm is summarized in Algorithm 1 where initialization of the motion vectors

may be obtained by any standard optical flow method. Here we have chosen to use the standard

Horn-Schunck algorithm [14].

V. EXPERIMENTAL RESULTS

The method proposed herein is a principled Bayesian generalization of the Horn-Schunck (HS)

method [14]. Therefore, our purpose is to examine its appropriateness to replace it in the initialization
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Algorithm 1 Variational-Bayes optical flow computation
• Initialize ux, uy by the Horn-Schunck optical flow and set ⟨αx(i)⟩, ⟨αy(i)⟩ to the stationary

values and ⟨b(i)⟩ = 0. Compute Rx, Ry, νx, νy, µ, λx, λy, λnoise as solutions to the stationary

problem.

• DO until convergence

– VE-step:

∗ Compute the expectations ⟨αx(i)⟩ and ⟨αy(i)⟩ using (18).

∗ Compute the expectation ⟨b(i)⟩ using (20).

– VM-step:

∗ Compute λnoise using (22).

∗ Compute λx, λy using (23).

∗ Solve for νx, νy equation (24), using the bisection method.

∗ Solve for µ equation (25), using the bisection method.

∗ Update matrices Rx and Ry in (16) and (17) and the diagonal elements of Cx, Cy and

F using the Lanczos method.

∗ Compute ux, uy from (14) and (15).

of more advanced optical flow schemes. We have also included the well-known and established rival

algorithm of Lucas-Kanade (LK) [17]. These are the two methods widely used for initializing more

sophisticated optical flow algorithms. Moreover, we have included in the comparison the algorithm

proposed in [6], which combines the above two algorithms for feature tracking, based on a framework

proposed in [11]. We call this method Joint Lucas-Kanade (JLK). To visualize the motion vectors

we adopt the color coding figure 2.

Fig. 2. The optical flow field color-coding. Smaller vectors are lighter and color represents the direction.

The proposed method was tested on image sequences including both synthetic and real scenes.

A synthetic sequence included in our experiments consists of two textured triangles moving to
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different directions (fig. 3(a)). We have synthesized two versions of the sequence: one with equal

(Triangles-equal) and one with different (Triangles-unequal) velocity magnitudes for the triangles

in each sequence (the angles of the velocity differ by 90o in both cases). We have also applied our

method to the Yosemite sequence (fig. 3(b)) as well as to the Dimetrodon sequence (fig. 3(c)) obtained

from the Middlebury database [2].

To evaluate the performance of the method two performance measures were computed. The average

angular error (AAE) [3] which is the most common measure of performance for optical flow and

the average magnitude of difference error (AME) [18]. The latter measure normalizes the errors with

respect to the ground truth and ignores normalized error vector norms smaller than a threshold T .

We have employed T = 0.35 in our evaluation.

The numerical results are summarized in table I, where it may be observed that the method

proposed in this paper provides better accuracy with regard to the other methods. More specifically, our

algorithm largely outperforms the Lucas-Kanade method and is clearly better than the Horn-Schunck

algorithm. Notice that the JLK algorithm is not very accurate as its behavior depends partially on a

Lucas-Kanade scheme which fails in all cases (first table row). We conclude that JLK which combines

the two approaches may perform better for sparse optical flow applied to features [6] but not for dense

flow estimation.

Representative results are presented in figure 3. As it may be seen, our variational-Bayes algorithm

provides smooth estimates and simultaneously preserves edge information in the flow field. The

Horn-Schunck algorithm has a unique, user determined parameter for controlling the relative weight

of data and smoothness terms and cannot be as accurate as the newly proposed approach. Moreover,

this parameter is not spatially varying, thus providing results of lower quality (see for instance the

Dimetrodon sequence results in fig. 3(c)). Finally, notice the dilated motion field of the Lucas-Kanade

algorithm in fig. 3(a).

TABLE I

OPTICAL FLOW ERRORS FOR THE COMPARED METHODS.

Method
Triangles-Equal Triangles-Unequal Yosemite Dimetrodon

AAE AME AAE AME AAE AME AAE AME

Lucas-Kanade [17] 5.91◦ 0.15 8.58◦ 0.17 11.65◦ 0.26 27.52◦ 0.56

Horn-Schunck [14] 2.47◦ 0.05 5.57◦ 0.14 5.43◦ 0.13 8.50◦ 0.49

JLK [6] 4.10◦ 0.07 6.95◦ 0.18 7.97◦ 0.18 33.14◦ 0.65

Proposed method 1.06◦ 0.02 3.93◦ 0.10 4.45◦ 0.12 4.31◦ 0.13

Furthermore, the above comments are also confirmed by the cumulative histograms for the AAE
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Sequence Ground truth Lucas-Kanade Horn-Schunck Proposed method

(a)

(b)

(c)

Fig. 3. Representative optical flow results following the coding in fig. 2 for the sequences: (a) Triangles-equal , (b)

Yosemite and (c) Dimetrodon.

and AME for all of the compared algorithms, shown in figure 4. A point on the curve represents

the percentage of optical flow errors that are less or equal than the value of the respective error

on the horizontal axis. The higher the curve the better is the performance of the method. An ideal

performance would provide a curve parallel to the horizontal axis, meaning that all of the errors are

zero.

The proposed method is a Bayesian generalization of the Horn-Schunck algorithm [14] and therefore

it carries the limits and drawbacks of the original approach. The contribution of the method proposed

here is to substitute the standard HS algorithm by its variational version in other optical flow methods

where the mother algorithm is used as an initialization step. The experiments showed that this is worth

performing as there ia a clear gain in accuracy.

The algorithm takes on average less than a minute to converge o a standard PC running MATLAB,

depending on the number of image pixels (e.g. it takes 80 seconds for the 584×388 sized Dimetrodon

sequence). More than half of this time is due to the Lanczos method used for diagonalizing the matrices

in eq. (16)-(17).

VI. CONCLUSION

The optical flow estimation method proposed in this paper relies on a probabilistic formulation of

the problem along with a variational Bayesian inference approach. The spatially varying Student’s
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Fig. 4. Performances of the compared algorithms on the Dimetrodon sequence [2]. Cumulative histograms showing the

percentage of the optical flow errors which are lower than a given value (represented along the horizontal axis) for the AAE

(top) and the AME (bottom).

t-distribution of the motion vectors achieves selective application of smoothness leaving motion edges

unaffected. Furthermore, any residuals of the linearization of the brightness constancy constraint are

also modeled leading to better accuracy.

A perspective of this study is to extend the variational-Bayes framework to other standard variational

methods incorporating more sophisticated constraints on the motion field, like the method in [10] or

the algorithm proposed in [11]. We believe that both of these methods could benefit from the fully

Bayesian framework.
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APPENDIX A

In what follows we present in detail the derivation of the update equations for the model variables

and parameters.

In the fully Bayesian framework, the complete data likelihood, including the hidden variables and

the parameters of the model, is given by:

p
(
d,u, Ã,b; θ

)
= p

(
d|u, Ã,b; θ

)
p
(
u|, Ã,b; θ

)
p
(
Ã; θ

)
p (b; θ) , (26)

where θ = [λnoise, λx, λy, µ, νx, νy] gathers the parameters of the model. Estimation of the model

parameters could be obtained through maximization of the marginal distribution of the observations

p (d; θ):

θ̂ = argmax
θ

∫ ∫ ∫
p
(
d,u, Ã,b; θ

)
dudÃdb. (27)

However, in the present case, this marginalization is not possible, since the posterior of the latent vari-

ables given the observations p(u, Ã,b|d) is not known explicitly and inference via the Expectation-

Maximization (EM) algorithm may not be obtained. Thus, we resort to the variational methodology

[4], [7] where we have to maximize a lower bound of p
(
u, Ã,b

)
:

L
(
u, Ã,b; θ

)
=

∫
u,Ã,b

q
(
u, Ã,b

)
log

p
(
d,u, Ã,b; θ

)
q
(
u, Ã,b

) . (28)

This involves finding approximations of the posterior distribution of the hidden variables, denoted

by q (u), q
(
Ã
)

, q (b) because there is no analytical form of the auxiliary function q for which the

bound in (28) becomes equality. In the variational methodology, however, we employ the mean field

approximation [7]:

q
(
u, Ã,b

)
= q (u) q

(
Ã
)
q (b) , (29)

and (28) becomes:

L
(
u, Ã,b; θ

)
=

∫
u,Ã,b

q (u) q
(
Ã
)
q (b) log

p
(
d,u, Ã,b; θ

)
q (u) q

(
Ã
)
q (b)

(30)

In our case, in the E-step of the variational algorithm (VE-step), optimization of the functional

L
(
u, Ã,b; θ

)
is performed with respect to the auxiliary functions. Following the variational inference

framework, the distributions q (uk), k ∈ x, y, are Normal:

q (u) = N

 mx

my

 ,

 Rx 0

0 Ry

 , (31)

yielding

q (ux) = N (mx,Rx) , (32)

13



and

q (uy) = N (my,Ry) . (33)

Therefore, this bound is actually a function of the parameters Rk and mk, k ∈ {x, y} and a functional

with respect to the auxiliary functions q(ak), q(b). Using (29), the variational bound in our problem

becomes:

L (q(ux), q(uy), q(ax), q(ay), q(b), θ1, θ2) =∫ ∫ ∫  ∏
k∈{x,y}

q(uk; θ1)q(ak)

 q(b) log p(d,u, Ã,b; θ2)du dÃdb

−
∫ ∫ ∫  ∏

k∈{x,y}

q(uk; θ1)q(ak)

 q(b) log

 ∏
k∈{x,y}

p(uk; θ1)q(ak)

 q(b)

 du dÃdb (34)

where we have separated the parameters into two sets: θ1 = [Rx,Rx,mx,my] and θ2 = [ax,ay,b, λx, λy, νx, νy].

Thus, in the VE-step of our algorithm the bound must be optimized with respect to Rk, mk, q(ak)

and q(b).

Taking the derivative of (34) with respect to mk, Rk, q(αk) and q(b) and setting the result equal

to zero, we obtain the following update equations:

m(t+1)
x = λ

(t)
noiseR

(t)
x B̂(t)Gx

(
d−Gyu

(t)
y

)
, (35)

and

m(t+1)
y = λ

(t)
noiseR

(t)
y B̂(t)Gy

(
d−Gxu

(t)
x

)
, (36)

where

R(t+1)
x =

(
λ
(t)
noiseG

T
x B̂

(t)Gx + λ(t)
x QT Â(t)

x Q
)−1

, (37)

and

R(t+1)
y =

(
λ
(t)
noiseG

T
y B̂

(t)Gy + λ(t)
y QT Â(t)

y Q
)−1

, (38)

Notice that the final estimates for ux, uy are mx and my, in (14) and (15), respectively.

After some manipulation, we obtain the update equations for the model parameters which maximize

(34) with respect to q (ak), q (b). The form of all q approximating-to-the-posterior functions will

remain the same as the corresponding prior (due to the conjugate priors we employ) namely q (ak),

q (b) which approximate p (ak|uk, λk,Ck; νk), p(b|u, λnoise,F;µ) will follow Gamma distributions,

∀i = 1, ..., N, ∀k ∈ {x, y}:

q(t+1)(αk(i)) = Gamma

[
ν
(t)
k

2
+

1

2
,
ν
(t)
k

2
+

1

2
λ
(t)
k

((
Qu

(t)
k

)2
i
+C

(t)
k (i, i)

)]
, (39)

and

q(t+1)(b(i)) = Gamma

[
µ(t)

2
+

1

2
,
µ(t)

2
+

1

2
λ
(t)
noise

((
Gu(t) − d

)2
i
+ F(t) (i, i)

)]
, (40)
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where the N ×N matrix

C
(t)
k = QR

(t)
k QT , (41)

and the N ×N matrix

F(t) = GxR
(t)
x GT

x +GyR
(t)
y GT

y . (42)

The size of matrices Rx, Ry and consequently Cx, Cy and F makes their direct calculation

prohibitive. In order to overcome this difficulty, we employ the iterative Lanczos method [22] for

their calculation. For matrices Cx, Cy and F only the diagonal elements are needed in (39) and (40)

and they are obtained as a byproduct of the Lanczos method.

Let us notice that as we can see from (14) and (15), there is a dependency between ux and uy, as

it is the case in the standard Horn-Schunck method.

Notice also that since each q(t+1) (αk(i)) is a Gamma pdf, it is easy to derive its expected value:

⟨αk(i)⟩q(t+1)(αk(i)) =
ν
(t)
k + 1

ν
(t)
k + λ

(t)
k

((
Qu

(t)
k

)2
i
+C

(t)
k (i, i)

) , (43)

and the same stands for the expected value of b(i):

⟨b(i)⟩q(t+1)(b(i)) =
µ(t) + 1

µ(t) + λ
(t)
noise

((
Gu(t) − d

)2
i
+ F(t)(i, i)

) , (44)

where ⟨.⟩q(.) denotes the expectation with respect to an arbitrary distribution q(.). These estimates are

used in (14), (15), (16) and (17), where Â
(t)
k and B̂(t) are diagonal matrices with elements:

Â
(t)
k (i, i) = ⟨αk(i)⟩q(t)(αk(i)),

and

B̂(t)(i, i) = ⟨b(i)⟩q(t)(b(i)),

for i = 1, . . . , N . At the variational M-step, the bound is maximized with respect to the model

parameters:

θ
(t+1)
2 = argmax

θ2

L
(
q(t+1) (uk) , q

(t+1)
(
Âk

)
, q(t+1)

(
B̂
)
, θ

(t+1)
1 , θ2

)
, (45)

where

L
(
q(t+1) (uk) , q

(t+1)
(
Âk

)
, q(t+1)

(
B̂
)
, θ

(t+1)
1 , θ2

)
∝

⟨log p
(
d,u, Âk, B̂; θ2

)
⟩q(uk;θ

(t+1)
1 ),q(t+1)(Âk),q(t+1)(B̂) (46)

is calculated using the results from (14) - (40).

The update for λnoise is obtained after taking the derivative of

L
(
q(t+1) (uk) , q

(t+1)
(
Âk

)
, q(t+1)

(
B̂
)
, θ

(t+1)
1 , θ2

)
15



in (34) with respect to it and setting it to zero:

λ
(t+1)
noise =

N∑N
i=1 b

(t+1)(i)
((

Gu(t+1) − d
)2
i
+ F(t+1)(i, i)

) , (47)

By the same means we obtain the estimates for λx and λy:

λ
(t+1)
k =

N∑N
i=1α

(t+1)
k (i)

((
Qu

(t+1)
k

)2
i
+C

(t+1)
k (i, i)

) , (48)

with k ∈ {x, y}.

The degrees of freedom parameters νk of the Student’s-t distributions are also computed accordingly

through the roots of the following equation:

1

N

(
N∑
i=1

log⟨αk(i)⟩q(t+1)(Ak) −
N∑
i=1

⟨αk(i)⟩q(t+1)(Ak)

)
+z

(
ν
(t)
k

2
+

1

2

)

− log

(
ν
(t)
k

2
+

1

2

)
−z

(νk
2

)
+ log

(νk
2

)
+ 1 = 0, (49)

for νk, k ∈ {x, y} , where z(x) is the digamma function (derivative of the logarithm of the Gamma

function) and ν
(t)
k is the value of νk at the previous iteration.

Finally, by the same procedure we obtain estimates for the parameter µ of the noise distribution

1

N

(
N∑
i=1

log⟨b(i)⟩q(t+1)(b(i)) −
N∑
i=1

⟨b(i)⟩q(t+1)(b(i))

)
+z

(
µ(t)

2
+

1

2

)

− log

(
µ(t)

2
+

1

2

)
−z

(µ
2

)
+ log

(µ
2

)
+ 1 = 0. (50)

In our implementation equations (49) and (50) are solved by the bisection method, as also proposed

in [16].
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