
RangeMerge: Online Performance Tradeoffs in
NoSQL Datastores

Giorgos Margaritis Stergios V. Anastasiadis

Department of Computer Science
University of Ioannina

Ioannina 45110, GREECE
{gmargari,stergios}@cs.uoi.gr

Technical Report DCS 2011-13
September 29, 2011

Abstract—Datastores are distributed systems that manage
enormous amounts of structured data for online serving and
batch processing applications. The NoSQL datastores weaken the
traditional relational and transactional model in favor of hori-
zontal scalability. They usually support concurrent operations
with demanding throughput and latency requirements which
may vary across different workload types. A typical tradeoff
between query handling and total update costs frequently leads
to design decisions that sacrifice query responsiveness for higher
update throughput. For this tradeoff, critical component at each
storage server is a storage layer that schedules data transfers
between memory and disk. After consideration of a similar
function in full-text search engines, we systematically examine
alternative approaches for online maintenance of structured data
over a datastore. Subsequently, we introduce and analyze the
Rangemerge algorithm to minimize search time at reasonable
total insertion cost. We implement several representative algo-
rithms and experimentally evaluate their update and query cost
under the same conditions. We conclude that the Rangemerge
algorithm achieves minimal search time and substantially reduces
the data insertion time of known methods with comparable search
efficiency.

I. INTRODUCTION

Datastores are a new class of distributed systems specifi-
cally developed to manage the petabytes of data required by
online serving and bulk processing applications, such as web
indexing, social networking, electronic commerce and cloud
computing in general [1]–[8]. Due to the enormous scale of
the handled data and the respective performance requirements,
these systems typically span up to several thousands of com-
modity servers. Depending on the needs of the supported
applications, the stored data is structured as collections of
key-value pairs, multi-dimensional sorted maps or relational
tables of records with attributes. At the top, a centralized
or distributed index is used to identify the server and cor-
responding file of each stored item. For instance, consistent
hashing can be used to dynamically partition the data over
multiple servers [3]. Alternatively, interval mapping can be
applied to horizontally partition the items into groups, called
tablets, which are distributed across different machines [2].

At each server, an underlying storage layer is responsible

to manage the stored items within the main memory and the
disks. This is a critical component for the system performance
and durability, because it schedules the data transfers between
memory and disk during bulk loading and regular reads or
updates. Alternative design options for this component include
relational storage engines, dynamic file collections, or file-
based hash tables [2]–[4], [9]. In practice, the dynamically
maintained collections of immutable files are a typical choice
for production systems; they have been most successfully
applied to a broad range of batch and online applications for
several years [2], [5], [10], [11].

In general, when incoming data arrives at a specific server
for permanent storage, initially it is accumulated in the form
of appends in memory to amortize the disk access cost during
the subsequent write. Over time, memory gets full and data is
transferred to an immutable sorted file on disk [2]. A search
over a key range is usually applied to all the immutable files on
disk to ensure that the entire set of eligible entries is returned.
As the number of immutable files increases, it is necessary
to merge them so that search time remains constrained. File
merging is similar to external sorting. A single file of sorted
items is often called run in sorting terminology. Also, a tree
representation can be used to specify the sequence of merging
steps [12]. The leaves of the tree correspond to the initial runs,
while their internal nodes refer to the runs that result from
the merging of the descendants. Previous research in database
systems has identified the optimization objective to perform
as few merge steps and move as few records as possible [13].
Known heuristics always merge the smallest existing runs or
mostly use maximal fan-in.

In the past, the information retrieval community has already
extensively investigated the problem of online index mainte-
nance to handle queries concurrently with updates. In full-text
search, inverted file is an index structure that maps each term
to lists of pointers (posting lists) over documents that contain
the term. The indexing cost can be amortized if multiple
inverted files are created on disk and occasionally are merged
according to specific patterns (merge-based method) [14].
Alternatively, the posting list of each term can be separately

maintained on disk (in-place method). Then, the need for
contiguity makes it necessary to relocate the lists, if they run
out of space at their end. Hybrid indexing methods separate the
terms into short and long, based on their respective number of
postings [15]. For efficiency, short terms are maintained using
merge-based methods, while long-terms use in-place methods.

Despite the prior systematic research on online indexing,
current datastores seem to follow ad-hoc approaches without
rigorous justification of the structures and parameters used.
The Bigtable designers mention to bound the number of
files on disk by periodically executing in the background a
merging compaction that includes memory and a few files [2].
Regularly, they also apply a major compaction that merges all
files into one and suppresses data that was previously marked
as deleted. Cassandra merges into one the sorted files which
are similar with respect to size [5]. Anvil combines multiple
files into one to ensure that their average number grows at most
logarithmically over time, but also recognizes the need for
more carefully tuned merging parameters and conditions [11].
The read performance of HBase is reportedly sensitive to the
number of files [7]. The system originally sorted files by age
and only included in compaction an older file, if it had size
within twice the size of the newer file. To avoid excessive
increase in the number of files, a recent compaction algorithm
only includes an older file, if it has size within the aggregate
size of all newer files [7]. In Section II, we explain in more
detail the architecture of the above systems.

It is not surprising to see a similarity between full-text
search engines and datastores, given that web and mailbox
indexing is one of the main functions that datastores orig-
inally served [2], [5]. Nevertheless, the application scope
of datastores spans a broad range of interactive and batch
workloads over datasets with diverse statistical properties.
Previous research reported that production systems keep the
high percentiles of serving latency within tens or hundreds
of milliseconds, while the high percentiles of latency may
be an order of magnitude longer than the average [3], [16].
Performance improvement is possible if incoming writes are
temporarily buffered in memory before reaching the disk,
while durability is also achieved if the buffered writes are
previously logged to disk at sequential throughput. In fact, high
write throughput is additionally facilitated by the underlying
append-optimized filesystem typically used (e.g. GFS [17]).

Therefore, in our present work we mostly focus on the
read latency of datastores. We first describe the problem of
online index maintenance for datastores and identify several
performance characteristics that were previously reported to
introduce tuning challenges. We trace several problems back
to the way that current datastores manage incoming data
in memory and disk. Subsequently, we propose an online
maintenance algorithm, called Rangemerge. The algorithm
practically minimizes data fragmentation on disk, while it
substantially reduces the data insertion cost in comparison
to known methods with comparable search responsiveness.
We implement several online maintenance algorithms over the
same platform and experimentally confirm our results across

different workloads.
Our contributions in the present work can be summarized

as follows:

• Problem description of storage management for NoSQL
datastores.

• Unified consideration of previous efforts on related prob-
lems.

• Introduction and asymptotic analysis of the Rangemerge
algorithm to address the problem.

• Implementation of several algorithms and experimental
study of the performance tradeoffs they achieve.

In Section 2, we present previous related work, and in Section
3 we set the assumptions and goals of datastore online
maintenance but also outline several existing approaches to
solve the problem. In Section 4, we introduce and asymp-
totically analyze the Rangemerge algorithm. In Section 5, we
present the characteristics of the experimentation platform that
we implemented. In Section 6, we study the experimental
results across different workloads. Finally, in Section 7, we
summarize our conclusions and future work.

II. RELATED WORK

In this section, we present previous research activity that
relates to the online storage management of datastores.

Dynamic dictionary. A dictionary stores a mapping from
keys to values. In a two-level memory hierarchy that consists
of an internal memory and a disk (external memory model), let
N be the number of stored items and B the I/O block size [18].
The B-tree implements a dynamic dictionary structure at
O(logBN) asymptotic query and update cost [19]. Bender et
al. introduce B-trees for a multi-level memory hierarchy, where
cost is analyzed without explicit consideration of the block
size B (cache-oblivious model) [20]. Gerth et al. introduce the
xDict dynamic dictionary, which theoretically achieves optimal
tradeoff in space, query and update costs under a broad range
of conditions [21]. Byde et al. propose the stratified B-tree,
analogously to xDict, as a dynamic dictionary structure which
achieves optimal cost tradeoff for fully-versioned data [22].
However, datastores typically rely on a distributed index and
use simple structures locally at each storage server.

Storage indexing. In transaction systems with high rate of
insertions, the log-structured merge-tree defers and batches
index changes from memory to a hierarchy of one or more
disk-based trees [23]. The rolling merge method is a variation
of merge sort used to delete a contiguous segment of entries
from one tree and merge it to the next in the hierarchy.
For environments with intense update loads and concurrent
analytics queries, the partitioned exponential file divides data
into partitions with potentially overlapping key ranges [24].
Each partition is organized into multiple levels with geomet-
rically increasing sizes. The first level lies in memory and the
remaining ones on disk, while each level includes a tree-like
hierarchical index. A query has to go through the index at all
levels of one partition (or more) to retrieve the relevant entries.
Due to the limited amount of data stored at each storage server

for scalability, simple local structures are often sufficient in
datastores.

Text search. Early work on full-text search parsed doc-
uments and gathered term occurrences into a memory-based
inverted index, which was occasionally flushed to disk for cost
amortization [25]. Later research introduced the Geometric
Partitioning method that divides the inverted index on disk
into a controlled number of partitions [14]. It offered a range
of tradeoffs with respect to query time, indexing rate and
disk space. In order to reduce the index building time, hybrid
methods categorize terms as short or long depending on
their respective low or high frequency of occurrence over the
document collection [15]. As a result, merge-based methods
or in-place appends are used to manage short or long terms.
Previously, we introduced the Selective Range Flush method to
dynamically keep low the query time and maintenance cost of
an inverted index on disk over fixed-sized blocks [26]. Instead,
in the present work we consider datastore structured records
whose values have comparable size across different keys. For
their maintenance we introduce the Rangemerge algorithm,
which always merges the range with most accumulated data
from memory to disk.

Key-value stores. Cloud data management is comprehen-
sively surveyed by Sakr et al. [27] and Cattell [1]. Bigtable is
a structured storage system that partitions stored data across
multiple servers, called tablet servers [2]. After being logged
on disk, the incoming data is placed in the memory of
a tablet server. When a memory threshold is exceeded, a
minor compaction transfers the memory data to a disk file,
called SSTable. Periodically, a merging compaction transforms
multiple SSTables into a single file, while a major compaction
produces a single SSTable free of deleted entries. Bloom filters
are used to avoid unnecessary key searches over SSTables. A
similar design is also adopted by the Cassandra system [5]. In-
stead, Percolator adds cross-row, cross-table transactions over
Bigtable [28]. It uses multi-versioning to support transactions
with snapshot-isolation semantics that provide the appearance
of reading from a stable snapshot at some timestamp.

The HBASE system is an open-source implementation of
Bigtable [6]. The performance of HBASE is sensitive to
the number of disk files per key range and the number of
writes buffered in memory. Careful tuning of the compaction
algorithm combined with special metadata files can be used
to improve the read performance [7]. The Amazon Dynamo
system stores key-value pairs over a distributed hash table,
and accepts a pluggable persistent component for local storage
(e.g. the Berkeley Database Transactional Data Store) [3].
The system specifies performance target for high latency
percentiles (e.g. 99.9th). Performance increases substantially
for reduced durability, if incoming data is initially maintained
in memory and only periodically transferred to disk. Service-
level objectives based on upper percentile latency are typical
in cloud computing and complicate resource provisioning due
to the higher variance of upper percentiles in comparison to
average latency [16].

Boxwood implements a distributed B-tree as a storage

infrastructure with full transaction support [29]. Anvil is a
modular, extensible toolkit for database backends, such as
abstract key-value stores [11]. The system periodically digests
written data into read-only tables, or combines multiple ta-
bles into a single one. To amortize the combining cost, a
merging pattern similar to Geometric Partitioning is applied.
The FAWN system implements a distributed key-value store
over flash storage for reduced power consumption [30]. It
maintains an in-memory hash table at each server that maps
keys to an append-only data log on flash storage. G-Store
provides dynamic multi-key transactional access over key-
value stores [31]. Haystack is a persistent storage system for
photos that implements data volumes as large files over an
extent-based file system across clusters of machines [32]. All
the above systems face the problem of storage management
for structured data, but they don’t examine it systematically.

Relational datastores. An evaluation of alternative com-
mercial cloud database systems shows a diversity across the
business models of the different providers, which makes
choices dependent on the application scalability require-
ments [33]. The PNUTS system provides a simple relational
data model that organizes data into tables of records with
attributes [4]. The system uses as a redo log an indepen-
dent publish/subscribe system, called message broker. For
different types of record accesses, such as point or range,
the storage unit of PNUTS can use different physical layers,
such as a filesystem-based hash table or a MySQL/InnoDB
database. The primary bottleneck of the system is the disk
seek capacity of the storage units and the message brokers.
The bulk record insertion into horizontally-partitioned tables
can achieve higher throughput, if a planning phase is used
to minimize the sum of partition movement and insertion
time [34]. Alternatively, snapshot text files can be used for
direct data import into the MySQL tables that lie underneath
PNUTS [8].

Megastore adds ACID transactions, indexes and queues to
Bigtable [10]. It statically partitions structured data into entity
groups, which are independently and synchronously replicated
over a wide area. Entities within a single entity group are mu-
tated with ACID transactions, while operations across different
entity groups are implemented with efficient asynchronous
messaging. The ecStore realizes a scalable range-partitioned
storage system over a tree-based structure [35]. The system au-
tomatically organizes histogram buckets to accurately estimate
access frequencies and replicate the most popular data ranges,
while it bases transaction management on multi-versioning and
optimistic concurrency control. The ES2 system supports both
vertical and horizontal partitioning of relational data [9]. It
also provides efficient bulk-loading, small-range queries for
transaction processing and sequential scans for batch analytical
processing. Record search is facilitated by a metadata catalog
combined with a distributed index. However, the above sys-
tems mostly rely on existing relational storage engines for their
operation.

Request
Routers

Storage
Nodes

Clients

put(k1,v1) get(k1)

(a) Datastore

Item
buffer

Log

sort & flush
when full

write

read

Item
buffer

merge

Log

(b) Access Paths

Fig. 1. (a) A datastore receives access requests from the clients. The request routers forward the operation to the appropriate storage node(s). At the storage
node, a local index locates the requested item and updates or returns it. (b) A range query reads data from one or multiple files according to the storage
algorithm used. A storage server safely logs incoming updates at sequential throughput. As a result, we don’t examine the latency of individual updates, and
only consider the query latency and the total insertion cost for a dataset.

III. ONLINE STORAGE MANAGEMENT IN DATASTORES

In the present section, we describe our assumptions, the
goals that we set, and existing algorithms that potentially can
serve our objectives.

A. Assumptions and Goals

Datastores handle several types of data-intensive tasks, such
as analytical processing, bulk loading and online serving.
Given the tuning challenges that reportedly arise in online data
serving [7], we focus on the performance tradeoffs that arise
in datastores under this type of workload. Even though we
consider the cost of data insertion and short scan requests,
we leave the issues of analytical processing and bulk loading
outside the scope of the present work [8], [36]. In particular,
we examine NoSQL datastores, which are differentiated from
traditional relational database systems in several aspects [1].
They horizontally partition and replicate data over many
servers, provide weak concurrency model and simple call
interface, use memory and distributed indexes for storage
and allow dynamic addition of attributes to records. The
interface supports put request with a single record as parameter
and get requests with a range of columns as parameter. For
conciseness, in the rest of the present document, we refer to
NoSQL datastores simply as datastores.

It is typical for a distributed datastore to employ a multi-
layer indexing structure (Fig. 1(a)). The upper layer (some-
times called router or master [2], [4]) is a centralized or
distributed index that locates the server where a range of items
is stored. The lower index layer is responsible to manage the
local data at each server and accordingly handle the incoming
queries and updates. Datastores support range queries, as scans
along a key range, or single key requests over a version
interval. We regard point accesses as a special type of range
queries, and only consider range queries along the key dimen-
sion of unversioned data. We leave for future work the study
of query handling over versioned data with close consideration
of specialized dictionary structures recently designed for that
purpose [22].

At each server of the datastore, fast lookup operations are
often supported by a memory-based sorted array of lookahead
pointers to a configurable subset of the stored records on
disk [2]. Unnecessary disk accesses for point queries can
be significantly reduced through memory-based Bloom fil-
ters [37]. However, this reduction is not possible for range
queries (Fig. 1(b)). Complex tree-like structures incur asymp-
totically logarithmic query cost for the case that the index
does not entirely fit in memory, as is the case with traditional
relational workloads [20], [21]. However, tree-like structures
are not required by datastores, which are optimized for low
latency and achieve capacity scalability through horizontal
partitioning of the data and the corresponding requests across
multiple servers.

Availability is increased through eager or lazy data repli-
cation across multiple servers, undertaken by the datastore
itself or an underlying distributed filesystem [2]–[4], [17]. In
general, the corresponding consistency of data across multiple
servers can be maintained with a quorum algorithm that
specifies the minimum number of servers that participate in
a successful operation [3]. Both distributed consistency and
availability are high-level issues that we don’t consider, since
we mainly study the storage functionality of a single server.
Durability requirements vary depending on the performance
characteristics of the applications. One possibility is to do
write-ahead logging of all incoming updates before they
reach the memory of the server [2]. Hence, write operations
complete at sequential disk throughput if a separate disk is
dedicated to logging, while the write path to the final disk
location is only occasionally invoked by the storage server. Al-
ternatively, writes reach memory initially, and become durable
at a later stage by periodic data transfer to disk, or memory
replication among multiple servers [3], [4].

The storage management at each server is often imple-
mented through a dynamic file collection or a relational storage
engine [2], [3]. Alternatively, file-based hash tables and tree-
like indexes are also mentioned as possible solutions for more
specialized applications [9]. In a general evaluation study

conducted by Yahoo!, systems that relied on dynamic file
collections (e.g. Cassandra, HBASE) were at least as efficient
or better in comparison to a system based on relational storage
engine (e.g. PNUTS) [6]. Since we also target general-purpose
workloads, we only consider dynamic file collections at the
storage layer of each server. They optimize durable data
insertion relatively easily at the expense of read processing
over multiple files and subsequent aggregation of the results.
On the contrary, the read performance of datastores is hard to
optimize for several reasons:

• Service-level objectives are usually specified in terms of
upper-percentile latency, which lies an order of magnitude
higher than average latency [3], [16].

• Read performance is correlated with the number of files
at each server, which depends on the respective file
compaction algorithm [7].

• The amortization of disk writes may lead to intense
device usage that causes intermittent delay (or disruption)
of the normal online operation [38].

• The diversity of supported applications requires accept-
able operation across different distributions of the input
data keys, including several variations of the Zipfian
distribution [6].

Previous referenced research has already pointed out these
issues and examined tuning options that help improve the
performance under particular workloads. However, to the best
of our knowledge, the present work is the first to comprehen-
sively investigate the problem of indexed storage management
in datastores.

In our study, we deal with the online maintenance of
persistent data placed at each storage server of a NoSQL
datastore. We aim to achieve search cost of no more than
one disk I/O operation per point query only increased by the
necessary additional transfer time for range queries. Assuming
that updates become safe through write-ahead logging, we
efficiently transfer accumulated written data from memory to
disk without considerable interference with concurrent read
operations. We are interested to keep read latency (including
the upper percentiles) within tens or hundreds of milliseconds,
as required by online applications.

B. Known Methods

We seek to efficiently transfer accumulated items from
memory to disk in a way that guarantees fast range reads and
writes. Ideally, we shall keep all items sorted and contiguously
stored on disk in a single file to minimize query time. A similar
objective previously showed up in the online maintenance
of inverted files for text retrieval. However, an item in text
retrieval includes a posting list whose size follows the Zipfian
distribution. As a result, the latest hybrid methods in text
retrieval manage differently the keys according to their list
size [15].

In a datastore, all records can be assumed to have similar
–but not necessarily equal– storage space requirements and be
treated the same. The access frequency of keys may follow a
uniform distribution or different variations of the Zipfian [6].

Immediate
Merge

Rangemerge

Geometric
Partitioning

Query cost

U
p

d
at

e
co

st

Nomerge

Fig. 2. We illustrate the query/update tradeoff across the different algorithms
that we consider. The update cost refers to the total cost of data insertion rather
than the latency of individual updates. We have Rangemerge appear to the left
of Immediate Merge implying lower query cost, because we directly control
the I/O intensity of concurrent file merges (insertions) through the rangefile
parameter F (Section VI).

In comparison to search, data freshness in datastores is more
demanding due to the semantics of the applications involved.
For instance, a stale shopping cart is easily noticeable in
electronic commerce, while a recently received message can
remain non-searchable for a few minutes in a mailbox without
problem. Practically, we shall not backlog read and write
requests just because a server is currently busy with file
merging. Quite surprisingly, existing datastores only loosely
control this maintenance overhead through heuristics about the
number and relative size of merged files [7].

Despite the above differences, approaches used by text
indexing are already widely adopted in datastores. In partic-
ular, merge-based algorithms that transform multiple inverted
files into one can be directly applied to the immutable files
maintained by a datastore server [11]. As baseline case of file
merging, we may refer to the Nomerge method which does
not merge the files at all [39]. Every time the memory of
size M gets full, data is transferred to disk creating a new
sorted file of size M . Let’s assume that the disk access cost
is linear function of the number of data items involved in
the operation. For a collection of N items, the method incurs
isertion cost Θ(N) to create the N/M sorted files on disk.
Correspondingly, every point query touches all files on disk
with asymptotic cost O(N/M), assuming that only a small
chunk of each file is retrieved in memory for the search.

Immediate Merge is a straightforward merge strategy, which
keeps at most one record file on disk [15]. When memory gets
full, memory data is merged with the existing file resulting
into a new file. This algorithm guarantees that sorted data is
stored contiguously on disk leading to at most one disk access
per point query, making the respective cost O(1). For every
merge, the algorithm reads the entire stored file and incurs
asymptotically quadratic cost (Θ(N2/)M) in total. The reads
and writes of index building are simple sequential scans that
occur at high disk throughput. Although this observation is
not captured by the asymptotic cost, it substantially affects
the actual cost of index building.

itemtable

rangefiles

rangetablea b3 c6 d2 e7 f4 x4 y9 z2

MEMORY

DISK

Fig. 3. The Rangemerge algorithm buffers incoming data items in the
itemtable and uses rangefiles to organize the data on disk. The rangetable
is a sparse index that points to chunks across each rangefile on disk.

Geometric Partitioning strives to minimize the total merging
cost by keeping multiple record files on disk, but without
allowing their number to grow excessively [14]. For a sequence
of files on disk, the method introduces the parameter r to
specify a lower (rk−1M) and upper bound ((r−1)rk−1M) in
the capacity of the kth file, where k = 1, 2, . . . Consequently,
we get a series of hierarchical merges that guarantee similar
sizes between the files that participate in each merge. The disk
access cost involved in index building is asymptotically equal
to Θ(N log(N/M)). A point access incurs cost O(log(N/M))
over a collection of N indexed items. Several datastores (e.g.
Cassandra, Anvil, Lucene) adopt a similar method to merge
the immutable files maintained on each server [5], [11].

In Geometric Partitioning, one parameter value that was
previously suggested is r = 3 [14]. Logarithmic merge is an
alternative hierarchical merging method similar to Geometric
Partitioning with r = 2 [15]. For a workload dominated by
queries, a variation of Geometric Partitioning allows to directly
constrain the largest number p of files maintained on disk with
dynamic adjustment of parameter r. Then, Immediate Merge
can be considered as a special case of Geometric Partitioning
with p = 1. In general, the indexing cost of Geometric
Partitioning with p partitions is asymptotically Θ(N(N

M)
1
p).

The point query cost is O(p), because every key search touches
p files on disk. We illustrate the comparative update/query
behavior of the algorithms in Fig. 2

IV. THE RANGEMERGE ALGORITHM

In current datastores, the local indexing methods at the
storage server aim to combine high update throughput with fast
range queries. They amortize writes through batch sequential
transfers from memory to disk and improve read performance
of point queries with data-intensive merge sorts and Bloom
filters. We introduce the RangeMerge simple indexing method
that supports point queries with one block access, and batch
updates or range queries with approximately sequential disk
accesses. Bloom filters can be used complementarily to Range-
Merge for additional efficiency in point queries.

A. Description

Ultimately, we strive to minimize the response time of reads
and writes at the lowest total cost of memory space and
disk throughput involved at each storage server. We make
the practical assumption that datastores partition their data
across multiple servers in order to scale their throughput and
storage capacity at low latency. In production datastores, each
storage server usually ends up with a few terabytes of data on
disk, which is easily indexed through a memory-based sparse
structure [2]. The necessary structure is a sorted array with
pairs of keys and lookahead pointers to disk locations every
few tens or hundreds kilobytes of stored data.

For instance, Cassandra indexes chunks of 256KB, while
Bigtable indexes blocks of 64KB [2], [5]. If the average
rotation and seek time takes about 7ms in a 10KRPM SAS
drive, then the data transfer time for 64-256KB takes an
additional 10-25% [40]. With an index entry with length 100
bytes for every 256KB, we need 4GB of memory to sparsely
index 10TB of data on disk. The estimation drops to 1GB
of memory, if we use key hashes of size about 20 bytes each
(e.g. with SHA1). Typically, the sparse index is considered soft
state that is periodically checkpointed to disk and dynamically
reconstructed in case of unexpected server failure. Thus, the
remaining challenge in the storage indexing of datastores is
to develop a maintenance strategy that: (i) Efficiently flushes
data from memory to disk, (ii) Keeps limited the disk space
fragmentation, and (iii) Stores at single disk location the data
of each key range.

We believe that it is unnecessary to handle separately the
flush of all newly accumulated data from memory to disk and
the merge of existing data files into larger ones. If we reach
a high threshold in the allocated memory, it is sufficient to
selectively flush specific data items. Our objective is to free
as much memory space as possible with minimal cost to read
existing data items from disk and flush them back after their
merge with selected new data. Furthermore, it is unnecessary
to maintain enormous files on disk for the sake of sequential
I/O during disk reads and writes. In current enterprise SAS
(or SATA) disks, the disk overhead accounts for about 1% of
the total I/O cost if the amount of transferred data is in the
order of 10MB. Essentially, we may efficiently handle range
queries if we allocate our data in disk blocks of size 10MB
or more. In order to additionally serve point queries with
one disk operation, we need to always merge new data from
memory into existing data items on disk at the corresponding
key ranges.

We call Rangemerge the algorithm that we introduce for the
storage management of datastores. The pseudocode appears as
Algorithm 1. In order to achieve our goals, we allocate the
disk space in rangefiles of fixed size F (e.g. F = 256MB).
This makes unnecessary to reorganize the disk space over time
for the allocation of variable-sized files [24]. The rangefile
size is multiple of the basic I/O block size B configured in
the operating system (e.g. B = 4KB). We partition our data
into key-sorted ranges, each of which fits into a respective

Algorithm 1 RANGEMERGE in pseudocode
Input: Indexed data in memory and disk
Output: Updated indexed data in memory and disk
1: Sort ranges by total memory space
2: while (allocated memory space ≥ M) do
3: {Get range with max size in memory}
4: R := range of max memory space
5: {Merge R to disk}
6: Read the rangefile of R from disk
7: Merge the rangefile of R with the new data
8: {Handle rangefile overflow}
9: if (rangefile overflows) then

10: Allocate new rangefiles
11: Split and store data equally across old/new rangefiles
12: else
13: Store merged data on old rangefile
14: end if
15: Release the memory space reserved for range R
16: end while

rangefile. Each rangefile consists of fixed-size chunks of size
C (e.g. C = 256KB) that we locate with a sparse memory-
based index, called rangetable. We also maintain in memory
a separate mapping structure that we call itemtable. We use
the itemtable to hold the items currently held in memory, and
support fast key lookup and key-sorted scan. We allow the
stored items to have variable size.

Initially, the server has a single range (−∞,+∞) without
any stored data. We insert new data items in memory until the
occupied space reaches a preconfigured memory threshold M .
At this point, we determine the victim range that we flush to
disk. The victim range is merged with the rangefile that stores
the respective key range on disk. The merging requires to read
from disk the entire occupied part of the rangefile, merge it
with the victim range in memory, and move it back to disk
(lines 6-14). Then, we free the memory space reserved for the
victim range (line 15). During merge, rangefiles are read from
and written back to disk sequentially. When we flush a victim
range to disk, it is possible that the needed disk space exceeds
the rangefile size (line 9). In that case, we equally split the
range into two or more subranges as required. Subsequently,
we transfer the data from memory to a corresponding number
of rangefiles that we dynamically reserve on disk for that
purpose (lines 10-11).

The choice of the victim range affects the system efficiency
in several ways. First, every time we flush a range, we incur
the approximate cost of one rangefile read and write for the
respective merge. If a range is frequently updated, then it may
be preferable to keep it in memory and avoid to pay the merge
cost multiple times. Second, if a range is used often by point
or scan queries, then it is beneficial to keep the range cached
and avoid to read it back shortly later. Third, a flushed range
releases memory space that is vital for the system to continue
accepting new append-like updates. The larger amount of
memory space we release, the longer it will take before we pay
the merging cost again. In the meantime, the disk throughput
can serve synchronous read requests, which are directly visible

as query response time to the user.
Essentially, the range flush incurs the cost of rangefile up-

date and the benefit of memory release. We adopt a relatively
simple rule to victimize the range with the largest amount
of data currently in memory (line 4). The intuition behind
this choice is to maximize the freed memory space along
with the efficiency of the data transfer to disk. Our approach
only greedily considers the current size of each range in
memory. However, it does not account for the current size of
each rangetable on disk; this affects the merging cost and the
distribution of future read/write requests across the different
key ranges, which determines the caching behavior of the
algorithm [41]. Despite its simplicity, the victimization rule of
Rangemerge proved robust across a multitude of experiments
that we did. More complex analytical rules could potentially
capture more accurately the above cost-benefit tradeoff, but
we leave for future work a more thorough consideration of
this optimization.

B. Asymptotic Analysis

We aim to estimate the total amount of bytes transferred
to/from disk during the insertion of N data items. For sim-
plicity, we assume that each item occupies one byte. Since a
rangefile starts with size 0.5F right after a split and cannot
exceed size F , we estimate the average rangefile size equal to
F̄ = 0.75F . Without loss of generality, we also assume that
every time the occupied memory reaches the capacity M , we
flush Mf bytes to disk. This is a bookkeeping simplification,
which simply implies that we flush the necessary number of
ranges required to free space amount Mf in main memory.

Let kf be the number of flushes of Mf bytes needed
to insert N items and km be the corresponding number of
rangefile merges involved. Then, the total number of bytes
read from and written from disk is:

T = kf ·Mf + km · 2 · F̄ , (1)

where the factor 2 accounts for the read and write of each
rangefile during a merge.

Since at every memory flush we free Mf bytes, the insertion
of N items incurs the following number of flushes:

kf =
N

Mf
(2)

Let Ri be the total number of ranges in the server before
the ith flush. If the items are uniformly distributed across the
ranges, then all ranges occupy the same space Bi in memory
during the ith flush. As a result Bi = M/Ri, and the total
number of rangefile merges can be estimated as follows:

km =

#flushes∑
i=1

(number of merges at ith flush)

=

kf∑
i=1

Mf

Bi
=

kf∑
i=1

Mf

M/Ri
=

kf∑
i=1

Mf · Ri

M
(3)

In order to estimate the number of ranges Ri in the server,
we first note that the (i − 1) prior flushes transferred to disk

a total of (i− 1) ·Mf bytes. Given the average rangefile size
F̄ , we have:

Ri =
(i− 1) ·Mf

F̄
(4)

From equations 3 and 4, we get:

km =

kf∑
i=1

Mf · (i−1)·Mf

F̄

M

=

kf∑
i=1

M2
f · (i− 1)

F̄ ·M

=
M2

f

F̄ ·M
N/Mf∑
i=1

(i− 1)

≤ M2
f

F̄ ·M
N/Mf∑
i=1

N

Mf

=
M2

f

F̄ ·M · N
2

M2
f

=
N2

F̄ ·M (5)

It is interesting that in Eq. 5 the factor Mf cancels out. Using
equations 1, 2 and 5, we conclude:

T = Θ

(
N2

M

)
(6)

The estimation of Eq. 6 is an asymptotic upper bound that we
developed for comparison purposes with previous work, based
on the amount of data transferred between memory and disk.
This cost does take into consideration the low disk access
overhead of Rangemerge due to sequential data transfers.
Additionally, it does not account for the fact that data insertion
with Rangemerge only incurs relatively small disk transfers of
low interaction with regular read operations. We do explore
experimentally these issues in Section VI.

C. Summary

Overall, the Rangemerge algorithm offers the following
important benefits in the storage management of datastores:

1) Keep the data of each key range at a single disk location.
2) Support sequential disk scans over ranges of sorted data.
3) Batch incoming updates in memory for efficiency.
4) Selectively free memory space for new updates and

natively cache data for queries.
5) Naturally apply disk updates in range granularity.
6) Reduce disk overhead in merges through sequential

accesses.
7) Prevent external fragmentation of disk space and the

need for periodic reorganization.

Equation 6 makes the indexing cost of Rangemerge asymp-
totically equivalent to that of Immediate merge. Also, both
these algorithms require at most one disk operation per point
query. We show the comparative behavior of Rangemerge with
respect to other algorithms in Fig. 2. In the remaining sections,
we experimentally evaluate Rangemerge in comparison to
representative existing algorithms that we implemented in the
same environment.

V. EXPERIMENTATION ENVIRONMENT

We developed a simple storage manager that implements file
compaction on disk with the following algorithms: Nomerge,
Immediate Merge, Geometric Partitioning and Rangemerge.
We use a red-black tree in memory to maintain the incoming
data in sorted order. Nomerge dumps the memory data to
a new sorted file every time memory gets full. Immediate
Merge merges memory data into the single sorted file that
it holds on disk. Geometric Partitioning keeps a controlled
number of sorted files for alternative parameter values r = 2,
r = 3 and p = 2. The value r = 3 was used in the
original work on Geometric Partitioning, the value r = 2
is similar to the Logarithmic method and p = 2 is another
interesting case extensively studied previously [14], [15], [39].
Rangemerge picks the range with the largest amount of data
in memory and merges it into the respective rangefile on disk.
For all the algorithms, we maintain the same sparse index in
memory to efficiently find the file chunks that store the items
of a particular key range. We implemented the algorithms
using C++ and the standard template library (STL). The
new code that we developed consists of 3588 uncommented
lines. It is important to point out that our implementation
of Rangemerge is unoptimized especially with respect to the
memory management operations that it heavily involves.

We did our experiments on a server running the Debian
distribution of Linux version 2.6.18. The server is equipped
with one quad-core x86 2.33GHz processor, 3GB RAM,
gigabit ethernet and two 7200RPM SATA disks of 500GB
each. The disk specification mentions 16MB buffer size, 8.9ms
average seek time, and 72MB/s sustained transfer rate. We
store all the data files on one (non-root) disk over the default
(ext3) file system of Linux. In the Rangemerge algorithm, we
used rangefiles of size F=256MB and chunks of size C=64KB.
In all our experiments we load the system with key-value
pairs of 100 bytes key and 1KB value. We experimented over
synthetic datasets that follow the uniform and Zipfian key
distribution [6], [42]. In our figures, we only show results
for the uniform distribution. The numbers were similar for a
Zipfian keys distribution across the different ranges (unless we
trivially allowed insertions with overwrites of existing items
to reduce disk traffic). In the range queries we use requests for
10 consecutive items. We run all the experiments on the same
machine to avoid any measurement variations due to minor
system configuration differences across our cluster.

VI. PERFORMANCE EVALUATION

In the present section, we experimentally evaluate the data
insertion time of different algorithms, the relationship between
read latency and number of files for Geometric Partitioning,
the disk transfer activity and the number of files maintained
by the different algorithms, the indexing time for different
amounts of memory. This quantification is important, because
it captures important issues not accounted for by an asymp-
totic analysis. In particular, we show that Immediate Merge
maintains a single file on disk, but increases substantially the
insertion cost. Geometric Partitioning reduces substantially the

 1

 10

 100

 1000

 10000

 100000

 0 1 2 3 4 5 6 7 8 9 10

In
se

rt
io

n
tim

e
(s

)

Data inserted (GB)

Update Cost

Immediate
Rangemerge
Geometricp=2
Geometricr=3
Geometricr=2

Nomerge

(a)

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
 0

 10

 20

 30

 40

 50

 60

N
um

be
r

of
 d

is
k

fil
es

R
an

ge
 g

et
 la

te
nc

y
(m

s)

Data inserted (GB)

Query Cost

Number of disk files
Range get latency

(b)

Fig. 4. (a) We measure the indexing time for 10GB of data across six algorithms including three variations of Geometric Partitioning. We notice that
Immediate Merge takes an order of magnitude longer than Geometric Partitioning, while Rangemerge lies in-between. (b) On an otherwise idle system, we
measure the latency of a single range read for Geometric Partitioning with r=2 across different dataset sizes up to 5GB. We notice a visible correlation between
read latency and the number of files that hold the data on disk.

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7 8 9 10

T
ot

al
 d

at
a

re
ad

/w
rit

te
n

(G
B

)

Data inserted (GB)

(a) NoMerge

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8 9 10

T
ot

al
 d

at
a

re
ad

/w
rit

te
n

(G
B

)

Data inserted (GB)

(b) Logarithmic/Geometric r=2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7 8 9 10

T
ot

al
 d

at
a

re
ad

/w
rit

te
n

(G
B

)

Data inserted (GB)

(c) Geometric r=3

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3 4 5 6 7 8 9 10

T
ot

al
 d

at
a

re
ad

/w
rit

te
n

(G
B

)

Data inserted (GB)

(d) Geometric p=2

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 1 2 3 4 5 6 7 8 9 10

T
ot

al
 d

at
a

re
ad

/w
rit

te
n

(G
B

)

Data inserted (GB)

(e) RangeMerge

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1 2 3 4 5 6 7 8 9 10

T
ot

al
 d

at
a

re
ad

/w
rit

te
n

(G
B

)

Data inserted (GB)

(f) Immediate Merge

Fig. 5. We measure the cumulative volume of data transferred to/from disk during the insertion of a dataset with increasing size. Nomerge only writes
the 10GB that it receives as input, while the remaining algorithms incur additional transfer activity for the merges. Geometric Partitioning demonstrates a
stair-wise increase in disk access intensity over time due to the amortizations of the applied merging pattern.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 d

is
k

fil
es

Data inserted (GB)

(a) NoMerge

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 d

is
k

fil
es

Data inserted (GB)

(b) Logarithmic/Geometric r=2

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 d

is
k

fil
es

Data inserted (GB)

(c) Geometric r=3

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 d

is
k

fil
es

Data inserted (GB)

(d) Geometric p=2

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 d

is
k

fil
es

Data inserted (GB)

(e) Rangemerge

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 d

is
k

fil
es

Data inserted (GB)

(f) Immediate Merge

Fig. 6. During the insertion of a dataset, we evaluate the number of disk files across which we store the data of a key range. As expected, Immediate Merge
and Rangemerge store each range at a single file, while Geometric Partitioning varies it in a controlled way. Nomerge stores data over an unbounded number
of files.

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

Im
m

ediate

Rangem
erge

Geom
p=2

Geom
r=3

Geom
r=2

Nom
erge

In
se

rt
io

n
tim

e
(s

)

(a) Memory size = 128MB

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

Im
m

ediate

Rangem
erge

Geom
p=2

Geom
r=3

Geom
r=2

Nom
erge

In
se

rt
io

n
tim

e
(s

)

(b) Memory size = 256MB

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

Im
m

ediate

Rangem
erge

Geom
p=2

Geom
r=3

Geom
r=2

Nom
erge

In
se

rt
io

n
tim

e
(s

)

(c) Memory size = 512MB

 0

 500

 1000

 1500

 2000

 2500

 3000

Im
m

ediate

Rangem
erge

Geom
p=2

Geom
r=3

Geom
r=2

Nom
erge

In
se

rt
io

n
tim

e
(s

)

(d) Memory size = 1GB

Fig. 7. We examine the sensitivity of insertion time to memory space M . Rangemerge and Immediate merge reduce insertion time in proportion to the extra
memory space. In the case of M = 1GB, Rangemerge takes 30.8min, while Geometric Partitioning with p = 2 takes 21.5min, i.e., 44% less.

insertion cost, but maintains multiple files on disk increasing
the read latency. Also, the respective access activity shows a
stair-wise intensity behavior, which reportedly interferes with
the handling of regular data reads [38], [43]. Rangemerge
strikes a desirable balance among the above issues, because it
maintains every key range at a single disk location, merges
data from memory to disk in configurable granularity of
rangefiles and incurs total insertion cost that lies between
Immediate Merge and Geometric Partitioning.

A. Insertion Time and Disk Transfer Volume

Insertion time refers to the total delay to insert a dataset
to the storage manager. It is predominantly spent on I/O,
although in addition to disk I/O operations it includes the
processing time to sort and maintain the data in memory.

We first examine the insertion time for a dataset across the
Nomerge, Rangemerge, Immediate Merge, and three variations
of Geometric Partitioning for p=2, r=2 and r=3. Geometric
Partitioning for p=2 guarantees that the server uses up to two
files to store the data on disk. In order to have each experiment
complete within a few hours, we scale down the amount of
inserted data to 10GB and correspondingly limit to 128MB the
amount of memory used for indexing [6]. In Section VI-C, we
examine in detail the sensitivity of indexing time to memory
space.

In Fig. 4(a) we illustrate the cumulative insertion time for
an increasing dataset size. Nomerge only takes 10min because
it simply dumps the data from memory to disk as 81 sorted
files of 128MB each. At the other extreme we have the
Immediate Merge that only maintains one sorted file on disk

but takes more than 5 hours. Rangemerge keeps each range
at a single disk location with total indexing time about 2.85
hours. Geometric Partitioning for p = 2 requires about 54
min and for r = 2 it takes 28 min, but it has to maintain
multiple files on disk. Furthermore, in Fig. 5 we measure
the cumulative volume of data transferred between memory
and disk during the indexing of the dataset. It is interesting
that Geometric Partitioning leads to a stair-wise curve, which
also appeared in Fig. 4(a) for the insertion time. The observed
pattern is reasonable because Geometric Partitioning merges
the files to keep their number small but leads to unbounded file
size. This disk access activity is documented as undesirable,
because file merging heavily loads the storage devices and
negatively affects the system responsiveness [38], [43]. Simi-
larly, algorithm designers strive to deamortize the complexity
of data structures [20].

Although less visible in the figure, Immediate Merge also
regularly merges memory data to an unbounded disk file which
eventually becomes 10GB. On the contrary, Nomerge transfers
data in relatively small units of 128MB, while Rangemerge
uses rangefiles whose configurable size keeps them up to
256MB in our settings. In fact, we can set the rangefile pa-
rameter F to smaller values without considerably affecting the
overall system efficiency. Overall, in Fig. 5 the amount of disk
data read and written varies significantly across the different
algorithms. Nomerge only transfers to disk the amount of
10GB that it receives as input, Immediate Merge incurs a total
disk access volume of 803GB and the remaining algorithms lie
in-between. Across all the cases, the disk accesses are efficient
due to the prevalent sequential transfers.

B. Read Latency and Number of Disk Files

In our experiments, we only consider the latency of get
requests (Fig. 1(a)). However, we don’t examine put requests,
because updates return immediately after the data reaches a
write-ahead log at sequential disk throughput (Fig. 1(b)). Thus,
in Fig. 4(b) we consider the Geometric Partitioning for r = 2.
We measure the latency of a range get as we increase the
amount of indexed data in steps of 50MB. In the same plot, we
also show the number of sorted files maintained by the system
on disk. Even though a Bloom filter can potentially suppress
point queries to a file, this is not the case with range queries.
Thus, we assume that a range get requires to read from every
disk file the chunk that contains the requested key range. This
translates to multiple random I/O operations, whose number
depends on the number of disk files.

In particular, Fig. 4(b) shows that the get latency varies
roughly between 10-60ms respectively in close correlation
with the number of files that changes between 1 and 6. The
reported numbers are best case in the sense that we only
have one read operation running in the system. The reported
latency is average over ten repetitions. In production environ-
ments, the server handles multiple concurrent read operations
which usually increase the load and corresponding latency.
Also, we don’t consider the additional delays introduced for
consistency when the results by multiple servers are combined

–for instance, through a quorum algorithm [3]– to the response
returned to the client. Nonetheless, it is clear that multiple disk
files affect by several factors the read latency of the system.

We further investigate this issue in Fig. 6 for all the six
algorithms. In Fig. 6(b-d) Geometric Partitioning allows the
number of files to reach respectively 6, 4 or 2, according to the
indicated values of r and p. Immediate Merge stores all data on
a single file, which allows a range read to locate the requested
data at a single disk location. We relax this restriction of
Immediate Merge in Rangemerge to store every key range at
a single disk location but partition the data into rangefiles of
configurable capacity. Thus, given the requirement of online
applications for interactive operation, we manage to minimize
the latency of reads by avoiding multiple seeks across different
files at the data storage level.

C. Sensitivity to Memory Size

In another set of experiments, we examine the sensitivity
of indexing time to the available amount of memory space.
We aim to evaluate how the different algorithms use extra
memory space to decrease the insertion delay. Along with the
128MB that we used in our previous experiments, we also
consider M = 256MB, M = 512MB and M = 1GB.
As we see in Fig. 7(a-d), an increasing amount of memory
tends to reduce proportionally the indexing time of Immediate
Merge and Rangemerge. Essentially, as we devote more space
for batching of incoming data in memory, we accordingly
reduce the number of merging steps and the respective amount
of data that we transfer between memory and disk. It is
interesting that Geometric Partitioning does not obtain the
same proportional benefit from extra memory. In fact, the
reduction of indexing time diminishes across the algorithm
variations that we examine and especially for p = 3. Also,
for M = 1GB the insertion time of Rangemerge becomes
29.4% more than Geometric Partitioning with r = 3. We
conclude that as server configurations become more powerful,
we anticipate the reduced read latency of Rangemerge to be
combined with comparatively lower total insertion time.

VII. CONCLUSIONS AND FUTURE WORK

We describe the problem of indexed storage management
in datastores and consider existing algorithms from litera-
ture. We specify the requirements for minimal query time
and reasonable insertion cost with consideration of the I/O
intensity during data merges between memory and disk. Then,
we propose and analyze the Rangemerge algorithm. In exper-
imental comparison with existing algorithms, we show that
Rangemerge practically achieves minimal search time with
configurable intensity of disk updates. In our future work, we
plan to incorporate Rangemerge into a multi-tier datastore and
evaluate the latency of the access path along the distributed
index. Other extensions that we plan to do include the handling
of multi-versioned data and the optimization of the range
victimatization rule that we use in Rangemerge.

REFERENCES

[1] R. Cattell, “Scalable sql and nosql data stores,” ACM SIGMOD Record,
vol. 39, no. 4, pp. 12–27, Dec. 2010.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: a distributed
storage system for structured data,” in USENIX Symposium on Operating
Systems Design and Implementation, Seattle, WA, 2006, pp. 205–220.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in ACM Symposium on
Operating Systems Principles, Stevenson, WA, October 2007, pp. 205–
220.

[4] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bo-
hannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “Pnuts:
Yahoo!’s hosted data serving platform,” in VLDB Conference, August
2008, pp. 1277–1288.

[5] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” SIGOPS Operating Systems Review, vol. 44, pp. 35–40,
April 2010.

[6] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in ACM Symp. on
Cloud computing, Indianapolis, IN, June 2010, pp. 143–154.

[7] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan, N. Spiegelberg,
H. Kuang, K. Ranganathan, D. Molkov, A. Menon, S. Rash, R. Schmidt,
and A. Aiyer, “Apache hadoop goes realtime at facebook,” in ACM
SIGMOD Conf, Athens, Greece, June 2011, pp. 1071–1080.

[8] A. Silberstein, R. Sears, W. Zhou, and B. Cooper, “A batch of pnuts:
Experiences connecting cloud batch and serving systems,” in ACM
SIGMOD Conf, Athens, Greece, June 2011, pp. 1101–1112.

[9] Y. Cao, C. Chen, F. Guo, D. Jiang, Y. Lin, B. C. Ooi, H. T. Vo, S. Wu,
and Q. Xu, “Es2: A cloud data storage system for supporting both oltp
and olap,” in IEEE Intl Conf Data Engineering, Hannover, Germany,
Apr. 2011, pp. 291–302.

[10] J. Baker, C. Bond, J. C. Corbett, J. J. Furman, A. Khorlin, J. Larson,
J.-M. L, Y. Li, A. Lloyd, and V. Yushprakh, “Megastore : Providing
scalable, highly available storage for interactive services,” in Biennial
Conf. on Innovative Data Systems Research, Asilomar, CA, Jan. 2011,
pp. 223–234.

[11] M. Mammarella, S. Hovsepian, and E. Kohler, “Modular data storage
with anvil,” in ACM Symposium on Operating Systems Principles, Big
Sky, MO, 2009, pp. 147–160.

[12] D. E. Knuth, The Art of Computer Programming: Searching and Sorting,
2nd ed. Addison Wesley Longman, 1998, vol. 3.

[13] G. Graefe, “Query evaluation techniques for large databases,” ACM
Computing Surveys, vol. 25, no. 2, pp. 73–170, June 1993.

[14] N. Lester, A. Moffat, and J. Zobel, “Efficient online index construction
for text databases,” ACM Transactions on Database Systems, vol. 33,
no. 3, pp. 1–33, Aug. 2008.

[15] S. Büttcher and C. L. A. Clarke, “Hybrid index maintenance for
contiguous inverted lists,” Information Retrieval, vol. 11, pp. 197–207,
June 2008.

[16] B. Trushkowsky, P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and
D. A. Patterson, “The scads director: Scaling a distributed storage system
under stringent performance requirements,” in USENIX Conf on File and
Storage Technologies, San Jose, CA, Feb. 2011, pp. 163–176.

[17] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in ACM Symposium on Operating Systems Principles, Bolton Landing,
NY, Oct. 2003, pp. 29–43.

[18] A. Aggarwal and S. Vitter, Jeffrey, “The input/output complexity of
sorting and related problems,” Commun. ACM, vol. 31, pp. 1116–1127,
September 1988.

[19] R. Bayer and E. M. McCreight, “Organization and maintenance of large
ordered indexes,” Acta Informatica, vol. 1, no. 3, pp. 173–189, Feb.
1972.

[20] M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R. Fogel, B. C.
Kuszmaul, and J. Nelson, “Cache-oblivious streaming b-trees,” in ACM
Symposium on Parallel Algorithms and Architectures, San Diego, CA,
June 2007, pp. 81–92.

[21] G. S. Brodal, E. D. Demaine, J. T. Fineman, J. Iacono, S. Langer-
man, and J. I. Munro, “Cache-oblivious dynamic dictionaries with up-
date/query tradeoff,” in ACM-SIAM Symposium on Discrete Algorithms,
Austin, TX, Jan. 2010, pp. 1448–1456.

[22] A. Twigg, A. Byde, G. Milos, T. Moreton, J. Wilkes, and T. Wilkie,
“Stratified b-trees and versioned dictionaries,” in USENIX Workshop on
Hot Topics in Storage and File Systems, Portland, OR, June 2011.

[23] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured
merge-tree (lsm-tree),” Acta Informatica, vol. 33, pp. 351–385, June
1996.

[24] C. Jermaine, E. Omiecinski, and W. G. Yee, “The partitioned exponential
file for database storage management,” The VLDB Journal, vol. 16, pp.
417–437, October 2007.

[25] A. Tomasic, H. Garcia-Molina, and K. Shoens, “Incremental updates of
inverted lists for text document retrieval,” in ACM SIGMOD Conference,
Minneapolis, Minnesota, May 1994, pp. 289–300.

[26] G. Margaritis and S. V. Anastasiadis, “Low-cost management of inverted
files for online full-text search,” in ACM Conference on Information and
Knowledge Management, Hong Kong, Nov. 2009, pp. 455–464.

[27] S. Sakr, A. Liu, D. M. Batista, and M. Alomari, “A survey of large scale
data management approaches in cloud environments,” IEEE Communi-
cations Surveys & Tutorials, 2011, (accepted for publication).

[28] D. Peng and F. Dabek, “Large-scale incremental processing using dis-
tributed transactions and notifications,” in USENIX Conf. on Operating
Systems Design and Implementation, Vancouver, Canada, Oct. 2010, pp.
1–15.

[29] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and L. Zhou,
“Boxwood: Abstractions as the foundation for storage infrastructure,” in
USENIX Symposium on Operating Systems Design and Implementation,
San Francisco, CA, Dec. 2004, pp. 105–120.

[30] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and
V. Vasudevan, “Fawn: A fast array of wimpy nodes,” in ACM Symp. on
Operating Systems Principles, Big Sky, MO, Oct. 2009, pp. 1–14.

[31] S. Das, D. Agrawal, and A. El Abbadi, “G-store: a scalable data store
for transactional multi key access in the cloud,” in ACM Symp. on Cloud
Computing, Indianapolis, Indiana, USA, June 2010, pp. 163–174.

[32] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel, “Finding a
needle in haystack: Facebook’s photo storage,” in USENIX Symposium
on Operating Systems Design and Implementation, Vancouver, Canada,
Oct. 2010, pp. 47–60.

[33] D. Kossmann, T. Kraska, and S. Loesing, “An evaluation of alternative
architectures for transaction processing in the cloud,” in ACM SIGMOD
Conf., Indianapolis, IN, June 2010, pp. 579–590.

[34] A. Silberstein, B. F. Cooper, U. Srivastava, E. Vee, R. Yerneni, and
R. Ramakrishnan, “Efficient bulk insertion into a distributed ordered
table,” in ACM SIGMOD Conf., Vancouver, Canada, June 2008, pp.
765–778.

[35] H. T. Vo, C. Chen, and B. C. Ooi, “Towards elastic transactional cloud
storage with range query support,” VLDB Conf, pp. 506–514, Sept. 2010.

[36] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker, “A comparison of approaches to large-scale data
analysis,” in ACM SIGMOD Conf., Providence, RI, June 2009, pp. 165–
178.

[37] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509, 2002.

[38] R. Low, “Cassandra under heavy write load,” Acunu,
Ltd., London, United Kingdom, Mar. 2011. [Online]. Avail-
able: http://www.acunu.com/blogs/richard-low/cassandra-under-heavy-
write-load-part-i/

[39] S. Büttcher, C. L. A. Clarke, and B. Lushman, “Hybrid index mainte-
nance for growing text collections,” in ACM SIGIR Conf., Seattle, WA,
Aug. 2006, pp. 356–363.

[40] “Cheetah ns.2 data sheet: Lowest power, highest reliability for 3.5-inch
tier 1 solutions,” Seagate Tech LLC, 2009.

[41] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka,
“Informed prefetching and caching,” in ACM Symposium on Operating
Systems Principles, Copper Mountain, CO, Dec. 1995, pp. 79–95.

[42] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger,
“Quickly generating billion-record synthetic databases,” in ACM SIG-
MOD Conf., Minneapolis, MI, May 1994, pp. 243–252.

[43] “Zoie: real-time search and indexing system
built on apache lucene.” [Online]. Available:
http://code.google.com/p/zoie/wiki/ZoieMergePolicy

